WO2010079680A1 - Heat-responsive polymer gel film - Google Patents

Heat-responsive polymer gel film Download PDF

Info

Publication number
WO2010079680A1
WO2010079680A1 PCT/JP2009/071136 JP2009071136W WO2010079680A1 WO 2010079680 A1 WO2010079680 A1 WO 2010079680A1 JP 2009071136 W JP2009071136 W JP 2009071136W WO 2010079680 A1 WO2010079680 A1 WO 2010079680A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
thermoresponsive
gel film
polymer gel
cyclic
Prior art date
Application number
PCT/JP2009/071136
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 荒井
十志和 高田
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2010079680A1 publication Critical patent/WO2010079680A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels

Definitions

  • the present invention relates to a thermoresponsive polymer gel film in which a thermoresponsive polymer gel is formed into a film, and more particularly to a thermoresponsive polymer gel film whose transparency is changed by thermal stimulation.
  • Patent Document 1 discloses a functional polymer gel in which fine particles serving as crosslinking points are uniformly dispersed
  • Patent Document 2 discloses a polymer that interacts with each other. It contains two kinds of polymer compounds forming a complex and a liquid, one of the polymer compounds forms a three-dimensional crosslinked body, and the other has an ionic functional group and dissolves in the liquid.
  • Patent Document 3 discloses a stimulus-responsive polymer gel and the stimulus-responsive polymer gel dispersed and fixed.
  • a polymer gel fixing resin composition the polymer gel fixing resin composition comprising a crosslinkable polymer having a weight average molecular weight of 100,000 or more and a crosslinking agent.
  • a polymer gel composition is disclosed.
  • thermoresponsive polymer gel is all finely divided and dispersed in a liquid, and therefore cannot be held unless sealed in a sealing member described in Patent Document 2 or 3, for example. .
  • the polymer gel thus finely divided and dispersed in the liquid cannot be formed into a film, and the polymer gel encapsulated in a sealing member or the like has a problem of low versatility.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a thermoresponsive polymer gel film whose transparency is changed by thermal stimulation.
  • the present invention provides a thermoresponsive polymer gel film characterized in that the difference in total light transmittance before and after thermal stimulation is 50% or more (Invention 1). .
  • the present invention relates to a case where a gel film having a dry thickness of 1000 ⁇ m (1.0 mm) is adjusted to a moisture content of 20 mass% and heated from room temperature (preferably 23 ° C.) to 60 ° C.
  • room temperature preferably 23 ° C.
  • 70% is heated by heating to 60 ° C.
  • a thermoresponsive polymer gel film that changes to ⁇ 99% (preferably 80 to 99%, more preferably 85 to 99%), and the difference between the total light transmittances is 50% or more.
  • the temperature of the thermal stimulation is preferably not less than room temperature and not more than 100 ° C. (Invention 2).
  • thermoresponsive polymer gel film preferably contains 10% by mass or more of moisture (Invention 3).
  • thermoresponsive polymer gel film preferably contains a rotaxane structure (Invention 4).
  • an inclusion complex can be formed with the polymer having two or more cyclic moieties, and a polymer having a blocking functional group at one end and a polymerizable functional group at the other end. It is obtained by copolymerizing the linear molecule and a thermoresponsive component via the polymerizable functional group of the linear molecule of the polymer crosslinking precursor obtained by mixing the linear molecule. It is preferable to contain a crosslinked polymer (Invention 5).
  • the cyclic portion of the polymer is at least one selected from the group consisting of ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin, or a cyclic polyether, a cyclic polyester and a cyclic polyether It is preferably at least one selected from the group consisting of amines and cyclic polyamines (Invention 6).
  • thermoresponsive component is preferably a polymerizable compound having an N-isopropylamide group (Invention 7).
  • thermoresponsive polymer gel film whose transparency is changed by thermal stimulation can be obtained.
  • thermoresponsive polymer crosslinked body It is a schematic diagram which shows the manufacturing process of the thermoresponsive polymer crosslinked body which concerns on one Embodiment of this invention. It is a schematic diagram which shows the structure of the thermoresponsive polymer crosslinked body which concerns on one Embodiment of this invention. It is a figure explaining the manufacturing method of the gel-like film of a thermoresponsive polymer crosslinked body (E) in an Example. It is a photograph which shows the state in room temperature (23 degreeC) before the thermal stimulation of the thermoresponsive polymer gel film of Example 1. FIG. It is a photograph which shows the state in 60 degreeC after the heat stimulation of the thermoresponsive polymer gel film of Example 1. FIG.
  • thermoresponsive polymer gel film according to this embodiment has a difference in total light transmittance before and after thermal stimulation of 50% or more, preferably 60% or more, more preferably 70 to 99%.
  • the total light transmittance refers to a value measured according to JIS K7105.
  • the temperature of the thermal stimulation is preferably room temperature (preferably 23 ° C.) or more and 100 ° C. or less, particularly preferably 40 to 100 ° C., and more preferably 60 ° C.
  • the thickness of the thermoresponsive polymer gel film varies depending on the water content, but is usually 50 to 5000 ⁇ m, preferably 100 to 2000 ⁇ m, and particularly preferably 150 to 1500 ⁇ m.
  • the thermoresponsive polymer gel film of the present embodiment may satisfy the above characteristics at any of the above thicknesses, but more specifically, the thickness of the dry thermoresponsive polymer gel film not containing water. It is particularly preferable that the above characteristics are satisfied in a state where a predetermined amount of water described later is contained in a sample having a thickness of 1000 ⁇ m (1.0 mm).
  • thermoresponsive polymer gel film The above characteristics define the degree of change in the transparency of the thermoresponsive polymer gel film.
  • the thermoresponsive polymer gel film changes from transparent or translucent to white, that is, the total light transmittance is Therefore, the difference in total light transmittance is calculated by subtracting the total light transmittance after thermal stimulation from the total light transmittance before thermal stimulation. Specific measurement conditions are shown in the test examples described later.
  • thermoresponsive polymer gel constituting the thermoresponsive polymer gel film according to the present embodiment contains a thermoresponsive polymer component and moisture, but moisture in the thermoresponsive polymer gel
  • the content is preferably 10% by mass or more, particularly preferably 15 to 99% by mass, and further preferably 20% by mass.
  • the water content in the thermoresponsive polymer gel is 10% by mass or more, the above-described transparency change characteristic is effectively exhibited.
  • a gel film having a dry thickness of 1000 ⁇ m (1.0 mm) is adjusted to a water content of 20 mass%, and the room temperature (preferably 23 ° C.) to 60
  • the total light transmittance according to JIS K7105 is 0 to 30%, preferably 0 to 20%, more preferably 0 to 10% at room temperature (preferably 23 ° C).
  • the heat-responsive polymer gel film changes from 70 to 99%, preferably from 80 to 99%, more preferably from 85 to 99%.
  • the difference in total light transmittance at both temperatures is as described above.
  • the rate of change of the total light transmittance (%) is not particularly limited, but is preferably within 5 minutes.
  • thermoresponsive polymer component contained in the thermoresponsive polymer gel is a thermoresponsive polymer crosslinked product (E) produced by the method schematically shown in FIG.
  • thermoresponsive polymer crosslinked body (E) is demonstrated.
  • polymer (A) a polymer having two or more cyclic moieties
  • polymer (A) a linear molecule having a blocking group at one end and a polymerizable functional group at the other end
  • linear molecule (B) linear molecule
  • the cyclic part of the polymer (A) can include the linear molecule (B) and can move on the linear molecule (B) in this state.
  • “cyclic” of the “cyclic portion” means substantially “cyclic”, and if the cyclic portion is movable on the linear molecule (B), the cyclic portion is completely May not be closed, for example, may have a helical structure.
  • the polymer (A) is a multimer having a cyclic molecule having a relatively large molecular weight as a constituent part as described later, and its own molecular weight becomes enormous even if the number of repetitions is small.
  • the polymer (A) is a convenient name used for this purpose, and includes those having a repeating number of oligomer regions of about 2 to 10 mer.
  • the molecules constituting the cyclic portion include cyclodextrins such as ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin, or cyclic polyether, cyclic polyester, cyclic polyetheramine, cyclic polyamine, and cyclodextrin.
  • a cyclic molecule such as a fan is preferable, and two or more kinds of these cyclic molecules are mixed in the polymer (A) or the polymer cross-linking precursor (C) described later or the heat-responsive polymer cross-linked product (E) described later. It may be.
  • a polymer chain and / or a substituent that can improve the solubility of the polymer (A) in the linear molecule (B) is introduced into the hydroxyl group of the cyclodextrin. It may be.
  • a polymer chain include an oxyethylene chain, an alkyl chain, and an acrylate chain.
  • substituent include an acetyl group, an alkyl group, a trityl group, a tosyl group, a trimethylsilane group, and a phenyl group.
  • cyclic molecule other than cyclodextrin examples include crown ether or derivatives thereof, cyclic lactone or derivatives thereof, calixarene or derivatives thereof, azacyclophane or derivatives thereof, thiacyclophane or derivatives thereof, cryptand or derivatives thereof, etc. Is mentioned.
  • ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, and crown ether are preferable because linear molecules are easy to penetrate in a skewered manner.
  • ⁇ -cyclodextrin, ⁇ -cyclodextrin, and ⁇ -cyclodextrin are particularly preferred because they form a complex.
  • the number of cyclic molecules in the polymer (A) is 2 or more, preferably 3 to 50, particularly preferably 3 to 5.
  • a plurality of linear molecules (B) can thereby be included, and the linear molecules (B) are polymerized by polymerizing the linear molecules (B).
  • a plurality of (co) polymers included in the structural unit are bonded to each other via the polymer (A) to form a crosslinked structure.
  • Three or more cyclic molecules are more preferable because the cross-linked structure becomes dense and the strength can be improved without impairing the stress relaxation property of the obtained thermoresponsive polymer crosslinked product (E).
  • the structure of the polymer (A) is preferably a structure in which two or more cyclic molecules are linked by a linking moiety.
  • the raw material compound (linking molecule) serving as the linking moiety is preferably a molecule that does not form or is difficult to form an inclusion complex with a cyclic molecule.
  • Such a linking molecule may be linear or branched, but preferably has a side chain that is somewhat bulky.
  • the cyclic molecule when it is ⁇ -cyclodextrin, it preferably has a side chain that is bulkier than a methyl group. That is, from the viewpoint of not forming an inclusion complex with the cyclic molecule, preferred linking molecules include polypropylene glycol, polyacrylic acid ester, polydimethylsiloxane, polyisoprene and the like, and among them, polypropylene glycol is particularly preferable.
  • the number average molecular weight (Mn) of one linking molecule is preferably 100 to 100,000, and particularly preferably 500 to 10,000. If the number average molecular weight of the linking molecule is less than 100, the openings of the cyclic molecules of the formed polymer (A) are too close to each other so that it is difficult to form a cross-linked structure and the effect based on the interlock structure is sufficiently exerted. There is a risk that it will not be. On the other hand, if the number average molecular weight of the linking molecule exceeds 100,000, the compatibility with the linear molecule (B) or the like may be deteriorated and it may be difficult to form a crosslinked structure.
  • the interlock structure refers to a mechanical coupling structure that uses neither a non-covalent bond nor a covalent bond.
  • the interlock structure of the present embodiment is the main body of each linear molecule of two different polymers having the linear molecule (B) as a structural unit at the opening of at least two cyclic molecules of the polymer (A). Each part (described in detail later) penetrates, and each terminal side of the main body part is protected by a blocking group, so that the main body part cannot be pulled out from the opening (rotaxane structure). The two polymers cannot be separated. Due to the interlock structure, the polymer (A) can move through the opening of the cyclic molecule along the main body portion of the linear molecule (B) of the polymer. Compared with the conventional crosslinked structure by covalent bond, it has a binding property of the same strength as that of the covalently crosslinked structure, although the degree of freedom of the crosslinked part is large.
  • the mass average molecular weight (Mw) of the polymer (A) depends on the kind of the cyclic molecule, but is usually preferably 1,000 to 1,000,000, particularly 3,000 to 100,000. It is preferable. When the mass average molecular weight of the polymer (A) is less than 1,000, the number of cyclic molecules is often less than 2, and there is a possibility that an interlock structure cannot be formed. Since the parts are very close to each other, the effect based on the interlock structure may not be sufficiently exhibited. On the other hand, when the mass average molecular weight of the polymer (A) exceeds 1,000,000, the compatibility with the linear molecule (B) or the like may be deteriorated and it may be difficult to form a crosslinked structure.
  • Polymer (A) can be synthesized by a conventional method.
  • the polymer (A) is obtained by reacting a cyclic molecule having a functional group with a linking molecule having a reactive group capable of reacting with the functional group of the cyclic molecule at the terminal.
  • the polymer (A) when synthesizing the polymer (A) in which the cyclic molecule is ⁇ -cyclodextrin and the linking molecule is polypropylene glycol, ⁇ -cyclodextrin and polypropylene glycol having a reactive group at the terminal are mixed.
  • the polymer (A) can be obtained by adding a catalyst if desired and reacting both.
  • the functional group of the cyclic molecule bonded to the linking molecule for example, a hydroxyl group, a carboxyl group, an amino group, a thiol group and the like are preferable, and as the reactive group at the terminal of the linking molecule, for example, an isocyanate group, an epoxy group, an aziridine Groups etc. are preferred.
  • linking molecule examples include isocyanate compounds such as xylylene diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, isophorone diisocyanate, and epoxy compounds such as ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and 1,6-hexanediol glycidyl ether.
  • isocyanate compounds such as xylylene diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, isophorone diisocyanate
  • epoxy compounds such as ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and 1,6-hexanediol glycidyl ether.
  • a compound having an aziridine compound such as N, N-hexamethylene-1,6-bis (1-aziridinecarboxamide) at the terminal can be used.
  • the linear molecule (B) is a linear molecule or substance that is included in the cyclic molecule of the polymer (A) and can be integrated by a mechanical bond rather than a chemical bond such as a covalent bond. And having a blocking group at one end and a polymerizable functional group at the other end.
  • “linear” of “linear molecule” means substantially “linear”. That is, as long as the cyclic molecule of the polymer (A) can move on the linear molecule (B), the linear molecule (B) may have a branched chain.
  • the molecule constituting the portion (main body portion) excluding the blocking group and the polymerizable functional group corresponding to both ends of the linear molecule (B) it penetrates through the opening of the cyclic molecule of the polymer (A). It is sufficient that the molecule has a size that can be obtained.
  • the cyclic molecule of the polymer (A) is ⁇ -cyclodextrin, polyethylene glycol, polytetrahydrofuran, polyethylene, polycaprolactone and the like are preferable, and the linear molecule (B) having a main body portion composed thereof is Two or more kinds may be mixed in the polymer cross-linking precursor (C) or the thermoresponsive polymer cross-linked product (E).
  • the number average molecular weight (Mn) of the molecules constituting the main part of the linear molecule (B) is preferably from 100 to 300,000, particularly preferably from 200 to 200,000, more preferably from 300 to Preferably it is 100,000.
  • Mn The number average molecular weight
  • the number average molecular weight is less than 100, the amount of movement of the cyclic molecule on the linear molecule (B) becomes small, and the resulting thermoresponsive polymer crosslinked product (E) does not have sufficient flexibility. There is a fear.
  • a number average molecular weight exceeds 300,000, there exists a possibility that the solubility to a solvent may worsen.
  • the blocking group is not particularly limited as long as the cyclic molecule of the polymer (A) that includes the linear molecule (B) does not leave and can maintain the form of the inclusion complex.
  • examples of such groups include bulky groups and ionic groups.
  • the blocking group for example, dialkylphenyl groups, dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, pyrenes, anthracenes and the like are preferable. Or 2 or more types may be mixed in the polymer crosslinked body.
  • a capping agent that forms a blocking group by binding to one end of the linear molecule (B) for example, dimethylphenyl isocyanate, tritylphenyl isocyanate, 2,4-dinitrofluorobenzene, adamantaneamine and the like are preferably used. .
  • the polymerizable functional group is not particularly limited as long as it can copolymerize the linear molecule (B) and the thermoresponsive component (D) described later via the polymerizable functional group.
  • a polymerizable functional group for example, (meth) acryloyl group, vinyl group, epoxy group, acetylene group, oxetanyl group and the like are preferable.
  • the linear molecule (B) can be synthesized by a conventional method. For example, a linear molecule having a polymerizable functional group at one end, or a linear molecule having a different polymerizable functional group at both ends, and a capping agent for a blocking group are reacted, and one end is A linear molecule (B) can be obtained by leaving the above-mentioned polymerizable functional group and adding a blocking group to the other end.
  • a linear molecule having a hydroxyl group at one end and a (meth) acryloyl group at the other end and a dialkylphenyl group having an isocyanate group are mixed, and if desired, a catalyst is added and both are reacted.
  • a linear molecule (B) having a dialkylphenyl group as a blocking group at one end and a (meth) acryloyl group as a polymerizable functional group at the other end is obtained.
  • the polymer (A) and the linear molecule (B) described above are prepared, the polymer (A) and the linear molecule (B) are mixed to form an inclusion complex for all or part of the polymer (A) and the linear molecule (B).
  • a polymer crosslinking precursor (C) is produced.
  • one opening of the cyclic molecule of the polymer (A) is penetrated like a skewer with the linear molecule (B), and at least one of the remaining openings of the cyclic molecule of the polymer (A)
  • a polymer cross-linking precursor having a structure in which two or more linear molecules (B) are included in a plurality of cyclic molecules of the same polymer (A), penetrating by another linear molecule (B) (C) is manufactured (see FIG. 1).
  • the polymer cross-linking precursor (C) has a structure in which the above-mentioned inclusion complex is formed, but all the openings of the cyclic molecule of the polymer (A) are in such a state. You don't need to be. That is, in the polymer (A) as a mixture, the structure in which the linear molecule (B) is penetrated in only one of the openings of the cyclic molecule, and further the cyclic molecule of the polymer (A) The opening may have a structure in which the linear molecule (B) is not penetrated in a skewered manner, or the linear molecule (B) as a mixture not included in the polymer (A) May be included.
  • the polymer crosslinking precursor (C) as described above is prepared by mixing the polymer (A) and the linear molecule (B) in a solvent, for example, water, aqueous sodium hydroxide, dimethylformamide (DMF) and water. In a mixed solution of methanol and water or the like (for example, by adding the linear molecule (B) to the polymer (A) solution) and stirring the solution. it can.
  • a solvent for example, water, aqueous sodium hydroxide, dimethylformamide (DMF) and water.
  • a mixed solution of methanol and water or the like for example, by adding the linear molecule (B) to the polymer (A) solution
  • the fact that the polymer crosslinking precursor (C) has been obtained can be judged by an increase in the viscosity of the solution.
  • stirring method can be performed by a method such as mechanical stirring treatment or ultrasonic treatment at room temperature or an appropriately controlled temperature.
  • stirring by ultrasonic treatment is preferable.
  • the stirring time is preferably performed under conditions of several minutes to 1 hour.
  • ultrasonic irradiation conditions it is preferably performed at a frequency of 20 to 40 kHz.
  • thermoresponsive polymer crosslinked product (E) includes a rotaxane structure as an interlock structure.
  • thermoresponsive component (D) As the thermoresponsive component (D), it exhibits the thermal response of (1) or (2) above and is copolymerized with the linear molecule (B) via the polymerizable functional group of the linear molecule (B). Possible monomers, oligomers or polymers are selected.
  • a preferred thermoresponsive component (D) is preferably a polymerizable compound having an N-isopropylamide group.
  • the polymerizable compound may be a monomer, or an oligomer or polymer as long as it has a polymerizable functional group.
  • the mass average molecular weight (Mw) is preferably 1,000,000 or less, particularly preferably 100,000 or less. If the mass average molecular weight (Mw) is too large, the compatibility with other components is poor, resulting in a decrease in polymerizability and film-forming property, and there is a possibility that the stimulus response speed also decreases.
  • the polymerizable functional group of the polymerizable compound is not particularly limited as long as it is copolymerizable with the linear molecule (B).
  • the polymerizable functional group include a (meth) acryloyl group, a vinyl group, an epoxy group, an acetylene group, and an oxetanyl group, and a (meth) acryloyl group in consideration of the speed of polymerization and availability.
  • a vinyl group is particularly preferred.
  • thermoresponsive component (D) N-isopropylacrylamide is most preferable as the thermoresponsive component (D).
  • thermoresponsive polymer crosslinked product (E) using the polymerizable compound having N-isopropylamide group (preferably N-isopropylacrylamide) as the thermoresponsive component (D).
  • the polymer gel changes remarkably from transparent or translucent to white by heat stimulation, and exhibits the above-described transparency change characteristics.
  • thermoresponsive polymer crosslinked product (E) using N-isopropylacrylamide as the thermoresponsive component (D) is schematically shown in FIG.
  • the thermoresponsive polymer gel of the present invention is not limited to the embodiment of FIG.
  • a polymer BD 1 obtained by copolymerizing a linear molecule (B) and N-isopropylacrylamide which is a thermoresponsive component (D)
  • It is composed of BD 2 and polymer A X in which two or more cyclic molecules are bonded by a linking molecule.
  • B X and B Y derived from a linear molecule of the polymer BD 1, BD 2 (B) are each polymer A X through the opening of separate cyclic molecule, and the B X and B Y It has a structure (interlock structure) that cannot be removed by a blocking group present at the end.
  • FIG. 2 in the heat-responsive component (D) has been shown in a state of being incorporated into the main chain of the polymer BD 1, BD 2, may be present in the side chain of the polymer BD 1, BD 2, it may be present in the polymer a X.
  • the polymerization reaction may be carried out by a conventional method, and is usually carried out by radical polymerization.
  • a photopolymerization initiator is added to the solution containing the polymer crosslinking precursor (C) and the thermoresponsive component (D) and irradiated with ultraviolet rays, or a thermal polymerization initiator is added.
  • the linear molecule (B) and the thermoresponsive component (D) are copolymerized.
  • the photopolymerization initiator is not particularly limited as long as it is usually used, for example, benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, Methyl benzoin benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, ⁇ - Chloranthraquinone, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, (2,4,6-trimethylbenzyldiph Yl) phosphine oxide,
  • the ultraviolet rays are obtained with a high-pressure mercury lamp, a fusion H lamp, a xenon lamp or the like, and the irradiation amount is usually 100 to 500 mJ / cm 2 .
  • the thermal polymerization initiator is not particularly limited as long as it is usually used, and for example, benzoyl peroxide, azobisisobutyronitrile (AIBN) and the like can be used.
  • the heating temperature in the case of using the thermal polymerization initiator may be appropriately selected depending on the decomposition temperature of the thermal polymerization initiator, but is usually about 0 to 130 ° C.
  • thermoresponsive polymer crosslinked product (E) Purification of the thermoresponsive polymer crosslinked product (E) may be performed by a conventional method, for example, sequentially washed with water, tetrahydrofuran and dimethylformamide.
  • the polymer (A) and the linear molecule (B) are simply mixed and stirred without passing through the isolation and purification of the pseudorotaxane, so that the polymer crosslinked precursor (C) can be easily produced.
  • the obtained polymer cross-linking precursor (C) includes a rotaxane structure having an interlock structure by copolymerizing the linear molecule (B) and the thermoresponsive component (D).
  • the thermoresponsive polymer crosslinked product (E) can be easily produced.
  • thermoresponsive polymer gel film for example, the polymer cross-linking precursor (C) and the thermoresponsive component (D) are mixed and poured into a mold, or rolled to -A film-like thermally responsive polymer crosslinked body (E) is formed by coating on a substrate by a roll method, and then copolymerizing by heating or ultraviolet irradiation, and the film-like thermally responsive polymer. What is necessary is just to include the predetermined amount of moisture described above in the crosslinked body (E).
  • thermoresponsive polymer gel film changes from transparent or translucent to white by thermal stimulation, and can satisfy the change characteristic of the total light transmittance.
  • This heat-responsive polymer gel film is expected to be used for heat-sensitive sensors, temperature control films, heat-responsive light-shielding films, and the like.
  • Example 1 (1) Synthesis of polymer (A) 5 g of ⁇ -cyclodextrin (manufactured by Nacalai Tesque) was dissolved in 50 ml of dimethylformamide, and to this solution was added tolylene 2,4-diisocyanate-terminated polypropylene glycol (manufactured by Aldrich, Mn: 1,000). ) 3.4 g and 200 mg of dibutyltin dilaurate (manufactured by Tokyo Chemical Industry Co., Ltd.), which is a tin catalyst, were added and stirred overnight at room temperature.
  • dibutyltin dilaurate manufactured by Tokyo Chemical Industry Co., Ltd.
  • polymer cross-linking precursor (C) 300 mg of polymer (A) was dissolved in 1 ml of 0.4 wt% sodium hydroxide aqueous solution, and 112 mg of linear molecule (B) was added to this solution mechanically. When ultrasonic irradiation (35 Hz) was performed for 300 seconds with stirring, the solution became cloudy and the viscosity increased. Such a cloudy substance having an increased viscosity is considered to be a polymer crosslinking precursor (C) in which the cyclic molecule of the polymer (A) includes the linear molecule (B).
  • thermoresponsive polymer crosslinked product (E) To the above cloudy substance considered to be a polymer crosslinked precursor (C), 2.0 g of N-isopropylacrylamide was added as a thermoresponsive component (D) and homogeneous Stir until. Next, 40 ⁇ l of a 1: 1 eutectic mixture of 1-hydroxy-cyclohexyl-phenyl-ketone and benzophenone (manufactured by Ciba Specialty Chemicals, IRUGACURE 500), which is a photopolymerization initiator, was added, and after deaeration with a vacuum pump Went. Thereafter, as shown in FIG.
  • the mixed solution obtained by the above operation is poured inside the silicone rubber mold (thickness 1 mm) on the glass plate, and the glass plate is covered so that air does not enter,
  • a gel-like film was obtained by irradiating ultraviolet rays for 3 minutes (irradiation conditions: illuminance: 3.0 mW / cm 2 , light amount: 300 mJ / cm 2 ).
  • the obtained gel-like film is thermally responsive to the linear molecule (B) via the polymerizable functional group (methacryloyl group) of the linear molecule (B) in the polymer crosslinking precursor (C).
  • Thermally responsive polymer crosslinked product (E) obtained by copolymerization with component (D) polymer (A) is encapsulated with a polymer side chain having a blocking group at its end, and is thermally responsive. It is considered that the polymer of the component (D) is a thermoresponsive polymer crosslinked product (E)) comprising the polymer main chain.
  • thermoresponsive polymer cross-linked product (E) comprising a gel-like film is taken out by removing the upper glass plate shown in FIG. 3, and then washed by immersing in water, tetrahydrofuran and dimethylformamide in turn. It was dried to obtain a transparent thermoresponsive polymer crosslinked product film (thickness: 1.0 mm, non-stretched).
  • thermoresponsive polymer gel film is obtained by adding moisture to the thermoresponsive polymer crosslinked film at room temperature (23 ° C.) so that the moisture content is 20% by mass. Obtained.
  • thermoresponsive polymer crosslinked film (thickness: 1.0 mm, Non-stretched). Furthermore, a transparent thermoresponsive polymer gel film is obtained by adding moisture to the thermoresponsive polymer crosslinked film at room temperature (23 ° C.) so that the moisture content is 20% by mass. Obtained.
  • thermoresponsive polymer gel films obtained in Examples and Comparative Examples in accordance with JIS K7105, using an integrating sphere type light transmittance measuring device (NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.), room temperature ( 23 ° C.) and 60 ° C., and the total light transmittance was measured. The measurement of the total light transmittance after heating to 60 ° C. was performed within 5 minutes from the start of heating.
  • NDH-2000 integrating sphere type light transmittance measuring device
  • the difference in total light transmittance was calculated by subtracting the total light transmittance at 60 ° C. after thermal stimulation from the total light transmittance at room temperature (23 ° C.) before thermal stimulation measured as described above.
  • the results are shown in Table 1.
  • the photograph of the state in the room temperature (23 degreeC) before thermal stimulation of the thermoresponsive polymer gel film of Example 1 is shown in FIG. 4, and the photograph of the state in 60 degreeC after thermal stimulation is shown in FIG.
  • thermoresponsive polymer gel film of Example 1 is significantly lower in total light transmittance by heating than the film of Comparative Example 1, and satisfies the requirements of the present invention. Moreover, it can be understood more clearly from the photographs of FIGS. 4 and 5 that the change in the total light transmittance due to thermal stimulation is large in the thermoresponsive polymer gel film of Example 1.
  • the heat-responsive polymer gel film according to the present invention is expected to be used for heat-sensitive sensors, temperature control films, heat-responsive light-shielding films, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Disclosed is a heat-responsive polymer gel film which is characterized in that the difference of the total light transmittance before and after thermal stimulation is not less than 50%.  The heat-responsive polymer gel film changes in the degree of transparency by thermal stimulation.  The temperature of the thermal stimulation is preferably not less than room temperature but not more than 100˚C.  The heat-responsive polymer gel film preferably contains not less than 10% by mass of water, and a material constituting the heat-responsive polymer gel film preferably contains a rotaxane structure.

Description

熱応答性高分子ゲルフィルムThermoresponsive polymer gel film
 本発明は、熱応答性の高分子ゲルをフィルム状にした熱応答性高分子ゲルフィルムに関し、特に、熱刺激によって透明度が変化する熱応答性高分子ゲルフィルムに関するものである。 The present invention relates to a thermoresponsive polymer gel film in which a thermoresponsive polymer gel is formed into a film, and more particularly to a thermoresponsive polymer gel film whose transparency is changed by thermal stimulation.
 近年、熱刺激によって調光特性が変化する熱応答性高分子ゲルが提案されている。例えば、特許文献1には、架橋点となる微粒子が、均一に分散されていることを特徴とする機能性高分子ゲルが開示されており、特許文献2には、互いに相互作用して高分子複合体を形成する二種の高分子化合物と液体とを含み、その高分子化合物のうち一種は三次元架橋体を形成し、もう一種は、イオン性官能基を有し、上記液体に溶解すると共に、三次元架橋体に内在することを特徴とする高分子ゲル組成物が開示されており、特許文献3には、刺激応答性高分子ゲルと、その刺激応答性高分子ゲルを分散・固定するための高分子ゲル固定用樹脂組成物とを有し、その高分子ゲル固定用樹脂組成物が、重量平均分子量が100,000以上の架橋性高分子と、架橋剤とを含むことを特徴とする高分子ゲル組成物が開示されている。 In recent years, thermoresponsive polymer gels whose dimming characteristics are changed by thermal stimulation have been proposed. For example, Patent Document 1 discloses a functional polymer gel in which fine particles serving as crosslinking points are uniformly dispersed, and Patent Document 2 discloses a polymer that interacts with each other. It contains two kinds of polymer compounds forming a complex and a liquid, one of the polymer compounds forms a three-dimensional crosslinked body, and the other has an ionic functional group and dissolves in the liquid. In addition, a polymer gel composition characterized in that it is inherent in a three-dimensional crosslinked body is disclosed. Patent Document 3 discloses a stimulus-responsive polymer gel and the stimulus-responsive polymer gel dispersed and fixed. A polymer gel fixing resin composition, the polymer gel fixing resin composition comprising a crosslinkable polymer having a weight average molecular weight of 100,000 or more and a crosslinking agent. A polymer gel composition is disclosed.
特開2006-36811号公報JP 2006-36811 A 特開2006-249258号公報JP 2006-249258 A 特開2007-146000号公報JP 2007-146000 A
 上記従来の熱応答性高分子ゲルは、全て微粒子化されて液体中に分散しており、したがって、例えば特許文献2又は3に記載の封止部材等に封入しないと、保持できないものであった。このように微粒子化されて液体中に分散した高分子ゲルでは、フィルム化することはできず、封止部材等に封入したものでは、汎用性が低いという問題があった。 The conventional thermoresponsive polymer gel is all finely divided and dispersed in a liquid, and therefore cannot be held unless sealed in a sealing member described in Patent Document 2 or 3, for example. . The polymer gel thus finely divided and dispersed in the liquid cannot be formed into a film, and the polymer gel encapsulated in a sealing member or the like has a problem of low versatility.
 本発明は、このような実状に鑑みてなされたものであり、熱刺激によって透明度が変化する熱応答性高分子ゲルフィルムを提供することを目的とする。 The present invention has been made in view of such a situation, and an object thereof is to provide a thermoresponsive polymer gel film whose transparency is changed by thermal stimulation.
 上記目的を達成するために、本発明は、熱刺激の前後での全光線透過率の差が、50%以上であることを特徴とする熱応答性高分子ゲルフィルムを提供する(発明1)。 In order to achieve the above object, the present invention provides a thermoresponsive polymer gel film characterized in that the difference in total light transmittance before and after thermal stimulation is 50% or more (Invention 1). .
 さらに具体的には、本発明は、乾燥状態の厚さが1000μm(1.0mm)のゲルフィルムを含水量20質量%に調整し、室温(好ましくは23℃)から60℃に加熱した場合に、JIS K7105による全光線透過率が室温(好ましくは23℃)において0~30%(好ましくは0~20%、さらに好ましくは0~10%)のものが、60℃に加熱されることにより70~99%(好ましくは80~99%、さらに好ましくは85~99%)に変化し、かつ、両全光線透過率の差が50%以上である熱応答性高分子ゲルフィルムを提供する。 More specifically, the present invention relates to a case where a gel film having a dry thickness of 1000 μm (1.0 mm) is adjusted to a moisture content of 20 mass% and heated from room temperature (preferably 23 ° C.) to 60 ° C. When the total light transmittance according to JIS K7105 is 0 to 30% (preferably 0 to 20%, more preferably 0 to 10%) at room temperature (preferably 23 ° C.), 70% is heated by heating to 60 ° C. Provided is a thermoresponsive polymer gel film that changes to ˜99% (preferably 80 to 99%, more preferably 85 to 99%), and the difference between the total light transmittances is 50% or more.
 上記発明(発明1)において、前記熱刺激の温度は、室温以上、100℃以下であることが好ましい(発明2)。 In the above invention (Invention 1), the temperature of the thermal stimulation is preferably not less than room temperature and not more than 100 ° C. (Invention 2).
 上記発明(発明1,2)において、前記熱応答性高分子ゲルフィルムは、10質量%以上の水分を含むことが好ましい(発明3)。 In the above inventions (Inventions 1 and 2), the thermoresponsive polymer gel film preferably contains 10% by mass or more of moisture (Invention 3).
 上記発明(発明1~3)において、前記熱応答性高分子ゲルフィルムを構成する材料は、ロタキサン構造を含むことが好ましい(発明4)。 In the above inventions (Inventions 1 to 3), the material constituting the thermoresponsive polymer gel film preferably contains a rotaxane structure (Invention 4).
 上記発明(発明4)においては、2個以上の環状部分を有するポリマー、及び一方の末端にブロック基を有し他方の末端に重合性官能基を有する、前記ポリマーと包接錯体を形成可能な直鎖状分子を混合して得られた高分子架橋前駆体の前記直鎖状分子の重合性官能基を介して、前記直鎖状分子と熱応答性成分とを共重合させることにより得られる高分子架橋体を含有することが好ましい(発明5)。 In the above invention (Invention 4), an inclusion complex can be formed with the polymer having two or more cyclic moieties, and a polymer having a blocking functional group at one end and a polymerizable functional group at the other end. It is obtained by copolymerizing the linear molecule and a thermoresponsive component via the polymerizable functional group of the linear molecule of the polymer crosslinking precursor obtained by mixing the linear molecule. It is preferable to contain a crosslinked polymer (Invention 5).
 上記発明(発明5)において、前記ポリマーの環状部分は、α-シクロデキストリン、β-シクロデキストリンおよびγ-シクロデキストリンからなる群から選ばれる少なくとも1種、または環状ポリエーテル、環状ポリエステル、環状ポリエーテルアミンおよび環状ポリアミンからなる群から選ばれる少なくとも1種であることが好ましい(発明6)。 In the above invention (Invention 5), the cyclic portion of the polymer is at least one selected from the group consisting of α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin, or a cyclic polyether, a cyclic polyester and a cyclic polyether It is preferably at least one selected from the group consisting of amines and cyclic polyamines (Invention 6).
 上記発明(発明5,6)においては、前記熱応答性成分が、N-イソプロピルアミド基を有する重合性化合物であることが好ましい(発明7)。 In the above inventions (Inventions 5 and 6), the thermoresponsive component is preferably a polymerizable compound having an N-isopropylamide group (Invention 7).
 本発明によれば、熱刺激によって透明度が変化する熱応答性高分子ゲルフィルムが得られる。 According to the present invention, a thermoresponsive polymer gel film whose transparency is changed by thermal stimulation can be obtained.
本発明の一実施形態に係る熱応答性高分子架橋体の製造工程を示す模式図である。It is a schematic diagram which shows the manufacturing process of the thermoresponsive polymer crosslinked body which concerns on one Embodiment of this invention. 本発明の一実施形態に係る熱応答性高分子架橋体の構造を示す模式図である。It is a schematic diagram which shows the structure of the thermoresponsive polymer crosslinked body which concerns on one Embodiment of this invention. 実施例において熱応答性高分子架橋体(E)のゲル状フィルムの製造方法を説明する図である。It is a figure explaining the manufacturing method of the gel-like film of a thermoresponsive polymer crosslinked body (E) in an Example. 実施例1の熱応答性高分子ゲルフィルムの熱刺激前の室温(23℃)における状態を示す写真である。It is a photograph which shows the state in room temperature (23 degreeC) before the thermal stimulation of the thermoresponsive polymer gel film of Example 1. FIG. 実施例1の熱応答性高分子ゲルフィルムの熱刺激後の60℃における状態を示す写真である。It is a photograph which shows the state in 60 degreeC after the heat stimulation of the thermoresponsive polymer gel film of Example 1. FIG.
 以下、本発明の実施形態について説明する。
 本実施形態に係る熱応答性高分子ゲルフィルムは、熱刺激の前後での全光線透過率の差が、50%以上、好ましくは60%以上、さらに好ましくは70~99%であるものである。なお、全光線透過率とは、JIS K7105に準拠して測定した値をいう。このように全光線透過率が熱刺激によって相当量変化する熱応答性高分子ゲルであって、フィルム化されたものは従来知られていない。
Hereinafter, embodiments of the present invention will be described.
The thermoresponsive polymer gel film according to this embodiment has a difference in total light transmittance before and after thermal stimulation of 50% or more, preferably 60% or more, more preferably 70 to 99%. . The total light transmittance refers to a value measured according to JIS K7105. Thus, a thermoresponsive polymer gel whose total light transmittance is changed by a considerable amount by thermal stimulation and formed into a film has not been known.
 ここで、熱刺激の温度は、室温(好ましくは23℃)以上、100℃以下であることが好ましく、特に40~100℃であることが好ましく、さらには60℃であることが好ましい。 Here, the temperature of the thermal stimulation is preferably room temperature (preferably 23 ° C.) or more and 100 ° C. or less, particularly preferably 40 to 100 ° C., and more preferably 60 ° C.
 また、熱応答性高分子ゲルフィルムの厚さは、水分含有量によっても変化するものであるが、通常50~5000μmであり、好ましくは100~2000μmであり、特に好ましくは150~1500μmである。本実施形態の熱応答性高分子ゲルフィルムは、上記厚さのいずれかにおいて上記特性を満たせばよいが、さらに具体的には、含水していない乾燥状態の熱応答性高分子ゲルフィルムの厚さが1000μm(1.0mm)であるものに後述の所定量の水を含有させた状態で、上記特性を満たすことが特に好ましい。 The thickness of the thermoresponsive polymer gel film varies depending on the water content, but is usually 50 to 5000 μm, preferably 100 to 2000 μm, and particularly preferably 150 to 1500 μm. The thermoresponsive polymer gel film of the present embodiment may satisfy the above characteristics at any of the above thicknesses, but more specifically, the thickness of the dry thermoresponsive polymer gel film not containing water. It is particularly preferable that the above characteristics are satisfied in a state where a predetermined amount of water described later is contained in a sample having a thickness of 1000 μm (1.0 mm).
 上記特性は、熱応答性高分子ゲルフィルムの透明度の変化度合を規定するものである。例えば、本実施形態の場合には、熱応答性高分子ゲルフィルムに加熱の刺激を加えることで、熱応答性高分子ゲルフィルムは透明または半透明から白色に変化し、すなわち全光線透過率は小さくなるため、全光線透過率の差は、熱刺激前の全光線透過率から熱刺激後の全光線透過率を差し引いて算出される。具体的な測定条件は、後述する試験例に示す。 The above characteristics define the degree of change in the transparency of the thermoresponsive polymer gel film. For example, in the case of the present embodiment, by applying a heating stimulus to the thermoresponsive polymer gel film, the thermoresponsive polymer gel film changes from transparent or translucent to white, that is, the total light transmittance is Therefore, the difference in total light transmittance is calculated by subtracting the total light transmittance after thermal stimulation from the total light transmittance before thermal stimulation. Specific measurement conditions are shown in the test examples described later.
 本実施形態に係る熱応答性高分子ゲルフィルムを構成する熱応答性高分子ゲルは、熱応答性の高分子成分と水分とを含有するものであるが、熱応答性高分子ゲル中における水分含有量は、10質量%以上であることが好ましく、特に15~99質量%であることが好ましく、さらには20質量%であることが好ましい。熱応答性高分子ゲル中における水分含有量が10質量%以上であることで、上記透明度の変化特性が効果的に発揮される。 The thermoresponsive polymer gel constituting the thermoresponsive polymer gel film according to the present embodiment contains a thermoresponsive polymer component and moisture, but moisture in the thermoresponsive polymer gel The content is preferably 10% by mass or more, particularly preferably 15 to 99% by mass, and further preferably 20% by mass. When the water content in the thermoresponsive polymer gel is 10% by mass or more, the above-described transparency change characteristic is effectively exhibited.
 以上をさらに具体的に説明すると、例えば、本実施形態では、乾燥状態の厚さが1000μm(1.0mm)のゲルフィルムを含水量20質量%に調整し、室温(好ましくは23℃)から60℃に加熱した場合に、JIS K7105による全光線透過率が室温(好ましくは23℃)において0~30%、好ましくは0~20%、さらに好ましくは0~10%のものが、60℃に加熱されることにより70~99%、好ましくは80~99%、さらに好ましくは85~99%に変化する熱応答性高分子ゲルフィルムを表わす。なお、両温度における全光線透過率の差は前述のとおりである。また、全光線透過率(%)の変化速度は、特に制限されないが、5分以内であることが好ましい。 More specifically, for example, in the present embodiment, a gel film having a dry thickness of 1000 μm (1.0 mm) is adjusted to a water content of 20 mass%, and the room temperature (preferably 23 ° C.) to 60 When heated to ℃, the total light transmittance according to JIS K7105 is 0 to 30%, preferably 0 to 20%, more preferably 0 to 10% at room temperature (preferably 23 ° C). The heat-responsive polymer gel film changes from 70 to 99%, preferably from 80 to 99%, more preferably from 85 to 99%. The difference in total light transmittance at both temperatures is as described above. The rate of change of the total light transmittance (%) is not particularly limited, but is preferably within 5 minutes.
 上記熱応答性高分子ゲルが含有する熱応答性の高分子成分として好ましいものは、図1に模式的に示す方法により製造される熱応答性高分子架橋体(E)である。以下、熱応答性高分子架橋体(E)の製造方法を説明する。 A preferable thermoresponsive polymer component contained in the thermoresponsive polymer gel is a thermoresponsive polymer crosslinked product (E) produced by the method schematically shown in FIG. Hereinafter, the manufacturing method of a thermoresponsive polymer crosslinked body (E) is demonstrated.
 最初に、2個以上の環状部分を有するポリマー(以下「ポリマー(A)」という。)と、一方の末端にブロック基を有し他方の末端に重合性官能基を有する直鎖状分子(以下「直鎖状分子(B)」という。)とを用意する(図1参照)。 First, a polymer having two or more cyclic moieties (hereinafter referred to as “polymer (A)”) and a linear molecule having a blocking group at one end and a polymerizable functional group at the other end (hereinafter referred to as “polymer (A)”) (Referred to as “linear molecule (B)”) (see FIG. 1).
 ポリマー(A)の環状部分は、直鎖状分子(B)を包接することができ、その状態で当該直鎖状分子(B)上を移動できるものである。なお、本明細書において、「環状部分」の「環状」は、実質的に「環状」であることを意味し、直鎖状分子(B)上で移動可能であれば、環状部分は完全には閉環でなくてもよく、例えば螺旋構造であってもよい。また、ポリマー(A)は、後述するとおり比較的大きな分子量を有する環状分子を構成部分とする多量体であり、繰り返し数が少なくても自身の分子量が巨大となる。ポリマー(A)とは、このために行った便宜上の名称であって、2~10量体程度のオリゴマー領域の繰り返し数のものも含むものである。 The cyclic part of the polymer (A) can include the linear molecule (B) and can move on the linear molecule (B) in this state. In the present specification, “cyclic” of the “cyclic portion” means substantially “cyclic”, and if the cyclic portion is movable on the linear molecule (B), the cyclic portion is completely May not be closed, for example, may have a helical structure. Further, the polymer (A) is a multimer having a cyclic molecule having a relatively large molecular weight as a constituent part as described later, and its own molecular weight becomes enormous even if the number of repetitions is small. The polymer (A) is a convenient name used for this purpose, and includes those having a repeating number of oligomer regions of about 2 to 10 mer.
 環状部分を構成する分子(環状分子)としては、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン等のシクロデキストリン、あるいは、環状ポリエーテル、環状ポリエステル、環状ポリエーテルアミン、環状ポリアミン、シクロファン等の環状分子が好ましく、これらの環状分子は、ポリマー(A)中または後述の高分子架橋前駆体(C)もしくは後述の熱応答性高分子架橋体(E)中で2種以上混在していてもよい。 The molecules constituting the cyclic portion (cyclic molecules) include cyclodextrins such as α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin, or cyclic polyether, cyclic polyester, cyclic polyetheramine, cyclic polyamine, and cyclodextrin. A cyclic molecule such as a fan is preferable, and two or more kinds of these cyclic molecules are mixed in the polymer (A) or the polymer cross-linking precursor (C) described later or the heat-responsive polymer cross-linked product (E) described later. It may be.
 上記環状分子がシクロデキストリンである場合には、シクロデキストリンの水酸基に、ポリマー(A)の直鎖状分子(B)に対する溶解性を向上させることのできる高分子鎖および/または置換基が導入されたものであってもよい。かかる高分子鎖としては、例えば、オキシエチレン鎖、アルキル鎖、アクリル酸エステル鎖等が挙げられる。一方、上記置換基としては、例えば、アセチル基、アルキル基、トリチル基、トシル基、トリメチルシラン基、フェニル基等が挙げられる。 When the cyclic molecule is a cyclodextrin, a polymer chain and / or a substituent that can improve the solubility of the polymer (A) in the linear molecule (B) is introduced into the hydroxyl group of the cyclodextrin. It may be. Examples of such a polymer chain include an oxyethylene chain, an alkyl chain, and an acrylate chain. On the other hand, examples of the substituent include an acetyl group, an alkyl group, a trityl group, a tosyl group, a trimethylsilane group, and a phenyl group.
 上記環状分子のシクロデキストリン以外の具体例としては、クラウンエーテルまたはその誘導体、環状ラクトンまたはその誘導体、カリックスアレーンまたはその誘導体、アザシクロファンまたはその誘導体、チアシクロファンまたはその誘導体、クリプタンドまたはその誘導体等が挙げられる。 Specific examples of the cyclic molecule other than cyclodextrin include crown ether or derivatives thereof, cyclic lactone or derivatives thereof, calixarene or derivatives thereof, azacyclophane or derivatives thereof, thiacyclophane or derivatives thereof, cryptand or derivatives thereof, etc. Is mentioned.
 環状分子としては、直鎖状分子が串刺し状に貫通し易いことからα-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン、及びクラウンエーテルが好ましく、水中で容易に直鎖状分子と包接錯体を形成することからα-シクロデキストリン、β-シクロデキストリン、及びγ-シクロデキストリンが特に好ましい。 As the cyclic molecule, α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin, and crown ether are preferable because linear molecules are easy to penetrate in a skewered manner. Α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin are particularly preferred because they form a complex.
 ポリマー(A)中における環状分子の個数は、2個以上であり、好ましくは3~50個、特に好ましくは3~5個である。環状分子が2個以上あることで、それによって複数の直鎖状分子(B)を包接することができ、その直鎖状分子(B)を重合させることで、直鎖状分子(B)を構成単位に有する複数の(共)重合体がポリマー(A)を介して互いに結び付けられ、架橋構造が構成される。環状分子が3個以上あると、架橋構造が密になるため、得られる熱応答性高分子架橋体(E)の応力緩和性を阻害することなく、強度を向上させることができるためにより好ましい。 The number of cyclic molecules in the polymer (A) is 2 or more, preferably 3 to 50, particularly preferably 3 to 5. By having two or more cyclic molecules, a plurality of linear molecules (B) can thereby be included, and the linear molecules (B) are polymerized by polymerizing the linear molecules (B). A plurality of (co) polymers included in the structural unit are bonded to each other via the polymer (A) to form a crosslinked structure. Three or more cyclic molecules are more preferable because the cross-linked structure becomes dense and the strength can be improved without impairing the stress relaxation property of the obtained thermoresponsive polymer crosslinked product (E).
 ポリマー(A)の構造としては、2個以上の環状分子が連結部分によって連結されている構造が好ましい。連結部分となる原料化合物(連結分子)は、環状分子と包接錯体を作らない又は作り難い分子であることが好ましい。このような連結分子を使用することにより、ポリマー(A)を合成するときに、環状分子の開口部を閉塞せずに、環状分子を連結することができる。 The structure of the polymer (A) is preferably a structure in which two or more cyclic molecules are linked by a linking moiety. The raw material compound (linking molecule) serving as the linking moiety is preferably a molecule that does not form or is difficult to form an inclusion complex with a cyclic molecule. By using such a linking molecule, when the polymer (A) is synthesized, the cyclic molecule can be linked without closing the opening of the cyclic molecule.
 かかる連結分子としては、直鎖状であってもよいし、分岐鎖状であってもよいが、ある程度かさ高い側鎖を有することが好ましい。例えば、上記環状分子がα-シクロデキストリンの場合には、メチル基よりかさ高い側鎖を有することが好ましい。すなわち、上記環状分子と包接錯体を作らないという観点から、好ましい連結分子としては、ポリプロピレングリコール、ポリアクリル酸エステル、ポリジメチルシロキサン、ポリイソプレン等が挙げられ、中でも特にポリプロピレングリコールが好ましい。 Such a linking molecule may be linear or branched, but preferably has a side chain that is somewhat bulky. For example, when the cyclic molecule is α-cyclodextrin, it preferably has a side chain that is bulkier than a methyl group. That is, from the viewpoint of not forming an inclusion complex with the cyclic molecule, preferred linking molecules include polypropylene glycol, polyacrylic acid ester, polydimethylsiloxane, polyisoprene and the like, and among them, polypropylene glycol is particularly preferable.
 1つの連結分子の数平均分子量(Mn)は、100~100,000であることが好ましく、特に500~10,000であることが好ましい。連結分子の数平均分子量が100未満であると、形成されたポリマー(A)の環状分子の開口部同士が近接しすぎるため架橋構造をとり難く、また、インターロック構造に基づく効果が十分に発揮されないおそれがある。また、連結分子の数平均分子量が100,000を超えると、直鎖状分子(B)等との相溶性が悪くなり架橋構造の形成が困難となるおそれがある。 The number average molecular weight (Mn) of one linking molecule is preferably 100 to 100,000, and particularly preferably 500 to 10,000. If the number average molecular weight of the linking molecule is less than 100, the openings of the cyclic molecules of the formed polymer (A) are too close to each other so that it is difficult to form a cross-linked structure and the effect based on the interlock structure is sufficiently exerted. There is a risk that it will not be. On the other hand, if the number average molecular weight of the linking molecule exceeds 100,000, the compatibility with the linear molecule (B) or the like may be deteriorated and it may be difficult to form a crosslinked structure.
 なお、インターロック構造とは、非共有結合および共有結合のいずれも利用しない機械的な結合構造をいう。本実施形態のインターロック構造は、ポリマー(A)の少なくとも2つの環状分子の開口部に、直鎖状分子(B)を構成単位として有する異なる2つの重合体の各々の直鎖状分子の本体部分(後に詳述する)が各々貫通し、該本体部分の各々の末端側がブロック基により保護されていることにより上記開口部から本体部分が抜け出せない構造(ロタキサン構造)になっており、これにより上記2つの重合体が分離できない構造になっている。該インターロック構造により、上記重合体の直鎖状分子(B)の本体部分に沿って環状分子の開口部を通してポリマー(A)が移動できるが、ブロック基により抜け出せないため、上記2つの重合体は従来の共有結合による架橋構造に比べ、架橋部分の自由度が大きいにもかかわらず共有結合の架橋構造と同程度の強度の結合性を有するものとなる。 Note that the interlock structure refers to a mechanical coupling structure that uses neither a non-covalent bond nor a covalent bond. The interlock structure of the present embodiment is the main body of each linear molecule of two different polymers having the linear molecule (B) as a structural unit at the opening of at least two cyclic molecules of the polymer (A). Each part (described in detail later) penetrates, and each terminal side of the main body part is protected by a blocking group, so that the main body part cannot be pulled out from the opening (rotaxane structure). The two polymers cannot be separated. Due to the interlock structure, the polymer (A) can move through the opening of the cyclic molecule along the main body portion of the linear molecule (B) of the polymer. Compared with the conventional crosslinked structure by covalent bond, it has a binding property of the same strength as that of the covalently crosslinked structure, although the degree of freedom of the crosslinked part is large.
 ポリマー(A)の質量平均分子量(Mw)は、環状分子の種類にも依存するが、通常、1,000~1,000,000であることが好ましく、特に3,000~100,000であることが好ましい。ポリマー(A)の質量平均分子量が1,000未満であると、環状分子の個数が2未満となる場合が多く、インターロック構造を形成することができないおそれがあり、また、できたとしても架橋部分が非常に近接するためインターロック構造に基づく効果が十分に発揮できないおそれがある。一方、ポリマー(A)の質量平均分子量が1,000,000を超えると、直鎖状分子(B)等との相溶性が悪くなり架橋構造の形成が困難となるおそれがある。 The mass average molecular weight (Mw) of the polymer (A) depends on the kind of the cyclic molecule, but is usually preferably 1,000 to 1,000,000, particularly 3,000 to 100,000. It is preferable. When the mass average molecular weight of the polymer (A) is less than 1,000, the number of cyclic molecules is often less than 2, and there is a possibility that an interlock structure cannot be formed. Since the parts are very close to each other, the effect based on the interlock structure may not be sufficiently exhibited. On the other hand, when the mass average molecular weight of the polymer (A) exceeds 1,000,000, the compatibility with the linear molecule (B) or the like may be deteriorated and it may be difficult to form a crosslinked structure.
 ポリマー(A)は常法によって合成することができる。例えば、官能基を有する環状分子と、当該環状分子の官能基と反応し得る反応性基を末端に有する、連結分子とを反応させることにより、ポリマー(A)が得られる。具体的には、環状分子がα-シクロデキストリンであり、連結分子がポリプロピレングリコールであるポリマー(A)を合成する場合、α-シクロデキストリンと、末端に反応性基を有するポリプロピレングリコールとを混合し、所望により触媒を加え、両者を反応させることにより、ポリマー(A)が得られる。 Polymer (A) can be synthesized by a conventional method. For example, the polymer (A) is obtained by reacting a cyclic molecule having a functional group with a linking molecule having a reactive group capable of reacting with the functional group of the cyclic molecule at the terminal. Specifically, when synthesizing the polymer (A) in which the cyclic molecule is α-cyclodextrin and the linking molecule is polypropylene glycol, α-cyclodextrin and polypropylene glycol having a reactive group at the terminal are mixed. The polymer (A) can be obtained by adding a catalyst if desired and reacting both.
 連結分子と結合する環状分子の官能基としては、例えば、ヒドロキシル基、カルボキシル基、アミノ基、チオール基等が好ましく、連結分子の末端の反応性基としては、例えば、イソシアネート基、エポキシ基、アジリジン基等が好ましい。連結分子としては、例えば、キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、イソホロンジイソシアネート等のイソシアネート系化合物、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールグリシジルエーテル等のエポキシ系化合物、N,N-ヘキサメチレン-1,6-ビス(1-アジリジンカルボキシアミド)等のアジリジン系化合物を末端に有するものを使用することができる。 As the functional group of the cyclic molecule bonded to the linking molecule, for example, a hydroxyl group, a carboxyl group, an amino group, a thiol group and the like are preferable, and as the reactive group at the terminal of the linking molecule, for example, an isocyanate group, an epoxy group, an aziridine Groups etc. are preferred. Examples of the linking molecule include isocyanate compounds such as xylylene diisocyanate, hexamethylene diisocyanate, tolylene diisocyanate, isophorone diisocyanate, and epoxy compounds such as ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, and 1,6-hexanediol glycidyl ether. A compound having an aziridine compound such as N, N-hexamethylene-1,6-bis (1-aziridinecarboxamide) at the terminal can be used.
 直鎖状分子(B)は、ポリマー(A)の環状分子に包接され、共有結合等の化学結合でなく機械的な結合で一体化することができる直鎖状の分子または物質であって、かつ一方の末端にブロック基を有し他方の末端に重合性官能基を有するものである。なお、本明細書において、「直鎖状分子」の「直鎖」は、実質的に「直鎖」であることを意味する。すなわち、直鎖状分子(B)上でポリマー(A)の環状分子が移動可能であれば、直鎖状分子(B)は分岐鎖を有していてもよい。 The linear molecule (B) is a linear molecule or substance that is included in the cyclic molecule of the polymer (A) and can be integrated by a mechanical bond rather than a chemical bond such as a covalent bond. And having a blocking group at one end and a polymerizable functional group at the other end. In the present specification, “linear” of “linear molecule” means substantially “linear”. That is, as long as the cyclic molecule of the polymer (A) can move on the linear molecule (B), the linear molecule (B) may have a branched chain.
 直鎖状分子(B)の両末端に該当するブロック基と重合性官能基を除いた部分(本体部分)を構成する分子としては、上記ポリマー(A)の環状分子の開口部に貫通することのできる大きさの分子であればよい。例えば、上記ポリマー(A)の環状分子がα-シクロデキストリンである場合、ポリエチレングリコール、ポリテトラヒドロフラン、ポリエチレン、ポリカプロラクトン等が好ましく、これらから構成される本体部分を有する直鎖状分子(B)は、高分子架橋前駆体(C)または熱応答性高分子架橋体(E)中で2種以上混在していてもよい。 As a molecule constituting the portion (main body portion) excluding the blocking group and the polymerizable functional group corresponding to both ends of the linear molecule (B), it penetrates through the opening of the cyclic molecule of the polymer (A). It is sufficient that the molecule has a size that can be obtained. For example, when the cyclic molecule of the polymer (A) is α-cyclodextrin, polyethylene glycol, polytetrahydrofuran, polyethylene, polycaprolactone and the like are preferable, and the linear molecule (B) having a main body portion composed thereof is Two or more kinds may be mixed in the polymer cross-linking precursor (C) or the thermoresponsive polymer cross-linked product (E).
 直鎖状分子(B)の本体部分を構成する分子の数平均分子量(Mn)は、100~300,000であることが好ましく、特に200~200,000であることが好ましく、さらには300~100,000であることが好ましい。数平均分子量が100未満であると、環状分子の直鎖状分子(B)上での移動量が小さくなり、得られる熱応答性高分子架橋体(E)において柔軟性が十分に得られないおそれがある。また、数平均分子量が300,000を超えると、溶媒への溶解性が悪くなるおそれがある。 The number average molecular weight (Mn) of the molecules constituting the main part of the linear molecule (B) is preferably from 100 to 300,000, particularly preferably from 200 to 200,000, more preferably from 300 to Preferably it is 100,000. When the number average molecular weight is less than 100, the amount of movement of the cyclic molecule on the linear molecule (B) becomes small, and the resulting thermoresponsive polymer crosslinked product (E) does not have sufficient flexibility. There is a fear. Moreover, when a number average molecular weight exceeds 300,000, there exists a possibility that the solubility to a solvent may worsen.
 ブロック基は、直鎖状分子(B)を包接しているポリマー(A)の環状分子が離脱せず、包接錯体の形態を保持し得る基であれば、特に限定されない。このような基としては、嵩高い基、イオン性基等が挙げられる。 The blocking group is not particularly limited as long as the cyclic molecule of the polymer (A) that includes the linear molecule (B) does not leave and can maintain the form of the inclusion complex. Examples of such groups include bulky groups and ionic groups.
 ブロック基としては、例えば、ジアルキルフェニル基類、ジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類、ピレン類、アントラセン類等が好ましく、これらのブロック基は、包接錯体または高分子架橋体中で2種以上混在していてもよい。直鎖状分子(B)の片末端に結合してブロック基を形成するキャッピング剤としては、例えば、ジメチルフェニルイソシアネート、トリチルフェニルイソシアネート、2,4-ジニトロフルオロベンゼン、アダマンタンアミン等が好適に用いられる。 As the blocking group, for example, dialkylphenyl groups, dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, pyrenes, anthracenes and the like are preferable. Or 2 or more types may be mixed in the polymer crosslinked body. As a capping agent that forms a blocking group by binding to one end of the linear molecule (B), for example, dimethylphenyl isocyanate, tritylphenyl isocyanate, 2,4-dinitrofluorobenzene, adamantaneamine and the like are preferably used. .
 重合性官能基は、当該重合性官能基を介して直鎖状分子(B)と後述する熱応答性成分(D)とを共重合することができるものであれば、特に限定されない。かかる重合性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、エポキシ基、アセチレン基、オキセタニル基等が好ましい。 The polymerizable functional group is not particularly limited as long as it can copolymerize the linear molecule (B) and the thermoresponsive component (D) described later via the polymerizable functional group. As such a polymerizable functional group, for example, (meth) acryloyl group, vinyl group, epoxy group, acetylene group, oxetanyl group and the like are preferable.
 直鎖状分子(B)は常法によって合成することができる。例えば、一方の末端に重合性官能基を有する直鎖状分子、または両方の末端に互いに異なる重合性官能基を有する直鎖状分子と、ブロック基用のキャッピング剤とを反応させ、一方の末端に上記重合性官能基を残し、他方の末端にブロック基を付加することにより、直鎖状分子(B)を得ることができる。 The linear molecule (B) can be synthesized by a conventional method. For example, a linear molecule having a polymerizable functional group at one end, or a linear molecule having a different polymerizable functional group at both ends, and a capping agent for a blocking group are reacted, and one end is A linear molecule (B) can be obtained by leaving the above-mentioned polymerizable functional group and adding a blocking group to the other end.
 一例として、一方の末端にヒドロキシル基、他方の末端に(メタ)アクリロイル基を有する直鎖状分子と、イソシアネート基を有するジアルキルフェニル基類とを混合し、所望により触媒を加え、両者を反応させることにより、一方の末端にブロック基としてのジアルキルフェニル基、他方の末端に重合性官能基としての(メタ)アクリロイル基を有する直鎖状分子(B)が得られる。 As an example, a linear molecule having a hydroxyl group at one end and a (meth) acryloyl group at the other end and a dialkylphenyl group having an isocyanate group are mixed, and if desired, a catalyst is added and both are reacted. Thus, a linear molecule (B) having a dialkylphenyl group as a blocking group at one end and a (meth) acryloyl group as a polymerizable functional group at the other end is obtained.
 以上説明したポリマー(A)と直鎖状分子(B)とを用意したら、ポリマー(A)および直鎖状分子(B)を混合し、その全部又は一部について包接錯体を形成することにより高分子架橋前駆体(C)を製造する。すなわち、ポリマー(A)の環状分子の1個の開口部を直鎖状分子(B)で串刺し状に貫通して、かつ、ポリマー(A)の環状分子の残りの開口部の少なくとも1個を別の直鎖状分子(B)で貫通し、上記2個以上の直鎖状分子(B)が同一のポリマー(A)の複数の環状分子に包接された構造を有する高分子架橋前駆体(C)を製造する(図1参照)。 When the polymer (A) and the linear molecule (B) described above are prepared, the polymer (A) and the linear molecule (B) are mixed to form an inclusion complex for all or part of the polymer (A) and the linear molecule (B). A polymer crosslinking precursor (C) is produced. That is, one opening of the cyclic molecule of the polymer (A) is penetrated like a skewer with the linear molecule (B), and at least one of the remaining openings of the cyclic molecule of the polymer (A) A polymer cross-linking precursor having a structure in which two or more linear molecules (B) are included in a plurality of cyclic molecules of the same polymer (A), penetrating by another linear molecule (B) (C) is manufactured (see FIG. 1).
 なお、高分子架橋前駆体(C)は上記の包接錯体が形成された構造を有することを特徴とするが、ポリマー(A)の環状分子の全ての開口部がそのような状態になっていることを要しない。すなわち、混合物としてのポリマー(A)中において、その環状分子の開口部の1個にしか直鎖状分子(B)が串刺し状に貫通されていない構造、さらには、ポリマー(A)の環状分子の開口部に直鎖状分子(B)が全く串刺し状に貫通されていない構造を有していてもよいし、あるいは、ポリマー(A)に包接されない混合物としての直鎖状分子(B)が含まれていてもよい。 The polymer cross-linking precursor (C) has a structure in which the above-mentioned inclusion complex is formed, but all the openings of the cyclic molecule of the polymer (A) are in such a state. You don't need to be. That is, in the polymer (A) as a mixture, the structure in which the linear molecule (B) is penetrated in only one of the openings of the cyclic molecule, and further the cyclic molecule of the polymer (A) The opening may have a structure in which the linear molecule (B) is not penetrated in a skewered manner, or the linear molecule (B) as a mixture not included in the polymer (A) May be included.
 上記のような高分子架橋前駆体(C)の製造は、ポリマー(A)および直鎖状分子(B)を溶媒中、例えば水、水酸化ナトリウム水溶液、ジメチルホルムアミド(DMF)と水の混合溶液、メタノールと水の混合溶液等の中に存在させた状態にして(例えば、ポリマー(A)の溶液に直鎖状分子(B)を添加して)、その溶液を撹拌することによって行うことができる。高分子架橋前駆体(C)が得られたことは、溶液の粘度が上昇することによって判断することができる。 The polymer crosslinking precursor (C) as described above is prepared by mixing the polymer (A) and the linear molecule (B) in a solvent, for example, water, aqueous sodium hydroxide, dimethylformamide (DMF) and water. In a mixed solution of methanol and water or the like (for example, by adding the linear molecule (B) to the polymer (A) solution) and stirring the solution. it can. The fact that the polymer crosslinking precursor (C) has been obtained can be judged by an increase in the viscosity of the solution.
 撹拌方法については特に制限はなく、常温または適当に制御された温度で、機械的撹拌処理、超音波処理などの方法で撹拌することができ、特に、超音波処理で撹拌することが好ましい。撹拌時間は、数分~1時間の条件で行うことが好ましい。超音波の照射条件については特に制限はないが、周波数20~40kHzで行うことが好ましい。 撹 拌 There is no particular limitation on the stirring method, and stirring can be performed by a method such as mechanical stirring treatment or ultrasonic treatment at room temperature or an appropriately controlled temperature. In particular, stirring by ultrasonic treatment is preferable. The stirring time is preferably performed under conditions of several minutes to 1 hour. There are no particular limitations on the ultrasonic irradiation conditions, but it is preferably performed at a frequency of 20 to 40 kHz.
 上記のようにして高分子架橋前駆体(C)を製造したら、ポリマー(A)の環状分子に包接された直鎖状分子(B)の重合性官能基を介して、当該直鎖状分子(B)と熱応答性成分(D)とを共重合し、熱応答性高分子架橋体(E)を得る(図1参照)。この熱応答性高分子架橋体(E)は、インターロック構造としてのロタキサン構造を含む。 Once the polymer cross-linking precursor (C) is produced as described above, the linear molecule is introduced via the polymerizable functional group of the linear molecule (B) included in the cyclic molecule of the polymer (A). (B) and a thermoresponsive component (D) are copolymerized to obtain a thermoresponsive polymer crosslinked product (E) (see FIG. 1). This thermoresponsive polymer crosslinked product (E) includes a rotaxane structure as an interlock structure.
 熱応答性成分(D)としては、上記(1)または(2)の熱応答性を示し、直鎖状分子(B)の重合性官能基を介して直鎖状分子(B)と共重合可能なモノマー、オリゴマーまたはポリマーが選択される。 As the thermoresponsive component (D), it exhibits the thermal response of (1) or (2) above and is copolymerized with the linear molecule (B) via the polymerizable functional group of the linear molecule (B). Possible monomers, oligomers or polymers are selected.
 好ましい熱応答性成分(D)としては、N-イソプロピルアミド基を有する重合性化合物が好ましく挙げられる。該重合性化合物としては、モノマーであってもよいし、重合性官能基を有していればオリゴマーやポリマーであってもよい。該重合性化合物がポリマーである場合の質量平均分子量(Mw)は、1000000以下であることが好ましく、特に100000以下であることが好ましい。質量平均分子量(Mw)が大き過ぎると、他の成分との相溶性が悪く重合性の低下や製膜性の低下を生じ、刺激応答速度も低下するおそれがある。 A preferred thermoresponsive component (D) is preferably a polymerizable compound having an N-isopropylamide group. The polymerizable compound may be a monomer, or an oligomer or polymer as long as it has a polymerizable functional group. When the polymerizable compound is a polymer, the mass average molecular weight (Mw) is preferably 1,000,000 or less, particularly preferably 100,000 or less. If the mass average molecular weight (Mw) is too large, the compatibility with other components is poor, resulting in a decrease in polymerizability and film-forming property, and there is a possibility that the stimulus response speed also decreases.
 また、該重合性化合物の重合性官能基は、直鎖状分子(B)と共重合するものであれば特に限定されない。かかる重合性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、エポキシ基、アセチレン基、オキセタニル基等が挙げられ、重合速度の速さ、入手の容易さを考慮すると(メタ)アクリロイル基、ビニル基が特に好ましい。 The polymerizable functional group of the polymerizable compound is not particularly limited as long as it is copolymerizable with the linear molecule (B). Examples of the polymerizable functional group include a (meth) acryloyl group, a vinyl group, an epoxy group, an acetylene group, and an oxetanyl group, and a (meth) acryloyl group in consideration of the speed of polymerization and availability. A vinyl group is particularly preferred.
 以上のことを考慮すると熱応答性成分(D)としては、N-イソプロピルアクリルアミドが最も好ましい。 Considering the above, N-isopropylacrylamide is most preferable as the thermoresponsive component (D).
 上記N-イソプロピルアミド基を有する重合性化合物(好ましくはN-イソプロピルアクリルアミド)を熱応答性成分(D)として使用した熱応答性高分子架橋体(E)に水等を含ませた熱応答性高分子ゲルは、熱刺激によって透明または半透明から白色に顕著に変化し、上記透明度の変化特性を示す。 Thermal responsiveness in which water or the like is contained in the thermoresponsive polymer crosslinked product (E) using the polymerizable compound having N-isopropylamide group (preferably N-isopropylacrylamide) as the thermoresponsive component (D). The polymer gel changes remarkably from transparent or translucent to white by heat stimulation, and exhibits the above-described transparency change characteristics.
 熱応答性成分(D)としてN-イソプロピルアクリルアミドを使用した熱応答性高分子架橋体(E)の一例を図2に模式的に示す。ただし、本発明の熱応答性高分子ゲルは図2の態様に限られるものではない。図2に示す熱応答性高分子架橋体(E)では、直鎖状分子(B)及び熱応答性成分(D)であるN-イソプロピルアクリルアミドを共重合することにより得られたポリマーBD、BD、及び2つ以上の環状分子が連結分子で結合されてなるポリマーAからなる。そして、ポリマーBD、BDの直鎖状分子(B)に由来するB及びBが、ポリマーAのそれぞれ別個の環状分子の開口部に貫通し、かつ、B及びBの末端に存在するブロック基により抜け出せない構造(インターロック構造)となっている。なお、図2では熱応答性成分(D)は、ポリマーBD、BDの主鎖に組み込まれた状態で図示したが、ポリマーBD、BDの側鎖に存在してもよいし、ポリマーA中に存在してもよい。 An example of a thermoresponsive polymer crosslinked product (E) using N-isopropylacrylamide as the thermoresponsive component (D) is schematically shown in FIG. However, the thermoresponsive polymer gel of the present invention is not limited to the embodiment of FIG. In the thermoresponsive polymer crosslinked product (E) shown in FIG. 2, a polymer BD 1 obtained by copolymerizing a linear molecule (B) and N-isopropylacrylamide which is a thermoresponsive component (D), It is composed of BD 2 and polymer A X in which two or more cyclic molecules are bonded by a linking molecule. Then, B X and B Y derived from a linear molecule of the polymer BD 1, BD 2 (B) are each polymer A X through the opening of separate cyclic molecule, and the B X and B Y It has a structure (interlock structure) that cannot be removed by a blocking group present at the end. Incidentally, FIG. 2 in the heat-responsive component (D) has been shown in a state of being incorporated into the main chain of the polymer BD 1, BD 2, may be present in the side chain of the polymer BD 1, BD 2, it may be present in the polymer a X.
 重合反応は常法によって行えばよく、通常はラジカル重合によって反応させる。例えば、高分子架橋前駆体(C)および熱応答性成分(D)を含有する溶液に、所望により光重合開始剤を添加して紫外線を照射することにより、あるいは、熱重合開始剤を添加して加熱することにより、直鎖状分子(B)と熱応答性成分(D)とは共重合する。 The polymerization reaction may be carried out by a conventional method, and is usually carried out by radical polymerization. For example, if desired, a photopolymerization initiator is added to the solution containing the polymer crosslinking precursor (C) and the thermoresponsive component (D) and irradiated with ultraviolet rays, or a thermal polymerization initiator is added. When heated, the linear molecule (B) and the thermoresponsive component (D) are copolymerized.
 光重合開始剤としては、通常使用されるものであれば特に制限されることなく、例えば、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサンソン、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、β-クロールアンスラキノン、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、(2,4,6-トリメチルベンジルジフェニル)フォスフィンオキサイド、2-ベンゾチアゾール-N,N-ジエチルジチオカルバメート等を使用することができる。なお、光重合開始剤は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。 The photopolymerization initiator is not particularly limited as long as it is usually used, for example, benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, Methyl benzoin benzoate, benzoin dimethyl ketal, 2,4-diethylthioxanthone, 1-hydroxycyclohexyl phenyl ketone, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, β- Chloranthraquinone, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, (2,4,6-trimethylbenzyldiph Yl) phosphine oxide, 2-benzothiazole -N, can be used N- diethyldithiocarbamate and the like. In addition, a photoinitiator may be used individually by 1 type and may use 2 or more types together.
 上記紫外線は、高圧水銀ランプ、フュージョンHランプ、キセノンランプなどで得られ、照射量は、通常100~500mJ/cmである。 The ultraviolet rays are obtained with a high-pressure mercury lamp, a fusion H lamp, a xenon lamp or the like, and the irradiation amount is usually 100 to 500 mJ / cm 2 .
 一方、熱重合開始剤としては、通常使用されるものであれば特に制限されることなく、例えば、過酸化ベンゾイル、アゾビスイソブチロニトリル(AIBN)等を使用することができる。熱重合開始剤を使用する場合の加熱温度は、熱重合開始剤の分解温度によって適宜選択すればよいが、通常0~130℃程度である。 On the other hand, the thermal polymerization initiator is not particularly limited as long as it is usually used, and for example, benzoyl peroxide, azobisisobutyronitrile (AIBN) and the like can be used. The heating temperature in the case of using the thermal polymerization initiator may be appropriately selected depending on the decomposition temperature of the thermal polymerization initiator, but is usually about 0 to 130 ° C.
 熱応答性高分子架橋体(E)の精製は常法によって行えばよく、例えば、水、テトラヒドロフランおよびジメチルホルムアミドで順次洗浄すればよい。 Purification of the thermoresponsive polymer crosslinked product (E) may be performed by a conventional method, for example, sequentially washed with water, tetrahydrofuran and dimethylformamide.
 以上の方法によれば、擬ロタキサンの単離精製を経ることなく、ポリマー(A)と直鎖状分子(B)とを混合攪拌するだけで、簡便に高分子架橋前駆体(C)を製造することができ、さらに得られた高分子架橋前駆体(C)の直鎖状分子(B)と熱応答性成分(D)とを共重合することで、インターロック構造を有するロタキサン構造を含む熱応答性高分子架橋体(E)を簡便に製造することができる。 According to the above method, the polymer (A) and the linear molecule (B) are simply mixed and stirred without passing through the isolation and purification of the pseudorotaxane, so that the polymer crosslinked precursor (C) can be easily produced. In addition, the obtained polymer cross-linking precursor (C) includes a rotaxane structure having an interlock structure by copolymerizing the linear molecule (B) and the thermoresponsive component (D). The thermoresponsive polymer crosslinked product (E) can be easily produced.
 本実施形態に係る熱応答性高分子ゲルフィルムを得るには、例えば、上記高分子架橋前駆体(C)と熱応答性成分(D)とを混合し、鋳型に流し込むか、あるいはロール・トゥ・ロール方式で基材上に塗布し、その後、加熱または紫外線照射等によって共重合させることによりフィルム状の熱応答性高分子架橋体(E)を形成し、当該フィルム状の熱応答性高分子架橋体(E)に、前述した所定量の水分を含ませればよい。 In order to obtain the thermoresponsive polymer gel film according to this embodiment, for example, the polymer cross-linking precursor (C) and the thermoresponsive component (D) are mixed and poured into a mold, or rolled to -A film-like thermally responsive polymer crosslinked body (E) is formed by coating on a substrate by a roll method, and then copolymerizing by heating or ultraviolet irradiation, and the film-like thermally responsive polymer. What is necessary is just to include the predetermined amount of moisture described above in the crosslinked body (E).
 得られた熱応答性高分子ゲルフィルムは、熱刺激によって透明または半透明から白色に変化し、上記全光線透過率の変化特性を満たし得る。この熱応答性高分子ゲルフィルムは、感熱センサー、温度調整フィルム、熱応答性遮光フィルムなどへの利用が期待される。 The obtained thermoresponsive polymer gel film changes from transparent or translucent to white by thermal stimulation, and can satisfy the change characteristic of the total light transmittance. This heat-responsive polymer gel film is expected to be used for heat-sensitive sensors, temperature control films, heat-responsive light-shielding films, and the like.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and the like, but the scope of the present invention is not limited to these examples and the like.
〔実施例1〕
(1)ポリマー(A)の合成
 α-シクロデキストリン(ナカライテスク社製)5gをジメチルホルムアミド50mlに溶解させ、この溶液にトリレン2,4-ジイソシアネート末端ポリプロピレングリコール(Aldrich社製,Mn:1,000)3.4gと、錫触媒であるジブチル錫ジラウレート(東京化成社製)200mgとを加え、一晩室温で攪拌した。
[Example 1]
(1) Synthesis of polymer (A) 5 g of α-cyclodextrin (manufactured by Nacalai Tesque) was dissolved in 50 ml of dimethylformamide, and to this solution was added tolylene 2,4-diisocyanate-terminated polypropylene glycol (manufactured by Aldrich, Mn: 1,000). ) 3.4 g and 200 mg of dibutyltin dilaurate (manufactured by Tokyo Chemical Industry Co., Ltd.), which is a tin catalyst, were added and stirred overnight at room temperature.
 上記反応溶液をエーテルに注いで沈殿させ、回収した固体を乾燥させた後、水で洗浄して再び乾燥させ、環状分子としてα-シクロデキストリン、連結分子としてポリプロピレングリコールを有し、連結分子を介して環状分子が3~5個繋がったポリマー(A)4.6gを得た。 The above reaction solution is poured into ether and precipitated, and the collected solid is dried, washed with water and dried again, and has α-cyclodextrin as a cyclic molecule and polypropylene glycol as a linking molecule, via a linking molecule. Thus, 4.6 g of polymer (A) having 3 to 5 cyclic molecules connected thereto was obtained.
(2)直鎖状分子(B)の合成
 ポリエチレングリコール(和光純薬工業社製,Mn:1000)5gを塩化メチレン50mlに溶解させ、この溶液に3,5-ジメチルフェニルイソシアネート(Aldrich社製)1.6gと、錫触媒であるジブチル錫ジラウレート(東京化成社製)200mgとを加え、一晩室温で攪拌した。
(2) Synthesis of linear molecule (B) 5 g of polyethylene glycol (manufactured by Wako Pure Chemical Industries, Mn: 1000) was dissolved in 50 ml of methylene chloride, and 3,5-dimethylphenyl isocyanate (manufactured by Aldrich) was dissolved in this solution. 1.6 g and 200 mg of dibutyltin dilaurate (manufactured by Tokyo Chemical Industry Co., Ltd.) as a tin catalyst were added and stirred overnight at room temperature.
 次いで、上記溶液に2-メタクリロイルオキシエチルイソシアネート(昭和電工社製,カレンズMOI)1.7gと、錫触媒であるジブチル錫ジラウレート(東京化成社製)100mgとを加え、さらに一晩室温で攪拌した。 Next, 1.7 g of 2-methacryloyloxyethyl isocyanate (manufactured by Showa Denko KK, Karenz MOI) and 100 mg of dibutyl tin dilaurate (manufactured by Tokyo Kasei Co., Ltd.) as a tin catalyst were added to the above solution and further stirred overnight at room temperature. .
 得られた溶液を濃縮した後、-75℃に冷却したジエチルエーテル中に注ぐことにより沈澱させ、その沈澱物を回収した。これにより、一方の末端に3,5-ジメチルフェニル基からなるブロック基を有し、他方の末端にメタクリロイル基を有するポリエチレングリコール(MA-PEG-DPI;直鎖状分子(B))3.8gを得た。 The resulting solution was concentrated and then precipitated by pouring into diethyl ether cooled to −75 ° C., and the precipitate was collected. Thus, 3.8 g of polyethylene glycol (MA-PEG-DPI; linear molecule (B)) having a blocking group consisting of a 3,5-dimethylphenyl group at one end and a methacryloyl group at the other end Got.
(3)高分子架橋前駆体(C)の製造
 ポリマー(A)300mgを0.4wt%の水酸化ナトリウム水溶液1mlに溶解させ、この溶液に直鎖状分子(B)112mgを加え、機械的に攪拌しながら超音波照射(35Hz)を300秒行ったところ、溶液が白濁し、粘性が上昇した。このような粘度上昇した白濁物は、ポリマー(A)の環状分子が直鎖状分子(B)を包接してなる高分子架橋前駆体(C)であると考えられる。
(3) Production of polymer cross-linking precursor (C) 300 mg of polymer (A) was dissolved in 1 ml of 0.4 wt% sodium hydroxide aqueous solution, and 112 mg of linear molecule (B) was added to this solution mechanically. When ultrasonic irradiation (35 Hz) was performed for 300 seconds with stirring, the solution became cloudy and the viscosity increased. Such a cloudy substance having an increased viscosity is considered to be a polymer crosslinking precursor (C) in which the cyclic molecule of the polymer (A) includes the linear molecule (B).
(4)熱応答性高分子架橋体(E)の製造
 高分子架橋前駆体(C)と考えられる上記白濁物に、熱応答性成分(D)としてN-イソプロピルアクリルアミド2.0gを加え、均一になるまで攪拌した。次いで、光重合開始剤である1-ヒドロキシ-シクロヘキシル-フェニル-ケトン及びベンゾフェノンの1:1共融混合物(チバスペシャリティーケミカルズ社製,IRUGACURE 500)40μlを加え、撹拌後、真空ポンプにて脱気を行った。その後、上記操作により得られた混合溶液を、図3に示すように、ガラス板上のシリコーンゴム製型(厚さ1mm)の内側に流し込み、空気が入らない様にガラス板で蓋をし、紫外線を3分間照射(照射条件:照度3.0mW/cm,光量300mJ/cm)することにより、ゲル状のフィルムを得た。
(4) Production of thermoresponsive polymer crosslinked product (E) To the above cloudy substance considered to be a polymer crosslinked precursor (C), 2.0 g of N-isopropylacrylamide was added as a thermoresponsive component (D) and homogeneous Stir until. Next, 40 μl of a 1: 1 eutectic mixture of 1-hydroxy-cyclohexyl-phenyl-ketone and benzophenone (manufactured by Ciba Specialty Chemicals, IRUGACURE 500), which is a photopolymerization initiator, was added, and after deaeration with a vacuum pump Went. Thereafter, as shown in FIG. 3, the mixed solution obtained by the above operation is poured inside the silicone rubber mold (thickness 1 mm) on the glass plate, and the glass plate is covered so that air does not enter, A gel-like film was obtained by irradiating ultraviolet rays for 3 minutes (irradiation conditions: illuminance: 3.0 mW / cm 2 , light amount: 300 mJ / cm 2 ).
 得られたゲル状のフィルムは、上記高分子架橋前駆体(C)における直鎖状分子(B)の重合性官能基(メタクリロイル基)を介して、直鎖状分子(B)と熱応答性成分(D)とが共重合してなる熱応答性高分子架橋体(E)(ポリマー(A)の環状分子に、末端にブロック基を有する高分子の側鎖が包接され、熱応答性成分(D)の重合体がその高分子の主鎖を構成してなる熱応答性高分子架橋体(E))であると考えられる。 The obtained gel-like film is thermally responsive to the linear molecule (B) via the polymerizable functional group (methacryloyl group) of the linear molecule (B) in the polymer crosslinking precursor (C). Thermally responsive polymer crosslinked product (E) obtained by copolymerization with component (D) (polymer (A) is encapsulated with a polymer side chain having a blocking group at its end, and is thermally responsive. It is considered that the polymer of the component (D) is a thermoresponsive polymer crosslinked product (E)) comprising the polymer main chain.
 得られたゲル状のフィルムからなる熱応答性高分子架橋体(E)は、図3に示す上側のガラス板を取り外すことにより取り出し、水、テトラヒドロフランおよびジメチルホルムアミドに順次浸漬して洗浄し、その後乾燥させて透明の熱応答性高分子架橋体フィルム(厚さ:1.0mm,非延伸)を得た。 The obtained thermoresponsive polymer cross-linked product (E) comprising a gel-like film is taken out by removing the upper glass plate shown in FIG. 3, and then washed by immersing in water, tetrahydrofuran and dimethylformamide in turn. It was dried to obtain a transparent thermoresponsive polymer crosslinked product film (thickness: 1.0 mm, non-stretched).
 さらに、該熱応答性高分子架橋体フィルムに対して、室温下(23℃)、水分含有量が20質量%になるように水分を含有させることにより、透明な熱応答性高分子ゲルフィルムを得た。 Furthermore, a transparent thermoresponsive polymer gel film is obtained by adding moisture to the thermoresponsive polymer crosslinked film at room temperature (23 ° C.) so that the moisture content is 20% by mass. Obtained.
〔比較例1〕
 実施例1におけるポリマー(A)の替わりにポリエチレングリコールジアクリレート44mg(架橋剤に該当)を使用する以外、実施例1と同様にして熱応答性高分子架橋体フィルム(厚さ:1.0mm,非延伸)を作製した。さらに、該熱応答性高分子架橋体フィルムに対して、室温下(23℃)、水分含有量が20質量%になるように水分を含有させることにより、透明な熱応答性高分子ゲルフィルムを得た。
[Comparative Example 1]
Except for using 44 mg of polyethylene glycol diacrylate (corresponding to a crosslinking agent) in place of the polymer (A) in Example 1, a thermoresponsive polymer crosslinked film (thickness: 1.0 mm, Non-stretched). Furthermore, a transparent thermoresponsive polymer gel film is obtained by adding moisture to the thermoresponsive polymer crosslinked film at room temperature (23 ° C.) so that the moisture content is 20% by mass. Obtained.
〔試験例1〕(全光線透過率の測定)
 実施例および比較例で得られた熱応答性高分子ゲルフィルムについて、JIS K7105に準拠し、積分球式光線透過率測定装置(日本電色工業社製,NDH-2000)を用いて、室温(23℃)及び60℃に加熱したときのそれぞれの全光線透過率を測定した。なお、60℃に加熱しての全光線透過率の測定は、加熱開始から5分以内に行った。
[Test Example 1] (Measurement of total light transmittance)
About the thermoresponsive polymer gel films obtained in Examples and Comparative Examples, in accordance with JIS K7105, using an integrating sphere type light transmittance measuring device (NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.), room temperature ( 23 ° C.) and 60 ° C., and the total light transmittance was measured. The measurement of the total light transmittance after heating to 60 ° C. was performed within 5 minutes from the start of heating.
 上記のように測定した熱刺激前の室温(23℃)における全光線透過率から熱刺激後の60℃における全光線透過率を差し引いて、全光線透過率の差を算出した。結果を表1に示す。また、実施例1の熱応答性高分子ゲルフィルムの熱刺激前の室温(23℃)における状態の写真を図4に、熱刺激後の60℃における状態の写真を図5に示す。 The difference in total light transmittance was calculated by subtracting the total light transmittance at 60 ° C. after thermal stimulation from the total light transmittance at room temperature (23 ° C.) before thermal stimulation measured as described above. The results are shown in Table 1. Moreover, the photograph of the state in the room temperature (23 degreeC) before thermal stimulation of the thermoresponsive polymer gel film of Example 1 is shown in FIG. 4, and the photograph of the state in 60 degreeC after thermal stimulation is shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1の熱応答性高分子ゲルフィルムは、比較例1のものに比べて、加熱により全光線透過率が顕著に低下し、本発明の要件を満たすことが分かる。また、図4及び図5の写真より、実施例1の熱応答性高分子ゲルフィルムにおいて熱刺激による全光線透過率の変化が大きいことは、より明確に分かる。 From Table 1, it can be seen that the heat-responsive polymer gel film of Example 1 is significantly lower in total light transmittance by heating than the film of Comparative Example 1, and satisfies the requirements of the present invention. Moreover, it can be understood more clearly from the photographs of FIGS. 4 and 5 that the change in the total light transmittance due to thermal stimulation is large in the thermoresponsive polymer gel film of Example 1.
 本発明に係る熱応答性高分子ゲルフィルムは、感熱センサー、温度調整フィルム、熱応答性遮光フィルムなどへの利用が期待される。 The heat-responsive polymer gel film according to the present invention is expected to be used for heat-sensitive sensors, temperature control films, heat-responsive light-shielding films, and the like.

Claims (7)

  1.  熱刺激の前後での全光線透過率の差が、50%以上であることを特徴とする熱応答性高分子ゲルフィルム。 A thermoresponsive polymer gel film characterized in that the difference in total light transmittance before and after thermal stimulation is 50% or more.
  2.  前記熱刺激の温度は、室温以上、100℃以下であることを特徴とする請求項1に記載の熱応答性高分子ゲルフィルム。 The heat-responsive polymer gel film according to claim 1, wherein the temperature of the thermal stimulation is not less than room temperature and not more than 100 ° C.
  3.  前記熱応答性高分子ゲルフィルムは、10質量%以上の水分を含むことを特徴とする請求項1または2に記載の熱応答性高分子ゲルフィルム。 The thermoresponsive polymer gel film according to claim 1 or 2, wherein the thermoresponsive polymer gel film contains 10% by mass or more of moisture.
  4.  前記熱応答性高分子ゲルフィルムを構成する材料は、ロタキサン構造を含むことを特徴とする請求項1~3のいずれかに記載の熱応答性高分子ゲルフィルム。 4. The heat-responsive polymer gel film according to claim 1, wherein the material constituting the heat-responsive polymer gel film includes a rotaxane structure.
  5.  2個以上の環状部分を有するポリマー、及び一方の末端にブロック基を有し他方の末端に重合性官能基を有する、前記ポリマーと包接錯体を形成可能な直鎖状分子を混合して得られた高分子架橋前駆体の前記直鎖状分子の重合性官能基を介して、前記直鎖状分子と熱応答性成分とを共重合させることにより得られる高分子架橋体を含有することを特徴とする請求項4に記載の熱応答性高分子ゲルフィルム。 Obtained by mixing a polymer having two or more cyclic moieties and a linear molecule capable of forming an inclusion complex with the polymer having a blocking group at one end and a polymerizable functional group at the other end. Containing a crosslinked polymer obtained by copolymerizing the linear molecule and a thermoresponsive component via a polymerizable functional group of the linear molecule of the obtained polymer crosslinking precursor. The heat-responsive polymer gel film according to claim 4.
  6.  前記ポリマーの環状部分は、α-シクロデキストリン、β-シクロデキストリンおよびγ-シクロデキストリンからなる群から選ばれる少なくとも1種、または環状ポリエーテル、環状ポリエステル、環状ポリエーテルアミンおよび環状ポリアミンからなる群から選ばれる少なくとも1種であることを特徴とする請求項5に記載の熱応答性高分子ゲルフィルム。 The cyclic portion of the polymer is at least one selected from the group consisting of α-cyclodextrin, β-cyclodextrin and γ-cyclodextrin, or from the group consisting of cyclic polyether, cyclic polyester, cyclic polyetheramine and cyclic polyamine. The thermoresponsive polymer gel film according to claim 5, which is at least one selected.
  7.  前記熱応答性成分が、N-イソプロピルアミド基を有する重合性化合物であることを特徴とする請求項5または6に記載の熱応答性高分子ゲルフィルム。 The thermoresponsive polymer gel film according to claim 5 or 6, wherein the thermoresponsive component is a polymerizable compound having an N-isopropylamide group.
PCT/JP2009/071136 2009-01-07 2009-12-18 Heat-responsive polymer gel film WO2010079680A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009001783A JP5683072B2 (en) 2009-01-07 2009-01-07 Thermoresponsive polymer gel film
JP2009-001783 2009-01-07

Publications (1)

Publication Number Publication Date
WO2010079680A1 true WO2010079680A1 (en) 2010-07-15

Family

ID=42316449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071136 WO2010079680A1 (en) 2009-01-07 2009-12-18 Heat-responsive polymer gel film

Country Status (3)

Country Link
JP (1) JP5683072B2 (en)
TW (1) TWI485190B (en)
WO (1) WO2010079680A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5379470B2 (en) * 2008-12-26 2013-12-25 リンテック株式会社 Stimulated responsive polymer crosslinked body and method for producing the same
JP5641695B2 (en) * 2009-01-07 2014-12-17 リンテック株式会社 Thermoresponsive polymer gel and thermoresponsive polymer gel film
JP5329241B2 (en) * 2009-01-08 2013-10-30 リンテック株式会社 Crosslinked polymer and method for producing crosslinked polymer
JP5855839B2 (en) * 2011-03-10 2016-02-09 リンテック株式会社 Light control panel
JP5723638B2 (en) * 2011-03-10 2015-05-27 リンテック株式会社 Crosslinked polymer and method for producing crosslinked polymer
JP6713702B2 (en) * 2015-01-09 2020-06-24 住友精化株式会社 Method for producing pseudo-polyrotaxane aqueous dispersion
JP6941759B2 (en) * 2016-09-09 2021-09-29 Kjケミカルズ株式会社 (Meta) Acrylamide-modified polyrotaxane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330681A (en) * 1993-05-24 1994-11-29 Sekisui Chem Co Ltd Shading window material
JP2005000182A (en) * 2003-06-09 2005-01-06 Kawamura Inst Of Chem Res Blood compatible material
JP2009051994A (en) * 2007-08-29 2009-03-12 Lintec Corp Crosslinked polymer precursor, polymer crosslinked product and their manufacturing methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5022627B2 (en) * 2006-05-08 2012-09-12 リンテック株式会社 Pseudopolyrotaxane and polyrotaxane and method for producing them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330681A (en) * 1993-05-24 1994-11-29 Sekisui Chem Co Ltd Shading window material
JP2005000182A (en) * 2003-06-09 2005-01-06 Kawamura Inst Of Chem Res Blood compatible material
JP2009051994A (en) * 2007-08-29 2009-03-12 Lintec Corp Crosslinked polymer precursor, polymer crosslinked product and their manufacturing methods

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HONGLIANG WEI ET AL.: "Synthesis and Characterization of Thermosensitive and Supramolecular Structured Hydrogels", MACROMOLECULES, vol. 38, no. ISSUE, 21 September 2005 (2005-09-21), pages 8833 - 8839 *
KITANO, HIROMI ET AL.: "Gemmei- Ide, Makoto; Kyogoku, Mayumi, Effect of macrocycles on the temperature-responsiveness of poly[(methoxy diethylene glycol methacrylate)-graft-PEG]", MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 205, no. 12, 2004, pages 1651 - 1659 *
PANG, YANJIE ET AL.: "Novel side-chain polyrotaxane with cyclodextrin: syntheses and study of water-soluble copolymers bearing hydrophobically associative components", MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 207, no. 2, 2006, pages 201 - 208 *
TOORU OOYA ET AL.: "Temperature- controlled erosion of poly (N-isopropylacrylamide)-based hydrogels crosslinked by methacrylate-introduced hydrolyzable polyrotaxane", SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, vol. 6, no. ISSUE, 2005, pages 447 - 451 *

Also Published As

Publication number Publication date
TWI485190B (en) 2015-05-21
JP2010159337A (en) 2010-07-22
JP5683072B2 (en) 2015-03-11
TW201035186A (en) 2010-10-01

Similar Documents

Publication Publication Date Title
JP5641695B2 (en) Thermoresponsive polymer gel and thermoresponsive polymer gel film
JP5683072B2 (en) Thermoresponsive polymer gel film
JP5379470B2 (en) Stimulated responsive polymer crosslinked body and method for producing the same
Yao et al. Sliding-graft interpenetrating polymer networks from simultaneous “click chemistry” and atom transfer radical polymerization
EP3498742B1 (en) Photochromic curable composition, use thereof, and polyrotaxane monomers
Yang et al. Non-swelling, super-tough, self-healing, and multi-responsive hydrogels based on micellar crosslinking for smart switch and shape memory
WO2010079681A1 (en) Crosslinked polymer and crosslinked polymer production method
WO2014112234A1 (en) Composition for soft materials, and soft material
DK2314640T3 (en) Acrylhydrogeler with attached cyclodextrins, process for their preparation and the use of same as delivery systems and contact lens components
Faria et al. Poly (glycidyl methacrylate)/bacterial cellulose nanocomposites: Preparation, characterization and post-modification
JP5522891B2 (en) Polymer cross-linked precursor, polymer cross-linked product, and production method thereof
JP5611087B2 (en) Polymer cross-linking precursor, stimulus-responsive polymer cross-linked product, and production method thereof
EP3689585B1 (en) Soluble material for three-dimensional modeling
JP5723638B2 (en) Crosslinked polymer and method for producing crosslinked polymer
JP5855839B2 (en) Light control panel
JP2010254800A (en) Organic/inorganic composite
Chen et al. The evolution of structure and properties of PNIPA/clay nanocomposite hydrogels with the freezing time in polymerization
CN111171494B (en) Impact-resistant shear-thickening polyurethane hydrogel and preparation method thereof
JPWO2019189444A1 (en) Liquid crystal materials, liquid crystal films and their manufacturing methods, sensors, and optical elements
Xie et al. Synthesis, Characterization and Swelling Behaviors of Nano-Cellulose Based Composite Hydrogel
JP4746729B2 (en) Urethane-acrylic water dispersion and its water vapor permeable sheet
WO2023026980A1 (en) Host group-containing polymerizable monomer, polymer material, and method for manufacturing same
菅原 et al. Studies on Mechanical Response of Functional
Mequanint et al. 2-methacryloyloxyethyl N-butylcarbamate: A new co-monomer for synthesis of polyurethane hydrogels with improved mechanical properties for biomedical applications
Biazar et al. Synthesis and properties of thermo-sensitive hydrogels based on PVA/Chitosan/PNIPAAm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09837565

Country of ref document: EP

Kind code of ref document: A1