WO2010078819A1 - 一种ofdm系统的信道估计装置和方法 - Google Patents

一种ofdm系统的信道估计装置和方法 Download PDF

Info

Publication number
WO2010078819A1
WO2010078819A1 PCT/CN2009/076238 CN2009076238W WO2010078819A1 WO 2010078819 A1 WO2010078819 A1 WO 2010078819A1 CN 2009076238 W CN2009076238 W CN 2009076238W WO 2010078819 A1 WO2010078819 A1 WO 2010078819A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
noise reduction
initial
sub
channel estimation
Prior art date
Application number
PCT/CN2009/076238
Other languages
English (en)
French (fr)
Inventor
葛啟宏
王军伟
刘斌彬
白栋
陶涛
Original Assignee
北京泰美世纪科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京泰美世纪科技有限公司 filed Critical 北京泰美世纪科技有限公司
Priority to US13/143,664 priority Critical patent/US20110268206A1/en
Priority to EP09837376A priority patent/EP2393253A1/en
Publication of WO2010078819A1 publication Critical patent/WO2010078819A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to an OFDM-based multi-carrier digital broadcast system, and a channel estimation apparatus and method for an OFDM system. Background technique
  • pilot estimation is usually performed using pilots.
  • the higher the energy occupied by the pilot the lower the system payload, the lower the system utilization, the lower the pilot density, the higher the system payload, the higher the system utilization, but the weaker the ability to resist multipath delay spread.
  • the use of pilot-based channel estimation alone will not meet the performance requirements of the system.
  • Synchronization signals are also commonly used in OFDM-based broadcast systems and are commonly used for carrier and timing synchronization of systems. There is currently no technique or method for using synchronization signals for channel estimation in the prior art.
  • An object of the present invention is to solve the problem that the pilot-based channel estimation in the prior art cannot satisfy the performance requirements of the system, but lacks the technique of using the synchronization signal for channel estimation to meet the system performance requirements.
  • the present invention provides a channel estimation apparatus for an Orthogonal Frequency Division Multiplexing (OFDM) OFDM system, which is configured to perform channel estimation on a data according to a synchronization signal and a pilot, and includes: a synchronization channel initial channel estimation module, Performing initial channel estimation according to the synchronization signal in the data to obtain an initial channel estimation result; a pilot channel tracking module, configured to perform pilot channel tracking on the initial channel estimation result obtained by the synchronization channel initial channel estimation module according to pilots in the data, to obtain a pilot channel tracking result;
  • OFDM Orthogonal Frequency Division Multiplexing
  • a noise reduction processing module configured to perform noise reduction processing on the pilot channel tracking result obtained from the pilot channel tracking module
  • extracting a valid subcarrier module configured to extract a channel estimation value on the effective subcarrier from the pilot channel tracking result after the noise reduction process.
  • the synchronization signal initial channel estimation module further includes: a sub-module, configured to sample the frame synchronization sequence of the data to obtain sample data; a time/frequency domain transformation sub-module, configured to When the sample data obtained from the sample-like sub-module is performed
  • a de-randomization sub-module configured to perform de-randomization processing on the transform domain data obtained from the time/frequency domain transform sub-module to obtain de-randomized data
  • An initial IFFT sub-module configured to perform IFFT processing on the de-randomized data obtained from the de-randomization sub-module to obtain initial IFFT data
  • An initial filtering sub-module configured to perform noise reduction processing on the initial IFFT data obtained from the initial IFFT sub-module to obtain an initial noise reduction processing result
  • a zero padding sub-module configured to perform zero-padding processing on the initial noise reduction processing result obtained from the initial filtering sub-module to obtain a zero-padding processing result
  • the initial FFT sub-module is configured to obtain the result of the initial channel estimation after performing FFT processing on the zero-padding processing result obtained from the zero-padding sub-module.
  • the noise reduction processing module further includes:
  • noise reduction IFFT sub-module configured to perform IFFT processing on the pilot channel tracking result obtained from the pilot channel tracking module to obtain noise-reduced IFFT data
  • noise reduction filtering sub-module configured to perform noise reduction filtering processing on the noise-reducing IFFT data obtained from the noise-reducing IFFT sub-module, and obtain a noise reduction filtering processing result
  • the noise reduction FFT sub-module is configured to perform FFT processing on the noise reduction filtering processing result obtained from the noise reduction filtering sub-module to obtain the noise reduction processing result.
  • the present invention further provides a channel estimation for an OFDM system.
  • a method for performing channel estimation according to the synchronization signal and the pilot including the following steps: performing initial channel estimation according to the synchronization channel in the data, to obtain the initial channel estimation result;
  • a channel estimation value on the effective subcarrier is extracted from the noise reduction processing result.
  • the initial channel estimation is performed according to the synchronization channel in the data, and the initial channel estimation result is obtained by:
  • the frame synchronization sequence of the data is sampled to obtain sample data
  • the noise reduction processing result obtained by performing the noise reduction processing on the pilot channel tracking result includes:
  • the present invention also provides an OFDM-based multi-carrier digital broadcasting system including a transmitting device and a receiving device, the system further comprising a channel estimating device for synchronizing signals and pilots Channel estimation is performed on data received by the receiving device.
  • the channel estimation apparatus further includes: a synchronization signal initial channel estimation module, configured to perform initial channel estimation according to the synchronization signal in the data, to obtain an initial channel estimation result; a pilot channel tracking module, configured to perform pilot channel tracking on the initial channel estimation result obtained by the synchronization channel initial channel estimation module according to pilots in the data, to obtain a pilot channel tracking result;
  • a noise reduction processing module configured to perform noise reduction processing on the pilot channel tracking result obtained from the pilot channel tracking module
  • extracting a valid subcarrier module configured to extract a channel estimation value on the effective subcarrier from the pilot channel tracking result after the noise reduction process.
  • the synchronization signal initial channel estimation apparatus further includes: a sub-module, configured to sample the frame synchronization sequence of the data to obtain sample data; and a time/frequency domain transformation sub-module for When the sample data obtained from the sample-like sub-module is performed
  • a de-randomization sub-module configured to perform de-randomization processing on the transform domain data obtained from the time/frequency domain transform sub-module to obtain de-randomized data
  • An initial IFFT sub-module configured to perform IFFT processing on the de-randomized data obtained from the de-randomization sub-module to obtain initial IFFT data
  • An initial filtering sub-module configured to perform noise reduction processing on the initial IFFT data obtained from the initial IFFT sub-module to obtain an initial noise reduction processing result
  • a zero padding sub-module configured to perform zero-padding processing on the initial noise reduction processing result obtained from the initial filtering sub-module to obtain a zero-padding processing result
  • the initial FFT sub-module is configured to obtain the result of the initial channel estimation after performing FFT processing on the zero-padding processing result obtained from the zero-padding sub-module.
  • the noise reduction processing module further includes:
  • noise reduction IFFT sub-module configured to perform IFFT processing on the pilot channel tracking result obtained from the pilot channel tracking module to obtain noise-reduced IFFT data
  • noise reduction filtering sub-module configured to perform noise reduction filtering processing on the noise-reducing IFFT data obtained from the noise-reducing IFFT sub-module, and obtain a noise reduction filtering processing result
  • the noise reduction FFT sub-module is configured to perform FFT processing on the noise reduction filtering processing result obtained from the noise reduction filtering sub-module to obtain the noise reduction processing result.
  • the channel estimation apparatus and method for an OFDM system uses a synchronization signal and a guide Frequency joint channel estimation greatly improves the channel estimation accuracy, satisfies the system performance requirements, does not need to increase the pilot density, does not reduce the system payload, and the synchronization signal can still be used for the original carrier and timing synchronization.
  • the original function of the sync signal has no effect.
  • FIG. 1 is a time domain frame structure diagram of a signal of an OFDM system having a synchronization signal in the prior art
  • FIG. 2 is a time/frequency domain multiplexing structure diagram of pilot and data in the prior art
  • FIG. 3 is a structural diagram of a satellite broadcasting system in a specific embodiment of the present invention.
  • FIG. 4 is a structural diagram of a frame of a transmitting end according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a synchronization signal generator in a signal generator of a transmitting end according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram showing an initial state of a shift register of a complex m sequence generator in the signal generator shown in FIG. 5;
  • FIG. 7 is a structural diagram of a channel estimation apparatus according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of initial channel estimation of a synchronization signal in a specific embodiment of the present invention.
  • FIG. 10 is a flowchart of noise reduction processing in a specific embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention are described in detail below, and the examples of the embodiments are illustrated in the drawings, wherein the same or similar reference numerals are used to refer to the same or similar elements or elements having the same or similar functions.
  • the embodiments described below with reference to the drawings are intended to be illustrative only and not to be construed as limiting.
  • the present invention is mainly applicable to an OFDM system having a synchronization signal and a pilot.
  • the time domain frame structure of the system signal is as shown in FIG. 1.
  • the signal frame 100 includes synchronization heads 110, 130, 150...
  • the signal body 120, 140, 160 wherein the time/frequency domain multiplexing structure of the pilot and data in the signal bodies 120, 140, 160 is as shown in FIG. 2.
  • the satellite broadcasting system 3000 includes a transmitting end 3100 and a receiving end 3200, wherein the transmitting end 3100 includes a signal generator 3300.
  • the receiving end 3200 includes a channel estimating device 3400 for performing channel estimation on the data according to the synchronization signal and the pilot.
  • each frame is 25 milliseconds, contains 250,000 sample points, and each frame includes a 4096-point frame synchronization header, which consists of two identical 2048-point frame synchronization sequences.
  • frame 400 includes frame synchronization sequence 410, frame synchronization sequence 420, and signal 430.
  • Frame synchronization sequence 410 and frame synchronization sequence 420 are identical 2048 point frame synchronization sequences.
  • the frame synchronization sequences 410 and 420 both use a truncated m-sequence and an inverse Fourier transform to generate a band-limited random sequence with a signal bandwidth of 7.52M and no DC component, as shown in FIG. 5, a band-limited random signal generator.
  • the 3300 includes a complex m sequence generator 3310, an m sequence locator 3320, and an inverse Fourier transformer 3330.
  • the complex m sequence generator 3310 generates an m sequence M(k) by generating a shift register having a polynomial of x 1Q +x 9 +l, 0 ⁇ A ⁇ 2046, as shown in FIG. 6, the initial state of the shift register is 01110101101, The m sequence is then mapped to a complex symbol, as in equation (1).
  • the m-sequence locator locates the m-sequence at the appropriate position in the frequency domain before the domain transformation according to the signal bandwidth of 7.52M and no DC component requirement, and obtains the sequence k of the formula (2).
  • the inverse Fourier transformer 430 transforms the equation (2) into the time domain using an inverse Fourier transform, as shown in equation (3).
  • the time domain signal 330 of the satellite broadcasting system is divided into 53 OFDM symbols, and the 4096-point inverse fast Fourier transform (IFFT) is used, wherein the effective subcarriers are 3076, and the subcarriers 0 and 1539-2557 of each OFDM symbol are virtual sub-carriers.
  • the carrier, subcarriers 1 ⁇ 1538, 2558-4095 are effective subcarriers, and each OFDM symbol includes 384 discrete pilots, 82 consecutive pilots, and 2610 payload subcarriers.
  • the discrete pilot transmits the known symbol i+0j.
  • the continuous pilot positions can be: 0, 22, 78, 92, 168, 174, 244, 274, 278, 344, 382, 424, 426, 496, 500, 564, 608, 650, 688, 712, 740, 772 , 846, 848, 932, 942, 950, 980, 1012, 1066, 1126, 1158, 1214, 1244, 1276, 1280, 1326, 1378, 1408, 1508, 1537: 1538, 1566, 1666, 1736, 1748, 1794 , 1798, 1830, 1860, 1916, 1948, 2008, 2062: 2094, 2124, 2132, 2142, 2226, 2228, 2302, 2334, 2362, 2386, 2424, 2466, 2510 ; 2574, 2578, 2648, 2650, 2692 , 2730, 2796, 2800, 2830, 2900, 2906, 2982, 2996: 3052, 3075.
  • channel estimation apparatus 3400 in receiving end 3200 includes a synchronization signal initial channel estimation module 3410 for performing initial channel estimation based on synchronization signals in the data, and for initial channel estimation based on pilots in the data.
  • a pilot channel tracking module 3420 for performing pilot channel tracking a noise reduction processing module 3430 for performing noise reduction processing on the result of pilot channel tracking, and a method for extracting effective subcarriers from the result of the noise reduction processing
  • the extracted channel estimation value is extracted by the effective subcarrier module 3440, wherein the synchronization channel initial channel estimation module 3410 includes a sub-module 3411 for the frame synchronization sequence, and a time/frequency domain transformation sub-module for performing time/frequency domain transformation. 3412.
  • De-randomization sub-module 3413 for performing de-randomization processing initial IFFT sub-module 3414 for performing IFFT processing, initial filtering sub-module 3415 for performing noise reduction processing, and supplement for performing zero-padding processing a zero sub-module 3416, an initial FFT sub-module 3417 for performing fast Fourier transform (FFT) processing, and the noise reduction processing module 3430 includes an IFFT for performing FFT noise reduction filtering submodule noise reduction processing submodule IFFT sub-module 3431, filter processing for noise reduction 3432, 3433 for performing the FFT processing.
  • FFT fast Fourier transform
  • the /-like sub-module 3411 starts from the start position of the frame synchronization sequence of the data, and takes 2048 samples at a sampling rate of 10 MHz, denoted as bl i), and the time/frequency domain transform sub-module 3412 according to the formula (5) Transforming to B(k), the solution randomization sub-module 3413 randomizes the frequency domain sequence solution to R by using B(k) ⁇ as the formula (6), using the same sequence-located random sequence as the transmitter. k), the initial IFFT sub-module 3414 is based on equation (7)
  • R(k) B(k)-P(k ⁇ 0 ⁇ k ⁇ 2047 ( 6 )
  • the R(k) is subjected to IFFT processing to obtain a noisy channel impulse response r(n), and the initial filtering sub-module 3415 calculates the power of r( «) according to the formula (8), and the pair r( «) according to the formula (9)
  • the channel impulse response s(n) after noise reduction is obtained, and the zero padding sub-module 3416 is based on the synchronization signal.
  • the time domain signal is complemented by 4096 subcarrier pairs to obtain the formula (10), and the initial FFT submodule 3417 performs FFT processing on the result of the zero padding processing according to formula (11) to obtain the initial channel estimation of the synchronization signal.
  • the pilot channel tracking module 3420 performs pilot channel tracking processing according to the formula (12), assuming that the frequency domain signal received at the discrete pilot point in the i-th (1 ⁇ ⁇ 53 ) OFDM symbols is the ith OFDM symbol guide. The channel estimation value after frequency channel tracking. Not a discrete pilot point
  • A is a discrete pilot point ( 12 ).
  • the noise reduction IFFT sub-module 3431 performs an IFFT processing on the pilot-tracked result H, according to equation (13) to obtain a noisy channel impulse response /z).
  • the noise reduction FFT sub-module 3433 performs FFT processing according to the formula (16) to obtain the denoised channel estimation value ⁇ (t).
  • the extracted effective subcarrier module 3440 extracts the channel estimation value on the effective subcarrier from the noise reduced channel estimation value (A) according to the formula (17).
  • Step S510 After receiving data, the receiving end performs initial channel estimation according to the synchronization signal in the data, to obtain an initial channel estimation of the synchronization signal. value;
  • Step S520 the receiving end estimates the pilot in the data, performs pilot tracking processing on the initial channel estimation value of the synchronization signal, and obtains a pilot tracking processing result;
  • Step S530 The receiving end performs noise reduction processing on the pilot tracking processing result to obtain a noise reduction processing result.
  • Step S540 The receiving end extracts a channel estimation value from the valid subcarriers in the noise reduction processing result.
  • step 510 the initial channel estimation stream is performed according to the synchronization signal in the data.
  • the process diagram is shown in Figure 9, including:
  • Step S511 the receiving end starts from the starting position of the frame synchronization sequence of the data, and takes 2048 samples at a sampling rate of 10 MHz, which are recorded as sample data;
  • Step S512 the receiving end performs time/frequency domain transform on the sample data to obtain transformed data.
  • Step S514 the receiving end performs IFFT processing on the de-randomized data to obtain a noisy channel impulse response
  • Step S515 the receiving end performs noise reduction processing on the noisy channel impulse response to obtain a channel impulse response after noise reduction;
  • Step S5166 since the synchronization signal has 2048 subcarriers, and the time domain signal uses 4096 subcarriers, the receiving end performs zero-padding processing on the channel impulse response after noise reduction;
  • Step S517 the receiving end performs FFT processing on the channel impulse response after the zero-padding process to obtain an initial channel estimation of the synchronization signal.
  • Step S530 The flowchart of the noise reduction processing performed by the receiving end on the result of the pilot tracking processing is as shown in FIG. 10, and includes:
  • Step S531 The receiving end performs IFFT processing on the pilot tracking processing result to obtain a channel impulse response with noise.
  • Step S532 the receiving end performs noise reduction processing on the noisy channel impulse response, and obtains a channel impulse response after noise reduction;
  • Step S533 the receiving end performs FFT processing on the channel impulse response after the noise reduction to obtain a channel estimation value after noise reduction.
  • the channel estimation apparatus and method for the OFDM system provided by the present invention uses the synchronization signal and the pilot for joint channel estimation, which greatly improves the channel estimation accuracy, satisfies the system performance requirement, and does not need to increase the pilot density, and does not reduce the system.
  • the amount of payload, and the sync signal can still be used for the original carrier and timing synchronization, without any impact on the original function of the sync signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

一种 OFDM系统的信道估计装置和方法 技术领域
本发明涉及通信技术领域, 特别涉及基于 OFDM的多载波数字广播系 统, 以及 OFDM系统的信道估计装置和方法。 背景技术
在基于正交频分复用 ( Orthogonal Frequency Division Multiplexing , OFDM ) 的广播系统中, 通常釆用导频进行信道估计。 导频密度越高, 信 道估计的精度越高, 而信道估计的精度越高, 对抗多径时延扩展的能力越 强。 但导频占用的能量越高, 系统有效负载越低, 系统利用率越低, 导频 密度越低, 系统有效负载越高, 系统利用率越高, 但对抗多径时延扩展的 能力越弱。 在某些较为极端的接收环境下, 例如单频网的覆盖交叠区域, 釆用仅仅基于导频的信道估计将不能满足系统的性能需求。
同步信号也是基于 OFDM的广播系统中常用的技术, 通常用于系统的 载波和定时同步, 目前现有技术中还没有将同步信号用于信道估计的技术 或方法。 发明内容 本发明的目的旨在解决现有技术中仅仅基于导频的信道估计不能满足 系统的性能需求, 而又缺少将同步信号用于信道估计的技术, 以满足系统 性能需求的问题。
为达到上述目的, 本发明一方提出了一种正交频分复用 OFDM系统的 信道估计装置, 用于根据同步信号和导频对数据进行信道估计, 包括: 同步信号初始信道估计模块, 用于根据所述数据中的同步信号进行初 始信道估计, 获取初始信道估计结果; 导频信道跟踪模块, 用于根据所述数据中的导频对从所述同步信号初 始信道估计模块获取的所述初始信道估计结果进行导频信道跟踪, 得到导 频信道跟踪结果;
降噪处理模块, 用于对从所述导频信道跟踪模块获得的所述导频信道 跟踪结果进行降噪处理;
提取有效子载波模块, 用于从经过降噪处理后的所述导频信道跟踪结 果中提取有效子载波上的信道估计值。
上述的信道估计装置, 所述同步信号初始信道估计模块进一步包括: 釆样子模块, 用于对所述数据的帧同步序列釆样, 得到釆样数据; 时 /频域变换子模块, 用于对从所述釆样子模块得到的釆样数据进行时
/频域变换, 得到变换域数据;
解随机化子模块, 用于对从所述时 /频域变换子模块得到的变换域数据 进行解随机化处理得到解随机化数据;
初始 IFFT子模块,用于对从所述解随机化子模块得到的解随机化数据 进行 IFFT处理后得到初始 IFFT数据;
初始滤波子模块, 用于对从所述初始 IFFT子模块得到的初始 IFFT数 据进行降噪处理后得到初始降噪处理结果;
补零子模块, 用于对从所述初始滤波子模块得到的初始降噪处理结果 进行补零处理得到补零处理结果;
初始 FFT子模块, 用于对从补零子模块得到的所述补零处理结果, 进 行 FFT处理后得到所述初始信道估计的结果。
上述的信道估计装置, 所述降噪处理模块进一步包括:
降噪 IFFT子模块,用于对从所述导频信道跟踪模块得到的导频信道跟 踪结果进行 IFFT处理后得到降噪 IFFT数据;
降噪滤波子模块, 用于对从所述降噪 IFFT子模块得到的降噪 IFFT数 据进行降噪滤波处理后得到降噪滤波处理结果;
降噪 FFT子模块, 用于对从所述降噪滤波子模块得到的降噪滤波处理 结果进行 FFT处理后得到所述降噪处理结果。
为了更好地实现上述目的, 本发明又提供了一种 OFDM系统的信道估 计方法, 用于根据同步信号和导频进行信道估计, 包括如下步骤: 根据所述数据中的同步信道进行初始信道估计, 获得所述初始信道估 计结果;
根据所述数据中的导频对所述初始信道估计结果进行导频信道跟踪, 获得所述导频信道跟踪的结果;
对所述导频信道跟踪结果进行降噪处理得到降噪处理结果;
从所述降噪处理结果中提取有效子载波上的信道估计值。
上述的信道估计方法,所述根据数据中的同步信道进行初始信道估计, 获得初始信道估计结果包括:
对所述数据的帧同步序列釆样, 得到釆样数据;
对从所述釆样子模块得到的釆样数据进行时 /频域变换, 得到变换域数 据;
对所述变换域数据进行解随机化处理得到解随机化数据;
对所述解随机化数据进行 IFFT处理后得到初始 IFFT数据;
对所述初始 IFFT数据进行降噪处理后得到初始降噪处理结果; 对所述初始降噪处理结果进行补零处理得到补零处理结果;
对所述补零处理结果进行 FFT处理后得到所述初始信道估计的结果。 上述的信道估计方法, 上述对所述导频信道跟踪结果进行降噪处理得 到降噪处理结果包括:
对所述导频信道跟踪结果进行 IFFT处理后得到降噪 IFFT数据; 对所述降噪 IFFT数据进行降噪滤波处理后得到降噪滤波处理结果; 对所述降噪滤波处理结果进行 FFT处理后得到所述降噪处理结果。 为了更好地实现上述目的, 本发明还提供了一种基于 OFDM的多载波 数字广播系统, 包括发射装置和接收装置, 所述系统进一步包括一种信道 估计装置, 用于根据同步信号和导频对所述接收装置接收的数据进行信道 估计。
上述的多载波数字广播系统, 所述信道估计装置进一步包括: 同步信号初始信道估计模块, 用于根据所述数据中的同步信号进行初 始信道估计, 获取初始信道估计结果; 导频信道跟踪模块, 用于根据所述数据中的导频对从所述同步信号初 始信道估计模块获取的所述初始信道估计结果进行导频信道跟踪, 得到导 频信道跟踪结果;
降噪处理模块, 用于对从所述导频信道跟踪模块获得的所述导频信道 跟踪结果进行降噪处理;
提取有效子载波模块, 用于从经过降噪处理后的所述导频信道跟踪结 果中提取有效子载波上的信道估计值。
上述的信道估计装置, 所述同步信号初始信道估计装置进一步包括: 釆样子模块, 用于对所述数据的帧同步序列釆样, 得到釆样数据; 时 /频域变换子模块, 用于对从所述釆样子模块得到的釆样数据进行时
/频域变换, 得到变换域数据;
解随机化子模块, 用于对从所述时 /频域变换子模块得到的变换域数据 进行解随机化处理得到解随机化数据;
初始 IFFT子模块,用于对从所述解随机化子模块得到的解随机化数据 进行 IFFT处理后得到初始 IFFT数据;
初始滤波子模块, 用于对从所述初始 IFFT子模块得到的初始 IFFT数 据进行降噪处理后得到初始降噪处理结果;
补零子模块, 用于对从所述初始滤波子模块得到的初始降噪处理结果 进行补零处理得到补零处理结果;
初始 FFT子模块, 用于对从补零子模块得到的所述补零处理结果, 进 行 FFT处理后得到所述初始信道估计的结果。
上述的信道估计装置, 所述降噪处理模块进一步包括:
降噪 IFFT子模块,用于对从所述导频信道跟踪模块得到的导频信道跟 踪结果进行 IFFT处理后得到降噪 IFFT数据;
降噪滤波子模块, 用于对从所述降噪 IFFT子模块得到的降噪 IFFT数 据进行降噪滤波处理后得到降噪滤波处理结果;
降噪 FFT子模块, 用于对从所述降噪滤波子模块得到的降噪滤波处理 结果进行 FFT处理后得到所述降噪处理结果。
本发明提供的 OFDM系统的信道估计装置和方法, 釆用同步信号和导 频进行联合信道估计, 大大提高了信道估计的精度, 满足了系统性能需求, 同时无需提高导频密度, 不会降低系统有效负载量, 而且同步信号仍可用 于原有的载波和定时同步, 对同步信号的原有功能没有任何影响。
本发明附加的方面和优点将在下面的描述中部分给出, 部分将从下面 的描述中变得明显, 或通过本发明的实践了解到。 ffi闺说明 本发明上述的和 /或附加的方面和优点从下面结合附图对实施例的描 述中将变得明显和容易理解, 其中:
图 1为现有技术中具有同步信号的 OFDM系统信号的时域帧结构图; 图 2为现有技术中导频与数据的时 /频域复接结构图;
图 3为本发明具体实施例中卫星广播系统结构图;
图 4为本发明具体实施例中发送端帧结构图;
图 5为本发明具体实施例中发送端的信号发生器中同步信号产生器的 结构图;
图 6为图 5所示信号发生器中复 m序列发生器的移位寄存器初始状态 示意图;
图 7为本发明具体实施例中信道估计装置的结构图;
图 8为本发明具体实施例中信道估计流程图;
图 9为本发明具体实施例中同步信号初始信道估计流程图;
图 10为本发明具体实施例中降噪处理流程图。 具体实 方式 下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其 中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功 能的元件。 下面通过参考附图描述的实施例是示例性的, 仅用于解释本发 明, 而不能解释为对本发明的限制。
本发明主要在于, 适用于具有同步信号和导频的 OFDM系统, 系统信 号的时域帧结构如图 1所示, 信号帧 100包括同步头 110、 130、 150... ...和 信号体 120、 140、 160 , 其中信号体 120、 140、 160 中的导频与数 据的时 /频域复接结构如图 2所示。
以釆样率为 10MHz,信号带宽为 7.52MHz的卫星广播系统 3000为例, 如图 3所示, 卫星广播系统 3000包括发送端 3100和接收端 3200, 其中发 送端 3100包括信号发生器 3300, 用于生成带限随机信号, 接收端 3200包 括信道估计装置 3400, 用于根据同步信号和导频对数据进行信道估计。 在 发送端 3100 中, 每帧为 25毫秒, 包含 250,000个釆样点, 每帧中包括 1 个 4096点的帧同步头, 由 2个完全相同的 2048点的帧同步序列组成。 如 图 4所示, 帧 400包括帧同步序列 410、 帧同步序列 420和信号 430, 帧同 步序列 410和帧同步序列 420为完全相同的 2048点的帧同步序列。
帧同步序列 410和 420均釆用截短 m序列和逆傅里叶 (Fourier) 变换 产生信号带宽为 7.52M、 无直流分量的带限随机序列, 如图 5所示, 带限 随机信号发生器 3300包括复 m序列生成器 3310、 m序列定位器 3320和逆 Fourier变换器 3330。其中复 m序列发生器 3310通过生成多项式为 x1Q+x9+l 的移位寄存器生成 m序列 M(k), 0≤A<2046, 如图 6所示, 移位寄存器初始 状态为 01110101101, 然后将 m序列映射为复符号, 如公式 ( 1 ) 。
Figure imgf000008_0001
m序列定位器根据信号带宽为 7.52M、 且无直流分量的要求, 将 m序 列定位在域变换前频域的适当位置, 得到公式 (2) 所示的序列 k =
L(k-l\ \<k≤l 69
P(k) =
0, 770<^<1278
L{k-5\G) 1279<t<2047 逆 Fourier变换器 430使用逆 Fourier变换将公式( 2 )变换到时域, 如 公式 (3 ) 所示。
IFFT[P(k)] 0<n< 2047
Figure imgf000009_0001
然后, 按照图 4所示的结构进行信号组帧。
卫星广播系统的时域信号 330分为 53个 OFDM符号, 釆用 4096点逆 快速 Fourier变换( IFFT ) , 其中有效子载波为 3076个, 每个 OFDM符号 的子载波 0、 1539-2557为虚拟子载波, 子载波 1~1538、 2558-4095为有效 子载波, 每个 OFDM符号中包括 384个离散导频、 82个连续导频和 2610 个有效负载子载波。 离散导频发送已知符号 i+0j。 每帧中第 n个 OFDM符 号中离散导频对应的有效子载波编号 m取值规则如公式 (4) 所示。 如果 mod( ,2)==0
Figure imgf000009_0002
如果 mod0?,2)==l
(4)
_ |8 ? + 5, ? = 0,1,2,···,191
W ~ 18/? + 7, = 192, 193, 194, · · · , 383
连续导频位置可为: 0,22,78,92, 168, 174, 244, 274, 278, 344, 382, 424, 426, 496, 500, 564, 608, 650, 688, 712, 740, 772, 846, 848, 932, 942, 950, 980, 1012, 1066, 1126, 1158, 1214, 1244, 1276, 1280, 1326, 1378, 1408, 1508, 1537: 1538, 1566, 1666, 1736, 1748, 1794, 1798, 1830, 1860, 1916, 1948, 2008, 2062: 2094, 2124, 2132, 2142, 2226, 2228, 2302, 2334, 2362, 2386, 2424, 2466, 2510; 2574, 2578, 2648, 2650, 2692, 2730, 2796, 2800, 2830, 2900, 2906, 2982, 2996: 3052, 3075。 离散导频、 连续导频和有效负载的时 /频域复接结构如图 2所 如图 Ί所示, 接收端 3200中的信道估计装置 3400包括用于根据数据 中的同步信号进行初始信道估计的同步信号初始信道估计模块 3410、 用于 根据数据中的导频对初始信道估计的结果进行导频信道跟踪的导频信道跟 踪模块 3420、 用于对导频信道跟踪的结果进行降噪处理的降噪处理模块 3430和用于从所述降噪处理的结果中提取有效子载波上的信道估计值的提 取有效子载波模块 3440, 其中同步信道初始信道估计模块 3410 包括用于 帧同步序列釆样的釆样子模块 3411、 用于进行时 /频域变换的时 /频域变换 子模块 3412、 用于进行解随机化处理的解随机化子模块 3413、 用于进行 IFFT处理的初始 IFFT子模块 3414、 用于进行降噪处理的初始滤波子模块 3415、 用于进行补零处理的补零子模块 3416、 用于进行快速 Fourier 变换 (FFT ) 处理的初始 FFT子模块 3417, 降噪处理模块 3430 包括用于进行 IFFT处理的降噪 IFFT子模块 3431、 用于进行降噪滤波处理的降噪滤波子 模块 3432、 用于进行 FFT处理的降噪 FFT子模块 3433。
其中,釆样子模块 3411从述数据的帧同步序列起始位置开始,取 2048 个 10MHz釆样率下的釆样点, 记为 bl i), 时 /频域变换子模块 3412根据如 公式( 5 )将 变换到 B(k), 解随机化子模块 3413根据如公式( 6 )将 B(k) 釆用与发射端相同的、 序列定位后的随机序列 进行频域序列解随机化 到 R(k), 初始 IFFT子模块 3414根据如公式 ( 7 )
B k = FFT b( i)\ = b n · ε_ 。≤Α≤2。47 ( 5 )
R(k) = B(k)-P(k\ 0≤k≤ 2047 ( 6 )
0<n< 2047 ( 7 )
Figure imgf000010_0001
将 R(k) 进行 IFFT处理后得到带噪声的信道冲激响应 r(n),初始滤波子 模块 3415 根据公式 (8 ) 计算 r(«)的功率, 根据公式 (9 ) 将对 r(«)进行降 噪处理后得到降噪后的信道冲激响应 s(n), 补零子模块 3416根据同步信号 具有 2048个子载波, 时域信号釆用 4096个子载波对 进行补零处理得 到公式( 10 ) , 初始 FFT子模块 3417根据公式( 11 )对补零处理结果进行 FFT处理后得到同步信号初始信道估计 如公式 (11 ) 。
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0003
Figure imgf000011_0004
导频信道跟踪模块 3420根据公式( 12 )进行导频信道跟踪处理, 假设 第 i(l≤ ≤53)个 OFDM符号中离散导频点处接收到的频域信号为 则第 i个 OFDM符号导频信道跟踪后的信道估计值为 。 不是离散导频点
Figure imgf000011_0005
A是离散导频点 (12) 降噪 IFFT子模块 3431根据公式 ( 13 )对导频跟踪后的结果 H, )进行 IFFT处理后得到带噪声的信道冲激响应 /z )。
ht («) = IFFT[HI (k)] =— X '°_9 0 5 1 (k) - e j2mk'4096 , 0 <«<4095 ( 13 ) 降噪滤波子模块 3432根据公式(14)计算/ z )的平均功率, 根据公式
( 15)对 /7 )进行降噪处理得到降噪后的信道冲激响应 )。
Figure imgf000012_0001
降噪 FFT子模块 3433根据公式 ( 16 )对 )进行 FFT处理后得到降 噪后的信道估计值^ (t)。
H1(k) = FFT[h1(n)] =
Figure imgf000012_0002
提取有效子载波模块 3440根据公式( 17 )从降噪后的信道估计值 . (A) 中提取有效子载波上的信道估计值。
Figure imgf000012_0003
如图 8所示, 为本发明实施例的信道估计流程图, 包括以下步骤: 步骤 S510, 接收端接收到数据后, 根据所述数据中的同步信号进行初 始信道估计, 得到同步信号初始信道估计值;
步骤 S520, 接收端估计数据中的导频, 对所述同步信号初始信道估计 值进行导频跟踪处理, 得到导频跟踪处理结果;
步骤 S530, 接收端对所述导频跟踪处理结果进行降噪处理, 得到降噪 处理结果;
步骤 S540, 接收端从所述降噪处理结果中的有效子载波上提取信道估 计值。
其中, 步骤 510 中根据所述数据中的同步信号进行初始信道估计的流 程图如图 9所示, 包括:
步骤 S511 , 接收端从所述数据的帧同步序列起始位置开始, 取 2048 个 10MHz釆样率下的釆样点, 记为釆样数据;
步骤 S512 , 接收端对釆样数据进行时 /频域变换得到变换后的数据; 步骤 S513 , 接收端对变换后的数据釆用与发射端相同的、 序列定位后 的随机序列进行频域序列解随机化, 得到解随机化后的数据;
步骤 S514 , 接收端对解随机化后的数据进行 IFFT处理后得到带噪声 的信道冲激响应;
步骤 S515 , 接收端对带噪声的信道冲激响应进行降噪处理后得到降噪 后的信道冲激响应;
步骤 S516, 由于同步信号具有 2048个子载波, 时域信号釆用 4096个 子载波, 因此接收端对降噪后的信道冲激响应进行补零处理;
步骤 S517 ,接收端对补零处理后的信道冲激响应进行 FFT处理后得到 同步信号初始信道估计。
步骤 S530 中接收端对所述导频跟踪处理结果进行降噪处理的流程图 如图 10所示, 包括:
步骤 S531 , 接收端对所述导频跟踪处理结果进行 IFFT处理后得到带 噪声的信道冲激响应;
步骤 S532 , 接收端对带噪声的信道冲激响应进行降噪处理, 得到降噪 后的信道冲激响应;
步骤 S533 ,接收端对降噪后的信道冲激响应进行 FFT处理后得到降噪 后的信道估计值。
本发明提供的 OFDM系统的信道估计装置和方法, 釆用同步信号和导 频进行联合信道估计, 大大提高了信道估计的精度, 满足了系统性能需求, 同时无需提高导频密度, 不会降低系统有效负载量, 而且同步信号仍可用 于原有的载波和定时同步, 对同步信号的原有功能没有任何影响。
尽管已经示出和描述了本发明的实施例, 对于本领域的普通技术人员 而言, 可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例 进行多种变化、 修改、 替换和变型, 本发明的范围由所附权利要求及其等 同限定。

Claims

权利要求书
1、 一种正交频分复用 OFDM 系统的信道估计装置, 用于根据同步信 号和导频对数据进行信道估计, 其特征在于, 包括:
同步信号初始信道估计模块, 用于根据所述数据中的同步信号进行初 始信道估计, 获取初始信道估计结果;
导频信道跟踪模块, 用于根据所述数据中的导频对从所述同步信号初 始信道估计模块获取的所述初始信道估计结果进行导频信道跟踪, 得到导 频信道跟踪结果;
降噪处理模块, 用于根据从所述导频信道跟踪模块获得的所述导频信 道跟踪结果进行降噪处理;
提取有效子载波模块, 用于从经过降噪处理后的所述导频信道跟踪结 果中提取有效子载波上的信道估计值。
2、 根据权利要求 1所述的信道估计装置, 其特征在于, 所述同步信号 初始信道估计模块进一步包括:
釆样子模块, 用于对所述数据的帧同步序列釆样, 得到釆样数据; 时 /频域变换子模块, 用于对从所述釆样子模块得到的釆样数据进行时 /频域变换, 得到变换域数据;
解随机化子模块, 用于对从所述时 /频域变换子模块得到的变换域数据 进行解随机化处理得到解随机化数据;
初始 IFFT子模块,用于对从所述解随机化子模块得到的解随机化数据 进行 IFFT处理后得到初始 IFFT数据;
初始滤波子模块, 用于对从所述初始 IFFT子模块得到的初始 IFFT数 据进行降噪处理后得到初始降噪处理结果;
补零子模块, 用于对从所述初始滤波子模块得到的初始降噪处理结果 进行补零处理得到补零后的补零处理;
初始 FFT子模块, 用于对从补零子模块得到的所述补零处理结果进行 FFT处理, 得到所述初始信道估计的结果。
3、 根据权利要求 1所述的信道估计装置, 其特征在于, 所述降噪处理 模块进一步包括:
降噪 IFFT子模块,用于对从所述导频信道跟踪模块得到的导频信道跟 踪结果进行 IFFT处理后得到降噪 IFFT数据;
降噪滤波子模块, 用于对从所述降噪 IFFT子模块得到的降噪 IFFT数 据进行降噪滤波处理后得到降噪滤波处理结果;
降噪 FFT子模块, 用于对从所述降噪滤波子模块得到的降噪滤波处理 结果进行 FFT处理后得到所述降噪处理结果。
4、 一种 OFDM 系统的信道估计方法, 用于根据同步信号和导频进行 信道估计, 其特征在于, 包括如下步骤:
根据所述数据中的同步信道进行初始信道估计, 获得所述初始信道估 计结果;
根据所述数据中的导频对所述初始信道估计结果进行导频信道跟踪, 获得所述导频信道跟踪的结果;
对所述导频信道跟踪结果进行降噪处理得到降噪处理结果;
从所述降噪处理结果中提取有效子载波上的信道估计值。
5、 根据权利要求 4所述的信道估计方法, 其特征在于, 所述根据数据 中的同步信号进行初始信道估计, 获得初始信道估计结果包括:
对所述数据的帧同步序列釆样, 得到釆样数据;
对从所述釆样子模块得到的釆样数据进行时 /频域变换, 得到变换域数 据;
对所述变换域数据进行解随机化处理得到解随机化数据;
对所述解随机化数据进行 IFFT处理后得到初始 IFFT数据;
对所述初始 IFFT数据进行降噪处理后得到初始降噪处理结果; 对所述初始降噪处理结果进行补零处理得到补零处理结果;
对所述补零处理结果进行 FFT处理后得到所述初始信道估计的结果。
6、 根据权利要求 4所述的信道估计方法, 其特征在于, 所述对所述导 频信道跟踪结果进行降噪处理得到降噪处理结果包括:
对所述导频信道跟踪结果进行 IFFT处理后得到降噪 IFFT数据; 对所述降噪 IFFT数据进行降噪滤波处理后得到降噪滤波处理结果; 对所述降噪滤波处理结果进行 FFT处理后得到所述降噪处理结果。
7、 一种基于 OFDM 的多载波数字广播系统, 包括发射装置和接收装 置, 其特征在于, 所述系统进一步包括一种信道估计装置, 用于根据同步 信号和导频对所述接收装置接收的数据进行信道估计。
8、 根据权利要求 7所述的多载波数字广播系统, 其特征在于, 所述信 道估计装置进一步包括:
同步信号初始信道估计模块, 用于根据所述数据中的同步信号进行初 始信道估计, 获取初始信道估计结果;
导频信道跟踪模块, 用于根据所述数据中的导频对从所述同步信号初 始信道估计模块获取的所述初始信道估计结果进行导频信道跟踪, 得到导 频信道跟踪结果;
降噪处理模块, 用于对从所述导频信道跟踪模块获得的所述导频信道 跟踪结果进行降噪处理;
提取有效子载波模块, 用于从经过降噪处理后的所述导频信道跟踪结 果中提取有效子载波上的信道估计值。
9、 根据权利要求 8所述的多载波数字广播系统, 其特征在于, 所述同 步信号初始信道估计装置进一步包括:
釆样子模块, 用于对所述数据的帧同步序列釆样, 得到釆样数据; 时 /频域变换子模块, 用于对从所述釆样子模块得到的釆样数据进行时 /频域变换, 得到变换域数据;
解随机化子模块, 用于对从所述时 /频域变换子模块得到的变换域数据 进行解随机化处理得到解随机化数据;
初始 IFFT子模块,用于对从所述解随机化子模块得到的解随机化数据 进行 IFFT处理后得到初始 IFFT数据;
初始滤波子模块, 用于对从所述初始 IFFT子模块得到的初始 IFFT数 据进行降噪处理后得到初始降噪处理结果;
补零子模块, 用于对从所述初始滤波子模块得到的初始降噪处理结果 进行补零处理得到补零处理结果;
初始 FFT子模块, 用于对从补零子模块得到的所述补零处理结果, 进 行 FFT处理后得到所述初始信道估计的结果。
10、 根据权利要求 8所述的多载波数字广播系统, 其特征在于, 所述 降噪处理模块进一步包括:
降噪 IFFT子模块,用于对从所述导频信道跟踪模块得到的导频信道跟 踪结果进行 IFFT处理后得到降噪 IFFT数据;
降噪滤波子模块, 用于对从所述降噪 IFFT子模块得到的降噪 IFFT数 据进行降噪滤波处理后得到降噪滤波处理结果;
降噪 FFT子模块, 用于对从所述降噪滤波子模块得到的降噪滤波处理 结果进行 FFT处理后得到所述降噪处理结果。
PCT/CN2009/076238 2009-01-07 2009-12-30 一种ofdm系统的信道估计装置和方法 WO2010078819A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/143,664 US20110268206A1 (en) 2009-01-07 2009-12-30 Method and device of channel estimation for ofdm system
EP09837376A EP2393253A1 (en) 2009-01-07 2009-12-30 Method and device of channel estimation for ofdm system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100765587A CN101771650B (zh) 2009-01-07 2009-01-07 一种ofdm系统的信道估计装置和方法
CN200910076558.7 2009-01-07

Publications (1)

Publication Number Publication Date
WO2010078819A1 true WO2010078819A1 (zh) 2010-07-15

Family

ID=42316249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076238 WO2010078819A1 (zh) 2009-01-07 2009-12-30 一种ofdm系统的信道估计装置和方法

Country Status (4)

Country Link
US (1) US20110268206A1 (zh)
EP (1) EP2393253A1 (zh)
CN (1) CN101771650B (zh)
WO (1) WO2010078819A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9564932B1 (en) 2015-07-16 2017-02-07 LGS Innovations LLC Software defined radio front end

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102546484B (zh) * 2010-12-17 2014-09-10 上海明波通信技术有限公司 基于信标帧的信道训练方法和接收机装置
CN102143099B (zh) * 2010-12-22 2013-10-02 无锡物联网产业研究院 一种信道估计方法及装置
US9008249B2 (en) * 2012-02-10 2015-04-14 Qualcomm Incorporated Detection and filtering of an undesired narrowband signal contribution in a wireless signal receiver
US9065686B2 (en) 2012-11-21 2015-06-23 Qualcomm Incorporated Spur detection, cancellation and tracking in a wireless signal receiver
GB2545489A (en) * 2015-12-18 2017-06-21 Nordic Semiconductor Asa Radio communication
CN106774626B (zh) * 2016-12-16 2018-04-13 山东大学 复合式信号产生系统及方法
CN107241286B (zh) * 2017-04-20 2020-06-12 西安电子科技大学 一种结合频域和时域估计的载波同步方法
CN108282423B (zh) * 2018-01-03 2021-01-19 深圳市极致汇仪科技有限公司 一种mimo信道估计的降噪方法及系统
US12074683B1 (en) 2020-02-29 2024-08-27 Space Exploration Technologies Corp. Configurable orthogonal frequency division multiplexing (OFDM) signal and transmitter and receiver for satellite to user terminal downlink communications
CN114938319B (zh) * 2022-04-02 2023-12-08 上海交通大学 多天线系统的导频信号生成和信道估计方法、系统、介质及设备
CN115987743B (zh) * 2023-03-20 2023-07-04 南京创芯慧联技术有限公司 信道状态估计方法、装置、通信设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1826785A (zh) * 2003-07-18 2006-08-30 Tdf公司 用于估计多载波信号传播信道的方法和装置
US20060291578A1 (en) * 2001-10-11 2006-12-28 Texas Instruments Incorporated Method and Apparatus for Multicarrier Channel Estimation and Synchronization Using Pilot Sequences
CN101075829A (zh) * 2006-05-15 2007-11-21 中兴通讯股份有限公司 一种适用于正交频分复用系统的信道估计方法
CN101166171A (zh) * 2007-07-18 2008-04-23 电子科技大学 一种ofdm系统时变信道估计方法
WO2008086204A2 (en) * 2007-01-05 2008-07-17 Qualcomm Incorporated Methods and apparatus for timing synchronization based on transitional pilot symbols

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020065047A1 (en) * 2000-11-30 2002-05-30 Moose Paul H. Synchronization, channel estimation and pilot tone tracking system
US7310304B2 (en) * 2001-04-24 2007-12-18 Bae Systems Information And Electronic Systems Integration Inc. Estimating channel parameters in multi-input, multi-output (MIMO) systems
GB2376855A (en) * 2001-06-20 2002-12-24 Sony Uk Ltd Determining symbol synchronisation in an OFDM receiver in response to one of two impulse response estimates
US7327800B2 (en) * 2002-05-24 2008-02-05 Vecima Networks Inc. System and method for data detection in wireless communication systems
US7039004B2 (en) * 2002-10-01 2006-05-02 Atheros Communications, Inc. Decision feedback channel estimation and pilot tracking for OFDM systems
US8320301B2 (en) * 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US7916797B2 (en) * 2004-12-11 2011-03-29 Electronics And Telecommunications Research Institute Residual frequency, phase, timing offset and signal amplitude variation tracking apparatus and methods for OFDM systems
JP4701964B2 (ja) * 2005-09-27 2011-06-15 日本電気株式会社 マルチユーザ受信装置
US20090103666A1 (en) * 2006-04-03 2009-04-23 National Ict Australia Limited Channel estimation for rapid dispersive fading channels
JP5507813B2 (ja) * 2007-02-16 2014-05-28 パナソニック株式会社 送信装置及び受信装置
US7995688B2 (en) * 2007-03-08 2011-08-09 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Channel estimation and ICI cancellation for OFDM
US20090116567A1 (en) * 2007-11-07 2009-05-07 Integrated System Solution Corp. Channel estimation method and apparatus for long range signals in bluetooth

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060291578A1 (en) * 2001-10-11 2006-12-28 Texas Instruments Incorporated Method and Apparatus for Multicarrier Channel Estimation and Synchronization Using Pilot Sequences
CN1826785A (zh) * 2003-07-18 2006-08-30 Tdf公司 用于估计多载波信号传播信道的方法和装置
CN101075829A (zh) * 2006-05-15 2007-11-21 中兴通讯股份有限公司 一种适用于正交频分复用系统的信道估计方法
WO2008086204A2 (en) * 2007-01-05 2008-07-17 Qualcomm Incorporated Methods and apparatus for timing synchronization based on transitional pilot symbols
CN101166171A (zh) * 2007-07-18 2008-04-23 电子科技大学 一种ofdm系统时变信道估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN HUI ET AL.: "Channel estimation for time varying channel based on decision directe echnique in OFDM mobile systems.", JOURNAL ON COMMUNICATIONS., vol. 27, no. 9., September 2006 (2006-09-01), XP008143926 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9564932B1 (en) 2015-07-16 2017-02-07 LGS Innovations LLC Software defined radio front end
US9647705B2 (en) 2015-07-16 2017-05-09 LGS Innovations LLC Digital self-interference residual cancellation
US9660674B2 (en) 2015-07-16 2017-05-23 LGS Innovations LLC Self-interference cancellation antenna systems and methods
US9787460B2 (en) 2015-07-16 2017-10-10 LGS Innovations LLC Self-interference channel estimation system and method
US10090989B2 (en) 2015-07-16 2018-10-02 LGS Innovations LLC Software defined radio front end
US10164756B2 (en) 2015-07-16 2018-12-25 LGS Innovations LLC Self-interference cancellation antenna systems and methods
US10574428B2 (en) 2015-07-16 2020-02-25 LGS Innovations LLC Self-interference channel estimation system and method
US10594469B2 (en) 2015-07-16 2020-03-17 LGS Innovations LLC Secure radio methods and apparatus

Also Published As

Publication number Publication date
CN101771650A (zh) 2010-07-07
US20110268206A1 (en) 2011-11-03
EP2393253A1 (en) 2011-12-07
CN101771650B (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
WO2010078819A1 (zh) 一种ofdm系统的信道估计装置和方法
KR100828389B1 (ko) Ofdm 시스템에서 주파수 에러 추정 및 프레임 동기화
KR101022080B1 (ko) 통신 시스템에서 개략적인 빈 주파수 동기화
CN1981498B (zh) 用于信道估计和时间跟踪的交错导频传输
US7609773B2 (en) Method of determining the location of the FFT window and the delay spread for the platinum broadcast channel estimator
WO2010063214A1 (zh) 一种正交频分复用系统信道估计方法和接收装置
JP2003224537A (ja) Ofdmを用いる無線ネットワーク用のタイミング同期方法
WO2006099240A1 (en) Symbol time tracking for an ofdm communication system
KR20040032021A (ko) 직교주파수분할다중 통신시스템의 보호구간 삽입/제거장치 및 방법
JP5144687B2 (ja) Ofdm符号タイミングリカバリの方法およびシステム
CN101815042B (zh) 一种正交频分复用系统信道估计方法和装置
AU2005211532B2 (en) Frequency recovery apparatus and method for use in digital broadcast receiver
CN102130871A (zh) 信道估计方法及装置
CN101119350A (zh) 正交频分复用系统、快速同步的方法和发送端设备
TWI422254B (zh) 符元同步方法以及接收機
Zheng et al. Synchronization and channel estimation for TDS-OFDM systems
Amini et al. Filterbank multicarrier for underwater communications
TWI466508B (zh) 一種用於正交多頻分工系統中消除符際干擾的接收器及其訊號接收方法
KR100793789B1 (ko) 채널 추정 장치 및 채널 추정 방법
JP2005303440A (ja) マルチキャリア受信方式および装置
WO2006069475A1 (fr) Procede permettant d&#39;eliminer l&#39;interference entre porteuses dans un systeme de communication mobile a multiplexage par repartition orthogonale de la frequence
CN104038453B (zh) 一种抗连续波干扰的通信方法和系统
Xiao et al. Time synchronization algorithms for IEEE 802.11 OFDM systems
KR20070119915A (ko) 채널 등화장치 및 등화방법
WO2011157210A1 (zh) 一种正交频分复用系统中信道估计方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13143664

Country of ref document: US

Ref document number: 2009837376

Country of ref document: EP