WO2010082625A1 - Information pattern carrier and method for optically reading information pattern - Google Patents

Information pattern carrier and method for optically reading information pattern Download PDF

Info

Publication number
WO2010082625A1
WO2010082625A1 PCT/JP2010/050412 JP2010050412W WO2010082625A1 WO 2010082625 A1 WO2010082625 A1 WO 2010082625A1 JP 2010050412 W JP2010050412 W JP 2010050412W WO 2010082625 A1 WO2010082625 A1 WO 2010082625A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
information pattern
semiconductor quantum
light
information
Prior art date
Application number
PCT/JP2010/050412
Other languages
French (fr)
Japanese (ja)
Inventor
中西 幹育
Original Assignee
メトロ電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メトロ電気株式会社 filed Critical メトロ電気株式会社
Priority to CN201080004704.6A priority Critical patent/CN102282568B/en
Priority to JP2010546655A priority patent/JP5339382B2/en
Publication of WO2010082625A1 publication Critical patent/WO2010082625A1/en
Priority to HK12103127.6A priority patent/HK1162723A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/305Associated digital information
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • C09K11/572Chalcogenides
    • C09K11/574Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • C09K11/582Chalcogenides
    • C09K11/584Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • B42D2033/20
    • B42D2035/16
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/382Special inks absorbing or reflecting infrared light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/387Special inks absorbing or reflecting ultraviolet light

Definitions

  • the present invention relates to an information recording medium on which an information pattern such as a barcode or a QR code is printed, an information pattern carrier such as a management target, and an optical reading method of the information pattern.
  • Patent Document 1 prints an information pattern such as a barcode containing a phosphor, irradiates the information pattern with a semiconductor laser to excite the phosphor, receives light emitted from the phosphor, and optically transmits the information pattern.
  • An optical reader that reads with a reader is disclosed.
  • this apparatus when reading, since the wavelength peaks of the excitation light from the semiconductor laser diode and the fluorescence from the phosphor are separated from each other, only the emission spectrum of the phosphor can be read.
  • this security system since it is difficult to forge the phosphor mark and the technology for reading the phosphor mark is difficult to forge, it is possible to provide relatively high security.
  • Patent Document 2 proposes an optical reading system using a light emitting diode, which can be made smaller and less expensive than an apparatus using a semiconductor laser diode.
  • This optical reading system optically reads a printed layer printed with invisible ink, and the phosphor is made of an inorganic oxide to which neodymium is added as an activation element.
  • the light emission center wavelength of the light emitting element that excites the phosphor is separated from the wavelength region in which the light receiving element that receives the fluorescence from the printing layer can receive light.
  • Patent Document 3 in an optical data carrier containing metal particles, an increase in the volume of the data carrier due to thermal expansion as a result of the absorption of radiation causes a shift of the absorbed light to a longer wavelength. It is disclosed.
  • the inventor of the present application can adopt light from a light emitting diode as excitation light, can be miniaturized, can be an inexpensive optical reading system, has a strong light emission from a phosphor, and is a method different from Patent Document 1.
  • the inventors have eagerly searched for a printing layer and an optical reading method that can receive light emitted from a printing layer (information pattern) excited by excitation light and can avoid receiving excitation light.
  • the inventor of the present application pays attention to the shift of the wavelength to the longer wavelength side due to thermal expansion in Patent Document 3, and uses this for avoiding reception of excitation light at the time of reading, and is one step higher for the invisible information pattern. Accumulated thoughts to gain security.
  • the present invention has been devised in view of the above circumstances.
  • the object of the present invention is to provide a barcode or QR formed on an information pattern carrier such as an information recording medium or a management object so that it cannot be recognized with the naked eye. It is extremely difficult to maliciously develop an optical reading device that can clearly read information patterns such as codes when reading, and can read the information of this information pattern even if it notices the existence of the information pattern,
  • An object of the present invention is to provide an information pattern carrier and an information pattern optical reading method capable of realizing a high security system and realizing invisible traceability that provides high quality assurance.
  • An information pattern carrier of the present invention includes an information pattern formed of a colored ink containing core / shell type semiconductor quantum dots, and a mask which is formed on the information pattern to make the information pattern invisible. Yes.
  • the information pattern is configured so that the semiconductor quantum dot emits light having a wavelength that has been thermally expanded and shifted to the longer wavelength side when irradiated with an excitation light having energy higher than the band gap of the semiconductor quantum dot. ing.
  • the information pattern carrier of the present invention is formed of a colored ink containing core / shell type semiconductor quantum dots, and is made the same color as the color of the ground color of the information recording medium or management object or the underlying colored layer.
  • the information pattern is made invisible.
  • the information pattern is configured so that the semiconductor quantum dot emits light having a wavelength that has been thermally expanded and shifted to the longer wavelength side when irradiated with an excitation light having energy higher than the band gap of the semiconductor quantum dot. ing.
  • An information pattern carrier such as an information recording medium or an object to be managed has an information pattern printed thereon with a colored ink and formed in an invisible state.
  • the semiconductor quantum dots are excited by excitation light during reading to thermally expand, and light having a wavelength transitioning to the long wavelength side that is emitted at that time is received to decode the information. For this reason, since the information pattern is visible when the carrier is manufactured, it is easy to form the pattern. After the manufacturing, the information pattern is invisible, so that the presence of the information pattern is not noticed except during reading.
  • the core / shell type semiconductor quantum dot emits strong light, and the wavelength region of the light is greatly separated from the excitation light by the transition of the emission wavelength due to thermal expansion. Is clearly read.
  • the emission wavelength is changed, it is difficult to imitate the reading device.
  • the colored ink enhances the heat absorbability due to the irradiation of excitation light, and the temperature easily changes, so that the semiconductor quantum dots are easily expanded. It is difficult to easily imitate / manufacture colored ink, and security can be improved. Therefore, the information pattern can be reliably decoded by the optical reading device that can compensate for the handling in which the information pattern cannot be recognized with the naked eye and can decode the shifted wavelength.
  • the colored ink is preferably colored with any colorant of dyes, leuco dyes or pigments having a particle size of submicron. By using these colorants, coloring that absorbs visible light can be easily obtained without inhibiting the irradiation of the excitation light to the semiconductor quantum dots by adjusting the concentration.
  • the core / shell type semiconductor quantum dots have CdSe / ZnS as a core. Since it can disperse
  • Core / shell type semiconductor quantum dots A core obtained by adding Te to ZnSe nanoparticles, and a shell of ZnS nanoparticles, (B) (Zn (1-2 x ) In x Ag x S) is used as a core or shell; (C) Core ZnS nanoparticles containing Mn ions, (D) using ZnS nanoparticles as a core, (E) using Zn—In—Ag—S based semiconductor nanoparticles as a core; (F) silicon nanoparticles as the core or shell, It is also preferable that it is any one of these.
  • these semiconductor quantum dots strong light emission and wavelength transition due to thermal expansion of the semiconductor quantum dots can be suitably obtained.
  • Core / shell type semiconductor quantum dots (G) Using silicon nanoparticles as a core and erbium as a shell, (H) Erbium as a core and silicon nanoparticles as a shell, It is also preferable that it is any one of these. Since erbium has a high coefficient of thermal expansion, the wavelength transition increases when the semiconductor quantum dot expands greatly when thermally expanded. Therefore, information can be read more clearly and security can be improved.
  • the optical reading method of the present invention is made invisible by forming a colored ink containing core / shell type semiconductor quantum dots on an information recording medium or an object to be managed, and forming a mask thereon.
  • An information pattern optical reading method in which the semiconductor quantum dot is thermally expanded by irradiating the information pattern with an excitation light whose energy is higher than the band gap of the semiconductor quantum dot, and the long wavelength side from the thermally expanded semiconductor quantum dot The light having the wavelength shifted to is emitted, the emitted light is received by an optical sensor having sensitivity to the shifted long wavelength side portion, and the information pattern is read.
  • Another optical reading method of the present invention is formed with a colored ink containing core / shell type semiconductor quantum dots on an information recording medium or a management object, and is made the same color as the ground color or the color of the underlying colored layer.
  • An optical reading method for an information pattern that is made invisible by irradiating the semiconductor quantum dot with an excitation beam having energy higher than the band gap of the semiconductor quantum dot to thermally expand the semiconductor quantum dot.
  • Light having a wavelength shifted to the long wavelength side is emitted from the dot, and the emitted light is received by an optical sensor having sensitivity to the shifted long wavelength side portion, and the information pattern is read.
  • An information pattern printed on an information pattern carrier such as an information recording medium or an object to be managed is printed with colored ink, and is invisible.
  • the semiconductor quantum dots are excited by excitation light to thermally expand, and light is emitted at that time.
  • the core / shell type semiconductor quantum dot emits strong light, and the wavelength region of the light is greatly separated from the excitation light by the transition of the light emission wavelength due to thermal expansion, so that the excitation light is not read. Information is clearly read. Further, since the emission wavelength is changed, it is difficult to imitate the reading device.
  • the colored ink enhances the heat absorbability due to the irradiation of excitation light, and the temperature easily changes, so that the semiconductor quantum dots are easily expanded. It is difficult to easily imitate / manufacture colored ink, and security can be improved. Therefore, the information pattern can be reliably decoded by the optical reading device that can compensate for the handling in which the information pattern cannot be recognized with the naked eye and can decode the shifted wavelength.
  • the colored ink is colored with any one of a dye, a leuco dye, or a pigment having a particle size of submicron.
  • a dye a leuco dye, or a pigment having a particle size of submicron.
  • the core / shell type semiconductor quantum dots have CdSe / ZnS as a core. Since it can disperse
  • Core / shell type semiconductor quantum dots A core obtained by adding Te to ZnSe nanoparticles, and a shell of ZnS nanoparticles, (B) (Zn (1-2 x ) In x Ag x S) is used as a core or shell; (C) Core ZnS nanoparticles containing Mn ions, (D) using ZnS nanoparticles as a core, (E) using Zn—In—Ag—S based semiconductor nanoparticles as a core; (F) silicon nanoparticles as the core or shell, It is also preferable that it is any one of these.
  • these semiconductor quantum dots strong light emission and wavelength transition due to thermal expansion of the semiconductor quantum dots can be suitably obtained.
  • Core / shell type semiconductor quantum dots (G) Using silicon nanoparticles as a core and erbium as a shell, (H) Erbium as a core and silicon nanoparticles as a shell, It is also preferable that it is any one of these. Since erbium has a high coefficient of thermal expansion, the wavelength transition increases when the semiconductor quantum dot expands greatly when thermally expanded. Therefore, information can be read more clearly and security can be improved.
  • the information pattern carrier such as the information recording medium or the management object is printed with the colored ink and is made invisible by the mask or the colored ink having the same color as the carrier.
  • the semiconductor quantum dots are thermally expanded while being excited by excitation light at the time of reading, and light having a wavelength that shifts to the long wavelength side that is emitted at that time is received to decode the information. For this reason, since the information pattern is invisible after manufacture, the presence of the information pattern is not noticed except during reading.
  • the core / shell type semiconductor quantum dot When reading, the core / shell type semiconductor quantum dot emits strong light, and the wavelength of the emitted light is shifted by thermal expansion, so the wavelength region is far away from the excitation light, so the information is clear without reading the excitation light. To be read. Further, since the emission wavelength is changed, it is difficult to imitate the reading device.
  • the colored ink enhances the heat absorbability due to the irradiation of excitation light, and the temperature easily changes, so that the semiconductor quantum dots are easily expanded. It is difficult to easily imitate / manufacture colored ink, and security can be improved. Therefore, the information pattern can be reliably decoded by the optical reading device that can compensate the handling in which the information pattern cannot be recognized with the naked eye and can decode the shifted wavelength.
  • FIG. 1 is a schematic view of a reading apparatus for carrying out the optical reading method of the first embodiment.
  • FIG. 2 is a graph showing the relationship between the wavelength and intensity of light emitted by exciting semiconductor quantum dots at room temperature.
  • FIG. 3 is a graph showing the relationship between the wavelength and intensity of light emitted by expanding and exciting semiconductor quantum dots.
  • FIG. 4 is a schematic view of a reading apparatus for carrying out the optical reading method of the second embodiment.
  • FIG. 5 is a schematic view of a reading apparatus for carrying out the optical reading method of the third embodiment.
  • FIG. 6 is a graph showing the relationship between the wavelength and intensity of light emitted by exciting the semiconductor quantum dots by heat shrinking according to the optical reading method of the third embodiment.
  • FIG. 1 is a schematic diagram of a reading apparatus for carrying out the information pattern carrier and the optical reading method of the present embodiment.
  • the reading device 1 is for reading information on the information recording card 10 ⁇ / b> A, and generally includes a light emitting diode 15 and an optical reading mechanism 2.
  • the information recording card 10A includes an information recording medium 11 and an information pattern carrier 11A on the information recording medium 11.
  • the information pattern carrier 11A makes the information pattern 12 invisible by printing the information pattern 12 such as a visible barcode or QR code printed on the information pattern 12 after printing the information pattern 12. And a mask printing body 13 for the purpose.
  • the information recording card 10A is in the form of a card on which information is recorded. For example, a cash card, various prepaid cards, a telephone card, a traffic card, a health insurance card, or the like is applied.
  • the information recording medium 11 is a main body of the information recording card 10A on which the information pattern 12 is printed.
  • the information recording medium 11 is made of a vinyl chloride sheet or the like in which a white pigment such as titanium oxide is dispersed and held, and has a property of reflecting infrared rays, visible rays, and ultraviolet rays.
  • the information pattern 12 is formed by printing on the information recording medium 11 with colored ink containing core / shell type semiconductor quantum dots.
  • the colored ink includes semiconductor quantum dots, a coloring material, and a binder for dispersing and holding them.
  • Semiconductor quantum dots are nanometer-sized semiconductor fine particles.
  • the core / shell type refers to a type in which a core made of an inner material is covered with a shell made of an outer material.
  • a CdSe / ZnSe core / shell type semiconductor quantum dot is used.
  • the colorant is a material that absorbs visible light.
  • the coloring material is a dye, a leuco pigment, or a pigment having a particle size of submicron, and includes a concentration that does not hinder the irradiation of the excitation light to the core / shell type semiconductor quantum dots. Suppose that By using these colorants and adjusting the concentration, it is possible to easily obtain a color that does not inhibit irradiation and a color that absorbs visible light.
  • the particle size of the pigment is submicron (less than 1 ⁇ m), preferably the particle diameter is in the range of 0.6 to 0.8 ⁇ m, it can retain translucency like a color filter, so that a colored ink other than black is used. In this case, it is particularly preferable to use an appropriate amount of pigment having a particle size in the range of 0.6 to 0.8 ⁇ m.
  • the colored ink is black ink using carbon black as a coloring material.
  • the information pattern is made invisible by forming an opaque mask 13 on the information pattern 12.
  • invisible means that it is almost impossible to see with the eye or cannot be seen at all (including so-called invisible).
  • the mask 13 is formed by mask printing in which the pattern is painted over the entire surface with the same color as the information pattern 12.
  • the mask printing uses printing that does not absorb or block the excitation light H1 so as not to inhibit the excitation of the information pattern 12 by the excitation light H1.
  • the coloring material for printing that does not absorb the excitation light H1 includes a dye, a leuco dye, or a pigment having a submicron particle size.
  • a masking film (not shown) is formed on the mask printing, and the ink forming the mask printing cannot be removed.
  • the information recording card 10A is configured to be able to scan and move relative to the light-emitting diode 15 and the optical sensor 16 in a straight line.
  • the scanning movement is performed by a mechanical mechanism (not shown) provided in the optical reading mechanism 2, but may be performed by a manual operation.
  • the light emitting diode 15 irradiates the core / shell type semiconductor quantum dots included in the information pattern 12 with the excitation light H1.
  • the light emitting diode 15 is selected so that the excitation light H1 has higher energy than the band gap of the semiconductor quantum dots.
  • the core / shell type semiconductor quantum dots included in the information pattern 12 are excited by the irradiation of the excitation light H1, and the thermal expansion of the semiconductor quantum dots also occurs.
  • the optical reading mechanism 2 includes an optical sensor 16 and an information determination unit 17.
  • the optical sensor 16 receives the light beam H2 emitted when the core / shell type semiconductor quantum dots included in the information pattern 12 are excited.
  • the optical sensor 16 has a wavelength of a long wavelength side portion of light emitted by shifting to the long wavelength side in a state where the information pattern 12 including the core / shell type semiconductor quantum dots is thermally expanded, specifically, as shown in FIG. It is necessary to have sensitivity in the range Y on the long wavelength side.
  • a photodiode is used for the optical sensor 16.
  • the optical sensor 16 is configured to receive light emitted from the information pattern 12 when the time required for the temperature rise of the information pattern 12 has elapsed.
  • the temperature before the information pattern 12 is heated and the temperature after the information pattern 12 are heated can be measured by, for example, a radiation temperature sensor directed to the information pattern 12, and the temperature before the information pattern 12 is heated (for example, 15 ° C. to 30 ° C.). ° C) to a temperature after heating (for example, 60 ° C to 85 ° C), and light reception is performed at this time.
  • the information determination unit 17 amplifies an electrical signal (rectangular signal) obtained by receiving light by the optical sensor 16 and forms an electrical code information signal corresponding to the code information of the information pattern 12.
  • the light emitting diode 15 emits light, and the information The pattern 12 is irradiated with excitation light H1 having energy higher than the band gap of the semiconductor quantum dots.
  • the excitation light H1 excites the semiconductor quantum dots and heats the information pattern 12 to thermally expand the semiconductor quantum dots.
  • Excited semiconductor quantum dots emit light whose wavelength has shifted due to thermal expansion. Specifically, when the CdSe / ZnSe core / shell type semiconductor quantum dots including those having different particle diameters are excited without being thermally expanded, as shown in FIG. A plurality of lights having different wavelengths are emitted every time. On the other hand, when excited in a thermally expanded state, as shown in FIG. 3, it emits light whose wavelength has greatly shifted to the long wavelength side. Even when the core particles of the core / shell type semiconductor quantum dots have a single particle diameter, the relationship in which the wavelength is largely shifted to the longer wavelength side by thermal expansion is the same. Since the semiconductor quantum dot is a core / shell type of CdSe / ZnSe, the obtained light emission is particularly strong.
  • the light emitted from the semiconductor quantum dots is received by the optical sensor 16 having sensitivity to the long wavelength side portion Y and converted into an electrical signal.
  • the information determination unit 17 patterns this electrical signal and checks whether the information pattern 12 can be read, and further checks whether the code information of the information pattern 12 matches the data recorded in the database. The authenticity of the information pattern 12 is determined.
  • the information pattern 12 can be excited by a normal inexpensive light emitting diode 15 and strong light can be emitted from the semiconductor quantum dots (quantum size effect).
  • semiconductor quantum dots are excited with thermal expansion and light emission is shifted to the long wavelength side, information patterns can be clearly detected without the excitation light and light emission overlapping, and ordinary inexpensive silicon photodiodes It is possible to detect with high sensitivity by a light receiving element such as.
  • the optical reading device 1 has a configuration in which the light emitted from the semiconductor quantum dots is shifted to the long wavelength side to emit light, and thus the optical sensor having sensitivity to the long wavelength side portion receives the emitted light and decodes the information. For this reason, it is difficult to imitate the optical reading device, and an optical reading method that provides high security or quality assurance can be realized. As a result, it is possible to prevent forgery, alteration, and tampering of credit cards, cash cards, telephone cards, ID cards, student ID cards, stamp cards, point cards, etc., and to reduce the size and space of the system. Invisible traceability can be realized.
  • An information pattern such as a barcode or QR code is formed in an invisible state on the information recording medium 11 so that the information pattern is not recognized with the naked eye.
  • the ink of this embodiment is imitated. Manufacturing is difficult.
  • the light source of the information pattern is a core / shell type semiconductor quantum dot, and based on that we developed a reading device that can receive light emitted by normal excitation of the semiconductor quantum dot and decode the information
  • the wavelength of the emitted light is shifted to the longer wavelength side, the information pattern cannot be decoded by such a normal reading device.
  • the information pattern 12 is printed on the information recording medium 11 with the colored ink, the information pattern 12 is visible, so that the printed pattern can be easily confirmed.
  • the temperature of the information pattern 12 is likely to increase due to the irradiation of excitation light, and the semiconductor quantum dots are likely to thermally expand.
  • the heat absorption due to irradiation of excitation light is good. Since it is difficult to easily imitate and manufacture the composition of the colored ink, high security can be realized in this respect.
  • the information pattern 12 is printed using ink colored with a pigment having a particle size of submicron, the information pattern 12 having high weather resistance and fading resistance can be obtained with respect to the color.
  • the high chemical stability of shell-type semiconductor quantum dots it is possible to realize a system that provides high quality assurance over a long period of time.
  • CdSe / ZnS core / shell type semiconductor quantum dots are used for the colored ink, it can be dispersed well with toluene or the like and does not aggregate, and it can be used as an ink and can print information patterns well. .
  • the reading device may be provided with heating means for thermally expanding the semiconductor quantum dots.
  • heating means for thermally expanding the semiconductor quantum dots.
  • an electric heater for applying high heat to the lower side of the information recording card 10 on which the information pattern 12 is printed as a heating means and thermally expanding the semiconductor quantum dots of the information pattern 12 may be provided.
  • a means for irradiating the information pattern 12 with heat rays may be provided as a heating means.
  • the excitation light H1 of the light emitting diode 15 may be condensed via the condenser lens and irradiated to the information pattern 12.
  • the light emitting diode 15 one having a high output may be selected, a plurality of light emitting diodes may be used for irradiation, or a light emitting diode that emits infrared light and a light emitting diode that emits ultraviolet light may be used in combination.
  • an information pattern of a management target object other than a card shape may be read.
  • management objects include products other than cards and barcodes, QRs, etc. printed as information patterns 12, such as books with a spine on a book or a sticker printed with information patterns 12. There is.
  • FIG. 4 is a schematic view of a reading apparatus for carrying out the optical reading method of the second embodiment.
  • the information recording card 10B of this embodiment includes an information pattern carrier 11B.
  • the information pattern carrier 11B is printed on the information recording medium (or management target) 11 and the base on which the information recording medium 11 is printed but does not form an information pattern.
  • a printing layer 14 and an information pattern 12 such as a barcode or QR code printed on the information recording medium 11 are provided.
  • symbol is attached
  • the information pattern 12 is made invisible by making the color of the information pattern 12 the same as the color of the ground colored printing layer 14 that is printed on the information recording medium 11 before the information pattern 12. is doing.
  • the color ink used for the information pattern 12 is the same color as that of the base print layer 14. That is, both the base printing layer 14 and the information pattern 12 use a carbon black pigment having a particle size of submicron.
  • the information pattern 12 is handled in an invisible state except at the time of reading, and at the time of reading, since the colored ink absorbs visible light, the information pattern 12 is irradiated by excitation light. 12 easily rises in temperature, and the semiconductor quantum dots are likely to thermally expand, thereby enabling reading. Further, since it is difficult to easily imitate or manufacture the composition of the colored ink, high security can be realized also in this respect.
  • the base print layer 14 is omitted, and the color of the information pattern 12 is set to the same color as the ground color of the surface on which the information recording medium 11 or the information pattern 12 of the management target is printed. 12 may be invisible.
  • the same coloring material as the pigment kneaded in the material of the information recording card 10B may be used for the colored ink of the information pattern 12, and the information pattern 12 may be directly printed on the information recording card 10B.
  • FIG. 5 is a schematic view of a reading apparatus for carrying out the optical reading method of the third embodiment.
  • a cooling unit 3 that thermally contracts the semiconductor quantum dots by cooling the semiconductor quantum dots is provided.
  • symbol is attached
  • the cooling means 3 cools the information pattern 12 and cools the semiconductor quantum dots.
  • the cooling means 3 is an electric cooler provided adjacent to or in contact with the surface of the information recording medium 11 on which the information pattern 12 is not printed, and can be cooled to a temperature of ⁇ 10 to 0 ° C. is there.
  • the optical sensor 16A provided in the optical reading mechanism 2A a sensor having sensitivity in the wavelength region indicated by Ya shown in FIG. 6 which is a range deviated from the wavelength region shown in FIG. 2 to the short wavelength side is used.
  • the cooling unit 3 cools the information pattern 12 and causes the semiconductor quantum dots to thermally contract. Then, the light emitting diode 15 emits light, and the information pattern 12 is irradiated with excitation light H1 having energy higher than the band gap of the semiconductor quantum dots.
  • the semiconductor quantum dots subjected to heat shrinkage emit light having a wavelength that shifts to the short wavelength side shown in FIG. 6 as compared to the wavelength emitted from the semiconductor quantum dots when not thermally contracted (FIG. 2). This emitted light is received by the optical sensor 16A having sensitivity to the long wavelength side portion Ya, and an electric signal is generated.
  • the information determination unit 17 patterns this electrical signal and checks whether the information pattern 12 can be read, and further checks whether the code information of the information pattern 12 matches the data recorded in the database. The authenticity of the information pattern 12 is determined.
  • the core / shell type semiconductor quantum dot that is the light emission source of the information pattern 12 is excited so as to be accompanied by thermal contraction, and the light emission at that time is shifted to the short wavelength side. Since the optical sensor that has sensitivity to the part receives this emitted light and decodes the information, the information can be decoded for the first time by using a special optical reading device, which further enhances security or quality assurance. The system to give can be realized.
  • the cooling unit 3 may be a unit that blows low-temperature air or low-temperature gas as long as the information pattern 12 and the information recording card 11 are not damaged.
  • the present invention is not limited to the above-described embodiments, but includes variously modified forms within the technical scope without departing from the gist of the invention described in the claims.
  • CdSe / ZnSe core / shell type semiconductor quantum dots are used.
  • security information is printed with visible ink containing the following core / shell type semiconductor quantum dots, good.
  • A a core / shell type semiconductor quantum dot having a core obtained by adding Te to ZnSe nanoparticles and a shell containing ZnS nanoparticles;
  • B a core / shell type semiconductor quantum dot in which the core / shell type semiconductor quantum dot has ZnS nanoparticles containing Mn ions as a core;
  • C ZnS nanoparticles doped with In 3+ and Ag + (Zn (1-2 x ) In x Ag x S) by thermally decomposing a thiol complex containing Zn 2+ , In 3+ and Ag + Core / shell type semiconductor quantum dots,
  • D a core / shell type semiconductor quantum dot whose core is a ZnS nanoparticle containing Mn ions;
  • E A core / shell semiconductor quantum dot having Zn—In—Ag—S based semiconductor nanoparticles as a core, or
  • the core / shell type semiconductor quantum dots contained in the visible ink are: (G) a core / shell type semiconductor quantum dot having silicon nanoparticles as a core and erbium as a shell, or (H) A core / shell type semiconductor quantum dot having erbium as a core and silicon nanoparticles as a shell may be used.
  • the thermal expansion coefficient of erbium is 7.6 ⁇ 10 ⁇ 6 / ° C. at 20 ° C., which is about three times the thermal expansion coefficient of silicon, which is 2.5 ⁇ 10 ⁇ 6 / ° C. at 20 ° C. Therefore, it is most preferable to use erbium in order to realize wavelength shift due to expansion.
  • the silicon nanoparticles are preferably 1.9 nm to 4.3 nm, and the erbium nanoparticles are preferably 1.9 nm to 4.3 nm.
  • the semiconductor quantum dots are dispersed in water and the water temperature is increased within a range of 22 ° C. to 90 ° C., and then excitation light having a wavelength of 325 nm is used. It has been confirmed that light emission with a wavelength of 720 to 740 nm can be obtained from semiconductor quantum dots.
  • the erbium nanoparticles When erbium nanoparticles are used as the core and silicon nanoparticles are used as the shell, the erbium nanoparticles should be 1.9 nm to 4.3 nm, and the silicon nanoparticles should be 1.9 nm to 4.3 nm. preferable.
  • the semiconductor quantum dots are dispersed in water and the water temperature is increased in the range of 22 ° C. to 90 ° C., and then excitation at a wavelength of 325 nm is performed. It has been confirmed that strong light emission with a wavelength of 720 to 740 nm can be obtained from semiconductor quantum dots when irradiated with light.
  • silicon nanoparticles having oxygen doped on the surface, or silicon oxide nanoparticles whose inside is oxidized are used as a core or shell, and a core / shell type semiconductor quantum dot using erbium as a shell or core, This is preferable because it emits stronger light.
  • the core / shell type semiconductor quantum dot having silicon nanoparticles as the core a plurality of hydrocarbon groups are bonded to respective Si atoms in the silicon nanoparticles, and the surface of the Si atoms is covered with the hydrocarbon groups.
  • This semiconductor quantum dot can prevent a decrease in emission wavelength and emission efficiency, and can emit visible light by ultraviolet excitation. Further, preferably it is possible to adjust the particle size by the reaction conditions of the Mg 2 Si and SiCl 4 (silicon tetrachloride).
  • the present invention can be used not only for authenticating various cards, but also for reading traceable visual information for tracking product items. Note that the present invention does not exclude using a semiconductor laser diode as a light source of excitation light.
  • the present invention can prevent counterfeiting, falsification, and falsification of cards and certificates, and can reduce the size and space of the system, realize invisible traceability, and in fields where information retention is required. It can contribute widely.

Abstract

Provided is an information pattern carrier, wherein an information pattern (12) is made invisible by forming a mask (13) on the information pattern formed by colored ink or making the color of the colored ink the same as the ground color of an information recording medium (11) or the color of a colored underprint portion.  When the information recording medium (11) having the information pattern (12) is mounted on or carried into a predetermined position, excitation light (H1) having energy higher than that of the bandgap of semiconductor quantum dots is applied to the information pattern (12) from a light-emitting diode (15) to thereby thermally expand the semiconductor quantum dots.  Light having a wavelength that is shifted to the long-wavelength side is emitted from the thermally expanded semiconductor quantum dots, the emitted light is received by a light sensor (16) having sensitivity to a portion on the long-wavelength side of the shifted wavelength, and the information pattern (12) is read by an information determining unit (17).

Description

情報パターン担体及び情報パターンの光学読み取り方法Information pattern carrier and information pattern optical reading method
 本発明は、バーコード若しくはQRコード等の情報パターンが印刷された情報記録媒体又は管理対象物等の情報パターン担体、及びこの情報パターンの光学読み取り方法に関する。 The present invention relates to an information recording medium on which an information pattern such as a barcode or a QR code is printed, an information pattern carrier such as a management target, and an optical reading method of the information pattern.
 近年、各種物品、各種プリペイドカード若しくは通行カード等に、バーコード又はQRコード等の情報パターンを印刷しておき、光学読み取り装置を用いてこの情報パターンを読み取ることによって管理や認証チェックに利用することが行われている。この場合、情報パターンに偽造防止処理を施しておき、これを光学読み取りシステムにより読み取ることによって、情報パターンが偽造されたものであるか否かを判別するセキュリティシステムが種々提案されている。 In recent years, information patterns such as barcodes or QR codes have been printed on various articles, various prepaid cards or pass-through cards, etc., and this information pattern is read using an optical reading device and used for management and authentication checks. Has been done. In this case, various security systems have been proposed in which an information pattern is subjected to anti-counterfeiting processing and is read by an optical reading system to determine whether the information pattern is forged.
 特許文献1には、蛍光体を含有したバーコード等の情報パターンを印刷し、この情報パターンに半導体レーザを照射して蛍光体を励起させ、蛍光体から発する蛍光を受光して情報パターンを光学読み取り装置で読み取る光学読み取り装置が開示されている。この装置では、読み取り時には半導体レーザダイオードからの励起光と蛍光体からの蛍光との波長のピークが互いに離れるので、蛍光体の発光スペクトルのみを読み取ることができる。このセキュリティシステムでは、蛍光体マークが偽造され難いこと及び蛍光体マークを読み取る技術が偽造され難いことから、比較的高いセキュリティを持たせることができる。 Patent Document 1 prints an information pattern such as a barcode containing a phosphor, irradiates the information pattern with a semiconductor laser to excite the phosphor, receives light emitted from the phosphor, and optically transmits the information pattern. An optical reader that reads with a reader is disclosed. In this apparatus, when reading, since the wavelength peaks of the excitation light from the semiconductor laser diode and the fluorescence from the phosphor are separated from each other, only the emission spectrum of the phosphor can be read. In this security system, since it is difficult to forge the phosphor mark and the technology for reading the phosphor mark is difficult to forge, it is possible to provide relatively high security.
 特許文献2には、半導体レーザダイオードを用いた装置よりも小型化が可能でコストの安価な、発光ダイオードを用いた光学読み取りシステムが提案されている。この光学読み取りシステムは、非可視インクで印刷された印刷層を光学的に読み取るものであり、蛍光体がネオジウムを賦活元素として添加した無機酸化物からなる。この蛍光体では、蛍光体を励起する発光素子の発光中心波長と、印刷層からの蛍光を受光する受光素子の受光可能な波長領域とが離れる。よって、励起光の照射に半導体レーザダイオードより波長の幅が広い発光ダイオードを用いても、励起光と蛍光体の発光とが重なってしまうことがなく、読み取りの際に励起光が読み取られることで誤判定が生じることを防いでいる。この技術では、情報パターンが非可視なので読み取り時以外には情報パターンの存在を気付かれることがなく、高いセキュリティを持たせることができる。 Patent Document 2 proposes an optical reading system using a light emitting diode, which can be made smaller and less expensive than an apparatus using a semiconductor laser diode. This optical reading system optically reads a printed layer printed with invisible ink, and the phosphor is made of an inorganic oxide to which neodymium is added as an activation element. In this phosphor, the light emission center wavelength of the light emitting element that excites the phosphor is separated from the wavelength region in which the light receiving element that receives the fluorescence from the printing layer can receive light. Therefore, even if a light emitting diode having a wavelength wider than that of a semiconductor laser diode is used for irradiation of excitation light, the excitation light and the light emission of the phosphor do not overlap, and the excitation light is read at the time of reading. This prevents erroneous determination. In this technique, since the information pattern is invisible, the presence of the information pattern is not noticed except at the time of reading, and high security can be provided.
 なお、特許文献3には、金属粒子を含む光データ担体において、照射の吸収の結果としての熱膨張に起因したデータ担体の体積の増加が、吸収する光の長い波長へのシフトの原因となることが開示されている。 In Patent Document 3, in an optical data carrier containing metal particles, an increase in the volume of the data carrier due to thermal expansion as a result of the absorption of radiation causes a shift of the absorbed light to a longer wavelength. It is disclosed.
特開2001-52108号公報JP 2001-52108 A 特開平6-274677号公報Japanese Patent Laid-Open No. 6-274677 特開2008-512807号公報JP 2008-512807 A
 特許文献1の光学読み取り装置では、光源として半導体レーザダイオードを使用しているので、光源の駆動回路が複雑かつ大型になり、光学読み取り装置のコストが高騰する。 In the optical reading device of Patent Document 1, since a semiconductor laser diode is used as a light source, the driving circuit of the light source becomes complicated and large, and the cost of the optical reading device increases.
 また、本願発明者が特許文献2の光学読み取りシステムについてテストしたところ、読み取り不能が生じることが多かった。これは発光ダイオードが半導体レーザダイオードよりも光の強度が弱く、充分な励起が得られないため蛍光体の発光が弱いためと、光の強度が弱いために蛍光体の発光を検出しにくく励起光を検出してしまうことが避けられないためと思われた。そのため、情報パターンをさらに明瞭に読み取ることのできる手段が望まれた。 Further, when the inventor of the present application tested the optical reading system disclosed in Patent Document 2, there were many cases where reading was impossible. This is because the light intensity of the light emitting diode is lower than that of the semiconductor laser diode, and sufficient excitation cannot be obtained, so the light emission of the phosphor is weak, and the light intensity of the light makes the light emission of the phosphor difficult to detect. It seems that it was inevitable to detect. Therefore, a means that can read the information pattern more clearly is desired.
 そこで本願発明者は、発光ダイオードの光を励起光として採用でき小型化が可能でコストの安価な光学読み取りシステムとすることができ、蛍光体からの発光が強く、特許文献1とは別の方法により励起光で励起される印刷層(情報パターン)からの発光を受光でき励起光の受光を回避できる、印刷層及び光学読み取り方法について、鋭意に探索した。 Therefore, the inventor of the present application can adopt light from a light emitting diode as excitation light, can be miniaturized, can be an inexpensive optical reading system, has a strong light emission from a phosphor, and is a method different from Patent Document 1. The inventors have eagerly searched for a printing layer and an optical reading method that can receive light emitted from a printing layer (information pattern) excited by excitation light and can avoid receiving excitation light.
 さらに本願発明者は、特許文献3の熱膨張による波長の長波長側へのシフトに着目し、これを読み取り時において励起光の受光の回避に利用するとともに、非可視の情報パターンについて一段階高いセキュリティを得るための思索を積み重ねた。 Further, the inventor of the present application pays attention to the shift of the wavelength to the longer wavelength side due to thermal expansion in Patent Document 3, and uses this for avoiding reception of excitation light at the time of reading, and is one step higher for the invisible information pattern. Accumulated thoughts to gain security.
 本発明は、上記事情にかんがみ案出されたもので、その目的とするところは、情報記録媒体若しくは管理対象物等の情報パターン担体上に、肉眼で認識できないように形成した、バーコード又はQRコード等の情報パターンについて、読み取り時には明瞭に読み取ることができ、しかも、情報パターンの存在に気付いてもこの情報パターンの情報を解読できるごとき光学読み取り装置を悪意に開発することが極めて困難であり、高いセキュリティシステムを実現でき、高い品質保証を与える非可視のトレイサビリティを実現できる情報パターン担体及び情報パターンの光学読み取り方法を提供することにある。 The present invention has been devised in view of the above circumstances. The object of the present invention is to provide a barcode or QR formed on an information pattern carrier such as an information recording medium or a management object so that it cannot be recognized with the naked eye. It is extremely difficult to maliciously develop an optical reading device that can clearly read information patterns such as codes when reading, and can read the information of this information pattern even if it notices the existence of the information pattern, An object of the present invention is to provide an information pattern carrier and an information pattern optical reading method capable of realizing a high security system and realizing invisible traceability that provides high quality assurance.
 本発明の情報パターン担体は、コア/シェル型の半導体量子ドットを含有する着色インクで形成された情報パターンと、情報パターン上に被着形成されており情報パターンを非可視化するマスクとを備えている。情報パターンは、半導体量子ドットのバンドギャップよりもエネルギが高い励起光線を照射された際に、半導体量子ドットが、熱膨張して長波長側に遷移した波長を有する光を発光するように構成されている。 An information pattern carrier of the present invention includes an information pattern formed of a colored ink containing core / shell type semiconductor quantum dots, and a mask which is formed on the information pattern to make the information pattern invisible. Yes. The information pattern is configured so that the semiconductor quantum dot emits light having a wavelength that has been thermally expanded and shifted to the longer wavelength side when irradiated with an excitation light having energy higher than the band gap of the semiconductor quantum dot. ing.
 さらに、本発明の情報パターン担体は、コア/シェル型の半導体量子ドットを含有する着色インクで形成されており、情報記録媒体又は管理対象物の地色又は下地着色層の色と同一色化することによって非可視化された情報パターンを備えている。情報パターンは、半導体量子ドットのバンドギャップよりもエネルギが高い励起光線を照射された際に、半導体量子ドットが、熱膨張して長波長側に遷移した波長を有する光を発光するように構成されている。 Furthermore, the information pattern carrier of the present invention is formed of a colored ink containing core / shell type semiconductor quantum dots, and is made the same color as the color of the ground color of the information recording medium or management object or the underlying colored layer. The information pattern is made invisible. The information pattern is configured so that the semiconductor quantum dot emits light having a wavelength that has been thermally expanded and shifted to the longer wavelength side when irradiated with an excitation light having energy higher than the band gap of the semiconductor quantum dot. ing.
 情報記録媒体若しくは管理対象物等の情報パターン担体は、その上に着色インクにより印刷され非可視状態に形成された情報パターンを有している。この情報パターンについて、読み取り時に半導体量子ドットを励起光線によって励起して熱膨張させ、そのときに発光する長波長側に遷移する波長の光を受光し、情報の解読を行う。このため、担体製造時には情報パターンが可視なのでパターンの形成が容易で、製造後には情報パターンが非可視なので読み取り時以外には情報パターンの存在を気付かれることがない。情報パターンの読み取り時には、コア/シェル型の半導体量子ドットが強い発光を行い、熱膨張によってその発光の波長が遷移することで励起光から波長領域が大きく離れるので励起光が読み取られることなく、情報が明確に読み取られる。さらに、発光の波長が遷移するので、読み取り装置の模倣が困難となる。着色インクによって励起光の照射による熱の吸収性が高められ、温度が変化し易いので半導体量子ドットが熱膨張し易くなる。着色インクについても簡単な模倣・製造が困難となり、セキュリティを高めることができる。したがって、情報パターンを肉眼認識できない取り扱いを補償すると共に、遷移した波長を解読できる光学読み取り装置によって情報パターンの確実な情報解読を行うことができる。 An information pattern carrier such as an information recording medium or an object to be managed has an information pattern printed thereon with a colored ink and formed in an invisible state. With respect to this information pattern, the semiconductor quantum dots are excited by excitation light during reading to thermally expand, and light having a wavelength transitioning to the long wavelength side that is emitted at that time is received to decode the information. For this reason, since the information pattern is visible when the carrier is manufactured, it is easy to form the pattern. After the manufacturing, the information pattern is invisible, so that the presence of the information pattern is not noticed except during reading. When reading an information pattern, the core / shell type semiconductor quantum dot emits strong light, and the wavelength region of the light is greatly separated from the excitation light by the transition of the emission wavelength due to thermal expansion. Is clearly read. Further, since the emission wavelength is changed, it is difficult to imitate the reading device. The colored ink enhances the heat absorbability due to the irradiation of excitation light, and the temperature easily changes, so that the semiconductor quantum dots are easily expanded. It is difficult to easily imitate / manufacture colored ink, and security can be improved. Therefore, the information pattern can be reliably decoded by the optical reading device that can compensate for the handling in which the information pattern cannot be recognized with the naked eye and can decode the shifted wavelength.
 着色インクは、染料、ロイコ色素又は粒子径がサブミクロンの顔料のいずれかの着色材で着色されていることが好ましい。これらの着色材を用いることで濃度の調節によって半導体量子ドットへの励起光の照射を阻害せず、可視光線を吸収する着色が容易に得られる。 The colored ink is preferably colored with any colorant of dyes, leuco dyes or pigments having a particle size of submicron. By using these colorants, coloring that absorbs visible light can be easily obtained without inhibiting the irradiation of the excitation light to the semiconductor quantum dots by adjusting the concentration.
 コア/シェル型の半導体量子ドットは、CdSe/ZnSをコアとすることが好ましい。着色インクに対して良好に分散でき、凝集が起こらないので、インクとしての使用が良好で、情報パターンを良好に印刷できる。 It is preferable that the core / shell type semiconductor quantum dots have CdSe / ZnS as a core. Since it can disperse | distribute favorably with respect to colored ink and aggregation does not occur, it can be used as an ink and an information pattern can be printed well.
 コア/シェル型の半導体量子ドットが、
(a)ZnSeナノ粒子にTeを加えたものをコアとし、ZnSナノ粒子をシェルとする、
(b)(Zn(1-2)InAgS)をコア又はシェルとする、
(c)Mnイオンを含んだZnSナノ粒子をコアとする、
(d)ZnSナノ粒子をコアとする、
(e)Zn-In-Ag-S系半導体ナノ粒子をコアとする、
(f)シリコンナノ粒子をコア又はシェルとする、
のいずれか1つであることも好ましい。これらの半導体量子ドットを用いることで、強い発光と、半導体量子ドットの熱膨張による波長の遷移が好適に得られる。
Core / shell type semiconductor quantum dots
(A) A core obtained by adding Te to ZnSe nanoparticles, and a shell of ZnS nanoparticles,
(B) (Zn (1-2 x ) In x Ag x S) is used as a core or shell;
(C) Core ZnS nanoparticles containing Mn ions,
(D) using ZnS nanoparticles as a core,
(E) using Zn—In—Ag—S based semiconductor nanoparticles as a core;
(F) silicon nanoparticles as the core or shell,
It is also preferable that it is any one of these. By using these semiconductor quantum dots, strong light emission and wavelength transition due to thermal expansion of the semiconductor quantum dots can be suitably obtained.
 コア/シェル型の半導体量子ドットが、
(g)シリコンナノ粒子をコアとし、エルビウムをシェルとする、
(h)エルビウムをコアとし、シリコンナノ粒子をシェルとする、
のいずれか1つであることも好ましい。エルビウムは熱膨張率が高いので、半導体量子ドットを熱膨張させた際に大きく膨張することで波長の遷移が大きくなる。そのため、より情報を鮮明に読み取ることができ、セキュリティを高めることができる。
Core / shell type semiconductor quantum dots
(G) Using silicon nanoparticles as a core and erbium as a shell,
(H) Erbium as a core and silicon nanoparticles as a shell,
It is also preferable that it is any one of these. Since erbium has a high coefficient of thermal expansion, the wavelength transition increases when the semiconductor quantum dot expands greatly when thermally expanded. Therefore, information can be read more clearly and security can be improved.
 また、本発明の光学読み取り方法は、情報記録媒体又は管理対象物上にコア/シェル型の半導体量子ドットを含有する着色インクで形成され、その上にマスクが形成されることによって非可視化された情報パターンの光学読み取り方法であって、この情報パターンに半導体量子ドットのバンドギャップよりもエネルギが高い励起光線を照射して半導体量子ドットを熱膨張させ、熱膨張した半導体量子ドットから、長波長側に遷移した波長を有する光を発光させ、遷移した長波長側部分に感度を有する光センサによって発光光を受光し、情報パターンを読み取る。 Also, the optical reading method of the present invention is made invisible by forming a colored ink containing core / shell type semiconductor quantum dots on an information recording medium or an object to be managed, and forming a mask thereon. An information pattern optical reading method, in which the semiconductor quantum dot is thermally expanded by irradiating the information pattern with an excitation light whose energy is higher than the band gap of the semiconductor quantum dot, and the long wavelength side from the thermally expanded semiconductor quantum dot The light having the wavelength shifted to is emitted, the emitted light is received by an optical sensor having sensitivity to the shifted long wavelength side portion, and the information pattern is read.
 本発明の他の光学読み取り方法は、情報記録媒体又は管理対象物上にコア/シェル型の半導体量子ドットを含有する着色インクで形成され、その地色又は下地着色層の色と同一色化することによって非可視化された情報パターンの光学読み取り方法であって、この情報パターンに半導体量子ドットのバンドギャップよりもエネルギが高い励起光線を照射して半導体量子ドットを熱膨張させ、熱膨張した半導体量子ドットから、長波長側に遷移した波長を有する光を発光させ、遷移した長波長側部分に感度を有する光センサによって発光光を受光し、情報パターンを読み取る。 Another optical reading method of the present invention is formed with a colored ink containing core / shell type semiconductor quantum dots on an information recording medium or a management object, and is made the same color as the ground color or the color of the underlying colored layer. An optical reading method for an information pattern that is made invisible by irradiating the semiconductor quantum dot with an excitation beam having energy higher than the band gap of the semiconductor quantum dot to thermally expand the semiconductor quantum dot. Light having a wavelength shifted to the long wavelength side is emitted from the dot, and the emitted light is received by an optical sensor having sensitivity to the shifted long wavelength side portion, and the information pattern is read.
 情報記録媒体若しくは管理対象物等の情報パターン担体上に着色インクにより印刷され、非可視状態とされた情報パターンについて、読み取り時に半導体量子ドットを励起光線によって励起して熱膨張させ、そのときに発光する長波長側に遷移する波長の光を受光し、情報の解読を行う。このように、読み取り時には、コア/シェル型の半導体量子ドットが強い発光を行い、熱膨張によってその発光の波長が遷移することで励起光から波長領域が大きく離れるので励起光が読み取られることなく、情報が明確に読み取られる。さらに、発光の波長が遷移するので、読み取り装置の模倣が困難となる。着色インクによって励起光の照射による熱の吸収性が高められ、温度が変化し易いので半導体量子ドットが熱膨張し易くなる。着色インクについても簡単な模倣・製造が困難となり、セキュリティを高めることができる。したがって、情報パターンを肉眼認識できない取り扱いを補償すると共に、遷移した波長を解読できる光学読み取り装置によって情報パターンの確実な情報解読を行うことができる。 An information pattern printed on an information pattern carrier such as an information recording medium or an object to be managed is printed with colored ink, and is invisible. When reading, the semiconductor quantum dots are excited by excitation light to thermally expand, and light is emitted at that time. Receiving light of a wavelength that shifts to the long wavelength side, and decoding the information. In this way, at the time of reading, the core / shell type semiconductor quantum dot emits strong light, and the wavelength region of the light is greatly separated from the excitation light by the transition of the light emission wavelength due to thermal expansion, so that the excitation light is not read. Information is clearly read. Further, since the emission wavelength is changed, it is difficult to imitate the reading device. The colored ink enhances the heat absorbability due to the irradiation of excitation light, and the temperature easily changes, so that the semiconductor quantum dots are easily expanded. It is difficult to easily imitate / manufacture colored ink, and security can be improved. Therefore, the information pattern can be reliably decoded by the optical reading device that can compensate for the handling in which the information pattern cannot be recognized with the naked eye and can decode the shifted wavelength.
 着色インクは、染料、ロイコ色素又は粒子径がサブミクロンの顔料のいずれかの着色材で着色されていることも好ましい。これらの着色材を用いることで濃度の調節によって半導体量子ドットへの励起光の照射を阻害せず、可視光線を吸収する着色が容易に得られる。 It is also preferable that the colored ink is colored with any one of a dye, a leuco dye, or a pigment having a particle size of submicron. By using these colorants, coloring that absorbs visible light can be easily obtained without inhibiting the irradiation of the excitation light to the semiconductor quantum dots by adjusting the concentration.
 コア/シェル型の半導体量子ドットは、CdSe/ZnSをコアとすることが好ましい。着色インクに対して良好に分散でき、凝集が起こらないので、インクとしての使用が良好で、情報パターンを良好に印刷できる。 It is preferable that the core / shell type semiconductor quantum dots have CdSe / ZnS as a core. Since it can disperse | distribute favorably with respect to colored ink and aggregation does not occur, it can be used as an ink and an information pattern can be printed well.
 コア/シェル型の半導体量子ドットが、
(a)ZnSeナノ粒子にTeを加えたものをコアとし、ZnSナノ粒子をシェルとする、
(b)(Zn(1-2)InAgS)をコア又はシェルとする、
(c)Mnイオンを含んだZnSナノ粒子をコアとする、
(d)ZnSナノ粒子をコアとする、
(e)Zn-In-Ag-S系半導体ナノ粒子をコアとする、
(f)シリコンナノ粒子をコア又はシェルとする、
のいずれか1つであることも好ましい。これらの半導体量子ドットを用いることで、強い発光と、半導体量子ドットの熱膨張による波長の遷移が好適に得られる。
Core / shell type semiconductor quantum dots
(A) A core obtained by adding Te to ZnSe nanoparticles, and a shell of ZnS nanoparticles,
(B) (Zn (1-2 x ) In x Ag x S) is used as a core or shell;
(C) Core ZnS nanoparticles containing Mn ions,
(D) using ZnS nanoparticles as a core,
(E) using Zn—In—Ag—S based semiconductor nanoparticles as a core;
(F) silicon nanoparticles as the core or shell,
It is also preferable that it is any one of these. By using these semiconductor quantum dots, strong light emission and wavelength transition due to thermal expansion of the semiconductor quantum dots can be suitably obtained.
 コア/シェル型の半導体量子ドットが、
(g)シリコンナノ粒子をコアとし、エルビウムをシェルとする、
(h)エルビウムをコアとし、シリコンナノ粒子をシェルとする、
のいずれか1つであることも好ましい。エルビウムは熱膨張率が高いので、半導体量子ドットを熱膨張させた際に大きく膨張することで波長の遷移が大きくなる。そのため、より情報を鮮明に読み取ることができ、セキュリティを高めることができる。
Core / shell type semiconductor quantum dots
(G) Using silicon nanoparticles as a core and erbium as a shell,
(H) Erbium as a core and silicon nanoparticles as a shell,
It is also preferable that it is any one of these. Since erbium has a high coefficient of thermal expansion, the wavelength transition increases when the semiconductor quantum dot expands greatly when thermally expanded. Therefore, information can be read more clearly and security can be improved.
 本発明の情報パターン担体及び光学読み取り方法によれば、情報記録媒体若しくは管理対象物等の情報パターン担体上に着色インクにより印刷され、マスクによって又は担体と同一の色の着色インクによって非可視化された情報パターンについて、読み取り時に半導体量子ドットを励起光線によって励起させつつ熱膨張させ、そのときに発光する長波長側に遷移する波長の光を受光し、情報の解読を行う。このため、製造後には情報パターンが非可視なので読み取り時以外には情報パターンの存在を気付かれることがない。読み取り時には、コア/シェル型の半導体量子ドットが強い発光を行い、熱膨張によってその発光光の波長が遷移することで励起光から波長領域が大きく離れるので励起光が読み取られることなく、情報が明確に読み取られる。さらに、発光の波長が遷移するので、読み取り装置の模倣が困難となる。着色インクによって励起光の照射による熱の吸収性が高められ、温度が変化し易いので半導体量子ドットが熱膨張し易くなる。着色インクについても簡単な模倣・製造が困難となり、セキュリティを高めることができる。したがって、情報パターンを肉眼で認識できない取り扱いを補償すると共に、遷移した波長を解読できる光学読み取り装置によって情報パターンの確実な情報解読を行うことができる。 According to the information pattern carrier and the optical reading method of the present invention, the information pattern carrier such as the information recording medium or the management object is printed with the colored ink and is made invisible by the mask or the colored ink having the same color as the carrier. Regarding the information pattern, the semiconductor quantum dots are thermally expanded while being excited by excitation light at the time of reading, and light having a wavelength that shifts to the long wavelength side that is emitted at that time is received to decode the information. For this reason, since the information pattern is invisible after manufacture, the presence of the information pattern is not noticed except during reading. When reading, the core / shell type semiconductor quantum dot emits strong light, and the wavelength of the emitted light is shifted by thermal expansion, so the wavelength region is far away from the excitation light, so the information is clear without reading the excitation light. To be read. Further, since the emission wavelength is changed, it is difficult to imitate the reading device. The colored ink enhances the heat absorbability due to the irradiation of excitation light, and the temperature easily changes, so that the semiconductor quantum dots are easily expanded. It is difficult to easily imitate / manufacture colored ink, and security can be improved. Therefore, the information pattern can be reliably decoded by the optical reading device that can compensate the handling in which the information pattern cannot be recognized with the naked eye and can decode the shifted wavelength.
図1は第1の実施形態の光学読み取り方法を実施するための読み取り装置の概略図である。FIG. 1 is a schematic view of a reading apparatus for carrying out the optical reading method of the first embodiment. 図2は室温の半導体量子ドットを励起して発光する光の波長と強さの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the wavelength and intensity of light emitted by exciting semiconductor quantum dots at room temperature. 図3は半導体量子ドットを膨張させて励起して発光する光の波長と強さの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the wavelength and intensity of light emitted by expanding and exciting semiconductor quantum dots. 図4は第2の実施形態の光学読み取り方法を実施するための読み取り装置の概略図である。FIG. 4 is a schematic view of a reading apparatus for carrying out the optical reading method of the second embodiment. 図5は第3の実施形態の光学読み取り方法を実施するための読み取り装置の概略図である。FIG. 5 is a schematic view of a reading apparatus for carrying out the optical reading method of the third embodiment. 図6は第3の実施形態の光学読み取り方法にかかり、半導体量子ドットを熱収縮させて励起して発光する光の波長と強さの関係を示すグラフである。FIG. 6 is a graph showing the relationship between the wavelength and intensity of light emitted by exciting the semiconductor quantum dots by heat shrinking according to the optical reading method of the third embodiment.
 1、1A 読み取り装置
 10A、10B 情報記録カード
 11 情報記録媒体
 11A、11B 情報パターン担体
 12 情報パターン
 13 マスク
 14 下地印刷層
 15 発光ダイオード
 16、16A 光センサ
 17 情報判定部
 2 光学読み取り機構
 3 冷却手段
 H1 励起光
 H2 励起により発光する光線
DESCRIPTION OF SYMBOLS 1, 1A reader 10A, 10B Information recording card 11 Information recording medium 11A, 11B Information pattern carrier 12 Information pattern 13 Mask 14 Underprint layer 15 Light emitting diode 16, 16A Optical sensor 17 Information determination part 2 Optical reading mechanism 3 Cooling means H1 Excitation light H2 Light emitted by excitation
 以下、本発明の情報パターン担体及び光学読み取り方法の実施形態について図面を参照して説明する。 Hereinafter, embodiments of an information pattern carrier and an optical reading method of the present invention will be described with reference to the drawings.
 〔第1の実施形態〕
 図1は、本実施形態の情報パターン担体及び光学読み取り方法を実施するための読み取り装置の概略図である。読み取り装置1は、情報記録カード10Aの情報を読み取るためのもので、発光ダイオード15と、光学読み取り機構2とを備えて概略構成される。
[First Embodiment]
FIG. 1 is a schematic diagram of a reading apparatus for carrying out the information pattern carrier and the optical reading method of the present embodiment. The reading device 1 is for reading information on the information recording card 10 </ b> A, and generally includes a light emitting diode 15 and an optical reading mechanism 2.
 情報記録カード10Aは、情報記録媒体11と、この情報記録媒体11上に情報パターン担体11Aを備える。情報パターン担体11Aは、印刷された可視のバーコード又はQRコード等の情報パターン12と、該情報パターン12を印刷後に情報パターン12の上に重ねて印刷することによりこの情報パターン12を非可視とするためのマスク印刷体13とを備える。情報記録カード10Aは、情報が記録されたカード状のものであり、例えばキャッシュカード、各種プリペイドカード、テレホンカード、通行カード、健康保険証等が適用される。 The information recording card 10A includes an information recording medium 11 and an information pattern carrier 11A on the information recording medium 11. The information pattern carrier 11A makes the information pattern 12 invisible by printing the information pattern 12 such as a visible barcode or QR code printed on the information pattern 12 after printing the information pattern 12. And a mask printing body 13 for the purpose. The information recording card 10A is in the form of a card on which information is recorded. For example, a cash card, various prepaid cards, a telephone card, a traffic card, a health insurance card, or the like is applied.
 情報記録媒体11は、情報記録カード10Aの本体でありその上に情報パターン12が印刷される媒体である。この情報記録媒体11は、酸化チタン等の白色顔料を分散、保持した塩化ビニール系シート等から構成され、赤外線、可視光線、及び紫外線を反射する性質を有しているものが用いられる。 The information recording medium 11 is a main body of the information recording card 10A on which the information pattern 12 is printed. The information recording medium 11 is made of a vinyl chloride sheet or the like in which a white pigment such as titanium oxide is dispersed and held, and has a property of reflecting infrared rays, visible rays, and ultraviolet rays.
 情報パターン12は、情報記録媒体11上にコア/シェル型の半導体量子ドットを含有する着色インクで印刷することによって形成されている。本実施形態では、着色インクは半導体量子ドットと着色材及びこれらを分散保持するためのバインダとを含む。 The information pattern 12 is formed by printing on the information recording medium 11 with colored ink containing core / shell type semiconductor quantum dots. In the present embodiment, the colored ink includes semiconductor quantum dots, a coloring material, and a binder for dispersing and holding them.
 半導体量子ドットは、ナノメートルサイズの半導体の微細な粒子である。コア/シェル型は、内側の材質のコアを、外側の材質のシェル(殻)で覆った型をいう。本実施形態では、CdSe/ZnSeのコア/シェル型の半導体量子ドットを用いている。 Semiconductor quantum dots are nanometer-sized semiconductor fine particles. The core / shell type refers to a type in which a core made of an inner material is covered with a shell made of an outer material. In this embodiment, a CdSe / ZnSe core / shell type semiconductor quantum dot is used.
 着色材は、可視光線を吸収する材料である。着色材は、染料、ロイコ色素、又は粒子径がサブミクロンの顔料のいずれかを用い、着色材が前記励起光線の前記コア/シェル型の半導体量子ドットへの照射を阻害しない限度の濃度を含んでいるものとする。これらの着色材を用い、濃度を調節することによって、照射を阻害しない状態と可視光線を吸収する着色を容易に得られる。 The colorant is a material that absorbs visible light. The coloring material is a dye, a leuco pigment, or a pigment having a particle size of submicron, and includes a concentration that does not hinder the irradiation of the excitation light to the core / shell type semiconductor quantum dots. Suppose that By using these colorants and adjusting the concentration, it is possible to easily obtain a color that does not inhibit irradiation and a color that absorbs visible light.
 着色材として、特に顔料を用いると、染料、ロイコ色素に比べ、着色に耐久性・耐候性を持たせられるが、顔料の粒径が1μmを超えて大きくなると、顔料が本来の遮光性を発揮し光を遮断しインク中に含まれる半導体量子ドットへの照射を阻害することになる。顔料の粒子径をサブミクロン(1μm未満)、好ましくは粒径が0.6~0.8μmの範囲に揃えると、カラーフィルタのように透光性を保有できるので、黒以外の有色インクとする場合には特に粒径が0.6~0.8μmの範囲の顔料を適量用いるのが好ましい。本実施形態では、着色インクは着色材にカーボンブラックを用いて黒インクとしている。 When pigment is used as a colorant, coloring and durability are more durable than dyes and leuco dyes. However, when the particle size of the pigment exceeds 1 μm, the pigment exhibits its original light-shielding properties. Therefore, the light is blocked and irradiation to the semiconductor quantum dots contained in the ink is hindered. If the particle diameter of the pigment is submicron (less than 1 μm), preferably the particle diameter is in the range of 0.6 to 0.8 μm, it can retain translucency like a color filter, so that a colored ink other than black is used. In this case, it is particularly preferable to use an appropriate amount of pigment having a particle size in the range of 0.6 to 0.8 μm. In the present embodiment, the colored ink is black ink using carbon black as a coloring material.
 情報パターン12の上に不透明なマスク13を形成することによりこの情報パターンが非可視とされている。ここで非可視とは、眼で見ることがほぼできないこと又は全くできないこと(いわゆる不可視を含む)を指している。 The information pattern is made invisible by forming an opaque mask 13 on the information pattern 12. Here, invisible means that it is almost impossible to see with the eye or cannot be seen at all (including so-called invisible).
 本実施形態では、マスク13は情報パターン12と同じ色でパターンを一面に塗りつぶすマスク印刷により形成されている。マスク印刷は、励起光H1による情報パターン12の励起を阻害しないよう、励起光H1を吸収又は遮断しないような印刷を用いる。具体的には励起光H1を吸収しない印刷用の着色材料としては、染料、ロイコ色素、又は粒径がサブミクロンの顔料などがある。特に、カーボンブラックを用いて黒インクとし情報パターン12が認識できない濃度とするのが好ましい。マスク印刷の上には、隠蔽膜(図示せず)が形成され、マスク印刷を形成するインクは脱落不能とされる。 In this embodiment, the mask 13 is formed by mask printing in which the pattern is painted over the entire surface with the same color as the information pattern 12. The mask printing uses printing that does not absorb or block the excitation light H1 so as not to inhibit the excitation of the information pattern 12 by the excitation light H1. Specifically, the coloring material for printing that does not absorb the excitation light H1 includes a dye, a leuco dye, or a pigment having a submicron particle size. In particular, it is preferable to use carbon black as black ink and a density at which the information pattern 12 cannot be recognized. A masking film (not shown) is formed on the mask printing, and the ink forming the mask printing cannot be removed.
 情報記録カード10Aは、発光ダイオード15及び光センサ16に対して相対的かつ直線的に走査移動が可能なように構成されている。本実施形態では、走査移動は光学読み取り機構2に具備された機械機構(図示せず)によるものであるが、手動操作によるものであっても良い。 The information recording card 10A is configured to be able to scan and move relative to the light-emitting diode 15 and the optical sensor 16 in a straight line. In this embodiment, the scanning movement is performed by a mechanical mechanism (not shown) provided in the optical reading mechanism 2, but may be performed by a manual operation.
 発光ダイオード15は、情報パターン12に含まれるコア/シェル型の半導体量子ドットに励起光H1を照射するものである。励起光H1が半導体量子ドットのバンドギャップよりもエネルギが高くなるよう、発光ダイオード15を選択する。本実施形態では、励起光H1の照射により情報パターン12に含まれるコア/シェル型の半導体量子ドットを励起すると共に、半導体量子ドットの熱膨張も起こるようにする。 The light emitting diode 15 irradiates the core / shell type semiconductor quantum dots included in the information pattern 12 with the excitation light H1. The light emitting diode 15 is selected so that the excitation light H1 has higher energy than the band gap of the semiconductor quantum dots. In the present embodiment, the core / shell type semiconductor quantum dots included in the information pattern 12 are excited by the irradiation of the excitation light H1, and the thermal expansion of the semiconductor quantum dots also occurs.
 光学読み取り機構2は、光センサ16と、情報判定部17とを備えている。 The optical reading mechanism 2 includes an optical sensor 16 and an information determination unit 17.
 光センサ16は、情報パターン12に含まれるコア/シェル型の半導体量子ドットが励起されて発光する光線H2を受光するものである。光センサ16は、コア/シェル型の半導体量子ドットを含む情報パターン12が熱膨張した状態で長波長側にシフトして発光する光の長波長側部分の波長、具体的には図3に示す長波長側の範囲Yに感度を有している必要がある。本実施形態では、光センサ16にはフォトダイオードを用いている。 The optical sensor 16 receives the light beam H2 emitted when the core / shell type semiconductor quantum dots included in the information pattern 12 are excited. The optical sensor 16 has a wavelength of a long wavelength side portion of light emitted by shifting to the long wavelength side in a state where the information pattern 12 including the core / shell type semiconductor quantum dots is thermally expanded, specifically, as shown in FIG. It is necessary to have sensitivity in the range Y on the long wavelength side. In the present embodiment, a photodiode is used for the optical sensor 16.
 光センサ16は、情報パターン12の温度上昇にかかる時間の経過の時点で情報パターン12からの発光を受光し得るよう構成されている。具体的には、情報パターン12が加熱される前の温度及び加熱された後の温度が例えば情報パターン12に向けた放射温度センサで測定でき、かつ加熱される前の温度(例えば15℃~30℃)から加熱された後の温度(例えば60℃~85℃)までの時間を計測できるようになっており、この時間に受光が行われるよう構成される。 The optical sensor 16 is configured to receive light emitted from the information pattern 12 when the time required for the temperature rise of the information pattern 12 has elapsed. Specifically, the temperature before the information pattern 12 is heated and the temperature after the information pattern 12 are heated can be measured by, for example, a radiation temperature sensor directed to the information pattern 12, and the temperature before the information pattern 12 is heated (for example, 15 ° C. to 30 ° C.). ° C) to a temperature after heating (for example, 60 ° C to 85 ° C), and light reception is performed at this time.
 情報判定部17は、光センサ16が受光して得た電気信号(矩形信号)を増幅し、情報パターン12のコード情報に対応する電気的コード情報信号を形成する。 The information determination unit 17 amplifies an electrical signal (rectangular signal) obtained by receiving light by the optical sensor 16 and forms an electrical code information signal corresponding to the code information of the information pattern 12.
 本実施形態の光学読み取り方法は、マスク印刷13により非可視とされた情報パターン12を有する情報記録カード10Aが機械機構により所定位置に載置され又は送り込まれると、発光ダイオード15が発光し、情報パターン12に対して、半導体量子ドットのバンドギャップよりもエネルギが高い励起光H1を照射する。励起光H1は半導体量子ドットを励起させると共に、情報パターン12を加熱し半導体量子ドットを熱膨張させる。 In the optical reading method of this embodiment, when the information recording card 10A having the information pattern 12 made invisible by the mask printing 13 is placed or sent to a predetermined position by a mechanical mechanism, the light emitting diode 15 emits light, and the information The pattern 12 is irradiated with excitation light H1 having energy higher than the band gap of the semiconductor quantum dots. The excitation light H1 excites the semiconductor quantum dots and heats the information pattern 12 to thermally expand the semiconductor quantum dots.
 励起された半導体量子ドットは、熱膨張によって波長が遷移した光を発光する。具体的には、粒径の異なるものを含むCdSe/ZnSeのコア/シェル型の半導体量子ドットは、熱膨張しない状態で励起されると、発光の際には図2に示すように、粒径が異なる毎に波長が異なる複数の光を発光する。一方、熱膨張した状態で励起されると、図3に示すように、波長が長波長側に大きく遷移した光を発光する。なお、コア/シェル型の半導体量子ドットのコア粒子が単一の粒子径からなる場合にも、熱膨張によって波長が長波長側に大きく遷移する関係は同じである。半導体量子ドットはCdSe/ZnSeのコア/シェル型なので、特に得られる発光が強い。 Excited semiconductor quantum dots emit light whose wavelength has shifted due to thermal expansion. Specifically, when the CdSe / ZnSe core / shell type semiconductor quantum dots including those having different particle diameters are excited without being thermally expanded, as shown in FIG. A plurality of lights having different wavelengths are emitted every time. On the other hand, when excited in a thermally expanded state, as shown in FIG. 3, it emits light whose wavelength has greatly shifted to the long wavelength side. Even when the core particles of the core / shell type semiconductor quantum dots have a single particle diameter, the relationship in which the wavelength is largely shifted to the longer wavelength side by thermal expansion is the same. Since the semiconductor quantum dot is a core / shell type of CdSe / ZnSe, the obtained light emission is particularly strong.
 半導体量子ドットからの発光光は、長波長側部分Yに感度を有する光センサ16で受光し、電気信号に変換される。情報判定部17はこの電気信号をパターン化し、情報パターン12を読み取り得るか否か、さらに情報パターン12のコード情報がデータベースに記録されているデータと一致しているか否かを照合することにより、情報パターン12の真贋を判定する。 The light emitted from the semiconductor quantum dots is received by the optical sensor 16 having sensitivity to the long wavelength side portion Y and converted into an electrical signal. The information determination unit 17 patterns this electrical signal and checks whether the information pattern 12 can be read, and further checks whether the code information of the information pattern 12 matches the data recorded in the database. The authenticity of the information pattern 12 is determined.
 本実施形態によれば、情報パターン12を通常の安価な発光ダイオード15によって励起することができ、かつ半導体量子ドットから強い光を発光させることができ(量子サイズ効果)る。また、半導体量子ドットが熱膨張を伴って励起し発光が長波長側にずれているので、励起光と発光光とが重なることなく明確に情報パターンを検出でき、通常の安価なシリコン系フォトダイオード等の受光素子で感度良く検出することができる。 According to the present embodiment, the information pattern 12 can be excited by a normal inexpensive light emitting diode 15 and strong light can be emitted from the semiconductor quantum dots (quantum size effect). In addition, since semiconductor quantum dots are excited with thermal expansion and light emission is shifted to the long wavelength side, information patterns can be clearly detected without the excitation light and light emission overlapping, and ordinary inexpensive silicon photodiodes It is possible to detect with high sensitivity by a light receiving element such as.
 光学読み取り装置1は、半導体量子ドットの発光が長波長側に遷移して発光するため、長波長側部分に感度を有する光センサで発光光を受光して情報解読を行う構成となっている。このため、光学読み取り装置の模倣製作が難しく、高いセキュリティ又は品質保証を与える光学読み取り方法を実現することができる。その結果、クレジットカード、キャッシュカード、テレホンカード、IDカード、学生証、スタンプカード、及びポイントカード等の偽造、変造、及び改ざんを防止できるとともに、システムの小型化及び省スペース化が可能であり、非可視のトレイサビリティを実現できる。 The optical reading device 1 has a configuration in which the light emitted from the semiconductor quantum dots is shifted to the long wavelength side to emit light, and thus the optical sensor having sensitivity to the long wavelength side portion receives the emitted light and decodes the information. For this reason, it is difficult to imitate the optical reading device, and an optical reading method that provides high security or quality assurance can be realized. As a result, it is possible to prevent forgery, alteration, and tampering of credit cards, cash cards, telephone cards, ID cards, student ID cards, stamp cards, point cards, etc., and to reduce the size and space of the system. Invisible traceability can be realized.
 情報記録媒体11上にバーコードやQRコード等の情報パターンを非可視の状態として形成し、この情報パターンが肉眼で認識されないようにしている。また、万一、IT技術に熟知した悪意を有する者や組織が、情報記録媒体11の表面の印刷膜の微小な盛り上がりから情報パターンの存在に仮に気付いたとしても、本実施形態のインクは模倣製造が難しい。さらに、情報パターンの発光源がコア/シェル型の半導体量子ドットであるものと分析し、それに基づいて半導体量子ドットの通常励起によって発光する光を受光して情報解読を行える読み取り装置を開発しても、発光光の波長が長波長側へずれているので、このような通常の読み取り装置によっては情報パターンの情報解読が行えない。 An information pattern such as a barcode or QR code is formed in an invisible state on the information recording medium 11 so that the information pattern is not recognized with the naked eye. In addition, even if a malicious person or organization familiar with IT technology notices the presence of an information pattern from a minute bulge in the printed film on the surface of the information recording medium 11, the ink of this embodiment is imitated. Manufacturing is difficult. Furthermore, we analyzed that the light source of the information pattern is a core / shell type semiconductor quantum dot, and based on that we developed a reading device that can receive light emitted by normal excitation of the semiconductor quantum dot and decode the information However, since the wavelength of the emitted light is shifted to the longer wavelength side, the information pattern cannot be decoded by such a normal reading device.
 なお、着色インクにより、情報パターン12を情報記録媒体11に印刷する際には情報パターン12が可視となっているので、印刷されたパターンを確認しやすい。読み取り時には、着色インクが可視光を吸収するので、励起光の照射によって情報パターン12が温度上昇し易くなり、半導体量子ドットが熱膨張し易くなる。特に本実施形態では、顔料を用いているので励起光の照射による熱の吸収性が良い。着色インクの組成についても簡単な模倣・製造が困難となるから、この点からも高いセキュリティを実現できる。特に本実施形態では、粒径がサブミクロンの顔料で着色したインクを用いて情報パターン12を印刷しているので、色について高い耐候性、耐退色性を有する情報パターン12が得られ、コア/シェル型の半導体量子ドットの化学的安定性が高いことと相俟って、長期間にわたり高い品質保証を与えるシステムを実現できる。また着色インクにCdSe/ZnSのコア/シェル型の半導体量子ドットを用いているので、トルエン等で良好に分散できて凝集が起こらず、インクとしての使用が良好で、情報パターンを良好に印刷できる。 In addition, when the information pattern 12 is printed on the information recording medium 11 with the colored ink, the information pattern 12 is visible, so that the printed pattern can be easily confirmed. At the time of reading, since the colored ink absorbs visible light, the temperature of the information pattern 12 is likely to increase due to the irradiation of excitation light, and the semiconductor quantum dots are likely to thermally expand. In particular, in the present embodiment, since a pigment is used, the heat absorption due to irradiation of excitation light is good. Since it is difficult to easily imitate and manufacture the composition of the colored ink, high security can be realized in this respect. In particular, in this embodiment, since the information pattern 12 is printed using ink colored with a pigment having a particle size of submicron, the information pattern 12 having high weather resistance and fading resistance can be obtained with respect to the color. Combined with the high chemical stability of shell-type semiconductor quantum dots, it is possible to realize a system that provides high quality assurance over a long period of time. Also, since CdSe / ZnS core / shell type semiconductor quantum dots are used for the colored ink, it can be dispersed well with toluene or the like and does not aggregate, and it can be used as an ink and can print information patterns well. .
 なお、本実施形態の変更態様として、読み取り装置に、半導体量子ドットを熱膨張させるための加熱手段が設けられていてもよい。例えば、加熱手段として、情報記録カード10の下部であって情報パターン12が印刷されている裏側に高熱を与え、情報パターン12の半導体量子ドットを熱膨張させるための電気ヒータが設けられていてもよい。また、加熱手段として情報パターン12に対して熱線(赤外線など)を照射する手段が設けられていてもよい。これらの手段によって、半導体量子ドット12を確実に加熱し熱膨張することができ、より効果的に発光の遷移が得られる。 As a modification of the present embodiment, the reading device may be provided with heating means for thermally expanding the semiconductor quantum dots. For example, an electric heater for applying high heat to the lower side of the information recording card 10 on which the information pattern 12 is printed as a heating means and thermally expanding the semiconductor quantum dots of the information pattern 12 may be provided. Good. Moreover, a means for irradiating the information pattern 12 with heat rays (infrared rays or the like) may be provided as a heating means. By these means, the semiconductor quantum dots 12 can be reliably heated and thermally expanded, and a light emission transition can be obtained more effectively.
 励起光による半導体量子ドットの熱膨張を起こり易くするため、発光ダイオード15の励起光H1を集光レンズを介して集光し情報パターン12に照射するように構成してもよい。発光ダイオード15については、高出力のものを選択する、複数使用して照射する、又は赤外線を発光する発光ダイオードと紫外線を発光する発光ダイオードとを併用してもよい。 In order to facilitate the thermal expansion of the semiconductor quantum dots by the excitation light, the excitation light H1 of the light emitting diode 15 may be condensed via the condenser lens and irradiated to the information pattern 12. As for the light emitting diode 15, one having a high output may be selected, a plurality of light emitting diodes may be used for irradiation, or a light emitting diode that emits infrared light and a light emitting diode that emits ultraviolet light may be used in combination.
 情報記録媒体11に代えて、カード状以外の物体の管理対象物の情報パターンを読み取るように構成してもよい。管理対象物としては、カード以外の商品であってバーコードやQR等が情報パターン12として印刷されているもの、例えば書籍の背表紙や、情報パターン12が印刷されたシールが貼付された商品などがある。 Instead of the information recording medium 11, an information pattern of a management target object other than a card shape may be read. Examples of management objects include products other than cards and barcodes, QRs, etc. printed as information patterns 12, such as books with a spine on a book or a sticker printed with information patterns 12. There is.
 〔第2の実施形態〕
 図4は、第2の実施形態の光学読み取り方法を実施するための読み取り装置の概略図である。本実施形態の情報記録カード10Bは、情報パターン担体11Bを備え、情報パターン担体11Bは情報記録媒体(又は管理対象物)11と、情報記録媒体11に印刷されているが情報パターンを形成しない下地印刷層14と、情報記録媒体11に印刷されたバーコード又はQRコード等の情報パターン12とを備えている。なお、第1の実施形態と重複する部分については同符号を付して説明を省略する。
[Second Embodiment]
FIG. 4 is a schematic view of a reading apparatus for carrying out the optical reading method of the second embodiment. The information recording card 10B of this embodiment includes an information pattern carrier 11B. The information pattern carrier 11B is printed on the information recording medium (or management target) 11 and the base on which the information recording medium 11 is printed but does not form an information pattern. A printing layer 14 and an information pattern 12 such as a barcode or QR code printed on the information recording medium 11 are provided. In addition, about the part which overlaps with 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 本実施形態では、情報パターン12の色と、情報記録媒体11の上に情報パターン12よりも先に下地印刷した下地着色印刷層14の色とを同一とすることにより、情報パターン12を非可視化している。ここでは、情報パターン12に使用する着色インクは、下地印刷層14と同じ色のものを使用している。すなわち、下地印刷層14と情報パターン12ともに粒径がサブミクロンのカーボンブラックの顔料を用いている。 In the present embodiment, the information pattern 12 is made invisible by making the color of the information pattern 12 the same as the color of the ground colored printing layer 14 that is printed on the information recording medium 11 before the information pattern 12. is doing. Here, the color ink used for the information pattern 12 is the same color as that of the base print layer 14. That is, both the base printing layer 14 and the information pattern 12 use a carbon black pigment having a particle size of submicron.
 本実施形態によれば、読み取り時以外においては情報パターン12が非可視の状態で取り扱われることを補償すると共に、読み取り時においては、着色インクが可視光を吸収するので励起光の照射によって情報パターン12が温度上昇し易く半導体量子ドットが熱膨張し易くなって読み取りが可能となる。また、着色インクの組成については簡単な模倣や製造が困難であるから、この点からも高いセキュリティを実現することができる。 According to the present embodiment, it is compensated that the information pattern 12 is handled in an invisible state except at the time of reading, and at the time of reading, since the colored ink absorbs visible light, the information pattern 12 is irradiated by excitation light. 12 easily rises in temperature, and the semiconductor quantum dots are likely to thermally expand, thereby enabling reading. Further, since it is difficult to easily imitate or manufacture the composition of the colored ink, high security can be realized also in this respect.
 本実施形態の変更態様として、下地印刷層14を省き、情報パターン12の色を、情報記録媒体11又は管理対象物の情報パターン12が印刷される面の地色と同じ色にして、情報パターン12を非可視の状態としてもよい。例えば、情報記録カード10Bの素材に混錬されている顔料と同一の着色材を情報パターン12の着色インクに用い、情報記録カード10Bに情報パターン12を直接印刷してもよい。 As a modification of this embodiment, the base print layer 14 is omitted, and the color of the information pattern 12 is set to the same color as the ground color of the surface on which the information recording medium 11 or the information pattern 12 of the management target is printed. 12 may be invisible. For example, the same coloring material as the pigment kneaded in the material of the information recording card 10B may be used for the colored ink of the information pattern 12, and the information pattern 12 may be directly printed on the information recording card 10B.
 〔第3の実施形態〕
 図5は、第3の実施形態の光学読み取り方法を実施するための読み取り装置の概略図である。本実施形態の読み取り装置1Aでは、半導体量子ドットを冷却することにより半導体量子ドットを熱収縮させる冷却手段3が設けられている。なお、第1の実施形態と重複する部分については同符号を付して説明を省略する。
[Third Embodiment]
FIG. 5 is a schematic view of a reading apparatus for carrying out the optical reading method of the third embodiment. In the reading apparatus 1 </ b> A of the present embodiment, a cooling unit 3 that thermally contracts the semiconductor quantum dots by cooling the semiconductor quantum dots is provided. In addition, about the part which overlaps with 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 冷却手段3は、本実施形態では、情報パターン12を冷却し、半導体量子ドットを冷却するものである。ここでは、冷却手段3は情報記録媒体11の情報パターン12が印刷されていない側の面に隣接又は接触可能に設けられた電気冷却器で、-10~0℃の温度に冷却可能なものである。 In this embodiment, the cooling means 3 cools the information pattern 12 and cools the semiconductor quantum dots. Here, the cooling means 3 is an electric cooler provided adjacent to or in contact with the surface of the information recording medium 11 on which the information pattern 12 is not printed, and can be cooled to a temperature of −10 to 0 ° C. is there.
 光学読み取り機構2Aの備える光センサ16Aは、図2に示す波長領域から短波長側に外れた範囲である図6に示すYaで示す波長領域に感度を有するものを用いるものとする。 As the optical sensor 16A provided in the optical reading mechanism 2A, a sensor having sensitivity in the wavelength region indicated by Ya shown in FIG. 6 which is a range deviated from the wavelength region shown in FIG. 2 to the short wavelength side is used.
 本実施形態では、情報パターン12を有する情報記録媒体10が所定位置に載置され又は送り込まれると、冷却手段3が情報パターン12を冷却し、半導体量子ドットを熱収縮させる。そして、発光ダイオード15が発光し、情報パターン12に対して半導体量子ドットのバンドギャップよりもエネルギが高い励起光H1を照射する。熱収縮した半導体量子ドットは、熱収縮しない場合のこの半導体量子ドットから発光する波長(図2)に比べ、図6に示す短波長側に遷移する波長を有する発光を行う。この発光光を、長波長側部分Yaに感度を有する光センサ16Aで受光し、電気信号を発生する。情報判定部17はこの電気信号をパターン化し、情報パターン12を読み取り得るか否か、さらに情報パターン12のコード情報がデータベースに記録されているデータと一致しているか否かを照合することにより、情報パターン12の真贋を判定する。 In the present embodiment, when the information recording medium 10 having the information pattern 12 is placed or sent to a predetermined position, the cooling unit 3 cools the information pattern 12 and causes the semiconductor quantum dots to thermally contract. Then, the light emitting diode 15 emits light, and the information pattern 12 is irradiated with excitation light H1 having energy higher than the band gap of the semiconductor quantum dots. The semiconductor quantum dots subjected to heat shrinkage emit light having a wavelength that shifts to the short wavelength side shown in FIG. 6 as compared to the wavelength emitted from the semiconductor quantum dots when not thermally contracted (FIG. 2). This emitted light is received by the optical sensor 16A having sensitivity to the long wavelength side portion Ya, and an electric signal is generated. The information determination unit 17 patterns this electrical signal and checks whether the information pattern 12 can be read, and further checks whether the code information of the information pattern 12 matches the data recorded in the database. The authenticity of the information pattern 12 is determined.
 本実施形態によれば、情報パターン12の発光源であるコア/シェル型の半導体量子ドットを熱収縮が伴うように励起し、そのときの発光が短波長側に遷移するので、その短波長側部分に感度を有する光センサでこの発光光を受光して情報解読を行う構成であるから、特殊な光学読み取り装置を用いることで、はじめて情報解読ができるものであり、一段と高いセキュリティあるいは品質保証を与えるシステムを実現できる。 According to the present embodiment, the core / shell type semiconductor quantum dot that is the light emission source of the information pattern 12 is excited so as to be accompanied by thermal contraction, and the light emission at that time is shifted to the short wavelength side. Since the optical sensor that has sensitivity to the part receives this emitted light and decodes the information, the information can be decoded for the first time by using a special optical reading device, which further enhances security or quality assurance. The system to give can be realized.
 なお、本実施形態の変更態様として、冷却手段3は、情報パターン12や情報記録カード11を破損しない範囲で低温の空気や低温のガスを吹き付ける手段であってもよい。 As a modification of the present embodiment, the cooling unit 3 may be a unit that blows low-temperature air or low-temperature gas as long as the information pattern 12 and the information recording card 11 are not damaged.
 本発明は、上述した実施形態に限定されるものでなく、請求の範囲に記載された発明の要旨を逸脱しない範囲内での種々、設計変更した形態を技術的範囲に含まれるものである。例えば、上述した実施形態では、CdSe/ZnSeのコア/シェル型の半導体量子ドットを用いたが、以下のようなコア/シェル型の半導体量子ドットを含んだ可視インクによりセキュリティ情報が印刷されても良い。 The present invention is not limited to the above-described embodiments, but includes variously modified forms within the technical scope without departing from the gist of the invention described in the claims. For example, in the above-described embodiments, CdSe / ZnSe core / shell type semiconductor quantum dots are used. However, even if security information is printed with visible ink containing the following core / shell type semiconductor quantum dots, good.
(a)ZnSeナノ粒子にTeを加えたものをコアとし、ZnSナノ粒子をシェルとする、コア/シェル型の半導体量子ドット、
(b)コア/シェル型の半導体量子ドットが、Mnイオンを含んだZnSナノ粒子をコアとする、コア/シェル型の半導体量子ドット、
(c)Zn2+、In3+及びAgを含むチオール錯体を熱分解することにより、In3+及びAgがドープされたZnSナノ粒子(Zn(1-2)InAgS)であるコア/シェル型の半導体量子ドット、
(d)コアがMnイオンを含んだZnSナノ粒子であるコア/シェル型の半導体量子ドット、
(e)Zn-In-Ag-S系半導体ナノ粒子をコアとするコア/シェル型の半導体量子ドット、又は
(f)シリコンナノ粒子をコア又はシェルとするコア/シェル型の半導体量子ドット。
(A) a core / shell type semiconductor quantum dot having a core obtained by adding Te to ZnSe nanoparticles and a shell containing ZnS nanoparticles;
(B) a core / shell type semiconductor quantum dot in which the core / shell type semiconductor quantum dot has ZnS nanoparticles containing Mn ions as a core;
(C) ZnS nanoparticles doped with In 3+ and Ag + (Zn (1-2 x ) In x Ag x S) by thermally decomposing a thiol complex containing Zn 2+ , In 3+ and Ag + Core / shell type semiconductor quantum dots,
(D) a core / shell type semiconductor quantum dot whose core is a ZnS nanoparticle containing Mn ions;
(E) A core / shell semiconductor quantum dot having Zn—In—Ag—S based semiconductor nanoparticles as a core, or (f) a core / shell semiconductor quantum dot having silicon nanoparticles as a core or shell.
 また、可視インクに含まれるコア/シェル型の半導体量子ドットは、
(g)シリコンナノ粒子をコアとし、エルビウムをシェルとするコア/シェル型の半導体量子ドット、又は、
(h)エルビウムをコアとし、シリコンナノ粒子をシェルとするコア/シェル型の半導体量子ドット
であってもよい。エルビウムの熱膨張率は、20℃において、7.6×10-6/℃であり、これは、20℃において、2.5×10-6/℃であるシリコンの熱膨張率の約3倍に当たるため、エルビウムを採用することは、膨張による波長のシフトを実現する上で最も好ましい。
In addition, the core / shell type semiconductor quantum dots contained in the visible ink are:
(G) a core / shell type semiconductor quantum dot having silicon nanoparticles as a core and erbium as a shell, or
(H) A core / shell type semiconductor quantum dot having erbium as a core and silicon nanoparticles as a shell may be used. The thermal expansion coefficient of erbium is 7.6 × 10 −6 / ° C. at 20 ° C., which is about three times the thermal expansion coefficient of silicon, which is 2.5 × 10 −6 / ° C. at 20 ° C. Therefore, it is most preferable to use erbium in order to realize wavelength shift due to expansion.
 シリコンナノ粒子をコアとしエルビウムナノ粒子をシェルとする場合には、シリコンナノ粒子は、1.9nm~4.3nmとし、エルビウムナノ粒子は、1.9nm~4.3nmとするのが好ましい。 When silicon nanoparticles are used as the core and erbium nanoparticles are used as the shell, the silicon nanoparticles are preferably 1.9 nm to 4.3 nm, and the erbium nanoparticles are preferably 1.9 nm to 4.3 nm.
 なお、シリコンナノ粒子をコアとしエルビウムナノ粒子をシェルとした半導体量子ドットについては、この半導体量子ドットを水中に分散して22℃~90℃の範囲で水温を温めてから、波長325nmの励起光を照射すると、半導体量子ドットから波長720~740nmの発光が得られることが確認されている。 For semiconductor quantum dots having silicon nanoparticles as the core and erbium nanoparticles as the shell, the semiconductor quantum dots are dispersed in water and the water temperature is increased within a range of 22 ° C. to 90 ° C., and then excitation light having a wavelength of 325 nm is used. It has been confirmed that light emission with a wavelength of 720 to 740 nm can be obtained from semiconductor quantum dots.
 また、エルビウムナノ粒子をコアとし、シリコンナノ粒子をシェルとする場合には、エルビウムナノ粒子は、1.9nm~4.3nmとし、シリコンナノ粒子は、1.9nm~4.3nmとするのが好ましい。 When erbium nanoparticles are used as the core and silicon nanoparticles are used as the shell, the erbium nanoparticles should be 1.9 nm to 4.3 nm, and the silicon nanoparticles should be 1.9 nm to 4.3 nm. preferable.
 なお、エルビウムナノ粒子をコアとし、シリコンナノ粒子をシェルとした半導体量子ドットについては、この半導体量子ドットを水中に分散して22℃~90℃の範囲で水温を温めてから、波長325nmの励起光を照射すると、半導体量子ドットから波長720~740nmの強い発光が得られることが確認されている。 For semiconductor quantum dots with erbium nanoparticles as the core and silicon nanoparticles as the shell, the semiconductor quantum dots are dispersed in water and the water temperature is increased in the range of 22 ° C. to 90 ° C., and then excitation at a wavelength of 325 nm is performed. It has been confirmed that strong light emission with a wavelength of 720 to 740 nm can be obtained from semiconductor quantum dots when irradiated with light.
 また、表面に酸素をドーピングさせたシリコンナノ粒子、若しくは内部が酸化している酸化シリコンナノ粒子をコア又はシェルに用い、エルビウムをシェル又はコアに用いたコア/シェル型の半導体量子ドットとすると、一層強い光を放射するので好ましい。 Further, when silicon nanoparticles having oxygen doped on the surface, or silicon oxide nanoparticles whose inside is oxidized are used as a core or shell, and a core / shell type semiconductor quantum dot using erbium as a shell or core, This is preferable because it emits stronger light.
 さらに、シリコンナノ粒子をコアとするコア/シェル型の半導体量子ドットは、複数の炭化水素基がシリコンナノ粒子内のそれぞれのSi原子と結合し、Si原子の表面が炭化水素基で覆われたものを用いてもよい。この半導体量子ドットは、発光波長及び発光効率の低下を防止でき、紫外線励起により可視光を発光することができる。また、MgSiとSiCl(四塩化珪素)との反応条件により粒径を調整することができるので好ましい。 Furthermore, in the core / shell type semiconductor quantum dot having silicon nanoparticles as the core, a plurality of hydrocarbon groups are bonded to respective Si atoms in the silicon nanoparticles, and the surface of the Si atoms is covered with the hydrocarbon groups. A thing may be used. This semiconductor quantum dot can prevent a decrease in emission wavelength and emission efficiency, and can emit visible light by ultraviolet excitation. Further, preferably it is possible to adjust the particle size by the reaction conditions of the Mg 2 Si and SiCl 4 (silicon tetrachloride).
 本発明は、各種カードの真贋判定に利用できる他に、製品アイテムを追跡するトレイサビリティの可視情報の読み取りに利用できる。なお、本発明は、半導体レーザダイオードを励起光の光源とすることを排除するものではない。 The present invention can be used not only for authenticating various cards, but also for reading traceable visual information for tracking product items. Note that the present invention does not exclude using a semiconductor laser diode as a light source of excitation light.
 本発明はカードや証明書の偽造、変造、及び改ざんを防止できるとともに、システムの小型化及び省スペース化が可能であり、非可視のトレイサビリティを実現でき、情報保持の必要とされる分野に広く貢献できるものである。 The present invention can prevent counterfeiting, falsification, and falsification of cards and certificates, and can reduce the size and space of the system, realize invisible traceability, and in fields where information retention is required. It can contribute widely.

Claims (12)

  1.  コア/シェル型の半導体量子ドットを含有する着色インクで形成された情報パターンと、該情報パターン上に被着形成されており該情報パターンを非可視化するマスクとを備えた情報パターン担体であって、該情報パターンは、前記半導体量子ドットのバンドギャップよりもエネルギが高い励起光線を照射された際に、前記半導体量子ドットが、熱膨張して長波長側に遷移した波長を有する光を発光するように構成されていることを特徴とする情報パターン担体。 An information pattern carrier comprising an information pattern formed of a colored ink containing a core / shell type semiconductor quantum dot, and a mask formed on the information pattern so as to be invisible. The information pattern emits light having a wavelength at which the semiconductor quantum dot thermally expands and shifts to a longer wavelength side when irradiated with an excitation light having energy higher than the band gap of the semiconductor quantum dot. An information pattern carrier configured as described above.
  2.  コア/シェル型の半導体量子ドットを含有する着色インクで形成されており、情報記録媒体又は管理対象物の地色又は下地着色層の色と同一色化することによって非可視化された情報パターンを備えた情報パターン担体であって、該情報パターンは、前記半導体量子ドットのバンドギャップよりもエネルギが高い励起光線を照射された際に、前記半導体量子ドットが、熱膨張して長波長側に遷移した波長を有する光を発光するように構成されていることを特徴とする情報パターン担体。 It is formed with colored ink containing core / shell type semiconductor quantum dots, and has an information pattern that is made invisible by making it the same color as the ground color of the information recording medium or management object or the color of the underlying colored layer When the information pattern is irradiated with an excitation light having an energy higher than the band gap of the semiconductor quantum dot, the semiconductor quantum dot thermally expands and shifts to a longer wavelength side. An information pattern carrier configured to emit light having a wavelength.
  3.  前記着色インクは、染料、ロイコ色素、又は粒子径がサブミクロンの顔料のいずれか1つの着色材で着色されていることを特徴とする請求の範囲1又は2に記載の情報パターン担体。 3. The information pattern carrier according to claim 1, wherein the colored ink is colored with any one of a dye, a leuco pigment, or a pigment having a particle diameter of submicron.
  4.  前記コア/シェル型の半導体量子ドットが、CdSe/ZnSをコアとしていることを特徴とする請求の範囲1から3のいずれか1項に記載の記載の情報パターン担体。 The information pattern carrier according to any one of claims 1 to 3, wherein the core / shell type semiconductor quantum dots have CdSe / ZnS as a core.
  5.  前記コア/シェル型の半導体量子ドットが、
    (a)ZnSeナノ粒子にTeを加えたものをコアとし、ZnSナノ粒子をシェルとする、
    (b)(Zn(1-2)InAgS)をコア又はシェルとする、
    (c)Mnイオンを含んだZnSナノ粒子をコアとする、
    (d)ZnSナノ粒子をコアとする、
    (e)Zn-In-Ag-S系半導体ナノ粒子をコアとする、
    (f)シリコンナノ粒子をコア又はシェルとする、
    の上記(a)~(f)のうちいずれか1つであることを特徴とする請求の範囲1から4のいずれか1項に記載の情報パターン担体。
    The core / shell type semiconductor quantum dots are:
    (A) A core obtained by adding Te to ZnSe nanoparticles, and a shell of ZnS nanoparticles,
    (B) (Zn (1-2 x ) In x Ag x S) is used as a core or shell,
    (C) Core ZnS nanoparticles containing Mn ions,
    (D) using ZnS nanoparticles as a core,
    (E) using Zn—In—Ag—S based semiconductor nanoparticles as a core;
    (F) silicon nanoparticles as the core or shell,
    5. The information pattern carrier according to claim 1, wherein the information pattern carrier is any one of the above (a) to (f).
  6.  前記コア/シェル型の半導体量子ドットが、
    (g)シリコンナノ粒子をコアとし、エルビウムをシェルとする、
    (h)エルビウムをコアとし、シリコンナノ粒子をシェルとする、
    の上記(g)、(h)のうちいずれか1つであることを特徴とする請求の範囲1から4のいずれか1項に記載の情報パターン担体。
    The core / shell type semiconductor quantum dots are:
    (G) Using silicon nanoparticles as a core and erbium as a shell,
    (H) Erbium as a core and silicon nanoparticles as a shell,
    The information pattern carrier according to any one of claims 1 to 4, wherein the information pattern carrier is any one of (g) and (h).
  7.  情報記録媒体又は管理対象物上にコア/シェル型の半導体量子ドットを含有する着色インクで形成され、その上にマスクが形成されることによって非可視化された情報パターンの光学読み取り方法であって、前記情報パターンに前記半導体量子ドットのバンドギャップよりもエネルギが高い励起光線を照射して前記半導体量子ドットを熱膨張させ、該熱膨張した半導体量子ドットから、長波長側に遷移した波長に遷移した波長を有する光を発光させ、該遷移した長波長側部分に感度を有する光センサによって前記発光光を受光し、前記情報パターンを読み取ることを特徴とする光学読み取り方法。 An optical reading method of an information pattern formed by coloring ink containing core / shell type semiconductor quantum dots on an information recording medium or an object to be managed and made invisible by forming a mask on the ink, The information pattern is irradiated with an excitation beam having energy higher than the band gap of the semiconductor quantum dot to thermally expand the semiconductor quantum dot, and the transition from the thermally expanded semiconductor quantum dot to the wavelength shifted to the longer wavelength side is performed. An optical reading method, wherein light having a wavelength is emitted, the emitted light is received by an optical sensor having sensitivity to the transitioned long wavelength side portion, and the information pattern is read.
  8.  情報記録媒体又は管理対象物上にコア/シェル型の半導体量子ドットを含有する着色インクで形成され、その地色又は下地着色層の色と同一色化することによって非可視化された情報パターンの光学読み取り方法であって、前記情報パターンに前記半導体量子ドットのバンドギャップよりもエネルギが高い励起光線を照射して前記半導体量子ドットを熱膨張させ、該熱膨張した半導体量子ドットから、長波長側に遷移した波長を有する光を発光させ、該遷移した長波長側部分に感度を有する光センサによって前記発光光を受光し、前記情報パターンを読み取ることを特徴とする光学読み取り方法。 Optical of an information pattern formed by a colored ink containing core / shell type semiconductor quantum dots on an information recording medium or management object and made invisible by making it the same color as the background color or the color of the underlying colored layer In the reading method, the information pattern is irradiated with an excitation beam having energy higher than a band gap of the semiconductor quantum dot to thermally expand the semiconductor quantum dot, and from the thermally expanded semiconductor quantum dot to a longer wavelength side An optical reading method comprising: emitting light having a transitioned wavelength; receiving the emitted light by an optical sensor having sensitivity to the transitioned long wavelength side portion; and reading the information pattern.
  9.  前記着色インクは、染料、ロイコ色素、又は粒子径がサブミクロンの顔料のいずれか1つの着色材で着色されていることを特徴とする請求の範囲7又は8に記載の光学読み取り方法。 9. The optical reading method according to claim 7, wherein the colored ink is colored with any one of a dye, a leuco dye, or a pigment having a particle diameter of submicron.
  10.  前記コア/シェル型の半導体量子ドットが、CdSe/ZnSをコアとしていることを特徴とする請求の範囲7から9のいずれか1項に記載の光学読み取り方法。 10. The optical reading method according to any one of claims 7 to 9, wherein the core / shell type semiconductor quantum dots have CdSe / ZnS as a core.
  11.  前記コア/シェル型の半導体量子ドットが、
    (a)ZnSeナノ粒子にTeを加えたものをコアとし、ZnSナノ粒子をシェルとする、
    (b)(Zn(1-2)InAgS)をコア又はシェルとする、
    (c)Mnイオンを含んだZnSナノ粒子をコアとする、
    (d)ZnSナノ粒子をコアとする、
    (e)Zn-In-Ag-S系半導体ナノ粒子をコアとする、
    (f)シリコンナノ粒子をコア又はシェルとする、
    の上記(a)~(f)のうちいずれか1つであることを特徴とする請求の範囲7から10のいずれか1項に記載の光学読み取り方法。
    The core / shell type semiconductor quantum dots are:
    (A) A core obtained by adding Te to ZnSe nanoparticles, and a shell of ZnS nanoparticles,
    (B) (Zn (1-2 x ) In x Ag x S) is used as a core or shell;
    (C) Core ZnS nanoparticles containing Mn ions,
    (D) using ZnS nanoparticles as a core,
    (E) using Zn—In—Ag—S based semiconductor nanoparticles as a core;
    (F) silicon nanoparticles as the core or shell,
    The optical reading method according to any one of claims 7 to 10, wherein any one of (a) to (f) above is provided.
  12.  前記コア/シェル型の半導体量子ドットが、
    (g)シリコンナノ粒子をコアとし、エルビウムをシェルとする、
    (h)エルビウムをコアとし、シリコンナノ粒子をシェルとする、
    の上記(g)、(h)のうちいずれか1つであることを特徴とする請求の範囲7から10のいずれか1項に記載の光学読み取り方法。
    The core / shell type semiconductor quantum dots are:
    (G) Using silicon nanoparticles as a core and erbium as a shell,
    (H) Erbium as a core and silicon nanoparticles as a shell,
    The optical reading method according to any one of claims 7 to 10, wherein any one of (g) and (h) is provided.
PCT/JP2010/050412 2009-01-19 2010-01-15 Information pattern carrier and method for optically reading information pattern WO2010082625A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080004704.6A CN102282568B (en) 2009-01-19 2010-01-15 Information pattern carrier and method for optically reading information pattern
JP2010546655A JP5339382B2 (en) 2009-01-19 2010-01-15 Information pattern carrier and information pattern optical reading method
HK12103127.6A HK1162723A1 (en) 2009-01-19 2012-03-29 Information pattern carrier and method for optically reading information pattern

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009009302 2009-01-19
JP2009-009302 2009-01-19
JP2009150802 2009-06-25
JP2009-150802 2009-06-25

Publications (1)

Publication Number Publication Date
WO2010082625A1 true WO2010082625A1 (en) 2010-07-22

Family

ID=42339879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050412 WO2010082625A1 (en) 2009-01-19 2010-01-15 Information pattern carrier and method for optically reading information pattern

Country Status (4)

Country Link
JP (1) JP5339382B2 (en)
CN (1) CN102282568B (en)
HK (1) HK1162723A1 (en)
WO (1) WO2010082625A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185224A (en) * 2013-03-22 2014-10-02 Nagoya Univ Semiconductor nanoparticle and fluorescent probe for labeling biological samples
CN110456071A (en) * 2019-08-01 2019-11-15 济南大学 A kind of preparation method of the electrochemical luminescence sensor of quantum dot functional metal organic framework detection N- akrencephalon pro-BNP
CN112969594A (en) * 2018-10-31 2021-06-15 韩国机械研究院 Structural colored substrate, method for manufacturing structural colored substrate, and security verification system using structural colored substrate manufactured thereby
WO2021161860A1 (en) * 2020-02-10 2021-08-19 三菱ケミカル株式会社 Composition containing semiconductor nanoparticles, color filter, and image display device
JP7387889B2 (en) 2019-10-17 2023-11-28 フラウンホーファー-ゲゼルシャフト ツア フォルデルング デア アンゲヴァンテン フォルシュング エー ファウ Optical security identifier suitable for track and trace and/or serialization systems

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105882184B (en) * 2014-11-05 2019-02-22 北京印刷学院 A kind of method for anti-counterfeit using function ink and printing element synergistic effect
US9734444B2 (en) * 2015-06-05 2017-08-15 Empire Technology Development Llc Solid-state barcodes and methods for their preparation and use
CN107305776B (en) * 2016-04-18 2019-12-10 中国科学院化学研究所 Information recording method and information transmission method using photonic crystal as carrier
CN106928776A (en) * 2017-04-24 2017-07-07 于军胜 A kind of water base nano silver wire conductive ink containing luminescent quantum dot

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209675A (en) * 1998-01-28 1999-08-03 Toshiba Tec Corp Fluorescent ink and recorded information reading apparatus
WO2008010822A2 (en) * 2005-09-12 2008-01-24 Ultradots, Inc. Authenticating and identifying objects using nanoparticles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1265216C (en) * 2000-04-15 2006-07-19 Ovd基尼格拉姆股份公司 Pattern
CN2546918Y (en) * 2002-06-10 2003-04-23 中山国安火炬科技发展有限公司 Gravure latent image local holographic comprehensive antifake label

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209675A (en) * 1998-01-28 1999-08-03 Toshiba Tec Corp Fluorescent ink and recorded information reading apparatus
WO2008010822A2 (en) * 2005-09-12 2008-01-24 Ultradots, Inc. Authenticating and identifying objects using nanoparticles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185224A (en) * 2013-03-22 2014-10-02 Nagoya Univ Semiconductor nanoparticle and fluorescent probe for labeling biological samples
CN112969594A (en) * 2018-10-31 2021-06-15 韩国机械研究院 Structural colored substrate, method for manufacturing structural colored substrate, and security verification system using structural colored substrate manufactured thereby
EP3854602A4 (en) * 2018-10-31 2022-07-06 Korea Institute of Machinery & Materials Structural coloration substrate, method for manufacturing structural coloration substrate, and security verification system using structural coloration substrate manufactured thereby
CN110456071A (en) * 2019-08-01 2019-11-15 济南大学 A kind of preparation method of the electrochemical luminescence sensor of quantum dot functional metal organic framework detection N- akrencephalon pro-BNP
CN110456071B (en) * 2019-08-01 2023-01-13 济南大学 Preparation method of electrochemical luminescence sensor for detecting N-terminal brain natriuretic peptide precursor by quantum dot functionalized metal organic framework structure
JP7387889B2 (en) 2019-10-17 2023-11-28 フラウンホーファー-ゲゼルシャフト ツア フォルデルング デア アンゲヴァンテン フォルシュング エー ファウ Optical security identifier suitable for track and trace and/or serialization systems
WO2021161860A1 (en) * 2020-02-10 2021-08-19 三菱ケミカル株式会社 Composition containing semiconductor nanoparticles, color filter, and image display device

Also Published As

Publication number Publication date
CN102282568B (en) 2014-06-11
HK1162723A1 (en) 2012-08-31
JP5339382B2 (en) 2013-11-13
JPWO2010082625A1 (en) 2012-07-05
CN102282568A (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP5339382B2 (en) Information pattern carrier and information pattern optical reading method
JP5339381B2 (en) Optical reading method
CA2562262C (en) Value document
US8822954B2 (en) Phosphor based authentication system
US20060163363A1 (en) Information encoding on surfaces by varying spectral emissivity
JP2005505444A5 (en)
CN101410256B (en) Data storage medium and method for manufacturing it
RU2006100105A (en) VALUABLE DOCUMENT WITH ALLOWING AUTOMATIC READING AS A SIGN OF AUTHENTICITY
JP2007030448A (en) Machine readable information printed article
KR20200044808A (en) Laminate, identification certificate, and verification method of identification certificate
WO2008100885A1 (en) Semiconductor nanocrystals as marking devices
JP2008080610A (en) Mechanically readable information printed material
JP2002274000A (en) Genuineness-checkable forgery-preventive printed medium and method for checking genuineness of printed medium
JP5339359B2 (en) Optical reading method
JP4706459B2 (en) Anti-counterfeit printed matter and method for distinguishing anti-counterfeit printed matter
JP2012144614A (en) Forgery preventive ink and forgery preventive medium using the same, and verification method of forgery preventive medium
US9878574B2 (en) Security foil and method
JP6167687B2 (en) Information recording medium and method for reading information recording medium
WO2016068232A1 (en) Method for determining authenticity of anti-counterfeit medium and authenticity determining device for anti-counterfeit medium
JP4670561B2 (en) Laminated sheet
JP6003335B2 (en) Information recording medium reading method and information recording medium
WO2021193757A1 (en) Heat sensitive medium and laser recording device
Siddique et al. Nano-inks in security and defense applications
JP2005007692A (en) Thermal transfer ink ribbon, printed matter for authentication, and method for forming image for printed matter for authentication
EP3150399B1 (en) A security element against counterfeiting security printing, especially banknotes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004704.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010546655

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10731294

Country of ref document: EP

Kind code of ref document: A1