WO2010079238A1 - Heterotricyclic compounds as positive allosteric modulators of metabotropic glutamate receptors - Google Patents

Heterotricyclic compounds as positive allosteric modulators of metabotropic glutamate receptors Download PDF

Info

Publication number
WO2010079238A1
WO2010079238A1 PCT/EP2010/050304 EP2010050304W WO2010079238A1 WO 2010079238 A1 WO2010079238 A1 WO 2010079238A1 EP 2010050304 W EP2010050304 W EP 2010050304W WO 2010079238 A1 WO2010079238 A1 WO 2010079238A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkylene
amine
compound
indazol
dihydro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2010/050304
Other languages
English (en)
French (fr)
Inventor
Christelle Bolea
Celanire Sylvain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Addex Pharmaceuticals SA
Original Assignee
Addex Pharmaceuticals SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Addex Pharmaceuticals SA filed Critical Addex Pharmaceuticals SA
Priority to AU2010204283A priority Critical patent/AU2010204283A1/en
Priority to EP10700980A priority patent/EP2382219A1/en
Priority to JP2011544892A priority patent/JP2012515152A/ja
Priority to US12/998,955 priority patent/US8697744B2/en
Priority to CA2748843A priority patent/CA2748843A1/en
Publication of WO2010079238A1 publication Critical patent/WO2010079238A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/137Arylalkylamines, e.g. amphetamine, epinephrine, salbutamol, ephedrine or methadone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/275Nitriles; Isonitriles
    • A61K31/277Nitriles; Isonitriles having a ring, e.g. verapamil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/429Thiazoles condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears

Definitions

  • the present invention relates to novel compounds of Formula (I), wherein X 1 , X 2 , Y, Z 1 , Z 2 , Z 3 , M and (A) m are defined as in Formula (I); invention compounds are modulators of metabotropic glutamate receptors - subtype 4 ("mGluR4") which are useful for the treatment or prevention of central nervous system disorders as well as other disorders modulated by mGluR4 receptors.
  • mGluR4 metabotropic glutamate receptors - subtype 4
  • the invention is also directed to pharmaceutical compositions and the use of such compounds in the manufacture of medicaments, as well as to the use of such compounds for the prevention and treatment of such diseases in which mGluR4 is involved.
  • Glutamate is the major amino-acid transmitter in the mammalian central nervous system (CNS). Glutamate plays a major role in numerous physiological functions, such as learning and memory but also sensory perception, development of synaptic plasticity, motor control, respiration and regulation of cardiovascular function. Furthermore, glutamate is at the center of several different neurological and psychiatric diseases, where there is an imbalance in glutamatergic neurotransmission. Glutamate mediates synaptic neurotransmission through the activation of ionotropic glutamate receptor channels (iGluRs), namely the NMDA, AMPA and kainate receptors which are responsible for fast excitatory transmission (Nakanishi et al., (1998) Brain Res. Rev., 26:230-235).
  • iGluRs ionotropic glutamate receptor channels
  • glutamate activates metabotropic glutamate receptors (mGluRs) which have a more modulatory role that contributes to the fine-tuning of synaptic efficacy.
  • mGluRs metabotropic glutamate receptors
  • the mGluRs are G protein-coupled receptors (GPCRs) with seven-transmembrane spanning domains and belong to GPCR family 3 along with the calcium-sensing, GABAb and pheromone receptors.
  • GPCRs G protein-coupled receptors
  • the mGluR family is composed of eight members. They are classified into three groups (group I comprising mGluRl and mGluR5; group II comprising mGluR2 and mGluR3; group III comprising mGluR4, mGluR ⁇ , mGluR7 and mGluR8) according to sequence homology, pharmacological profile and nature of intracellular signalling cascades activated (Schoepp et al., (1999) Neuropharmacology, 38:1431-1476).
  • Glutamate activates the mGluRs through binding to the large extracellular amino- terminal domain of the receptor, herein called the orthosteric binding site. This activation induces a conformational change of the receptor which results in the activation of the G-protein and intracellular signalling pathways.
  • mGluR4 receptors are expressed most intensely in the cerebellar cortex, basal ganglia, sensory relay nuclei of the thalamus and hippocampus (Bradley et al., (1999) Journal of Comparative Neurology, 407:33-46; Corti et al., (2002) Neuroscience, 110:403-420).
  • the mGluR4 subtype is negatively coupled to adenylate cyclase via activation of the Gc ⁇ /o protein, is expressed primarily on presynaptic terminals, functioning as an autoreceptor or heteroceptor and activation of mGluR4 leads to decreases in transmitter release from presynaptic terminals (Corti et al., (2002) Neuroscience, 110:403-420; Millan et al., (2002) Journal of Biological Chemistry, 277:47796-47803; Valenti et al, (2003) Journal of Neuroscience, 23:7218- 7226).
  • Orthosteric agonists of mGluR4 are not selective and activate the other Group III mGluRs (Schoepp et al., (1999) Neuropharmacology, 38:1431-1476).
  • the Group III orthosteric agonist L-AP4 was able to reduce motor deficits in animal models of Parkinson's disease (Valenti et al., (2003) J. Neurosci., 23:7218-7226) and decrease excitotoxicity (Bruno et al., (2000) J. Neurosci., 20;6413-6420) and these effects appear to be mediated through mGluR4 (Marino et al., (2005) Curr. Topics Med. Chem., 5:885-895).
  • mGluR4 is believed to be the most interesting novel drug target for the treatment of Parkinson's disease (for a review see Conn et al., (2005) Nature Review Neuroscience, 6:787-798).
  • Symptoms of Parkinson's disease appear to be due to an imbalance in the direct and indirect output pathways of the basal ganglia and reduction of transmission at the inhibitory GABAergic striato-pallidal synapse in the indirect pathway may result in alleviation of these symptoms (Marino et al, (2002) Amino Acids, 23:185-191).
  • mGluR4 is more abundant in striato-pallidal synapses than in striata -nigral synapses, and its localization suggests function as a presynaptic heteroreceptor on GABAergic neurons (Bradley et al., (1999) Journal of Comparative Neurology, 407:33-46) suggesting that selective activation or positive modulation of mGluR4 would decrease GABA release in this synapse thereby decreasing output of the indirect pathway and reducing or eliminating the Parkinson's disease symptoms.
  • Classical treatment of Parkinsonism typically involves the use of levodopa combined with carbidopa (SINEMETTM) or benserazide (MADOP ARTM).
  • Dopamine agonists such as bromocriptine (PARLODELTM), lisuride and pergolide (CELANCETM) act direcly on dopamine receptors and are also used for the treatment of Parkinsonism. These molecules have the same side-effect profile as levodopa.
  • PARLODELTM bromocriptine
  • CELANCETM pergolide
  • a new avenue for developing selective compounds acting at mGluRs is to identify molecules that act through allosteric mechanisms, modulating the receptor by binding to a site different from the highly conserved orthosteric binding site.
  • PHCCC a positive allosteric modulator of mGluR4 not active on other mGluRs
  • PHCCC also has been shown to be active in animal model of anxiety (Stachowicz et al., (2004) Eur. J. Pharmacol, 498:153-156).
  • ACPT-I has been showed to produce a dose-dependent anti-conflict effect after intrahippocampal administration and anti-depressant-like effects in rats after intracerebroventricular administration (Tatarczynska et al., (2002) Pol. J. Pharmacol, 54(6):707-710).
  • Molecules which activate or potentiate agonist activity of these receptors may be an effective treatment for hyperglycemia, one of the symptoms of type 2 diabetes (Uehara et al, (2004) Diabetes, 53:998-1006).
  • RANTES The ⁇ -chemokine RANTES is importantly involved in neuronal inflammation and has been implicated in the pathophysiology of multiple sclerosis.
  • Activation of Group III mGluRs with L-AP4 reduced the synthesis and release RANTES in wild-type cultured astrocytes, whereas the ability of L-AP4 to inhibit RANTES was greatly decreased in astrocyte cultures from mGluR4 knockout mice (Besong et al., (2002) Journal of
  • mGluR4 receptors Two different variants of the mGluR4 receptor are expressed in taste tissues and may function as receptors for the umami taste sensation (Monastyrskaia et al., (1999) Br. J Pharmacol, 128:1027-1034; Toyono et al., (2002) Arch. Histol. CytoL, 65:91-96).
  • positive allosteric modulators of mGluR4 may be useful as taste agents, flavour agents, flavour enhancing agents or food additives.
  • mGluR4 receptor positive allosteric modulators have been described: pyrazolo[3,4- ⁇ i]pyrimidine derivatives (Niswender et al, (2008) Bioorganic & Medicinal Chemistry Letters, 18(20):5626-5630), functionalized benzylidene hydrazinyl-3-methylquinazoline and ⁇ -2,3-dihydroquinazolin-4(lH)-one (Williams et al., (2009) Bioorganic & Medicinal Chemistry Letters, 19:962-966) and heterobiarylamides (Engers et al, (2009) Journal of Medicinal Chemistry, 52 (14), 4115-4118).
  • the present inventors have discovered novel thiazole compounds of general Formula (I) which surprisingly show potent activity and selectivity on mGluR4 receptor.
  • the compounds of the invention demonstrate advantageous properties over compounds of the prior art. Improvements have been observed in one or more of the following characteristics of the compounds of the invention: the potency on the target, the selectivity for the target, the bioavailability, the brain penetration, and the activity in behavioural models.
  • the present invention relates to a method of treating or preventing a condition in a mammal, including a human, the treatment or prevention of which is affected or facilitated by the neuromodulatory effect of mGluR4 modulators.
  • the compounds of the invention can be used alone or in combination with an agent selected from the group consisting of: levodopa, levodopa with a selective extracerebral decarboxylase inhibitor, carbidopa, entacapone, a COMT inhibitor or a dopamine agonist.
  • the invention relates to compounds having metabotropic glutamate receptor 4 modulator activity.
  • the present invention provides a compound according to Formula (I),
  • M is selected from an optionally substituted 3 to 10 membered ring selected from the group of aryl, heteroaryl, heterocyclic and cycloalkyl;
  • X 1 is selected from the group of N, NR 1 and CR 1 ;
  • Z 1 , Z 2 and Z 3 are each independently selected from the group of N and C representing a 5 membered heteroaryl ring with a maximum of 2 N which may further be substituted by 1 to 2 radicals (A) m ; m is an integer ranging from 1 to 2;
  • (A) m radicals are each independently selected from the group of hydrogen, halogen, - CN, -OH, -CF3, -SH, -NH 2 and an optionally substituted radical selected from the group of -(Ci-C 6 )alkyl, -(Ci-C 6 )haloalkyl, -(C 2 -C 6 )alkynyl, -(C 2 -C 6 )alkenyl, -(C 3 - Cy)cycloalkyl, -(C3-Cs)cycloalkenyl, -(Ci-Ce)cyanoalkyl, -(Ci-C 6 )alkylene-heteroaryl, - (Ci-C 6 )alkylene-aryl, aryl, heteroaryl, heterocycle, -(C 0 -C 6 )alkyl-OR 10 , -0-(C 2 - C 6 )alkylene-OR 10 , -NR
  • the invention provides a compound according to Formula (II):
  • M is selected from an optionally substituted 3 to 10 membered ring selected from the group of aryl, heteroaryl and cycloalkyl;
  • Y is selected from the group of -CR 4 R 5 -CR 6 R 7 - and -CR 4 R 5 -CR 6 R 7 -CR 8 R 9 -;
  • m is 1;
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are each independently selected from the group of hydrogen or an optionally substituted radical selected from the group Of -(C 1 - C 6 )haloalkyl, -(Ci-C 6 )alkyl, -(Ci-C 6 )cyanoalkyl, -(C 3 -C 7 )cycloalkyl, -(C 4 -C io)alkylene- cycloalkyl, heteroaryl, -(Ci-C 6 )alkylene-heteroaryl, aryl, heterocycle and -(C 1 - C 6 )alkylene-aryl.
  • Particular preferred compounds of the invention are compounds as mentioned in the following list (List of Particular Preferred Compounds), as well as a pharmaceutically acceptable acid or base addition salt thereof, a stereochemically isomeric form thereof and an JV-oxide form thereof:
  • (C 1 -C 6 ) means a carbon radical having 1, 2, 3, 4, 5 or 6 carbon atoms.
  • (C 0 -C 6 ) means a carbon radical having 0, 1, 2, 3, 4, 5 or 6 carbon atoms.
  • C means a carbon atom
  • N means a nitrogen atom
  • O means an oxygen atom
  • S means a sulphur atom.
  • a subscript is the integer 0 (zero) the radical to which the subscript refers, indicates that the radical is absent, i.e. there is a direct bond between the radicals.
  • bond refers to a saturated covalent bond. When two or more bonds are adjacent to one another, they are assumed to be equal to one bond. For example, a radical -A-B-, wherein both A and B may be a bond, the radical is depicting a single bond.
  • alkyl includes both straight and branched chain alkyl radicals and may be methyl, ethyl, n-propyl, /-propyl, n-butyl, /- butyl, 5-butyl, /-butyl, n-pentyl, /-pentyl, /-pentyl, neo-pentyl, n-hexyl, /-hexyl or /- hexyl.
  • (Co-C 3 )alkyl refers to an alkyl radical having 0, 1, 2 or 3 carbon atoms and may be methyl, ethyl, n-propyl and i-propyl.
  • alkylene includes both straight and branched difunctional saturated hydrocarbon radicals and may be methylene, ethylene, /-propylene, n-butylene, /-butylene, s-butylene, /-butylene, n- pentylene, /-pentylene, /-pentylene, neo-pentylene, n-hexylene, /-hexylene or /- hexylene.
  • cycloalkyl refers to an optionally substituted carbocycle containing no heteroatoms, including mono-, bi-, and tricyclic saturated carbocycles, as well as fused ring systems.
  • fused ring systems can include one ring that is partially or fully unsaturated such as a benzene ring to form fused ring systems such as benzo- fused carbocycles.
  • Cycloalkyl includes such fused ring systems as spirofused ring systems.
  • cycloalkyl examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, decahydronaphthalene, adamantane, indanyl, fluorenyl and 1,2,3,4-tetrahydronaphthalene and the like.
  • (C3-Cv)cycloalkyl may be cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and the like.
  • alkenyl includes both straight and branched chain alkenyl radicals.
  • (C 2 -C 6 )alkenyl refers to an alkenyl radical having 2 to 6 carbon atoms and one or two double bonds, and may be, but is not limited to vinyl, allyl, propenyl, i-propenyl, butenyl, i-butenyl, crotyl, pentenyl, i- pentenyl and hexenyl.
  • alkynyl includes both straight and branched chain alkynyl radicals.
  • aryl refers to an optionally substituted monocyclic or bicyclic hydrocarbon ring system containing at least one unsaturated aromatic ring. Examples and suitable values of the term “aryl” are phenyl, naphthyl, 1,2,3,4-tetrahydronaphthyl, indyl, indenyl and the like.
  • heteroaryl refers to an optionally substituted monocyclic or bicyclic unsaturated, aromatic ring system containing at least one heteroatom selected independently from N, O or S.
  • heteroaryl may be, but are not limited to thienyl, pyridyl, thiazolyl, isothiazolyl, furyl, pyrrolyl, triazolyl, imidazolyl, oxadiazolyl, oxazolyl, isoxazolyl, pyrazolyl, imidazolonyl, oxazolonyl, thiazolonyl, tetrazolyl, thiadiazolyl, benzo imidazolyl, benzooxazolyl,benzothiazolyl, tetrahydrotriazolopyridyl, tetrahydrotriazolopyrimidinyl, benzofuryl, benzothiophenyl, thionaphthyl, indolyl, isoindolyl, pyridonyl, pyridazinyl, pyrazinyl, pyrimidinyl, quinolyl,
  • alkylene-aryl refers respectively to a substituent that is attached via the alkyl radical to an aryl, heteroaryl or cycloalkyl radical, respectively.
  • (Ci-C 6 )alkylene-aryl includes aryl-Ci-C ⁇ -alkyl radicals such as benzyl, 1- phenylethyl, 2-phenylethyl, 1-phenylpropyl, 2-phenylpropyl, 3-phenylpropyl, 1- naphthylmethyl and 2-naphthylmethyl.
  • (Ci-C 6 )alkylene-heteroaryl includes heteroaryl-Ci-C 6 -alkyl radicals, wherein examples of heteroaryl are the same as those illustrated in the above definition, such as 2-furylmethyl, 3-furylmethyl, 2- thienylmethyl, 3-thienylmethyl, 1-imidazolylmethyl, 2-imidazolylmethyl, 3- imidazolylmethyl, 2-oxazolylmethyl, 3-oxazolylmethyl, 2-thiazolylmethyl, 3- thiazolylmethyl, 2-pyridylmethyl, 3-pyridylmethyl, 4-pyridylmethyl, 1-quinolylmethyl or the like.
  • heterocycle refers to an optionally substituted, monocyclic or bicyclic saturated, partially saturated or unsaturated ring system containing at least one heteroatom selected independently from N, O and S.
  • a 5- or 6-membered ring containing one or more atoms independently selected from C, N, O and S includes aromatic and heteroaromatic rings as well as carbocyclic and heterocyclic rings which may be saturated or unsaturated.
  • rings may be, but are not limited to, furyl, isoxazolyl, isothiazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidyl, pyrrolyl, thiazolyl, thienyl, imidazolyl, imidazolidinyl, imidazolinyl, triazolyl, morpholinyl, piperazinyl, piperidyl, piperidonyl, pyrazolidinyl, pyrazolinyl, pyrrolidinyl, pyrrolinyl, tetrahydropyranyl, tetrahydrothiopyranyl, oxazolidinonyl, thiomorpholinyl, oxadiazolyl, thiadiazolyl, tetrazolyl, phenyl, cyclohexyl, cyclopentyl,
  • a 3- to 10-membered ring containing one or more atoms independently selected from C, N, O and S includes aromatic and heteroaromatic rings as well as carbocyclic and heterocyclic rings which may be saturated or unsaturated.
  • Such rings may be, but are not limited to imidazolidinyl, imidazolinyl, morpholinyl, piperazinyl, piperidyl, piperidonyl, pyrazolidinyl, pyrazolinyl, pyrrolidinyl, pyrrolinyl, tetrahydropyranyl, thiomorpholinyl, tetrahydrothiopyranyl, furyl, pyrrolyl, isoxazolyl, isothiazolyl, oxazolyl, oxazolidinonyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridyl, pyrimidyl, pyrrolyl, thiazolyl, thienyl, imidazolyl, triazolyl, phenyl, cyclopropyl, aziridinyl, eye Io butyl, azetidinyl, oxadia
  • haloalkyl means an alkyl radical as defined above, substituted with one or more halo radicals.
  • the term “(C 1 - C 6 )haloalkyl” may include, but is not limited to, fluoromethyl, difluoromethyl, trifluoromethyl, fluoroethyl and difluoroethyl.
  • the term “O-Ci-C ⁇ -haloalkyl” may include, but is not limited to, fluoromethoxy, difluoromethoxy, trifluoromethoxy and fluoro ethoxy.
  • haloalkylene means an alkylene radical as defined above, substituted with one or more halo radicals.
  • (Ci-C6)haloalkylene may include, but is not limited to, fluoromethylene, difluoromethylene, fluoroethylene and difluoroethylene.
  • 0-C I -C 6 - haloalkylene may include, but is not limited to, fluoromethylenoxy, difluoromethylenoxy and fluoroethylenoxy.
  • cyanoalkyl means an alkyl radical as defined above, substituted with one or more cyano.
  • cyanoalkylene means an alkylene radical as defined above, substituted with one or more cyano.
  • optionally substituted refers to radicals further bearing one or more substituents which may be, (Ci-Ce)alkyl, hydroxy, (Ci-C6)alkylene-oxy, mercapto, aryl, heterocycle, halogen, trifluoromethyl, pentafluoroethyl, cyano, cyanomethyl, nitro, amino, amido, amidinyl, carboxyl, carboxamide, carbamate, sulfonamide, ester and sulfonyl.
  • solvate refers to a complex of variable stoichiometry formed by a solute (e.g. a compound of Formula (I)) and a solvent.
  • the solvent is a pharmaceutically acceptable solvent as preferably water; such solvent may not interfere with the biological activity of the solute.
  • positive allosteric modulator of mGluR4" or “allosteric modulator of mGluR4" refers also to a pharmaceutically acceptable acid or base addition salt thereof, a stereochemical ⁇ isomeric form thereof and an JV-oxide form thereof.
  • the term “compound” also embraces or includes pharmaceutically acceptable acid or base addition salts thereof, and/or stereochemical ⁇ isomeric forms thereof and/or JV-oxide forms thereof.
  • Allosteric modulators of mGluR4 described herein, and the pharmaceutically acceptable salts, solvates and hydrates thereof can be used in pharmaceutical preparations in combination with a pharmaceutically acceptable carrier or diluent.
  • Suitable pharmaceutically acceptable carriers include inert solid fillers or diluents and sterile aqueous or organic solutions.
  • the allosteric modulators of mGluR4 will be present in such pharmaceutical compositions in amounts sufficient to provide the desired dosage amount in the range described herein. Techniques for formulation and administration of the compounds of the instant invention can be found in Remington: the Science and Practice of Pharmacy, 19 th edition, Mack Publishing Co., Easton, PA (1995).
  • the amount of allosteric modulators of mGluR4, administered to the subject will depend on the type and severity of the disease or condition and on the characteristics of the subject, such as general health, age, sex, body weight and tolerance to drugs. The skilled artisan will be able to determine appropriate dosages depending on these and other factors. Effective dosages for commonly used CNS drugs are well known to the skilled person.
  • the total daily dose usually ranges from about 0.05 - 2000 mg.
  • compositions which provide from about 0.01 to 1000 mg of the active ingredient per unit dose.
  • the compositions may be administered by any suitable route.
  • parenterally in the form of solutions for injection topically in the form of onguents or lotions, ocularly in the form of eye-drops, rectally in the form of suppositories, intranasally or transcutaneously in the form of delivery system like patches.
  • the allosteric modulators of mGluR4 thereof can be combined with a suitable solid or liquid carrier or diluent to form capsules, tablets, pills, powders, syrups, solutions, suspensions and the like.
  • the tablets, pills, capsules, and the like contain from about 0.01 to about 99 weight percent of the active ingredient and a binder such as gum tragacanth, acacias, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid, a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose or saccharin.
  • a dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as a fatty oil.
  • a liquid carrier such as a fatty oil.
  • Various other materials may be present as coatings or to modify the physical form of the dosage unit.
  • tablets may be coated with shellac, sugar or both.
  • a syrup or elixir may contain, in addition to the active ingredient, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and a flavoring such as cherry or orange flavor.
  • the disclosed allosteric modulators of mGluR4 can be combined with sterile aqueous or organic media to form injectable solutions or suspensions.
  • injectable solutions or suspensions for example, solutions in sesame or peanut oil, aqueous propylene glycol and the like can be used, as well as aqueous solutions of water-soluble pharmaceutically-acceptable salts of the compounds.
  • Dispersions can also be prepared in glycerol, liquid polyethylene glycols and mixtures thereof in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
  • the compounds may also be formulated as a depot preparation.
  • Such long acting formulations may be administered by implantation, for example, subcutaneously or intramuscularly or by intramuscular injection.
  • implantation for example, subcutaneously or intramuscularly or by intramuscular injection.
  • sparingly soluble derivatives for example, as sparingly soluble salts.
  • Preferably disclosed allosteric modulators of mGluR4 or pharmaceutical formulations containing these compounds are in unit dosage form for administration to a mammal.
  • the unit dosage form can be any unit dosage form known in the art including, for example, a capsule, an IV bag, a tablet, or a vial.
  • the quantity of active ingredient in a unit dose of composition is an effective amount and may be varied according to the particular treatment involved. It may be appreciated that it may be necessary to make routine variations to the dosage depending on the age and condition of the patient.
  • the dosage will also depend on the route of administration which may be by a variety of routes including oral, aerosol, rectal, transdermal, subcutaneous, intravenous, intramuscular, intraperitoneal and intranasal.
  • Classical treatment of Parkinsonism typically involves the use of levodopa combined with carbidopa (SINEMETTM) or benserazide (MADOPARTM).
  • Dopamine agonists such as bromocriptine (PARLODELTM), lisuride and pergolide (CELANCETM) act direcly on dopamine receptors and are also used for the treatment of Parkinsonism.
  • the compounds according to the invention may be prepared by methods known in the art of organic synthesis as set forth in part by the following synthesis schemes. In all of the schemes described below, it is well understood that protecting groups for sensitive or reactive groups are employed where necessary in accordance with general principles of chemistry. Protecting groups are manipulated according to standard methods of organic synthesis (Green T. W. and Wuts P. G. M., (1991) Protecting Groups in Organic Synthesis, John Wiley & Sons). These groups are removed at a convenient stage of the compound synthesis using methods that are readily apparent to those skilled in the art. The selection of process as well as the reaction conditions and order of their execution shall be consistent with the preparation of compounds of Formula (I) to (III).
  • the compounds according to the invention may be represented as a mixture of enantiomers, which may be resolved into the individual pure R- or S-enantiomers. If for instance, a particular enantiomer is required, it may be prepared by asymmetric synthesis or by derivation with a chiral auxiliary, where the resulting diastereomeric mixture is separated and the auxiliary group cleaved to provide the pure desired enantiomers.
  • a basic functional group such as an amino or an acidic functional group such as carboxyl
  • this resolution may be conveniently performed by fractional crystallization from various solvents as the salts of an optical active acid or by other methods known in the literature (e.g. chiral column chromatography). Resolution of the final product, an intermediate or a starting material may be performed by any suitable method known in the art (Eliel EX., Wilen S.H. and Mander L.N., (1984) Stereochemistry of Organic Compounds, Wiley-Interscience).
  • heterocyclic compounds of the invention can be prepared using synthetic routes well known in the art (Katrizky A.R. and. Rees C. W., (1984) Comprehensive Heterocyclic Chemistry, Pergamon Press).
  • the product from the reaction can be isolated and purified employing standard techniques, such as extraction, chromatography, crystallization and distillation.
  • the compounds of the invention may be prepared by general route of synthesis as disclosed in the following methods.
  • compounds of Formula (III) may be prepared according to the synthetic sequences illustrated in Scheme 1.
  • Pyrazole g3 can be synthesized from cyclohexane-l,3-dione gl which is condensed with 1,1- dimethoxy- ⁇ /, ⁇ /-dimethylmethanamine followed by cyclization in the presence of hydrazine. Then compound g3, in the presence of pyridinium tribromide, can be transformed into bromoketone g4 which undergoes cyclization with thiourea g5 to yield aminothiazole g6.
  • compounds of Formula (III) may be prepared according to the synthetic sequences illustrated in Scheme 2.
  • Pyrazole g3 can be prepared from cyclohexane-l,3-dione gl which is condensed with 1,1-dimethoxy- N, ⁇ /-dimethylmethanamine followed by cyclization, under acidic conditions, in the presence of hydrazine. Then compound g3, in the presence of pyridinium tribromide, can be transformed into dibromoketone g7 which undergoes cyclization with thiourea g5 to yield aminothiazole g6.
  • compounds of Formula (III) may be prepared according to the synthetic sequences illustrated in Scheme 3.
  • Pyrazole g9 can be synthesized from enamine g2 which is transformed into tosylhydrazide and cyclized. Then compound g9, in the presence of N-bromosuccinimide, can be transformed into bromoketone glO which undergoes at the same time cyclization with thiourea g5 and deprotection to yield aminothiazole g6.
  • compounds of Formula (III) may be prepared according to the synthetic sequences illustrated in Scheme 4. Cyclohexane- 1,3-dione gll is monoacylated under classical conditions and is rearranged into ketone gl3. Then, in the presence of hydrazine, compound gl3 can be cyclized into pyrazole gl4. Double bromination of ketone gl4, in the presence of bromine, allows cyclization with thiourea g5 into aminothiazole gl6.
  • Scheme 4 In one embodiment of the present invention compounds of Formula (III) may be prepared according to Scheme 5. g6 as described above, may be acylated by acetyl chloride to yield pyrazole gl7.
  • Step 1 A solution of cyclohexane-l,3-dione (89 mmol, 10 g) and of l,l-dimethoxy-N, ⁇ /-dimethylmethanamine (263 mmol, 35.0 mL) was stirred under reflux for 2 hours. After evaporation, 14.8 g (88.5 mmol, 99%) of 2- ((dimethylamino)methylene)cyclohexane-l,3-dione were obtained as a yellow solid.
  • Step 2 A solution of hydrazine hydrochloride (41.9 mmol, 2.87 g), NaOH (6 M, 42 mmol, 7.0 mL) in MeOH (100 mL) was added, at 0 0 C, to a solution of 2-((dimethylamino)methylene)cyclohexane-l,3-dione (41.9 mmol, 7.00 g) and the reaction mixture was stirred under reflux for 3 hours. After evaporation, water was added and the aqueous phase was extracted with AcOEt at 50 0 C.
  • Step 3 Pyridinium tribromide (25.7 mmol, 8.22 g) was added to a solution of 6,7-dihydro-lH-indazol-4(5H)-one (25.7 mmol, 3.50 g) in acetic acid (60 mL) and the reaction mixture was stirred under reflux for 2 hours. After evaporation of the solvent, the crude residue was partitioned between DCM and a saturated solution OfNa 2 S 2 Os.
  • Step 4 A solution of 5-bromo-6,7-dihydro-lH-indazol-4(5H)- one (23.3 mmol, 5.00 g) and of l-(pyridin-2-yl)thiourea (20.9 mmol, 3.21 g) in acetone (60 mL) was stirred at 60 0 C for 5 hours. The precipitate formed was filtered and partitioned between AcOEt and a saturated solution of NaHCCh. The aqueous phase was extracted with AcOEt.
  • Step 1 A solution of 5,5-dimethylcyclohexane-l,3-dione (428 mmol, 60 g) and of l,l-dimethoxy-N, ⁇ /-dimethylmethanamine (514 mmol, 68.2 mL) was stirred at room temperature for 1 hour. After evaporation and trituration in cyclohexane, 38.5 g (197 mmol, 46%) of 2-((dimethylamino)methylene)-5,5- dimethylcyclohexane-l,3-dione were obtained as a pale yellow solid.
  • Step 2 At 0 0 C, acetic acid (8.55 mL) followed by hydrazine monohydrate (197 mmol, 11.3 mL), were added slowly to a solution of 2- ((dimethylamino)methylene)-5,5-dimethylcyclohexane-l,3-dione (197 mmol, 38.5 g) in butanol (400 mL). The reaction mixture was stirred under reflux for 16 hours.
  • Step 3 Pyridinium tribromide (15.2 mmol, 4.87 g) was added to a solution of 6,6-dimethyl-6,7-dihydro-lH-indazol-4(5H)-one (6.09 mmol, 1.00 g) in acetic acid (9 mL) and the reaction mixture was heated under reflux for 3 hours. After evaporation of the solvent, the crude residue was partitioned between DCM and a saturated solution Of Na 2 COs.
  • Step 4 A solution of 5,5-dibromo-6,6-dimethyl-6,7-dihydro- lH-indazol-4(5H)-one (6.09 mmol, 1.96 g) and of l-(pyrimidin-2-yl)thiourea (7.31 mmol, 1.13 g) in ethanol (15 mL) was microwaved at 150 0 C for 90 minutes and then at 140 0 C for 40 minutes. After filtration, the reaction mixture was concentrated to dryness.
  • the crude residue was partitioned between DCM and a saturated solution of Na 2 CO 3 .
  • the aqueous phase was extracted with DCM.
  • the organic phase was dried over Na 2 SO 4 and concentrated.
  • the crude residue was purified by flash chromatography over silica gel using DCM/MeO ⁇ (98:2 to 90:10) as eluent to yield 4,4-dimethyl- ⁇ /-(pyrimidin-2-yl)-5,6-dihydro-4H-thiazolo[4,5-e]indazol-2-amine (0.10 mmol, 31 mg) as a brown solid.
  • Step 1 A solution of 4,4-dimethylcyclohexane-l,3-dione (157 mmol, 22 g) and of l,l-dimethoxy-N, ⁇ /-dimethylmethanamine (235 mmol, 31.3 mL) was stirred at room temperature for 1 hour. After evaporation and trituration in petroleum ether, 29.2 g (150 mmol, 95%) of 2-((dimethylamino)methylene)-4,4- dimethylcyclohexane-l,3-dione were obtained as a pale orange solid.
  • Step 2 At 0 0 C, acetic acid (8.55 mL) followed by hydrazine monohydrate (150 mmol, 7.25 mL), were added slowly to a solution of 2- ((dimethylamino)methylene)-4,4-dimethylcyclohexane-l,3-dione (150 mmol, 29.2 g) in butanol (400 mL). The reaction mixture was stirred under reflux for 16 hours.
  • Step 1 4-Methylbenzenesulfonohydrazide (44.6 mmol, 8.31 g) was added to a solution of 2-((dimethylamino)methylene)cyclohexane-l,3-dione (44.6 mmol, 7.46 g) in EtOH (50 mL) and the reaction mixture was stirred at room temperature for 5 minutes. After evaporation, 13.8 g (44.6 mmol, 100%) of N' - ⁇ 2,6- dioxocyclohexylidene)methyl)-4-methylbenzenesulfonohydrazide were obtained as an orange oil.
  • Step 2 A solution of ⁇ f'-((2,6-dioxocyclohexylidene)methyl)-4- methylbenzenesulfonohydrazide (32.4 mmol, 10.0 g) in EtOH (10 mL) was stirred at 80 0 C for 15 hours. After evaporation, water was added and the aqueous phase was extracted with DCM. The organic phase was dried over Na 2 SO 4 , was filtered and was concentrated.
  • Step 3 N-Bromosuccinimide (3.44 mmol, 613 mg) was added to a solution of l-tosyl-6,7-dihydro-lH-indazol-4(5H)-one (3.44 mmol, 1.00 g) in DCM (10 mL) and the reaction mixture was stirred at room temperature for 12 hours. A solution of Na ⁇ C ⁇ 3 was added to the reaction mixture and the aqueous phase was extracted with DCM. The organic phase was dried over Na 2 SO 4 and concentrated to yield 5-bromo-l-tosyl-6,7-dihydro-lH-indazol-4(5H)-one (2.44 mmol, 900 mg, 42%) as an orange oil.
  • Step 2 AICI3 (26.5 mmol, 3.53 g) was added to a solution of 3- oxocyclohex-1-enyl acetate (13.2 mmol, 2.04 g) in dichloro ethane (10 mL) and the reaction mixture was stirred at room temperature for 2 hours. The reaction mixture was poured onto a solution of H 2 SO 4 in ice. The aqueous phase was extracted with CHCI3 (50 mL). The organic phase was washed with water, dried over Na 2 SO 4 , was filtered and was concentrated to yield 2-acetylcyclohexane-l,3-dione (7.78 mmol, 1.20 g, 59%) as a yellow oil.
  • Step 3 Hydrazine monohydrate (7.59 mmol, 0.37 mL) was added to a solution of 2-acetylcyclohexane-l,3-dione (7.59 mmol, 1.17 g) in EtOH (19 mL) at 0 0 C and the reaction mixture was stirred at room temperature for 2 hours. After evaporation, the crude residue was purified by flash chromatography over silica gel using DCM/AcOEt (70:30 to 50:50) as eluent to yield 3-methyl-6,7-dihydro-l/f- indazol-4(5H)-one (1.76 mmol, 265 mg, 23%) as a yellow solid.
  • the aqueous phase was extracted with DCM.
  • the organic phase was washed with a saturated solution OfNaHCO 3 , was dried over Na 2 SO 4 and concentrated to yield a mixture of 5,5-dibromo-3-methyl-6,7- dihydro-lH-indazol-4(5H)-one and of 5-bromo-3-methyl-6,7-dihydro-lH-indazol- 4(5H)-one (37.5:62.5, 173 mg) as a brown oil.
  • Step 5 A solution of a mixture of 5,5-dibromo-3-methyl-6,7- dihydro- lH-indazol-4(5H)-one, 5-bromo-3-methyl-6,7-dihydro- lH-indazol-4(5H)-one (37.5:62.5, 173 mg) and of l-(pyridin-2-yl)thiourea (0.67 mmol, 102 mg) in EtOH (2.4 mL) was stirred under reflux for 3 hours.
  • EXAMPLE 6 2-Methyl-l-(2-(pyridin-2-ylamino)-4H-thiazolo[4,5-e]indazol- 6(5H)-yl)propan-l-one (Final Compound 1-2)
  • Isobutyryl chloride (0.37 mmol, 39 ⁇ L) was added dropwise to a solution of ⁇ /-(pyridin-2-yl)-5,6-dihydro-4H-thiazolo[4,5-e]indazol-2-amine (0.37 mmol, 100 mg) in T ⁇ F (2 mL) and the reaction mixture was stirred for 4 hours at room temperature.
  • the reaction mixture was quenched with a saturated solution OfNaHCO 3 and the aqueous phase was extracted with DCM. The organic phase was dried over Na 2 SO 4 , was filtered and was concentrated. The resulting crude product was purified by flash chromatography over silica gel using DCM as eluent to yield after evaporation 2-methyl- 1 -(2-(pyridin-2-ylamino)-4H-thiazolo[4,5-e]indazol-6(5H)-yl)propan- 1 -one (88 ⁇ mol, 30 mg, 23%) as a pale pink solid.
  • Table 1 Compounds prepared according to the Examples.
  • LC-MS were recorded on Waters Micro mass ZQ 2996 system with the following conditions: Reversed phase HPLC was carried out on Zorbax SB-Cl 8 cartridge (1.8 ⁇ m, 4.6 x 30 mm) from Agilent, with a flow rate of 1.5 mL/min. The gradient conditions used are: 90 % A (water + 0.1 % of formic acid), 10% B (acetonitrile + 0.1 % of formic acid) to 100 % B at 3.5 minutes, kept till 3.7 minutes and equilibrated to initial conditions at 3.8 minutes until 4.5 minutes. Injection volume 5-20 ⁇ L. ES MS detector was used, acquiring both in positive and negative ionization modes. Cone voltage was 30 V for both positive and negative ionization modes.
  • UPLC-MS were recorded on Waters ACQUITY UPLC with the following conditions: Reversed phase HPLC was carried out on BEH-C 18 cartridge (1.7 ⁇ m, 2.1 x 50 mm) from Waters, with a flow rate of 0.8 mL/min. The gradient conditions used are: 90 % A (water + 0.1 % of formic acid), 10% B (acetonitrile + 0.1 % of formic acid) to 100 % B at 1.3 minutes, kept till 1.6 minutes and equilibrated to initial conditions at 1.7 minutes until 2.0 minutes. Injection volume 5 ⁇ L. ES MS detector was used, acquiring both in positive and negative ionization modes.
  • the compounds provided in the present invention are positive allosteric modulators of mGluRA As such, these compounds do not appear to bind to the orthosteric glutamate recognition site, and do not activate the mGluR4 by themselves. Instead, the response of mGluR4 to a concentration of glutamate or mGluR4 agonist is increased when compounds of Formula I to III are present. Compounds of Formula I to III are expected to have their effect at mGluR4 by virtue of their ability to enhance the function of the receptor.
  • the compounds of the present invention are positive allosteric modulators of mGluR4 receptor. Their activity was examined on recombinant human mGluR4a receptors by detecting changes in intracellular Ca 2+ concentration, using the fluorescent Ca 2+ -sensitive dye Fluo4-(AM) and a Fluorometric Imaging Plate Reader (FLIPR, Molecular Devices, Sunnyvale, CA). Transfection and Cell culture
  • the cDNA encoding the human metabotropic glutamate receptor (hmGluR4) was subcloned into an expression vector containing also the hygromycin resistance gene.
  • the cDNA encoding a G protein allowing redirection of the activation signal to intracellular calcium flux was subcloned into a different expression vector containing also the puromycin resistance gene.
  • Transfection of both these vectors into HEK293 cells with PolyFect reagent (Qiagen) according to supplier's protocol, and hygromycin and puromycin treatment allowed selection of antibiotic resistant cells which had integrated stably one or more copies of the plasmids.
  • Positive cellular clones expressing hmGluR4 were identified in a functional assay measuring changes in calcium fluxes in response to glutamate or selective known mGluR4 orthosteric agonists and antagonists.
  • HEK-293 cells expressing hmGluR4 were maintained in media containing DMEM, dialyzed Fetal Calf Serum (10 %), GlutamaxTM (2 mM), Penicillin (100 units/mL), Streptomycin (100 ⁇ g/mL), Geneticin (100 ⁇ g/mL) and Hygromycin-B (40 ⁇ g/mL) and puromycin (1 ⁇ g/mL) at 37°C/5%CO 2 .
  • Fluorescent cell based- Ca 2+ mobilization assay Human mGluR4 HEK-293 cells were plated out 24 hours prior to FLIPR 384 assay in black-walled, clear-bottomed, poly-L-ornithine-coated 384-well plates at a density of 25,000 cells/well in a glutamine/glutamate free DMEM medium containing foetal bovine serum (10 %), penicillin (100 units/mL) and streptomycin (100 ⁇ g/mL) at 37°C/5 %CO 2 .
  • the medium was aspirated and the cells were loaded with a 3 ⁇ M solution of Fluo4-AM (LuBioScience, Lucerne, Switzerland) in 0.03 % pluronic acid. After 1 hour at 37°C/ 5% CO 2 , the non incorporated dye was removed by washing cell plate with the assay buffer and the cells were left in the dark at room temperature for six hours before testing. All assays were performed in a pH 7.4 buffered- solution containing 20 niM HEPES, 143 niM NaCl, 6 niM KCl, 1 niM MgSO 4 , 1 niM CaCl 2 , 0.125 niM sulfapyrazone and 0.1 % glucose.
  • EC25 glutamate concentration is the concentration giving 25% of the maximal glutamate response.
  • concentration-response curves of representative compounds of the present invention were generated using the Prism GraphPad software (Graph Pad Inc, San Diego, USA). The curves were fitted to a four-parameter logistic equation:
  • Table 3 represents the mean EC50 obtained from at least three independent experiments of selected molecules performed in duplicate.
  • the positive allosteric modulators provided in the present invention are expected to increase the effectiveness of glutamate or mGluR4 agonists at mGluR4 receptor. Therefore, these positive allosteric modulators are expected to be useful for treatment of various neurological and psychiatric disorders associated with glutamate dysfunction described to be treated herein and others that can be treated by such positive allosteric modulators.
  • the compounds of the invention can be administered either alone, or in combination with other pharmaceutical agents effective in the treatment of conditions mentioned above.
  • Typical examples of recipes for the formulation of the invention are as follows: 1. Tablets
  • Potato starch ad 200 mg active ingredient can be replaced by the same amount of any of the compounds according to the present invention, in particular by the same amount of any of the exemplified compounds.
  • An aqueous suspension is prepared for oral administration so that each 1 milliliter contains 1 to 5 mg of one of the active compounds, 50 mg of sodium carboxymethyl cellulose, 1 mg of sodium benzoate, 500 mg of sorbitol and water ad 1 mL.
  • Injectable A parenteral composition is prepared by stirring 1.5 % by weight of active ingredient of the invention in 10% by volume propylene glycol and water.
  • active ingredient can be replaced with the same amount of any of the compounds according to the present invention, in particular by the same amount of any of the exemplified compounds.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Diabetes (AREA)
  • Psychiatry (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Psychology (AREA)
  • Endocrinology (AREA)
  • Hospice & Palliative Care (AREA)
  • Rheumatology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Addiction (AREA)
  • Nutrition Science (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Seasonings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
PCT/EP2010/050304 2009-01-12 2010-01-12 Heterotricyclic compounds as positive allosteric modulators of metabotropic glutamate receptors Ceased WO2010079238A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2010204283A AU2010204283A1 (en) 2009-01-12 2010-01-12 Heterotricyclic compounds as positive allosteric modulators of metabotropic glutamate receptors
EP10700980A EP2382219A1 (en) 2009-01-12 2010-01-12 Heterotricyclic compounds as positive allosteric modulators of metabotropic glutamate receptors
JP2011544892A JP2012515152A (ja) 2009-01-12 2010-01-12 代謝調節型グルタミン酸レセプターのポジティブアロステリックモジュレーターとしてのヘテロ三環式化合物
US12/998,955 US8697744B2 (en) 2009-01-12 2010-01-12 Substituted 5,6-dihydro-4H-thiazolo[4,5-E]indazoles and their use as positive allosteric modulators of metabotropic glutamate receptors
CA2748843A CA2748843A1 (en) 2009-01-12 2010-01-12 Heterotricyclic compounds as positive allosteric modulators of metabotropic glutamate receptors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0900404.5 2009-01-12
GBGB0900404.5A GB0900404D0 (en) 2009-01-12 2009-01-12 New compounds 4

Publications (1)

Publication Number Publication Date
WO2010079238A1 true WO2010079238A1 (en) 2010-07-15

Family

ID=40379432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/050304 Ceased WO2010079238A1 (en) 2009-01-12 2010-01-12 Heterotricyclic compounds as positive allosteric modulators of metabotropic glutamate receptors

Country Status (7)

Country Link
US (1) US8697744B2 (enExample)
EP (1) EP2382219A1 (enExample)
JP (1) JP2012515152A (enExample)
AU (1) AU2010204283A1 (enExample)
CA (1) CA2748843A1 (enExample)
GB (1) GB0900404D0 (enExample)
WO (1) WO2010079238A1 (enExample)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012068211A1 (en) * 2010-11-18 2012-05-24 Janssen Pharmaceutica Nv Tricyclic inhibitors of pro-matrix metalloproteinase activation
WO2013107862A1 (en) * 2012-01-18 2013-07-25 Addex Pharma S.A. NOVEL 2-AMINO-4,5,6,8-TETRAHYDROPYRAZOLO[3,4-b]THIAZOLO [4,5-d]AZEPINE DERIVATIVES AND THEIR USE AS ALLOSTERIC MODULATORS OF METABOTROPIC GLUTAMATE RECEPTORS
EP2593277A4 (en) * 2010-07-14 2014-09-03 Addex Pharmaceuticals Sa Novel condensed pyrazoline derivatives and their use as allosmetic modulators of metabotropic glutamate receptors
EP2853532A1 (en) 2013-09-28 2015-04-01 Instytut Farmakologii Polskiej Akademii Nauk 1,2,4-oxadiazole derivatives as allosteric modulators of metabotropic glutamate receptors belonging to group III
US9073941B2 (en) 2010-06-28 2015-07-07 Academia Sinica Compounds and methods for treating tuberculosis infection
US9765091B2 (en) 2010-07-14 2017-09-19 Addex Pharma S.A. Tetrahydropyrazolo [3,4-b] azepine derivatives and their use as allosteric modulators of metabotropic glutamate receptors
WO2022167002A1 (zh) * 2021-07-19 2022-08-11 成都大学 含二氢苯并呋喃结构的1,4-硫桥多环化合物、其制备方法及用途

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008999A2 (en) * 2010-07-14 2012-01-19 Merck Sharp & Dohme Corp. Tricyclic compounds as allosteric modulators of metabotropic glutamate receptors
MX2024004444A (es) 2021-10-14 2024-05-08 Incyte Corp Compuestos de quinolina como inhibidores de la proteina del virus de sarcoma de rata kirsten (kras).

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005137A1 (en) * 1995-07-31 1997-02-13 Novo Nordisk A/S Heterocyclic compounds, their preparation and use
WO2005007096A2 (en) 2003-07-11 2005-01-27 Merck & Co., Inc. Treatment of movement disorders with a metabotropic glutamate 4 receptor positive allosteric modulator
WO2006040279A1 (de) 2004-10-07 2006-04-20 Boehringer Ingelheim International Gmbh Pi3-kinasen
WO2007032854A1 (en) * 2005-08-19 2007-03-22 Schering Corporation FUSED TRICYCLIC mGluR1 ANTAGONISTS AS THERAPEUTIC AGENTS
WO2009010455A2 (en) 2007-07-13 2009-01-22 Addex Pharma S.A. Pyrazole derivatives as modulators of metabotropic glutamate receptors
WO2009070871A1 (en) 2007-12-04 2009-06-11 Mds Analytical Technologies, A Business Unit Of Mds Inc. Doing Business Through Its Sciex Division Systems and methods for analyzing substances using a mass spectrometer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005137A1 (en) * 1995-07-31 1997-02-13 Novo Nordisk A/S Heterocyclic compounds, their preparation and use
WO2005007096A2 (en) 2003-07-11 2005-01-27 Merck & Co., Inc. Treatment of movement disorders with a metabotropic glutamate 4 receptor positive allosteric modulator
WO2006040279A1 (de) 2004-10-07 2006-04-20 Boehringer Ingelheim International Gmbh Pi3-kinasen
WO2007032854A1 (en) * 2005-08-19 2007-03-22 Schering Corporation FUSED TRICYCLIC mGluR1 ANTAGONISTS AS THERAPEUTIC AGENTS
WO2009010455A2 (en) 2007-07-13 2009-01-22 Addex Pharma S.A. Pyrazole derivatives as modulators of metabotropic glutamate receptors
WO2009070871A1 (en) 2007-12-04 2009-06-11 Mds Analytical Technologies, A Business Unit Of Mds Inc. Doing Business Through Its Sciex Division Systems and methods for analyzing substances using a mass spectrometer

Non-Patent Citations (47)

* Cited by examiner, † Cited by third party
Title
"Remington: the Science and Practice of Pharmacy", 1995, MACK PUBLISHING CO.
BATTAGLIA ET AL., J. NEUROSCI., vol. 26, 2006, pages 7222 - 7229
BESONG ET AL., JOURNAL OF NEUROSCIENCE, vol. 22, 2002, pages 5403 - 5411
BRADLEY ET AL., JOURNAL OF COMPARATIVE NEUROLOGY, vol. 407, 1999, pages 33 - 46
BRUNO ET AL., J. NEUROSCI., vol. 20, 2000, pages 6413 - 6420
CONN ET AL., NATURE REVIEW NEUROSCIENCE, vol. 6, 2005, pages 787 - 798
CORTI ET AL., NEUROSCIENCE, vol. 110, 2002, pages 403 - 420
ELIEL E.L.; WILEN S.H.; MANDER L.N.: "Stereochemistry of Organic Compounds", 1984, WILEY-INTERSCIENCE
ENGERS ET AL., JOURNAL OF MEDICINAL CHEMISTRY, vol. 52, no. 14, 2009, pages 4115 - 4118
FURTHEMORE; LOPEZ ET AL., J. NEUROSCIENCE, vol. 27, 2007, pages 6701 - 6711
GREEN T.W.; WUTS P.G.M.: "Protecting Groups in Organic Synthesis", 1991, JOHN WILEY & SONS
JOHNSON M.P. ET AL., BIOCHEM. SOC. TRANS., vol. 32, 2004, pages 881 - 887
JOHNSON M.P. ET AL., J. MED. CHEM., vol. 46, 2003, pages 3189 - 3192
JOHNSON M.P. ET AL., NEUROPHARMACOLOGY, vol. 43, 2002, pages 799 - 808
KATRIZKY A.R.; REES C.W.: "Comprehensive Heterocyclic Chemistry", 1984, PERGAMON PRESS
KEW J.N., PHARMACOL. THER., vol. 104, no. 3, 2004, pages 233 - 244
KNOFLACH F. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 98, 2001, pages 13402 - 13407
KONIECZNY ET AL., NEUROSCIENCE, vol. 145, 2007, pages 611 - 620
MAJ ET AL., NEUROPHARMACOLOGY, vol. 45, 2003, pages 895 - 906
MARINO ET AL., AMINO ACIDS, vol. 23, 2002, pages 185 - 191
MARINO ET AL., CURR. TOPICS MED. CHEM., vol. 5, 2005, pages 885 - 895
MARINO ET AL., PROC. NAT. ACAD. SCI. USA, vol. 100, 2003, pages 13668 - 13673
MARINO M.J. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 100, 2003, pages 13668 - 13673
MATHIESEN ET AL., BRITISH JOURNAL OF PHARMACOLOGY, vol. 138, 2003, pages 1026 - 1030
MILLAN ET AL., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 277, 2002, pages 47796 - 47803
MITSUKAWA K. ET AL., PROC. NATL. ACAD. SCI. USA, vol. 102, no. 51, 2005, pages 18712 - 18717
MONASTYRSKAIA ET AL., BR. J PHARMACOL., vol. 128, 1999, pages 1027 - 1034
MUTEL V., EXPERT OPIN. THER., vol. 12, 2002, pages 1 - 8
NAKANISHI ET AL., BRAIN RES. REV., vol. 26, 1998, pages 230 - 235
NISWENDER ET AL., BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 18, no. 20, 2008, pages 5626 - 5630
NISWENDER ET AL.: "described (±)-cis-2-(3,5-dichlorophenylcarbamoyl)cyclohexane carboxylic acid", MOLECULAR PHARMACOLOGY, vol. 74, no. 5, 2008, pages 1345 - 1358
O'BRIEN J.A. ET AL., MOL. PHARMACOL., vol. 64, 2003, pages 731 - 740
PAGE ET AL., GASTROENTEROLOGY, vol. 128, 2005, pages 402 - 10
RITZEN A.; MATHIESEN, J.M.; THOMSEN C., BASIC CLIN. PHARMACOL. TOXICOL., vol. 97, 2005, pages 202 - 213
SCHOEPP ET AL., NEUROPHARMACOLOGY, vol. 38, 1999, pages 1431 - 1476
STACHOWICZ ET AL., EUR. J. PHARMACOL., vol. 498, 2004, pages 153 - 156
TATARCZYNSKA ET AL., POL. J. PHARMACOL., vol. 54, no. 6, 2002, pages 707 - 710
TOYONO ET AL., ARCH. HISTOL. CYTOL., vol. 65, 2002, pages 91 - 96
UEHARA ET AL., DIABETES, vol. 53, 2004, pages 998 - 1006
VALENTI ET AL., J. NEUROSCI., vol. 23, 2003, pages 7218 - 7226
VALENTI ET AL., J. PHARMACOL. EXP. THER., vol. 313, 2005, pages 1296 - 1304
VALENTI ET AL., JOURNAL OF NEUROSCIENCE, vol. 23, 2003, pages 7218 - 7226
VERNON ET AL., EUR. J. NEUROSCI., vol. 22, 2005, pages 1799 - 1806
WILLIAMS ET AL., BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 19, 2009, pages 962 - 966
WILSON J. ET AL., NEUROPHARMACOLOGY, vol. 49, 2005, pages 278
YOUNG ET AL., NEUROPHARMACOL, vol. 54, 2008, pages 965 - 975
ZHENG G Z ET AL: "STRUCTURE-ACTIVITY RELATIONSHIP OF TRIAZAFLUORENONE DERIVATIVES AS POTENT AND SELECTIVE MGLUR1 ANTAGONISTS", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, US, vol. 48, no. 23, 1 January 2005 (2005-01-01), pages 7374 - 7388, XP009066007, ISSN: 0022-2623 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9073941B2 (en) 2010-06-28 2015-07-07 Academia Sinica Compounds and methods for treating tuberculosis infection
EP2593277A4 (en) * 2010-07-14 2014-09-03 Addex Pharmaceuticals Sa Novel condensed pyrazoline derivatives and their use as allosmetic modulators of metabotropic glutamate receptors
US9765091B2 (en) 2010-07-14 2017-09-19 Addex Pharma S.A. Tetrahydropyrazolo [3,4-b] azepine derivatives and their use as allosteric modulators of metabotropic glutamate receptors
WO2012068211A1 (en) * 2010-11-18 2012-05-24 Janssen Pharmaceutica Nv Tricyclic inhibitors of pro-matrix metalloproteinase activation
WO2013107862A1 (en) * 2012-01-18 2013-07-25 Addex Pharma S.A. NOVEL 2-AMINO-4,5,6,8-TETRAHYDROPYRAZOLO[3,4-b]THIAZOLO [4,5-d]AZEPINE DERIVATIVES AND THEIR USE AS ALLOSTERIC MODULATORS OF METABOTROPIC GLUTAMATE RECEPTORS
EP2853532A1 (en) 2013-09-28 2015-04-01 Instytut Farmakologii Polskiej Akademii Nauk 1,2,4-oxadiazole derivatives as allosteric modulators of metabotropic glutamate receptors belonging to group III
WO2022167002A1 (zh) * 2021-07-19 2022-08-11 成都大学 含二氢苯并呋喃结构的1,4-硫桥多环化合物、其制备方法及用途

Also Published As

Publication number Publication date
GB0900404D0 (en) 2009-02-11
US20110319425A1 (en) 2011-12-29
EP2382219A1 (en) 2011-11-02
CA2748843A1 (en) 2010-07-15
US8697744B2 (en) 2014-04-15
AU2010204283A1 (en) 2011-08-11
JP2012515152A (ja) 2012-07-05

Similar Documents

Publication Publication Date Title
US8697744B2 (en) Substituted 5,6-dihydro-4H-thiazolo[4,5-E]indazoles and their use as positive allosteric modulators of metabotropic glutamate receptors
WO2012009009A2 (en) Novel 2-amino-4-pyrazolyl-thiazole derivatives and their use as allosteric modulators of metabotropic glutamate receptors
US20130210807A1 (en) Tricyclic Compounds as Allosteric Modulators of Metabotropic Glutamate Receptors.
WO2009010454A2 (en) Amido derivatives and their use as positive allosteric modulators of metabotropic glutamate receptors
EP2376486B1 (en) Novel thiazoles derivatives and their use as positive allosteric modulators of metabotropic glutamate receptors
US20100144756A1 (en) Novel heteroaromatic derivatives and their use as positive allosteric modulators of metabotropic glutamate receptors
TW201124412A (en) Iminothiadiazine dioxide compounds as BACE inhibitors, compositions, and their use
EP2456769B1 (en) Novel pyrazole derivatives and their use as positive allosteric modulators of metabotropic glutamate receptors
EP2592932B1 (en) Novel tetrahydropyrazolo[3,4-b]azepine derivatives and their use as allosteric modulators of metabotropic glutamate receptors
CN104955809A (zh) 取代的乙炔衍生物及其作为mGluR4的正变构调节剂的用途
US8604033B2 (en) Preparation of 4-amino-thiazoles and 3-amino-1,2,4-thiadiazoles and their use as allosteric modulators of metabotropic glutamate receptors
EP2804870A1 (en) NOVEL 2-AMINO-4,5,6,8-TETRAHYDROPYRAZOLO[3,4-b]THIAZOLO [4,5-d]AZEPINE DERIVATIVES AND THEIR USE AS ALLOSTERIC MODULATORS OF METABOTROPIC GLUTAMATE RECEPTORS
US20130252944A1 (en) Novel fused pyrazole derivatives and their use as allosteric modulators of metabotropic glutamate receptors
GB2455111A (en) Metabotropic glutamate receptor (mGluR4) modulators having 5- or 6-membered N-heteroaryl ring substituted by both N-cyclylamino & 5-membered N-heteroaryl ring
HK1163080B (en) Novel thiazoles derivatives and their use as positive allosteric modulators of metabotropic glutamate receptors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10700980

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12998955

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2748843

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2011544892

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010700980

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010204283

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010204283

Country of ref document: AU

Date of ref document: 20100112

Kind code of ref document: A