WO2010082324A1 - 空調給湯複合システム - Google Patents

空調給湯複合システム Download PDF

Info

Publication number
WO2010082324A1
WO2010082324A1 PCT/JP2009/050407 JP2009050407W WO2010082324A1 WO 2010082324 A1 WO2010082324 A1 WO 2010082324A1 JP 2009050407 W JP2009050407 W JP 2009050407W WO 2010082324 A1 WO2010082324 A1 WO 2010082324A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
refrigerant
water supply
heat exchanger
heat medium
Prior art date
Application number
PCT/JP2009/050407
Other languages
English (en)
French (fr)
Inventor
宏典 薮内
純一 亀山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2009/050407 priority Critical patent/WO2010082324A1/ja
Priority to JP2010546506A priority patent/JP5264936B2/ja
Priority to EP09838294.8A priority patent/EP2378223B1/en
Publication of WO2010082324A1 publication Critical patent/WO2010082324A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present invention relates to an air-conditioning and hot-water supply complex system equipped with a heat pump cycle and capable of simultaneously providing a cooling load, a heating load and a hot water supply load.
  • the first compressor, the refrigerant distributor, the first heat exchanger, the second heat exchanger, the first expansion device, the outdoor heat exchanger, the four-way valve, and the first compressor are connected in this order.
  • the four-way valve, the indoor heat exchanger, and the second expansion device are interposed in this order from the refrigerant distribution device, and connected between the second heat exchanger and the first expansion device, and the first refrigerant
  • a low-stage refrigerant circuit through which the second refrigerant flows, a second compressor, a condenser, a third expansion device, the first heat exchanger, and the second compressor are connected in this order, and the second refrigerant flows.
  • a “heat pump type hot water supply apparatus including a stage-side refrigerant circuit, the second heat exchanger, and the condenser connected in this order, and a hot water supply path through which hot water flows through (for example, Patent Document 2). reference).
  • JP-A-11-270920 page 3-4, FIG. 1
  • Japanese Patent Laid-Open No. 4-263758 page 2-3, FIG. 1
  • the multi-function heat pump system described in Patent Document 1 provides a cooling load, a heating load, and a hot water supply load simultaneously by a single refrigeration cycle, that is, one refrigeration cycle.
  • a single refrigeration cycle that is, one refrigeration cycle.
  • the temperature of the heat dissipation process for heating water and the temperature of the heat dissipation process for heating are almost the same, so that a high temperature hot water supply load must be covered during cooling operation.
  • the compressor must continue to operate until the heat source is raised, which has a problem of poor operating efficiency.
  • the heat pump type hot water supply apparatus described in Patent Document 2 provides a cooling load, a heating load, and a hot water supply load simultaneously by two refrigeration cycles, that is, two refrigeration cycles.
  • the refrigerant circuit that performs air conditioning in the indoor unit and the refrigerant circuit that performs hot water supply are handled differently, and a hot water supply function cannot simply be added as an alternative to the indoor unit. There is a problem that it cannot be easily introduced into an existing air conditioner.
  • the present invention has been made to solve the above-described problems, and can simultaneously process a cooling load, a heating load, and a high-temperature hot water supply load, can supply a stable heat source throughout the year, and can quickly start up at startup. It aims at providing the air-conditioning hot-water supply complex system which makes it possible to do.
  • an air conditioning compressor, a flow path switching unit, an outdoor heat exchanger, an indoor heat exchanger, and an air conditioning throttle unit are connected in series and connected in series.
  • the refrigerant-refrigerant heat exchanger and the hot water supply heat source throttle means include a first refrigerant circuit connected in parallel to the indoor heat exchanger and the air conditioning throttle means, and circulates the air-conditioning refrigerant in the first refrigerant circuit.
  • An air conditioning refrigeration cycle a hot water supply compressor, a heat medium-refrigerant heat exchanger, hot water supply throttle means, and a second refrigerant circuit in which the refrigerant-refrigerant heat exchanger is connected in series
  • the air-conditioning refrigeration cycle and the hot-water supply refrigeration cycle are cascade-connected in the refrigerant-refrigerant heat exchanger so that the air-conditioning refrigerant and the hot-water supply refrigerant perform heat exchange, and the hot-water supply
  • the refrigeration cycle for hot water and the hot water supply load are cascade-connected in the heat medium-refrigerant heat exchanger so that the hot water supply refrigerant and the water exchange heat
  • the combined air conditioning and hot water supply system it is possible to simultaneously or selectively perform the cooling operation, the heating operation, and the hot water supply operation in combination with the air conditioning load and the hot water supply load without configuring a complicated circuit.
  • By improving the start-up (particularly the hot water supply compressor), highly efficient operation is possible.
  • FIG. 1 is a refrigerant circuit diagram illustrating a refrigerant circuit configuration (particularly, a refrigerant circuit configuration during heating-main operation) of an air-conditioning and hot water supply combined system 100 according to an embodiment of the present invention. Based on FIG. 1, the refrigerant circuit configuration of the combined air-conditioning and hot water supply system 100, particularly the refrigerant circuit configuration during heating-main operation will be described.
  • This air conditioning and hot water supply complex system 100 is installed in a building, a condominium, etc., and can supply a cooling load, a heating load, and a hot water supply load simultaneously by using a refrigeration cycle (heat pump cycle) that circulates refrigerant (air conditioning refrigerant). is there.
  • a refrigeration cycle heat pump cycle
  • refrigerant air conditioning refrigerant
  • An air conditioning and hot water supply combined system 100 includes an air conditioning refrigeration cycle 1, a hot water supply refrigeration cycle 2, and a hot water supply load 3, and includes an air conditioning refrigeration cycle 1 and a hot water supply refrigeration cycle 2.
  • Is a refrigerant-refrigerant heat exchanger 41, and the hot water supply refrigeration cycle 2 and the hot water supply load 3 are heat medium-refrigerant heat exchangers 51, and are configured to exchange heat without mutual refrigerant or water mixing.
  • the load on the cooling indoor unit B is smaller than the total load on the heating indoor unit C and the hot water supply heat source circuit D, and the outdoor heat exchanger 103 serves as an evaporator.
  • the state of the cycle when working (for convenience, referred to as heating main operation) is shown.
  • the air-conditioning refrigeration cycle 1 includes a heat source unit A, a cooling indoor unit B in charge of a cooling load, a heating indoor unit C in charge of a heating load, a hot water supply heat source circuit D serving as a heat source of the hot water supply refrigeration cycle 2, And a repeater E.
  • the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D are connected and mounted in parallel to the heat source unit A.
  • the relay machine E installed between the heat source unit A, the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D switches the flow of the refrigerant, so that the cooling indoor unit B, the heating indoor unit The functions as C and hot water supply heat source circuit D are exhibited.
  • the heat source machine A is configured by connecting an air conditioning compressor 101, a four-way valve 102 as a flow path switching unit, an outdoor heat exchanger 103, and an accumulator 104 in series.
  • the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D have a function of supplying cold heat.
  • a blower such as a fan for supplying air to the outdoor heat exchanger 103 may be provided in the vicinity of the outdoor heat exchanger 103.
  • the flow of the air-conditioning refrigerant is allowed only in a predetermined direction (the direction from the heat source unit A to the relay unit E) in the high-pressure side connection pipe 106 between the outdoor heat exchanger 103 and the relay unit E.
  • the reverse check valve 105a that allows the flow of the air-conditioning refrigerant only in a predetermined direction (direction from the relay machine E to the heat source machine A) in the low-pressure side connection pipe 107 between the four-way valve 102 and the relay machine E. Stop valves 105b are provided respectively.
  • the high-pressure side connection pipe 106 and the low-pressure side connection pipe 107 are opposite to the first connection pipe 130 that connects the upstream side of the check valve 105a and the upstream side of the check valve 105b, and the downstream side of the check valve 105a.
  • the second connection pipe 131 is connected to the downstream side of the stop valve 105b. That is, the connection part a between the high-pressure side connection pipe 106 and the first connection pipe 130 is upstream of the connection part b between the high-pressure side connection pipe 106 and the second connection pipe 131 across the check valve 105a.
  • the connection part c between the low-pressure side connection pipe 107 and the first connection pipe 130 is also upstream of the connection part d between the low-pressure side connection pipe 107 and the second connection pipe 131 across the check valve 105b. Yes.
  • the first connection pipe 130 is provided with a check valve 105 c that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
  • the second connection pipe 131 is also provided with a check valve 105 d that allows the air-conditioning refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
  • the check valve 105a and the check valve 105b are in a closed state (shown in black), the check valve 105b and the check valve 105c. Is open (shown in white).
  • the air-conditioning compressor 101 sucks air-conditioning refrigerant and compresses the air-conditioning refrigerant to a high temperature and high pressure state.
  • the four-way valve 102 switches the flow of the air conditioning refrigerant.
  • the outdoor heat exchanger 103 functions as an evaporator or a radiator (condenser), performs heat exchange between air supplied from a blower (not shown) and the air conditioning refrigerant, and converts the air conditioning refrigerant into evaporated gas or Condensed liquid.
  • the accumulator 104 is disposed between the four-way valve 102 and the air-conditioning compressor 101 during heating-main operation, and stores excess air-conditioning refrigerant.
  • the accumulator 104 may be any container that can store excess air-conditioning refrigerant.
  • the cooling indoor unit B and the heating indoor unit C are mounted with an air conditioning throttle means 117 and an indoor heat exchanger 118 connected in series. Further, in the cooling indoor unit B and the heating indoor unit C, an example is shown in which two air conditioning throttle means 117 and two indoor heat exchangers 118 are mounted in parallel.
  • the cooling indoor unit B receives a supply of cold from the heat source unit A and takes charge of the cooling load
  • the heating indoor unit C has a function of receiving the supply of cold heat from the heat source unit A and taking charge of the heating load. Yes.
  • connection pipe 133 the connection pipe connected from the relay E to the indoor heat exchanger 118
  • connection pipe 134 the connection pipe connected from the relay E to the air conditioning throttle means 117
  • the air conditioning throttle means 117 functions as a pressure reducing valve or an expansion valve, and decompresses and expands the air conditioning refrigerant.
  • the air-conditioning throttle means 117 may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the indoor heat exchanger 118 functions as a radiator (condenser) or an evaporator, and performs heat exchange between air supplied from an air blower (not shown) and the air conditioning refrigerant to condense or liquefy the air conditioning refrigerant. Evaporative gasification.
  • the air conditioning throttle means 117 and the indoor heat exchanger 118 are connected in series.
  • the hot water supply heat source circuit D includes a hot water supply heat source throttling means 119 and a refrigerant-refrigerant heat exchanger 41 connected in series, and the cold heat from the heat source unit A is transferred to the refrigerant-refrigerant heat exchanger 41. It has the function to supply to the hot water supply refrigeration cycle 2 via the. That is, the air-conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are cascade-connected by the refrigerant-refrigerant heat exchanger 41.
  • the connecting pipe connecting the relay E to the refrigerant-refrigerant heat exchanger 41 is connected to the connecting pipe 135, and the connecting pipe connecting the relay E to the hot water supply heat source throttle means 119 is connected to the connecting pipe. It shall be described as 136.
  • the hot water supply heat source throttling means 119 functions as a pressure reducing valve or an expansion valve, like the air conditioning throttling means 117, and decompresses and expands the air conditioning refrigerant.
  • the hot water supply heat source throttling means 119 is preferably constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
  • the refrigerant-refrigerant heat exchanger 41 functions as a radiator (condenser) and an evaporator, and serves as a hot water supply refrigerant that circulates through the refrigeration cycle of the hot water supply refrigeration cycle 2 and an air conditioner that circulates through the refrigeration cycle of the air conditioning refrigeration cycle 1. Heat exchange is performed with the refrigerant for use.
  • the relay unit E has a function of connecting each of the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D to the heat source unit A, and also has the valve means 109a or the valve means 109b of the first distribution unit 109. Is selectively opened or closed to determine whether the indoor heat exchanger 118 is a radiator or an evaporator, and whether the refrigerant-refrigerant heat exchanger 41 is a chiller or a water heater. It has a function to do.
  • the relay E includes a gas-liquid separator 108, a first distributor 109, a second distributor 110, a first internal heat exchanger 111, a first relay throttle means 112, and a second internal heat.
  • the exchanger 113 and the second relay stop means 114 are configured.
  • connection pipe 133 and the connection pipe 135 are branched into two, one (the connection pipe 133b and the connection pipe 135b) is connected to the low-pressure side connection pipe 107, and the other (the connection pipe 133a and the connection pipe).
  • the pipe 135a) is connected to a connection pipe (referred to as a connection pipe 132) connected to the gas-liquid separator 108.
  • the valve means 109a that is controlled to open / close the connection pipe 133a and the connection pipe 135a so as not to conduct the refrigerant is controlled to open / close to the connection pipe 133b and the connection pipe 135b and conducts the refrigerant.
  • Valve means 109b that may or may not be provided is provided.
  • the open / closed states of the valve means 109a and the valve means 109b are represented by white (open state) and black (closed state).
  • connection pipe 134 and the connection pipe 136 are branched into two, one (the connection pipe 134a and the connection pipe 136a) is connected at the first meeting part 115, and the other (the connection pipe 134b and the connection pipe).
  • a pipe 136b) is connected at the second meeting part 116.
  • the check valve 110a that allows only one of the refrigerant to flow in the connecting pipe 134a and the connecting pipe 136a is reverse to allow only one of the refrigerant to flow in the connecting pipe 134b and the connecting pipe 136b.
  • a stop valve 110b is provided.
  • the open / closed states of the check valve 110a and the check valve 110b are indicated by white (open state) and black (closed state).
  • the first meeting unit 115 is connected from the second distribution unit 110 to the gas-liquid separator 108 via the first relay squeezing means 112 and the first internal heat exchanger 111.
  • the second meeting unit 116 branches between the second distribution unit 110 and the second internal heat exchanger 113, one of which is for the second distribution unit 110 and the first relay device via the second internal heat exchanger 113.
  • the second meeting section 116a is connected to the first meeting section 115 between the throttling means 112, and the other (second meeting section 116a) is connected to the second relay throttling means 114, the second internal heat exchanger 113, and the first internal heat exchanger 111.
  • the gas-liquid separator 108 separates the air-conditioning refrigerant into a gas refrigerant and a liquid refrigerant.
  • the gas-liquid separator 108 is provided in the high-pressure side connection pipe 106, one of which is connected to the valve means 109 a of the first distribution unit 109, and the other.
  • the first distributor 115 is connected to the second distributor 110.
  • the first distribution unit 109 has a function of allowing the air conditioning refrigerant to flow into the indoor heat exchanger 118 and the refrigerant-refrigerant heat exchanger 41 by selectively opening or closing either the valve means 109a or the valve means 109b. Yes.
  • the 2nd distribution part 110 has a function which permits the flow of the refrigerant for air-conditioning to either one by check valve 110a and check valve 110b.
  • the first internal heat exchanger 111 is provided in the first meeting portion 115 between the gas-liquid separator 108 and the first relay throttle means 112, and is used for air conditioning in which the first meeting portion 115 is conducted. Heat exchange is performed between the refrigerant and the air-conditioning refrigerant that is conducted through the second meeting part 116a from which the second meeting part 116 is branched.
  • the first repeater throttle means 112 is provided in the first meeting section 115 between the first internal heat exchanger 111 and the second distribution section 110, and decompresses and expands the air-conditioning refrigerant. .
  • the first repeater throttle means 112 may be configured with a variable opening degree controllable means, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the second internal heat exchanger 113 is provided in the second meeting part 116, and includes an air conditioning refrigerant that is conducted through the second meeting part 116, and a second meeting part 116a from which the second meeting part 116 is branched. Heat exchange is performed with the air-conditioning refrigerant that is conducted.
  • the second relay throttling means 114 is provided in the second meeting section 116 between the second internal heat exchanger 113 and the second distribution section 110, functions as a pressure reducing valve and an expansion valve, and is an air conditioning refrigerant. Is expanded under reduced pressure.
  • the second relay unit throttle unit 114 can be controlled to have a variable opening, for example, a precise flow rate control unit using an electronic expansion valve, or a low cost such as a capillary tube.
  • the refrigerant flow rate adjusting means may be used.
  • the air-conditioning refrigeration cycle 1 includes the air-conditioning compressor 101, the four-way valve 102, the indoor heat exchanger 118, the air-conditioning throttle means 117, and the outdoor heat exchanger 103 connected in series, and the air-conditioning compression cycle.
  • Machine 101, four-way valve 102, refrigerant-refrigerant heat exchanger 41, hot water supply heat source throttling means 119, and outdoor heat exchanger 103 are connected in series, and the indoor heat exchanger 118 and refrigerant-refrigerant are connected via relay E. This is established by connecting the heat exchanger 41 in parallel to form a first refrigerant circuit, and circulating the air-conditioning refrigerant in the first refrigerant circuit.
  • the air conditioning compressor 101 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state.
  • the air-conditioning compressor 101 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the air-conditioning compressor 101 may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed.
  • the type of refrigerant circulating in the air-conditioning refrigeration cycle 1 is not particularly limited.
  • natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, and alternatives that do not contain chlorine such as HFC410A, HFC407C, and HFC404A
  • HFC410A, HFC407C, and HFC404A Either a refrigerant or a fluorocarbon refrigerant such as R22 or R134a used in existing products may be used.
  • the air-conditioning refrigerant heated to a high temperature and high pressure by the air-conditioning compressor 101 is discharged from the air-conditioning compressor 101, passes through the four-way valve 102, passes through the check valve 105 c, and enters the high-pressure side connection pipe 106. It is guided and flows into the gas-liquid separator 108 of the relay E in the superheated gas state.
  • the superheated gas-conditioning refrigerant flowing into the gas-liquid separator 108 is distributed to a circuit in which the valve means 109a of the first distribution unit 109 is open.
  • the refrigerant for air conditioning in the superheated gas state flows into the heating indoor unit C and the hot water supply heat source circuit D.
  • the air-conditioning refrigerant flowing into the heating indoor unit C dissipates heat in the indoor heat exchanger 118 (that is, warms the room air), is depressurized by the air-conditioning throttle means 117, and joins at the first meeting unit 115.
  • the air-conditioning refrigerant that has flowed into the hot water supply heat source circuit D dissipates heat in the refrigerant-refrigerant heat exchanger 41 (that is, gives heat to the hot water supply refrigeration cycle 2), and is depressurized by the hot water supply heat source throttling means 119.
  • the air-conditioning refrigerant that has flowed out of the indoor unit C merges at the first meeting unit 115.
  • a part of the air-conditioning refrigerant in the superheated gas state that has flowed into the gas-liquid separator 108 is the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay expansion means 114 in the first internal heat exchanger 111.
  • the degree of supercooling is obtained by heat exchange.
  • the air-conditioning refrigerant used for air-conditioning flows into the indoor heat exchanger 118 or refrigerant-refrigerant heat exchange. And the first meeting part 115 merge. It should be noted that a part of the superheated gas conditioning refrigerant that passes through the first repeater throttle means 112 may be eliminated by fully closing the first repeater throttle means 112. Thereafter, the second internal heat exchanger 113 performs heat exchange with the air-conditioning refrigerant expanded to low temperature and low pressure by the second relay throttle unit 114 to obtain a degree of supercooling. This refrigerant for air conditioning is distributed to the second meeting part 116 side and the second relay unit throttle means 114 side.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 is distributed to a circuit in which the valve means 109b is open.
  • the air-conditioning refrigerant that conducts through the second meeting portion 116 flows into the cooling indoor unit B, is expanded to low temperature and low pressure by the air-conditioning throttle means 117, is evaporated by the indoor heat exchanger 118, and the valve means 109 b. After that, the low pressure side connecting pipe 107 joins.
  • the air-conditioning refrigerant that has passed through the second repeater throttle means 114 evaporates by exchanging heat in the second internal heat exchanger 113 and the first internal heat exchanger 111, and in the cooling chamber through the low-pressure side connection pipe 107.
  • the air-conditioning refrigerant merged in the low-pressure side connection pipe 107 is led to the outdoor heat exchanger 103 through the check valve 105d, and depending on the operating conditions, the remaining liquid refrigerant is evaporated, and the four-way valve 102, accumulator Return to the air-conditioning compressor 101 via the radiator 104.
  • the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41. That is, the hot water supply refrigeration cycle 2 includes a hot water supply compressor 21, a heat medium-refrigerant heat exchanger 51, a hot water supply throttle means 22, and a refrigerant-refrigerant heat exchanger 41 connected in series by the refrigerant pipe 45. This is established by constituting a two refrigerant circuit and circulating a hot water supply refrigerant in the second refrigerant circuit. The operation of the hot water supply refrigeration cycle 2 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is being executed or the heating main operation is being executed.
  • the hot water supply compressor 21 sucks in the hot water supply refrigerant and compresses the hot water supply refrigerant to a high temperature and high pressure state.
  • the hot water supply compressor 21 may be configured as a type in which the rotation speed can be variably controlled by an inverter, or may be configured as a type in which the rotation speed is fixed. Further, the hot water supply compressor 21 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state.
  • the hot water supply compressor 21 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the heat medium-refrigerant heat exchanger 51 performs heat exchange between a heat medium (fluid such as water) circulating through the hot water supply load 3 and a hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. . That is, the hot water supply refrigeration cycle 2 and the hot water supply load 3 are cascade-connected by the heat medium-refrigerant heat exchanger 51.
  • the hot water supply throttling means 22 functions as a pressure reducing valve and an expansion valve, and decompresses the hot water supply refrigerant to expand it.
  • the hot water supply throttling means 22 may be constituted by a controllable opening degree, such as a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
  • the refrigerant-refrigerant heat exchanger 41 performs heat exchange between the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 and the air conditioning refrigerant circulating in the air conditioning refrigeration cycle 1.
  • the type of refrigerant circulating in the hot water supply refrigeration cycle 2 is not particularly limited.
  • natural refrigerants such as carbon dioxide, hydrocarbons and helium, alternative refrigerants not containing chlorine such as HFC410A, HFC407C, and HFC404A, or existing Any of chlorofluorocarbon refrigerants such as R22 and R134a used in this product may be used.
  • the hot water supply refrigerant that has been heated to a high temperature and high pressure by the hot water supply compressor 21 is discharged from the hot water supply compressor 21 and flows into the heat medium-refrigerant heat exchanger 51.
  • the flowing hot water supply refrigerant radiates heat by heating the water circulating in the hot water supply load 3.
  • This hot water supply refrigerant is expanded by the hot water supply throttling means 22 to a temperature equal to or lower than the outlet temperature of the refrigerant-refrigerant heat exchanger 41 in the hot water supply heat source circuit D of the air conditioning refrigeration cycle 1.
  • the expanded hot water supply refrigerant receives and evaporates from the air conditioning refrigerant flowing through the hot water supply heat source circuit D constituting the air conditioning refrigeration cycle 1 in the refrigerant-refrigerant heat exchanger 41, and returns to the hot water supply compressor 21.
  • the hot water supply load 3 includes a water circulation pump 31, a heat medium-refrigerant heat exchanger 51, and a hot water storage tank 32. That is, in the hot water supply load 3, the water circulation pump 31, the heat medium-refrigerant heat exchanger 51, and the hot water storage tank 32 are connected in series by the hot water storage water circulation pipe 203 to form a water circuit (heat medium circuit). This is achieved by circulating hot water supply water in this water circuit.
  • the operation of the hot water supply load 3 does not differ depending on the operating state of the air conditioning refrigeration cycle 1, that is, whether the cooling main operation is executed or the heating main operation is executed.
  • the hot water circulating pipe 203 constituting the water circuit is constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like.
  • the water circulation pump 31 sucks the water stored in the hot water storage tank 32, pressurizes the water, and circulates the inside of the hot water supply load 3.
  • the water circulation pump 31 is of a type whose rotational speed is controlled by an inverter. Configure.
  • the heat medium-refrigerant heat exchanger 51 exchanges heat between the heat medium (fluid such as water) circulating through the hot water supply load 3 and the hot water supply refrigerant circulating through the hot water supply refrigeration cycle 2. Is to do.
  • the hot water storage tank 32 stores water heated by the heat medium-refrigerant heat exchanger 51.
  • the relatively low temperature water stored in the hot water storage tank 32 is drawn from the bottom of the hot water storage tank 32 and pressurized by the water circulation pump 31.
  • the water pressurized by the water circulation pump 31 flows into the heat medium-refrigerant heat exchanger 51, and receives heat from the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2 by the heat medium-refrigerant heat exchanger 51. . That is, the water flowing into the heat medium-refrigerant heat exchanger 51 is boiled by the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2, and the temperature rises. Then, the boiled water returns to the relatively hot upper portion of the hot water storage tank 32 and is stored in the hot water storage tank 32.
  • the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 are independent refrigerant circuit configurations (the first refrigerant circuit constituting the air conditioning refrigeration cycle 1 and the hot water supply refrigeration cycle 2 constituting the first refrigerant circuit 1).
  • the refrigerant circulating through each refrigerant circuit may be the same type or different types. That is, the refrigerant in each refrigerant circuit flows so as to exchange heat with each other in the refrigerant-refrigerant heat exchanger 41 and the heat medium-refrigerant heat exchanger 51 without being mixed.
  • a refrigerant having a low critical temperature when used as the hot water supply refrigerant, it is assumed that the hot water supply refrigerant in the heat dissipation process in the heat medium-refrigerant heat exchanger 51 enters a supercritical state when hot water supply is performed. .
  • the COP fluctuates greatly due to changes in the radiator pressure and the outlet temperature of the radiator, and more advanced control is required in order to obtain a high COP.
  • a refrigerant having a low critical temperature has a high saturation pressure for the same temperature, and accordingly, it is necessary to increase the thickness of the piping and the compressor, which causes an increase in cost.
  • the target temperature of hot water supply is often 60 ° C. or higher at a minimum. Is done.
  • a refrigerant having a critical temperature of 60 ° C. or higher is adopted as the hot water supply refrigerant. This is because, if such a refrigerant is employed as the hot water supply refrigerant of the hot water supply refrigeration cycle 2, a high COP can be obtained more stably at a lower cost.
  • the refrigerant is regularly used in the vicinity of the critical temperature, it is assumed that the refrigerant circuit has a high temperature and a high pressure. Therefore, the hot water supply compressor 21 is stabilized by using a compressor of a type using a high pressure shell. Driving is possible.
  • FIG. 1 shows an example in which two or more cooling indoor units B and heating indoor units C are connected, but the number of connected units is not particularly limited. It is only necessary that there is no heating indoor unit C or at least one unit is connected. And the capacity
  • the hot water supply load system is configured in a two-way cycle, and therefore when supplying high-temperature hot water supply demand (for example, 80 ° C.), What is necessary is just to make the temperature of the heat radiator of the refrigerating cycle 2 high temperature (for example, condensing temperature 85 degreeC), and when there is another heating load, it does not increase even to the condensing temperature (for example, 50 degreeC) of the heating indoor unit C. Energy saving. Also, for example, when there was a demand for hot water supply during the air conditioning and cooling operation in summer, it was necessary to provide it with a boiler, etc., but it was necessary to collect hot water that had been discharged into the atmosphere and reuse it. Therefore, the system COP is greatly improved and energy is saved.
  • high-temperature hot water supply demand for example, 80 ° C.
  • FIG. 2 is a schematic circuit configuration diagram for explaining another example of a hot water supply load (hereinafter referred to as a hot water supply load 3a).
  • a hot water supply load 3a An example of a mechanism for heating the water circulating in the hot water supply load 3a will be described with reference to FIG.
  • a hot water supply water circulation cycle (hot water supply heat medium circulation cycle) 4 includes a heat medium-refrigerant heat exchanger 51 and water-water heat. Cascade connection is performed via an exchanger (heat medium-heat medium heat exchanger) 201.
  • FIG. 1 is a schematic circuit configuration diagram for explaining another example of a hot water supply load (hereinafter referred to as a hot water supply load 3a).
  • An example of a mechanism for heating the water circulating in the hot water supply load 3a will be described with reference to FIG.
  • a hot water supply water circulation cycle (hot water supply heat medium circulation cycle) 4 includes a heat medium-refrigerant heat exchanger 51 and water-water heat. Ca
  • FIG. 1 shows an example in which water is directly heated (heated up) by a heat medium-refrigerant heat exchanger 51 in an open circuit hot water supply load 3, but FIG. 2 shows hot water supply water.
  • An example is shown in which a circulation cycle 4 is provided and water is indirectly heated by the water-water heat exchanger 201 in the open circuit hot water supply load 3a.
  • the hot water supply water circulation cycle 4 includes a heat medium circulation pump 31 a, a heat medium-refrigerant heat exchanger 51, and a water-water heat exchanger 201.
  • the hot water supply water circulation cycle 4 includes a heat circuit circulation pump 31a, a heat medium-refrigerant heat exchanger 51, and a water-water heat exchanger 201 connected in series by a circulation water pipe 202 to form a water circuit (heat This is established by configuring a medium circuit) and circulating a heating heat medium (heating water) through the heat medium circuit (water circuit).
  • the circulating water pipe 202 constituting the water circuit is constituted by a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like.
  • the heat medium circulation pump 31a sucks water (heat medium) that is conducted through the circulation water pipe 202, pressurizes the water, and circulates the hot water supply water circulation cycle 4.
  • the rotation speed is increased by an inverter. It is good to comprise by the type by which is controlled.
  • the heat medium-refrigerant heat exchanger 51 performs heat exchange between the water circulating in the hot water supply water circulation cycle 4 and the hot water supply refrigerant circulating in the hot water supply refrigeration cycle 2.
  • the water-water heat exchanger 201 performs heat exchange between the water circulating through the hot water supply water circulation cycle 4 and the water circulating through the hot water supply load 3a.
  • other fluids such as brine (antifreeze) may be circulated as a heat medium.
  • the relatively low temperature water stored in the hot water storage tank 32 is drawn from the bottom of the hot water storage tank 32 and pressurized by the water circulation pump 31.
  • the water pressurized by the water circulation pump 31 flows into the water-water heat exchanger 201, and receives heat from the water circulating in the hot water supply water circulation cycle 4 by the water-water heat exchanger 201. That is, the water flowing into the water-water heat exchanger 201 is boiled by the water circulating in the hot water supply water circulation cycle 4 and the temperature rises. Then, the boiled water returns to the relatively hot upper portion of the hot water storage tank 32 and is stored in the hot water storage tank 32. That is, heat from the hot water supply refrigeration cycle 2 is transmitted to the hot water supply water circulation cycle 4 by the heat medium-refrigerant heat exchanger 51 and to the hot water supply load 3a by the water-water heat exchanger 201, respectively. .
  • FIG. 3 is an explanatory diagram for explaining an example of the structure of the outdoor heat exchanger 103. Based on FIG. 3, the outdoor heat exchanger 103 which enabled the heating operation through the year is demonstrated.
  • the air conditioning and hot water supply complex system 100 is used only for normal air conditioning applications, it is common to perform the heating operation at an outdoor air wet bulb temperature of 15 ° C. or less. However, when performing the hot water supply operation, the hot water supply operation is performed regardless of the outside air temperature. Need to do. Therefore, FIG. 3 shows an example in which the outdoor heat exchanger 103 has a divided structure having a plurality of heat exchangers (hereinafter referred to as a divided heat exchanger 103a).
  • the outdoor heat exchanger 103 may have a divided structure in which four heat exchangers are combined, or may have a divided structure in which one heat exchanger is divided into four.
  • the high-pressure side connection pipe 106 is branched into a plurality of parts and connected to each of the divided heat exchangers 103 a constituting the outdoor heat exchanger 103.
  • each of the branched high-pressure side connection pipes 106 is provided with an electromagnetic valve 209 that is an on-off valve that is controlled to be opened and closed so as not to conduct the refrigerant.
  • one of the high-pressure side connection pipes 106 branched into a plurality is a bypass circuit 300 that bypasses the divided heat exchanger 103a.
  • the bypass circuit 300 is also provided with a solenoid valve 209a that is a bypass on-off valve.
  • the outdoor heat exchanger 103 constituting the air-conditioning refrigeration cycle 1 can adjust the amount of refrigerant flowing in by controlling the opening and closing of the solenoid valve 209 and the solenoid valve 209a, and the heat exchanger capacity can be divided. It has become.
  • the heat exchanger capacity of the outdoor heat exchanger 103 is reduced. It is desirable to make it. Therefore, in the air conditioning and hot water supply complex system 100, all or part of the solenoid valve 209 is controlled to be closed so that the refrigerant flowing into the outdoor heat exchanger 103 is shut off so as not to deviate from the operating range of the air conditioning compressor 101. .
  • the number of divided heat exchangers 103a into which refrigerant flows is determined in accordance with the operating range of the air conditioning compressor 101, and the inflow amount of refrigerant is adjusted by closing control of the electromagnetic valve 209 according to the number.
  • the operation range of the air conditioning compressor 101 is not deviated.
  • the operation range of the air conditioning compressor 101 may be deviated.
  • the solenoid valve 209 a installed in the bypass circuit 300 is controlled to be opened so that the refrigerant is returned to the suction side of the air-conditioning compressor 101 without flowing into the outdoor heat exchanger 103.
  • the solenoid valve 209a installed in the bypass circuit 300 has an equation Cva ⁇ if the flow coefficient of refrigerant flowing through the bypass circuit 300 is CVb, where Cva is the flow coefficient of refrigerant when passing through the outdoor heat exchanger 103. It is selected so as to satisfy CVb. Furthermore, when the operation range of the air conditioning compressor 101 cannot be maintained only by dividing the heat exchanger capacity, the operation range is maintained by opening the electromagnetic valve 209a installed in the bypass circuit 300 to bypass the refrigerant. Note that the split structure may be controlled using an electronic expansion valve instead of using an electromagnetic valve.
  • FIG. 4 is a schematic circuit configuration diagram for explaining still another example of the hot water supply load (hereinafter referred to as a hot water supply load 3b).
  • FIG. 5 is a schematic circuit diagram showing an example of circulation of the heat medium (fluid such as water serving as a heat source) in the hot water supply load 3b.
  • FIG. 6 is a flowchart showing a heat medium flow path switching process in the hot water supply load 3b. An example of a mechanism for heating the heat medium circulating in the hot water supply load 3b (that is, the heat medium circulating in the water circuit of the hot water supply load 3b) will be described with reference to FIGS.
  • two flow paths (flow path A and flow path B) are shown together.
  • the flow path A represents the flow path for circulating the heat medium via the bypass pipe 303
  • the flow path B represents the flow path for circulating the heat medium without passing the bypass pipe 303, respectively.
  • the hot water supply load 3b is provided with a first flow path switching device 301 in a hot water storage water circulation pipe 203 between the hot water storage tank 32 and the water circulation pump 31, and a heat medium-refrigerant heat exchanger 51 and
  • a second flow path switching device 302 is provided in the hot water circulation pipe 203 between the hot water storage tank 32, and the first flow path switching device 301 and the second flow path switching device 302 are connected by a bypass pipe 303 via an auxiliary tank 305. It is configured by connecting.
  • the hot water storage water circulation pipe 203 is connected in series, the bypass circuit 303 is provided in the water circuit (heat medium circuit), and the hot water supply water can be circulated through the bypass pipe 303.
  • the hot water supply load 3b is provided with a first temperature sensor 310 and a second temperature sensor 311.
  • the auxiliary tank 305 stores water heated by the heat medium-refrigerant heat exchanger 51, similarly to the hot water storage tank 32.
  • the first flow path switching device 301 and the second flow path switching device 302 switch the water flow path to either the hot water storage water circulation pipe 203 or the bypass pipe 303, and are composed of, for example, a mixing valve or a three-way valve. ing.
  • the mixing valve is controlled to be opened and closed so that the ratio of circulating the low-temperature heat medium circulating in the water circuit and the ratio of circulating the high-temperature heat medium can be adjusted.
  • a predetermined tapping temperature can be maintained by controlling the ratio of the open / close area (flow channel cross-sectional area) of the mixing valve.
  • the three-way valve switches the flow path of the heat medium (the flow path via the bypass pipe 303 or the flow path not via the bypass pipe 303). *
  • the first temperature sensor 310 is provided on the upstream side of the first flow path switching device 301, that is, on the inlet side of the heat medium-refrigerant heat exchanger 51, and determines the inlet temperature of the heat medium temperature circulated to the hot water supply load 3b.
  • a thermistor is used.
  • the second temperature sensor 311 is provided on the upstream side of the second flow path switching device 302, that is, on the outlet side of the heat medium-refrigerant heat exchanger 51, and the outlet temperature of the heat medium temperature circulated to the hot water supply load 3b.
  • a thermistor is used.
  • the hot water supply compressor 21 When supplying a heat medium to the hot water supply load 3b side in the water circuit of the hot water supply load 3b, the hot water supply compressor 21 is started to send the heat medium, and the hot water supply refrigeration cycle 2 starts operation.
  • the hot water supply refrigeration cycle 2 When the hot water supply refrigeration cycle 2 is activated, the first flow sensor 301 and the first flow switching device 301 and the second flow sensor 311 are measured while the heat medium temperature circulated on the hot water supply load 3 b side is measured by the first temperature sensor 310 and the second temperature sensor 311. After passing through the two-channel switching device 302 and exchanging heat with the heat medium-refrigerant heat exchanger 51, it is sent to the hot water supply load side (hot water storage tank 32 side).
  • the first temperature sensor 310 measures the heat medium temperature, and the first flow path switching device 301 and the first flow switching device 301.
  • the flow path of water can be switched by the two-flow path switching device 302, that is, the heat medium can be circulated through the bypass pipe 303.
  • the temperature of the small-capacity heat medium can be raised, and the low-efficiency operation time at the time of startup can be shortened. Therefore, the operating efficiency is improved by increasing the start-up time of the hot water supply refrigeration cycle 2 at the start-up.
  • a high-temperature heat medium can be always supplied by heating a small capacity heat medium.
  • step S101 when the hot water supply compressor 21 is activated, the heat medium temperature is measured by the first temperature sensor 310 and the second temperature sensor 311 (step S101). Then, the inlet temperature measured by the first temperature sensor 310 is compared with a predetermined determination temperature A ° C. (step S102). When the inlet temperature is higher than A ° C. (inlet temperature> A ° C.) (step S102; YES), the water circuit of the hot water supply load 3b is changed to the flow path B (step S103). That is, a high-temperature heat medium is supplied through the flow path B not passing through the bypass pipe 303, and the boiling operation is performed.
  • step S104 the water circuit of the hot water supply load 3b is changed to the flow path A (step S104). That is, the heat medium is circulated until the condition of the inlet temperature> A ° C. is satisfied by boiling a small-capacity heat medium in the flow path A through the bypass pipe 303.
  • the flow path is switched using the heat medium temperature as the determination threshold. Also good.
  • the determination temperature A is determined by the operating range of the hot water supply compressor 21 used in the hot water supply refrigeration cycle 2, and is set to a temperature equal to or higher than the temperature obtained by converting the lowest low pressure to the saturated temperature.
  • 4 to 6 show an example in which the first flow path switching device 301 and the second flow path switching device 302 are configured by a single valve, but the configuration may be configured by using a plurality of valves. May be. Furthermore, the first flow path switching device 301 and the second flow path switching device 302 may be configured using, for example, an electronic expansion valve or a plurality of electromagnetic valves.
  • the configuration in which the auxiliary tank 305 is provided in the hot water supply load 3b is shown as an example, the configuration is not limited thereto, and the configuration may be such that the auxiliary tank 305 is not provided and only the bypass pipe 303 is provided. In this case, paying attention to the capacity in the bypass pipe 303, the pipe length and the pipe inner diameter of the bypass pipe 303 may be determined. Further, the capacity of the auxiliary tank 305 is not particularly limited.
  • the auxiliary tank 305 may have a capacity that can store a small-capacity heat medium. The capacity of the heat medium will be described in detail with reference to FIG.
  • Control of each device of the air conditioning and hot water supply complex system 100 is executed by a control device (not shown) configured by a microcomputer or the like.
  • This control device may be provided in any of the heat source unit A or the relay unit E, the cooling indoor unit B, the heating indoor unit C, and the hot water supply heat source circuit D. Temperature information measured by the first temperature sensor 310 and the second temperature sensor 311 is transmitted to the control device.
  • Low pressure detection means such as a pressure sensor for detecting the pressure of refrigerant sucked into the air conditioning compressor 101 is provided in the suction side pipe connected to the air conditioning compressor 101, and pressure information measured by the pressure sensor is provided. May be transmitted to the control device.
  • the number of the divided heat exchangers 103a constituting the outdoor heat exchanger 103 that is, the number of divided heat exchangers 103 is not particularly limited.
  • FIG. 7 is a graph showing an example of the operating range of the hot water supply compressor 21. Based on FIG. 7, an example of the operating range of the hot water supply compressor 21 mounted in the air conditioning refrigeration cycle 1 will be described.
  • the horizontal axis represents Ps (suction pressure) of the hot water supply compressor 21, and the vertical axis represents Pd (discharge pressure) of the hot water supply compressor 21.
  • the operating range of the hot water supply compressor 21 shown in FIG. 7 shows a case where R134a is used as the refrigerant circulating in the hot water supply refrigeration cycle 2.
  • (1) to (3) shown in the figure indicate temperature zones when heating the heat source load.
  • (1) shows the use area at the time of initial startup of the hot water supply compressor 21.
  • the use area of the hot water supply compressor 21 at this time is generally a heat medium temperature of 5 ° C. to 25 ° C. when the heat medium temperature is in the minimum use temperature range.
  • (2) shows a usage region when the hot water supply compressor 21 is driven while limiting the maximum frequency so as not to leave the initial starting state and deviate from the compressor operating range.
  • the use area of the hot water supply compressor 21 at this time is generally a heat medium temperature of 25 ° C. to 45 ° C.
  • (3) shows a use area when the hot water supply compressor 21 overheats to a necessary temperature area as a hot water supply application.
  • the use area of the hot water supply compressor 21 at this time is generally a heat medium temperature of 45 ° C. to 90 ° C. From FIG. 7, it can be seen that R134a can be used for hot water supply and heating applications.
  • FIG. 8 is a graph showing another example of the operating range of the hot water supply compressor 21. Based on FIG. 8, another example of the operating range of the hot water supply compressor 21 mounted in the air conditioning refrigeration cycle 1 will be described.
  • the horizontal axis represents Ps (suction pressure) of the hot water supply compressor 21, and the vertical axis represents Pd (discharge pressure) of the hot water supply compressor 21.
  • the operating range of the hot water supply compressor 21 shown in FIG. 8 shows a case where R410A is used as the refrigerant circulating in the hot water supply refrigeration cycle 2.
  • (1) to (3) shown in the figure indicate temperature zones when heating the heat source load.
  • (1) shows the use area at the time of initial startup of the hot water supply compressor 21.
  • the use area of the hot water supply compressor 21 at this time is generally a heat medium temperature of 5 ° C. to 15 ° C. when the heat medium temperature is in the minimum use temperature range.
  • (2) shows a usage region when the hot water supply compressor 21 is driven while limiting the maximum frequency so as not to leave the initial starting state and deviate from the compressor operating range.
  • the use area of the hot water supply compressor 21 at this time is generally a heat medium temperature of 15 ° C. to 45 ° C.
  • (3) shows a use area when the hot water supply compressor 21 overheats to a necessary temperature area as a hot water supply application.
  • the use area of the hot water supply compressor 21 at this time is generally a heat medium temperature of 45 ° C. to 68 ° C.
  • R410A can be used as a hot water supply application and a heating application.
  • the critical temperature of the refrigerant is 68.3 ° C.
  • R410A is used for heating (generally 45 ° C.)
  • R134a and R410A are suitable as the refrigerant circulating in the hot water supply refrigeration cycle 2.
  • 7 and 8 show the operation range of the hot water supply compressor 21 when R134a or R410A is used.
  • a refrigerant with a critical temperature of 70 ° C. or higher for hot water use, and for a refrigerant with a temperature of 70 ° C. or lower, heating is performed. High-efficiency operation is possible by using it as an application.
  • FIG. 9 is a graph showing the opening / closing area ratio of the first flow path switching device 301. Based on FIG. 9, the ratio of the open / close area when the first flow path switching device 301 is configured by a mixing valve will be described. 4 to 6, assuming that the first flow path switching device 301 is a three-way valve, the case where the heat medium (fluid such as water) is boiled by switching the flow path to either one has been described. In FIG. 9, assuming that the first flow path switching device 301 is a mixing valve, a case where the heat medium is boiled while mixing the high-temperature heat medium and the low-temperature heat medium will be described. In FIG. 9, the horizontal axis represents pulse, and the vertical axis represents the open / close area ratio. Further, the line (A) represents the flow path A, and the line (B) represents the flow path B.
  • the mixing valve is usually configured to realize output at a target temperature by changing the opening area of the flow path when mixing a high-temperature heat medium and a low-temperature heat medium.
  • the first flow path switching device 301 is started from [START] shown in FIG.
  • the flow path A is 70 ° C. (line (A))
  • the flow path B is 10 ° C. (line (B))
  • the target temperature is 40 ° C. From the opening area ratio, the opening degree (opening area) is 0.5, and the target temperature is output.
  • the mixing valve By applying a mixing valve having characteristics as shown in FIG. 9 to the first flow path switching device 301, a constant tapping temperature can always be output. That is, by applying the mixing valve to the first flow path switching device 301, even when a sudden transient change occurs, it is possible to cope with it by changing the opening area ratio according to the transient change. Therefore, compared with the case where the three-way valve for switching the flow path to either one is applied to the first flow path switching device 301, an operation with further improved efficiency can be realized.
  • the first flow path switching device 301 is described as an example, but it goes without saying that the same applies to the second flow path switching device 302.
  • FIG. 10 is a graph showing a case where the opening / closing area ratio of the first flow path switching device 301 is shifted. Based on FIG. 10, the case where the ratio of the opening and closing area in the case where the 1st flow-path switching apparatus 301 is comprised with a mixing valve is shifted is demonstrated.
  • FIG. 9 illustrates an example in which the open / close area ratio of the first flow path switching device 301 is not shifted.
  • FIG. 10 illustrates an example in which the open / close area ratio of the first flow path switching device 301 is shifted. To do.
  • the horizontal axis represents pulse and the vertical axis represents the open / close area ratio.
  • the line (A) represents the flow path A
  • the line (B) represents the flow path B.
  • the operation to the set temperature is low in applications where the high temperature heat medium is often used. Therefore, by shifting the opening area ratio of the first flow path switching device 301, the target temperature can be reached earlier than the opening area ratio shown in FIG.
  • the flow path A and the flow path B are shown as straight lines having no inflection point, but a mixing valve having a characteristic having an inflection point is applied to the first flow path switching device 301. Also good.
  • the first flow path switching device 301 is described as an example, but it goes without saying that the same applies to the second flow path switching device 302.
  • FIG. 11 is a graph showing the relationship between the volume of the auxiliary tank 305 and the volume of the heat medium-refrigerant heat exchanger 51. Based on FIG. 11, the capacity of the heat medium to be conducted to the bypass pipe 303 will be described from the relationship between the volume of the auxiliary tank 305 and the volume of the heat medium-refrigerant heat exchanger 51.
  • the horizontal axis represents the volume of the auxiliary tank 305
  • the vertical axis represents the volume of the heat medium-refrigerant heat exchanger 51.
  • the line (A) shows the case where the volume of the auxiliary tank 305 and the volume of the heat medium-refrigerant heat exchanger 51 are the same, and the line (B) shows the volume of the auxiliary tank 305 is the volume of the heat medium-refrigerant heat exchanger 51.
  • the line (C) represents the case where the volume of the auxiliary tank 305 is larger than the volume of the heat medium-refrigerant heat exchanger 51, respectively.
  • the boiling operation is performed at the minimum capacity, and the minimum capacity is heated up. It can be boiled in the shortest time.
  • the volume of the auxiliary tank 305 is smaller than the volume of the heat medium-refrigerant heat exchanger 51 (line (B))
  • the minimum required amount is insufficient, so the capacity required for the initial boiling is insufficient, and the hot water temperature is insufficient. End up.
  • the volume of the auxiliary tank 305 is larger than the volume of the heat medium-refrigerant heat exchanger 51 (line (C))
  • the initial boiling is performed more than necessary, so that it takes time until the unit starts up and energy saving operation is not performed.
  • the tank capacity that can be operated with the highest efficiency is the same as the amount (volume) of water retained in the heat medium-refrigerant heat exchanger 51. Therefore, the volume of the auxiliary tank 305 may be determined from the volume of the heat medium-refrigerant heat exchanger 51.
  • a heat medium having the same capacity as the amount of water held in the heat medium-refrigerant heat exchanger 51 can be conducted to the bypass pipe 303 without the auxiliary tank 305. If it is possible, a highly efficient operation can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 冷房負荷、暖房負荷及び高温の給湯負荷を同時に処理でき、年間を通し、安定した熱源を供給できるとともに、起動時の立ち上がりを早くすることを可能とする空調給湯複合システムを提供する。 空調給湯複合システム100は、給湯用負荷3bの水回路において、熱媒体-冷媒熱交換器51と貯湯タンク32との間と、貯湯タンク32と水循環用ポンプ31との間と、を接続するバイパス管303を設けていることを特徴とする。

Description

空調給湯複合システム
 本発明は、ヒートポンプサイクルを搭載し、冷房負荷、暖房負荷及び給湯負荷を同時に提供することができる空調給湯複合システムに関するものである。
 従来から、一元の冷凍サイクルによって冷房負荷、暖房負荷及び給湯負荷を同時に提供することができる空調給湯複合システムが存在する。そのようなものとして、「1台の圧縮機を備え、該圧縮機と、室外熱交換器、室内熱交換器、蓄冷熱槽および給湯熱交換器とを接続した冷媒回路により構成され、それぞれの熱交換器への冷媒の流れを切り換えることにより、冷暖房・給湯・蓄熱・蓄冷の単独運転およびそれらの複合運転を可能とする冷凍サイクルを構成してなる多機能ヒートポンプシステム」が提案されている(たとえば、特許文献1参照)。
 また、二元の冷凍サイクルによって高温の給湯と室内空調機能を同時に提供することができる空調給湯複合システムも存在している。そのようなものとして、「第1圧縮機、冷媒分配装置、第1熱交換器、第2熱交換器、第1絞り装置、室外熱交換器、四方弁および上記第1圧縮機をこの順に接続するとともに、上記冷媒分配装置から上記四方弁、室内熱交換器及び第2絞り装置をこの順に介装して上記第2熱交換器と上記第1絞り装置の間に接続し、第1の冷媒が流される低段側の冷媒回路と、第2圧縮機、凝縮器、第3の絞り装置、上記第1熱交換器および上記第2圧縮機をこの順に接続し、第2の冷媒が流れる高段側の冷媒回路と、上記第2熱交換器及び上記凝縮器をこの順に接続し、給湯水が流される給湯経路とを備えたヒートポンプ式給湯装置」が提案されている(たとえば、特許文献2参照)。
特開平11-270920号公報(第3-4頁、図1) 特開平4-263758号公報(第2-3頁、図1)
 特許文献1に記載の多機能ヒートポンプシステムは、一元の冷凍サイクル、つまり1つの冷凍サイクルによって冷房負荷、暖房負荷及び給湯負荷を同時に提供するようにしたものである。しかしながら、このようなシステムでは、水の加熱を行なう放熱過程の温度と、暖房を行なう放熱過程の温度とが、概同一となるため、冷房運転を行っている際、高温の給湯負荷を賄うことができず、年間を通して安定した温熱を供給することができないという問題があった。また、熱源を上昇させるまで圧縮機を動かし続けなければならず、運転効率が悪いという問題もあった。
 特許文献2に記載のヒートポンプ式給湯装置は、二元の冷凍サイクル、つまり2つの冷凍サイクルによって冷房負荷、暖房負荷及び給湯負荷を同時に提供するようにしたものである。しかしながら、このようなシステムでは、室内機にて空調を行なう冷媒回路と、給湯を行なう冷媒回路とが、異なる取り扱いとなっており、単純に室内機の代替として給湯機能を付加することができないため、既設の空気調和機に容易には導入できないという問題があった。
 本発明は、上記の問題を解決するためになされたもので、冷房負荷、暖房負荷及び高温の給湯負荷を同時に処理でき、年間を通し、安定した熱源を供給できるとともに、起動時の立ち上がりを早くすることを可能とする空調給湯複合システムを提供することを目的としている。
 本発明に係る空調給湯複合システムは、空調用圧縮機、流路切替手段、室外熱交換器、室内熱交換器、及び、空調用絞り手段が直列に接続されているとともに、直列に接続された冷媒-冷媒熱交換器及び給湯熱源用絞り手段が前記室内熱交換器及び前記空調用絞り手段に並列に接続されている第1冷媒回路を備え、前記第1冷媒回路に空調用冷媒を循環させる空調用冷凍サイクルと、給湯用圧縮機、熱媒体-冷媒熱交換器、給湯用絞り手段、及び、前記冷媒-冷媒熱交換器が直列に接続されている第2冷媒回路を備え、前記第2冷媒回路に給湯用冷媒を循環させる給湯用冷凍サイクルと、水循環用ポンプ、前記熱媒体-冷媒熱交換器、及び、貯湯タンクが直列に接続されている水回路を備え、前記水回路に給湯用水を循環させる給湯用負荷と、を備え、前記空調用冷凍サイクルと前記給湯用冷凍サイクルとは、前記冷媒-冷媒熱交換器で、前記空調用冷媒と前記給湯用冷媒とが熱交換を行なうようにカスケード接続され、前記給湯用冷凍サイクルと前記給湯用負荷とは、前記熱媒体-冷媒熱交換器で、前記給湯用冷媒と前記水とが熱交換を行なうようにカスケード接続されており、前記水回路において、前記熱媒体-冷媒熱交換器と前記貯湯タンクとの間と、前記貯湯タンクと前記水循環用ポンプとの間と、を接続するバイパス管を設けていることを特徴とする。
 本発明に係る空調給湯複合システムによれば、複雑な回路構成することなく、空調負荷及び給湯負荷に併せて冷房運転、暖房運転、及び、給湯運転を同時にあるいは選択的に行なうことができるとともに、起動時(特に給湯用圧縮機)の立ち上がりを改善することで、高効率な運転可能となる。
実施の形態に係る空調給湯複合システムの冷媒回路構成を示す冷媒回路図である。 給湯用負荷の別の形態例を説明するための概略回路構成図である。 室外熱交換器の構造の一例を説明するための説明図である。 給湯用負荷の更に別の形態例を説明するための概略回路構成図である。 給湯用負荷での熱媒体の循環例を示す概略回路図である。 給湯用負荷における熱媒体の流路の切り替え処理を示すフローチャートである。 給湯用圧縮機の運転範囲の一例を示すグラフである。 給湯用圧縮機の運転範囲の別の一例を示すグラフである。 第1流路切替装置の開閉面積割合を示したグラフである。 第1流路切替装置の開閉面積割合をずらした場合を示したグラフである。 補助タンクの容積と熱媒体-冷媒熱交換器の容積との関係を示したグラフである。
符号の説明
 1 空調用冷凍サイクル、2 給湯用冷凍サイクル、3 給湯用負荷、3a 給湯用負荷、3b 給湯用負荷、4 給湯用水循環サイクル、21 給湯用圧縮機、22 給湯用絞り手段、31 水循環用ポンプ、31a 熱媒体循環用ポンプ、32 貯湯タンク、41 冷媒-冷媒熱交換器、45 冷媒配管、51 熱媒体-冷媒熱交換器、100 空調給湯複合システム、101 空調用圧縮機、102 四方弁、103 室外熱交換器、103a 分割熱交換器、104 アキュムレーター、105a 逆止弁、105b 逆止弁、105c 逆止弁、105d 逆止弁、106 高圧側接続配管、107 低圧側接続配管、108 気液分離器、109 分配部、109a 弁手段、109b 弁手段、110 分配部、110a 逆止弁、110b 逆止弁、111 内部熱交換器、112 第1中継機用絞り手段、113 内部熱交換器、114 第2中継機用絞り手段、115 会合部、116 会合部、116a 会合部、117 空調用絞り手段、118 室内熱交換器、119 給湯熱源用絞り手段、130 接続配管、131 接続配管、132 接続配管、133 接続配管、133a 接続配管、133b 接続配管、134 接続配管、134a 接続配管、134b 接続配管、135 接続配管、135a 接続配管、135b 接続配管、136 接続配管、136a 接続配管、136b 接続配管、201 水-水熱交換器、202 循環水用配管、203 貯湯水循環用配管、203a 貯湯水循環用配管、209 電磁弁(開閉弁)、209a 電磁弁(バイパス開閉弁)、300 バイパス回路、301 第1流路切替装置、302 第2流路切替装置、303 バイパス管、305 補助タンク、310 第1温度センサ、311 第2温度センサ、A 熱源機、B 冷房室内機、C 暖房室内機、D 給湯熱源用回路、E 中継機、a 接続部分、b 接続部分、c 接続部分、d 接続部分。
 以下、図面に基づいて本発明の実施の形態について説明する。
 図1は、本発明の実施の形態に係る空調給湯複合システム100の冷媒回路構成(特に、暖房主体運転時の冷媒回路構成)を示す冷媒回路図である。図1に基づいて、空調給湯複合システム100の冷媒回路構成、特に暖房主体運転時の冷媒回路構成について説明する。この空調給湯複合システム100は、ビルやマンション等に設置され、冷媒(空調用冷媒)を循環させる冷凍サイクル(ヒートポンプサイクル)を利用することで冷房負荷、暖房負荷及び給湯負荷を同時に供給できるものである。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 この実施の形態に係る空調給湯複合システム100は、空調用冷凍サイクル1と、給湯用冷凍サイクル2と、給湯用負荷3とで構成されており、空調用冷凍サイクル1と給湯用冷凍サイクル2とは冷媒-冷媒熱交換器41で、給湯用冷凍サイクル2と給湯用負荷3とは熱媒体-冷媒熱交換器51で、互いの冷媒や水が混ざることなく熱交換を行なうように構成されている。なお、図1では、空調用冷凍サイクル1において、暖房室内機Cと給湯熱源用回路Dとに対する負荷の合計よりも冷房室内機Bに対する負荷の方が小さく、室外熱交換器103が蒸発器として働く場合のサイクルの状態(便宜上、暖房主体運転と称する)を示している。
[空調用冷凍サイクル1]
 空調用冷凍サイクル1は、熱源機Aと、冷房負荷を担当する冷房室内機Bと、暖房負荷を担当する暖房室内機Cと、給湯用冷凍サイクル2の熱源となる給湯熱源用回路Dと、中継機Eと、によって構成されている。このうち、冷房室内機B、暖房室内機C及び給湯熱源用回路Dは、熱源機Aに対して並列となるように接続されて搭載されている。そして、熱源機Aと、冷房室内機B、暖房室内機C及び給湯熱源用回路Dとの、間に設置される中継機Eが冷媒の流れを切り換えることで、冷房室内機B、暖房室内機C及び給湯熱源用回路Dとしての機能を発揮させるようになっている。
[熱源機A]
 熱源機Aは、空調用圧縮機101と、流路切替手段である四方弁102と、室外熱交換器103と、アキュムレーター104とが直列に接続されて構成されており、この熱源機Aは、冷房室内機B、暖房室内機C及び給湯熱源用回路Dに冷熱を供給する機能を有している。なお、室外熱交換器103の近傍に、この室外熱交換器103に空気を供給するためのファン等の送風機を設けるとよい。また、熱源機Aでは、室外熱交換器103と中継機Eとの間における高圧側接続配管106に所定の方向(熱源機Aから中継機Eへの方向)のみに空調用冷媒の流れを許容する逆止弁105aが、四方弁102と中継機Eとの間における低圧側接続配管107に所定の方向(中継機Eから熱源機Aへの方向)のみに空調用冷媒の流れを許容する逆止弁105bが、それぞれ設けられている。
 そして、高圧側接続配管106と低圧側接続配管107とは、逆止弁105aの上流側と逆止弁105bの上流側を接続する第1接続配管130と、逆止弁105aの下流側と逆止弁105bの下流側を接続する第2接続配管131とで接続されている。つまり、高圧側接続配管106と第1接続配管130との接続部分aは、逆止弁105aを挟んで高圧側接続配管106と第2接続配管131との接続部分bよりも上流側になっており、低圧側接続配管107と第1接続配管130との接続部分cも、逆止弁105bを挟んで低圧側接続配管107と第2接続配管131との接続部分dよりも上流側になっている。
 第1接続配管130には、低圧側接続配管107から高圧側接続配管106の方向のみに空調用冷媒の流通を許容する逆止弁105cが設けられている。第2接続配管131にも、低圧側接続配管107から高圧側接続配管106の方向のみに空調用冷媒の流通を許容する逆止弁105dが設けられている。なお、図1では、暖房主体運転時における冷媒回路構成を示しているため、逆止弁105a及び逆止弁105bが閉状態(黒塗りで示している)、逆止弁105b及び逆止弁105cが開状態(白抜きで示している)となっている。
 空調用圧縮機101は、空調用冷媒を吸入し、その空調用冷媒を圧縮して高温・高圧の状態にするものである。四方弁102は、空調用冷媒の流れを切り替えるものである。室外熱交換器103は、蒸発器や放熱器(凝縮器)として機能し、図示省略の送風機から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を蒸発ガス化又は凝縮液化するものである。アキュムレーター104は、暖房主体運転時において、四方弁102と空調用圧縮機101との間に配置され、過剰な空調用冷媒を貯留するものである。なお、アキュムレーター104は、過剰な空調用冷媒を貯留できる容器であればよい。
[冷房室内機B及び暖房室内機C]
 冷房室内機B及び暖房室内機Cには、空調用絞り手段117と、室内熱交換器118とが、直列に接続されて搭載されている。また、冷房室内機B及び暖房室内機Cには、2台の空調用絞り手段117と、2台の室内熱交換器118とが、それぞれ並列に搭載されている場合を例に示している。冷房室内機Bは、熱源機Aからの冷熱の供給を受けて冷房負荷を担当し、暖房室内機Cは、熱源機Aからの冷熱の供給を受けて暖房負荷を担当する機能を有している。
 つまり、実施の形態では、中継機Eによって、冷房室内機Bが冷房負荷を担当するように決定され、暖房室内機Cが暖房負荷を担当するように決定された状態を示しているのである。なお、室内熱交換器118の近傍に、この室内熱交換器118に空気を供給するためのファン等の送風機を設けるとよい。また、便宜的に、中継機Eから室内熱交換器118に接続している接続配管を接続配管133と、中継機Eから空調用絞り手段117に接続している接続配管を接続配管134と称して説明するものとする。
 空調用絞り手段117は、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この空調用絞り手段117は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。室内熱交換器118は、放熱器(凝縮器)や蒸発器として機能し、図示省略の送風手段から供給される空気と空調用冷媒との間で熱交換を行ない、空調用冷媒を凝縮液化又は蒸発ガス化するものである。なお、空調用絞り手段117及び室内熱交換器118は、直列に接続されている。
[給湯熱源用回路D]
 給湯熱源用回路Dは、給湯熱源用絞り手段119と、冷媒-冷媒熱交換器41とが、直列に接続されて構成されており、熱源機Aからの冷熱を冷媒-冷媒熱交換器41を介して給湯用冷凍サイクル2に供給する機能を有している。つまり、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、冷媒-冷媒熱交換器41でカスケード接続されているのである。なお、便宜的に、中継機Eから冷媒-冷媒熱交換器41に接続している接続配管を接続配管135と、中継機Eから給湯熱源用絞り手段119に接続している接続配管を接続配管136と称して説明するものとする。
 給湯熱源用絞り手段119は、空調用絞り手段117と同様に、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この給湯熱源用絞り手段119は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。冷媒-冷媒熱交換器41は、放熱器(凝縮器)や蒸発器として機能し、給湯用冷凍サイクル2の冷凍サイクルを循環する給湯用冷媒と、空調用冷凍サイクル1の冷凍サイクルを循環する空調用冷媒との、間で熱交換を行なうようになっている。
[中継機E]
 中継機Eは、冷房室内機B、暖房室内機C及び給湯熱源用回路Dのそれぞれと、熱源機Aとを、接続する機能を有すると共に、第1分配部109の弁手段109a又は弁手段109bの何れかを択一的に開閉することにより、室内熱交換器118を放熱器とするか蒸発器とするか、冷媒-冷媒熱交換器41を冷水器とするか給湯機とするかを決定する機能を有している。この中継機Eは、気液分離器108と、第1分配部109と、第2分配部110と、第1内部熱交換器111と、第1中継機用絞り手段112と、第2内部熱交換器113と、第2中継機用絞り手段114とで、構成されている。
 第1分配部109では、接続配管133及び接続配管135が2つに分岐されており、一方(接続配管133b及び接続配管135b)が低圧側接続配管107に接続し、他方(接続配管133a及び接続配管135a)が気液分離器108に接続している接続配管(接続配管132と称する)に接続するようになっている。また、第1分配部109では、接続配管133a及び接続配管135aに開閉制御されて冷媒を導通したりしなかったりする弁手段109aが、接続配管133b及び接続配管135bに開閉制御されて冷媒を導通したりしなかったりする弁手段109bがそれぞれ設けられている。なお、弁手段109a及び弁手段109bの開閉状態を白抜き(開状態)及び黒塗り(閉状態)で表している。
 第2分配部110では、接続配管134及び接続配管136が2つに分岐されており、一方(接続配管134a及び接続配管136a)が第1会合部115で接続され、他方(接続配管134b及び接続配管136b)が第2会合部116で接続されるようになっている。また、第2分配部110では、接続配管134a及び接続配管136aに冷媒の流通を一方のみに許容する逆止弁110aが、接続配管134b及び接続配管136bに冷媒の流通を一方のみに許容する逆止弁110bがそれぞれ設けられている。なお、逆止弁110a及び逆止弁110bの開閉状態を白抜き(開状態)及び黒塗り(閉状態)で表している。
 第1会合部115は、第2分配部110から第1中継機用絞り手段112及び第1内部熱交換器111を介して気液分離器108に接続している。第2会合部116は、第2分配部110と第2内部熱交換器113との間で分岐し、一方が第2内部熱交換器113を介して第2分配部110と第1中継機用絞り手段112との間における第1会合部115に接続され、他方(第2会合部116a)が第2中継機用絞り手段114、第2内部熱交換器113及び第1内部熱交換器111を介して低圧側接続配管107に接続されている。
 気液分離器108は、空調用冷媒をガス冷媒と液冷媒とに分離するものであり、高圧側接続配管106に設けられ、一方が第1分配部109の弁手段109aに接続され、他方が第1会合部115を経て第2分配部110に接続されている。第1分配部109は、弁手段109a又は弁手段109bの何れかが択一的に開閉され、室内熱交換器118及び冷媒-冷媒熱交換器41に空調用冷媒を流入させる機能を有している。第2分配部110は、逆止弁110a及び逆止弁110bによって、空調用冷媒の流れをいずれか一方に許容する機能を有している。
 第1内部熱交換器111は、気液分離器108と第1中継機用絞り手段112との間における第1会合部115に設けられており、第1会合部115を導通している空調用冷媒と、第2会合部116が分岐された第2会合部116aを導通している空調用冷媒と、の間で熱交換を実行するものである。第1中継機用絞り手段112は、第1内部熱交換器111と第2分配部110との間における第1会合部115に設けられており、空調用冷媒を減圧して膨張させるものである。この第1中継機用絞り手段112は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。
 第2内部熱交換器113は、第2会合部116に設けられており、第2会合部116を導通している空調用冷媒と、第2会合部116が分岐された第2会合部116aを導通している空調用冷媒と、の間で熱交換を実行するものである。第2中継機用絞り手段114は、第2内部熱交換器113と第2分配部110との間における第2会合部116に設けられており、減圧弁や膨張弁として機能し、空調用冷媒を減圧して膨張させるものである。この第2中継機用絞り手段114は、第1中継機用絞り手段112と同様に、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。
 以上のように、空調用冷凍サイクル1は、空調用圧縮機101、四方弁102、室内熱交換器118、空調用絞り手段117及び室外熱交換器103が直列に接続されるとともに、空調用圧縮機101、四方弁102、冷媒-冷媒熱交換器41、給湯熱源用絞り手段119及び室外熱交換器103が直列に接続されており、中継機Eを介して室内熱交換器118と冷媒-冷媒熱交換器41とが並列に接続されて第1冷媒回路を構成し、この第1冷媒回路に空調用冷媒を循環させることで成立している。
 なお、空調用圧縮機101は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して空調用圧縮機101を構成することができる。この空調用圧縮機101は、インバーターにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、空調用冷凍サイクル1を循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素(CO)や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。
 ここで、空調用冷凍サイクル1の暖房主体運転動作について説明する。
 まず、空調用圧縮機101で高温・高圧にされた空調用冷媒は、空調用圧縮機101から吐出して、四方弁102を経由し、逆止弁105cを導通し、高圧側接続配管106に導かれ、過熱ガス状態で中継機Eの気液分離器108へ流入する。気液分離器108に流入した過熱ガス状態の空調用冷媒は、第1分配部109の弁手段109aが開いている回路に分配される。ここでは、過熱ガス状態の空調用冷媒は、暖房室内機Cや給湯熱源用回路Dに流入するようになっている。
 暖房室内機Cに流入した空調用冷媒は、室内熱交換器118で放熱し(つまり、室内空気を暖め)、空調用絞り手段117で減圧され、第1会合部115で合流する。また、給湯熱源用回路Dに流入した空調用冷媒は、冷媒-冷媒熱交換器41で放熱し(つまり、給湯用冷凍サイクル2に熱を与え)、給湯熱源用絞り手段119で減圧され、暖房室内機Cから流出した空調用冷媒と第1会合部115で合流する。一方、気液分離器108に流入した過熱ガス状態の空調用冷媒の一部は、第1内部熱交換器111で第2中継機用絞り手段114にて低温・低圧に膨張した空調用冷媒と熱交換を行なうことにより過冷却度を得る。
 それから、第1中継機用絞り手段112を通過して、空調用として利用された空調用冷媒(暖房室内機Cや給湯熱源用回路Dに流入し、室内熱交換器118や冷媒-冷媒熱交換器41で放熱した空調用冷媒)と第1会合部115で合流する。なお、第1中継機用絞り手段112を通る一部の過熱ガス状態の空調用冷媒は、第1中継機用絞り手段112を全閉にして、皆無にしてもよい。その後、第2内部熱交換器113で、第2中継機用絞り手段114にて低温・低圧に膨張した空調用冷媒と熱交換を行なうことにより過冷却度を得る。この空調用冷媒は、第2会合部116側と第2中継機用絞り手段114側とに分配される。
 第2会合部116を導通する空調用冷媒は、弁手段109bが開いている回路に分配される。ここでは、第2会合部116を導通する空調用冷媒は、冷房室内機Bに流入し、空調用絞り手段117にて低温・低圧に膨張され、室内熱交換器118で蒸発し、弁手段109bを経て低圧側接続配管107で合流する。また、第2中継機用絞り手段114を導通した空調用冷媒は、第2内部熱交換器113及び第1内部熱交換器111で熱交換を行なって蒸発し、低圧側接続配管107で冷房室内機Bを流出した空調用冷媒と合流する。そして、低圧側接続配管107で合流した空調用冷媒は、逆止弁105dを通って室外熱交換器103に導かれ、運転条件によっては残留している液冷媒を蒸発させ、四方弁102、アキュムレーター104を経て空調用圧縮機101へ戻る。
[給湯用冷凍サイクル2]
 給湯用冷凍サイクル2は、給湯用圧縮機21と、熱媒体-冷媒熱交換器51と、給湯用絞り手段22と、冷媒-冷媒熱交換器41と、によって構成されている。つまり、給湯用冷凍サイクル2は、給湯用圧縮機21、熱媒体-冷媒熱交換器51、給湯用絞り手段22、及び、冷媒-冷媒熱交換器41が冷媒配管45で直列に接続されて第2冷媒回路を構成し、この第2冷媒回路に給湯用冷媒を循環させることで成立している。なお、給湯用冷凍サイクル2の動作は、空調用冷凍サイクル1の運転状態、つまり冷房主体運転を実行しているか、暖房主体運転を実行しているかで相違するものではない。
 給湯用圧縮機21は、給湯用冷媒を吸入し、その給湯用冷媒を圧縮して高温・高圧の状態にするものである。この給湯用圧縮機21は、インバーターにより回転数が可変に制御可能なタイプとして構成してもよく、回転数が固定されているタイプとして構成してもよい。また、給湯用圧縮機21は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して給湯用圧縮機21を構成することができる。
 熱媒体-冷媒熱交換器51は、給湯用負荷3を循環する熱媒体(水等の流体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。つまり、給湯用冷凍サイクル2と給湯用負荷3とは、熱媒体-冷媒熱交換器51でカスケード接続されている。給湯用絞り手段22は、減圧弁や膨張弁として機能し、給湯用冷媒を減圧して膨張させるものである。この給湯用絞り手段22は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御手段や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。
 冷媒-冷媒熱交換器41は、給湯用冷凍サイクル2を循環する給湯用冷媒と、空調用冷凍サイクル1を循環する空調用冷媒との、間で熱交換を行なうものである。なお、給湯用冷凍サイクル2を循環する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。
 ここで、給湯用冷凍サイクル2の運転動作について説明する。
 まず、給湯用圧縮機21で高温・高圧にされた給湯用冷媒は、給湯用圧縮機21から吐出して、熱媒体-冷媒熱交換器51に流入する。この熱媒体-冷媒熱交換器51では、流入した給湯用冷媒が、給湯用負荷3を循環している水を加熱することで放熱する。この給湯用冷媒は、給湯用絞り手段22で空調用冷凍サイクル1の給湯熱源用回路Dにおける冷媒-冷媒熱交換器41の出口温度以下まで膨張される。膨張された給湯用冷媒は、冷媒-冷媒熱交換器41で、空調用冷凍サイクル1を構成する給湯熱源用回路Dを流れる空調用冷媒から受熱して蒸発し、給湯用圧縮機21へ戻る。
[給湯用負荷3]
 給湯用負荷3は、水循環用ポンプ31と、熱媒体-冷媒熱交換器51と、貯湯タンク32と、によって構成されている。つまり、給湯用負荷3は、水循環用ポンプ31、熱媒体-冷媒熱交換器51、及び、貯湯タンク32が貯湯水循環用配管203で直列に接続されて水回路(熱媒体回路)を構成し、この水回路に給湯用水を循環させることで成立している。なお、給湯用負荷3の動作は、空調用冷凍サイクル1の運転状態、つまり冷房主体運転を実行しているか、暖房主体運転を実行しているかで相違するものではない。また、水回路を構成する貯湯水循環用配管203は、銅管やステンレス管、鋼管、塩化ビニル系配管などによって構成されている。
 水循環用ポンプ31は、貯湯タンク32に蓄えられている水を吸入し、その水を加圧し、給湯用負荷3内を循環させるものであり、たとえばインバーターにより回転数が制御されるタイプのもので構成するとよい。熱媒体-冷媒熱交換器51は、上述したように、給湯用負荷3を循環する熱媒体(水等の流体)と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。貯湯タンク32は、熱媒体-冷媒熱交換器51で加熱された水を貯えておくものである。
 まず、貯湯タンク32に蓄えられている比較的低温な水は、水循環用ポンプ31によって貯湯タンク32の底部から引き出されるとともに加圧される。水循環用ポンプ31で加圧された水は、熱媒体-冷媒熱交換器51に流入し、この熱媒体-冷媒熱交換器51で給湯用冷凍サイクル2を循環している給湯用冷媒から受熱する。すなわち、熱媒体-冷媒熱交換器51に流入した水は、給湯用冷凍サイクル2を循環している給湯用冷媒によって沸き上げられて、温度が上昇するのである。そして、沸き上げられた水は、貯湯タンク32の比較的高温な上部へ戻り、この貯湯タンク32に蓄えられることになる。
 なお、空調用冷凍サイクル1と給湯用冷凍サイクル2とは、上述したように、それぞれ独立した冷媒回路構成(空調用冷凍サイクル1を構成する第1冷媒回路及び給湯用冷凍サイクル2を構成する第2冷媒回路)になっているため、各冷媒回路を循環させる冷媒を同じ種類のものとしてもよいし、別の種類のものとしてもよい。つまり、各冷媒回路の冷媒は、それぞれ混ざることなく冷媒-冷媒熱交換器41及び熱媒体-冷媒熱交換器51にて互いに熱交換するように流れている。
 また、給湯用冷媒として臨界温度の低い冷媒を用いた場合、高温の給湯を行なう際に熱媒体-冷媒熱交換器51における放熱過程での給湯用冷媒が超臨界状態となることが想定される。しかしながら、一般に放熱過程の冷媒が超臨界状態にある場合、放熱器圧力や放熱器出口温度の変化によるCOPの変動が大きく、高いCOPを得る運転を行なうためには、より高度な制御が要求される。一方、一般に、臨界温度の低い冷媒は、同一温度に対する飽和圧力が高く、その分、配管や圧縮機の肉厚を大きくする必要があるので、コスト増の要因ともなる。
 さらに、レジオネラ菌等の繁殖を抑えるための貯湯タンク32内に蓄えられる水の推奨温度が60℃以上であることを鑑みると、給湯の目標温度が最低でも60℃以上となることが多いと想定される。以上のことを踏まえ、給湯用冷媒には、最低でも60℃以上の臨界温度を持つ冷媒を採用している。このような冷媒を給湯用冷凍サイクル2の給湯用冷媒として採用すれば、より低コストで、より安定的に、高いCOPを得ることができるからである。冷媒を臨界温度付近で常用する場合、冷媒回路内が高温・高圧になることが想定されるため、給湯用圧縮機21は、高圧シェルを用いたタイプの圧縮機を使用することで、安定した運転が可能となる。
 また、空調用冷凍サイクル1において余剰冷媒を受液器(アキュムレーター104)によって貯蔵する場合を示したが、これに限るものではなく、冷凍サイクルにおいて放熱器となる熱交換器にて貯蔵するようにすれば、アキュムレーター104を取り除いてもよい。さらに、図1では、冷房室内機Bと暖房室内機Cとが2台以上接続されている場合を例に示しているが、接続台数を特に限定するものではなく、たとえば冷房室内機Bが1台以上、暖房室内機Cがないか若しくは1台以上が接続されていればよい。そして、空調用冷凍サイクル1を構成している各室内機の容量は、全部を同一としてもよく、大から小まで異なるようにしてもよい。
 以上のように、この実施の形態に係る空調給湯複合システム100では、給湯負荷系統を二元サイクルで構成しているため、高温の給湯需要(たとえば、80℃)を提供する場合に、給湯用冷凍サイクル2の放熱器の温度を高温(たとえば、凝縮温度85℃)にすればよく、他に暖房負荷がある場合に、暖房室内機Cの凝縮温度(たとえば、50℃)までも増加させずに済むので、省エネとなる。また、たとえば夏期の空調冷房運転中に高温の給湯需要があった場合、従来はボイラーなどによって提供する必要があったが、従来大気中に排出していた温熱を回収し、再利用して給湯を行なうので、システムCOPが大幅に向上し、省エネとなる。
 図2は、給湯用負荷の別の形態例(以下、給湯用負荷3aと称する)を説明するための概略回路構成図である。図2に基づいて、給湯用負荷3aにおいて循環する水を加熱する仕組みの一例について説明する。図2に示すように、給湯用冷凍サイクル2と給湯用負荷3aとの間には、給湯用水循環サイクル(給湯用熱媒体循環サイクル)4が熱媒体-冷媒熱交換器51及び水-水熱交換器(熱媒体-熱媒体熱交換器)201を介してカスケード接続されている。図1では、開回路の給湯用負荷3における熱媒体-冷媒熱交換器51で水を直接的に加温(昇温)していく場合を例に示しているが、図2では、給湯用水循環サイクル4を設け、開回路の給湯用負荷3aにおける水-水熱交換器201で水を間接的に加温していく場合を例に示している。
[給湯用水循環サイクル4]
 給湯用水循環サイクル4は、熱媒体循環用ポンプ31aと、熱媒体-冷媒熱交換器51と、水-水熱交換器201と、によって構成されている。つまり、給湯用水循環サイクル4は、熱媒体循環用ポンプ31a、熱媒体-冷媒熱交換器51、及び、水-水熱交換器201が循環水用配管202で直列に接続されて水回路(熱媒体回路)を構成し、この熱媒体回路(水回路)に加温用熱媒体(加温用水)を循環させることで成立している。なお、水回路を構成する循環水用配管202は、銅管やステンレス管、鋼管、塩化ビニル系配管などによって構成されている。
 熱媒体循環用ポンプ31aは、循環水用配管202を導通している水(熱媒体)を吸入し、その水を加圧し、給湯用水循環サイクル4を循環させるものであり、たとえばインバーターにより回転数が制御されるタイプのもので構成するとよい。熱媒体-冷媒熱交換器51は、給湯用水循環サイクル4を循環する水と、給湯用冷凍サイクル2を循環する給湯用冷媒との、間で熱交換を行なうものである。水-水熱交換器201は、給湯用水循環サイクル4を循環する水と、給湯用負荷3aを循環する水との、間で熱交換を行なうものである。なお、給湯用水循環サイクル4に水を循環させた場合を例に説明するが、他の流体、たとえばブライン(不凍液)などを熱媒体として循環させてもよい。
 まず、貯湯タンク32に蓄えられている比較的低温な水は、水循環用ポンプ31によって貯湯タンク32の底部から引き出されるとともに加圧される。水循環用ポンプ31で加圧された水は、水-水熱交換器201に流入し、この水-水熱交換器201で給湯用水循環サイクル4を循環している水から受熱する。すなわち、水-水熱交換器201に流入した水は、給湯用水循環サイクル4を循環している水によって沸き上げられて、温度が上昇するのである。そして、沸き上げられた水は、貯湯タンク32の比較的高温な上部へ戻り、この貯湯タンク32に蓄えられることになる。すなわち、給湯用冷凍サイクル2からの熱は、熱媒体-冷媒熱交換器51で給湯用水循環サイクル4に、水-水熱交換器201で給湯用負荷3aにそれぞれ伝達されるようになっている。
 図3は、室外熱交換器103の構造の一例を説明するための説明図である。図3に基づいて、年間を通して暖房運転をできるようにした室外熱交換器103について説明する。通常の空調用途のみに空調給湯複合システム100を用いる場合、外気湿球温度が15℃以下で暖房運転を行なうことが一般的であるが、給湯運転を行なう場合、外気温度に関係なく給湯運転を行なう必要がある。そこで、図3では、室外熱交換器103が、内部に複数の熱交換器(以下、分割熱交換器103aと称する)を有する分割構造となっている場合を例に示している。なお、室外熱交換器103は、4つの熱交換器を組み合わせた分割構造としてもよく、1つの熱交換器を4分割した分割構造としてもよい。
 図3に示すように、高圧側接続配管106を複数に分岐させて、室外熱交換器103を構成している分割熱交換器103aのそれぞれに接続するようにしている。また、分岐された高圧側接続配管106のそれぞれには、開閉制御されて冷媒を導通したりしなかったりする開閉弁である電磁弁209が設置されている。なお、複数に分岐した高圧側接続配管106の1つを分割熱交換器103aを迂回するバイパス回路300としている。そして、このバイパス回路300にも、バイパス開閉弁である電磁弁209aを設置している。つまり、空調用冷凍サイクル1を構成している室外熱交換器103は、電磁弁209及び電磁弁209aの開閉を制御することにより、流入する冷媒の量を調整でき、熱交換器容量が分割可能になっているのである。
 外気湿球温度が上昇した場合、つまり空調用圧縮機101の吸入温度が運転範囲を超えそうな場合(一般的には最高15℃)には、室外熱交換器103の熱交換器能力を低下させることが望ましい。そこで、空調給湯複合システム100では、電磁弁209の全部あるいは一部を閉制御し、室外熱交換器103に流入する冷媒を遮断し、空調用圧縮機101の運転範囲を逸脱しないようにしている。つまり、空調用圧縮機101の運転範囲に応じて、冷媒を流入させる分割熱交換器103aの個数を決定し、その個数に応じた電磁弁209を閉制御することで、冷媒の流入量を調整し、空調用圧縮機101の運転範囲を逸脱しないようにしている。
 ところが、電磁弁209を閉制御することで室外熱交換器103の熱交換器能力を低下させた場合でも、空調用圧縮機101の運転範囲を逸脱してしまう場合がある。この場合、冷媒を室外熱交換器103に流入させずに、空調用圧縮機101に戻すことが望ましい。そこで、バイパス回路300に設置してある電磁弁209aを開制御し、冷媒を室外熱交換器103に流入させずに、空調用圧縮機101の吸入側に戻すようにしているのである。こうすることで、蒸発温度の上昇を防ぎ、空調用圧縮機101の運転範囲を逸脱することなく運転することができる。
 また、バイパス回路300に設置する電磁弁209aは、室外熱交換器103を通過する際の冷媒の流量係数をCvaとした場合、バイパス回路300を導通する冷媒の流量係数をCVbとすると式Cva<CVbを満たすように選定される。さらに、熱交換器容量の分割のみで空調用圧縮機101の運転範囲を維持できない場合は、バイパス回路300に設置した電磁弁209aを開として冷媒をバイパスさせることで、運転範囲を維持する。なお、分割構造は電磁弁で行なわず、電子式膨張弁を使用し制御を行なう構造としてもよい。
 図4は、給湯用負荷の更に別の形態例(以下、給湯用負荷3bと称する)を説明するための概略回路構成図である。図5は、給湯用負荷3bでの熱媒体(熱源となる水等の流体)の循環例を示す概略回路図である。図6は、給湯用負荷3bにおける熱媒体の流路の切り替え処理を示すフローチャートである。図4~図6に基づいて、給湯用負荷3bにおいて循環する熱媒体(つまり、給湯用負荷3bの水回路を循環する熱媒体)を加熱する仕組みの一例について説明する。なお、図6には、2つの流路(流路A及び流路B)が併せて図示してある。流路Aがバイパス管303を介して熱媒体を循環させる流路を、流路Bがバイパス管303を介さずに熱媒体を循環させる流路を、それぞれ表している。
[給湯用負荷3b]
 図4に示すように、給湯用負荷3bは、貯湯タンク32と水循環用ポンプ31との間における貯湯水循環用配管203に第1流路切替装置301を設け、熱媒体-冷媒熱交換器51と貯湯タンク32との間における貯湯水循環用配管203に第2流路切替装置302を設け、第1流路切替装置301と第2流路切替装置302とを補助タンク305を介してバイパス管303で接続することで構成されている。つまり、貯湯水循環用配管203で直列に接続されて水回路(熱媒体回路)にバイパス管303を設け、バイパス管303にも給湯用水を循環可能なように構成されている。また、給湯用負荷3bには、第1温度センサ310及び第2温度センサ311が設けられている。
 補助タンク305は、貯湯タンク32と同様に、熱媒体-冷媒熱交換器51で加熱された水を貯えておくものである。第1流路切替装置301及び第2流路切替装置302は、水の流路を貯湯水循環用配管203又はバイパス管303のいずれかに切り替えるものであり、たとえば混合弁又は三方弁等で構成されている。混合弁は、開閉制御され、水回路を循環する低温熱媒体を流通させる比率と高温熱媒体を流通させる比率とを調整可能にしているものである。この混合弁の開閉面積(流路断面積)の割合を制御することで、所定の出湯温度を維持することができる。三方弁は、熱媒体の流路(バイパス管303を介した流路又はバイパス管303を介さない流路)をいずれか一方に切り替えるものである。 
 第1温度センサ310は、第1流路切替装置301の上流側、つまり熱媒体-冷媒熱交換器51の入口側に設けられ、給湯用負荷3bに循環させている熱媒体温度の入口温度を検出するものであり、たとえばサーミスタ等で構成されている。第2温度センサ311は、第2流路切替装置302の上流側、つまり熱媒体-冷媒熱交換器51の出口側に設けられ、給湯用負荷3bに循環させている熱媒体温度の出口温度を検出するものであり、たとえばサーミスタ等で構成されている。
 ここで、給湯用負荷3bの水回路について説明する。
 給湯用負荷3bの水回路において、給湯用負荷3b側へ熱媒体を供給する際、熱媒体を送るため給湯用圧縮機21が起動し、給湯用冷凍サイクル2が運転を開始する。給湯用冷凍サイクル2の起動時、給湯用負荷3b側にて循環させている熱媒体温度を、第1温度センサ310及び第2温度センサ311で測定しながら、第1流路切替装置301及び第2流路切替装置302を通過させ、熱媒体-冷媒熱交換器51で熱交換させた後、給湯負荷側(貯湯タンク32側)へ送る。
 また、図5に示すように、空調給湯複合システム100では、給湯用圧縮機21の起動時においては、第1温度センサ310に熱媒体温度の測定を行ない、第1流路切替装置301及び第2流路切替装置302で水の流路の切り替え、つまりバイパス管303を介して熱媒体を循環させるようにすることができる。このようにすることによって、まず、小容量の熱媒体を昇温することができ、起動時の低効率運転時間を短縮することが可能になる。したがって、給湯用冷凍サイクル2の起動時の立ち上がりを早くすることで、運転効率の向上を図るようにしている。また、空調給湯複合システム100では、急激な負荷変動によって大きく負荷変動が起こった場合でも、小容量の熱媒体を加熱することで、高温の熱媒体を常時供給することができる。
 次に、給湯用負荷3bの水回路の切り替え処理について説明する。
 まず、空調給湯複合システム100では、給湯用圧縮機21が起動すると、第1温度センサ310及び第2温度センサ311で熱媒体温度を計測する(ステップS101)。そして、第1温度センサ310で計測された入口温度を所定の判定温度であるA℃と比較する(ステップS102)。入口温度がA℃よりも大きい(入口温度>A℃)場合(ステップS102;YES)、給湯用負荷3bの水回路を流路Bに変更する(ステップS103)。つまり、バイパス管303を介さない流路Bにて高温の熱媒体を供給し、沸き上げ動作を行なう。
 一方、入口温度がA℃以下(入口温度≦A℃)の場合(ステップS102;NO)、給湯用負荷3bの水回路を流路Aに変更する(ステップS104)。つまり、バイパス管303を介す流路Aにて小容量の熱媒体を沸き上げることで、入口温度>A℃での条件を満たすまで、熱媒体の循環を行なう。なお、熱媒体温度を判定閾値に用いて流路の切り替えを行なっている場合を例に示しているが、給湯用冷凍サイクル2の冷媒側圧力を判定閾値に用いて流路の切り替えを行なってもよい。
 判定温度Aは、給湯用冷凍サイクル2で使用している給湯用圧縮機21の運転範囲によって決まり、この運転範囲にて最低の低圧圧力を飽和温度換算にて換算した温度以上の温度とする。また、図4~図6では、第1流路切替装置301及び第2流路切替装置302を1つの弁で構成している場合を例に示しているが、複数の弁を用いて構成してもよい。さらに、第1流路切替装置301及び第2流路切替装置302は、たとえば電子式膨張弁や、複数の電磁弁を用いた構成としてもよい。
 給湯用負荷3bに補助タンク305を設けた構成を例に示しているが、これに限定するものではなく、補助タンク305を設けず、バイパス管303のみの構成としてもよい。この場合、バイパス管303内の容量に留意し、バイパス管303の配管長及び配管内径等を決定するとよい。また、補助タンク305の容量を特に限定するものではない。たとえば、補助タンク305は、小容量の熱媒体を貯留できる程度の容量を有しているものであればよい。熱媒体の容量については、図11で詳細に説明するものとする。
 実施の形態に係る空調給湯複合システム100の各機器の制御は、マイコンなどで構成される制御装置(図示省略)が実行するようになっている。この制御装置は、熱源機A又は中継機E、冷房室内機B、暖房室内機C、給湯熱源用回路Dのいずれに設けられていてもよい。この制御装置には、第1温度センサ310及び第2温度センサ311で計測した温度情報が送信されるようになっている。空調用圧縮機101に吸入される冷媒の圧力を検知する圧力センサなどの低圧検出手段を空調用圧縮機101に接続している吸入側配管に設けておき、この圧力センサで計測された圧力情報も制御装置に送信されるようにしておくとよい。さらに、室外熱交換器103を構成する分割熱交換器103aの個数、つまり室外熱交換器103の分割数を特に限定するものではない。
 図7は、給湯用圧縮機21の運転範囲の一例を示すグラフである。図7に基づいて、空調用冷凍サイクル1に搭載されている給湯用圧縮機21の運転範囲の一例について説明する。この図7では、横軸が給湯用圧縮機21のPs(吸入圧力)、縦軸が給湯用圧縮機21のPd(吐出圧力)を、それぞれ表している。なお、図7に示す給湯用圧縮機21の運転範囲は、給湯用冷凍サイクル2を循環する冷媒としてR134aを使用している場合を示している。また、図中に示す(1)~(3)は、熱源負荷を加熱する際の温度帯を示したものである。
 (1)は、給湯用圧縮機21の初期起動時の使用領域を示している。このときの給湯用圧縮機21の使用領域は、熱媒体温度が使用最低温度範囲の場合、一般的には熱媒体温度5℃~25℃となっている。(2)は、給湯用圧縮機21が初期起動状態を抜け、圧縮機運転範囲を逸脱しないよう、最高周波数を制限しながら駆動している時の使用領域を示している。このときの給湯用圧縮機21の使用領域は、一般的には熱媒体温度25℃~45℃となっている。(3)は、給湯用途として、給湯用圧縮機21が必要な温度領域へ過熱を行なう時の使用領域を示している。このときの給湯用圧縮機21の使用領域は、一般的には熱媒体温度45℃~90℃となっている。図7から、R134aは、給湯用途及び暖房用途として使用することができるということがわかる。
 図8は、給湯用圧縮機21の運転範囲の別の一例を示すグラフである。図8に基づいて、空調用冷凍サイクル1に搭載されている給湯用圧縮機21の運転範囲の別の一例について説明する。この図8では、横軸が給湯用圧縮機21のPs(吸入圧力)、縦軸が給湯用圧縮機21のPd(吐出圧力)を、それぞれ表している。なお、図8に示す給湯用圧縮機21の運転範囲は、給湯用冷凍サイクル2を循環する冷媒としてR410Aを使用している場合を示している。また、図中に示す(1)~(3)は、熱源負荷を加熱する際の温度帯を示したものである。
 (1)は、給湯用圧縮機21の初期起動時の使用領域を示している。このときの給湯用圧縮機21の使用領域は、熱媒体温度が使用最低温度範囲の場合、一般的には熱媒体温度5℃~15℃となっている。(2)は、給湯用圧縮機21が初期起動状態を抜け、圧縮機運転範囲を逸脱しないよう、最高周波数を制限しながら駆動している時の使用領域を示している。このときの給湯用圧縮機21の使用領域は、一般的には熱媒体温度15℃~45℃となっている。(3)は、給湯用途として、給湯用圧縮機21が必要な温度領域へ過熱を行なう時の使用領域を示している。このときの給湯用圧縮機21の使用領域は、一般的には熱媒体温度45℃~68℃となっている。
 図8から、R410Aは、給湯用途及び暖房用途として使用することができるということがわかる。また、冷媒の臨界温度68.3℃を考慮した場合、R410Aを暖房用途(一般的には45℃)として使用すると、給湯用圧縮機21を高周波数運転する必要がないため、高効率運転を実現することができる。
 図7及び図8から、給湯用冷凍サイクル2を循環する冷媒として、R134a及びR410Aが適しているということがわかる。なお、図7及び図8では、R134a又はR410Aを使用した場合の給湯用圧縮機21の運転範囲を示しているが、臨界温度が70度以上の冷媒では給湯用途、70℃以下の冷媒では暖房用途として使用することで高効率運転が可能となる。
 図9は、第1流路切替装置301の開閉面積割合を示したグラフである。図9に基づいて、第1流路切替装置301を混合弁で構成した場合における開閉面積の割合について説明する。図4~図6では、第1流路切替装置301が三方弁であることを想定し、いずれかに流路を切り替えることで熱媒体(水等の流体)を沸き上げる場合について説明したが、図9では、第1流路切替装置301が混合弁であることを想定し、高温の熱媒体と低温の熱媒体とを混合しながら熱媒体を沸き上げる場合について説明する。図9では、横軸がpulseを、縦軸が開閉面積割合を、それぞれ表している。また、線(A)が流路Aを、線(B)が流路Bを、それぞれ表している。
 混合弁は、通常、高温の熱媒体と低温の熱媒体とを混合する際、流路の開口面積を変化させることで、目標温度での出力を実現するようになっている。第1流路切替装置301に混合弁を使用した場合、図9中に示す[スタート]から第1流路切替装置301は起動することになる。第1流路切替装置301の動作としては、流路Aが70℃(線(A))、流路Bが10℃(線(B))となっており、目標温度を40℃とした場合、開口面積比より、開度(開口面積)が0.5となり、目標温度を出力するようになっている。
 図9に示すような特性を持った混合弁を第1流路切替装置301に適用することで、常に一定の出湯温度を出力することができることになる。すなわち、混合弁を第1流路切替装置301に適用することによって、急激な過渡変化が起こった場合においても、その過渡変化に応じて開口面積比を変化させることで、対応することができる。したがって、流路をいずれか一方に切り替える三方弁を第1流路切替装置301に適用した場合に比較し、更に効率を向上させた運転を実現できることになる。なお、ここでは、第1流路切替装置301を例に説明するが、第2流路切替装置302についても同様であることは言うまでもない。
 図10は、第1流路切替装置301の開閉面積割合をずらした場合を示したグラフである。図10に基づいて、第1流路切替装置301を混合弁で構成した場合における開閉面積の割合をずらした場合について説明する。図9では、第1流路切替装置301の開閉面積割合をずらしていない場合を例に説明したが、図10では、第1流路切替装置301の開閉面積割合をずらした場合を例に説明する。また、図10では、横軸がpulseを、縦軸が開閉面積割合を、それぞれ表している。さらに、線(A)が流路Aを、線(B)が流路Bを、それぞれ表している。
 流路Aへ低温熱媒体を、流路Bへ高温熱媒体を常に流すと考えた場合、高温熱媒体を使用することが多い用途では、設定温度までの稼動が少ない。そこで、第1流路切替装置301の開口面積割合をずらすことによって、図9に示す開口面積割合に比べ、早く目標温度へ到達することができることになる。なお、図では、流路A及び流路Bが変局点を持たない直線で示しているが、変局点を有した特性を持った混合弁を第1流路切替装置301に適用してもよい。また、ここでは、第1流路切替装置301を例に説明するが、第2流路切替装置302についても同様であることは言うまでもない。
 図11は、補助タンク305の容積と熱媒体-冷媒熱交換器51の容積との関係を示したグラフである。図11に基づいて、補助タンク305の容積と熱媒体-冷媒熱交換器51の容積との関係から、バイパス管303に導通させる熱媒体の容量について説明する。図11では、横軸が補助タンク305の容積を、縦軸が熱媒体-冷媒熱交換器51の容積を、それぞれ表している。また、線(A)が補助タンク305の容積と熱媒体-冷媒熱交換器51の容積とが同じ場合を、線(B)が補助タンク305の容積が熱媒体-冷媒熱交換器51の容積よりも小さい場合を、線(C)が補助タンク305の容積が熱媒体-冷媒熱交換器51の容積よりも大きい場合を、それぞれ表している。
 補助タンク305の容積と熱媒体-冷媒熱交換器51の容積とが同じ場合(線(A))、最小容量にて沸き上げ運転を行ない、最低容量を沸き上げるため、無駄な動きがなく、最短時間で沸き上げることができる。補助タンク305の容積が熱媒体-冷媒熱交換器51の容積よりも小さい場合(線(B))、最低必要量が足りないため、初期沸き上げに必要な容量が足りないため、出湯温度不足となってしまう。補助タンク305の容積が熱媒体-冷媒熱交換器51の容積よりも大きい場合(線(C))、必要以上に初期沸き上げを行なうため、ユニット立ち上がりまで時間がかかり、省エネ運転とならない。
 図11より、補助タンク305を選定する際、もっとも高効率で運転できるタンク容量は、熱媒体-冷媒熱交換器51の保有水量(容積)と同じになる。したがって、補助タンク305の容積は、熱媒体-冷媒熱交換器51の容積から決定するとよい。なお、補助タンク305を有した場合を例に示しているが、補助タンク305がなくても、熱媒体-冷媒熱交換器51の保有水量と同容量の熱媒体をバイパス管303に導通させることができれば、同様に高効率な運転が実現可能となる。

Claims (9)

  1.  空調用圧縮機、流路切替手段、室外熱交換器、室内熱交換器、及び、空調用絞り手段が直列に接続されているとともに、直列に接続された冷媒-冷媒熱交換器及び給湯熱源用絞り手段が前記室内熱交換器及び前記空調用絞り手段に並列に接続されている第1冷媒回路を備え、前記第1冷媒回路に空調用冷媒を循環させる空調用冷凍サイクルと、
     給湯用圧縮機、熱媒体-冷媒熱交換器、給湯用絞り手段、及び、前記冷媒-冷媒熱交換器が直列に接続されている第2冷媒回路を備え、前記第2冷媒回路に給湯用冷媒を循環させる給湯用冷凍サイクルと、
     水循環用ポンプ、前記熱媒体-冷媒熱交換器、及び、貯湯タンクが直列に接続されている水回路を備え、前記水回路に給湯用水を循環させる給湯用負荷と、を備え、
     前記空調用冷凍サイクルと前記給湯用冷凍サイクルとは、前記冷媒-冷媒熱交換器で、前記空調用冷媒と前記給湯用冷媒とが熱交換を行なうようにカスケード接続され、
     前記給湯用冷凍サイクルと前記給湯用負荷とは、前記熱媒体-冷媒熱交換器で、前記給湯用冷媒と前記水とが熱交換を行なうようにカスケード接続されており、
     前記水回路において、
     前記熱媒体-冷媒熱交換器と前記貯湯タンクとの間と、前記貯湯タンクと前記水循環用ポンプとの間と、を接続するバイパス管を設けている
     ことを特徴とする空調給湯複合システム。
  2.  前記水回路を循環する熱媒体の前記熱媒体-冷媒熱交換器を除く部分における容量と、前記水回路を循環する熱媒体の前記熱媒体-冷媒熱交換器における容量と、を略同一としている
     ことを特徴とする請求項1に記載の空調給湯複合システム。
  3.  前記バイパス管に補助タンクを設け、
     前記補助タンクに貯留される熱媒体の容量と、前記水回路を循環する熱媒体の前記熱媒体-冷媒熱交換器における容量と、を略同一としている
     ことを特徴とする請求項1に記載の空調給湯複合システム。
  4.  前記熱媒体-冷媒熱交換器の入口における熱媒体温度を計測する温度センサを設け、
     前記温度センサで計測された温度情報に基づいて、前記水回路における熱媒体の流路を切り替える
     ことを特徴とする請求項1~3のいずれか一項に記載の空調給湯複合システム。
  5.  前記熱媒体-冷媒熱交換器の入口温度が予め設定してある所定温度以下であるとき、
     前記バイパス管を介して熱媒体を循環させるように流路を切り替える
     ことを特徴とする請求項4に記載の空調給湯複合システム。
  6.  前記バイパス管の両端に流路切替装置を設け、
     前記流路切替装置を制御することによって前記水回路における熱媒体の流路を切り替える
     ことを特徴とする請求項4又は5に記載の空調給湯複合システム。
  7.  前記流路切替装置を、前記水回路における熱媒体の流路をいずれか一方に切り替える三方弁又は前記水回路における低温熱媒体と高温熱媒体との混合割合の調整が可能な混合弁で構成している
     ことを特徴とする請求項6に記載の空調給湯複合システム。
  8.  前記流路切替装置を前記混合弁で構成したものにおいて、
     前記流路切替装置の開閉面積割合が調整されることで、所定の出湯温度を維持するように低温熱媒体と高温熱媒体との混合割合が決定される
     ことを特徴とする請求項7に記載の空調給湯複合システム。 
  9.  前記給湯用冷媒には、臨界温度が60℃以上の冷媒を採用している
     ことを特徴とする請求項1~8のいずれか一項に記載の空調給湯複合システム。
     
PCT/JP2009/050407 2009-01-15 2009-01-15 空調給湯複合システム WO2010082324A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/050407 WO2010082324A1 (ja) 2009-01-15 2009-01-15 空調給湯複合システム
JP2010546506A JP5264936B2 (ja) 2009-01-15 2009-01-15 空調給湯複合システム
EP09838294.8A EP2378223B1 (en) 2009-01-15 2009-01-15 Complex system for air conditioning and hot water supplying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/050407 WO2010082324A1 (ja) 2009-01-15 2009-01-15 空調給湯複合システム

Publications (1)

Publication Number Publication Date
WO2010082324A1 true WO2010082324A1 (ja) 2010-07-22

Family

ID=42339593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050407 WO2010082324A1 (ja) 2009-01-15 2009-01-15 空調給湯複合システム

Country Status (3)

Country Link
EP (1) EP2378223B1 (ja)
JP (1) JP5264936B2 (ja)
WO (1) WO2010082324A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929445A (zh) * 2010-08-13 2010-12-29 东华大学 一种分布式太阳能热/冷-电联供系统
GB2486646A (en) * 2010-12-20 2012-06-27 Sublogic Mfg Ltd Method and Apparatus for Cascade Refrigeration and for Central Heating Hot Water Supply
WO2012114462A1 (ja) * 2011-02-22 2012-08-30 株式会社日立製作所 空調給湯システム及び空調給湯システムの制御方法
JP2012220145A (ja) * 2011-04-12 2012-11-12 Purpose Co Ltd 蓄熱装置およびその凍結予防方法
EP2423612A3 (en) * 2010-08-25 2015-08-05 Hitachi Appliances, Inc. Air conditioning system
EP3561396A1 (en) * 2010-11-05 2019-10-30 LG Electronics Inc. Hot water supply apparatus for combined use of air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2008562C2 (nl) * 2012-03-29 2013-10-01 Intergas Heating Assets B V Werkwijze voor het bereiden van warm tapwater en gecombineerd systeem voor klimaatbeheersing en tapwatervoorziening.
WO2013161011A1 (ja) * 2012-04-25 2013-10-31 株式会社日立製作所 空調給湯システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248945A (ja) * 1984-05-23 1985-12-09 Osaka Gas Co Ltd 給湯装置
JPH04263758A (ja) 1991-02-18 1992-09-18 Kansai Electric Power Co Inc:The ヒートポンプ式給湯装置
JPH11270920A (ja) 1998-03-20 1999-10-05 Mitsubishi Electric Corp 多機能ヒートポンプシステムおよびその運転制御方法
JP2003139392A (ja) * 2001-11-05 2003-05-14 Denso Corp 給湯装置
WO2008117408A1 (ja) * 2007-03-27 2008-10-02 Mitsubishi Electric Corporation ヒートポンプ装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107074A (ja) * 2000-09-29 2002-04-10 Sanyo Electric Co Ltd プレート型熱交換器及びそれを用いたヒートポンプ給湯機
JP2003106653A (ja) * 2001-09-28 2003-04-09 Kansai Electric Power Co Inc:The ヒートポンプ式給湯装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248945A (ja) * 1984-05-23 1985-12-09 Osaka Gas Co Ltd 給湯装置
JPH04263758A (ja) 1991-02-18 1992-09-18 Kansai Electric Power Co Inc:The ヒートポンプ式給湯装置
JPH11270920A (ja) 1998-03-20 1999-10-05 Mitsubishi Electric Corp 多機能ヒートポンプシステムおよびその運転制御方法
JP2003139392A (ja) * 2001-11-05 2003-05-14 Denso Corp 給湯装置
WO2008117408A1 (ja) * 2007-03-27 2008-10-02 Mitsubishi Electric Corporation ヒートポンプ装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101929445A (zh) * 2010-08-13 2010-12-29 东华大学 一种分布式太阳能热/冷-电联供系统
EP2423612A3 (en) * 2010-08-25 2015-08-05 Hitachi Appliances, Inc. Air conditioning system
EP3561396A1 (en) * 2010-11-05 2019-10-30 LG Electronics Inc. Hot water supply apparatus for combined use of air conditioner
GB2486646A (en) * 2010-12-20 2012-06-27 Sublogic Mfg Ltd Method and Apparatus for Cascade Refrigeration and for Central Heating Hot Water Supply
WO2012114462A1 (ja) * 2011-02-22 2012-08-30 株式会社日立製作所 空調給湯システム及び空調給湯システムの制御方法
JP5492347B2 (ja) * 2011-02-22 2014-05-14 株式会社日立製作所 空調給湯システム及び空調給湯システムの制御方法
JP2012220145A (ja) * 2011-04-12 2012-11-12 Purpose Co Ltd 蓄熱装置およびその凍結予防方法

Also Published As

Publication number Publication date
JP5264936B2 (ja) 2013-08-14
JPWO2010082324A1 (ja) 2012-06-28
EP2378223B1 (en) 2019-04-24
EP2378223A4 (en) 2016-08-31
EP2378223A1 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP5121922B2 (ja) 空調給湯複合システム
JP5084903B2 (ja) 空調給湯複合システム
JP5042262B2 (ja) 空調給湯複合システム
EP2131122B1 (en) Heat pump device
WO2009098751A1 (ja) 空調給湯複合システム
JP5518101B2 (ja) 空調給湯複合システム
JP5642085B2 (ja) 冷凍サイクル装置及びそれに適用される情報伝達方法
KR101391775B1 (ko) 히트 펌프 시스템
JP5264936B2 (ja) 空調給湯複合システム
US9003817B2 (en) Air-conditioning hot-water supply system, and heat pump unit
US8800319B2 (en) Refrigerating cycle device used in an air conditioning apparatus, a refrigerating device and the like
EP2320164A2 (en) Refrigeration cycle apparatus and hot water heater
JP5300806B2 (ja) ヒートポンプ装置
JP5734424B2 (ja) 空調給湯複合システム
WO2020067152A1 (ja) 空調システム
WO2011158305A1 (ja) 冷凍空調装置
KR100877056B1 (ko) 하이브리드 히트펌프 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010546506

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009838294

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE