WO2010083627A1 - 一种用于同步产电脱盐的污水处理工艺及装置 - Google Patents
一种用于同步产电脱盐的污水处理工艺及装置 Download PDFInfo
- Publication number
- WO2010083627A1 WO2010083627A1 PCT/CN2009/000111 CN2009000111W WO2010083627A1 WO 2010083627 A1 WO2010083627 A1 WO 2010083627A1 CN 2009000111 W CN2009000111 W CN 2009000111W WO 2010083627 A1 WO2010083627 A1 WO 2010083627A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anode
- chamber
- cathode
- sewage treatment
- desalination
- Prior art date
Links
- 239000010865 sewage Substances 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000011033 desalting Methods 0.000 title claims abstract description 9
- 238000010612 desalination reaction Methods 0.000 claims abstract description 27
- 239000012528 membrane Substances 0.000 claims abstract description 25
- 150000001450 anions Chemical class 0.000 claims abstract description 12
- 150000001768 cations Chemical class 0.000 claims abstract description 5
- 238000006722 reduction reaction Methods 0.000 claims abstract description 4
- 230000000813 microbial effect Effects 0.000 claims description 14
- 230000001360 synchronised effect Effects 0.000 claims description 14
- 244000005700 microbiome Species 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 230000005611 electricity Effects 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- 239000000446 fuel Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 6
- 239000012267 brine Substances 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- 239000013535 sea water Substances 0.000 claims description 5
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 238000000909 electrodialysis Methods 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 239000002351 wastewater Substances 0.000 claims description 4
- 241001135750 Geobacter Species 0.000 claims description 3
- 230000009172 bursting Effects 0.000 claims description 3
- 239000003344 environmental pollutant Substances 0.000 claims description 3
- 239000003014 ion exchange membrane Substances 0.000 claims description 3
- 231100000252 nontoxic Toxicity 0.000 claims description 3
- 230000003000 nontoxic effect Effects 0.000 claims description 3
- 231100000719 pollutant Toxicity 0.000 claims description 3
- 230000035806 respiratory chain Effects 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 claims description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- -1 potassium ferricyanide Chemical compound 0.000 claims description 2
- 238000010248 power generation Methods 0.000 claims description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims 1
- 229910017604 nitric acid Inorganic materials 0.000 claims 1
- 241000894007 species Species 0.000 claims 1
- 238000005341 cation exchange Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 239000003011 anion exchange membrane Substances 0.000 abstract 2
- 238000005516 engineering process Methods 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 241000863430 Shewanella Species 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/46—Apparatus therefor
- B01D61/463—Apparatus therefor comprising the membrane sequence AC or CA, where C is a cation exchange membrane
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/005—Combined electrochemical biological processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
- C02F1/4693—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
Definitions
- the invention belongs to the technical field of water resources treatment, and particularly relates to a sewage treatment process and device for synchronous electric production desalination. Background technique ,
- Water is an important natural resource for human survival.
- the deterioration of the global water environment and the severe energy crisis urgently require efficient and low-cost wastewater resource technology to alleviate 'water shortages and energy demand.
- 97% of the total water reserves on the earth are salt water (including seawater and brackish water).
- Requiring fresh water to the sea and the lagoon to alleviate the growing global water crisis has not only reached a consensus in the global scientific community, but has also become The governments of the coastal countries advocate and develop countermeasures for new water sources.
- seawater desalination has spread to 125 countries and regions around the world.
- Desalination water feeds about 5% of the world's population.
- Distillation, electrodialysis, ultrafiltration-reverse osmosis are the main desalination processes. These processes are highly efficient. But what comes with it is the high power consumption.
- Microbial foel cell is a new wastewater treatment technology developed in recent years. It consists of an anode, a separator and a cathode. Its basic principle is to remove it by anodizing under the action of electrogenic microorganisms. Contaminants convert their chemical energy into electrical energy and produce electricity while treating sewage. From 2002 to the present, MFC output power has increased by nearly 10,000 times, initially showing bright and attractive application prospects.
- the conventional MFC research idea is to use the current of the external circuit, but there is an internal current of the same size in the internal circuit. Referring to the principle of electrodialysis, we replace the internal single cation exchange membrane with two sets of membranes of cation and anion to form the intermediate cavity. In the chamber, if brine is added to the intermediate chamber, the internal current of the MFC can be used to desalinate while treating the sewage and producing electricity, thereby achieving three-in-one. Summary of the invention
- the invention is based on microbial fuel cell technology and aims to simultaneously utilize the MFC to treat sewage, electricity and desalination processes.
- the invention provides a sewage treatment process for synchronous electric desalination, characterized in that it comprises the following steps:
- the sewage is a biodegradable organic wastewater.
- the types of the electrogenic microorganisms include geobacter and shewanella.
- the brine includes: seawater or brackish water, and the salt content is 5-35 g L.
- the electron acceptor includes chemically catalytically reduced oxygen, potassium ferricyanide, and microbial catalytically reduced oxygen, nitrate, and carbon dioxide.
- the present invention also provides a sewage treatment apparatus for synchronous generation of electric desalination, characterized in that the negative membrane 2 and the anode membrane 3 divide the microbial fuel cell 1 into an anode chamber A, an intermediate desalting chamber B and a cathode chamber C; An anode 4 is disposed in the anode chamber A, a cathode 5 is disposed in the cathode chamber C, and an electrogenic microbial membrane 6 is disposed on the anode 4.
- the negative film 2 and the positive film 3 are non-toxic industrial electrodialysis ion exchange membranes having a transmittance of not less than 90%, a thickness of 0.2 to 0.5 mm, and a bursting strength of not less than 0.3 MPa.
- the thickness of the electrogenic microorganism film 6 on the anode 4 is 20 to 80 ⁇ m.
- the anode chamber inner anode 4 and the filling material include: graphite particles or carbon felt, and the particle size ranges from 1 to 5 mm P
- the cathode 5 and the filling material in the cathode chamber C include: graphite particles or carbon felt, and the particle size ranges from 1 to 5 mm.
- the invention has the beneficial effects that: the internal current of the microbial fuel cell (MFC) is desalted while treating the sewage and generating electricity, thereby achieving three-in-one; the process of the invention is simple, easy to operate, low in energy consumption and high in efficiency; The device has a simple structure and is convenient for industrial production and use.
- MFC microbial fuel cell
- FIG. 1 is a schematic view showing the principle of the desalted microbial fuel cell of the present invention.
- the present invention provides a sewage treatment process and apparatus for simultaneous generation of electric desalination, and the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
- the anion membrane 2 and the anode membrane 3 divide the microbial fuel cell 1 into an anode chamber A, an intermediate desalting chamber B, and a cathode chamber C, wherein the anion membrane 2 and the anode membrane 3 are non-toxic industrial electricity having a transmittance of 95%.
- the dialysis ion exchange membrane has a thickness of 0.3 mm and a bursting strength of 0.5 MPa; an anode 4 is disposed in the anode chamber A, a cathode 5 is disposed in the cathode chamber C, and an electrogenic microbial membrane 6 having a thickness of 40 ⁇ m is disposed on the anode 4,
- the electrogenic microorganism uses geobacter, wherein the anode 4, the cathode 5, and the filling materials in the anode chamber A and the cathode chamber B are all carbon felts, the particle size ranges from 1 to 5 mm, and the filling materials in the anode chamber A and the cathode chamber B It is possible to increase the adhesion area and cathode area of the electrogenic microorganisms and increase the current.
- the anode chamber A maintains an anaerobic state, and the biodegradable organic wastewater enters the anode chamber A, and oxidizes and removes pollutants in the sewage under the action of the electricity-producing microorganisms, and the electron-generating microorganisms transfer the electrons of the respiratory chain to the anode. 4.
- the current direction of the external circuit flows from the cathode 5 to the anode 4; the current direction of the internal circuit flows from the anode 4 to the cathode 5, and the seawater having a salt content of 20 g/L continuously flows into the intermediate desalting chamber B, due to the negative membrane 2 and the anode membrane 3
- the MFC output power is about 300W/m 3
- the sewage treatment load is 5kg/m 3 d
- the operating current is about 100 mA
- the corresponding desalination rate is 90 mM/d.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2009338081A AU2009338081B2 (en) | 2009-01-23 | 2009-01-23 | Wastewater treatment process and device for electricity generation and desalination simultaneously |
US13/145,987 US20110281139A1 (en) | 2009-01-23 | 2009-01-23 | Wastewater Treatment Process and Device for Electricity Generation and Desalination Simultaneously |
PCT/CN2009/000111 WO2010083627A1 (zh) | 2009-01-23 | 2009-01-23 | 一种用于同步产电脱盐的污水处理工艺及装置 |
EP09838594.1A EP2390236B1 (en) | 2009-01-23 | 2009-01-23 | Sewage treatment process and apparatus for generating electric current and desalting simultaneously |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2009/000111 WO2010083627A1 (zh) | 2009-01-23 | 2009-01-23 | 一种用于同步产电脱盐的污水处理工艺及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010083627A1 true WO2010083627A1 (zh) | 2010-07-29 |
Family
ID=42355476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/000111 WO2010083627A1 (zh) | 2009-01-23 | 2009-01-23 | 一种用于同步产电脱盐的污水处理工艺及装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110281139A1 (zh) |
EP (1) | EP2390236B1 (zh) |
AU (1) | AU2009338081B2 (zh) |
WO (1) | WO2010083627A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108218147A (zh) * | 2018-03-20 | 2018-06-29 | 沈阳环境科学研究院 | 一种强化脱氮的微生物燃料电池耦合潜流人工湿地系统 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010124079A2 (en) * | 2009-04-22 | 2010-10-28 | The Penn State Research Foundation | Desalination devices and methods |
EP2756541A4 (en) * | 2011-09-15 | 2015-06-24 | Univ Colorado Regents | MODULAR BIOELECTROCHEMICAL SYSTEMS AND METHOD |
CN103304037A (zh) * | 2012-03-16 | 2013-09-18 | 北京大学深圳研究生院 | 一种生物电化学系统处理污水、产生电能及辅助发酵的方法 |
CN102701543B (zh) * | 2012-06-28 | 2013-07-17 | 天津工业大学 | 以微生物燃料电池与膜技术结合的水处理装置 |
US9546426B2 (en) | 2013-03-07 | 2017-01-17 | The Penn State Research Foundation | Methods for hydrogen gas production |
CN103482773B (zh) * | 2013-10-15 | 2015-01-21 | 江苏商达水务有限公司 | 一种农村生活污水的除磷药剂及其应用 |
US10388977B2 (en) * | 2016-03-31 | 2019-08-20 | South Dakota Board Of Regents | Generation of electricity and other value-added products from culled tomatoes in microbially catalyzed electrochemical systems |
EP3336064B1 (en) | 2016-12-16 | 2020-08-26 | FCC Aqualia, S.A. | Method of desalination and wastewater treatment in a microbial desalination cell reactor |
CN108520972B (zh) * | 2018-06-08 | 2024-05-28 | 西安建筑科技大学 | 一种一体化铁基除污和资源回收用微生物燃料电池及污水处理方法 |
CN109378509A (zh) * | 2018-11-29 | 2019-02-22 | 大连大学 | 一种非厌氧式阳极连续型处理污水的微生物燃料电池 |
CN109370884A (zh) * | 2018-12-06 | 2019-02-22 | 黑龙江省能源环境研究院 | 一种去除餐厨垃圾盐分的微生物电池系统 |
US20220064030A1 (en) * | 2018-12-18 | 2022-03-03 | Technion Research & Development Foundation Limited | Deionization fuel cell system |
CN111217424B (zh) * | 2020-02-25 | 2024-10-15 | 上海海洋大学 | 去除海水中多环芳烃的脱盐系统 |
WO2022040051A1 (en) * | 2020-08-16 | 2022-02-24 | The Board Of Trustees Of The Leland Stanford Junior University | Apparatus and methods for nitrogen reduction in wastewater |
CN112811743A (zh) * | 2021-02-22 | 2021-05-18 | 上海海洋大学 | 海产品低温暂养水除沫系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1364146A (zh) * | 1999-07-07 | 2002-08-14 | 韩国科学技术研究院 | 一种用于废水处理的使用废水和活性污泥的生物燃料电池 |
CN1874040A (zh) * | 2005-06-03 | 2006-12-06 | 清华大学 | 一种以有机废水为燃料的单池式微生物电池 |
CN1937297A (zh) * | 2006-10-20 | 2007-03-28 | 清华大学 | 一种双筒型微生物燃料电池 |
CN101227008A (zh) * | 2008-01-18 | 2008-07-23 | 哈尔滨工业大学 | 折流板空气阴极微生物燃料电池 |
US20080286624A1 (en) * | 2007-05-18 | 2008-11-20 | Toyota Engineering & Manufacturing North America, Inc. | Microbial fuel cells |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2265633B (en) * | 1992-03-31 | 1995-07-19 | Aquamin Co Ltd | Electrodialyzer |
US6149788A (en) * | 1998-10-16 | 2000-11-21 | E-Cell Corporation | Method and apparatus for preventing scaling in electrodeionization units |
US6428676B1 (en) * | 2000-11-08 | 2002-08-06 | Enthone Inc. | Process for producing low alpha lead methane sulfonate |
FR2859990A1 (fr) * | 2003-09-23 | 2005-03-25 | Sci Rhodes Innovation | Dispositif de desionisation de solutions salines |
US8277984B2 (en) * | 2006-05-02 | 2012-10-02 | The Penn State Research Foundation | Substrate-enhanced microbial fuel cells |
PL1809408T3 (pl) * | 2004-09-13 | 2012-08-31 | Univ South Carolina | Sposób i aparatura do odsalania wody |
EP1742288A1 (en) * | 2005-07-08 | 2007-01-10 | Universiteit Gent | Microbial fuel cells for oxidation of electron donors |
US7695834B1 (en) * | 2008-10-15 | 2010-04-13 | Ut-Battelle, Llc | Microbial fuel cell with improved anode |
WO2010124079A2 (en) * | 2009-04-22 | 2010-10-28 | The Penn State Research Foundation | Desalination devices and methods |
WO2011159772A1 (en) * | 2010-06-16 | 2011-12-22 | Uwm Research Foundation, Inc. | Microbial desalination cells |
-
2009
- 2009-01-23 EP EP09838594.1A patent/EP2390236B1/en not_active Not-in-force
- 2009-01-23 WO PCT/CN2009/000111 patent/WO2010083627A1/zh active Application Filing
- 2009-01-23 AU AU2009338081A patent/AU2009338081B2/en not_active Ceased
- 2009-01-23 US US13/145,987 patent/US20110281139A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1364146A (zh) * | 1999-07-07 | 2002-08-14 | 韩国科学技术研究院 | 一种用于废水处理的使用废水和活性污泥的生物燃料电池 |
CN1874040A (zh) * | 2005-06-03 | 2006-12-06 | 清华大学 | 一种以有机废水为燃料的单池式微生物电池 |
CN1937297A (zh) * | 2006-10-20 | 2007-03-28 | 清华大学 | 一种双筒型微生物燃料电池 |
US20080286624A1 (en) * | 2007-05-18 | 2008-11-20 | Toyota Engineering & Manufacturing North America, Inc. | Microbial fuel cells |
CN101227008A (zh) * | 2008-01-18 | 2008-07-23 | 哈尔滨工业大学 | 折流板空气阴极微生物燃料电池 |
Non-Patent Citations (1)
Title |
---|
HONG, YIGUO ET AL.: "Recent Progress in Electricigens and Microbial Fuel Cell", ACTA MICROBIOLOGICA SINICA., vol. 47, no. 1, 4 February 2007 (2007-02-04), pages 173 - 177 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108218147A (zh) * | 2018-03-20 | 2018-06-29 | 沈阳环境科学研究院 | 一种强化脱氮的微生物燃料电池耦合潜流人工湿地系统 |
Also Published As
Publication number | Publication date |
---|---|
US20110281139A1 (en) | 2011-11-17 |
AU2009338081B2 (en) | 2013-01-31 |
EP2390236A4 (en) | 2012-10-10 |
AU2009338081A1 (en) | 2011-09-01 |
EP2390236A1 (en) | 2011-11-30 |
EP2390236B1 (en) | 2014-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010083627A1 (zh) | 一种用于同步产电脱盐的污水处理工艺及装置 | |
CN101481178B (zh) | 一种用于同步产电脱盐的污水处理工艺及装置 | |
Sayed et al. | Recent progress in environmentally friendly bio-electrochemical devices for simultaneous water desalination and wastewater treatment | |
Mathuriya et al. | Architectural adaptations of microbial fuel cells | |
Yuan et al. | Enhancing desalination and wastewater treatment by coupling microbial desalination cells with forward osmosis | |
Jafary et al. | Enhanced power generation and desalination rate in a novel quadruple microbial desalination cell with a single desalination chamber | |
Iddya et al. | Efficient ammonia recovery from wastewater using electrically conducting gas stripping membranes | |
Kokabian et al. | Role of membranes in bioelectrochemical systems | |
WO2011159772A1 (en) | Microbial desalination cells | |
CN102329007A (zh) | 一种微生物脱盐电池 | |
Siddiqui et al. | Wastewater treatment and energy production by microbial fuel cells | |
Dizge et al. | Recent progress and developments in membrane materials for microbial electrochemistry technologies: a review | |
Pandit et al. | Blue energy meets green energy in microbial reverse electrodialysis cells: Recent advancements and prospective | |
Abd‐almohi et al. | Broad‐ranging review: configurations, membrane types, governing equations, and influencing factors on microbial desalination cell technology | |
Zhang et al. | Contaminant removal and resource recovery in bioelectrochemical wastewater treatment | |
Al-Murisi et al. | Integrated microbial desalination cell and microbial electrolysis cell for wastewater treatment, bioelectricity generation, and biofuel production: Success, experience, challenges, and future prospects | |
Alseroury | Microbial desalination cells: Progress and impacts | |
Sharma et al. | Microbial desalination cells | |
El Mekawy et al. | Integrated bioelectrochemical platforms | |
Raj et al. | Bio‐Electrochemical Systems for Micropollutant Removal | |
Banerjee et al. | Biofuel cells for water desalination | |
Luo et al. | Resource recovery from wastewater by bioelectrochemical systems | |
CN112125389A (zh) | 一种同步污水处理与海水淡化的微生物正-反电渗析池(merc) | |
Hou et al. | An integrated microbial desalination cell-driven capacitive deionization system as an electrochemical means for wastewater treatment, electricity generation and desalination | |
Dai et al. | Source-Separated Human Urine as Fuel for Microbial Fuel Cell: A Mini Review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09838594 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13145987 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009338081 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009838594 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2009338081 Country of ref document: AU Date of ref document: 20090123 Kind code of ref document: A |