WO2010076872A1 - Hydrophilic member and method for producing fin material for heat exchangers - Google Patents

Hydrophilic member and method for producing fin material for heat exchangers Download PDF

Info

Publication number
WO2010076872A1
WO2010076872A1 PCT/JP2009/071262 JP2009071262W WO2010076872A1 WO 2010076872 A1 WO2010076872 A1 WO 2010076872A1 JP 2009071262 W JP2009071262 W JP 2009071262W WO 2010076872 A1 WO2010076872 A1 WO 2010076872A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hydrophilic
layer
composition
fin material
Prior art date
Application number
PCT/JP2009/071262
Other languages
French (fr)
Japanese (ja)
Inventor
誠 福田
智史 田中
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2010076872A1 publication Critical patent/WO2010076872A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1637Macromolecular compounds
    • C09D5/165Macromolecular compounds containing hydrolysable groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/04Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a surface receptive to ink or other liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/024Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amido or imido group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/02Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/028Macromolecular compounds obtained from nitrogen containing monomers by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a nitrogen-containing hetero ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/16Antiseptic; (micro) biocidal or bactericidal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/015Dispersions of solid lubricants
    • C10N2050/02Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/023Multi-layer lubricant coatings
    • C10N2050/025Multi-layer lubricant coatings in the form of films or sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • F28F2275/025Fastening; Joining by using bonding materials; by embedding elements in particular materials by using adhesives

Definitions

  • the present invention is a hydrophilic member excellent in hydrophilicity, antifouling properties, friction resistance, adhesion, and rust prevention, and heat exchange excellent in hydrophilicity, antifouling properties, friction resistance, adhesion, and rust prevention properties.
  • the present invention relates to a method for manufacturing a device fin material.
  • optical members such as antireflection films, optical filters, optical lenses, spectacle lenses, mirrors, etc.
  • optical members when used by humans, are contaminated with fingerprints, sebum, sweat, cosmetics, etc. Since removal of dirt is complicated, it is desired to perform effective dirt prevention treatment.
  • displays are often used outdoors, but when used in an environment where external light is incident, the incident light is regularly reflected on the display surface. As a result, the reflected light is mixed with the display light, causing problems such as difficulty in viewing the display image. For this reason, an antireflection optical member is often disposed on the display surface.
  • an antireflection optical member for example, a transparent substrate with a high refractive index layer and a low refractive index layer made of a metal oxide or the like laminated thereon, an inorganic or organic fluoride compound or the like on the transparent substrate surface.
  • a low refractive index layer is formed as a single layer, or those in which a coating layer containing transparent fine particles is formed on the surface of a transparent plastic film substrate and external light is irregularly reflected by the uneven surface.
  • These anti-reflective optical member surfaces like the above-mentioned optical members, are susceptible to dirt such as fingerprints and sebum when used by humans, but only the part where the dirt is attached becomes highly reflective and the dirt is more noticeable.
  • the surface of the antireflection film usually has fine irregularities, and it is difficult to remove dirt.
  • an antireflection member and an antifouling member for example, an antireflection film made mainly of silicon dioxide and an antifouling and friction resistant material treated with a compound containing an organosilicon substituent (for example, Patent Document 1), and an antifouling and friction-resistant CRT filter (for example, see Patent Document 2) in which the substrate surface is coated with a terminal silanol organopolysiloxane has been proposed.
  • an antireflection film containing a silane compound including a silane compound containing a polyfluoroalkyl group see, for example, Patent Document 3
  • an optical thin film mainly composed of silicon dioxide, a perfluoroalkyl acrylate, and an alkoxysilane group has been proposed.
  • the antifouling layer formed by the conventional method has insufficient antifouling property, and in particular, it is difficult to wipe off dirt such as fingerprints, sebum, sweat, cosmetics, etc., and the surface energy such as fluorine and silicon is low.
  • the surface treatment with a material is concerned with a decrease in antifouling performance over time, and therefore, development of an antifouling member having excellent antifouling properties and durability is desired.
  • a resin film generally used on the surface of an optical member or the like, or an inorganic material such as glass or metal has a hydrophobic surface or a weak hydrophilic surface.
  • the surface of a substrate using a resin film or inorganic material is made hydrophilic, the attached water droplets spread uniformly on the surface of the substrate and form a uniform water film. It is useful for preventing devitrification due to moisture and ensuring visibility in rainy weather.
  • combustion products such as carbon black contained in exhaust gas from automobile dust, automobiles, etc., and hydrophobic pollutants such as oil and sealant elution components are difficult to adhere. Therefore, it is useful for various applications.
  • Non-Patent Document 1 a surface hydrophilic coating film using a hydrophilic graft polymer as one of hydrophilic resins has also been proposed (see, for example, Non-Patent Document 1), although this coating film has a certain degree of hydrophilicity, Affinity with the substrate is not sufficient, and higher durability is required.
  • a film using titanium oxide has been conventionally known.
  • a technique of forming a photocatalyst-containing layer on a substrate surface and making the surface highly hydrophilic according to photoexcitation of the photocatalyst is a technique of forming a photocatalyst-containing layer on a substrate surface and making the surface highly hydrophilic according to photoexcitation of the photocatalyst.
  • a heat exchanger of an air conditioner includes a pipe that moves a heat medium and fins that absorb heat in the air or dissipate heat in the heat medium.
  • a copper pipe is used by penetrating a thin plate aluminum of about 0.1 mm, which is a fin material.
  • the condensed water generated at the time of cooling becomes water droplets and stays between the fins, so that a bridge of water is generated and the cooling capacity is lowered.
  • the adhering of dust or the like between the fins similarly reduces the cooling capacity.
  • Patent Documents 9 to 11 As a heat exchanger treated with a hydrophilic composition, for example, Patent Document 12 is known.
  • the anti-fogging and anti-fogging properties of the hydrophilic surface with a cross-linked structure by hydrolyzing and condensation-polymerizing the hydrophilic polymer and the alkoxide are focused on the characteristics of the sol-gel organic-inorganic hybrid film. It has been found that it exhibits fouling and has good rub resistance (see Patent Document 6).
  • a hydrophilic surface layer having such a crosslinked structure can be easily obtained by combining a specific hydrophilic polymer having a reactive group at its terminal and a crosslinking agent.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, hydrophilic members excellent in hydrophilicity, antifouling properties, lubricity, adhesion, and rust prevention, and hydrophilic properties, antifouling properties, lubricity, adhesion It is providing the manufacturing method of the fin material for heat exchangers excellent in property and rust prevention property.
  • the present invention is as follows.
  • the hydrophilic layer contains 50 mass of the hydrophilic polymer (I) containing the structure represented by the following general formula (I-1) and the structure represented by the following general formula (I-2) with respect to the total solid content.
  • R 101 to R 108 each independently represents a hydrogen atom or a hydrocarbon group.
  • p represents an integer of 1 to 3
  • L 101 and L 102 each independently represent a single bond or a polyvalent organic linking group.
  • x and y represent a composition ratio, x represents a number satisfying 0 ⁇ x ⁇ 100 and y represents 0 ⁇ y ⁇ 100.
  • a 101 represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), or —PO 3 (
  • R a , R b and R c each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group
  • R d represents a linear, branched or cyclic alkyl group
  • R e and R f each independently represents a hydrogen atom or a linear, branched or cyclic alkyl group, an alkali metal, an alkaline earth metal, or onium
  • R g represents a halogen ion, an inorganic anion, or an organic anion.
  • the hydrophilic composition contains a hydrolyzable silyl group-containing hydrophilic polymer containing the hydrophilic polymer (I) in an amount of 80% by mass or more based on the total solid content, and in the general formula (I-2)
  • a 101 represents —CONH 2 , —CONH (R 5 ), or —CON (R 5 ) 2 (wherein R 5 independently represents a linear, branched, or cyclic alkyl group).
  • the hydrophilic member according to [6] which is characterized.
  • [9] [1] A fin material using the hydrophilic member according to any one of [8].
  • the aluminum fin material whose fin material as described in [9] is a product made from aluminum.
  • [11] [10] A heat exchanger using the aluminum fin material according to [10].
  • [12] An air conditioner using the heat exchanger according to [11].
  • a lubricant composition is applied to the surface of a fin material for a heat exchanger having a hydrophilic layer formed by applying a hydrophilic composition containing a hydrophilic polymer having a hydrolyzable silyl group to the surface of an aluminum plate and drying.
  • a method for producing a fin material for a heat exchanger comprising applying and drying to adsorb or impregnate a lubricant composition in a hydrophilic layer to form a lubricating layer having a friction coefficient of 0.05 to 0.25 .
  • a hydrophilic member excellent in hydrophilicity, antifouling property, lubricity, adhesion, and rust prevention and a heat exchanger excellent in hydrophilicity, antifouling property, friction resistance, adhesion, and rust prevention property The manufacturing method of a fin material can be provided.
  • the hydrophilic member of the present invention has a hydrophilic layer formed from a hydrophilic composition containing a hydrophilic polymer having a hydrolyzable silyl group on a substrate, and further has a friction coefficient of 0.05. Having a lubricating layer of ⁇ 0.25.
  • the water droplet contact angle of the hydrophilic member is preferably 20 ° or less, preferably 15 ° or less, more preferably 10 ° or less. It is preferable that the water droplet contact angle is 20 ° or less because excellent hydrophilicity can be exhibited.
  • the hydrophilic layer can be formed by applying and drying a hydrophilic composition containing a hydrophilic polymer having a hydrolyzable silyl group.
  • the hydrophilic polymer having a hydrolyzable silyl group is a hydrophilic polymer (I) having a structure represented by the following general formula (I-1) and a structure represented by the following general formula (I-2). Is preferred.
  • R 101 to R 108 each independently represents a hydrogen atom or a hydrocarbon group.
  • p represents an integer of 1 to 3
  • L 101 and L 102 each independently represent a single bond or a polyvalent organic linking group.
  • x and y represent a composition ratio, x represents a number satisfying 0 ⁇ x ⁇ 100 and y represents 0 ⁇ y ⁇ 100.
  • a 101 represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), or —PO 3 (
  • R a , R b and R c each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group
  • R d represents a linear, branched or cyclic alkyl group
  • R e and R f each independently represents a hydrogen atom or a linear, branched or cyclic alkyl group, an alkali metal, an alkaline earth metal, or onium
  • R g represents a halogen ion, an inorganic anion, or an organic anion.
  • hydrophilicity In addition to being able to maintain high hydrophilicity by using a hydrophilic polymer (I) containing an alkoxysilyl group that forms a hydrophilic structure and a crosslinked structure, such as polyacrylamide, as a composition that imparts hydrophilicity, hydrophilicity can be maintained. This is presumably because the water adhering to the hydrophilic surface does not dissolve out the hydrophilic layer and has excellent long-term water resistance.
  • R 101 to R 108 each independently represents a hydrogen atom or a hydrocarbon group.
  • p represents an integer of 1 to 3
  • L 101 and L 102 each represents a single bond or a polyvalent organic linking group.
  • x and y represent a composition ratio, x represents a number satisfying 0 ⁇ x ⁇ 100 and y represents 0 ⁇ y ⁇ 100.
  • a 101 represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), or —PO 3 (
  • R a , R b and R c each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group
  • R d represents a linear, branched or cyclic alkyl group
  • R e and R f each independently represents a hydrogen atom or a linear, branched or cyclic alkyl group, an alkali metal, an alkaline earth metal, or onium
  • R g represents a halogen ion, an inorganic anion, or an organic anion.
  • R 101 to R 108 each independently represents a hydrogen atom or a hydrocarbon group.
  • the hydrocarbon group include an alkyl group and an aryl group, and a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms is preferable.
  • R 101 to R 108 are preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoints of effects and availability.
  • hydrocarbon groups may further have a substituent.
  • the substituted alkyl group is constituted by a bond between a substituent and an alkylene group, and a monovalent nonmetallic atomic group excluding hydrogen is used as the substituent.
  • Preferred examples include halogen atoms (—F, —Br, —Cl, —I), hydroxyl groups, alkoxy groups, aryloxy groups, mercapto groups, alkylthio groups, arylthio groups, alkyldithio groups, aryldithio groups, amino groups, N-alkylamino group, N, N-diarylamino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, ⁇ ⁇ ⁇ -alkylcarbamoyloxy group, N-arylcarbamoyloxy group, N, N-dialkyl Carbamoyloxy group, N, N-diarylcarbamoyloxy group, N-alkyl-N-reelcarbamoyloxy group, alkylsulfoxy group, arylsulfoxy group, acylthio group, acylamino group, N
  • alkyl group in these substituents are the same as those of R 1 to R 8
  • specific examples of the aryl group include a phenyl group, a biphenyl group, a naphthyl group, a tolyl group, Xylyl, mesityl, cumenyl, chlorophenyl, bromophenyl, chloromethylphenyl, hydroxyphenyl, methoxyphenyl, ethoxyphenyl, phenoxyphenyl, acetoxyphenyl, benzoyloxyphenyl, methylthiophenyl , Phenylthiophenyl group, methylaminophenyl group, dimethylaminophenyl group, acetylaminophenyl group, carboxyphenyl group, methoxycarbonylphenyl group, ethoxyphenylcarbonyl group, phenoxycarbonylphenyl group, N-phenylcarbamo Butylphen
  • alkenyl groups include vinyl, 1-propenyl, 1-butenyl, cinnamyl, 2-chloro-1-ethenyl, etc.
  • alkynyl examples include ethynyl, 1-butenyl, Examples include propynyl group, 1-butynyl group, trimethylsilylethynyl group and the like.
  • G 1 in the acyl group examples include hydrogen and the above alkyl groups and aryl groups.
  • halogen atoms (—F, —Br, —Cl, —I), alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, N-alkylamino groups, N, N-dialkyls.
  • acyloxy group N-alkylcarbamoyloxy group, N-arylcarbamoyloxy group, acylamino group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, N-alkylcarbamoyl group N, N-dialkylcarbamoyl group, N-arylcarbamoyl group, N-alkyl-N-arylcarbamoyl group, sulfo group, sulfonate group, sulfamoyl group, N-alkylsulfamoyl group, N, N-dialkylsulfamoyl group Group, N-arylsulfamo Group, N-alkyl-N-arylsulfamoyl group, phosphono group, phosphonate group, dialkyl phosphono group, diaryl phosphono group
  • the alkylene group in the substituted alkyl group is preferably a divalent organic residue obtained by removing any one of the hydrogen atoms on the alkyl group having 1 to 20 carbon atoms.
  • it is a straight chain having 1 to 12 carbon atoms, more preferably a straight chain having 1 to 8 carbon atoms, more preferably a branched structure having 3 to 12 carbon atoms, still more preferably 3 to 8 carbon atoms, and More preferable examples include cyclic alkylene groups having 5 to 10 carbon atoms, and further preferably 5 to 8 carbon atoms.
  • substituted alkyl group obtained by combining the substituent and the alkylene group are chloromethyl group, bromomethyl group, 2-chloroethyl group, trifluoromethyl group, hydroxymethyl group, methoxymethyl group, methoxyethoxy group.
  • Ethyl group allyloxymethyl group, phenoxymethyl group, methylthiomethyl group, tolylthiomethyl group, ethylaminoethyl group, diethylaminopropyl group, morpholinopropyl group, acetyloxymethyl group, benzoyloxymethyl group, N-cyclohexylcarbamoyloxyethyl Group, N-phenylcarbamoyloxyethyl group, acetylaminoethyl group, N-methylbenzoylaminopropyl group, 2-oxyethyl group, 2-oxypropyl group, carboxypropyl group, methoxycarbonyl group Group, allyloxycarbonyl butyl group,
  • Chlorophenoxycarbonylmethyl group carbamoylmethyl group, N-methylcarbamoylethyl group, N, N-dipropylcarbamoylmethyl group, N- (methoxyphenyl) carbamoylethyl group, N-methyl-N- (sulfophenyl) carbamoyl Methyl group, sulfobutyl group, sulfonatobutyl group, sulfamoylbutyl group, N-ethylsulfamoylmethyl group, N, N-dipropylsulfamoylpropyl group, N-tolylsulfamoylpropyl group, N-methyl-N- (Phosphonophenyl) sulfamoyloctyl group, phosphonobutyl group, phosphonatohexyl group, diethylphosphonobutyl group, diphenylphosphonopropy
  • a hydroxymethyl group is preferable from the viewpoint of hydrophilicity.
  • L 101 to L 102 each represents a single bond or an organic linking group.
  • the single bond means that the main chain of the polymer and A 101 or Si atom are directly bonded without a connecting chain.
  • L 101 to L 102 represent an organic linking group
  • L 101 to L 102 represent a polyvalent linking group composed of a nonmetallic atom, including 0 to 60 carbon atoms and 0 to 10 nitrogen atoms. It consists of atoms, 0 to 50 oxygen atoms, 0 to 100 hydrogen atoms, and 0 to 20 sulfur atoms.
  • —N ⁇ an aliphatic group, an aromatic group, a heterocyclic group, and combinations thereof, —O—, —S—, —CO—, —NH—, or
  • a combination containing —O— or —S— or —CO— or —NH— is preferably a divalent linking group. More specific examples of the linking group include the following structural units or those formed by combining them.
  • L 101 is a single bond or one structure selected from the group consisting of —CONH—, —NHCONH—, —OCONH—, —SO 2 NH—, and —SO 3 —.
  • a linking group having the above is preferable.
  • a 101 represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ).
  • R a , R b and R c each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group (preferably having 1 to 8 carbon atoms), and R d is a linear, branched or cyclic group.
  • R e and R f are each independently a hydrogen atom or a linear, branched or cyclic alkyl group (preferably having a carbon number of 1 to 8), an alkali metal, It represents an alkaline earth metal or onium, and R g represents a halogen ion, an inorganic anion, or an organic anion.
  • —CON (R a ) (R b ), —N (R a ) (R b ), —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e ) R a to R g may be bonded to each other to form a ring for (R f ), —OPO 3 (R e ) (R f ), or —PO 3 (R d ) (R e )
  • the formed ring may be a heterocycle containing a heteroatom such as an oxygen atom, a sulfur atom or a nitrogen atom.
  • R a to R g may further have a substituent, and the substituents that can be introduced here are the same as the substituents that can be introduced when R 1 to R 8 are alkyl groups. Can be listed.
  • a 101 is preferably —CONH 2 , —CONH (R 5 ), or —CON (R 5 ) 2 .
  • R 5 represents a linear, branched or cyclic alkyl group.
  • the linear, branched or cyclic alkyl group specifically includes a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group.
  • the alkali metal include lithium, sodium, and potassium
  • the alkaline earth metal includes barium
  • the onium includes ammonium, iodonium, sulfonium, and the like.
  • halogen ion examples include fluorine ion, chlorine ion, bromine ion
  • inorganic anion includes nitrate anion, sulfate anion, tetrafluoroborate anion, hexafluorophosphate anion, etc.
  • organic anion includes methanesulfonate anion
  • Preferable examples include trifluoromethanesulfonate anion, nonafluorobutanesulfonate anion, p-toluenesulfonate anion and the like.
  • the A 101 specifically, -NHCOCH 3, -CONH 2, -CON (CH 3) 2, -COOH, -SO 3 - NMe 4 +, -SO 3 - K +, - (CH 2 CH 2 O) n H, morpholyl group and the like are preferable. More preferred are —NHCOCH 3 , —CONH 2 , —CON (CH 3 ) 2 , —SO 3 ⁇ K + , — (CH 2 CH 2 O) n H. In the above, n preferably represents an integer of 1 to 100.
  • P represents an integer of 1 to 3, preferably 2 to 3, more preferably 3.
  • x and y are represented by the general formula (I-1) in the hydrophilic polymer (I).
  • x is 0 ⁇ x ⁇ 100
  • y is 0 ⁇ y ⁇ 100.
  • x is preferably in the range of 1 ⁇ x ⁇ 90, and more preferably in the range of 1 ⁇ x ⁇ 50.
  • y is preferably in the range of 10 ⁇ y ⁇ 99, and more preferably in the range of 50 ⁇ y ⁇ 99.
  • the copolymerization ratio of the hydrophilic polymer (I) having a structure represented by the general formulas (I-1) and (I-2) is such that the amount of the general formula (I-2) having a hydrophilic group is within the above range.
  • the mass average molecular weight of the hydrophilic polymer (I) having a structure represented by the general formulas (I-1) and (I-2) is preferably 1,000 to 1,000,000, and 1,000 to 500,000. 000 is more preferable, and 1,000 to 200,000 is most preferable.
  • hydrophilic polymer (I) containing the structures represented by the general formulas (I-1) and (I-2) are shown below together with their mass average molecular weights (MW). The invention is not limited to these examples.
  • polymer of the specific example shown below means that each structural unit described is a random copolymer or block copolymer contained in the described molar ratio.
  • Each compound for synthesizing the hydrophilic polymer (I) having a structure represented by the general formulas (I-1) and (I-2) is commercially available or can be easily synthesized.
  • general radical polymerization methods include, for example, New Polymer Experiments 3 (1996, Kyoritsu Shuppan), Polymer Synthesis and Reaction 1 (Polymer Society of Japan, 1992, Kyoritsu Shuppan), New Experiment Chemistry Course 19 (1978, Maruzen), Polymer Chemistry (I) (Edited by Chemical Society of Japan, 1996, Maruzen), Synthetic Polymer Chemistry (Materials Engineering Course, 1995, Tokyo Denki University Press) These can be applied.
  • hydrophilic polymer (II) having a structure represented by the following general formulas (II-1) and (II-2) may be used in combination with the hydrophilic polymer (I).
  • R 201 to R 205 each independently represents a hydrogen atom or a hydrocarbon group.
  • q represents an integer of 1 to 3
  • L 201 and L 202 each represents a single bond or a polyvalent organic linking group.
  • a 201 represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , -OCON (R a ) (R b ), -NHCON (R a ) (R b ), -SO 3 R e , -OSO 3 R e , -SO 2 R d , -NHSO 2 R d , -SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), or —PO 3
  • R a , R b and R c each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group
  • R d represents a linear, branched or cyclic alkyl group
  • R e and R f each independently represents a hydrogen atom or a linear, branched or cyclic alkyl group, an alkali metal, an alkaline earth metal, or onium
  • R g represents a halogen ion, an inorganic anion, or an organic anion.
  • the hydrophilic polymer (II) including the structures represented by the general formulas (II-1) and (II-2) has a structural unit represented by the above general formula (II-2), and has a polymer chain. It preferably has a partial structure represented by the general formula (II-1) at the end thereof.
  • R 201 to R 205 each independently represents a hydrogen atom or a hydrocarbon group, and hydrocarbons in the case where R 201 to R 205 represent a hydrocarbon group.
  • the group include an alkyl group and an aryl group, and a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms is preferable.
  • L 201 and L 202 each independently represents a single bond or a polyvalent organic linking group.
  • the single bond means that the main chain of the polymer is directly bonded to the A 201 and Si atoms without a connecting chain.
  • L 201 and L 202 each represent a polyvalent organic linking group, specific examples and preferred examples thereof may be the same as those described for L 101 in the general formula (I-1).
  • a 201 represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), or —PO 3
  • L 201 and L 202 are more preferably —CH 2 CH 2 CH 2 S—, —CH 2 S—, —CONHCH (CH 3 ) CH 2 —, —CONH—, —CO—, —CO 2 —, —CH 2 —.
  • the hydrophilic polymer (II) including the structures represented by the general formulas (II-1) and (II-2) is, for example, a chain transfer agent (radical polymerization handbook (NTS, Mikiji Tsunoike, Takeshi Endo) In the presence of Iniferter (described in Macromolecules 1986, 19, p287- (Otsu)) by radical polymerization of a hydrophilic monomer (eg, potassium salt of acrylamide, acrylic acid, 3-sulfopropyl methacrylate). Can be synthesized.
  • a hydrophilic monomer eg, potassium salt of acrylamide, acrylic acid, 3-sulfopropyl methacrylate
  • chain transfer agents examples include 3-mercaptopropionic acid, 2-aminoethanethiol hydrochloride, 3-mercaptopropanol, 2-hydroxyethyl disulfide, 3-mercaptopropyltrimethoxysilane.
  • a hydrophilic monomer eg, acrylamide
  • the hydrophilic polymer (II) having a structure represented by the general formulas (II-1) and (II-2) includes a radical polymerizable monomer represented by the following general formula (i) and a general formula (ii) ) Can be synthesized by radical polymerization using a silane coupling agent having chain transfer ability. Since the silane coupling agent (ii) has chain transfer ability, it is possible to synthesize a polymer in which a silane coupling group is introduced at the end of the polymer main chain in radical polymerization.
  • R 201 to R 205 , L 201 , L 202 , A 201 , and q have the same meanings as those in the general formula (II-1). These compounds are commercially available and can also be easily synthesized.
  • the radically polymerizable monomer represented by the general formula (i) has a hydrophilic group A201 , and this monomer becomes one structural unit in the hydrophilic polymer.
  • the number of moles of the structural unit of the general formula (II-1) having a hydrolyzable silyl group amount is preferably in the range of 1000 to 10 times, more preferably in the range of 500 to 20 times, and most preferably in the range of 200 to 30 times. If it is 30 times or more, the hydrophilicity is not insufficient. On the other hand, if it is 200 times or less, the amount of hydrolyzable silyl groups is sufficient, sufficient curing is obtained, and the film strength is also sufficient.
  • the mass average molecular weight of the hydrophilic polymer (II) having a structure represented by the general formulas (II-1) and (II-2) is preferably 1,000 to 1,000,000, and 1,000 to 500,000. 000 is more preferable, and 1,000 to 200,000 is most preferable.
  • hydrophilic polymer (II) that can be suitably used in the present invention are shown below, but the present invention is not limited thereto.
  • * represents a bonding position to the polymer.
  • the ratio (mass ratio) of the hydrophilic polymer (I) / hydrophilic polymer (II) is preferably 5/95. Is in the range of ⁇ 95 / 5, more preferably in the range of 40/60 to 95/5, and most preferably in the range of 60/40 to 90/10.
  • the hydrophilic polymer (I) may be a copolymer with another monomer.
  • examples of other monomers used include acrylic esters, methacrylic esters, acrylamides, methacrylamides, vinyl esters, styrenes, acrylic acid, methacrylic acid, acrylonitrile, maleic anhydride, maleic imide, etc. These known monomers are also included. By copolymerizing such monomers, various physical properties such as film forming property, film strength, hydrophilicity, hydrophobicity, solubility, reactivity, and stability can be improved.
  • acrylic esters include methyl acrylate, ethyl acrylate, (n- or i-) propyl acrylate, (n-, i-, sec- or t-) butyl acrylate, amyl acrylate, 2-ethylhexyl acrylate, Dodecyl acrylate, chloroethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypentyl acrylate, cyclohexyl acrylate, allyl acrylate, trimethylolpropane monoacrylate, pentaerythritol monoacrylate, benzyl acrylate, methoxybenzyl acrylate, chloro Benzyl acrylate, hydroxybenzyl acrylate, hydroxyphenethyl acrylate, dihydroxyphene Le acrylate, furfuryl acrylate, tetrahydrofurfuryl acrylate, phenyl acrylate
  • methacrylic acid esters include methyl methacrylate, ethyl methacrylate, (n- or i-) propyl methacrylate, (n-, i-, sec- or t-) butyl methacrylate, amyl methacrylate, 2-ethylhexyl methacrylate, Dodecyl methacrylate, chloroethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxypentyl methacrylate, cyclohexyl methacrylate, allyl methacrylate, trimethylolpropane monomethacrylate, pentaerythritol monomethacrylate, benzyl methacrylate, methoxybenzyl methacrylate, chloro Benzyl methacrylate, hydroxybenzyl methacrylate, hydroxy Phenethyl methacrylate, dihydroxyphenethyl methacrylate
  • acrylamides include acrylamide, N-methylacrylamide, N-ethylacrylamide, N-propylacrylamide, N-butylacrylamide, N-benzylacrylamide, N-hydroxyethylacrylamide, N-phenylacrylamide, and N-tolylacrylamide.
  • methacrylamides include methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N-propylmethacrylamide, N-butylmethacrylamide, N-benzylmethacrylamide, N-hydroxyethylmethacrylamide, N -Phenylmethacrylamide, N-tolylmethacrylamide, N- (hydroxyphenyl) methacrylamide, N- (sulfamoylphenyl) methacrylamide, N- (phenylsulfonyl) methacrylamide, N- (tolylsulfonyl) methacrylamide, N , N-dimethylmethacrylamide, N-methyl-N-phenylmethacrylamide, N-hydroxyethyl-N-methylmethacrylamide and the like.
  • vinyl esters include vinyl acetate, vinyl butyrate, vinyl benzoate and the like.
  • styrenes include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, propyl styrene, cyclohexyl styrene, chloromethyl styrene, trifluoromethyl styrene, ethoxymethyl styrene, acetoxymethyl styrene, methoxy styrene, dimethoxy styrene. Chlorostyrene, dichlorostyrene, bromostyrene, iodostyrene, fluorostyrene, carboxystyrene and the like.
  • the ratio of these other monomers used for the synthesis of the copolymer needs to be an amount sufficient for improving various physical properties, but the function as the hydrophilic layer is sufficient, and the hydrophilic polymer (I) In order to sufficiently obtain the advantage of adding, it is preferable that the ratio is not too large. Accordingly, the preferred total proportion of other monomers in the hydrophilic polymer (I) is preferably 80% by mass or less, and more preferably 50% by mass or less.
  • the measurement of the copolymerization ratio of the hydrophilic polymer (I) can be carried out by preparing a calibration curve with a nuclear magnetic resonance apparatus (NMR) or a standard substance and measuring with an infrared spectrophotometer.
  • NMR nuclear magnetic resonance apparatus
  • the hydrophilic composition in this invention can use hydrophilic polymer (I) individually or in mixture of 2 or more types. From the viewpoint of curability and hydrophilicity, the hydrophilic polymer (I) is preferably used in an amount of 20 to 99.5% by mass, preferably 30 to 99.5% by mass, based on the total solid content of the hydrophilic composition. More preferably.
  • the hydrophilic composition comprises 50% by mass or more of the hydrophilic polymer (I) containing the structure represented by the general formula (I-1) and the structure represented by the general formula (I-2) based on the total solid content. It is preferable to contain.
  • the hydrophilic composition contains a hydrolyzable silyl group-containing hydrophilic polymer containing the hydrophilic polymer (1) in an amount of 80% by mass or more based on the total solid content, and A in the general formula (I-2) 101 preferably represents —CONH 2 , —CONH (R 5 ), or —CON (R 5 ) 2 (wherein R 5 independently represents a linear, branched or cyclic alkyl group). .
  • the above-mentioned hydrophilic polymer (I) forms a crosslinked film in a state of being mixed with a hydrolyzed and polycondensed product of metal alkoxide.
  • the hydrophilic polymer (I) which is an organic component, is involved in film strength and film flexibility.
  • the viscosity of the hydrophilic polymer (I) is 0.1 to 100 mPa ⁇ s (5% aqueous solution, 20% When the temperature is in the range of 0.5 to 70 mPa ⁇ s, more preferably 1 to 50 mPa ⁇ s, good film properties can be obtained.
  • Crosslinking agent When the hydrophilic composition contains the hydrophilic polymer (II), it is preferable to contain a crosslinking agent in order to obtain good curability. In addition, in the case where the hydrophilic composition (I) is contained in the hydrophilic composition, good curability can be obtained even when the crosslinking agent is not contained, but in order to obtain a coating film having extremely excellent film strength. May contain a crosslinking agent.
  • an alkoxide compound (also referred to as a metal alkoxide) containing an element selected from Si, Ti, Zr, and Al is particularly preferable.
  • a metal alkoxide is a hydrolyzable polymerizable compound having a functional group capable of being hydrolyzed and polycondensed in its structure and serving as a cross-linking agent, and has a cross-linked structure due to polycondensation of metal alkoxides.
  • a strong cross-linked film can be formed and further chemically bonded to the hydrophilic polymer.
  • the metal alkoxide can be represented by general formula (V-1) or general formula (V-2), in which R 20 represents a hydrogen atom, an alkyl group or an aryl group, and R 21 and R 22 represent an alkyl group or Represents an aryl group, Z represents Si, Ti or Zr, and m represents an integer of 0-2.
  • R 20 and R 21 represent an alkyl group
  • the carbon number is preferably 1 to 4.
  • the alkyl group or aryl group may have a substituent, and examples of the substituent that can be introduced include a halogen atom, an amino group, and a mercapto group.
  • This compound is a low molecular compound and preferably has a molecular weight of 2000 or less.
  • the hydrolyzable compound containing silicon includes, for example, trimethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, ⁇ - Examples include chloropropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, and the like.
  • trimethoxysilane particularly preferred are trimethoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane and the like.
  • Z is Ti, i.e., including titanium, for example, trimethoxy titanate, tetramethoxy titanate, triethoxy titanate, tetraethoxy titanate, tetrapropoxy titanate, chlorotrimethoxy titanate, chlorotriethoxy titanate, ethyl
  • Zr that is, the one containing zirconium can include, for example, zirconates corresponding to the compounds exemplified as those containing titanium.
  • central metal is Al
  • examples of those containing aluminum in the hydrolyzable compound include trimethoxy aluminate, triethoxy aluminate, tripropoxy aluminate, triisopropoxy aluminate, and the like. be able to.
  • tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, and methyltriethoxysilane are particularly preferable.
  • the metal alkoxide compound selected from Si, Ti, Zr, and Al is preferably used in an amount of 0 to 80% by mass based on the total solid content of the hydrophilic composition when the hydrophilic polymer (I) is used. More preferably, 0 to 70% by mass is used.
  • the hydrophilic polymer (II) is used, it is preferably used in an amount of 0 to 80% by weight, more preferably 0 to 70% by weight, based on the total solid content of the hydrophilic composition.
  • the hydrophilic polymer (I), more preferably the hydrophilic polymer (II), a crosslinking agent such as a crosslinking agent is dissolved in a solvent and stirred well, These components are hydrolyzed and polycondensed to form an organic-inorganic composite sol solution, and this sol solution forms a hydrophilic film having high hydrophilicity and high film strength.
  • a catalyst in order to promote hydrolysis and polycondensation reaction. By using a catalyst, the drying temperature for forming the hydrophilic layer can be set low, and thermal deformation on the substrate can be suppressed.
  • a catalyst that promotes a reaction that causes hydrolysis and polycondensation of the crosslinking agent to cause a bond with the hydrophilic polymers (I) and (II) is selected.
  • a compound in which an acid or a basic compound is dissolved in a solvent such as water or alcohol (hereinafter collectively referred to as an acidic catalyst and a basic catalyst, respectively) is used.
  • the concentration at which the acid or basic compound is dissolved in the solvent is not particularly limited, and may be appropriately selected depending on the characteristics of the acid or basic compound used, the desired content of the catalyst, and the like.
  • the concentration of the acid or basic compound constituting the catalyst is high, the hydrolysis and polycondensation rates tend to increase.
  • a basic catalyst with a high concentration is used, a precipitate may be generated in the sol solution. Therefore, when a basic catalyst is used, the concentration is preferably 1 N or less in terms of concentration in an aqueous solution.
  • the type of acidic catalyst or basic catalyst is not particularly limited. However, when it is necessary to use a highly concentrated catalyst, a catalyst composed of an element that hardly remains in the coating film after drying is preferable.
  • the acid catalyst is represented by hydrogen halide such as hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, hydrogen sulfide, perchloric acid, hydrogen peroxide, carbonic acid, carboxylic acid such as formic acid or acetic acid, and its RCOOH.
  • the basic catalyst include ammoniacal bases such as aqueous ammonia, amines such as ethylamine and aniline, and the like. Etc.
  • a Lewis acid catalyst comprising a metal complex
  • metal complex catalysts metal elements selected from groups 2A, 3B, 4A and 5A of the periodic table and ⁇ -diketones, ketoesters, hydroxycarboxylic acids or esters thereof, amino alcohols, enolic active hydrogen compounds It is a metal complex comprised from the oxo or hydroxy oxygen containing compound chosen from these.
  • 2A group elements such as Mg, Ca, Sr and Ba
  • 3B group elements such as Al and Ga
  • 4A group elements such as Ti and Zr
  • 5A group elements such as V, Nb and Ta are preferable.
  • the oxo- or hydroxy-oxygen-containing compound constituting the ligand of the metal complex is a ⁇ -diketone such as acetylacetone (2,4-pentanedione) or 2,4-heptanedione, methyl acetoacetate, acetoacetate Ketoesters such as ethyl and butylacetoacetate, lactic acid, methyl lactate, salicylic acid, ethyl salicylate, phenyl salicylate, malic acid, tartaric acid, methyl tartrate and other hydroxycarboxylic acids and esters thereof, 4-hydroxy-4-methyl-2-pentanone , 4-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-heptanone, ketoalcohols such as 4-hydroxy-2-heptanone, monoethanolamine, N, N-dimethylethanolamine, N-methyl- Monoethanolamine, diethanolamine Amino alcohols such as ethanol, triethanolamine, enol active
  • a preferred ligand is acetylacetone or an acetylacetone derivative.
  • the acetylacetone derivative refers to a compound having a substituent on the methyl group, methylene group or carbonyl carbon of acetylacetone.
  • Substituents for substitution on the methyl group of acetylacetone are all straight-chain or branched alkyl groups having 1 to 3 carbon atoms, acyl groups, hydroxyalkyl groups, carboxyalkyl groups, alkoxy groups, alkoxyalkyl groups, and acetylacetone
  • the substituents that substitute for the methylene group are carboxyl groups, both straight-chain or branched carboxyalkyl groups and hydroxyalkyl groups having 1 to 3 carbon atoms, and the substituents that substitute for the carbonyl carbon of acetylacetone are carbon atoms.
  • acetylacetone derivatives include ethylcarbonylacetone, n-propylcarbonylacetone, i-propylcarbonylacetone, diacetylacetone, 1-acetyl-1-propionyl-acetylacetone, hydroxyethylcarbonylacetone, hydroxypropylcarbonylacetone, acetoacetic acid Acetopropionic acid, diacetacetic acid, 3,3-diacetpropionic acid, 4,4-diacetbutyric acid, carboxyethylcarbonylacetone, carboxypropylcarbonylacetone, diacetone alcohol. Of these, acetylacetone and diacetylacetone are particularly preferred.
  • the complex of the above acetylacetone derivative and the above metal element is a mononuclear complex in which 1 to 4 molecules of the acetylacetone derivative are coordinated per metal element, and the coordinateable bond of the acetylacetone derivative is the coordinateable bond of the metal element.
  • ligands commonly used for ordinary complexes such as water molecules, halogen ions, nitro groups, and ammonio groups may coordinate.
  • Examples of preferred metal complexes include tris (acetylacetonato) aluminum complex, di (acetylacetonato) aluminum / aco complex, mono (acetylacetonato) aluminum / chloro complex, di (diacetylacetonato) aluminum complex, ethylacetate Acetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), cyclic aluminum oxide isopropylate, tris (acetylacetonato) barium complex, di (acetylacetonato) titanium complex, tris (acetylacetonato) titanium complex, di-i -Propoxy bis (acetylacetonato) titanium complex salt, zirconium tris (ethyl acetoacetate), zirconium tris (benzoic acid) complex salt, etc.
  • ethyl acetoacetate aluminum diisopropylate aluminum tris (ethyl acetoacetate), di ( Acetylacetonato) titanium complex and zirconium tris (ethylacetoacetate) are preferred.
  • the type of the counter salt is arbitrary as long as it is a water-soluble salt that maintains the neutrality of the charge as the complex compound, such as nitrate, Salt forms such as halogenates, sulfates, phosphates, etc., that ensure stoichiometric neutrality are used.
  • nitrate nitrate
  • Salt forms such as halogenates, sulfates, phosphates, etc., that ensure stoichiometric neutrality are used.
  • the metal complex takes a coordination structure and is stable, and in the dehydration condensation reaction that starts in the heat drying process after coating, it is considered that crosslinking is promoted by a mechanism similar to an acid catalyst.
  • this metal complex has led to the improvement of coating solution aging stability and film surface quality, high hydrophilicity, and high durability.
  • the catalyst is preferably used in the range of 0 to 50% by mass, more preferably 5 to 25% by mass with respect to the total solid content in the hydrophilic composition of the present invention. Moreover, a catalyst may be used independently or may be used together 2 or more types.
  • [Other additives] In addition to this, if necessary, for example, leveling additives, matting agents, waxes for adjusting film physical properties, and tackiness within a range that does not impair hydrophilicity in order to improve adhesion to the substrate. A fire etc. can be contained.
  • the tackifier specifically, a high molecular weight adhesive polymer (for example, (meth) acrylic acid and an alkyl group having 1 to 20 carbon atoms) described in JP-A-2001-49200, 5-6p.
  • a surfactant is preferably used in order to improve the surface state of the hydrophilic composition and the undercoat layer composition.
  • the surfactant include a nonionic surfactant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a fluorine surfactant.
  • the nonionic surfactant used in the present invention is not particularly limited, and conventionally known nonionic surfactants can be used.
  • nonionic surfactants can be used.
  • polyoxyethylene alkyl ethers polyoxyethylene alkyl phenyl ethers, polyoxyethylene polystyryl phenyl ethers, polyoxyethylene polyoxypropylene alkyl ethers, glycerin fatty acid partial esters, sorbitan fatty acid partial esters, pentaerythritol Fatty acid partial esters, propylene glycol mono fatty acid esters, sucrose fatty acid partial esters, polyoxyethylene sorbitan fatty acid partial esters, polyoxyethylene sorbitol fatty acid partial esters, polyethylene glycol fatty acid esters, polyglycerin fatty acid partial esters, Polyoxyethylenated castor oil, polyoxyethylene glycerin fatty acid partial esters, fatty acid diethanolamides, N N- bis-2-hydroxyalky
  • the anionic surfactant used in the present invention is not particularly limited, and conventionally known anionic surfactants can be used.
  • anionic surfactants can be used.
  • the cationic surfactant used in the present invention is not particularly limited, and conventionally known cationic surfactants can be used. Examples thereof include alkylamine salts, quaternary ammonium salts, polyoxyethylene alkylamine salts, and polyethylene polyamine derivatives.
  • the amphoteric surfactant used in the present invention is not particularly limited, and conventionally known amphoteric surfactants can be used. Examples thereof include carboxybetaines, aminocarboxylic acids, sulfobetaines, aminosulfuric esters, and imidazolines.
  • polyoxyethylene can be read as “polyoxyalkylene” such as polyoxymethylene, polyoxypropylene, polyoxybutylene, etc. These surfactants can also be used.
  • More preferable surfactants include fluorine-based surfactants containing a perfluoroalkyl group in the molecule.
  • fluorosurfactants include anionic types such as perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and perfluoroalkyl phosphates; amphoteric types such as perfluoroalkyl betaines; Cation type such as trimethylammonium salt; perfluoroalkylamine oxide, perfluoroalkylethylene oxide adduct, oligomer containing perfluoroalkyl group and hydrophilic group, oligomer containing perfluoroalkyl group and lipophilic group, perfluoroalkyl Nonionic types such as an oligomer containing a group, a hydrophilic group and a lipophilic group, and a urethane containing a perfluoroalkyl group and a lipophilic group.
  • fluorine-based surfactants described in JP-A Nos. 62-170950, 62-226143, and 60-168144 are also preferred.
  • the surfactant is used in the hydrophilic composition of the present invention in an amount of preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, based on the total solid content.
  • surfactant can be used individually or in combination of 2 or more types.
  • the hydrophilic composition of the present invention may contain inorganic fine particles in order to improve the cured film strength and hydrophilicity of the hydrophilic film to be formed.
  • the inorganic fine particles for example, silica, alumina, magnesium oxide, titanium oxide, magnesium carbonate, calcium alginate, or a mixture thereof is preferably exemplified.
  • the inorganic fine particles preferably have an average particle diameter of 5 nm to 10 ⁇ m, more preferably 0.5 to 3 ⁇ m. Within the above range, it is possible to form a film that is stably dispersed in the hydrophilic layer, sufficiently retains the film strength of the hydrophilic layer, and is excellent in hydrophilicity.
  • the inorganic fine particles as described above can be easily obtained as a commercial product such as a colloidal silica dispersion.
  • the inorganic fine particles according to the present invention are used in the hydrophilic composition of the present invention in an amount of preferably 20% by mass or less, more preferably 10% by mass or less, based on the total solid content.
  • the inorganic fine particles can be used alone or in combination of two or more.
  • an antioxidant can be added to the hydrophilic composition.
  • the antioxidant include European Published Patent No. 223739, No. 309401, No. 309402, No. 310551, No. 310552, No. 4594416, German Published Patent No. 3435443. JP, 54-85535, 62-262447, 63-113536, 63-163351, JP-A-2-262654, JP-A-2-71262, Examples thereof include those described in Kaihei 3-121449, JP-A-5-61166, JP-A-5-119449, US Pat. No. 4,814,262, US Pat. No. 4,980,275, and the like.
  • the addition amount is appropriately selected according to the purpose, but is preferably 0.1 to 8% by mass in terms of solid content.
  • Polymer compound In order to adjust the film properties of the hydrophilic layer, various polymer compounds can be added to the hydrophilic composition of the present invention as long as the hydrophilicity is not inhibited.
  • High molecular compounds include acrylic polymer, polyvinyl alcohol resin, polyurethane resin, polyamide resin, polyester resin, epoxy resin, phenol resin, polycarbonate resin, polyvinyl formal resin, shellac, vinyl resin, acrylic resin, rubber resin Waxes and other natural resins can be used. Two or more of these may be used in combination. Of these, vinyl copolymers obtained by copolymerization of acrylic monomers are preferred.
  • a copolymer containing “carboxyl group-containing monomer”, “methacrylic acid alkyl ester”, or “acrylic acid alkyl ester” as a structural unit is also preferably used as the copolymer composition of the polymer binder.
  • the hydrophilic member in this invention has a hydrophilic layer formed with the said hydrophilic composition on the base material chosen from acrylic, polycarbonate, polyester, stainless steel, aluminum, etc., for example.
  • the hydrophilic member of the present invention has a hydrophilic layer formed by coating a hydrophilic composition on a substrate, and the hydrophilic composition is the hydrophilic composition described above. It is possible to provide a hydrophilic member that has excellent hydrophilicity, friction resistance, antifouling property, and adhesion and can maintain excellent lubricity for a long period of time.
  • the hydrophilic member of the present invention may further have an undercoat layer between the base material and the hydrophilic layer in order to improve the adhesion between the base material and the hydrophilic layer.
  • the undercoat layer is preferably formed by applying the above-described composition containing the catalyst, thereby further improving the adhesion between the substrate and the hydrophilic layer.
  • the catalyst is preferably a non-volatile catalyst as described above.
  • the catalyst is used in the composition for an undercoat layer in an amount of preferably 0 to 50% by mass, more preferably 1 to 25% by mass, based on the total solid content.
  • a catalyst may be used independently or may be used together 2 or more types.
  • the undercoat layer is preferably formed by applying a composition containing the above-described crosslinking agent, and thereby, more reliably, adhesion between the substrate and the hydrophilic layer. Can be improved.
  • the crosslinking agent is preferably used in the range of 5 to 99% by mass, more preferably 10 to 95% by mass, based on the total solid content in the composition for the undercoat layer.
  • a crosslinking agent may be used independently or may be used together 2 or more types.
  • the hydrophilic composition and the composition for the undercoat layer may contain zirconia chloride, nitrate, alkoxide, and organic complex from the viewpoints of wear resistance, acid resistance, and alkali resistance.
  • zirconium nitrate include zirconium oxynitrate (dihydrate).
  • zirconium alkoxide examples include zirconium ethoxide, zirconium propoxide, zirconium isopropoxide, zirconium butoxide, zirconium t-butoxide and the like.
  • organic complex examples include acetylacetone derivatives.
  • the zirconium compound is preferably used in the range of 0 to 50% by mass, more preferably 5 to 25% by mass with respect to the total solid content in the hydrophilic composition and the composition for the undercoat layer of the present invention.
  • a hydrophilic layer can be formed by applying such a hydrophilic composition onto a suitable substrate and drying. That is, the hydrophilic member of the present invention has a hydrophilic layer formed by applying a hydrophilic composition on a substrate, heating and drying.
  • the hydrophilic member of the present invention comprises a hydrophilic polymer (I) having a structure in which the hydrophilic layer is represented by the general formula (I-1) and the structure represented by the general formula (I-2).
  • the drying temperature is preferably 100 to 230 ° C. from the viewpoint of efficiently forming a high-density crosslinked structure, More preferably, the temperature is 130 to 200 ° C.
  • the drying time is preferably 5 seconds to 1 hour. More preferably, it is 10 seconds to 30 minutes. If the drying time is short, the coating strength may be lowered due to insufficient drying. If the drying time is excessively longer than necessary, the substrate may deteriorate.
  • the hydrophilic member of the present invention can be prepared by a known coating method, and is not particularly limited.
  • a spray coating method for example, a dip coating method, a flow coating method, a spin coating method, a roll coating method, a film applicator method.
  • Methods such as screen printing, bar coater, brush coating, and sponge coating can be applied.
  • the center line average roughness Ra of the surface of the hydrophilic layer is preferably 10 nm to 100 nm.
  • the Tg of the hydrophilic layer is preferably 40 ° C. to 150 ° C. from the viewpoint of coating film strength.
  • the elastic modulus of the hydrophilic layer is preferably 1 GPa to 7 GPa.
  • the surface property of the hydrophilic layer adjusts the particle size and content of the inorganic fine particles used, the surface roughness of the substrate itself, the viscosity of the hydrophilic composition, the heating temperature of the hydrophilic layer, the speed, and the like. However, the present invention is not limited to this.
  • An intermediate layer may be provided between the base material and the hydrophilic layer as necessary for improving adhesion.
  • an intermediate layer may be provided between the aluminum plate and the hydrophilic layer for the purpose of improving the anticorrosion property and adhesion to the substrate.
  • the intermediate layer is not particularly limited. Hydrophilic layers having different compositions may be provided, or a known anticorrosion layer represented by a chromate system may be provided.
  • the hydrophilicity of the surface of the hydrophilic layer is generally measured by the water droplet contact angle.
  • the water droplet contact angle may be 10 ° C. or less, and there is a limit to the mutual comparison of the hydrophilicity.
  • there is a measurement of surface free energy As a method for evaluating the hydrophilicity of the solid surface in more detail, there is a measurement of surface free energy. Various methods have been proposed. In the present invention, as an example, the surface free energy was measured using the Zisman plot method.
  • the horizontal axis indicates the surface of the aqueous solution.
  • hydrophilic composition was prepared by dissolving a hydrophilic polymer having a hydrolyzable silyl group, a crosslinking agent, a catalyst, a surfactant and a specific alkoxide in a solvent such as ethanol and then stirring. Can be implemented.
  • the reaction temperature is from room temperature to 80 ° C., and the reaction time, that is, the time during which stirring is continued is preferably in the range of 1 to 72 hours.
  • a composite sol solution can be obtained.
  • the solvent used in preparing the hydrophilic composition is not particularly limited as long as it can uniformly dissolve and disperse these, but for example, an aqueous solvent such as methanol, ethanol, water or the like is preferable.
  • the preparation of the organic-inorganic composite sol liquid (hydrophilic composition) for forming the hydrophilic layer from the hydrophilic composition of the present invention utilizes the sol-gel method.
  • sol-gel method Sakuo Sakuo “Science of Sol-Gel Method”, Agne Jofusha Co., Ltd. (published) (1988), Satoshi Hirashima “Functional Thin Film Formation Technology by the Latest Sol-Gel Method” General Technology Center (Published) (1992) and the like, and the methods described therein can be applied to the preparation of the hydrophilic composition in the present invention.
  • the lubricating layer in the present invention has a friction coefficient of 0.05 to 0 provided on a hydrophilic layer formed from a hydrophilic composition containing a hydrophilic polymer having a hydrolyzable silyl group on a substrate. .25 is a lubricating layer.
  • the friction coefficient of the lubricating layer is preferably 0.06 to 0.24, and more preferably 0.08 to 0.22.
  • the coefficient of friction is not particularly limited, but can be measured by a known method using a Bowden-Leven type friction tester.
  • the lubricant layer can be formed of a lubricant composition.
  • the lubricant contained in the lubricant composition includes nonionic hydrophilic properties such as polyethylene glycol (PEG) and polypropylene glycol (PPG), or copolymers thereof.
  • a polymer or a surfactant can be mentioned, and preferably polyethylene glycol (PEG) or polypropylene glycol, or a copolymer polymer thereof, more preferably polyethylene glycol or polypropylene glycol. These may be used alone or in combination.
  • polyethylene glycol or polypropylene glycol it is possible to impart lubricity without impairing the hydrophilicity of the hydrophilic layer.
  • the molecular weight of the lubricant is preferably 200 to 10,000, more preferably 400 to 6000, and still more preferably 1000 to 4000. If it exists in this range, it is preferable from the reason that the lubricity robustness and the hydrophilic property of a hydrophilic layer are not impaired.
  • a commercially available lubricant may be used, and it may be synthesized by a known method. When polyethylene glycol or polypropylene glycol is used as the lubricant, it can be obtained from a commercial product.
  • the content of the lubricant in the lubricant composition is preferably 0.01 to 50% by mass, more preferably 0.1 to 20% by mass, and 0.5 to 10% by mass. Further preferred.
  • the lubricant composition preferably further contains a surfactant.
  • Preferred examples of the surfactant used in the lubricant composition include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and fluorine surfactants. Is a nonionic surfactant, an anionic surfactant, or a cationic surfactant, more preferably a nonionic surfactant or an anionic surfactant. Specifically, the above-described surfactant can be used.
  • the content of the surfactant in the lubricant composition is preferably 0.1 to 20% by mass, more preferably 0.2 to 10% by mass, and more preferably 0.5 to 5% with respect to the hydrophilic polymer. More preferably, it is mass%.
  • the lubricant composition preferably further contains a solvent.
  • a solvent used in the lubricant composition, water and alcohols such as methanol, ethanol and propanol can be preferably used, and water is more preferable.
  • the content of the solvent in the lubricant composition is preferably 50 to 99.99% by mass, more preferably 80 to 99.9% by mass, and further preferably 90 to 99.5% by mass. preferable.
  • Lubricant composition can also be prepared by the same method as the above hydrophilic composition.
  • the hydrophilic member of the present invention can be obtained by applying the lubricant composition of the present invention on the hydrophilic layer and drying it. That is, the hydrophilic member of the present invention is formed by applying a hydrophilic composition on a substrate, heating and drying to form a hydrophilic layer, applying a lubricant composition thereon, heating and drying. Thus, it is obtained by forming a lubricating layer.
  • the heating and drying conditions of the lubricant composition are preferably about 5 seconds to 1 hour in the temperature range of 100 to 230 ° C., and 10 to 10 in the temperature range of 130 to 200 ° C. from the viewpoint of decomposition and evaporation. It is more preferable to dry for 2 to 30 minutes.
  • a heating means of the lubricant composition and the hydrophilic composition it is preferable to use a known means, for example, a dryer having a temperature adjusting function.
  • composition for undercoat layer can also be prepared by the same method as the above hydrophilic composition.
  • the hydrophilic member of the present invention may have an undercoat layer by applying a composition for an undercoat layer on a substrate as necessary, and heating and drying.
  • the heating and drying conditions for the undercoat layer composition are preferably about 2 minutes to 1 hour in the temperature range of 50 to 200 ° C. from the viewpoint of efficiently forming a high-density crosslinked structure, It is more preferable to dry in the temperature range of 160 ° C. for 5 to 30 minutes.
  • a heating means of the undercoat composition it is preferable to use a known means, for example, a dryer having a temperature adjusting function.
  • the catalyst when the hydrophilic layer and the undercoat layer are applied on the substrate, the catalyst can be mixed immediately before the application to the substrate. Specifically, the coating is preferably performed immediately after mixing the catalyst to within 1 hour. When the catalyst is mixed and left to stand for a long time, the composition of the undercoat layer or the hydrophilic composition increases in viscosity, which may cause defects such as coating unevenness. Other components are also preferably mixed immediately before coating, but may be stored for a long time after mixing.
  • the substrate used in the present invention is not particularly limited, but glass, plastic, metal, ceramics, wood, stone, cement, concrete, fiber, fabric, paper, leather, tile, rubber, latex, combinations thereof, those Any laminate can be suitably used.
  • Particularly preferred substrates are flexible flexible substrates such as plastics and metals.
  • the plastic substrate used in the present invention is not particularly limited, but the substrate used as an optical member is selected in consideration of optical characteristics such as transparency, refractive index, dispersibility, and the like, It is selected in consideration of various physical properties such as physical properties such as strength such as impact resistance and flexibility, heat resistance, weather resistance, and durability.
  • Plastic base materials include polyester, polyethylene, polypropylene, cellophane, triacetyl cellulose, diacetyl cellulose, acetyl cellulose butyrate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, polystyrene, polycarbonate, polymethylpentene, poly Examples thereof include films or sheets of sulfone, polyether ketone, acrylic, nylon, fluororesin, polyimide, polyetherimide, polyether sulfone and the like. Of these, polyester films such as polyethylene terephthalate and polyethylene naphthalate are particularly preferred.
  • the thickness of the plastic substrate varies depending on the partner to be laminated. For example, in a portion with many curved surfaces, a thin one is preferred, and one having a thickness of about 6 to 50 ⁇ m is used. Further, 50 to 400 ⁇ m is used for a flat surface or where strength is required.
  • one or both surfaces of the base material can be subjected to surface hydrophilization treatment by an oxidation method, a roughening method, or the like as desired.
  • the oxidation method include corona discharge treatment, glow discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, and the like.
  • a roughening method it can also be mechanically roughened by sandblasting, brush polishing or the like.
  • the plastic substrate a material in which an inorganic compound layer described in the following description of the glass plate is formed on the plastic plate can also be used.
  • the inorganic compound layer can also act as an antireflection layer. Even when the inorganic compound layer is formed on the plastic plate, it can be formed by the same method as in the inorganic base material described above.
  • a hard coat layer may be formed between both layers.
  • the hardness of the substrate surface is improved and the substrate surface is smoothed, so the adhesion between the transparent plastic substrate and the inorganic compound layer is improved, and the scratch resistance is improved, Generation of cracks in the inorganic compound layer due to bending of the substrate can be suppressed.
  • the mechanical strength of the hydrophilic member can be improved.
  • the material of the hard coat layer is not particularly limited as long as it has transparency, appropriate strength, and mechanical strength.
  • a curable resin or a thermosetting resin by irradiation with ionizing radiation or ultraviolet rays can be used, and an ultraviolet irradiation curable acrylic resin, an organosilicon resin, or a thermosetting polysiloxane resin is particularly preferable.
  • the refractive index of these resins is more preferably equal to or close to the refractive index of the transparent plastic substrate.
  • Such a coating method of the hard coat layer is not particularly limited, and any method can be adopted as long as it is uniformly applied.
  • the hard coat layer having a thickness of 3 ⁇ m or more has sufficient strength, but is preferably in the range of 5 to 7 ⁇ m from the viewpoint of transparency, coating accuracy, and handling.
  • a light diffusing treatment generally called anti-glare can be performed. These particles are not particularly limited as long as they are transparent, but a low refractive index material is preferable, and silicon oxide and magnesium fluoride are particularly preferable in terms of stability, heat resistance, and the like.
  • the light diffusing treatment can also be achieved by providing irregularities on the surface of the hard coat layer.
  • an aluminum plate is particularly preferable.
  • the aluminum plate is a pure aluminum plate, an alloy plate containing aluminum as a main component and containing a trace amount of different elements, or a plastic laminated on a thin film of aluminum or an aluminum alloy.
  • foreign elements contained in the aluminum alloy include silicon, iron, manganese, copper, magnesium, chromium, zinc, bismuth, nickel, and titanium.
  • the content of foreign elements in the alloy is preferably 10% by mass or less.
  • a pure aluminum plate is preferable, but completely pure aluminum is difficult to manufacture in terms of refining technology, and therefore may contain a slightly different element.
  • the composition of the aluminum plate is not specified, and a publicly known material can be used as appropriate.
  • the thickness of the base material is preferably 0.05 to 0.6 mm, and more preferably 0.08 to 0.2 mm.
  • a degreasing treatment with a surfactant, an organic solvent, an alkaline aqueous solution or the like for removing rolling oil on the surface is performed as desired.
  • the processing method of an aluminum base material can be performed by a well-known method.
  • the base material used in the present invention may be a base material that has been surface-treated as described above and has an anodized film as it is.
  • the micropore enlargement treatment or sealing treatment of the anodized film and the surface hydrophilization treatment soaked in an aqueous solution containing a hydrophilic compound described in Japanese Patent No. 253181 and Japanese Patent Application Laid-Open No. 2001-322365 are appropriately selected. It can be carried out.
  • the enlargement process and the sealing process are not limited to those described above, and any conventionally known method can be performed.
  • the sealing treatment in addition to the vapor sealing, a single treatment with fluorinated zirconic acid, a treatment with sodium fluoride, or a vapor sealing with addition of lithium chloride is possible.
  • the sealing treatment used in the present invention is not particularly limited, and a conventionally known method can be used. Among them, sealing treatment with an aqueous solution containing an inorganic fluorine compound, sealing treatment with water vapor, and heat Sealing with water is preferred. Each will be described below.
  • the inorganic fluorine compound used for the sealing treatment with an aqueous solution containing an inorganic fluorine compound include metal fluorides.
  • metal fluorides Specifically, for example, sodium fluoride, potassium fluoride, calcium fluoride, magnesium fluoride, sodium fluoride zirconate, potassium fluoride zirconate, sodium fluoride titanate, potassium fluoride titanate, zircon fluoride Ammonium acid, ammonium fluorinated titanate, fluorinated zirconic acid, fluorinated titanic acid, hexafluorosilicic acid, nickel fluoride, iron fluoride, fluorinated phosphoric acid, and ammonium fluorinated phosphate.
  • sodium fluorinated zirconate, sodium fluorinated titanate, fluorinated zirconic acid, and fluorinated titanic acid are preferable.
  • the concentration of the inorganic fluorine compound in the aqueous solution is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, from the viewpoint of sufficiently sealing the micropores of the anodized film. Further, in terms of stain resistance, it is preferably 1% by mass or less, and more preferably 0.5% by mass or less.
  • the aqueous solution containing an inorganic fluorine compound further contains a phosphate compound.
  • Suitable examples of the phosphate compound include phosphates of metals such as alkali metals and alkaline earth metals. Specifically, for example, zinc phosphate, aluminum phosphate, ammonium phosphate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, monoammonium phosphate, monopotassium phosphate, monosodium phosphate, dihydrogen phosphate Potassium, dipotassium hydrogen phosphate, calcium phosphate, sodium ammonium hydrogen phosphate, magnesium hydrogen phosphate, magnesium phosphate, ferrous phosphate, ferric phosphate, sodium dihydrogen phosphate, sodium phosphate, hydrogen phosphate Disodium, lead phosphate, diammonium phosphate, calcium dihydrogen phosphate, lithium phosphate, phosphotungstic acid, ammonium phosphotungstate, sodium phosphotungstate, ammonium phosphate
  • sodium dihydrogen phosphate, disodium hydrogen phosphate, potassium dihydrogen phosphate, and dipotassium hydrogen phosphate are preferable.
  • the combination of the inorganic fluorine compound and the phosphate compound is not particularly limited, but the aqueous solution contains at least sodium zirconate fluoride as the inorganic fluorine compound and contains at least sodium dihydrogen phosphate as the phosphate compound. Is preferred.
  • the concentration of the phosphate compound in the aqueous solution is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, from the viewpoint of improving stain resistance, In this respect, it is preferably 20% by mass or less, and more preferably 5% by mass or less.
  • the ratio of each compound in the aqueous solution is not particularly limited, but the mass ratio of the inorganic fluorine compound and the phosphate compound is preferably 1/200 to 10/1, and preferably 1/30 to 2/1. Is more preferable.
  • the temperature of the aqueous solution is preferably 20 ° C. or higher, more preferably 40 ° C. or higher, preferably 100 ° C. or lower, more preferably 80 ° C. or lower.
  • the aqueous solution preferably has a pH of 1 or more, more preferably has a pH of 2 or more, preferably has a pH of 11 or less, and more preferably has a pH of 5 or less.
  • the method for sealing with an aqueous solution containing an inorganic fluorine compound is not particularly limited, and examples thereof include an immersion method and a spray method. These may be used alone or in combination, or may be used in combination of two or more. Of these, the dipping method is preferred.
  • the treatment time is preferably 1 second or longer, more preferably 3 seconds or longer, and preferably 100 seconds or shorter, and 20 seconds or shorter. More preferred.
  • the sealing treatment with water vapor includes, for example, a method in which pressurized or normal pressure water vapor is brought into contact with the anodized film continuously or discontinuously.
  • the temperature of the water vapor is preferably 80 ° C. or higher, more preferably 95 ° C. or higher, and preferably 105 ° C. or lower.
  • the pressure of water vapor is preferably in the range (1.00 ⁇ 10 5 to 1.043 ⁇ 10 5 Pa) from (atmospheric pressure ⁇ 50 mmAq) to (atmospheric pressure + 300 mmAq).
  • the time for which the water vapor is contacted is preferably 1 second or longer, more preferably 3 seconds or longer, 100 seconds or shorter, more preferably 20 seconds or shorter.
  • sealing treatment with hot water examples include a method of immersing an aluminum plate on which an anodized film is formed in hot water.
  • the hot water may contain an inorganic salt (for example, phosphate) or an organic salt.
  • the temperature of the hot water is preferably 80 ° C. or higher, more preferably 95 ° C. or higher, and preferably 100 ° C. or lower.
  • the time of immersion in hot water is preferably 1 second or longer, more preferably 3 seconds or longer, more preferably 100 seconds or shorter, and even more preferably 20 seconds or shorter.
  • hydrophilization treatment As the hydrophilization treatment, U.S. Pat. Nos. 2,714,066, 3,181,461, 3,280,734 and 3,902,734 are used. There are alkali metal silicate methods as described. In this method, the substrate is immersed in an aqueous solution such as sodium silicate or electrolytically treated. In addition, the treatment with potassium zirconate fluoride described in JP-B 36-22063, U.S. Pat. Nos. 3,276,868, 4,153,461 and 4,689, And a method of treating with polyvinylphosphonic acid as described in each specification of No.272.
  • the substrate preferably has a center line average roughness of 0.10 to 1.2 ⁇ m. Within this range, good adhesion to the undercoat layer and good stain resistance can be obtained.
  • glass plate used in the present invention examples include silicon oxide, aluminum oxide, magnesium oxide, titanium oxide, tin oxide, zirconium oxide, sodium oxide, antimony oxide, indium oxide, bismuth oxide, yttrium oxide, cerium oxide, zinc oxide, ITO Metal oxides such as (Indium Tin Oxide); Inorganic compound layers formed of metal halides such as magnesium fluoride, calcium fluoride, lanthanum fluoride, cerium fluoride, lithium fluoride, thorium fluoride; Glass plates can be mentioned.
  • the undercoat layer and the overcoat layer can be coated with the base glass as it is, but if necessary, for the purpose of improving the adhesion of the undercoat layer and the overcoat layer, on one side or both sides by an oxidation method or a roughening method, etc. Surface hydrophilization treatment can be performed.
  • Examples of the oxidation method include corona discharge treatment, glow discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, and the like.
  • a roughening method it can also be mechanically roughened by sandblasting, brush polishing or the like.
  • the inorganic compound layer can have a single layer structure or a multilayer structure. Depending on the thickness of the inorganic compound layer, the light transmittance can be maintained, and the inorganic compound layer can also function as an antireflection layer.
  • the inorganic compound layer forming method include dip coating method, spin coating method, flow coating method, spray coating method, roll coating method, gravure coating method, etc., vacuum deposition method, reactive deposition method, ion beam
  • PVD physical vapor deposition method
  • CVD chemical vapor deposition method
  • hydrophilic resins include polyvinyl alcohol (PVA), cellulose resins [methyl cellulose (MC), hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC), etc.], chitins, chitosans, starch, and ether bonds.
  • PVA polyvinyl alcohol
  • cellulose resins [methyl cellulose (MC), hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC), etc.
  • chitins chitosans, starch, and ether bonds.
  • examples thereof include resins [polyethylene oxide (PEO), polyethylene glycol (PEG), polyvinyl ether (PVE), etc.], resins having a carbamoyl group [polyacrylamide (PAAM), polyvinyl pyrrolidone (PVP), etc.], and the like.
  • PAAM polyacrylamide
  • PVP polyvinyl pyrrolidone
  • the polyacrylic acid salt which has a carboxyl group, maleic
  • At least one selected from a polyvinyl alcohol resin, a cellulose resin, a resin having an ether bond, a resin having a carbamoyl group, a resin having a carboxyl group, and gelatin is preferable, and in particular, polyvinyl alcohol (PVA) Of these, gelatin resins are preferred.
  • PVA polyvinyl alcohol
  • water-dispersible latex examples include acrylic latex, polyester latex, NBR resin, polyurethane latex, polyvinyl acetate latex, SBR resin, polyamide latex and the like. Among these, acrylic latex is preferable.
  • the above hydrophilic resin and water-dispersible latex may be used alone or in combination of two or more, or a hydrophilic resin and a water-dispersible latex may be used in combination.
  • a cross-linking agent applicable to the present invention a cross-linking agent that forms a cross-link by known heat can be used.
  • General thermal crosslinking agents include those described in “Crosslinking agent handbook” by Shinzo Yamashita, Tosuke Kaneko, published by Taiseisha (1981).
  • the number of functional groups of the crosslinking agent used in the present invention is not particularly limited as long as it is 2 or more and can be effectively crosslinked with a hydrophilic resin or water-dispersible latex.
  • thermal crosslinking agent examples include polycarboxylic acids such as polyacrylic acid, amine compounds such as polyethyleneimine, ethylene or propylene glycol diglycidyl ether, tetraethylene glycol diglycidyl ether, nonaethylene ethylene glycol diglycidyl ether, polyethylene or Polyepoxy compounds such as polypropylene glycol glycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, sorbitol polyglycidyl ether, polyaldehyde compounds such as glyoxal, terephthalaldehyde, Range isocyanate, hexamethylene diisocyanate, diphenylmethane isocyanate, xylylene diisocyanate Polyisocyanate compounds such as cyanate, polymethylene polyphenyl
  • a water-soluble cross-linking agent is preferable from the viewpoint of easy preparation of the coating solution and prevention of a decrease in hydrophilicity of the produced hydrophilic layer.
  • the total amount of the hydrophilic resin and / or water-dispersible latex in the undercoat layer is preferably 0.01 to 20 g / m 2 and more preferably 0.1 to 10 g / m 2 .
  • Layer structure when using hydrophilic member When the hydrophilic member of the present invention is used in anticipation of the appearance of antifouling properties and / or antifogging effects, another layer is appropriately formed according to the purpose, form and place of use. Can be used. The layer structure added as needed is described below.
  • a pressure-sensitive adhesive that is a pressure-sensitive adhesive is preferably used as an adhesive layer on the back surface of the substrate.
  • an adhesive what is generally used for an adhesive sheet, such as a rubber adhesive, an acrylic adhesive, a silicone adhesive, a vinyl ether adhesive, and a styrene adhesive, can be used.
  • an adhesive for optical use is selected.
  • a pattern such as coloring, semi-transparency, or matte is required, in addition to the patterning on the substrate, a dye, organic or inorganic fine particles can be added to the adhesive to produce an effect.
  • a resin for example, a rosin-based resin, a terpene-based resin, a petroleum-based resin, a styrene-based resin, or an adhesion-imparting resin such as a hydrogenated product thereof can be used alone or in combination.
  • the adhesive strength of the pressure-sensitive adhesive used in the present invention is generally called strong adhesion, and is 200 g / 25 mm or more, preferably 300 g / 25 mm or more, more preferably 400 g / 25 mm or more.
  • the adhesive force here is based on JIS Z 0237 and is a value measured by a 180 degree peel test.
  • a release layer When the hydrophilic member of the present invention has the adhesive layer, a release layer can be further added. In order to give mold release properties to the mold release layer, it is preferable to contain a mold release agent.
  • a silicone release agent composed of polyorganosiloxane, a fluorine compound, a long-chain alkyl modified product of polyvinyl alcohol, a long-chain alkyl modified product of polyethyleneimine, and the like can be used.
  • various release agents such as a hot melt type release agent, a monomer type release agent that cures a release monomer by radical polymerization, cationic polymerization, polycondensation reaction, etc., and other acrylic-silicone copolymer Resin, acrylic-fluorine-based copolymer resin, and copolymer-based resin such as urethane-silicone-fluorine-based copolymer resin, resin blend of silicone-based resin and acrylic resin, and fluorine-based resin and acrylic-based resin A resin blend is used.
  • a protective layer may be provided on the hydrophilic layer.
  • the protective layer has a function of preventing damage to the hydrophilic surface during handling, transportation, storage, and the like, and deterioration of hydrophilicity due to adhesion of dirt substances.
  • the hydrophilic polymer layer used in the release layer can be used as the protective layer.
  • the protective layer is peeled off after the hydrophilic member is attached to an appropriate substrate.
  • the hydrophilic member having the hydrophilic layer of the present invention may be supplied in the form of a sheet, a roll or a ribbon, and may be cut in advance to be attached to an appropriate substrate. It can also be supplied.
  • the hydrophilic layer of the present invention is excellent in transparency, and even when the film thickness is large, the transparency is not impaired and compatibility with durability is possible.
  • the thickness of the hydrophilic layer of the present invention is preferably 0.01 ⁇ m to 100 ⁇ m, more preferably 0.05 ⁇ m to 50 ⁇ m, and most preferably 0.1 ⁇ m to 20 ⁇ m.
  • the dry coating amount of the hydrophilic layer is preferably 0.01 g / m 2 to 100 g / m 2 , more preferably 0.02 g / m 2 to 80 g / m 2 , particularly preferably 0.05 g / m 2 to 50 g / m.
  • the thickness of the lubricating layer is preferably 0.001 ⁇ m to 1 ⁇ m, more preferably 0.005 ⁇ m to 0.5 ⁇ m, and most preferably 0.1 ⁇ m to 0.3 ⁇ m.
  • the film thickness is 0.001 ⁇ m or more, sufficient hydrophilicity and durability can be obtained, and when the film thickness is 1 ⁇ m or less, there is no problem in film forming properties such as cracking, which is preferable.
  • the dry coating amount of the lubricating layer is 0.001g / m 2 ⁇ 1g / m 2, more preferably 0.005g / m 2 ⁇ 0.5g / m 2, and most preferably 0.01g / m 2 ⁇ 0.
  • the thickness of the undercoat layer is preferably 0.01 ⁇ m to 100 ⁇ m, more preferably 0.02 ⁇ m to 80 ⁇ m, and particularly preferably 0.05 ⁇ m to 50 ⁇ m.
  • the dry coating amount of the undercoat layer composition is preferably 0.01 g / m 2 to 100 g / m 2 , more preferably 0.02 g / m 2 to 80 g / m 2 , particularly preferably 0.05 g / m 2 to 50 g / m 2. with m 2, it is possible to obtain a film thickness of the.
  • Transparency is evaluated by measuring the light transmittance in the visible light region (400 nm to 800 nm) with a spectrophotometer.
  • the light transmittance is preferably from 100% to 70%, more preferably from 95% to 75%, and most preferably from 95% to 80%.
  • the hydrophilic member provided with a hydrophilic layer can be applied to various applications without obstructing the field of view.
  • the hydrophilic member of the present invention applies the hydrophilic composition and, if necessary, the composition for the undercoat layer onto an appropriate substrate, and is heated and dried to form a hydrophilic layer.
  • the lubricant composition is applied thereon, heated and dried to form a lubricating layer having a friction coefficient of 0.05 to 0.25.
  • a known coating method can be employed as a method for applying the undercoat layer composition, the hydrophilic composition, and the lubricant composition.
  • a known coating method can be employed as a known coating method. For example, spray coating method, dip coating method, flow coating method, spin coating method, roll coating method, film Applicator methods, screen printing methods, bar coater methods, brush coating, sponge coating, and the like can be applied.
  • the hydrophilic member of the present invention can be applied, for example, in the case of expecting an antifogging effect, such as a transparent glass substrate or a transparent plastic substrate, a lens, a prism, a mirror, etc. is there.
  • a transparent glass substrate or a transparent plastic substrate such as soda glass, lead glass and borosilicate glass
  • any glass such as soda glass, lead glass and borosilicate glass may be used.
  • float plate glass, mold plate glass, ground glass, wire-filled glass, wire-filled glass, tempered glass, laminated glass, double-glazed glass, vacuum glass, crime prevention glass, high heat insulation Low-E double-glazed glass should be used. Can do.
  • Applications that can be applied with anti-fogging effects include vehicle rearview mirrors, bathroom mirrors, toilet mirrors, dental mirrors, mirrors such as road mirrors; spectacle lenses, optical lenses, camera lenses, internal vision Lenses such as mirror lenses, illumination lenses, semiconductor lenses, and copier lenses; prisms; window glass for buildings and surveillance towers; other glass for building materials; Ropeway gondola, amusement park gondola, various vehicle windows; automobiles, rail cars, aircraft, ships, submersibles, snow vehicles, snowmobiles, motorcycles, ropeway gondola, amusement park gondola, various vehicle windshields Glass; protective goggles, sports goggles, protective mask shield, sports mask shield, helmet shield, frozen food display case Las; cover glass measuring instruments, and films to be attached to the article surface. The most preferred application is glass for automobiles and building materials.
  • the base material is, for example, metal, ceramics, wood, stone, cement, concrete, fiber, fabric, in addition to glass and plastic, Any of paper, combinations thereof, and laminates thereof can be suitably used.
  • Applications with antifouling components include building materials, building exteriors such as exterior walls and roofs, building interiors, window frames, window glass, structural members, automobiles, railway vehicles, aircraft, ships, bicycles, motorcycles Exterior and painting of such vehicles, machinery and equipment exteriors, dust covers and coatings, traffic signs, various display devices, advertising towers, road noise barriers, railway noise barriers, bridges, guardrail exteriors and coatings, tunnel interiors And paint, insulators, solar battery covers, solar water heater heat collector covers, greenhouses, vehicle lighting cover, housing equipment, toilets, bathtubs, sinks, lighting fixtures, lighting covers, kitchenware, dishes, dishwashers A dish dryer, a sink, a cooking range, a kitchen hood, a ventilation fan, and a film to be attached to the surface of the article.
  • the base material may be, for example, metal, ceramics, wood, stone, cement, concrete, fiber, fabric in addition to glass and plastic.
  • Paper, combinations thereof, and laminates thereof can be suitably used.
  • Applications that can be applied to members that have a quick-drying effect such as water include building materials, building exteriors such as outer walls and roofs, building interiors, window frames, window glass, structural members, automobiles, railway vehicles, aircraft, ships, and bicycles.
  • Exteriors and paintings of vehicles such as motorcycles, exteriors of machinery and equipment, dustproof covers and paintings, traffic signs, various display devices, advertising towers, soundproof walls for roads, soundproof walls for railways, bridges, guardrails and paints , Tunnel interior and painting, insulator, solar battery cover, solar water heater heat collection cover, plastic house, vehicle lighting cover, housing equipment, toilet, bathtub, wash basin, lighting fixture, lighting cover, kitchenware, tableware, It includes a dishwasher, a dish dryer, a sink, a cooking range, a kitchen hood, a ventilation fan, and a film for application to the surface of the article.
  • the hydrophilic member according to the present invention is preferably a fin material, and is preferably a fin material having an aluminum fin main body. That is, the fin material of the present invention is a fin material comprising a fin main body (preferably an aluminum fin main body) and a hydrophilic layer provided on at least a part of the surface of the fin main body. Is formed by coating the hydrophilic composition according to the present invention.
  • Aluminum fin material (aluminum fin body itself) used in heat exchangers such as indoor air conditioners and automobile air conditioners causes water droplets to form as water droplets and stay between the fins, resulting in water bridges. Ability is reduced.
  • the adhering of dust or the like between the fins similarly reduces the cooling capacity.
  • the fin material in which the composition for forming a hydrophilic film of the present invention is applied to the fin body provides a fin material excellent in hydrophilicity, antifouling property, and sustainability thereof. It is done.
  • the fin material according to the present invention preferably has a water contact angle of 40 ° or less after 5 cycles of 1-hour aeration, 30-minute water washing, and 30-minute drying of palmitic acid.
  • Examples of the aluminum used for the fin body of the fin material include those having a degreased surface and, if necessary, a chemically treated aluminum plate. It is preferable that the surface of the fin body made of aluminum is subjected to a chemical conversion treatment in terms of adhesion of the hydrophilic treatment film, corrosion resistance, and the like.
  • Examples of the chemical conversion treatment include chromate treatment, and typical examples thereof include alkali salt-chromate method (BV method, MBV method, EW method, Al And a treatment method such as a chromic acid method, a chromate method, and a chromic phosphate method, and an anhydrous washing coating type treatment with a composition mainly composed of chromium chromate.
  • pure aluminum plate such as 1100, 1050, 1200, 1N30, Al—Cu based alloy plate such as 2017, 2014, 3003, Any of Al-Mn alloy plates such as 3004, Al-Mg alloy plates such as 5052 and 5083, and Al-Mg-Si alloy plates such as 6061 may be used. Any of the coils may be used.
  • the fin material which concerns on this invention for a heat exchanger. Since the heat exchanger using the fin material according to the present invention has excellent hydrophilicity, antifouling property and durability thereof, it is possible to prevent water droplets and dust from adhering between the fins. it can.
  • the heat exchanger include heat exchangers used for indoor coolers, air conditioners, construction machine oil coolers, automobile radiators, capacitors, and the like.
  • the heat exchanger using the fin material according to the present invention for an air conditioner Since the fin material according to the present invention has excellent hydrophilicity, antifouling property and sustainability thereof, it is possible to provide an air conditioner in which problems such as a decrease in cooling capacity as described above are improved.
  • the air conditioner may be any one of a room air conditioner, a packaged air conditioner, a car air conditioner, and the like.
  • publicly known techniques for example, JP 2002-106882 A, JP 2002-156135 A, etc.
  • JP 2002-106882 A, JP 2002-156135 A, etc. can be used for the heat exchanger and the air conditioner of the present invention, and are not particularly limited.
  • the heat exchanger fin material has a hydrophilic layer formed by applying and drying a hydrophilic composition containing a hydrophilic polymer having a hydrolyzable silyl group on the surface of an aluminum plate. And applying a lubricant composition containing at least one substance selected from the group consisting of polyethylene glycol and polypropylene glycol, and drying to adsorb or impregnate the lubricant composition in the hydrophilic layer.
  • the drying temperature of the hydrophilic composition and the lubricant composition is preferably 130 to 230 ° C.
  • ⁇ Aluminum base degreasing treatment> An aluminum plate (A1200, thickness 0.1 mm) was immersed in an alkaline cleaning liquid (Yokohama Yushi Co., Ltd., Semi-clean A 5 mass% aqueous solution) for 10 minutes, and washing with water was repeated three times.
  • an alkaline cleaning liquid Yokohama Yushi Co., Ltd., Semi-clean A 5 mass% aqueous solution
  • the mass average molecular weight of the polymer B determined by GPC was 11,000. Thereafter, the polymers B-2 to B-3 used in the examples were synthesized by the same method as described above. The structures of the polymers B-1 to B-3 are shown below.
  • Examples 1 to 42 and Comparative Examples 1 to 11 ⁇ Hydrophilic composition> As shown in Tables 1 to 3 below, a hydrophilic polymer was dissolved in pure water, a catalyst solution was added and stirred for 2 hours, and an aqueous surfactant solution was added and stirred. In Tables 1 to 3, the amounts of the surfactant and the catalyst are the amounts excluding the solvent.
  • PEG polyethylene glycol
  • PPG polypropylene glycol
  • PPG polyacrylamide
  • a hydrophilic composition was applied to a degreased aluminum plate with a # 8 bar, and heated and dried at the temperatures shown in Tables 1 to 3 for 15 seconds to form a hydrophilic layer. Further, the lubricant composition was applied thereon with a # 3 bar and heated and dried at the temperatures shown in Tables 1 to 3 for 15 seconds to form a lubricating layer, which was used as a test piece.
  • the drying temperatures in Tables 1 to 3 are the drying temperatures of both the hydrophilic layer and the lubricating layer, and when there is no lubricating layer, the drying temperature of only the hydrophilic layer.
  • the film thicknesses in Tables 1 to 3 were calculated by cutting the test piece and observing the cross section with SEM. [Evaluation] The obtained test piece was evaluated as follows. The evaluation results are shown in Tables 4 to 6 below. ⁇ Surface shape> Since there was no problem in any of the hydrophilic layers, the coated surface shape of only the lubricating layer was confirmed by visual observation.
  • hydrophilic polymers A-6 to A-8 used in Comparative Examples and the catalyst solutions and surfactant aqueous solutions used in Examples and Comparative Examples are shown in Tables 1 to 3.
  • Catalyst 1 1.8 g of ethanol, 0.1 g of acetylacetone, 0.1 g of tetraethoxytitanium and 0.015 g of distilled water were mixed and prepared by stirring for 1 hour.
  • Catalyst 2 Zircozole ZA-30 (ZrO (C 2 H 3 O 2 ) 2 aqueous solution, manufactured by Daiichi Rare Elemental Chemical Co., Ltd.)
  • Catalyst 3 Orgatechs TC-310 ((OH) 2 Ti [OCH (CH 3 ) COOH] 2 aqueous solution, manufactured by Matsumoto Kosho Co., Ltd.)
  • hydrophilic member of the present invention is excellent in hydrophilicity, antifouling properties, friction resistance, adhesion, and rust prevention properties.
  • a hydrophilic member excellent in hydrophilicity, antifouling property, lubricity, adhesion, and rust prevention property and heat excellent in hydrophilicity, antifouling property, friction resistance, adhesion property, and rust prevention property The manufacturing method of the fin material for exchangers can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geometry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Disclosed is a hydrophilic member having excellent hydrophilicity, antifouling properties, lubricity, adhesion and anti-rust properties.  Also disclosed is a method for producing a fin material for heat exchangers having excellent hydrophilicity, antifouling properties, lubricity, adhesion and anti-rust properties. The hydrophilic member is characterized in that a hydrophilic layer, which is formed from a hydrophilic composition containing a hydrophilic polymer having a hydrolyzable silyl group, is provided on a base, and a lubricating layer having a friction coefficient of 0.05-0.25 is provided on the hydrophilic layer.  The method for producing a fin material for heat exchangers is characterized in that the surface of a fin material for heat exchangers, which has a hydrophilic layer that is formed by coating an aluminum plate surface with a hydrophilic composition containing a hydrophilic polymer having a hydrolyzable silyl group, and then drying the coating thereon, is coated with a lubricant composition and then the coating is dried thereon, so that the lubricant composition is adsorbed on or impregnated into the hydrophilic layer, thereby forming a lubricating layer having a friction coefficient of 0.05-0.25.

Description

親水性部材及び熱交換器用フィン材の製造方法Method for producing hydrophilic member and fin material for heat exchanger
 本発明は、親水性、防汚性、耐摩擦性、密着性、防錆性に優れた親水性部材及び親水性、防汚性、耐摩擦性、密着性、防錆性に優れた熱交換器用フィン材の製造方法に関する。 The present invention is a hydrophilic member excellent in hydrophilicity, antifouling properties, friction resistance, adhesion, and rust prevention, and heat exchange excellent in hydrophilicity, antifouling properties, friction resistance, adhesion, and rust prevention properties. The present invention relates to a method for manufacturing a device fin material.
 部材表面への油性汚れの付着を防止する技術は、種々提案されている。特に、反射防止膜、光学フィルター、光学レンズ、眼鏡レンズ、鏡等の光学部材は、人が使用することによって、指紋、皮脂、汗、化粧品等の汚れが付着し、その機能を低下させると共に、汚れの除去が煩雑であるため、効果的な汚れ防止処理を施すことが望まれている。
 また、近年、モバイルの普及に伴い、ディスプレイが屋外で使用されることが多くなってきたが、外光が入射されるような環境下で使用されると、この入射光はディスプレイ表面において正反射され、反射光が表示光と混合して表示画像が見にくくなるなどの問題を引き起こす。このため、ディスプレイ表面に反射防止光学部材を配置することがよく行われている。
 このような反射防止光学部材としては、例えば、透明基板の表面に金属酸化物などからなる高屈折率層と低屈折率層を積層したもの、透明基板の表面に無機や有機フッ化化合物などの低屈折率層を単層で形成したもの、或いは、透明プラスチックフィルム基板の表面に透明な微粒子を含むコーティング層を形成し、凹凸状の表面により外光を乱反射させるものなどが知られている。これら反射防止光学部材表面も、前述の光学部材と同様に、人が使用することによって、指紋や皮脂などの汚れが付着しやすいが、汚れが付着した部分だけ高反射となり、汚れがより目立つという問題に加え、反射防止膜の表面には通常、微細な凹凸があり、汚れの除去が困難であるという問題もあった。
Various techniques for preventing oily dirt from adhering to the member surface have been proposed. In particular, optical members such as antireflection films, optical filters, optical lenses, spectacle lenses, mirrors, etc., when used by humans, are contaminated with fingerprints, sebum, sweat, cosmetics, etc. Since removal of dirt is complicated, it is desired to perform effective dirt prevention treatment.
In recent years, with the spread of mobile devices, displays are often used outdoors, but when used in an environment where external light is incident, the incident light is regularly reflected on the display surface. As a result, the reflected light is mixed with the display light, causing problems such as difficulty in viewing the display image. For this reason, an antireflection optical member is often disposed on the display surface.
As such an antireflection optical member, for example, a transparent substrate with a high refractive index layer and a low refractive index layer made of a metal oxide or the like laminated thereon, an inorganic or organic fluoride compound or the like on the transparent substrate surface. Known are those in which a low refractive index layer is formed as a single layer, or those in which a coating layer containing transparent fine particles is formed on the surface of a transparent plastic film substrate and external light is irregularly reflected by the uneven surface. These anti-reflective optical member surfaces, like the above-mentioned optical members, are susceptible to dirt such as fingerprints and sebum when used by humans, but only the part where the dirt is attached becomes highly reflective and the dirt is more noticeable. In addition to the problem, the surface of the antireflection film usually has fine irregularities, and it is difficult to remove dirt.
 固体部材の表面に汚れを着き難くする、付着した汚れを取りやすくするなどの性能を持つ汚れ防止機能を表面に形成する技術が種々提案されている。特に反射防止部材と防汚性部材との組合せとしては、例えば、主として二酸化ケイ素からなる反射防止膜と、有機ケイ素置換基を含む化合物で処理してなる防汚性、耐摩擦性材料(例えば、特許文献1参照。)、基板表面に末端シラノール有機ポリシロキサンで被覆した防汚性、耐摩擦性のCRTフィルター(例えば、特許文献2参照。)が提案されている。また、ポリフルオロアルキル基を含むシラン化合物をはじめとするシラン化合物を含有する反射防止膜(例えば、特許文献3参照。)や、二酸化ケイ素を主とする光学薄膜とパーフルオロアルキルアクリレートとアルコキシシラン基を有する単量体との共重合体との組合せ(例えば、特許文献4参照。)が、それぞれ提案されている。
 しかしながら、従来の方法で形成された防汚層は、防汚性が不十分であり、特に、指紋、皮脂、汗、化粧品等の汚れが拭き取りにくく、また、フッ素やケイ素などの表面エネルギーの低い材料による表面処理は経時的な防汚性能の低下が懸念され、このため、防汚性と耐久性の優れた防汚性部材の開発が望まれている。
Various techniques have been proposed for forming on the surface an anti-smudge function having performances such as making it difficult to get dirt on the surface of a solid member and making it easier to remove attached dirt. In particular, as a combination of an antireflection member and an antifouling member, for example, an antireflection film made mainly of silicon dioxide and an antifouling and friction resistant material treated with a compound containing an organosilicon substituent (for example, Patent Document 1), and an antifouling and friction-resistant CRT filter (for example, see Patent Document 2) in which the substrate surface is coated with a terminal silanol organopolysiloxane has been proposed. Further, an antireflection film containing a silane compound including a silane compound containing a polyfluoroalkyl group (see, for example, Patent Document 3), an optical thin film mainly composed of silicon dioxide, a perfluoroalkyl acrylate, and an alkoxysilane group. A combination with a copolymer with a monomer having a hydrogen atom (for example, see Patent Document 4) has been proposed.
However, the antifouling layer formed by the conventional method has insufficient antifouling property, and in particular, it is difficult to wipe off dirt such as fingerprints, sebum, sweat, cosmetics, etc., and the surface energy such as fluorine and silicon is low. The surface treatment with a material is concerned with a decrease in antifouling performance over time, and therefore, development of an antifouling member having excellent antifouling properties and durability is desired.
 光学部材などの表面に汎用される樹脂フィルム、或いは、ガラスや金属等の無機材料は、その表面は疎水性であるか、弱い親水性を示すものが一般的である。樹脂フィルム、無機材料などを用いた基板の表面が親水化されると、付着水滴が基板表面に一様に拡がり均一な水膜を形成するようになるので、ガラス、レンズ、鏡の曇りを有効に防止でき、湿分による失透防止、雨天時の視界性確保等に役立つ。更に、都市媒塵、自動車等の排気ガスに含有されるカーボンブラック等の燃焼生成物、油脂、シーラント溶出成分等の疎水性汚染物質が付着しにくく、付着しても降雨や水洗により簡単に落せるようになるので、種々の用途に有用である。 In general, a resin film generally used on the surface of an optical member or the like, or an inorganic material such as glass or metal has a hydrophobic surface or a weak hydrophilic surface. When the surface of a substrate using a resin film or inorganic material is made hydrophilic, the attached water droplets spread uniformly on the surface of the substrate and form a uniform water film. It is useful for preventing devitrification due to moisture and ensuring visibility in rainy weather. Moreover, combustion products such as carbon black contained in exhaust gas from automobile dust, automobiles, etc., and hydrophobic pollutants such as oil and sealant elution components are difficult to adhere. Therefore, it is useful for various applications.
 従来提案されている親水化するための表面処理方法、例えば、エッチング処理、プラズマ処理等によれば、高度に親水化されるものの、その効果は一時的であり、親水化状態を長期間維持することができない。また、親水性樹脂の一つとして親水性グラフトポリマーを使用した表面親水性塗膜も提案されている(例えば、非特許文献1参照。)が、この塗膜はある程度の親水性を有するものの、基板との親和性が充分とはいえず、より高い耐久性が求められている。 Conventionally proposed surface treatment methods for hydrophilization, such as etching treatment and plasma treatment, are highly hydrophilized, but their effects are temporary and maintain the hydrophilized state for a long time. I can't. Further, a surface hydrophilic coating film using a hydrophilic graft polymer as one of hydrophilic resins has also been proposed (see, for example, Non-Patent Document 1), although this coating film has a certain degree of hydrophilicity, Affinity with the substrate is not sufficient, and higher durability is required.
 また、表面親水性に優れたフィルムとしては従来から酸化チタンを使用したフィルムが知られており、例えば、基板表面に光触媒含有層形成し、光触媒の光励起に応じて表面を高度に親水化する技術が開示されており、この技術をガラス、レンズ、鏡、外装材、水回り部材等の種々の複合材に適用すれば、これら複合材に優れた防汚性を付与できることが報告されている(例えば、特許文献5参照。)。しかしながら酸化チタンを用いた親水性フィルムは充分な膜強度を有さず、更に光励起されないと親水化効果が発現されないことから使用部位に制限があるという問題があるため、持続性があり、かつ、いずれの部位にも使用可能な防汚性部材が求められている。 In addition, as a film having excellent surface hydrophilicity, a film using titanium oxide has been conventionally known. For example, a technique of forming a photocatalyst-containing layer on a substrate surface and making the surface highly hydrophilic according to photoexcitation of the photocatalyst. It is reported that if this technology is applied to various composite materials such as glass, lenses, mirrors, exterior materials, water-circulating members, etc., excellent antifouling properties can be imparted to these composite materials ( For example, see Patent Document 5.) However, the hydrophilic film using titanium oxide does not have sufficient film strength, and since there is a problem that the use site is limited since the hydrophilic effect is not expressed unless photoexcited, it is durable, and There is a demand for antifouling members that can be used in any part.
 また、親水性部材の用途として、エアコンの熱交換器が挙げられる。エアコンの熱交換器は熱媒体を移動させるパイプと空気中の熱を吸収又は熱媒体中の熱を放散させるフィンから構成されている。ルームエアコンでは銅パイプをフィン材である0.1mm程度の薄板アルミニウムに貫通させて用いられる。該フィン材は、冷房時に発生する凝集水が水滴となりフィン間にとどまることで水のブリッジが発生し、冷房能力が低下する。またフィン間に埃などが付着することでも、同様に冷房能力が低下する。
 これらの課題を解決するため、熱交換器のフィン材表面を親水性組成物で処理することが知られている(例えば特許文献9~11参照)。
 また、親水性組成物で処理した熱交換器としては、例えば特許文献12などが知られている。
Moreover, the heat exchanger of an air conditioner is mentioned as a use of a hydrophilic member. A heat exchanger of an air conditioner includes a pipe that moves a heat medium and fins that absorb heat in the air or dissipate heat in the heat medium. In a room air conditioner, a copper pipe is used by penetrating a thin plate aluminum of about 0.1 mm, which is a fin material. In the fin material, the condensed water generated at the time of cooling becomes water droplets and stays between the fins, so that a bridge of water is generated and the cooling capacity is lowered. In addition, the adhering of dust or the like between the fins similarly reduces the cooling capacity.
In order to solve these problems, it is known to treat the surface of the fin material of the heat exchanger with a hydrophilic composition (see, for example, Patent Documents 9 to 11).
As a heat exchanger treated with a hydrophilic composition, for example, Patent Document 12 is known.
 上記課題を達成するために、ゾルゲル有機無機ハイブリッド膜の特性に着眼し、親水性ポリマーとアルコキシドとを加水分解、縮重合することにより架橋構造を備えた親水性表面が優れた防曇性、防汚性を示し、かつ、良好な耐摩擦性を有することが見出されている(特許文献6参照)。このような架橋構造を有する親水性表面層は反応性基を末端に有する特定の親水性ポリマーと、架橋剤とを組合せることにより容易に得られる。 In order to achieve the above-mentioned problems, the anti-fogging and anti-fogging properties of the hydrophilic surface with a cross-linked structure by hydrolyzing and condensation-polymerizing the hydrophilic polymer and the alkoxide are focused on the characteristics of the sol-gel organic-inorganic hybrid film. It has been found that it exhibits fouling and has good rub resistance (see Patent Document 6). A hydrophilic surface layer having such a crosslinked structure can be easily obtained by combining a specific hydrophilic polymer having a reactive group at its terminal and a crosslinking agent.
 また、親水性部材を熱交換器などに加工する際、部材の摩擦係数が高いとプレス機の金型が摩耗してしまう問題があった。この問題に対して、親水性部材の親水層上に潤滑層を設けたものが発案された(例えば、特許文献7、8参照) Also, when processing the hydrophilic member into a heat exchanger or the like, there is a problem that the die of the press machine is worn if the friction coefficient of the member is high. In order to solve this problem, a structure in which a lubricating layer is provided on a hydrophilic layer of a hydrophilic member has been proposed (see, for example, Patent Documents 7 and 8).
 しかしながら、いずれも親水性と合わせて、潤滑性、防汚性、密着性、防錆性について更なる改良が望まれている。 However, in addition to hydrophilicity, further improvements in lubricity, antifouling properties, adhesion, and rust resistance are desired.
日本国特開昭64-86101号公報Japanese Laid-Open Patent Publication No. 64-86101 日本国特開平4-338901号公報Japanese Laid-Open Patent Publication No. 4-338901 日本国特公平6-29332号公報Japanese Patent Publication No. 6-29332 日本国特開平7-16940号公報Japanese Unexamined Patent Publication No. 7-16940 国際公開第96/29375号International Publication No. 96/29375 日本国特開2007-254265号公報Japanese Unexamined Patent Publication No. 2007-254265 日本国特開平6-39347号公報Japanese Unexamined Patent Publication No. 6-39347 日本国特開平9-14888号公報Japanese Laid-Open Patent Publication No. 9-14888 日本国特開2003-201577号公報Japanese Unexamined Patent Publication No. 2003-201577 日本国特開2005-232269号公報Japanese Unexamined Patent Publication No. 2005-232269 日本国特開2005-75841号公報Japanese Unexamined Patent Publication No. 2005-75841 日本国特開2007-225174号公報Japanese Unexamined Patent Publication No. 2007-225174
 本発明の目的は、上記先行技術の問題点を解決し、親水性、防汚性、潤滑性、密着性、防錆性に優れた親水性部材及び親水性、防汚性、潤滑性、密着性、防錆性に優れた熱交換器用フィン材の製造方法を提供することにある。 The object of the present invention is to solve the above-mentioned problems of the prior art, hydrophilic members excellent in hydrophilicity, antifouling properties, lubricity, adhesion, and rust prevention, and hydrophilic properties, antifouling properties, lubricity, adhesion It is providing the manufacturing method of the fin material for heat exchangers excellent in property and rust prevention property.
 本発明は以下の通りである。 The present invention is as follows.
 〔1〕
 基材上に加水分解性シリル基を有する親水性ポリマーを含有する親水性組成物から形成される親水性層を有し、更にその上に摩擦係数が0.05~0.25である潤滑層を有することを特徴とする親水性部材。
 〔2〕
 前記親水性部材の水滴接触角が、20°以下であることを特徴とする〔1〕に記載の親水性部材。
 〔3〕 
 前記潤滑層が、ポリエチレングリコール及びポリプロピレングリコールよりなる群の中から選ばれた少なくとも1種類の潤滑剤を含有する潤滑層であることを特徴とする〔1〕又は〔2〕に記載の親水性部材。
 〔4〕 
 前記ポリエチレングリコール及びポリプロピレングリコールの質量平均分子量が、1000~4000であることを特徴とする〔3〕に記載の親水性部材。
 〔5〕 
 前記潤滑層の膜厚が、0.01~0.3μmであることを特徴とする〔1〕~〔4〕のいずれかに記載の親水性部材。
 〔6〕
 前記親水性層が、下記一般式(I-1)で表される構造及び下記一般式(I-2)で表される構造を含む親水性ポリマー(I)を全固形分に対して50質量%以上含有する親水性組成物を塗布、乾燥させることで得られることを特徴とする〔1〕~〔5〕のいずれかに記載の親水性部材。
[1]
A lubricating layer having a hydrophilic layer formed from a hydrophilic composition containing a hydrophilic polymer having a hydrolyzable silyl group on a substrate, and having a friction coefficient of 0.05 to 0.25 on the hydrophilic layer. A hydrophilic member characterized by comprising:
[2]
The hydrophilic member according to [1], wherein a water droplet contact angle of the hydrophilic member is 20 ° or less.
[3]
The hydrophilic member according to [1] or [2], wherein the lubricating layer is a lubricating layer containing at least one type of lubricant selected from the group consisting of polyethylene glycol and polypropylene glycol .
[4]
The hydrophilic member according to [3], wherein the polyethylene glycol and the polypropylene glycol have a mass average molecular weight of 1000 to 4000.
[5]
The hydrophilic member according to any one of [1] to [4], wherein the lubricating layer has a thickness of 0.01 to 0.3 μm.
[6]
The hydrophilic layer contains 50 mass of the hydrophilic polymer (I) containing the structure represented by the following general formula (I-1) and the structure represented by the following general formula (I-2) with respect to the total solid content. The hydrophilic member according to any one of [1] to [5], which is obtained by applying and drying a hydrophilic composition containing at least%.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(I-1)及び(I-2)中、R101~R108はそれぞれ独立に水素原子又は炭化水素基を表す。pは1~3の整数を表し、L101及び102は、それぞれ独立に単結合又は多価の有機連結基を表す。x及びyは組成比を表し、xは0<x<100、yは0<y<100となる数を表す。A101は-OH、-OR、-COR、-CO、-CON(R)(R)、-N(R)(R)、-NHCOR、-NHCO、-OCON(R)(R)、-NHCON(R)(R)、-SO、-OSO、-SO、-NHSO、-SON(R)(R)、-N(R)(R)(R)、-N(R)(R)(Rc)(R)、-PO(R)(R)、-OPO(R)(R)、又は-PO(R)(R)を表す。ここで、R、R及びRは、それぞれ独立に水素原子又は直鎖、分岐又は環状のアルキル基を表し、Rは、直鎖、分岐又は環状のアルキル基を表し、R及びRは、それぞれ独立に水素原子又は直鎖、分岐又は環状のアルキル基、アルカリ金属、アルカリ土類金属、又はオニウムを表し、Rはハロゲンイオン、無機アニオン、又は有機アニオンを表す。 In the general formulas (I-1) and (I-2), R 101 to R 108 each independently represents a hydrogen atom or a hydrocarbon group. p represents an integer of 1 to 3, and L 101 and L 102 each independently represent a single bond or a polyvalent organic linking group. x and y represent a composition ratio, x represents a number satisfying 0 <x <100 and y represents 0 <y <100. A 101 represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), or —PO 3 (R d ) (R e ). Here, R a , R b and R c each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group, R d represents a linear, branched or cyclic alkyl group, R e and R f each independently represents a hydrogen atom or a linear, branched or cyclic alkyl group, an alkali metal, an alkaline earth metal, or onium, and R g represents a halogen ion, an inorganic anion, or an organic anion.
 〔7〕
 前記親水性組成物が、親水性ポリマー(I)を含む加水分解性シリル基を有する親水ポリマーを全固形分に対して80質量%以上含有し、かつ前記一般式(I-2)に於けるA101が、-CONH、-CONH(R)、又は-CON(R5(式中、Rは、それぞれ独立に直鎖、分岐又は環状のアルキル基を表す)を表すことを特徴とする〔6〕に記載の親水性部材。
 〔8〕
 前記基材がアルミニウム板であることを特徴とする〔1〕~〔7〕のいずれかに記載の親水性部材。
 〔9〕
 〔1〕~〔8〕のいずれかに記載の親水性部材を用いたフィン材。
 〔10〕
 〔9〕に記載のフィン材がアルミニウム製であるアルミニウム製フィン材。
 〔11〕
 〔10〕に記載のアルミニウム製フィン材を用いた熱交換器。
 〔12〕
 〔11〕に記載の熱交換器を用いたエアコン。
 〔13〕
 アルミニウム板の表面に加水分解性シリル基を有する親水性ポリマーを含有する親水性組成物を塗布、乾燥して形成される親水性層を有する熱交換器用フィン材の表面に、潤滑剤組成物を塗布、乾燥して親水性層に潤滑剤組成物を吸着又は含浸させて摩擦係数が0.05~0.25である潤滑層を形成させることを特徴とする、熱交換器用フィン材の製造方法。
 〔14〕
 前記親水性組成物及び潤滑剤組成物の乾燥温度が、それぞれ独立に130~230℃であることを特徴とする〔13〕に記載の熱交換器用フィン材の製造方法。
[7]
The hydrophilic composition contains a hydrolyzable silyl group-containing hydrophilic polymer containing the hydrophilic polymer (I) in an amount of 80% by mass or more based on the total solid content, and in the general formula (I-2) A 101 represents —CONH 2 , —CONH (R 5 ), or —CON (R 5 ) 2 (wherein R 5 independently represents a linear, branched, or cyclic alkyl group). The hydrophilic member according to [6], which is characterized.
[8]
The hydrophilic member according to any one of [1] to [7], wherein the substrate is an aluminum plate.
[9]
[1] A fin material using the hydrophilic member according to any one of [8].
[10]
The aluminum fin material whose fin material as described in [9] is a product made from aluminum.
[11]
[10] A heat exchanger using the aluminum fin material according to [10].
[12]
An air conditioner using the heat exchanger according to [11].
[13]
A lubricant composition is applied to the surface of a fin material for a heat exchanger having a hydrophilic layer formed by applying a hydrophilic composition containing a hydrophilic polymer having a hydrolyzable silyl group to the surface of an aluminum plate and drying. A method for producing a fin material for a heat exchanger, comprising applying and drying to adsorb or impregnate a lubricant composition in a hydrophilic layer to form a lubricating layer having a friction coefficient of 0.05 to 0.25 .
[14]
The method for producing a fin material for a heat exchanger as described in [13], wherein the drying temperature of the hydrophilic composition and the lubricant composition is independently 130 to 230 ° C.
 本発明により、親水性、防汚性、潤滑性、密着性、防錆性に優れた親水性部材及び親水性、防汚性、耐摩擦性、密着性、防錆性に優れた熱交換器用フィン材の製造方法を提供することができる。 According to the present invention, a hydrophilic member excellent in hydrophilicity, antifouling property, lubricity, adhesion, and rust prevention and a heat exchanger excellent in hydrophilicity, antifouling property, friction resistance, adhesion, and rust prevention property The manufacturing method of a fin material can be provided.
 以下、本発明を詳細に説明する。
 本発明の親水性部材は、基材上に加水分解性シリル基を有する親水性ポリマーを含有する親水性組成物から形成される親水性層を有し、更にその上に摩擦係数が0.05~0.25である潤滑層を有する。
 親水性部材の水滴接触角は、20°以下であることが好ましく、好ましくは15°以下より好ましくは10°以下である。水滴接触角を20°以下とすることで、優れた親水性を発揮でき好ましい。
Hereinafter, the present invention will be described in detail.
The hydrophilic member of the present invention has a hydrophilic layer formed from a hydrophilic composition containing a hydrophilic polymer having a hydrolyzable silyl group on a substrate, and further has a friction coefficient of 0.05. Having a lubricating layer of ~ 0.25.
The water droplet contact angle of the hydrophilic member is preferably 20 ° or less, preferably 15 ° or less, more preferably 10 ° or less. It is preferable that the water droplet contact angle is 20 ° or less because excellent hydrophilicity can be exhibited.
 〔親水性組成物〕
 親水性層は、加水分解性シリル基を有する親水性ポリマーを含有する親水性組成物を塗布、乾燥して形成することができる。
[Hydrophilic composition]
The hydrophilic layer can be formed by applying and drying a hydrophilic composition containing a hydrophilic polymer having a hydrolyzable silyl group.
 加水分解性シリル基を有する親水性ポリマーは、下記一般式(I-1)で表される構造及び下記一般式(I-2)で表される構造を含む親水性ポリマー(I)であることが好ましい。 The hydrophilic polymer having a hydrolyzable silyl group is a hydrophilic polymer (I) having a structure represented by the following general formula (I-1) and a structure represented by the following general formula (I-2). Is preferred.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 一般式(I-1)及び(I-2)中、R101~R108はそれぞれ独立に水素原子又は炭化水素基を表す。pは1~3の整数を表し、L101及びL102は、それぞれ独立に単結合又は多価の有機連結基を表す。x及びyは組成比を表し、xは0<x<100、yは0<y<100となる数を表す。A101は-OH、-OR、-COR、-CO、-CON(R)(R)、-N(R)(R)、-NHCOR、-NHCO、-OCON(R)(R)、-NHCON(R)(R)、-SO、-OSO、-SO、-NHSO、-SON(R)(R)、-N(R)(R)(R)、-N(R)(R)(Rc)(R)、-PO(R)(R)、-OPO(R)(R)、又は-PO(R)(R)を表す。ここで、R、R及びRは、それぞれ独立に水素原子又は直鎖、分岐又は環状のアルキル基を表し、Rは、直鎖、分岐又は環状のアルキル基を表し、R及びRは、それぞれ独立に水素原子又は直鎖、分岐又は環状のアルキル基、アルカリ金属、アルカリ土類金属、又はオニウムを表し、Rはハロゲンイオン、無機アニオン、又は有機アニオンを表す。 In the general formulas (I-1) and (I-2), R 101 to R 108 each independently represents a hydrogen atom or a hydrocarbon group. p represents an integer of 1 to 3, and L 101 and L 102 each independently represent a single bond or a polyvalent organic linking group. x and y represent a composition ratio, x represents a number satisfying 0 <x <100 and y represents 0 <y <100. A 101 represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), or —PO 3 (R d ) (R e ). Here, R a , R b and R c each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group, R d represents a linear, branched or cyclic alkyl group, R e and R f each independently represents a hydrogen atom or a linear, branched or cyclic alkyl group, an alkali metal, an alkaline earth metal, or onium, and R g represents a halogen ion, an inorganic anion, or an organic anion.
 親水性を付与する組成物として、例えば、ポリアクリルアミド等の親水性構造及び架橋構造を形成するアルコキシシリル基を含有する親水性ポリマー(I)を用いることで高い親水性を維持できることに加えて親水性表面に付着した水により親水性層が溶け出すことがなく長期にわたる耐水性にも優れるためと考えられる。 In addition to being able to maintain high hydrophilicity by using a hydrophilic polymer (I) containing an alkoxysilyl group that forms a hydrophilic structure and a crosslinked structure, such as polyacrylamide, as a composition that imparts hydrophilicity, hydrophilicity can be maintained. This is presumably because the water adhering to the hydrophilic surface does not dissolve out the hydrophilic layer and has excellent long-term water resistance.
 〔一般式(I-1)で表される構造及び一般式(I-2)で表される構造を含む親水性ポリマー(I)〕 [Hydrophilic polymer (I) including structure represented by general formula (I-1) and structure represented by general formula (I-2)]
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(I-1)及び(I-2)中、R101~R108はそれぞれ独立に水素原子又は炭化水素基を表す。pは1~3の整数を表し、L101及びL102は、それぞれ単結合又は多価の有機連結基を表す。x及びyは組成比を表し、xは0<x<100、yは0<y<100となる数を表す。A101は-OH、-OR、-COR、-CO、-CON(R)(R)、-N(R)(R)、-NHCOR、-NHCO、-OCON(R)(R)、-NHCON(R)(R)、-SO、-OSO、-SO、-NHSO、-SON(R)(R)、-N(R)(R)(R)、-N(R)(R)(Rc)(R)、-PO(R)(R)、-OPO(R)(R)、又は-PO(R)(R)を表す。ここで、R、R及びRは、それぞれ独立に水素原子又は直鎖、分岐又は環状のアルキル基を表し、Rは、直鎖、分岐又は環状のアルキル基を表し、R及びRは、それぞれ独立に水素原子又は直鎖、分岐又は環状のアルキル基、アルカリ金属、アルカリ土類金属、又はオニウムを表し、Rはハロゲンイオン、無機アニオン、又は有機アニオンを表す。 In the general formulas (I-1) and (I-2), R 101 to R 108 each independently represents a hydrogen atom or a hydrocarbon group. p represents an integer of 1 to 3, and L 101 and L 102 each represents a single bond or a polyvalent organic linking group. x and y represent a composition ratio, x represents a number satisfying 0 <x <100 and y represents 0 <y <100. A 101 represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), or —PO 3 (R d ) (R e ). Here, R a , R b and R c each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group, R d represents a linear, branched or cyclic alkyl group, R e and R f each independently represents a hydrogen atom or a linear, branched or cyclic alkyl group, an alkali metal, an alkaline earth metal, or onium, and R g represents a halogen ion, an inorganic anion, or an organic anion.
 上記一般式(I-1)及び(I-2)において、R101~R108はそれぞれ独立に、水素原子又は炭化水素基を表す。炭化水素基としては、アルキル基、アリール基などが挙げられ、炭素原子数1~8の直鎖、分岐又は環状のアルキル基が好ましい。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-エチルヘキシル基、2-メチルヘキシル基、シクロペンチル基等が挙げられる。R101~R108は、効果及び入手容易性の観点から、好ましくは水素原子、メチル基又はエチル基である。 In the general formulas (I-1) and (I-2), R 101 to R 108 each independently represents a hydrogen atom or a hydrocarbon group. Examples of the hydrocarbon group include an alkyl group and an aryl group, and a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms is preferable. Specifically, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, isopropyl group, isobutyl group, s-butyl group, t-butyl group, isopentyl group, neopentyl group 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, cyclopentyl group and the like. R 101 to R 108 are preferably a hydrogen atom, a methyl group or an ethyl group from the viewpoints of effects and availability.
 これらの炭化水素基は更に置換基を有していてもよい。アルキル基が置換基を有するとき、置換アルキル基は置換基とアルキレン基との結合により構成され、ここで、置換基としては、水素を除く一価の非金属原子団が用いられる。好ましい例としては、ハロゲン原子(-F、-Br、-Cl、-I)、ヒドロキシル基、アルコキシ基、アリーロキシ基、メルカプト基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、アミノ基、N-アルキルアミノ基、N,N-ジアリールアミノ基、N-アルキル-N-アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、Ν-アルキルカルバモイルオキシ基、N-アリールカルバモイルオキシ基、N,N-ジアルキルカルバモイルオキシ基、N,N-ジアリールカルバモイルオキシ基、N-アルキル-N-リールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルチオ基、アシルアミノ基、N-アルキルアシルアミノ基、N-アリールアシルアミノ基、ウレイド基、N’-アルキルウレイド基、N’,N’-ジアルキルウレイド基、N’-アリールウレイド基、N’,N’-ジアリールウレイド基、N’-アルキル-N’-アリールウレイド基、N-アルキルウレイド基、N-アリールウレイド基、N’-アルキル-N-アルキルウレイド基、N’-アルキル-N-アリールウレイド基、N’,N’-ジアルキル-N-アルキルウレイト基、N’,N’-ジアルキル-N-アリールウレイド基、N’-アリール-Ν-アルキルウレイド基、N’-アリール-N-アリールウレイド基、N’,N’-ジアリール-N-アルキルウレイド基、N’,N’-ジアリール-N-アリールウレイド基、N’-アルキル-N’-アリール-N-アルキルウレイド基、N’-アルキル-N’-アリール-N-アリールウレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N-アルキル-N-アルコキシカルボニルアミノ基、N-アルキル-N-アリーロキシカルボニルアミノ基、N-アリール-N-アルコキシカルボニルアミノ基、N-アリール-N-アリーロキシカルボニルアミノ基、ホルミル基、アシル基、カルボキシル基、アルコキシカルボニル基、 These hydrocarbon groups may further have a substituent. When the alkyl group has a substituent, the substituted alkyl group is constituted by a bond between a substituent and an alkylene group, and a monovalent nonmetallic atomic group excluding hydrogen is used as the substituent. Preferred examples include halogen atoms (—F, —Br, —Cl, —I), hydroxyl groups, alkoxy groups, aryloxy groups, mercapto groups, alkylthio groups, arylthio groups, alkyldithio groups, aryldithio groups, amino groups, N-alkylamino group, N, N-diarylamino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, ア ル キ ル -alkylcarbamoyloxy group, N-arylcarbamoyloxy group, N, N-dialkyl Carbamoyloxy group, N, N-diarylcarbamoyloxy group, N-alkyl-N-reelcarbamoyloxy group, alkylsulfoxy group, arylsulfoxy group, acylthio group, acylamino group, N-alkylacylamino group, N-aryl Acylamino group, ureido group, N ′ Alkylureido group, N ′, N′-dialkylureido group, N′-arylureido group, N ′, N′-diarylureido group, N′-alkyl-N′-arylureido group, N-alkylureido group, N -Arylureido group, N'-alkyl-N-alkylureido group, N'-alkyl-N-arylureido group, N ', N'-dialkyl-N-alkylureate group, N', N'-dialkyl- N-arylureido group, N′-aryl-Ν-alkylureido group, N′-aryl-N-arylureido group, N ′, N′-diaryl-N-alkylureido group, N ′, N′-diaryl- N-arylureido group, N′-alkyl-N′-aryl-N-alkylureido group, N′-alkyl-N′-aryl-N-arylureido group Alkoxycarbonylamino group, aryloxycarbonylamino group, N-alkyl-N-alkoxycarbonylamino group, N-alkyl-N-aryloxycarbonylamino group, N-aryl-N-alkoxycarbonylamino group, N-aryl-N -Aryloxycarbonylamino group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group,
 アリーロキシカルボニル基、カルバモイル基、N-アルキルカルバモイル基、N,N-ジアルキルカルバモイル基、N-アリールカルバモイル基、N,N-ジアリールカルバモイル基、N-アルキル-N-アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルホ基(-SOH)及びその共役塩基基(以下、スルホナト基と称す)、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N-アルキルスルフィナモイル基、N,N-ジアルキルスルフィナモイル基、N-アリールスルフィナモイル基、N,N-ジアリールスルフィナモイル基、N-アルキル-N-アリールスルフィナモイル基、スルファモイル基、N-アルキルスルファモイル基、N,N-ジアルキルスルファモイル基、N-アリールスルファモイル基、N,N-ジアリールスルファモイル基、N-アルキル-N-アリールスルファモイル基ホスフォノ基(-PO)及びその共役塩基基(以下、ホスフォナト基と称す)、ジアルキルホスフォノ基(-PO(alkyl))、ジアリールホスフォノ基(-PO(aryl))、アルキルアリールホスフォノ基(-PO(alkyl)(aryl))、モノアルキルホスフォノ基(-POH(alkyl))及びその共役塩基基(以後、アルキルホスフォナト基と称す)、モノアリールホスフォノ基(-POH(aryl))及びその共役塩基基(以後、アリールホスフォナト基と称す)、ホスフォノオキシ基(-OPO)及びその共役塩基基(以後、ホスフォナトオキシ基と称す)、ジアルキルホスフォノオキシ基(-OPO(alkyl))、ジアリールホスフォノオキシ基(-OPO(aryl))、アルキルアリールホスフォノオキシ基(-OPO(alkyl)(aryl))、モノアルキルホスフォノオキシ基(-OPOH(alkyl))及びその共役塩基基(以後、アルキルホスフォナトオキシ基と称す)、モノアリールホスフォノオキシ基(-OPOH(aryl))及びその共役塩基基(以後、アリールフォスホナトオキシ基と称す)、モルホルノ基、シアノ基、ニトロ基、アリール基、アルケニル基、アルキニル基が挙げられる。 Aryloxycarbonyl group, carbamoyl group, N-alkylcarbamoyl group, N, N-dialkylcarbamoyl group, N-arylcarbamoyl group, N, N-diarylcarbamoyl group, N-alkyl-N-arylcarbamoyl group, alkylsulfinyl group, Arylsulfinyl group, alkylsulfonyl group, arylsulfonyl group, sulfo group (—SO 3 H) and its conjugate base group (hereinafter referred to as sulfonate group), alkoxysulfonyl group, aryloxysulfonyl group, sulfinamoyl group, N-alkyls Rufinamoyl group, N, N-dialkylsulfinamoyl group, N-arylsulfinamoyl group, N, N-diarylsulfinamoyl group, N-alkyl-N-arylsulfinamoyl group, sulfamoyl group, N-alkyl Sulfa Yl group, N, N- dialkylsulfamoyl group, N- aryl sulfamoyl group, N, N- diaryl sulfamoyl group, N- alkyl -N- arylsulfamoyl group phosphono group (-PO 3 H 2 ) and its conjugated base group (hereinafter referred to as phosphonato group), a dialkyl phosphono group (-PO 3 (alkyl) 2), diaryl phosphono group (-PO 3 (aryl) 2), alkyl aryl phosphono group (- PO 3 (alkyl) (aryl)), monoalkyl phosphono group (—PO 3 H (alkyl)) and its conjugate base group (hereinafter referred to as alkyl phosphonate group), monoaryl phosphono group (—PO 3 H (Aryl)) and its conjugate base group (hereinafter referred to as aryl phosphonate group), phosphonooxy group (—OPO 3 H 2 ) And its conjugate base group (hereinafter referred to as phosphonatooxy group), dialkyl phosphonooxy group (—OPO 3 (alkyl) 2 ), diaryl phosphonooxy group (—OPO 3 (aryl) 2 ), alkylaryl phosphine group Phonooxy group (—OPO (alkyl) (aryl)), monoalkylphosphonooxy group (—OPO 3 H (alkyl)) and its conjugate base group (hereinafter referred to as alkylphosphonatooxy group), monoarylphosphono Examples thereof include an oxy group (—OPO 3 H (aryl)) and its conjugate base group (hereinafter referred to as arylphosphonateoxy group), a morpholino group, a cyano group, a nitro group, an aryl group, an alkenyl group, and an alkynyl group.
 これらの置換基における、アルキル基の具体例としては、R~Rにおいて挙げたアルキル基が同様に挙げられ、アリール基の具体例としては、フェニル基、ビフェニル基、ナフチル基、トリル基、キシリル基、メシチル基、クメニル基、クロロフェニル基、ブロモフェニル基、クロロメチルフェニル基、ヒドロキシフェニル基、メトキシフェニル基、エトキシフェニル基、フェノキシフェニル基、アセトキシフェニル基、ベンゾイロキシフェニル基、メチルチオフェニル基、フェニルチオフェニル基、メチルアミノフェニル基、ジメチルアミノフェニル基、アセチルアミノフェニル基、カルボキシフェニル基、メトキシカルボニルフェニル基、エトキシフェニルカルボニル基、フェノキシカルボニルフェニル基、N-フェニルカルバモイルフェニル基、フェニル基、シアノフェニル基、スルホフェニル基、スルホナトフェニル基、ホスフォノフェニル基、ホスフォナトフェニル基等を挙げることができる。また、アルケニル基の例としては、ビニル基、1-プロペニル基、1-ブテニル基、シンナミル基、2-クロロ-1-エテニル基等が挙げられ、アルキニル基の例としては、エチニル基、1-プロピニル基、1-ブチニル基、トリメチルシリルエチニル基等が挙げられる。アシル基(G1CO-)におけるG1としては、水素、並びに上記のアルキル基、アリール基を挙げることができる。 Specific examples of the alkyl group in these substituents are the same as those of R 1 to R 8 , and specific examples of the aryl group include a phenyl group, a biphenyl group, a naphthyl group, a tolyl group, Xylyl, mesityl, cumenyl, chlorophenyl, bromophenyl, chloromethylphenyl, hydroxyphenyl, methoxyphenyl, ethoxyphenyl, phenoxyphenyl, acetoxyphenyl, benzoyloxyphenyl, methylthiophenyl , Phenylthiophenyl group, methylaminophenyl group, dimethylaminophenyl group, acetylaminophenyl group, carboxyphenyl group, methoxycarbonylphenyl group, ethoxyphenylcarbonyl group, phenoxycarbonylphenyl group, N-phenylcarbamo Butylphenyl group include a phenyl group, cyanophenyl group, sulfophenyl group, sulfonatophenyl group, phosphonophenyl phenyl group, a phosphonophenyl phenyl group. Examples of alkenyl groups include vinyl, 1-propenyl, 1-butenyl, cinnamyl, 2-chloro-1-ethenyl, etc. Examples of alkynyl include ethynyl, 1-butenyl, Examples include propynyl group, 1-butynyl group, trimethylsilylethynyl group and the like. Examples of G 1 in the acyl group (G 1 CO—) include hydrogen and the above alkyl groups and aryl groups.
 これら置換基のうち、より好ましいものとしてはハロゲン原子(-F、-Br、-Cl、-I)、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、N-アルキルアミノ基、N,N-ジアルキルアミノ基、アシルオキシ基、N-アルキルカルバモイルオキシ基、N-アリールカバモイルオキシ基、アシルアミノ基、ホルミル基、アシル基、カルボキシル基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N-アルキルカルバモイル基、N,N-ジアルキルカルバモイル基、N-アリールカルバモイル基、N-アルキル-N-アリールカルバモイル基、スルホ基、スルホナト基、スルファモイル基、N-アルキルスルファモイル基、N,N-ジアルキルスルファモイル基、N-アリールスルファモイル基、N-アルキル-N-アリールスルファモイル基、ホスフォノ基、ホスフォナト基、ジアルキルホスフォノ基、ジアリールホスフォノ基、モノアルキルホスフォノ基、アルキルホスフォナト基、モノアリールホスフォノ基、アリールホスフォナト基、ホスフォノオキシ基、ホスフォナトオキシ基、アリール基、アルケニル基が挙げられる。 Of these substituents, more preferred are halogen atoms (—F, —Br, —Cl, —I), alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups, N-alkylamino groups, N, N-dialkyls. Amino group, acyloxy group, N-alkylcarbamoyloxy group, N-arylcarbamoyloxy group, acylamino group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, N-alkylcarbamoyl group N, N-dialkylcarbamoyl group, N-arylcarbamoyl group, N-alkyl-N-arylcarbamoyl group, sulfo group, sulfonate group, sulfamoyl group, N-alkylsulfamoyl group, N, N-dialkylsulfamoyl group Group, N-arylsulfamo Group, N-alkyl-N-arylsulfamoyl group, phosphono group, phosphonate group, dialkyl phosphono group, diaryl phosphono group, monoalkyl phosphono group, alkyl phosphonate group, monoaryl phosphono group, aryl phosphine group Examples include an onato group, a phosphonooxy group, a phosphonateoxy group, an aryl group, and an alkenyl group.
 一方、置換アルキル基におけるアルキレン基としては好ましくは炭素数1から20までのアルキル基上の水素原子のいずれか1つを除し、2価の有機残基としたものを挙げることができ、より好ましくは炭素原子数1から12まで、更に好ましくは炭素原子数1から8の直鎖状、より好ましくは炭素原子数3から12までの、更に好ましくは炭素原子数3から8までの分岐状並びにより好ましくは炭素原子数5から10まで、更に好ましくは炭素原子数5から8までの環状のアルキレン基を挙げることができる。該置換基とアルキレン基を組み合わせる事により得られる置換アルキル基の、好ましい具体例としては、クロロメチル基、ブロモメチル基、2-クロロエチル基、トリフルオロメチル基、ヒドロキシメチル基、メトキシメチル基、メトキシエトキシエチル基、アリルオキシメチル基、フェノキシメチル基、メチルチオメチル基、トリルチオメチル基、エチルアミノエチル基、ジエチルアミノプロピル基、モルホリノプロピル基、アセチルオキシメチル基、ベンゾイルオキシメチル基、N-シクロヘキシルカルバモイルオキシエチル基、N-フェニルカルバモイルオキシエチル基、アセチルアミノエチル基、N-メチルベンゾイルアミノプロピル基、2-オキシエチル基、2-オキシプロピル基、カルボキシプロピル基、メトキシカルボニルエチル基、アリルオキシカルボニルブチル基、 On the other hand, the alkylene group in the substituted alkyl group is preferably a divalent organic residue obtained by removing any one of the hydrogen atoms on the alkyl group having 1 to 20 carbon atoms. Preferably, it is a straight chain having 1 to 12 carbon atoms, more preferably a straight chain having 1 to 8 carbon atoms, more preferably a branched structure having 3 to 12 carbon atoms, still more preferably 3 to 8 carbon atoms, and More preferable examples include cyclic alkylene groups having 5 to 10 carbon atoms, and further preferably 5 to 8 carbon atoms. Preferable specific examples of the substituted alkyl group obtained by combining the substituent and the alkylene group are chloromethyl group, bromomethyl group, 2-chloroethyl group, trifluoromethyl group, hydroxymethyl group, methoxymethyl group, methoxyethoxy group. Ethyl group, allyloxymethyl group, phenoxymethyl group, methylthiomethyl group, tolylthiomethyl group, ethylaminoethyl group, diethylaminopropyl group, morpholinopropyl group, acetyloxymethyl group, benzoyloxymethyl group, N-cyclohexylcarbamoyloxyethyl Group, N-phenylcarbamoyloxyethyl group, acetylaminoethyl group, N-methylbenzoylaminopropyl group, 2-oxyethyl group, 2-oxypropyl group, carboxypropyl group, methoxycarbonyl group Group, allyloxycarbonyl butyl group,
 クロロフェノキシカルボニルメチル基、カルバモイルメチル基、N-メチルカルバモイルエチル基、N,N-ジプロピルカルバモイルメチル基、N-(メトキシフェニル)カルバモイルエチル基、N-メチル-N-(スルホフェニル)カルアバモイルメチル基、スルホブチル基、スルホナトブチル基、スルファモイルブチル基、N-エチルスルファモイルメチル基、N,N-ジプロピルスルファモイルプロピル基、N-トリルスルファモイルプロピル基、N-メチル-N-(ホスフォノフェニル)スルファモイルオクチル基、ホスフォノブチル基、ホスフォナトヘキシル基、ジエチルホスフォノブチル基、ジフェニルホスフォノプロピル基、メチルホスフォノブチル基、メチルホスフォナトブチル基、トリルホスフォノへキシル基、トリルホスフォナトヘキシル基、ホスフォノオキシプロピル基、ホスフォナトオキシブチル基、ベンジル基、フェネチル基、α-メチルベンジル基、1-メチル-1-フェニルエチル基、p-メチルベンジル基、シンナミル基、アリル基、1-プロペニルメチル基、2-ブテニル基、2-メチルアリル基、2-メチルプロペニルメチル基、2-プロピニル基、2-ブチニル基、3-ブチニル基等を挙げることができる。 Chlorophenoxycarbonylmethyl group, carbamoylmethyl group, N-methylcarbamoylethyl group, N, N-dipropylcarbamoylmethyl group, N- (methoxyphenyl) carbamoylethyl group, N-methyl-N- (sulfophenyl) carbamoyl Methyl group, sulfobutyl group, sulfonatobutyl group, sulfamoylbutyl group, N-ethylsulfamoylmethyl group, N, N-dipropylsulfamoylpropyl group, N-tolylsulfamoylpropyl group, N-methyl-N- (Phosphonophenyl) sulfamoyloctyl group, phosphonobutyl group, phosphonatohexyl group, diethylphosphonobutyl group, diphenylphosphonopropyl group, methylphosphonobutyl group, methylphosphonatobutyl group, tolylphosphonohexyl group, Thrill Suphonatohexyl group, phosphonooxypropyl group, phosphonatoxybutyl group, benzyl group, phenethyl group, α-methylbenzyl group, 1-methyl-1-phenylethyl group, p-methylbenzyl group, cinnamyl group, allyl group 1-propenylmethyl group, 2-butenyl group, 2-methylallyl group, 2-methylpropenylmethyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group and the like.
 親水性の観点から上記のなかでもヒドロキシメチル基が好ましい。 Among the above, a hydroxymethyl group is preferable from the viewpoint of hydrophilicity.
 L101~L102は単結合又は有機連結基を表す。ここで単結合とはポリマーの主鎖とA101又はSi原子が連結鎖なしに直接結合していることを表す。
 L101~L102が有機連結基を表す場合、L101~L102は非金属原子からなる多価の連結基を表し、0個から60個までの炭素原子、0個から10個までの窒素原子、0個から50個までの酸素原子、0個から100個までの水素原子、及び0個から20個までの硫黄原子から成り立つものである。具体的には、-N<、脂肪族基、芳香族基、複素環基、及びそれらの組合せから選ばれることが好ましく、-O-、-S-、-CO-、-NH-、あるいは、-O-又は-S-又は-CO-又は-NH-を含む組合せで、2価の連結基であることが好ましい。
 より具体的な連結基としては下記の構造単位又はこれらが組合わされて構成されるものを挙げることができる。
L 101 to L 102 each represents a single bond or an organic linking group. Here, the single bond means that the main chain of the polymer and A 101 or Si atom are directly bonded without a connecting chain.
When L 101 to L 102 represent an organic linking group, L 101 to L 102 represent a polyvalent linking group composed of a nonmetallic atom, including 0 to 60 carbon atoms and 0 to 10 nitrogen atoms. It consists of atoms, 0 to 50 oxygen atoms, 0 to 100 hydrogen atoms, and 0 to 20 sulfur atoms. Specifically, it is preferably selected from —N <, an aliphatic group, an aromatic group, a heterocyclic group, and combinations thereof, —O—, —S—, —CO—, —NH—, or A combination containing —O— or —S— or —CO— or —NH— is preferably a divalent linking group.
More specific examples of the linking group include the following structural units or those formed by combining them.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(I-1)において、L101は単結合、又は、-CONH-、-NHCONH-、-OCONH-、-SONH-及び-SO-からなる群より選択される構造を1つ以上有する連結基であることが好ましい。 In the general formula (I-1), L 101 is a single bond or one structure selected from the group consisting of —CONH—, —NHCONH—, —OCONH—, —SO 2 NH—, and —SO 3 —. A linking group having the above is preferable.
 一般式(I-2)中、A101は-OH、-OR、-COR、-CO、-CON(R)(R)、-N(R)(R)、-NHCOR、-NHCO、-OCON(R)(R)、-NHCON(R)(R)、-SO、-OSO、-SO、-NHSO、-SON(R)(R)、-N(R)(R)(R)、-N(R)(R)(Rc)(R)、-PO(R)(R)、-OPO(R)(R)、又は-PO(R)(R)を表す。ここで、R、R及びRは、それぞれ独立に水素原子又は直鎖、分岐又は環状のアルキル基(好ましくは炭素数1~8)を表し、Rは、直鎖、分岐又は環状のアルキル基(好ましくは炭素数1~8)を表し、R及びRは、それぞれ独立に水素原子又は直鎖、分岐又は環状のアルキル基(好ましくは炭素数1~8)、アルカリ金属、アルカリ土類金属、又はオニウムを表し、Rはハロゲンイオン、無機アニオン、又は有機アニオンを表す。また、-CON(R)(R)、-N(R)(R)、-OCON(R)(R)、-NHCON(R)(R)、-SON(R)(R)、-N(R)(R)(R)、-N(R)(R)(Rc)(R)、-PO(R)(R)、-OPO(R)(R)、又は-PO(R)(R)についてR~Rがお互い結合して環を形成していてもよく、また、形成された環は酸素原子、硫黄原子、窒素原子などのヘテロ原子を含むヘテロ環であってもよい。R~Rは更に置換基を有していてもよく、ここで導入可能な置換基としては、前記R~Rがアルキル基の場合に導入可能な置換基として挙げたものを同様に挙げることができる。
 A101は、-CONH、-CONH(R)又は-CON(Rであることが好ましい。式中、Rは、直鎖、分岐又は環状のアルキル基を表す。
In general formula (I-2), A 101 represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ). , —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , -NHSO 2 R d , -SO 2 N (R a ) (R b ), -N (R a ) (R b ) (R c ), -N (R a ) (R b ) (R c ) ( R g), - PO 3 ( R e) (R f), - OPO 3 (R e) (R f), or -PO 3 represents an (R d) (R e) . Here, R a , R b and R c each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group (preferably having 1 to 8 carbon atoms), and R d is a linear, branched or cyclic group. R e and R f are each independently a hydrogen atom or a linear, branched or cyclic alkyl group (preferably having a carbon number of 1 to 8), an alkali metal, It represents an alkaline earth metal or onium, and R g represents a halogen ion, an inorganic anion, or an organic anion. In addition, —CON (R a ) (R b ), —N (R a ) (R b ), —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e ) R a to R g may be bonded to each other to form a ring for (R f ), —OPO 3 (R e ) (R f ), or —PO 3 (R d ) (R e ) The formed ring may be a heterocycle containing a heteroatom such as an oxygen atom, a sulfur atom or a nitrogen atom. R a to R g may further have a substituent, and the substituents that can be introduced here are the same as the substituents that can be introduced when R 1 to R 8 are alkyl groups. Can be listed.
A 101 is preferably —CONH 2 , —CONH (R 5 ), or —CON (R 5 ) 2 . In the formula, R 5 represents a linear, branched or cyclic alkyl group.
 R~R、Rにおいて、直鎖、分岐又は環状のアルキル基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基、ネオペンチル基、1-メチルブチル基、イソヘキシル基、2-エチルヘキシル基、2-メチルヘキシル基、シクロペンチル基等が好適に挙げられる。
 また、R~Rにおいて、アルカリ金属としては、リチウム、ナトリウム又はカリウム等、アルカリ土類金属としてしはバリウム等、オニウムとしてはアンモニウム、ヨードニウム又はスルホニウム等が好適に挙げられる。
 ハロゲンイオンとしてはフッ素イオン、塩素イオン、臭素イオンを挙げることでき、無機アニオンとしては硝酸アニオン、硫酸アニオン、テトラフルオロホウ酸アニオン、ヘキサフルオロリン酸アニオン等が、有機アニオンとしてはメタンスルホン酸アニオン、トリフルオロメタンスルホン酸アニオン、ノナフルオロブタンスルホン酸アニオン、p-トルエンスルホン酸アニオン等が好適に挙げられる。
In R a to R f and R 5 , the linear, branched or cyclic alkyl group specifically includes a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group. And isopropyl group, isobutyl group, s-butyl group, t-butyl group, isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, and cyclopentyl group. .
In addition, in R a to R g , preferable examples of the alkali metal include lithium, sodium, and potassium, the alkaline earth metal includes barium, and the onium includes ammonium, iodonium, sulfonium, and the like.
Examples of the halogen ion include fluorine ion, chlorine ion, bromine ion, inorganic anion includes nitrate anion, sulfate anion, tetrafluoroborate anion, hexafluorophosphate anion, etc., organic anion includes methanesulfonate anion, Preferable examples include trifluoromethanesulfonate anion, nonafluorobutanesulfonate anion, p-toluenesulfonate anion and the like.
 A101としては、具体的には、-NHCOCH3、-CONH2、-CON(CH2、-COOH、-SO3 -NMe4 +、-SO3 -+、-(CHCHO)H、モルホリル基等が好ましい。より好ましくは、-NHCOCH3、-CONH2、-CON(CH2、-SO3 -+、-(CHCHO)H、である。なお、上記において、nは1~100の整数を表すことが好ましい。 The A 101, specifically, -NHCOCH 3, -CONH 2, -CON (CH 3) 2, -COOH, -SO 3 - NMe 4 +, -SO 3 - K +, - (CH 2 CH 2 O) n H, morpholyl group and the like are preferable. More preferred are —NHCOCH 3 , —CONH 2 , —CON (CH 3 ) 2 , —SO 3 K + , — (CH 2 CH 2 O) n H. In the above, n preferably represents an integer of 1 to 100.
 pは1~3の整数を表し、好ましくは2~3、より好ましくは3である。 P represents an integer of 1 to 3, preferably 2 to 3, more preferably 3.
 一般式(I-1)及び(I-2)で表される構造を含む親水性ポリマー(I)において、x及びyは親水性ポリマー(I)における、一般式(I-1)で表される構造単位と一般式(I-2)で表される構造単位の組成比を表す。xは0<x<100、yは0<y<100である。xは1<x<90の範囲であることが好ましく、1<x<50の範囲であることが更に好ましい。yは10<y<99の範囲であることが好ましく、50<y<99の範囲であることが更に好ましい。 In the hydrophilic polymer (I) having the structure represented by the general formulas (I-1) and (I-2), x and y are represented by the general formula (I-1) in the hydrophilic polymer (I). Represents the composition ratio of the structural unit represented by formula (I-2). x is 0 <x <100, and y is 0 <y <100. x is preferably in the range of 1 <x <90, and more preferably in the range of 1 <x <50. y is preferably in the range of 10 <y <99, and more preferably in the range of 50 <y <99.
 一般式(I-1)及び(I-2)で表される構造を含む親水性ポリマー(I)の共重合比率は、親水性基を有する一般式(I-2)の量が上記範囲内になるように任意に設定することができる。好ましくは、一般式(I-2)の構造単位のモル比(y)と加水分解性シリル基量を有する一般式(I-1)の構造単位のモル比(x)が、y/x=30/70~99/1の範囲が好ましく、y/x=40/60~98/2がより好ましく、y/x=50/50~97/3が最も好ましい。y/xが30/70以上であれば親水性が不足することなく、一方、y/x=99/1以下であれば、加水分解性シリル基量が十分量となり、十分な硬化が得られ、膜強度も十分なものとなる。 The copolymerization ratio of the hydrophilic polymer (I) having a structure represented by the general formulas (I-1) and (I-2) is such that the amount of the general formula (I-2) having a hydrophilic group is within the above range. Can be set arbitrarily. Preferably, the molar ratio (y) of the structural units of the general formula (I-2) and the molar ratio (x) of the structural units of the general formula (I-1) having a hydrolyzable silyl group amount are y / x = The range of 30/70 to 99/1 is preferable, y / x = 40/60 to 98/2 is more preferable, and y / x = 50/50 to 97/3 is most preferable. If y / x is 30/70 or more, the hydrophilicity is not insufficient. On the other hand, if y / x = 99/1 or less, the hydrolyzable silyl group amount is sufficient and sufficient curing is obtained. The film strength is also sufficient.
 一般式(I-1)及び(I-2)で表される構造を含む親水性ポリマー(I)の質量平均分子量は、1,000~1,000,000が好ましく、1,000~500,000が更に好ましく、1,000~200,000が最も好ましい。 The mass average molecular weight of the hydrophilic polymer (I) having a structure represented by the general formulas (I-1) and (I-2) is preferably 1,000 to 1,000,000, and 1,000 to 500,000. 000 is more preferable, and 1,000 to 200,000 is most preferable.
 以下に、一般式(I-1)及び(I-2)で表される構造を含む親水性ポリマー(I)の具体例をその質量平均分子量(M.W.)とともに以下に示すが、本発明はこれらに限定されるものではない。なお、以下に示す具体例のポリマーは記載される各構造単位が記載のモル比で含まれるランダム共重合体又はブロック共重合体であることを意味する。 Specific examples of the hydrophilic polymer (I) containing the structures represented by the general formulas (I-1) and (I-2) are shown below together with their mass average molecular weights (MW). The invention is not limited to these examples. In addition, the polymer of the specific example shown below means that each structural unit described is a random copolymer or block copolymer contained in the described molar ratio.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(I-1)及び(I-2)で表される構造を含む親水性ポリマー(I)を合成するための各化合物は、市販されており、また容易に合成することもできる。
 一般式(I-1)及び(I-2)で表される構造を含む親水性ポリマー(I)を合成するためのラジカル重合法としては、従来公知の方法の何れをも使用することができる。
 具体的には、一般的なラジカル重合法は、例えば、新高分子実験学3(1996年、共立出版)、高分子の合成と反応1(高分子学会編、1992年、共立出版)、新実験化学講座19(1978年、丸善)、高分子化学(I)(日本化学会編、1996年、丸善)、高分子合成化学(物質工学講座、1995年、東京電気大学出版局) 等に記載されており、これらを適用することができる。
Each compound for synthesizing the hydrophilic polymer (I) having a structure represented by the general formulas (I-1) and (I-2) is commercially available or can be easily synthesized.
As the radical polymerization method for synthesizing the hydrophilic polymer (I) having the structure represented by the general formulas (I-1) and (I-2), any of conventionally known methods can be used. .
Specifically, general radical polymerization methods include, for example, New Polymer Experiments 3 (1996, Kyoritsu Shuppan), Polymer Synthesis and Reaction 1 (Polymer Society of Japan, 1992, Kyoritsu Shuppan), New Experiment Chemistry Course 19 (1978, Maruzen), Polymer Chemistry (I) (Edited by Chemical Society of Japan, 1996, Maruzen), Synthetic Polymer Chemistry (Materials Engineering Course, 1995, Tokyo Denki University Press) These can be applied.
 親水性組成物は、更に下記一般式(II-1)及び(II-2)で表される構造を含む親水性ポリマー(II)を親水性ポリマー(I)と併用してもよい。 In the hydrophilic composition, a hydrophilic polymer (II) having a structure represented by the following general formulas (II-1) and (II-2) may be used in combination with the hydrophilic polymer (I).
 〔一般式(II-1)及び(II-2)で表される構造を含む親水性ポリマー(II)〕 [Hydrophilic polymer (II) including structures represented by general formulas (II-1) and (II-2)]
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(II-1)及び(II-2)中、R201~R205はそれぞれ独立に水素原子又は炭化水素基を表す。qは1~3の整数を表し、L201及びL202は、それぞれ単結合又は多価の有機連結基を表す。A201は-OH、-OR、-COR、-CO、-CON(R)(R)、-N(R)(R)、-NHCOR、-NHCO、-OCON(R)(R)、-NHCON(R)(R)、-SO、-OSO、-SO、-NHSO、-SON(R)(R)、-N(R)(R)(R)、-N(R)(R)(Rc)(R)、-PO(R)(R)、-OPO(R)(R)、又は-PO(R)(R)を表す。ここで、R、R及びRは、それぞれ独立に水素原子又は直鎖、分岐又は環状のアルキル基を表し、Rは、直鎖、分岐又は環状のアルキル基を表し、R及びRは、それぞれ独立に水素原子又は直鎖、分岐又は環状のアルキル基、アルカリ金属、アルカリ土類金属、又はオニウムを表し、Rはハロゲンイオン、無機アニオン、又は有機アニオンを表す。 In general formulas (II-1) and (II-2), R 201 to R 205 each independently represents a hydrogen atom or a hydrocarbon group. q represents an integer of 1 to 3, and L 201 and L 202 each represents a single bond or a polyvalent organic linking group. A 201 represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , -OCON (R a ) (R b ), -NHCON (R a ) (R b ), -SO 3 R e , -OSO 3 R e , -SO 2 R d , -NHSO 2 R d , -SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), or —PO 3 (R d ) (R e ). Here, R a , R b and R c each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group, R d represents a linear, branched or cyclic alkyl group, R e and R f each independently represents a hydrogen atom or a linear, branched or cyclic alkyl group, an alkali metal, an alkaline earth metal, or onium, and R g represents a halogen ion, an inorganic anion, or an organic anion.
 一般式(II-1)及び(II-2)で表される構造を含む親水性ポリマー(II)は、上記一般式(II-2)で表される構造単位を有し、かつ、ポリマー鎖の末端に上記一般式(II-1)で表される部分構造を有することが好ましい。 The hydrophilic polymer (II) including the structures represented by the general formulas (II-1) and (II-2) has a structural unit represented by the above general formula (II-2), and has a polymer chain. It preferably has a partial structure represented by the general formula (II-1) at the end thereof.
 前記一般式(II-1)及び(II-2)において、R201~R205は、それぞれ独立に水素原子又は炭化水素基を表し、R201~R205が炭化水素基を表す場合の炭化水素基としては、アルキル基、アリール基などが挙げられ、炭素数1~8の直鎖、分岐又は環状のアルキル基が好ましい。具体的には、前記一般式(I-1)及び(I-2)のR101~R108で挙げたものと同様のものを挙げることができる。
 L201、L202は、それぞれ独立に単結合又は多価の有機連結基を表す。ここで単結合とはポリマーの主鎖とA201及びSi原子が連結鎖なしに直接結合していることを表す。L201、L202が多価の有機連結基を表す場合、具体的な例及び好ましい例は、前記一般式(I-1)のL101で挙げたものと同様のものを挙げることができる。
 A201は-OH、-OR、-COR、-CO、-CON(R)(R)、-N(R)(R)、-NHCOR、-NHCO、-OCON(R)(R)、-NHCON(R)(R)、-SO、-OSO、-SO、-NHSO、-SON(R)(R)、-N(R)(R)(R)、-N(R)(R)(Rc)(R)、-PO(R)(R)、-OPO(R)(R)、又は-PO(R)(R)を表す。A201の具体的な例及び好ましい例は一般式(I-2)のA101で挙げられたものと同様のものを挙げることができる。
 qは1~3の整数を表す。好ましくは2~3、より好ましくは3である。
In the general formulas (II-1) and (II-2), R 201 to R 205 each independently represents a hydrogen atom or a hydrocarbon group, and hydrocarbons in the case where R 201 to R 205 represent a hydrocarbon group. Examples of the group include an alkyl group and an aryl group, and a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms is preferable. Specifically, the same compounds as those described for R 101 to R 108 in the general formulas (I-1) and (I-2) can be given.
L 201 and L 202 each independently represents a single bond or a polyvalent organic linking group. Here, the single bond means that the main chain of the polymer is directly bonded to the A 201 and Si atoms without a connecting chain. When L 201 and L 202 each represent a polyvalent organic linking group, specific examples and preferred examples thereof may be the same as those described for L 101 in the general formula (I-1).
A 201 represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), or —PO 3 (R d ) (R e ). Specific examples and preferred examples of A 201 include the same examples as those described for A 101 in formula (I-2).
q represents an integer of 1 to 3. Preferably it is 2 to 3, more preferably 3.
 L201及びL202は、より好ましくは、-CHCHCHS-、-CHS-、-CONHCH(CH)CH-、-CONH-、-CO-、-CO-、-CH-である。 L 201 and L 202 are more preferably —CH 2 CH 2 CH 2 S—, —CH 2 S—, —CONHCH (CH 3 ) CH 2 —, —CONH—, —CO—, —CO 2 —, —CH 2 —.
 一般式(II-1)及び(II-2)で表される構造を含む親水性ポリマー(II)は、例えば、連鎖移動剤(ラジカル重合ハンドブック(エヌ・ティー・エス、蒲池幹治、遠藤剛)に記載)やIniferter(Macromolecules1986,19,p287-(Otsu)に記載)の存在下に、親水性モノマー(例、アクリルアミド、アクリル酸、メタクリル酸3-スルホプロピルのカリウム塩)をラジカル重合させることにより合成できる。連鎖移動剤の例は、3-メルカプトプロピオン酸、2-アミノエタンチオール塩酸塩、3-メルカプトプロパノール、2-ヒドロキシエチルジスルフィド、3-メルカプトプロピルトリメトキシシランを含む。また、連鎖移動剤を使用せず、反応性基を有するラジカル重合開始剤を用いて、親水性モノマー(例、アクリルアミド)をラジカル重合させてもよい。 The hydrophilic polymer (II) including the structures represented by the general formulas (II-1) and (II-2) is, for example, a chain transfer agent (radical polymerization handbook (NTS, Mikiji Tsunoike, Takeshi Endo) In the presence of Iniferter (described in Macromolecules 1986, 19, p287- (Otsu)) by radical polymerization of a hydrophilic monomer (eg, potassium salt of acrylamide, acrylic acid, 3-sulfopropyl methacrylate). Can be synthesized. Examples of chain transfer agents include 3-mercaptopropionic acid, 2-aminoethanethiol hydrochloride, 3-mercaptopropanol, 2-hydroxyethyl disulfide, 3-mercaptopropyltrimethoxysilane. Alternatively, a hydrophilic monomer (eg, acrylamide) may be radically polymerized using a radical polymerization initiator having a reactive group without using a chain transfer agent.
 一般式(II-1)及び(II-2)で表される構造を含む親水性ポリマー(II)は、下記一般式(i)で表されるラジカル重合可能なモノマーと、下記一般式(ii)で表されるラジカル重合において連鎖移動能を有するシランカップリング剤を用いてラジカル重合することにより合成することができる。シランカップリング剤(ii)が連鎖移動能を有するため、ラジカル重合においてポリマー主鎖末端にシランカップリング基が導入されたポリマーを合成することができる。 The hydrophilic polymer (II) having a structure represented by the general formulas (II-1) and (II-2) includes a radical polymerizable monomer represented by the following general formula (i) and a general formula (ii) ) Can be synthesized by radical polymerization using a silane coupling agent having chain transfer ability. Since the silane coupling agent (ii) has chain transfer ability, it is possible to synthesize a polymer in which a silane coupling group is introduced at the end of the polymer main chain in radical polymerization.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記一般式(i)及び(ii)において、R201~R205、L201、L202、A201、qは、上記一般式(II-1)中のものと同義である。また、これらの化合物は、市販されており、また容易に合成することもできる。一般式(i)で表されるラジカル重合可能なモノマーは親水性基A201を有しており、このモノマーが親水性ポリマーにおける一構造単位となる。 In the general formulas (i) and (ii), R 201 to R 205 , L 201 , L 202 , A 201 , and q have the same meanings as those in the general formula (II-1). These compounds are commercially available and can also be easily synthesized. The radically polymerizable monomer represented by the general formula (i) has a hydrophilic group A201 , and this monomer becomes one structural unit in the hydrophilic polymer.
 一般式(II-1)及び(II-2)で表される構造を含む親水性ポリマー(II)において、加水分解性シリル基量を有する一般式(II-1)の構造単位のモル数に対して、一般式(II-2)の構造単位のモル数が、1000~10倍の範囲が好ましく、500~20倍の範囲がより好ましく、200~30倍の範囲が最も好ましい。30倍以上であれば親水性が不足することなく、一方、200倍以下であれば、加水分解性シリル基量が十分量となり、十分な硬化が得られ、膜強度も十分なものとなる。 In the hydrophilic polymer (II) containing the structures represented by the general formulas (II-1) and (II-2), the number of moles of the structural unit of the general formula (II-1) having a hydrolyzable silyl group amount On the other hand, the number of moles of the structural unit of the general formula (II-2) is preferably in the range of 1000 to 10 times, more preferably in the range of 500 to 20 times, and most preferably in the range of 200 to 30 times. If it is 30 times or more, the hydrophilicity is not insufficient. On the other hand, if it is 200 times or less, the amount of hydrolyzable silyl groups is sufficient, sufficient curing is obtained, and the film strength is also sufficient.
  一般式(II-1)及び(II-2)で表される構造を含む親水性ポリマー(II)の質量平均分子量は、1,000~1,000,000が好ましく、1,000~500,000が更に好ましく、1,000~200,000が最も好ましい。 The mass average molecular weight of the hydrophilic polymer (II) having a structure represented by the general formulas (II-1) and (II-2) is preferably 1,000 to 1,000,000, and 1,000 to 500,000. 000 is more preferable, and 1,000 to 200,000 is most preferable.
 本発明に好適に用い得る親水性ポリマー(II)の具体例を以下に示すが、本発明はこれらに限定されるものではない。具体例中、*はポリマーへの結合位置を表す。 Specific examples of the hydrophilic polymer (II) that can be suitably used in the present invention are shown below, but the present invention is not limited thereto. In specific examples, * represents a bonding position to the polymer.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 親水性組成物において、親水性ポリマー(I)と親水性ポリマー(II)を併用する場合の親水性ポリマー(I)/親水性ポリマー(II)の比率(質量比)は、好ましくは5/95~95/5の範囲内であり、より好ましくは40/60~95/5の範囲内であり、最も好ましくは60/40~90/10の範囲内である。 In the hydrophilic composition, when the hydrophilic polymer (I) and the hydrophilic polymer (II) are used in combination, the ratio (mass ratio) of the hydrophilic polymer (I) / hydrophilic polymer (II) is preferably 5/95. Is in the range of ˜95 / 5, more preferably in the range of 40/60 to 95/5, and most preferably in the range of 60/40 to 90/10.
 親水性ポリマー(I)は、他のモノマーとの共重合体であってもよい。用いられる他のモノマーとしては、例えば、アクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、メタクリルアミド類、ビニルエステル類、スチレン類、アクリル酸、メタクリル酸、アクリロニトリル、無水マレイン酸、マレイン酸イミド等の公知のモノマーも挙げられる。このようなモノマー類を共重合させることで、製膜性、膜強度、親水性、疎水性、溶解性、反応性、安定性等の諸物性を改善することができる。 The hydrophilic polymer (I) may be a copolymer with another monomer. Examples of other monomers used include acrylic esters, methacrylic esters, acrylamides, methacrylamides, vinyl esters, styrenes, acrylic acid, methacrylic acid, acrylonitrile, maleic anhydride, maleic imide, etc. These known monomers are also included. By copolymerizing such monomers, various physical properties such as film forming property, film strength, hydrophilicity, hydrophobicity, solubility, reactivity, and stability can be improved.
 アクリル酸エステル類の具体例としては、メチルアクリレート、エチルアクリレート、(n-又はi-)プロピルアクリレート、(n-、i-、sec-又はt-)ブチルアクリレート、アミルアクリレート、2-エチルヘキシルアクリレート、ドデシルアクリレート、クロロエチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシペンチルアクリレート、シクロヘキシルアクリレート、アリルアクリレート、トリメチロールプロパンモノアクリレート、ペンタエリスリトールモノアクリレート、ベンジルアクリレート、メトキシベンジルアクリレート、クロロベンジルアクリレート、ヒドロキシベンジルアクリレート、ヒドロキシフェネチルアクリレート、ジヒドロキシフェネチルアクリレート、フルフリルアクリレート、テトラヒドロフルフリルアクリレート、フェニルアクリレート、ヒドロキシフェニルアクリレート、クロロフェニルアクリレート、スルファモイルフェニルアクリレート、2-(ヒドロキシフェニルカルボニルオキシ)エチルアクリレート等が挙げられる。 Specific examples of acrylic esters include methyl acrylate, ethyl acrylate, (n- or i-) propyl acrylate, (n-, i-, sec- or t-) butyl acrylate, amyl acrylate, 2-ethylhexyl acrylate, Dodecyl acrylate, chloroethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxypentyl acrylate, cyclohexyl acrylate, allyl acrylate, trimethylolpropane monoacrylate, pentaerythritol monoacrylate, benzyl acrylate, methoxybenzyl acrylate, chloro Benzyl acrylate, hydroxybenzyl acrylate, hydroxyphenethyl acrylate, dihydroxyphene Le acrylate, furfuryl acrylate, tetrahydrofurfuryl acrylate, phenyl acrylate, hydroxyphenyl acrylate, chlorophenyl acrylate, sulfamoylphenyl acrylate, 2- (hydroxyphenyl carbonyloxy) ethyl acrylate.
 メタクリル酸エステル類の具体例としては、メチルメタクリレート、エチルメタクリレート、(n-又はi-)プロピルメタクリレート、(n-、i-、sec-又はt-)ブチルメタクリレート、アミルメタクリレート、2-エチルヘキシルメタクリレート、ドデシルメタクリレート、クロロエチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシペンチルメタクリレート、シクロヘキシルメタクリレート、アリルメタクリレート、トリメチロールプロパンモノメタクリレート、ペンタエリスリトールモノメタクリレート、ベンジルメタクリレート、メトキシベンジルメタクリレート、クロロベンジルメタクリレート、ヒドロキシベンジルメタクリレート、ヒドロキシフェネチルメタクリレート、ジヒドロキシフェネチルメタクリレート、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、フェニルメタクリレート、ヒドロキシフェニルメタクリレート、クロロフェニルメタクリレート、スルファモイルフェニルメタクリレート、2-(ヒドロキシフェニルカルボニルオキシ)エチルメタクリレート等が挙げられる。 Specific examples of methacrylic acid esters include methyl methacrylate, ethyl methacrylate, (n- or i-) propyl methacrylate, (n-, i-, sec- or t-) butyl methacrylate, amyl methacrylate, 2-ethylhexyl methacrylate, Dodecyl methacrylate, chloroethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxypentyl methacrylate, cyclohexyl methacrylate, allyl methacrylate, trimethylolpropane monomethacrylate, pentaerythritol monomethacrylate, benzyl methacrylate, methoxybenzyl methacrylate, chloro Benzyl methacrylate, hydroxybenzyl methacrylate, hydroxy Phenethyl methacrylate, dihydroxyphenethyl methacrylate, furfuryl methacrylate, tetrahydrofurfuryl methacrylate, phenyl methacrylate, hydroxyphenyl methacrylate, chlorophenyl methacrylate, sulfamoylphenyl methacrylate, 2- (hydroxyphenyl carbonyloxy) ethyl methacrylate.
 アクリルアミド類の具体例としては、アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N-プロピルアクリルアミド、N-ブチルアクリルアミド、N-ベンジルアクリルアミド、N-ヒドロキシエチルアクリルアミド、N-フェニルアクリルアミド、N-トリルアクリルアミド、N-(ヒドロキシフェニル)アクリルアミド、N-(スルファモイルフェニル)アクリルアミド、N-(フェニルスルホニル)アクリルアミド、N-(トリルスルホニル)アクリルアミド、N,N-ジメチルアクリルアミド、N-メチル-N-フェニルアクリルアミド、N-ヒドロキシエチル-N-メチルアクリルアミド等が挙げられる。 Specific examples of acrylamides include acrylamide, N-methylacrylamide, N-ethylacrylamide, N-propylacrylamide, N-butylacrylamide, N-benzylacrylamide, N-hydroxyethylacrylamide, N-phenylacrylamide, and N-tolylacrylamide. N- (hydroxyphenyl) acrylamide, N- (sulfamoylphenyl) acrylamide, N- (phenylsulfonyl) acrylamide, N- (tolylsulfonyl) acrylamide, N, N-dimethylacrylamide, N-methyl-N-phenylacrylamide N-hydroxyethyl-N-methylacrylamide and the like.
 メタクリルアミド類の具体例としては、メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、N-プロピルメタクリルアミド、N-ブチルメタクリルアミド、N-ベンジルメタクリルアミド、N-ヒドロキシエチルメタクリルアミド、N-フェニルメタクリルアミド、N-トリルメタクリルアミド、N-(ヒドロキシフェニル)メタクリルアミド、N-(スルファモイルフェニル)メタクリルアミド、N-(フェニルスルホニル)メタクリルアミド、N-(トリルスルホニル)メタクリルアミド、N,N-ジメチルメタクリルアミド、N-メチル-N-フェニルメタクリルアミド、N-ヒドロキシエチル-N-メチルメタクリルアミド等が挙げられる。 Specific examples of methacrylamides include methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N-propylmethacrylamide, N-butylmethacrylamide, N-benzylmethacrylamide, N-hydroxyethylmethacrylamide, N -Phenylmethacrylamide, N-tolylmethacrylamide, N- (hydroxyphenyl) methacrylamide, N- (sulfamoylphenyl) methacrylamide, N- (phenylsulfonyl) methacrylamide, N- (tolylsulfonyl) methacrylamide, N , N-dimethylmethacrylamide, N-methyl-N-phenylmethacrylamide, N-hydroxyethyl-N-methylmethacrylamide and the like.
 ビニルエステル類の具体例としては、ビニルアセテート、ビニルブチレート、ビニルベンゾエート等が挙げられる。
 スチレン類の具体例としては、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、プロピルスチレン、シクロヘキシルスチレン、クロロメチルスチレン、トリフルオロメチルスチレン、エトキシメチルスチレン、アセトキシメチルスチレン、メトキシスチレン、ジメトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、ヨードスチレン、フルオロスチレン、カルボキシスチレン等が挙げられる。
Specific examples of vinyl esters include vinyl acetate, vinyl butyrate, vinyl benzoate and the like.
Specific examples of styrenes include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, propyl styrene, cyclohexyl styrene, chloromethyl styrene, trifluoromethyl styrene, ethoxymethyl styrene, acetoxymethyl styrene, methoxy styrene, dimethoxy styrene. Chlorostyrene, dichlorostyrene, bromostyrene, iodostyrene, fluorostyrene, carboxystyrene and the like.
 共重合体の合成に使用されるこれらの他のモノマーの割合は、諸物性の改良に十分な量である必要があるが、親水性層としての機能が十分であり、親水性ポリマー(I)を添加する利点を十分得るために、割合は大きすぎないほうが好ましい。従って、親水性ポリマー(I)中の他のモノマーの好ましい総割合は80質量%以下であることが好ましく、更に好ましくは50質量%以下である。 The ratio of these other monomers used for the synthesis of the copolymer needs to be an amount sufficient for improving various physical properties, but the function as the hydrophilic layer is sufficient, and the hydrophilic polymer (I) In order to sufficiently obtain the advantage of adding, it is preferable that the ratio is not too large. Accordingly, the preferred total proportion of other monomers in the hydrophilic polymer (I) is preferably 80% by mass or less, and more preferably 50% by mass or less.
 親水性ポリマー(I)の共重合比の測定は、核磁気共鳴装置(NMR)や、標準物質で検量線を作成し、赤外分光光度計により測定することができる。 The measurement of the copolymerization ratio of the hydrophilic polymer (I) can be carried out by preparing a calibration curve with a nuclear magnetic resonance apparatus (NMR) or a standard substance and measuring with an infrared spectrophotometer.
 本発明における親水性組成物は、親水性ポリマー(I)を単独あるいは2種以上混合して使用することができる。
 親水性ポリマー(I)は硬化性と親水性の観点から、親水性組成物の全固形分に対して20~99.5質量%使用されることが好ましく、30~99.5質量%使用されることが更に好ましい。
The hydrophilic composition in this invention can use hydrophilic polymer (I) individually or in mixture of 2 or more types.
From the viewpoint of curability and hydrophilicity, the hydrophilic polymer (I) is preferably used in an amount of 20 to 99.5% by mass, preferably 30 to 99.5% by mass, based on the total solid content of the hydrophilic composition. More preferably.
 親水性組成物は、一般式(I-1)で表される構造及び一般式(I-2)で表される構造を含む親水性ポリマー(I)を全固形分に対して50質量%以上含有することが好ましい。 The hydrophilic composition comprises 50% by mass or more of the hydrophilic polymer (I) containing the structure represented by the general formula (I-1) and the structure represented by the general formula (I-2) based on the total solid content. It is preferable to contain.
 親水性組成物は、親水性ポリマー(1)を含む加水分解性シリル基を有する親水ポリマーを全固形分に対して80質量%以上含有し、かつ前記一般式(I-2)に於けるA101が、-CONH、-CONH(R)、又は-CON(R5(式中、Rは、それぞれ独立に直鎖、分岐又は環状のアルキル基を表す)を表すことが好ましい。 The hydrophilic composition contains a hydrolyzable silyl group-containing hydrophilic polymer containing the hydrophilic polymer (1) in an amount of 80% by mass or more based on the total solid content, and A in the general formula (I-2) 101 preferably represents —CONH 2 , —CONH (R 5 ), or —CON (R 5 ) 2 (wherein R 5 independently represents a linear, branched or cyclic alkyl group). .
 上記、親水性ポリマー(I)は、金属アルコキシドの加水分解、重縮合物と混合した状態で架橋皮膜を形成する。有機成分である親水性ポリマー(I)は、皮膜強度や皮膜柔軟性に対して関与しており、特に、親水性ポリマー(I)の粘度が0.1~100mPa・s(5%水溶液、20℃測定)、好ましくは0.5~70mPa・s、更に好ましくは1~50mPa・sの範囲にあると、良好な膜物性を与える。 The above-mentioned hydrophilic polymer (I) forms a crosslinked film in a state of being mixed with a hydrolyzed and polycondensed product of metal alkoxide. The hydrophilic polymer (I), which is an organic component, is involved in film strength and film flexibility. In particular, the viscosity of the hydrophilic polymer (I) is 0.1 to 100 mPa · s (5% aqueous solution, 20% When the temperature is in the range of 0.5 to 70 mPa · s, more preferably 1 to 50 mPa · s, good film properties can be obtained.
 〔架橋剤〕
 親水性組成物中に、親水性ポリマー(II)を含有する場合は、良好な硬化性を得るために架橋剤を含有することが好ましい。また、親水性組成物中に親水性ポリマー(I)を含有する場合は架橋剤を含有しない場合でも良好な硬化性を得ることはできるが、膜強度が非常に優れた塗膜を得るためには架橋剤を含有してもよい。
[Crosslinking agent]
When the hydrophilic composition contains the hydrophilic polymer (II), it is preferable to contain a crosslinking agent in order to obtain good curability. In addition, in the case where the hydrophilic composition (I) is contained in the hydrophilic composition, good curability can be obtained even when the crosslinking agent is not contained, but in order to obtain a coating film having extremely excellent film strength. May contain a crosslinking agent.
 架橋剤としては、Si、Ti、Zr、Alから選択される元素を含むアルコキシド化合物(金属アルコキシドともいう)がとくに好ましい。金属アルコキシドは、その構造中に加水分解して重縮合可能な官能基を有し、架橋剤としての機能を果たす加水分解重合性化合物であり、金属アルコキシド同士が重縮合することにより架橋構造を有する強固な架橋皮膜を形成し、更に前記親水性ポリマーとも化学結合することができる。金属アルコキシドは一般式(V-1)又は一般式(V-2)で表すことができ、式中、R20は水素原子、アルキル基又はアリール基を表し、R21及びR22はアルキル基又はアリール基を表し、ZはSi、Ti又はZrを表し、mは0~2の整数を表す。R20及びR21がアルキル基を表す場合の炭素数は好ましくは1から4である。アルキル基又はアリール基は置換基を有していてもよく、導入可能な置換基としては、ハロゲン原子、アミノ基、メルカプト基などが挙げられる。なお、この化合物は低分子化合物であり、分子量2000以下であることが好ましい。 As the crosslinking agent, an alkoxide compound (also referred to as a metal alkoxide) containing an element selected from Si, Ti, Zr, and Al is particularly preferable. A metal alkoxide is a hydrolyzable polymerizable compound having a functional group capable of being hydrolyzed and polycondensed in its structure and serving as a cross-linking agent, and has a cross-linked structure due to polycondensation of metal alkoxides. A strong cross-linked film can be formed and further chemically bonded to the hydrophilic polymer. The metal alkoxide can be represented by general formula (V-1) or general formula (V-2), in which R 20 represents a hydrogen atom, an alkyl group or an aryl group, and R 21 and R 22 represent an alkyl group or Represents an aryl group, Z represents Si, Ti or Zr, and m represents an integer of 0-2. When R 20 and R 21 represent an alkyl group, the carbon number is preferably 1 to 4. The alkyl group or aryl group may have a substituent, and examples of the substituent that can be introduced include a halogen atom, an amino group, and a mercapto group. This compound is a low molecular compound and preferably has a molecular weight of 2000 or less.
 (R20m-Z-(OR214-m         (V-1)
  Al-(OR223              (V-2)
(R 20 ) m -Z- (OR 21 ) 4-m (V-1)
Al- (OR 22 ) 3 (V-2)
 以下に、一般式(V-1)又は一般式(V-2)で表される金属アルコキシドの具体例を挙げるが、これに限定されるものではない。 Specific examples of the metal alkoxide represented by the general formula (V-1) or the general formula (V-2) are shown below, but the present invention is not limited thereto.
 ZがSiの場合、即ち、加水分解性化合物中にケイ素を含むものとしては、例えば、トリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、等を挙げることができる。これらのうち特に好ましいものとしては、トリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、等を挙げることができる。 When Z is Si, that is, the hydrolyzable compound containing silicon includes, for example, trimethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, γ- Examples include chloropropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, and the like. Among these, particularly preferred are trimethoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane and the like.
 ZがTiである場合、即ち、チタンを含むものとしては、例えば、トリメトキシチタネート、テトラメトキシチタネート、トリエトキシチタネート、テトラエトキシチタネート、テトラプロポキシタネート、クロロトリメトキシチタネート、クロロトリエトキシチタネート、エチルトリメトキシチタネート、メチルトリエトキシチタネート、エチルトリエトキシチタネート、ジエチルジエトキシチタネート、フェニルトリメトキシチタネート、フェニルトリエトキシチタネート等を挙げることができる。ZがZrである場合、即ち、ジルコニウムを含むものとしては、例えば、前記チタンを含むものとして例示した化合物に対応するジルコネートを挙げることができる。
 また、中心金属がAlである場合、即ち、加水分解性化合物中にアルミニウムを含むものとしては、例えば、トリメトキシアルミネート、トリエトキシアルミネート、トリプロポキシアルミネート、トリイソプロポキシアルミネート等を挙げることができる。
When Z is Ti, i.e., including titanium, for example, trimethoxy titanate, tetramethoxy titanate, triethoxy titanate, tetraethoxy titanate, tetrapropoxy titanate, chlorotrimethoxy titanate, chlorotriethoxy titanate, ethyl Examples include trimethoxy titanate, methyl triethoxy titanate, ethyl triethoxy titanate, diethyl diethoxy titanate, phenyl trimethoxy titanate, and phenyl triethoxy titanate. When Z is Zr, that is, the one containing zirconium can include, for example, zirconates corresponding to the compounds exemplified as those containing titanium.
Further, when the central metal is Al, that is, examples of those containing aluminum in the hydrolyzable compound include trimethoxy aluminate, triethoxy aluminate, tripropoxy aluminate, triisopropoxy aluminate, and the like. be able to.
 上記のなかでも、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシランが特に好ましい。 Among the above, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, and methyltriethoxysilane are particularly preferable.
 Si、Ti、Zr、Alから選択される金属アルコキシド化合物は、親水性ポリマー(I)を用いる場合は親水性組成物の全固形分に対して、0~80質量%使用されることが好ましく、0~70質量%使用されることが更に好ましい。親水性ポリマー(II)を用いる場合は親水性組成物の全固形分に対して、0~80質量%使用されることが好ましく、0~70質量%使用されることが更に好ましい。 The metal alkoxide compound selected from Si, Ti, Zr, and Al is preferably used in an amount of 0 to 80% by mass based on the total solid content of the hydrophilic composition when the hydrophilic polymer (I) is used. More preferably, 0 to 70% by mass is used. When the hydrophilic polymer (II) is used, it is preferably used in an amount of 0 to 80% by weight, more preferably 0 to 70% by weight, based on the total solid content of the hydrophilic composition.
 〔触媒〕
 本発明の親水性組成物においては、好ましくは、親水性ポリマー(I)、より好ましくは更に親水性ポリマー(II)、架橋剤、などの架橋成分を溶媒に溶解し、よく攪拌することで、これらの成分が加水分解、重縮合し、有機-無機複合体ゾル液が形成され、このゾル溶液によって、高い親水性と高い膜強度を有する親水性膜が形成される。有機無機複合体ゾル液の調製において、加水分解及び重縮合反応を促進するために触媒を用いることが好ましい。触媒を使用することにより、親水性層を形成するための乾燥温度を低く設定することが可能であり、基材上での熱変形を抑制できる。
〔catalyst〕
In the hydrophilic composition of the present invention, preferably, the hydrophilic polymer (I), more preferably the hydrophilic polymer (II), a crosslinking agent such as a crosslinking agent, is dissolved in a solvent and stirred well, These components are hydrolyzed and polycondensed to form an organic-inorganic composite sol solution, and this sol solution forms a hydrophilic film having high hydrophilicity and high film strength. In the preparation of the organic-inorganic composite sol solution, it is preferable to use a catalyst in order to promote hydrolysis and polycondensation reaction. By using a catalyst, the drying temperature for forming the hydrophilic layer can be set low, and thermal deformation on the substrate can be suppressed.
 本発明で用いることができる触媒としては、前記架橋剤を加水分解、重縮合し、親水性ポリマー(I)、(II)と結合を生起させる反応を促進する触媒が選択され、酸、あるいは塩基性化合物をそのまま用いるか、又は、酸、あるいは塩基性化合物を水又はアルコールなどの溶媒に溶解させた状態のもの(以下、これらを包括してそれぞれ酸性触媒、塩基性触媒とも称する)を用いる。酸、あるいは塩基性化合物を溶媒に溶解させる際の濃度については特に限定はなく、用いる酸、或いは塩基性化合物の特性、触媒の所望の含有量などに応じて適宜選択すればよい。ここで、触媒を構成する酸或いは塩基性化合物の濃度が高い場合は、加水分解、重縮合速度が速くなる傾向がある。但し、濃度の高い塩基性触媒を用いると、ゾル溶液中で沈殿物が生成する場合があるため、塩基性触媒を用いる場合、その濃度は水溶液での濃度換算で1N以下であることが望ましい。 As a catalyst that can be used in the present invention, a catalyst that promotes a reaction that causes hydrolysis and polycondensation of the crosslinking agent to cause a bond with the hydrophilic polymers (I) and (II) is selected. Or a compound in which an acid or a basic compound is dissolved in a solvent such as water or alcohol (hereinafter collectively referred to as an acidic catalyst and a basic catalyst, respectively) is used. The concentration at which the acid or basic compound is dissolved in the solvent is not particularly limited, and may be appropriately selected depending on the characteristics of the acid or basic compound used, the desired content of the catalyst, and the like. Here, when the concentration of the acid or basic compound constituting the catalyst is high, the hydrolysis and polycondensation rates tend to increase. However, when a basic catalyst with a high concentration is used, a precipitate may be generated in the sol solution. Therefore, when a basic catalyst is used, the concentration is preferably 1 N or less in terms of concentration in an aqueous solution.
 酸性触媒あるいは塩基性触媒の種類は特に限定されないが、濃度の濃い触媒を用いる必要がある場合には乾燥後に塗膜中にほとんど残留しないような元素から構成される触媒がよい。具体的には、酸性触媒としては、塩酸などのハロゲン化水素、硝酸、硫酸、亜硫酸、硫化水素、過塩素酸、過酸化水素、炭酸、蟻酸や酢酸などのカルボン酸、そのRCOOHで表される構造式のRを他元素又は置換基によって置換した置換カルボン酸、ベンゼンスルホン酸などのスルホン酸などが挙げられ、塩基性触媒としては、アンモニア水などのアンモニア性塩基、エチルアミンやアニリンなどのアミン類などが挙げられる。 The type of acidic catalyst or basic catalyst is not particularly limited. However, when it is necessary to use a highly concentrated catalyst, a catalyst composed of an element that hardly remains in the coating film after drying is preferable. Specifically, the acid catalyst is represented by hydrogen halide such as hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, hydrogen sulfide, perchloric acid, hydrogen peroxide, carbonic acid, carboxylic acid such as formic acid or acetic acid, and its RCOOH. Examples of the basic catalyst include ammoniacal bases such as aqueous ammonia, amines such as ethylamine and aniline, and the like. Etc.
 また、前記の触媒の他に金属錯体からなるルイス酸触媒もまた好ましく使用できる。特に好ましい触媒は、金属錯体触媒であり、周期律表の2A、3B、4A及び5A族から選ばれる金属元素とβ-ジケトン、ケトエステル、ヒドロキシカルボン酸又はそのエステル、アミノアルコール、エノール性活性水素化合物の中から選ばれるオキソ又はヒドロキシ酸素含有化合物から構成される金属錯体である。
 構成金属元素の中では、Mg、Ca、Sr、Baなどの2A族元素、Al、Gaなどの3B族元素、Ti、Zrなどの4A族元素及びV、Nb及びTaなどの5A族元素が好ましく、それぞれ触媒効果の優れた錯体を形成する。その中でもZr、Al及びTiから得られる錯体が優れており、好ましい。
In addition to the above catalyst, a Lewis acid catalyst comprising a metal complex can also be preferably used. Particularly preferred catalysts are metal complex catalysts, metal elements selected from groups 2A, 3B, 4A and 5A of the periodic table and β-diketones, ketoesters, hydroxycarboxylic acids or esters thereof, amino alcohols, enolic active hydrogen compounds It is a metal complex comprised from the oxo or hydroxy oxygen containing compound chosen from these.
Among constituent metal elements, 2A group elements such as Mg, Ca, Sr and Ba, 3B group elements such as Al and Ga, 4A group elements such as Ti and Zr, and 5A group elements such as V, Nb and Ta are preferable. , Each forming a complex with excellent catalytic effect. Of these, complexes obtained from Zr, Al and Ti are excellent and preferred.
 上記金属錯体の配位子を構成するオキソ又はヒドロキシ酸素含有化合物は、本発明においては、アセチルアセトン(2,4-ペンタンジオン)、2,4-ヘプタンジオンなどのβジケトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸ブチルなどのケトエステル類、乳酸、乳酸メチル、サリチル酸、サリチル酸エチル、サリチル酸フェニル、リンゴ酸,酒石酸、酒石酸メチルなどのヒドロキシカルボン酸及びそのエステル、4-ヒドロキシ-4-メチル-2-ペンタノン、4-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ヘプタノン、4-ヒドロキシ-2-ヘプタノンなどのケトアルコール類、モノエタノールアミン、N,N-ジメチルエタノールアミン、N-メチル-モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミノアルコール類、メチロールメラミン、メチロール尿素、メチロールアクリルアミド、マロン酸ジエチルエステルなどのエノール性活性化合物、アセチルアセトン(2,4-ペンタンジオン)のメチル基、メチレン基又はカルボニル炭素に置換基を有する化合物が挙げられる。 In the present invention, the oxo- or hydroxy-oxygen-containing compound constituting the ligand of the metal complex is a β-diketone such as acetylacetone (2,4-pentanedione) or 2,4-heptanedione, methyl acetoacetate, acetoacetate Ketoesters such as ethyl and butylacetoacetate, lactic acid, methyl lactate, salicylic acid, ethyl salicylate, phenyl salicylate, malic acid, tartaric acid, methyl tartrate and other hydroxycarboxylic acids and esters thereof, 4-hydroxy-4-methyl-2-pentanone , 4-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-heptanone, ketoalcohols such as 4-hydroxy-2-heptanone, monoethanolamine, N, N-dimethylethanolamine, N-methyl- Monoethanolamine, diethanolamine Amino alcohols such as ethanol, triethanolamine, enol active compounds such as methylol melamine, methylol urea, methylol acrylamide, diethyl malonate, methyl group, methylene group or carbonyl carbon of acetylacetone (2,4-pentanedione) The compound which has a substituent is mentioned.
 好ましい配位子はアセチルアセトン又はアセチルアセトン誘導体であり、アセチルアセトン誘導体は、本発明においては、アセチルアセトンのメチル基、メチレン基又はカルボニル炭素に置換基を有する化合物を指す。アセチルアセトンのメチル基に置換する置換基としては、いずれも炭素数が1~3の直鎖又は分岐のアルキル基、アシル基、ヒドロキシアルキル基、カルボキシアルキル基、アルコキシ基、アルコキシアルキル基であり、アセチルアセトンのメチレン基に置換する置換基としてはカルボキシル基、いずれも炭素数が1~3の直鎖又は分岐のカルボキシアルキル基及びヒドロキシアルキル基であり、アセチルアセトンのカルボニル炭素に置換する置換基としては炭素数が1~3のアルキル基であってこの場合はカルボニル酸素には水素原子が付加して水酸基となる。 A preferred ligand is acetylacetone or an acetylacetone derivative. In the present invention, the acetylacetone derivative refers to a compound having a substituent on the methyl group, methylene group or carbonyl carbon of acetylacetone. Substituents for substitution on the methyl group of acetylacetone are all straight-chain or branched alkyl groups having 1 to 3 carbon atoms, acyl groups, hydroxyalkyl groups, carboxyalkyl groups, alkoxy groups, alkoxyalkyl groups, and acetylacetone The substituents that substitute for the methylene group are carboxyl groups, both straight-chain or branched carboxyalkyl groups and hydroxyalkyl groups having 1 to 3 carbon atoms, and the substituents that substitute for the carbonyl carbon of acetylacetone are carbon atoms. Is an alkyl group of 1 to 3, in which case a hydrogen atom is added to the carbonyl oxygen to form a hydroxyl group.
 好ましいアセチルアセトン誘導体の具体例としては、エチルカルボニルアセトン、n-プロピルカルボニルアセトン、i-プロピルカルボニルアセトン、ジアセチルアセトン、1―アセチル-1-プロピオニル-アセチルアセトン、ヒドロキシエチルカルボニルアセトン、ヒドロキシプロピルカルボニルアセトン、アセト酢酸、アセトプロピオン酸、ジアセト酢酸、3,3-ジアセトプロピオン酸、4,4-ジアセト酪酸、カルボキシエチルカルボニルアセトン、カルボキシプロピルカルボニルアセトン、ジアセトンアルコールが挙げられる。
 中でも、アセチルアセトン及びジアセチルアセトンがとくに好ましい。上記のアセチルアセトン誘導体と上記金属元素の錯体は、金属元素1個当たりにアセチルアセトン誘導体が1~4分子配位する単核錯体であり、金属元素の配位可能の手がアセチルアセトン誘導体の配位可能結合手の数の総和よりも多い場合には、水分子、ハロゲンイオン、ニトロ基、アンモニオ基など通常の錯体に汎用される配位子が配位してもよい。
Specific examples of preferred acetylacetone derivatives include ethylcarbonylacetone, n-propylcarbonylacetone, i-propylcarbonylacetone, diacetylacetone, 1-acetyl-1-propionyl-acetylacetone, hydroxyethylcarbonylacetone, hydroxypropylcarbonylacetone, acetoacetic acid Acetopropionic acid, diacetacetic acid, 3,3-diacetpropionic acid, 4,4-diacetbutyric acid, carboxyethylcarbonylacetone, carboxypropylcarbonylacetone, diacetone alcohol.
Of these, acetylacetone and diacetylacetone are particularly preferred. The complex of the above acetylacetone derivative and the above metal element is a mononuclear complex in which 1 to 4 molecules of the acetylacetone derivative are coordinated per metal element, and the coordinateable bond of the acetylacetone derivative is the coordinateable bond of the metal element. When the number of hands is larger than the total number of hands, ligands commonly used for ordinary complexes such as water molecules, halogen ions, nitro groups, and ammonio groups may coordinate.
 好ましい金属錯体の例としては、トリス(アセチルアセトナト)アルミニウム錯塩、ジ(アセチルアセトナト)アルミニウム・アコ錯塩、モノ(アセチルアセトナト)アルミニウム・クロロ錯塩、ジ(ジアセチルアセトナト)アルミニウム錯塩、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、環状アルミニウムオキサイドイソプロピレート、トリス(アセチルアセトナト)バリウム錯塩、ジ(アセチルアセトナト)チタニウム錯塩、トリス(アセチルアセトナト)チタニウム錯塩、ジ-i-プロポキシ・ビス(アセチルアセトナト)チタニウム錯塩、ジルコニウムトリス(エチルアセトアセテート)、ジルコニウムトリス(安息香酸)錯塩、等が挙げられる。これらは水系塗布液での安定性及び、加熱乾燥時のゾルゲル反応でのゲル化促進効果に優れているが、中でも、特にエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、ジ(アセチルアセトナト)チタニウム錯塩、ジルコニウムトリス(エチルアセトアセテート)が好ましい。 Examples of preferred metal complexes include tris (acetylacetonato) aluminum complex, di (acetylacetonato) aluminum / aco complex, mono (acetylacetonato) aluminum / chloro complex, di (diacetylacetonato) aluminum complex, ethylacetate Acetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), cyclic aluminum oxide isopropylate, tris (acetylacetonato) barium complex, di (acetylacetonato) titanium complex, tris (acetylacetonato) titanium complex, di-i -Propoxy bis (acetylacetonato) titanium complex salt, zirconium tris (ethyl acetoacetate), zirconium tris (benzoic acid) complex salt, etc. These are excellent in stability in aqueous coating solutions and in gelation promotion effect in sol-gel reaction during heat drying, and among them, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), di ( Acetylacetonato) titanium complex and zirconium tris (ethylacetoacetate) are preferred.
 上記した金属錯体の対塩の記載を本明細書においては省略しているが、対塩の種類は、錯体化合物としての電荷の中性を保つ水溶性塩である限り任意であり、例えば硝酸塩、ハロゲン酸塩、硫酸塩、燐酸塩などの化学量論的中性が確保される塩の形が用いられる。
 金属錯体のシリカゾルゲル反応での挙動については、J.Sol-Gel.Sci.and Tec.16.209(1999)に詳細な記載がある。反応メカニズムとしては以下のスキームを推定している。すなわち、塗布液中では、金属錯体は、配位構造を取って安定であり、塗布後の加熱乾燥過程に始まる脱水縮合反応では、酸触媒に似た機構で架橋を促進させるものと考えられる。いずれにしても、この金属錯体を用いたことにより塗布液経時安定性及び皮膜面質の改善と、高親水性、高耐久性の、いずれも満足させるに至った。
Although the description of the counter salt of the metal complex described above is omitted in this specification, the type of the counter salt is arbitrary as long as it is a water-soluble salt that maintains the neutrality of the charge as the complex compound, such as nitrate, Salt forms such as halogenates, sulfates, phosphates, etc., that ensure stoichiometric neutrality are used.
For the behavior of the metal complex in the silica sol-gel reaction, see J.A. Sol-Gel. Sci. and Tec. There is a detailed description in 16.209 (1999). The following scheme is estimated as the reaction mechanism. That is, in the coating solution, the metal complex takes a coordination structure and is stable, and in the dehydration condensation reaction that starts in the heat drying process after coating, it is considered that crosslinking is promoted by a mechanism similar to an acid catalyst. In any case, the use of this metal complex has led to the improvement of coating solution aging stability and film surface quality, high hydrophilicity, and high durability.
 触媒は、本発明の親水性組成物中に、全固形分に対して、好ましくは0~50質量%、更に好ましくは5~25質量%の範囲で使用される。また、触媒は、単独で用いても2種以上併用してもよい。 The catalyst is preferably used in the range of 0 to 50% by mass, more preferably 5 to 25% by mass with respect to the total solid content in the hydrophilic composition of the present invention. Moreover, a catalyst may be used independently or may be used together 2 or more types.
 〔その他の添加剤〕
 更にこの他にも、必要に応じて、例えば、レベリング添加剤、マット剤、膜物性を調整するためのワックス類、基材への密着性を改善するために、親水性を阻害しない範囲でタッキファイヤーなどを含有させることができる。
 タッキファイヤーとしては、具体的には、特開2001-49200号公報の5~6pに記載されている高分子量の粘着性ポリマー(例えば、(メタ)アクリル酸と炭素数1~20のアルキル基を有するアルコールとのエステル、(メタ)アクリル酸と炭素数3~14の脂環族アルコールとのエステル、(メタ)アクリル酸と炭素数6~14の芳香族アルコールとのエステルからなる共重合物)や、重合性不飽和結合を有する低分子量粘着付与性樹脂などである。
[Other additives]
In addition to this, if necessary, for example, leveling additives, matting agents, waxes for adjusting film physical properties, and tackiness within a range that does not impair hydrophilicity in order to improve adhesion to the substrate. A fire etc. can be contained.
As the tackifier, specifically, a high molecular weight adhesive polymer (for example, (meth) acrylic acid and an alkyl group having 1 to 20 carbon atoms) described in JP-A-2001-49200, 5-6p. An ester of an alcohol having a copolymer, an ester of (meth) acrylic acid and an alicyclic alcohol having 3 to 14 carbon atoms, or a copolymer comprising an ester of (meth) acrylic acid and an aromatic alcohol having 6 to 14 carbon atoms) And a low molecular weight tackifying resin having a polymerizable unsaturated bond.
 (界面活性剤)
 本発明においては、親水性組成物及び下塗り層用組成物の被膜面状を向上させるために界面活性剤を用いるのが好ましい。界面活性剤としては、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤、フッ素系界面活性剤等が挙げられる。
(Surfactant)
In the present invention, a surfactant is preferably used in order to improve the surface state of the hydrophilic composition and the undercoat layer composition. Examples of the surfactant include a nonionic surfactant, an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a fluorine surfactant.
 本発明に用いられるノニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンポリスチリルフェニルエーテル類、ポリオキシエチレンポリオキシプロピレンアルキルエーテル類、グリセリン脂肪酸部分エステル類、ソルビタン脂肪酸部分エステル類、ペンタエリスリトール脂肪酸部分エステル類、プロピレングリコールモノ脂肪酸エステル類、ショ糖脂肪酸部分エステル類、ポリオキシエチレンソルビタン脂肪酸部分エステル類、ポリオキシエチレンソルビトール脂肪酸部分エステル類、ポリエチレングリコール脂肪酸エステル類、ポリグリセリン脂肪酸部分エステル類、ポリオキシエチレン化ひまし油類、ポリオキシエチレングリセリン脂肪酸部分エステル類、脂肪酸ジエタノールアミド類、N,N-ビス-2-ヒドロキシアルキルアミン類、ポリオキシエチレンアルキルアミン、トリエタノールアミン脂肪酸エステル、トリアルキルアミンオキシド、ポリエチレングリコール、ポリエチレングリコールとポリプロピレングリコールの共重合体が挙げられる。 The nonionic surfactant used in the present invention is not particularly limited, and conventionally known nonionic surfactants can be used. For example, polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene polystyryl phenyl ethers, polyoxyethylene polyoxypropylene alkyl ethers, glycerin fatty acid partial esters, sorbitan fatty acid partial esters, pentaerythritol Fatty acid partial esters, propylene glycol mono fatty acid esters, sucrose fatty acid partial esters, polyoxyethylene sorbitan fatty acid partial esters, polyoxyethylene sorbitol fatty acid partial esters, polyethylene glycol fatty acid esters, polyglycerin fatty acid partial esters, Polyoxyethylenated castor oil, polyoxyethylene glycerin fatty acid partial esters, fatty acid diethanolamides, N N- bis-2-hydroxyalkylamines, polyoxyethylene alkylamines, triethanolamine fatty acid ester, trialkylamine oxide, polyethylene glycol, copolymers of polyethylene glycol and polypropylene glycol.
 本発明に用いられるアニオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、脂肪酸塩類、アビエチン酸塩類、ヒドロキシアルカンスルホン酸塩類、アルカンスルホン酸塩類、ジアルキルスルホ琥珀酸エステル塩類、直鎖アルキルベンゼンスルホン酸塩類、分岐鎖アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸塩類、アルキルフェノキシポリオキシエチレンプロピルスルホン酸塩類、ポリオキシエチレンアルキルスルホフェニルエーテル塩類、N-メチル-N-オレイルタウリンナトリウム塩、N-アルキルスルホコハク酸モノアミド二ナトリウム塩、石油スルホン酸塩類、硫酸化牛脂油、脂肪酸アルキルエステルの硫酸エステル塩類、アルキル硫酸エステル塩類、ポリオキシエチレンアルキルエーテル硫酸エステル塩類、脂肪酸モノグリセリド硫酸エステル塩類、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩類、ポリオキシエチレンスチリルフェニルエーテル硫酸エステル塩類、アルキルリン酸エステル塩類、ポリオキシエチレンアルキルエーテルリン酸エステル塩類、ポリオキシエチレンアルキルフェニルエーテルリン酸エステル塩類、スチレン/無水マレイン酸共重合物の部分けん化物類、オレフィン/無水マレイン酸共重合物の部分けん化物類、ナフタレンスルホン酸塩ホルマリン縮合物類が挙げられる。 The anionic surfactant used in the present invention is not particularly limited, and conventionally known anionic surfactants can be used. For example, fatty acid salts, abietic acid salts, hydroxyalkane sulfonates, alkane sulfonates, dialkyl sulfosuccinate esters, linear alkyl benzene sulfonates, branched alkyl benzene sulfonates, alkyl naphthalene sulfonates, alkyl phenoxy poly Oxyethylenepropyl sulfonates, polyoxyethylene alkylsulfophenyl ether salts, N-methyl-N-oleyl taurine sodium salt, N-alkylsulfosuccinic acid monoamide disodium salt, petroleum sulfonates, sulfated beef oil, fatty acid alkyl esters Sulfates, alkyl sulfates, polyoxyethylene alkyl ether sulfates, fatty acid monoglyceride sulfates, polyoxyethylene alcohol Ruphenyl ether sulfates, polyoxyethylene styryl phenyl ether sulfates, alkyl phosphates, polyoxyethylene alkyl ether phosphates, polyoxyethylene alkyl phenyl ether phosphates, styrene / maleic anhydride Examples thereof include partial saponification products of polymers, partial saponification products of olefin / maleic anhydride copolymers, and naphthalene sulfonate formalin condensates.
 本発明に用いられるカチオン界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、アルキルアミン塩類、第四級アンモニウム塩類、ポリオキシエチレンアルキルアミン塩類、ポリエチレンポリアミン誘導体が挙げられる。
 本発明に用いられる両性界面活性剤は、特に限定されず、従来公知のものを用いることができる。例えば、カルボキシベタイン類、アミノカルボン酸類、スルホベタイン類、アミノ硫酸エステル類、イミタゾリン類が挙げられる。
 なお、上記界面活性剤の中で、「ポリオキシエチレン」とあるものは、ポリオキシメチレン、ポリオキシプロピレン、ポリオキシブチレン等の「ポリオキシアルキレン」に読み替えることもでき、本発明においては、それらの界面活性剤も用いることができる。
The cationic surfactant used in the present invention is not particularly limited, and conventionally known cationic surfactants can be used. Examples thereof include alkylamine salts, quaternary ammonium salts, polyoxyethylene alkylamine salts, and polyethylene polyamine derivatives.
The amphoteric surfactant used in the present invention is not particularly limited, and conventionally known amphoteric surfactants can be used. Examples thereof include carboxybetaines, aminocarboxylic acids, sulfobetaines, aminosulfuric esters, and imidazolines.
Of the above surfactants, the term “polyoxyethylene” can be read as “polyoxyalkylene” such as polyoxymethylene, polyoxypropylene, polyoxybutylene, etc. These surfactants can also be used.
 更に好ましい界面活性剤としては、分子内にパーフルオロアルキル基を含有するフッ素系界面活性剤が挙げられる。このようなフッ素系界面活性剤としては、例えば、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルスルホン酸塩、パーフルオロアルキルリン酸エステル等のアニオン型;パーフルオロアルキルベタイン等の両性型;パーフルオロアルキルトリメチルアンモニウム塩等のカチオン型;パーフルオロアルキルアミンオキサイド、パーフルオロアルキルエチレンオキシド付加物、パーフルオロアルキル基及び親水性基を含有するオリゴマー、パーフルオロアルキル基及び親油性基を含有するオリゴマー、パーフルオロアルキル基、親水性基及び親油性基を含有するオリゴマー、パーフルオロアルキル基及び親油性基を含有するウレタン等のノニオン型が挙げられる。また、特開昭62-170950号、同62-226143号及び同60-168144号の各公報に記載されているフッ素系界面活性剤も好適に挙げられる。
 界面活性剤は、本発明の親水性組成物中に、全固形分に対して、好ましくは0.001~10質量%、更に好ましくは0.01~5質量%の範囲で使用される。また、界面活性剤は、単独で又は2種以上を組み合わせて用いることができる。
More preferable surfactants include fluorine-based surfactants containing a perfluoroalkyl group in the molecule. Examples of such fluorosurfactants include anionic types such as perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and perfluoroalkyl phosphates; amphoteric types such as perfluoroalkyl betaines; Cation type such as trimethylammonium salt; perfluoroalkylamine oxide, perfluoroalkylethylene oxide adduct, oligomer containing perfluoroalkyl group and hydrophilic group, oligomer containing perfluoroalkyl group and lipophilic group, perfluoroalkyl Nonionic types such as an oligomer containing a group, a hydrophilic group and a lipophilic group, and a urethane containing a perfluoroalkyl group and a lipophilic group. In addition, fluorine-based surfactants described in JP-A Nos. 62-170950, 62-226143, and 60-168144 are also preferred.
The surfactant is used in the hydrophilic composition of the present invention in an amount of preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, based on the total solid content. Moreover, surfactant can be used individually or in combination of 2 or more types.
 好ましい界面活性剤の具体例を以下に示すが、本発明はこれらに限定されない。 Specific examples of preferable surfactants are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 (無機微粒子)
 本発明の親水性組成物には、形成される親水性膜の硬化被膜強度向上及び親水性向上のために無機微粒子を含有してもよい。無機微粒子としては、例えば、シリカ、アルミナ、酸化マグネシウム、酸化チタン、炭酸マグネシウム、アルギン酸カルシウム又はこれらの混合物が好適に挙げられる。
 無機微粒子は、平均粒径が、好ましくは5nm~10μm、より好ましくは0.5~3μmであるのがよい。上記範囲であると、親水性層中に安定に分散して、親水性層の膜強度を十分に保持し、親水性に優れる膜を形成することができる。上述したような無機微粒子はコロイダルシリカ分散物等の市販品として容易に入手することができる。
(Inorganic fine particles)
The hydrophilic composition of the present invention may contain inorganic fine particles in order to improve the cured film strength and hydrophilicity of the hydrophilic film to be formed. As the inorganic fine particles, for example, silica, alumina, magnesium oxide, titanium oxide, magnesium carbonate, calcium alginate, or a mixture thereof is preferably exemplified.
The inorganic fine particles preferably have an average particle diameter of 5 nm to 10 μm, more preferably 0.5 to 3 μm. Within the above range, it is possible to form a film that is stably dispersed in the hydrophilic layer, sufficiently retains the film strength of the hydrophilic layer, and is excellent in hydrophilicity. The inorganic fine particles as described above can be easily obtained as a commercial product such as a colloidal silica dispersion.
 本発明に係る無機微粒子は、本発明の親水性組成物中に、全固形分に対して、好ましくは20質量%以下、より好ましくは10質量%以下の範囲で使用される。また、無機微粒子は、単独で又は2種以上を組み合わせて用いることができる。 The inorganic fine particles according to the present invention are used in the hydrophilic composition of the present invention in an amount of preferably 20% by mass or less, more preferably 10% by mass or less, based on the total solid content. The inorganic fine particles can be used alone or in combination of two or more.
 (酸化防止剤)
 本発明の親水性部材の安定性向上のため、親水性組成物に酸化防止剤を添加することができる。酸化防止剤としては、ヨーロッパ公開特許、同第223739号公報、同309401号公報、同第309402号公報、同第310551号公報、同第310552号公報、同第459416号公報、ドイツ公開特許第3435443号公報、特開昭54-48535号公報、同62-262047号公報、同63-113536号公報、同63-163351号公報、特開平2-262654号公報、特開平2-71262号公報、特開平3-121449号公報、特開平5-61166号公報、特開平5-119449号公報、米国特許第4814262号明細書、米国特許第4980275号明細書等に記載のものを挙げることができる。
 添加量は目的に応じて適宜選択されるが、固形分換算で0.1~8質量%であることが好ましい。
(Antioxidant)
In order to improve the stability of the hydrophilic member of the present invention, an antioxidant can be added to the hydrophilic composition. Examples of the antioxidant include European Published Patent No. 223739, No. 309401, No. 309402, No. 310551, No. 310552, No. 4594416, German Published Patent No. 3435443. JP, 54-85535, 62-262447, 63-113536, 63-163351, JP-A-2-262654, JP-A-2-71262, Examples thereof include those described in Kaihei 3-121449, JP-A-5-61166, JP-A-5-119449, US Pat. No. 4,814,262, US Pat. No. 4,980,275, and the like.
The addition amount is appropriately selected according to the purpose, but is preferably 0.1 to 8% by mass in terms of solid content.
 (高分子化合物)
 本発明の親水性組成物には、親水性層の膜物性を調整するため、親水性を阻害しない範囲で各種高分子化合物を添加することができる。高分子化合物としては、アクリル系重合体、ポリビニルアルコール樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリビニルホルマール樹脂、シェラック、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、ワックス類、その他の天然樹脂等が使用できる。また、これらは2種以上併用してもかまわない。これらのうち、アクリル系のモノマーの共重合によって得られるビニル系共重合体が好ましい。更に、高分子結合材の共重合組成として、「カルボキシル基含有モノマー」、「メタクリル酸アルキルエステル」、又は「アクリル酸アルキルエステル」を構造単位として含む共重合体も好ましく用いられる。
(Polymer compound)
In order to adjust the film properties of the hydrophilic layer, various polymer compounds can be added to the hydrophilic composition of the present invention as long as the hydrophilicity is not inhibited. High molecular compounds include acrylic polymer, polyvinyl alcohol resin, polyurethane resin, polyamide resin, polyester resin, epoxy resin, phenol resin, polycarbonate resin, polyvinyl formal resin, shellac, vinyl resin, acrylic resin, rubber resin Waxes and other natural resins can be used. Two or more of these may be used in combination. Of these, vinyl copolymers obtained by copolymerization of acrylic monomers are preferred. Furthermore, a copolymer containing “carboxyl group-containing monomer”, “methacrylic acid alkyl ester”, or “acrylic acid alkyl ester” as a structural unit is also preferably used as the copolymer composition of the polymer binder.
 〔親水性部材〕
 本発明における親水性部材は、例えば、アクリル、ポリカーボネート、ポリエステル、ステンレス、及びアルミ等から選ばれた基材上に上記親水性組成物により形成される親水性層を有する。
 本発明の親水性部材は、基材上に、親水性組成物が塗設されてなる親水性層を有しており、親水性組成物が上記に説明した親水性組成物であるため、充分な親水性、耐摩擦性、防汚性及び密着性を有するとともに、優れた潤滑性を長期に維持可能な親水性部材とすることができる。
 本発明の親水性部材は、基材と親水性層との間の密着性を向上させるために、基材と親水性層との間に、更に、下塗り層を有していても良い。
 ここで、下塗り層は、上記した触媒を含有する組成物を塗布することにより形成されたものであるのが好ましく、これによって、基材と親水性層との間の密着性をより向上させることができる。ここで、触媒は、上記同様、不揮発性の触媒であることが好ましい。
 触媒は、下塗り層用組成物中に、全固形分に対して、好ましくは0~50質量%、更に好ましくは1~25質量%の範囲で使用される。また、触媒は、単独で用いても2種以上併用してもよい。
[Hydrophilic member]
The hydrophilic member in this invention has a hydrophilic layer formed with the said hydrophilic composition on the base material chosen from acrylic, polycarbonate, polyester, stainless steel, aluminum, etc., for example.
The hydrophilic member of the present invention has a hydrophilic layer formed by coating a hydrophilic composition on a substrate, and the hydrophilic composition is the hydrophilic composition described above. It is possible to provide a hydrophilic member that has excellent hydrophilicity, friction resistance, antifouling property, and adhesion and can maintain excellent lubricity for a long period of time.
The hydrophilic member of the present invention may further have an undercoat layer between the base material and the hydrophilic layer in order to improve the adhesion between the base material and the hydrophilic layer.
Here, the undercoat layer is preferably formed by applying the above-described composition containing the catalyst, thereby further improving the adhesion between the substrate and the hydrophilic layer. Can do. Here, the catalyst is preferably a non-volatile catalyst as described above.
The catalyst is used in the composition for an undercoat layer in an amount of preferably 0 to 50% by mass, more preferably 1 to 25% by mass, based on the total solid content. Moreover, a catalyst may be used independently or may be used together 2 or more types.
 また、下塗り層は、更に上記した架橋剤を含有する組成物を塗布することにより形成されたものであることが好ましく、これにより、更に確実に、基材と親水性層との間の密着性を向上させることができる。
 架橋剤は、下塗り層用組成物中の、全固形分に対して、好ましくは5~99質量%、更に好ましくは10~95質量%の範囲で使用される。また、架橋剤は、単独で用いても2種以上併用してもよい。
In addition, the undercoat layer is preferably formed by applying a composition containing the above-described crosslinking agent, and thereby, more reliably, adhesion between the substrate and the hydrophilic layer. Can be improved.
The crosslinking agent is preferably used in the range of 5 to 99% by mass, more preferably 10 to 95% by mass, based on the total solid content in the composition for the undercoat layer. Moreover, a crosslinking agent may be used independently or may be used together 2 or more types.
 親水性組成物及び下塗り層用組成物には、耐摩耗性、耐酸性及び耐アルカリ性の観点から、ジルコニアの塩化物、硝酸塩、アルコキシド類及び有機錯体を含有することができる。ジルコニアの塩化物としては、塩化ジルコニウム、オキシ塩化ジルコニウム(8水和物)、塩素含有ジルコニウムアルコキシドZr(OC2m+1)Cl(m、x、y:整数、x+y=4)などが挙げられ、ジルコニウムの硝酸塩としては、オキシ硝酸ジルコニウム(2水和物)が挙げられ、ジルコニウムのアルコキシドとしては、ジルコニウムエトキシド,ジルコニウムプロポキシド、ジルコニウムイソプロポキシド、ジルコニウムブトキシド、ジルコニウムt-ブトキシドなどが挙げられ、有機錯体としては、アセチルアセトン誘導体が挙げられ、具体的にはテトラキス(アセチルアセトナト)ジルコニウム、ビス(アセチルアセトナト)ジルコニウムジブトキシド、ビス(アセチルアセトナト)ジルコニウムジクロリド、テトラキス(3,5-ヘプタンジオネート)ジルコニウム、テトラキス(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)ジルコニウム、ビス(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)ジルコニウムジイソプロポキシドなどが挙げられる。
 上記ジルコニウム化合物は、本発明の親水性組成物及び下塗り層用組成物中に、全固形分に対して、好ましくは0~50質量%、より好ましくは5~25質量%の範囲で使用される。
 このような親水性組成物を、適切な基材上に塗布し、乾燥することで、親水性層を形成することができる。即ち、本発明の親水性部材は、基材上に、親水性組成物を塗布し、加熱、乾燥することにより形成された親水性層を有するものである。本発明の親水性部材は、親水性層が前記一般式(I-1)で表される構造及び前記一般式(I-2)で表される構造を含む親水性ポリマー(I)を全固形分に対して50質量%以上含有する親水性物を塗布、乾燥させることで得られることが好ましい。
 親水性層の形成において、親水性組成物を塗布した後の加熱、乾燥条件としては、高密度の架橋構造を効率よく形成するといった観点から、乾燥温度を100~230℃とすることが好ましく、130~200℃とすることが更に好ましい。乾燥温度が低いと十分な架橋反応が進まず塗膜強度が低くなり、温度が高すぎると塗膜のひび割れを生じやすく部分的に防曇性が不十分になる。乾燥時間は5秒~1時間が好ましい。更に好ましくは10秒~30分間である。乾燥時間が短いと乾燥不十分により塗膜強度が低下することがある。必要以上に乾燥時間を長くしすぎると基材が劣化したりする。
The hydrophilic composition and the composition for the undercoat layer may contain zirconia chloride, nitrate, alkoxide, and organic complex from the viewpoints of wear resistance, acid resistance, and alkali resistance. Examples of the zirconia chloride include zirconium chloride, zirconium oxychloride (octahydrate), chlorine-containing zirconium alkoxide Zr (OC m H 2m + 1 ) x Cl y (m, x, y: integer, x + y = 4). Examples of the zirconium nitrate include zirconium oxynitrate (dihydrate). Examples of the zirconium alkoxide include zirconium ethoxide, zirconium propoxide, zirconium isopropoxide, zirconium butoxide, zirconium t-butoxide and the like. Examples of the organic complex include acetylacetone derivatives. Specifically, tetrakis (acetylacetonato) zirconium, bis (acetylacetonato) zirconium dibutoxide, bis (acetylacetonato) zirconium dichloride, Trakis (3,5-heptanedionate) zirconium, tetrakis (2,2,6,6-tetramethyl-3,5-heptanedionate) zirconium, bis (2,2,6,6-tetramethyl-3, 5-heptanedionate) zirconium diisopropoxide and the like.
The zirconium compound is preferably used in the range of 0 to 50% by mass, more preferably 5 to 25% by mass with respect to the total solid content in the hydrophilic composition and the composition for the undercoat layer of the present invention. .
A hydrophilic layer can be formed by applying such a hydrophilic composition onto a suitable substrate and drying. That is, the hydrophilic member of the present invention has a hydrophilic layer formed by applying a hydrophilic composition on a substrate, heating and drying. The hydrophilic member of the present invention comprises a hydrophilic polymer (I) having a structure in which the hydrophilic layer is represented by the general formula (I-1) and the structure represented by the general formula (I-2). It is preferably obtained by applying and drying a hydrophilic substance containing 50% by mass or more with respect to the minute.
In the formation of the hydrophilic layer, as the heating and drying conditions after applying the hydrophilic composition, the drying temperature is preferably 100 to 230 ° C. from the viewpoint of efficiently forming a high-density crosslinked structure, More preferably, the temperature is 130 to 200 ° C. When the drying temperature is low, sufficient crosslinking reaction does not proceed and the strength of the coating film is lowered. When the temperature is too high, the coating film is liable to crack, and the antifogging property is partially insufficient. The drying time is preferably 5 seconds to 1 hour. More preferably, it is 10 seconds to 30 minutes. If the drying time is short, the coating strength may be lowered due to insufficient drying. If the drying time is excessively longer than necessary, the substrate may deteriorate.
 本発明の親水性部材は、公知の塗布方法で作製することが可能であり、特に限定がなく、例えばスプレーコーティング法、ディップコーティング法、フローコーティング法、スピンコーティング法、ロールコーティング法、フィルムアプリケーター法、スクリーン印刷法、バーコーター法、刷毛塗り、スポンジ塗り等の方法が適用できる。 The hydrophilic member of the present invention can be prepared by a known coating method, and is not particularly limited. For example, a spray coating method, a dip coating method, a flow coating method, a spin coating method, a roll coating method, a film applicator method. Methods such as screen printing, bar coater, brush coating, and sponge coating can be applied.
 親水性層の表面の中心線平均粗さRaは、10nm~100nmであることが好ましい。
 また、親水性層のTgは、塗膜強度の観点から、40℃~150℃が好ましい。また、親水性層の弾性率は1GPa~7GPaが好ましい。
 なお、上記の親水性層の表面性状は、使用する無機微粒子の粒子サイズ、含有量、基材自体の表面粗さ、親水性組成物の粘度、親水性層の加熱温度、速度などを調節することによって制御できるが、本発明はこれに限定されるものではない。
The center line average roughness Ra of the surface of the hydrophilic layer is preferably 10 nm to 100 nm.
The Tg of the hydrophilic layer is preferably 40 ° C. to 150 ° C. from the viewpoint of coating film strength. The elastic modulus of the hydrophilic layer is preferably 1 GPa to 7 GPa.
The surface property of the hydrophilic layer adjusts the particle size and content of the inorganic fine particles used, the surface roughness of the substrate itself, the viscosity of the hydrophilic composition, the heating temperature of the hydrophilic layer, the speed, and the like. However, the present invention is not limited to this.
 基材と親水性層との間には、密着性の向上などのため、必要に応じて中間層を設けてもよい。
 例えば、基材がアルミニウム板の場合、防食性、基材との密着性を向上させることなどを目的とし、アルミニウム板と親水性層との間に中間層を設けてもよい。中間層は特に限定されない。組成の異なる親水性層を設けてもよいし、クロメート系に代表される公知の耐食防止層を付与してもよい。
An intermediate layer may be provided between the base material and the hydrophilic layer as necessary for improving adhesion.
For example, when the substrate is an aluminum plate, an intermediate layer may be provided between the aluminum plate and the hydrophilic layer for the purpose of improving the anticorrosion property and adhesion to the substrate. The intermediate layer is not particularly limited. Hydrophilic layers having different compositions may be provided, or a known anticorrosion layer represented by a chromate system may be provided.
 表面自由エネルギー
 親水性層表面の親水性度は、汎用的に、水滴接触角で測定される。しかし、本発明のような非常に親水性の高い表面においては、水滴接触角が10℃以下になることがあり、親水性度の相互比較を行うには、限界がある。一方、固体表面の親水性度をより詳細に評価する方法として、表面自由エネルギーの測定がある。種々の方法が提案されているが、本発明では、一例として、Zismanプロット法を用いて表面自由エネルギーを測定した。具体的には、塩化マグネシウムなどの無機電解質の水溶液が濃度とともに表面張力が大きくなる性質を利用し、その水溶液を用いて空中、室温条件で接触角を測定した後、横軸にその水溶液の表面張力、縦軸に接触角をcosθに換算した値をとり、種々の濃度の水溶液の点をプロットして直線関係を得、cosθ=1すなわち、接触角=0°になるときの表面張力を、固体の表面自由エネルギーと定義する測定方法である。水の表面張力は72mN/mであり、表面自由エネルギーの値が大きいほど親水性が高いといえる。
 このような方法で測定した表面自由エネルギーが、70mN/m~95mN/m、好ましくは72mN/m~93mN/m、更に好ましくは75mN/m~90mN/mの範囲にある親水性層が、親水性に優れ、良好な性能を示す。
Surface Free Energy The hydrophilicity of the surface of the hydrophilic layer is generally measured by the water droplet contact angle. However, on a very hydrophilic surface such as that of the present invention, the water droplet contact angle may be 10 ° C. or less, and there is a limit to the mutual comparison of the hydrophilicity. On the other hand, as a method for evaluating the hydrophilicity of the solid surface in more detail, there is a measurement of surface free energy. Various methods have been proposed. In the present invention, as an example, the surface free energy was measured using the Zisman plot method. Specifically, using the property that an aqueous solution of an inorganic electrolyte such as magnesium chloride increases in surface tension with the concentration, after measuring the contact angle in the air at room temperature using the aqueous solution, the horizontal axis indicates the surface of the aqueous solution. Take the value obtained by converting the contact angle into cos θ on the vertical axis and plot the points of aqueous solutions of various concentrations to obtain a linear relationship, and the surface tension when cos θ = 1, that is, the contact angle = 0 °, It is a measurement method defined as the surface free energy of a solid. The surface tension of water is 72 mN / m, and it can be said that the higher the surface free energy value, the higher the hydrophilicity.
A hydrophilic layer having a surface free energy measured by such a method in the range of 70 mN / m to 95 mN / m, preferably 72 mN / m to 93 mN / m, more preferably 75 mN / m to 90 mN / m, Excellent performance and good performance.
 親水性組成物の調液
 親水性組成物の調製は、加水分解性シリル基を有する親水性ポリマー、架橋剤、触媒、界面活性剤及び特定アルコキシドをエタノールなどの溶媒に溶解後、攪拌することで実施できる。反応温度は室温~80℃であり、反応時間、即ち攪拌を継続する時間は1~72時間の範囲であることが好ましく、この攪拌により両成分の加水分解・重縮合を進行させて、有機無機複合体ゾル液を得ることができる。
Preparation of hydrophilic composition The hydrophilic composition was prepared by dissolving a hydrophilic polymer having a hydrolyzable silyl group, a crosslinking agent, a catalyst, a surfactant and a specific alkoxide in a solvent such as ethanol and then stirring. Can be implemented. The reaction temperature is from room temperature to 80 ° C., and the reaction time, that is, the time during which stirring is continued is preferably in the range of 1 to 72 hours. A composite sol solution can be obtained.
 前記親水性組成物を調製する際に用いる溶媒としては、これらを均一に、溶解、分散し得るものであれば特に制限はないが、例えば、メタノール、エタノール、水等の水系溶媒が好ましい。 The solvent used in preparing the hydrophilic composition is not particularly limited as long as it can uniformly dissolve and disperse these, but for example, an aqueous solvent such as methanol, ethanol, water or the like is preferable.
 以上述べたように、本発明の親水性組成物により親水性層を形成するための有機無機複合体ゾル液(親水性組成物)の調製は、ゾルゲル法を利用している。ゾルゲル法については、作花済夫「ゾル-ゲル法の科学」(株)アグネ承風社(刊)(1988年)、平島硯「最新ゾル-ゲル法による機能性薄膜作成技術」総合技術センター(刊)(1992年)等の成書等に詳細に記述され、それらに記載の方法を本発明において親水性組成物の調製に適用することができる。 As described above, the preparation of the organic-inorganic composite sol liquid (hydrophilic composition) for forming the hydrophilic layer from the hydrophilic composition of the present invention utilizes the sol-gel method. Regarding the sol-gel method, Sakuo Sakuo “Science of Sol-Gel Method”, Agne Jofusha Co., Ltd. (published) (1988), Satoshi Hirashima “Functional Thin Film Formation Technology by the Latest Sol-Gel Method” General Technology Center (Published) (1992) and the like, and the methods described therein can be applied to the preparation of the hydrophilic composition in the present invention.
 〔潤滑層〕
 本発明における潤滑層は、基材上に加水分解性シリル基を有する親水性ポリマーを含有する親水性組成物から形成される親水性層の上に設けられた、摩擦係数が0.05~0.25である潤滑層である。潤滑層の摩擦係数は好ましくは、0.06~0.24であり、より好ましくは0.08~0.22である。
 摩擦係数は、特に限定はされないがバウデン-レーベン型摩擦試験機を用いて公知の方法で測定可能である。
 潤滑層は潤滑剤組成物により形成することができ、潤滑剤組成物に含有される潤滑剤としては、ポリエチレングリコール(PEG)及びポリプロピレングリコール(PPG)、又はその共重合体等のノニオン系親水性ポリマー、又は界面活性剤を挙げることができ、好ましくはポリエチレングリコール(PEG)又はポリプロピレングリコール、又はその共重合体ポリマー、より好ましくはポリエチレングリコール又はポリプロピレングリコールである。これらは単独でも複数組み合わせて用いてもよい。
 潤滑剤としてポリエチレングリコール又はポリプロピレングリコールを用いることで、親水性層の親水性を損なわず、潤滑性を付与することができる。
 潤滑剤の分子量は、200~10000が好ましく、400~6000がより好ましく、1000~4000が更に好ましい。この範囲内であれば、潤滑性のロバスト、親水性層の親水性を損なわない、という理由から好ましい。
 潤滑剤は市販のものを用いてもよく、公知の方法により合成することもできる。潤滑剤としてポリエチレングリコール又はポリプロピレングリコールを用いる場合は、市販品より入手可能である。
 潤滑剤組成物中の潤滑剤の含有量は0.01~50質量%であることが好ましく、0.1~20質量%であることがより好ましく、0.5~10質量%であることが更に好ましい。
(Lubricating layer)
The lubricating layer in the present invention has a friction coefficient of 0.05 to 0 provided on a hydrophilic layer formed from a hydrophilic composition containing a hydrophilic polymer having a hydrolyzable silyl group on a substrate. .25 is a lubricating layer. The friction coefficient of the lubricating layer is preferably 0.06 to 0.24, and more preferably 0.08 to 0.22.
The coefficient of friction is not particularly limited, but can be measured by a known method using a Bowden-Leven type friction tester.
The lubricant layer can be formed of a lubricant composition. The lubricant contained in the lubricant composition includes nonionic hydrophilic properties such as polyethylene glycol (PEG) and polypropylene glycol (PPG), or copolymers thereof. A polymer or a surfactant can be mentioned, and preferably polyethylene glycol (PEG) or polypropylene glycol, or a copolymer polymer thereof, more preferably polyethylene glycol or polypropylene glycol. These may be used alone or in combination.
By using polyethylene glycol or polypropylene glycol as the lubricant, it is possible to impart lubricity without impairing the hydrophilicity of the hydrophilic layer.
The molecular weight of the lubricant is preferably 200 to 10,000, more preferably 400 to 6000, and still more preferably 1000 to 4000. If it exists in this range, it is preferable from the reason that the lubricity robustness and the hydrophilic property of a hydrophilic layer are not impaired.
A commercially available lubricant may be used, and it may be synthesized by a known method. When polyethylene glycol or polypropylene glycol is used as the lubricant, it can be obtained from a commercial product.
The content of the lubricant in the lubricant composition is preferably 0.01 to 50% by mass, more preferably 0.1 to 20% by mass, and 0.5 to 10% by mass. Further preferred.
 潤滑剤組成物は更に界面活性剤を含むことが好ましい。
 潤滑剤組成物に用いられる界面活性剤としては、好ましくはノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤、フッ素系界面活性剤を挙げることができ、好ましくはノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤であり、より好ましくはノニオン系界面活性剤、アニオン系界面活性剤である。具体的には前述した界面活性剤を用いることができる。
 潤滑剤組成物中の界面活性剤の含有量は親水ポリマーに対して0.1~20質量%であることが好ましく、0.2~10質量%であることがより好ましく、0.5~5質量%であることが更に好ましい。
The lubricant composition preferably further contains a surfactant.
Preferred examples of the surfactant used in the lubricant composition include nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and fluorine surfactants. Is a nonionic surfactant, an anionic surfactant, or a cationic surfactant, more preferably a nonionic surfactant or an anionic surfactant. Specifically, the above-described surfactant can be used.
The content of the surfactant in the lubricant composition is preferably 0.1 to 20% by mass, more preferably 0.2 to 10% by mass, and more preferably 0.5 to 5% with respect to the hydrophilic polymer. More preferably, it is mass%.
 潤滑剤組成物は更に溶剤を含むことが好ましい。
 潤滑剤組成物に用いられる溶剤として、好ましくは水、メタノールやエタノールやプロパノール等といったアルコールを挙げることができ、より好ましくは水である。
 潤滑剤組成物中の溶剤の含有量は50~99.99質量%であることが好ましく、80~99.9質量%であることがより好ましく、90~99.5質量%であることが更に好ましい。
The lubricant composition preferably further contains a solvent.
As the solvent used in the lubricant composition, water and alcohols such as methanol, ethanol and propanol can be preferably used, and water is more preferable.
The content of the solvent in the lubricant composition is preferably 50 to 99.99% by mass, more preferably 80 to 99.9% by mass, and further preferably 90 to 99.5% by mass. preferable.
 潤滑剤組成物の調液
 潤滑剤組成物についても、上記親水性組成物同様の方法により調製可能である。
Preparation of Lubricant Composition The lubricant composition can also be prepared by the same method as the above hydrophilic composition.
 このような本発明の潤滑剤組成物を、親水性層の上に塗布し、乾燥することで、本発明の親水性部材を得ることができる。即ち、本発明の親水性部材は、基材上に、親水性組成物を塗布し、加熱、乾燥することで親水性層を形成し、その上に潤滑剤組成物を塗布し、加熱、乾燥することで潤滑層を形成することにより得られる。
 潤滑剤組成物の加熱、乾燥条件としては、分解、蒸発といった観点からは、100~230℃の温度範囲において、5秒~1時間程度行うことが好ましく、130~200℃の温度範囲で、10秒~30分間乾燥することがより好ましい。
 また、潤滑剤組成物及び親水性組成物の加熱手段としては、公知の手段、例えば、温度調整機能を有する乾燥機などを用いることが好ましい。
The hydrophilic member of the present invention can be obtained by applying the lubricant composition of the present invention on the hydrophilic layer and drying it. That is, the hydrophilic member of the present invention is formed by applying a hydrophilic composition on a substrate, heating and drying to form a hydrophilic layer, applying a lubricant composition thereon, heating and drying. Thus, it is obtained by forming a lubricating layer.
The heating and drying conditions of the lubricant composition are preferably about 5 seconds to 1 hour in the temperature range of 100 to 230 ° C., and 10 to 10 in the temperature range of 130 to 200 ° C. from the viewpoint of decomposition and evaporation. It is more preferable to dry for 2 to 30 minutes.
Moreover, as a heating means of the lubricant composition and the hydrophilic composition, it is preferable to use a known means, for example, a dryer having a temperature adjusting function.
 下塗り層用組成物の調液
 下塗り層用組成物についても、上記親水性組成物同様の方法により調製可能である。
Preparation of composition for undercoat layer The composition for undercoat layer can also be prepared by the same method as the above hydrophilic composition.
 本発明の親水性部材は、基材上に、必要に応じて下塗り層用組成物を塗布し、加熱、乾燥することで下塗り層を有してもよい。
 下塗り層用組成物の加熱、乾燥条件としては、高密度の架橋構造を効率よく形成するといった観点からは、50~200℃の温度範囲において、2分~1時間程度行うことが好ましく、80~160℃の温度範囲で、5~30分間乾燥することがより好ましい。
 また、下塗り用組成物の加熱手段としては、公知の手段、例えば、温度調整機能を有する乾燥機などを用いることが好ましい。
The hydrophilic member of the present invention may have an undercoat layer by applying a composition for an undercoat layer on a substrate as necessary, and heating and drying.
The heating and drying conditions for the undercoat layer composition are preferably about 2 minutes to 1 hour in the temperature range of 50 to 200 ° C. from the viewpoint of efficiently forming a high-density crosslinked structure, It is more preferable to dry in the temperature range of 160 ° C. for 5 to 30 minutes.
Moreover, as a heating means of the undercoat composition, it is preferable to use a known means, for example, a dryer having a temperature adjusting function.
 また、本発明の親水性部材は、親水性層及び下塗り層を基材上に塗布する場合、基材に塗布する直前に触媒を混合することができる。具体的には触媒混合直後~1時間以内で塗布することが好ましい。触媒を混合し、長時間放置したのちに塗設すると下塗り層用組成物又は親水性組成物の粘度があがり、塗布むら等の欠陥を生じることがある。その他の成分も塗設直前に混合することが好ましいが混合後、長時間保存してもかまわない。 Further, in the hydrophilic member of the present invention, when the hydrophilic layer and the undercoat layer are applied on the substrate, the catalyst can be mixed immediately before the application to the substrate. Specifically, the coating is preferably performed immediately after mixing the catalyst to within 1 hour. When the catalyst is mixed and left to stand for a long time, the composition of the undercoat layer or the hydrophilic composition increases in viscosity, which may cause defects such as coating unevenness. Other components are also preferably mixed immediately before coating, but may be stored for a long time after mixing.
 〔基材〕
 本発明に用いられる基材は、特に限定されないが、ガラス、プラスチック、金属、セラミックス、木、石、セメント、コンクリート、繊維、布帛、紙、皮革、タイル、ゴム、ラテックス、それらの組合せ、それらの積層体が、いずれも好適に利用できる。特に好ましい基材は、プラスチック、金属等の柔軟性のあるフレキシブルな基材である。フレキシブルな基材を用いることで、物品の変形などが自由に可能になり、取り付け作業や取り付け場所の自由度が増すばかりでなく、耐久性も増すことができる。
 本発明に用いられるプラスチック基材としては、特に制限はないが、光学部材として使用される基材は、透明性、屈折率、分散性などの光学特性を考慮して選択され、使用目的により、種々の物性、例えば、耐衝撃性、可撓性など強度をはじめとする物理的特性や、耐熱性、耐候性、耐久性などを考慮して選択される。プラスチック基材としては、ポリエステル、ポリエチレン、ポリプロピレン、セロファン、トリアセチルセルロース、ジアセチルセルロース、アセチルセルロースブチレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルフォン、ポリエーテルケトン、アクリル、ナイロン、フッ素樹脂、ポリイミド、ポリエーテルイミド、ポリエーテルスルフォン等のフィルムもしくはシートを挙げることができる。その中でも特にポリエチレンテレフタレート,ポリエチレンナフタレート等のポリエステフィルムが好ましい。これらは、使用目的に応じて、単独で用いられてもよく、或いは、2種以上を混合物、共重合体、積層体などの形態で組み合わせて用いることもできる。プラスチック基材の厚みは、積層する相手によってさまざまである。例えば曲面の多い部分では、薄いものが好まれ、6~50μm程度のものが用いられる。また平面に用いられ、あるいは、強度を要求されるところでは50~400μmが用いられる。
〔Base material〕
The substrate used in the present invention is not particularly limited, but glass, plastic, metal, ceramics, wood, stone, cement, concrete, fiber, fabric, paper, leather, tile, rubber, latex, combinations thereof, those Any laminate can be suitably used. Particularly preferred substrates are flexible flexible substrates such as plastics and metals. By using a flexible base material, it is possible to freely deform the article, and not only the degree of freedom of the attaching operation and the attaching place is increased, but also the durability can be increased.
The plastic substrate used in the present invention is not particularly limited, but the substrate used as an optical member is selected in consideration of optical characteristics such as transparency, refractive index, dispersibility, and the like, It is selected in consideration of various physical properties such as physical properties such as strength such as impact resistance and flexibility, heat resistance, weather resistance, and durability. Plastic base materials include polyester, polyethylene, polypropylene, cellophane, triacetyl cellulose, diacetyl cellulose, acetyl cellulose butyrate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, polystyrene, polycarbonate, polymethylpentene, poly Examples thereof include films or sheets of sulfone, polyether ketone, acrylic, nylon, fluororesin, polyimide, polyetherimide, polyether sulfone and the like. Of these, polyester films such as polyethylene terephthalate and polyethylene naphthalate are particularly preferred. These may be used alone or in combination of two or more in the form of a mixture, copolymer, laminate or the like, depending on the purpose of use. The thickness of the plastic substrate varies depending on the partner to be laminated. For example, in a portion with many curved surfaces, a thin one is preferred, and one having a thickness of about 6 to 50 μm is used. Further, 50 to 400 μm is used for a flat surface or where strength is required.
 基材と下塗り層の密着性を向上させる目的で、所望により基材の片面又は両面に、酸化法や粗面化法等により表面親水化処理を施すことができる。上記酸化法としては、例えばコロナ放電処理、グロー放電処理、クロム酸処理(湿式)、火炎処理、熱風処理、オゾン・紫外線照射処理等が挙げられる。粗面化法としては、サンドブラスト、ブラシ研磨等により機械的に粗面化することもできる。 For the purpose of improving the adhesion between the base material and the undercoat layer, one or both surfaces of the base material can be subjected to surface hydrophilization treatment by an oxidation method, a roughening method, or the like as desired. Examples of the oxidation method include corona discharge treatment, glow discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, and the like. As a roughening method, it can also be mechanically roughened by sandblasting, brush polishing or the like.
 プラスチック基材として、下記のガラス板の説明において記載される無機化合物層をプラスチック板上に形成したものを用いることもできる。この場合、無機化合物層は反射防止層として作用させることもできる。無機化合物層をプラスチック板上に形成する場合も、前述した無機基材におけるのと同様の手法で形成することができる。 As the plastic substrate, a material in which an inorganic compound layer described in the following description of the glass plate is formed on the plastic plate can also be used. In this case, the inorganic compound layer can also act as an antireflection layer. Even when the inorganic compound layer is formed on the plastic plate, it can be formed by the same method as in the inorganic base material described above.
 透明プラスチック基材に無機化合物層を形成する場合、両層の間には、ハードコート層を形成してもよい。ハードコート層を設けることにより、基材表面の硬度が向上すると共に、基材表面が平滑になるので、透明プラスチック基材と無機化合物層との密着性が向上し、耐引っ掻き強度の向上と、基材の屈曲に起因する無機化合物層へのクラックの発生を抑制することができる。このような基材を用いることで親水性部材の機械的強度を改善できる。ハードコート層の材質は、透明性、適度な強度、及び機械的強度を有するものであれば、特に限定されない。例えば、電離放射線や紫外線の照射による硬化樹脂や熱硬化性の樹脂が使用でき、特に紫外線照射硬化型アクリル系樹脂、有機ケイ素系樹脂、熱硬化性ポリシロキサン樹脂が好ましい。これらの樹脂の屈折率は、透明プラスチック基材の屈折率と同等、もしくはこれに近似していることがより好ましい。 When forming an inorganic compound layer on a transparent plastic substrate, a hard coat layer may be formed between both layers. By providing the hard coat layer, the hardness of the substrate surface is improved and the substrate surface is smoothed, so the adhesion between the transparent plastic substrate and the inorganic compound layer is improved, and the scratch resistance is improved, Generation of cracks in the inorganic compound layer due to bending of the substrate can be suppressed. By using such a base material, the mechanical strength of the hydrophilic member can be improved. The material of the hard coat layer is not particularly limited as long as it has transparency, appropriate strength, and mechanical strength. For example, a curable resin or a thermosetting resin by irradiation with ionizing radiation or ultraviolet rays can be used, and an ultraviolet irradiation curable acrylic resin, an organosilicon resin, or a thermosetting polysiloxane resin is particularly preferable. The refractive index of these resins is more preferably equal to or close to the refractive index of the transparent plastic substrate.
 このようなハードコート層の被膜方法は、特に限定されず、均一に塗布されるのであれば任意の方法を採用することができる。また、ハードコート層の膜厚は3μm以上であれば十分な強度となるが、透明性、塗工精度、取り扱いの点から5~7μmの範囲が好ましい。更にハードコート層に平均粒子径0.01~3μmの無機あるいは有機物粒子を混合分散させることによって、一般的にアンチグレアと呼ばれる光拡散性処理を施すことができる。これらの粒子は透明であれば特に限定されないが、低屈折率材料が好ましく、酸化ケイ素、フッ化マグネシウムが安定性、耐熱性等の点で特に好ましい。光拡散性処理は、ハードコート層の表面に凹凸を設けることによっても達成できる。これらの無機化合物層やハードコート層は基材と下塗り層との間に設けることで、基材と下塗り層の密着性を向上させることができる。 Such a coating method of the hard coat layer is not particularly limited, and any method can be adopted as long as it is uniformly applied. The hard coat layer having a thickness of 3 μm or more has sufficient strength, but is preferably in the range of 5 to 7 μm from the viewpoint of transparency, coating accuracy, and handling. Further, by mixing and dispersing inorganic or organic particles having an average particle diameter of 0.01 to 3 μm in the hard coat layer, a light diffusing treatment generally called anti-glare can be performed. These particles are not particularly limited as long as they are transparent, but a low refractive index material is preferable, and silicon oxide and magnesium fluoride are particularly preferable in terms of stability, heat resistance, and the like. The light diffusing treatment can also be achieved by providing irregularities on the surface of the hard coat layer. By providing these inorganic compound layers and hard coat layers between the substrate and the undercoat layer, the adhesion between the substrate and the undercoat layer can be improved.
 金属基材としては、特にアルミニウム板が好ましい。
 アルミニウム板は、純アルミニウム板、アルミニウムを主成分とし、微量の異元素を含む合金板、又は、アルミニウムもしくはアルミニウム合金の薄膜にプラスチックがラミネートされているものである。アルミニウム合金に含まれる異元素には、ケイ素、鉄、マンガン、銅、マグネシウム、クロム、亜鉛、ビスマス、ニッケル、チタン等がある。合金中の異元素の含有量は10質量%以下であるのが好ましい。本発明においては、純アルミニウム板が好ましいが、完全に純粋なアルミニウムは精錬技術上製造が困難であるので、わずかに異元素を含有するものでもよい。アルミニウム板は、その組成が特定されるものではなく、公知公用の素材のものを適宜利用することができる。
As the metal substrate, an aluminum plate is particularly preferable.
The aluminum plate is a pure aluminum plate, an alloy plate containing aluminum as a main component and containing a trace amount of different elements, or a plastic laminated on a thin film of aluminum or an aluminum alloy. Examples of foreign elements contained in the aluminum alloy include silicon, iron, manganese, copper, magnesium, chromium, zinc, bismuth, nickel, and titanium. The content of foreign elements in the alloy is preferably 10% by mass or less. In the present invention, a pure aluminum plate is preferable, but completely pure aluminum is difficult to manufacture in terms of refining technology, and therefore may contain a slightly different element. The composition of the aluminum plate is not specified, and a publicly known material can be used as appropriate.
 基材の厚さは0.05~0.6mmであるのが好ましく、0.08~0.2mmであるのがより好ましい。 The thickness of the base material is preferably 0.05 to 0.6 mm, and more preferably 0.08 to 0.2 mm.
 アルミニウム板を使用するに先立ち、粗面化処理、陽極酸化処理等の表面処理を施すのが好ましい。表面処理により、基材の親水性の向上、及び下塗り層と基材との密着性の確保が容易になる。アルミニウム板を粗面化処理するに先立ち、所望により、表面の圧延油を除去するための界面活性剤、有機溶剤、アルカリ性水溶液等による脱脂処理が行われる。アルミ基材の処理方法は公知の方法で行うことができる。 Prior to using the aluminum plate, it is preferable to perform surface treatment such as roughening treatment or anodizing treatment. By the surface treatment, it becomes easy to improve the hydrophilicity of the substrate and to secure the adhesion between the undercoat layer and the substrate. Prior to roughening the aluminum plate, a degreasing treatment with a surfactant, an organic solvent, an alkaline aqueous solution or the like for removing rolling oil on the surface is performed as desired. The processing method of an aluminum base material can be performed by a well-known method.
 本発明で用いられる基材としては、上記のような表面処理をされ陽極酸化皮膜を有する基材そのままでも良いが、上層との接着性の一層改良のため、必要に応じて、特開2001-253181号公報や特開2001-322365号公報に記載されている陽極酸化皮膜のマイクロポアの拡大処理や封孔処理及び親水性化合物を含有する水溶液に浸漬する表面親水化処理などを適宜選択して行うことができる。もちろんこれら拡大処理、封孔処理はこれらに記載のものに限られたものではなく従来公知の何れも方法も行うことができる。
 たとえば封孔処理としては、蒸気封孔のほかフッ化ジルコン酸の単独処理、フッ化ナトリウムによる処理、塩化リチウムを添加した蒸気封孔でも可能である。
The base material used in the present invention may be a base material that has been surface-treated as described above and has an anodized film as it is. However, in order to further improve the adhesion with the upper layer, if necessary, The micropore enlargement treatment or sealing treatment of the anodized film and the surface hydrophilization treatment soaked in an aqueous solution containing a hydrophilic compound described in Japanese Patent No. 253181 and Japanese Patent Application Laid-Open No. 2001-322365 are appropriately selected. It can be carried out. Of course, the enlargement process and the sealing process are not limited to those described above, and any conventionally known method can be performed.
For example, as the sealing treatment, in addition to the vapor sealing, a single treatment with fluorinated zirconic acid, a treatment with sodium fluoride, or a vapor sealing with addition of lithium chloride is possible.
 封孔処理
 本発明に用いられる封孔処理は、特に限定されず、従来公知の方法を用いることができるが、中でも、無機フッ素化合物を含有する水溶液による封孔処理、水蒸気による封孔処理及び熱水による封孔処理が好ましい。以下にそれぞれ説明する。
Sealing treatment The sealing treatment used in the present invention is not particularly limited, and a conventionally known method can be used. Among them, sealing treatment with an aqueous solution containing an inorganic fluorine compound, sealing treatment with water vapor, and heat Sealing with water is preferred. Each will be described below.
 無機フッ素化合物を含有する水溶液による封孔処理
 無機フッ素化合物を含有する水溶液による封孔処理に用いられる無機フッ素化合物としては、金属フッ化物が好適に挙げられる。
 具体的には、例えば、フッ化ナトリウム、フッ化カリウム、フッ化カルシウム、フッ化マグネシウム、フッ化ジルコン酸ナトリウム、フッ化ジルコン酸カリウム、フッ化チタン酸ナトリウム、フッ化チタン酸カリウム、フッ化ジルコン酸アンモニウム、フッ化チタン酸アンモニウム、フッ化ジルコン酸、フッ化チタン酸、ヘキサフルオロケイ酸、フッ化ニッケル、フッ化鉄、フッ化リン酸、フッ化リン酸アンモニウムが挙げられる。中でも、フッ化ジルコン酸ナトリウム、フッ化チタン酸ナトリウム、フッ化ジルコン酸、フッ化チタン酸が好ましい。
Sealing treatment with an aqueous solution containing an inorganic fluorine compound Preferred examples of the inorganic fluorine compound used for the sealing treatment with an aqueous solution containing an inorganic fluorine compound include metal fluorides.
Specifically, for example, sodium fluoride, potassium fluoride, calcium fluoride, magnesium fluoride, sodium fluoride zirconate, potassium fluoride zirconate, sodium fluoride titanate, potassium fluoride titanate, zircon fluoride Ammonium acid, ammonium fluorinated titanate, fluorinated zirconic acid, fluorinated titanic acid, hexafluorosilicic acid, nickel fluoride, iron fluoride, fluorinated phosphoric acid, and ammonium fluorinated phosphate. Of these, sodium fluorinated zirconate, sodium fluorinated titanate, fluorinated zirconic acid, and fluorinated titanic acid are preferable.
 水溶液中の無機フッ素化合物の濃度は、陽極酸化皮膜のマイクロポアの封孔を十分に行う点で、0.01質量%以上であるのが好ましく、0.05質量%以上であるのがより好ましく、また、耐汚れ性の点で、1質量%以下であるのが好ましく、0.5質量%以下であるのがより好ましい。 The concentration of the inorganic fluorine compound in the aqueous solution is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, from the viewpoint of sufficiently sealing the micropores of the anodized film. Further, in terms of stain resistance, it is preferably 1% by mass or less, and more preferably 0.5% by mass or less.
 無機フッ素化合物を含有する水溶液は、更に、リン酸塩化合物を含有するのが好ましい。リン酸塩化合物としては、例えば、アルカリ金属、アルカリ土類金属等の金属のリン酸塩が好適に挙げられる。
 具体的には、例えば、リン酸亜鉛、リン酸アルミニウム、リン酸アンモニウム、リン酸水素二アンモニウム、リン酸二水素アンモニウム、リン酸一アンモニウム、リン酸一カリウム、リン酸一ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸カルシウム、リン酸水素アンモニウムナトリウム、リン酸水素マグネシウム、リン酸マグネシウム、リン酸第一鉄、リン酸第二鉄、リン酸二水素ナトリウム、リン酸ナトリウム、リン酸水素二ナトリウム、リン酸鉛、リン酸二アンモニウム、リン酸二水素カルシウム、リン酸リチウム、リンタングステン酸、リンタングステン酸アンモニウム、リンタングステン酸ナトリウム、リンモリブデン酸アンモニウム、リンモリブデン酸ナトリウム、亜リン酸ナトリウム、トリポリリン酸ナトリウム、ピロリン酸ナトリウムが挙げられる。中でも、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸二水素カリウム、リン酸水素二カリウムが好ましい。
 無機フッ素化合物とリン酸塩化合物の組合せは、特に限定されないが、水溶液が、無機フッ素化合物として、少なくともフッ化ジルコン酸ナトリウムを含有し、リン酸塩化合物として、少なくともリン酸二水素ナトリウムを含有するのが好ましい。
It is preferable that the aqueous solution containing an inorganic fluorine compound further contains a phosphate compound. Suitable examples of the phosphate compound include phosphates of metals such as alkali metals and alkaline earth metals.
Specifically, for example, zinc phosphate, aluminum phosphate, ammonium phosphate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, monoammonium phosphate, monopotassium phosphate, monosodium phosphate, dihydrogen phosphate Potassium, dipotassium hydrogen phosphate, calcium phosphate, sodium ammonium hydrogen phosphate, magnesium hydrogen phosphate, magnesium phosphate, ferrous phosphate, ferric phosphate, sodium dihydrogen phosphate, sodium phosphate, hydrogen phosphate Disodium, lead phosphate, diammonium phosphate, calcium dihydrogen phosphate, lithium phosphate, phosphotungstic acid, ammonium phosphotungstate, sodium phosphotungstate, ammonium phosphomolybdate, sodium phosphomolybdate, sodium phosphite , Tripolyphosphate Potassium, and sodium pyrophosphate. Among these, sodium dihydrogen phosphate, disodium hydrogen phosphate, potassium dihydrogen phosphate, and dipotassium hydrogen phosphate are preferable.
The combination of the inorganic fluorine compound and the phosphate compound is not particularly limited, but the aqueous solution contains at least sodium zirconate fluoride as the inorganic fluorine compound and contains at least sodium dihydrogen phosphate as the phosphate compound. Is preferred.
 水溶液中のリン酸塩化合物の濃度は、耐汚れ性の向上の点で、0.01質量%以上であるのが好ましく、0.1質量%以上であるのがより好ましく、また、溶解性の点で、20質量%以下であるのが好ましく、5質量%以下であるのがより好ましい。 The concentration of the phosphate compound in the aqueous solution is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, from the viewpoint of improving stain resistance, In this respect, it is preferably 20% by mass or less, and more preferably 5% by mass or less.
 水溶液中の各化合物の割合は、特に限定されないが、無機フッ素化合物とリン酸塩化合物の質量比が、1/200~10/1であるのが好ましく、1/30~2/1であるのがより好ましい。
 また、水溶液の温度は、20℃以上であるのが好ましく、40℃以上であるのがより好ましく、また、100℃以下であるのが好ましく、80℃以下であるのがより好ましい。
 また、水溶液は、pH1以上であるのが好ましく、pH2以上であるのがより好ましく、また、pH11以下であるのが好ましく、pH5以下であるのがより好ましい。
 無機フッ素化合物を含有する水溶液による封孔処理の方法は、特に限定されず、例えば、浸漬法、スプレー法が挙げられる。これらは単独で1回又は複数回用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、浸漬法が好ましい。浸漬法を用いて処理する場合、処理時間は、1秒以上であるのが好ましく、3秒以上であるのがより好ましく、また、100秒以下であるのが好ましく、20秒以下であるのがより好ましい。
The ratio of each compound in the aqueous solution is not particularly limited, but the mass ratio of the inorganic fluorine compound and the phosphate compound is preferably 1/200 to 10/1, and preferably 1/30 to 2/1. Is more preferable.
The temperature of the aqueous solution is preferably 20 ° C. or higher, more preferably 40 ° C. or higher, preferably 100 ° C. or lower, more preferably 80 ° C. or lower.
The aqueous solution preferably has a pH of 1 or more, more preferably has a pH of 2 or more, preferably has a pH of 11 or less, and more preferably has a pH of 5 or less.
The method for sealing with an aqueous solution containing an inorganic fluorine compound is not particularly limited, and examples thereof include an immersion method and a spray method. These may be used alone or in combination, or may be used in combination of two or more.
Of these, the dipping method is preferred. When the treatment is performed using the dipping method, the treatment time is preferably 1 second or longer, more preferably 3 seconds or longer, and preferably 100 seconds or shorter, and 20 seconds or shorter. More preferred.
 水蒸気による封孔処理
 水蒸気による封孔処理は、例えば、加圧又は常圧の水蒸気を連続的に又は非連続的に、陽極酸化皮膜に接触させる方法が挙げられる。
 水蒸気の温度は、80℃以上であるのが好ましく、95℃以上であるのがより好ましく、また、105℃以下であるのが好ましい。
 水蒸気の圧力は、(大気圧-50mmAq)から(大気圧+300mmAq)までの範囲(1.00×105~1.043×105Pa)であるのが好ましい。
 また、水蒸気を接触させる時間は、1秒以上であるのが好ましく、3秒以上であるのがより好ましく、また、100秒以下であるのが好ましく、20秒以下であるのがより好ましい。
Sealing treatment with water vapor The sealing treatment with water vapor includes, for example, a method in which pressurized or normal pressure water vapor is brought into contact with the anodized film continuously or discontinuously.
The temperature of the water vapor is preferably 80 ° C. or higher, more preferably 95 ° C. or higher, and preferably 105 ° C. or lower.
The pressure of water vapor is preferably in the range (1.00 × 10 5 to 1.043 × 10 5 Pa) from (atmospheric pressure−50 mmAq) to (atmospheric pressure + 300 mmAq).
Further, the time for which the water vapor is contacted is preferably 1 second or longer, more preferably 3 seconds or longer, 100 seconds or shorter, more preferably 20 seconds or shorter.
 熱水による封孔処理
 水蒸気による封孔処理は、例えば、陽極酸化皮膜を形成させたアルミニウム板を熱水に浸漬させる方法が挙げられる。
 熱水は、無機塩(例えば、リン酸塩)又は有機塩を含有していてもよい。
 熱水の温度は、80℃以上であるのが好ましく、95℃以上であるのがより好ましく、また、100℃以下であるのが好ましい。
 また、熱水に浸漬させる時間は、1秒以上であるのが好ましく、3秒以上であるのがより好ましく、また、100秒以下であるのが好ましく、20秒以下であるのがより好ましい。
Sealing treatment with hot water Examples of the sealing treatment with water vapor include a method of immersing an aluminum plate on which an anodized film is formed in hot water.
The hot water may contain an inorganic salt (for example, phosphate) or an organic salt.
The temperature of the hot water is preferably 80 ° C. or higher, more preferably 95 ° C. or higher, and preferably 100 ° C. or lower.
Further, the time of immersion in hot water is preferably 1 second or longer, more preferably 3 seconds or longer, more preferably 100 seconds or shorter, and even more preferably 20 seconds or shorter.
 親水化処理
 親水化処理としては、米国特許第2,714,066号、同第3,181,461号、同第3,280,734号及び同第3,902,734号の各明細書に記載されているようなアルカリ金属シリケート法がある。この方法においては、基材をケイ酸ナトリウム等の水溶液で浸漬処理し、又は電解処理する。そのほかに、特公昭36-22063号公報に記載されているフッ化ジルコン酸カリウムで処理する方法、米国特許第3,276,868号、同第4,153,461号及び同第4,689,272号の各明細書に記載されているようなポリビニルホスホン酸で処理する方法等が挙げられる。
Hydrophilization treatment As the hydrophilization treatment, U.S. Pat. Nos. 2,714,066, 3,181,461, 3,280,734 and 3,902,734 are used. There are alkali metal silicate methods as described. In this method, the substrate is immersed in an aqueous solution such as sodium silicate or electrolytically treated. In addition, the treatment with potassium zirconate fluoride described in JP-B 36-22063, U.S. Pat. Nos. 3,276,868, 4,153,461 and 4,689, And a method of treating with polyvinylphosphonic acid as described in each specification of No.272.
 基材は、中心線平均粗さが0.10~1.2μmであるのが好ましい。この範囲で、下塗り層との良好な密着性と良好な汚れ難さが得られる。 The substrate preferably has a center line average roughness of 0.10 to 1.2 μm. Within this range, good adhesion to the undercoat layer and good stain resistance can be obtained.
 本発明で用いられるガラス板としては、酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化スズ、酸化ジルコニウム、酸化ナトリウム、酸化アンチモン、酸化インジウム、酸化ビスマス、酸化イットリウム、酸化セリウム、酸化亜鉛、ITO(Indium Tin Oxide)等の金属性酸化物;フッ化マグネシウム、フッ化カルシウム、フッ化ランタン、フッ化セリウム、フッ化リチウム、フッ化トリウム等の金属ハロゲン化物;などで形成した無機化合物層を備えたガラス板を挙げることができる。また目的に応じ、フロート板ガラス、型板ガラス、スリ板ガラス、網入ガラス、線入ガラス、強化ガラス、合わせガラス、複層ガラス、真空ガラス、防犯ガラス、高断熱Low-E複層ガラスを使用することができる。また素板ガラスのまま、前記下塗り層及び上塗り層を塗設できるが、必要に応じ、下塗り層及び上塗り層の密着性を向上させる目的で、片面又は両面に、酸化法や粗面化法等により表面親水化処理を施すことができる。上記酸化法としては、例えばコロナ放電処理、グロー放電処理、クロム酸処理(湿式)、火炎処理、熱風処理、オゾン・紫外線照射処理等が挙げられる。粗面化法としては、サンドブラスト、ブラシ研磨等により機械的に粗面化することもできる。 Examples of the glass plate used in the present invention include silicon oxide, aluminum oxide, magnesium oxide, titanium oxide, tin oxide, zirconium oxide, sodium oxide, antimony oxide, indium oxide, bismuth oxide, yttrium oxide, cerium oxide, zinc oxide, ITO Metal oxides such as (Indium Tin Oxide); Inorganic compound layers formed of metal halides such as magnesium fluoride, calcium fluoride, lanthanum fluoride, cerium fluoride, lithium fluoride, thorium fluoride; Glass plates can be mentioned. Depending on the purpose, float plate glass, mold plate glass, ground glass, wire-filled glass, wire-filled glass, tempered glass, laminated glass, double-glazed glass, vacuum glass, crime prevention glass, high heat insulation Low-E double-glazed glass should be used. Can do. In addition, the undercoat layer and the overcoat layer can be coated with the base glass as it is, but if necessary, for the purpose of improving the adhesion of the undercoat layer and the overcoat layer, on one side or both sides by an oxidation method or a roughening method, etc. Surface hydrophilization treatment can be performed. Examples of the oxidation method include corona discharge treatment, glow discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment, and the like. As a roughening method, it can also be mechanically roughened by sandblasting, brush polishing or the like.
 無機化合物層は、単層あるいは多層構成とすることができる。無機化合物層はその厚みによって、光透過性を維持させることもでき、また、反射防止層として作用させることもできる。無機化合物層の形成方法としては、例えば、ディップコーティング法、スピンコーティング法、フローコーティング法、スプレーコーティング法、ロールコーティング法、グラビアコーティング法などの塗布法、真空蒸着法、反応性蒸着法、イオンビームアシスト法、スパッタリング法、イオンプレーティング法等の物理蒸着法(PVD)、化学蒸着法(CVD)をはじめとする気相法など公知の方法を適用することができる。 The inorganic compound layer can have a single layer structure or a multilayer structure. Depending on the thickness of the inorganic compound layer, the light transmittance can be maintained, and the inorganic compound layer can also function as an antireflection layer. Examples of the inorganic compound layer forming method include dip coating method, spin coating method, flow coating method, spray coating method, roll coating method, gravure coating method, etc., vacuum deposition method, reactive deposition method, ion beam A known method such as a physical vapor deposition method (PVD) such as an assist method, a sputtering method, or an ion plating method, or a vapor phase method such as a chemical vapor deposition method (CVD) can be applied.
 親水性樹脂としては、たとえば、ポリビニルアルコール(PVA)、セルロース系樹脂〔メチルセルロース(MC)、ヒドロキシエチルセルロース(HEC)、カルボキシメチルセルロース(CMC)、等〕、キチン類、キトサン類、デンプン、エーテル結合を有する樹脂〔ポリエチレンオキサイド(PEO)、ポリエチレングリコール(PEG)、ポリビニルエーテル(PVE)等〕、カルバモイル基を有する樹脂〔ポリアクリルアミド(PAAM)、ポリビニルピロリドン(PVP)、等〕等が挙げられる。また、カルボキシル基を有するポリアクリル酸塩、マレイン酸樹脂、アルギン酸塩、ゼラチン類等も挙げることができる。
 上記の中でも、ポリビニルアルコール系樹脂、セルロース系樹脂、エーテル結合を有する樹脂、カルバモイル基を有する樹脂、カルボキシル基を有する樹脂、及びゼラチン類から選ばれる少なくとも1種が好ましく、特に、ポリビニルアルコール(PVA)系樹脂、ゼラチン類が好ましい。
Examples of hydrophilic resins include polyvinyl alcohol (PVA), cellulose resins [methyl cellulose (MC), hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC), etc.], chitins, chitosans, starch, and ether bonds. Examples thereof include resins [polyethylene oxide (PEO), polyethylene glycol (PEG), polyvinyl ether (PVE), etc.], resins having a carbamoyl group [polyacrylamide (PAAM), polyvinyl pyrrolidone (PVP), etc.], and the like. Moreover, the polyacrylic acid salt which has a carboxyl group, maleic acid resin, alginate, gelatins etc. can also be mentioned.
Among these, at least one selected from a polyvinyl alcohol resin, a cellulose resin, a resin having an ether bond, a resin having a carbamoyl group, a resin having a carboxyl group, and gelatin is preferable, and in particular, polyvinyl alcohol (PVA) Of these, gelatin resins are preferred.
 水分散性ラテックスとしては、アクリル系ラテックス、ポリエステル系ラテックス、NBR樹脂、ポリウレタン系ラテックス、ポリ酢酸ビニル系ラテックス、SBR樹脂、ポリアミド系ラテックス等が挙げられる。中でも、アクリル系ラテックスが好ましい。
 上記の親水性樹脂及び水分散性ラテックスは、各々一種単独で用いるほか二種以上を併用してもよく、親水性樹脂と水分散性ラテックスとを併用してもよい。
 また、上記親水性樹脂や水分散性ラテックスを架橋する架橋剤を用いても良い。
 本発明に適応可能な架橋剤としては、公知の熱により架橋を形成する架橋剤を用いることができる。一般的な熱架橋剤としては、「架橋剤ハンドブック」山下晋三、金子東助著、大成社刊(1981)に記載されているものがある。本発明に用いられる架橋剤の官能基数は2個以上で、かつ、親水性樹脂や水分散性ラテックスと有効に架橋可能ならば特に制限はない。具体的な熱架橋剤としては、ポリアクリル酸等のポリカルボン酸、ポリエチレンイミン等のアミン化合物、エチレン又はプロピレングリコールジグリシジルエーテル、テトラエチレングリコールジグリシジルエーテル、ノナエチレンチレングリコールジグリシジルエーテル、ポリエチレン又はポリプロピレングリコールグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ソルビトールポリグリシジルエーテル等のポリエポキシ化合物、グリオキザル、テレフタルアルデヒドなどのポリアルデヒド化合物、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、ジフェニルメタンイソシアネート、キシリレンジイソシアネート、ポリメチレンポリフェニルイソシアネート、シクロヘキシルジイソシアネート、シクロヘキサンフェニレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、イソプロピルベンゼン-2,4-ジイソシアネート、ポリプロピレングリコール/トリレンジイソシアネート付加反応物などのポリイソシアネート化合物、ブロックポリイソシアネート化合物、テトラアルコキンシランなどのシランカップリング剤、アルミニウム、銅、鉄(III)のアセチルアセトナートなどの金属架橋剤、トリメチロールメラミン、ペンタエリスリトールなどのポリメチロール化合物、などが挙げられる。これらの熱架橋剤のなかでも、塗布溶液の調液のしやすさ、作製した親水性層の親水性低下を防止するという観点から水溶性の架橋剤であることが好ましい。
 前記親水性樹脂及び/又は水分散性ラテックスの、下塗り層中における総量としては、0.01~20g/mが好ましく、0.1~10g/mがより好ましい。
Examples of the water-dispersible latex include acrylic latex, polyester latex, NBR resin, polyurethane latex, polyvinyl acetate latex, SBR resin, polyamide latex and the like. Among these, acrylic latex is preferable.
The above hydrophilic resin and water-dispersible latex may be used alone or in combination of two or more, or a hydrophilic resin and a water-dispersible latex may be used in combination.
Moreover, you may use the crosslinking agent which bridge | crosslinks the said hydrophilic resin and water-dispersible latex.
As a cross-linking agent applicable to the present invention, a cross-linking agent that forms a cross-link by known heat can be used. General thermal crosslinking agents include those described in “Crosslinking agent handbook” by Shinzo Yamashita, Tosuke Kaneko, published by Taiseisha (1981). The number of functional groups of the crosslinking agent used in the present invention is not particularly limited as long as it is 2 or more and can be effectively crosslinked with a hydrophilic resin or water-dispersible latex. Specific examples of the thermal crosslinking agent include polycarboxylic acids such as polyacrylic acid, amine compounds such as polyethyleneimine, ethylene or propylene glycol diglycidyl ether, tetraethylene glycol diglycidyl ether, nonaethylene ethylene glycol diglycidyl ether, polyethylene or Polyepoxy compounds such as polypropylene glycol glycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, sorbitol polyglycidyl ether, polyaldehyde compounds such as glyoxal, terephthalaldehyde, Range isocyanate, hexamethylene diisocyanate, diphenylmethane isocyanate, xylylene diisocyanate Polyisocyanate compounds such as cyanate, polymethylene polyphenyl isocyanate, cyclohexyl diisocyanate, cyclohexanephenylene diisocyanate, naphthalene-1,5-diisocyanate, isopropylbenzene-2,4-diisocyanate, addition product of polypropylene glycol / tolylene diisocyanate, block polyisocyanate Examples thereof include compounds, silane coupling agents such as tetraalkoxysilane, metal cross-linking agents such as acetylacetonate of aluminum, copper and iron (III), and polymethylol compounds such as trimethylolmelamine and pentaerythritol. Among these thermal cross-linking agents, a water-soluble cross-linking agent is preferable from the viewpoint of easy preparation of the coating solution and prevention of a decrease in hydrophilicity of the produced hydrophilic layer.
The total amount of the hydrophilic resin and / or water-dispersible latex in the undercoat layer is preferably 0.01 to 20 g / m 2 and more preferably 0.1 to 10 g / m 2 .
 親水性部材使用時の層構成
 本発明の親水性部材を、防汚性及び/又は防曇性効果の発現を期待して使用する場合、その目的、形態、使用場所に応じ、適宜別の層を付加して使用することができる。以下に必要に応じ付加される層構成について述べる。
Layer structure when using hydrophilic member When the hydrophilic member of the present invention is used in anticipation of the appearance of antifouling properties and / or antifogging effects, another layer is appropriately formed according to the purpose, form and place of use. Can be used. The layer structure added as needed is described below.
 1)接着層
 本発明の親水性部材を、別の基材上に貼り付けて使用する場合、基材の裏面に、接着層として、感圧接着剤である粘着剤が好ましく用いられる。粘着剤としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ビニルエーテル系、スチレン系粘着剤などの一般的に粘着シートに用いられるものが使用できる。
 光学的に透明なものが必要な場合は光学用途向けの粘着剤が選ばれる。着色、半透明、マット調などの模様が必要な場合は、基材における模様付けのほかに粘着剤に、染料、有機や無機の微粒子を添加して効果を出すことも行うことができる。
 粘着付与剤が必要な場合、樹脂、例えば、ロジン系樹脂、テルペン系樹脂、石油系樹脂、スチレン系樹脂及びこれらの水素添加物などの接着付与樹脂を1種類又は混合して用いることができる。
 本発明で用いられる粘着剤の粘着力は一般に言われる強粘着であり、200g/25mm以上、好ましくは300g/25mm以上、更に好ましくは400g/25mm以上である。なお、ここでいう粘着力はJIS Z 0237 に準拠し、180度剥離試験によって測定した値である。
1) Adhesive layer When the hydrophilic member of the present invention is used by being affixed onto another substrate, a pressure-sensitive adhesive that is a pressure-sensitive adhesive is preferably used as an adhesive layer on the back surface of the substrate. As an adhesive, what is generally used for an adhesive sheet, such as a rubber adhesive, an acrylic adhesive, a silicone adhesive, a vinyl ether adhesive, and a styrene adhesive, can be used.
When an optically transparent material is required, an adhesive for optical use is selected. When a pattern such as coloring, semi-transparency, or matte is required, in addition to the patterning on the substrate, a dye, organic or inorganic fine particles can be added to the adhesive to produce an effect.
When a tackifier is required, a resin, for example, a rosin-based resin, a terpene-based resin, a petroleum-based resin, a styrene-based resin, or an adhesion-imparting resin such as a hydrogenated product thereof can be used alone or in combination.
The adhesive strength of the pressure-sensitive adhesive used in the present invention is generally called strong adhesion, and is 200 g / 25 mm or more, preferably 300 g / 25 mm or more, more preferably 400 g / 25 mm or more. In addition, the adhesive force here is based on JIS Z 0237 and is a value measured by a 180 degree peel test.
 2)離型層
 本発明の親水性部材が前記の接着層を有する場合には、更に離型層を付加することができる。離型層には、離型性をもたせるために、離型剤を含有させることが好ましい。離型剤しては、一般的に、ポリオルガノシロキサンからなるシリコーン系離型剤、フッ素系化合物、ポリビニルアルコールの長鎖アルキル変性物、ポリエチレンイミンの長鎖アルキル変性物等が用いることができる。また、ホットメルト型離型剤、ラジカル重合、カチオン重合、重縮合反応等により離型性モノマーを硬化させるモノマー型離型剤などの各種の離型剤や、この他、アクリル-シリコーン系共重合樹脂、アクリル-フッ素系共重合樹脂、及びウレタン-シリコーン-フッ素系共重合樹脂などの共重合系樹脂、並びに、シリコーン系樹脂とアクリル系樹脂との樹脂ブレンド、フッ素系樹脂とアクリル系樹脂との樹脂ブレンドが用いられる。また、フッ素原子及び/又はケイ素原子のいずれかの原子と、活性エネルギー線重合性基含有化合物を含む硬化性組成物を、硬化して得られるハードコート離型層としてもよい。
2) Release layer When the hydrophilic member of the present invention has the adhesive layer, a release layer can be further added. In order to give mold release properties to the mold release layer, it is preferable to contain a mold release agent. As the release agent, generally, a silicone release agent composed of polyorganosiloxane, a fluorine compound, a long-chain alkyl modified product of polyvinyl alcohol, a long-chain alkyl modified product of polyethyleneimine, and the like can be used. In addition, various release agents such as a hot melt type release agent, a monomer type release agent that cures a release monomer by radical polymerization, cationic polymerization, polycondensation reaction, etc., and other acrylic-silicone copolymer Resin, acrylic-fluorine-based copolymer resin, and copolymer-based resin such as urethane-silicone-fluorine-based copolymer resin, resin blend of silicone-based resin and acrylic resin, and fluorine-based resin and acrylic-based resin A resin blend is used. Moreover, it is good also as a hard-coat release layer obtained by hardening | curing the curable composition containing either an atom of a fluorine atom and / or a silicon atom, and an active energy ray polymeric group containing compound.
 3)その他の層
 親水性層の上に、保護層を設けてもよい。保護層は、ハンドリング時や輸送時、保管時などの親水性表面の傷つきや、汚れ物質の付着による親水性の低下を防止する機能を有する。保護層としては、上記離型層に用いた親水性ポリマー層を使用することができる。保護層は、親水性部材を適切な基材へ貼り付けた後には剥がされる。
3) Other layers A protective layer may be provided on the hydrophilic layer. The protective layer has a function of preventing damage to the hydrophilic surface during handling, transportation, storage, and the like, and deterioration of hydrophilicity due to adhesion of dirt substances. As the protective layer, the hydrophilic polymer layer used in the release layer can be used. The protective layer is peeled off after the hydrophilic member is attached to an appropriate substrate.
 構造体の形態
 本発明の親水性層を有する親水性部材は、シート状、ロール状あるいはリボン状の形態で供給されてもよく、適切な基材に貼り付けるために、あらかじめカットされたもとして供給することもできる。
Form of structure The hydrophilic member having the hydrophilic layer of the present invention may be supplied in the form of a sheet, a roll or a ribbon, and may be cut in advance to be attached to an appropriate substrate. It can also be supplied.
 本発明の親水性層を塗設した親水性部材は、窓ガラス等に適用(使用、貼り付け)する場合、視界確保の観点から透明性が重要である。本発明の親水性層は、透明性に優れ、膜厚が厚くても透明度が損なわれず、耐久性との両立が可能である。本発明の親水性層の厚さは、0.01μm~100μmが好ましく、0.05μm~50μmが更に好ましく、0.1μm~20μmが最も好ましい。膜厚が0.01μm以上の場合は、十分な親水性、耐久性が得ら好ましく、膜厚が100μm以下の場合は、クラックが入るなど製膜性に問題を来たすことがなく、好ましい。
 親水性層の乾燥塗布量を好ましくは0.01g/m2~100g/m2、より好ましくは0.02g/m2~80g/m2、特に好ましくは0.05g/m2~50g/m2とすることで、上記の膜厚を得ることができる。
 潤滑層の厚さは、0.001μm~1μmが好ましく、0.005μm~0.5μmが更に好ましく、0.1μm~0.3μmが最も好ましい。膜厚が0.001μm以上の場合は、十分な親水性、耐久性が得られ好ましく、膜厚が1μm以下の場合は、クラックが入るなど製膜性に問題を来たすことがなく、好ましい。
 潤滑層の乾燥塗布量を好ましくは0.001g/m2~1g/m2、より好ましくは0.005g/m2~0.5g/m2、最も好ましくは0.01g/m2~0.3g/m2とすることで、上記の膜厚を得ることができる。
 また、下塗り層の厚さは、0.01μm~100μmが好ましく、0.02μm~80μmが更に好ましく、0.05μm~50μmが特に好ましい。
 下塗り層組成物の乾燥塗布量を好ましくは0.01g/m2~100g/m2、より好ましくは0.02g/m2~80g/m2、特に好ましくは0.05g/m2~50g/m2とすることで、上記の膜厚を得ることができる。
 透明性は、分光光度計で可視光領域(400nm~800nm)の光透過率を測定し評価する。光透過率が100%~70%が好ましく、95%~75%がより好ましく、95%~80%の範囲にあることが最も好ましい。この範囲にあることによって、視界をさえぎることなく、親水性層を塗設した親水性部材を各種用途に適用することができる。
When the hydrophilic member coated with the hydrophilic layer of the present invention is applied (used or attached) to a window glass or the like, transparency is important from the viewpoint of ensuring visibility. The hydrophilic layer of the present invention is excellent in transparency, and even when the film thickness is large, the transparency is not impaired and compatibility with durability is possible. The thickness of the hydrophilic layer of the present invention is preferably 0.01 μm to 100 μm, more preferably 0.05 μm to 50 μm, and most preferably 0.1 μm to 20 μm. When the film thickness is 0.01 μm or more, it is preferable to obtain sufficient hydrophilicity and durability, and when the film thickness is 100 μm or less, there is no problem in film forming properties such as cracks, which is preferable.
The dry coating amount of the hydrophilic layer is preferably 0.01 g / m 2 to 100 g / m 2 , more preferably 0.02 g / m 2 to 80 g / m 2 , particularly preferably 0.05 g / m 2 to 50 g / m. By setting it to 2 , the above-mentioned film thickness can be obtained.
The thickness of the lubricating layer is preferably 0.001 μm to 1 μm, more preferably 0.005 μm to 0.5 μm, and most preferably 0.1 μm to 0.3 μm. When the film thickness is 0.001 μm or more, sufficient hydrophilicity and durability can be obtained, and when the film thickness is 1 μm or less, there is no problem in film forming properties such as cracking, which is preferable.
Preferably the dry coating amount of the lubricating layer is 0.001g / m 2 ~ 1g / m 2, more preferably 0.005g / m 2 ~ 0.5g / m 2, and most preferably 0.01g / m 2 ~ 0. By setting it to 3 g / m 2 , the above film thickness can be obtained.
The thickness of the undercoat layer is preferably 0.01 μm to 100 μm, more preferably 0.02 μm to 80 μm, and particularly preferably 0.05 μm to 50 μm.
The dry coating amount of the undercoat layer composition is preferably 0.01 g / m 2 to 100 g / m 2 , more preferably 0.02 g / m 2 to 80 g / m 2 , particularly preferably 0.05 g / m 2 to 50 g / m 2. with m 2, it is possible to obtain a film thickness of the.
Transparency is evaluated by measuring the light transmittance in the visible light region (400 nm to 800 nm) with a spectrophotometer. The light transmittance is preferably from 100% to 70%, more preferably from 95% to 75%, and most preferably from 95% to 80%. By being in this range, the hydrophilic member provided with a hydrophilic layer can be applied to various applications without obstructing the field of view.
 本発明の親水性部材は、上記のように、親水性組成物及び必要に応じて下塗り層用組成物を、適切な基材上に塗布し、加熱、乾燥して親水性層を形成し、次いでその上に潤滑剤組成物を塗布し、加熱、乾燥して摩擦係数が0.05~0.25となる潤滑層を形成することで得ることができる。
 下塗り層用組成物、親水性組成物及び潤滑剤組成物の塗布方法は、公知の塗布方法を採用でき、例えばスプレーコーティング法、ディップコーティング法、フローコーティング法、スピンコーティング法、ロールコーティング法、フィルムアプリケーター法、スクリーン印刷法、バーコーター法、刷毛塗り、スポンジ塗り等の方法が適用できる。
The hydrophilic member of the present invention, as described above, applies the hydrophilic composition and, if necessary, the composition for the undercoat layer onto an appropriate substrate, and is heated and dried to form a hydrophilic layer. Next, the lubricant composition is applied thereon, heated and dried to form a lubricating layer having a friction coefficient of 0.05 to 0.25.
As a method for applying the undercoat layer composition, the hydrophilic composition, and the lubricant composition, a known coating method can be employed. For example, spray coating method, dip coating method, flow coating method, spin coating method, roll coating method, film Applicator methods, screen printing methods, bar coater methods, brush coating, sponge coating, and the like can be applied.
 本発明の親水性部材が適用可能なものとしては、例えば、防曇効果を期待する場合には透明なものであり、透明なガラス基材又は透明なプラスチック基材、レンズ、プリズム、鏡等である。
 ガラスとしては、ソーダガラス、鉛ガラス、硼珪酸ガラスなどの何れのガラスを使用しても良い。また目的に応じ、フロート板ガラス、型板ガラス、スリ板ガラス、網入ガラス、線入ガラス、強化ガラス、合わせガラス、複層ガラス、真空ガラス、防犯ガラス、高断熱Low-E複層ガラスを使用することができる。
 防曇効果を有する部材が適用可能な用途としては、車両用バックミラー、浴室用鏡、洗面所用鏡、歯科用鏡、道路鏡のような鏡;眼鏡レンズ、光学レンズ、写真機レンズ、内視鏡レンズ、照明用レンズ、半導体用レンズ、複写機用レンズのようなレンズ;プリズム;建物や監視塔の窓ガラス;その他建材用ガラス;自動車、鉄道車両、航空機、船舶、潜水艇、雪上車、ロープウエイのゴンドラ、遊園地のゴンドラ、種々の乗物の窓ガラス;自動車、鉄道車両、航空機、船舶、潜水艇、雪上車、スノーモービル、オートバイ、ロープウエイのゴンドラ、遊園地のゴンドラ、種々の乗物の風防ガラス;防護用ゴーグル、スポーツ用ゴーグル、防護用マスクのシールド、スポーツ用マスクのシールド、ヘルメットのシールド、冷凍食品陳列ケースのガラス;計測機器のカバーガラス、及び上記物品表面に貼付させるためのフィルムを含む。最も好ましい用途は、自動車用及び建材用のガラスである。
The hydrophilic member of the present invention can be applied, for example, in the case of expecting an antifogging effect, such as a transparent glass substrate or a transparent plastic substrate, a lens, a prism, a mirror, etc. is there.
As the glass, any glass such as soda glass, lead glass and borosilicate glass may be used. Depending on the purpose, float plate glass, mold plate glass, ground glass, wire-filled glass, wire-filled glass, tempered glass, laminated glass, double-glazed glass, vacuum glass, crime prevention glass, high heat insulation Low-E double-glazed glass should be used. Can do.
Applications that can be applied with anti-fogging effects include vehicle rearview mirrors, bathroom mirrors, toilet mirrors, dental mirrors, mirrors such as road mirrors; spectacle lenses, optical lenses, camera lenses, internal vision Lenses such as mirror lenses, illumination lenses, semiconductor lenses, and copier lenses; prisms; window glass for buildings and surveillance towers; other glass for building materials; Ropeway gondola, amusement park gondola, various vehicle windows; automobiles, rail cars, aircraft, ships, submersibles, snow vehicles, snowmobiles, motorcycles, ropeway gondola, amusement park gondola, various vehicle windshields Glass; protective goggles, sports goggles, protective mask shield, sports mask shield, helmet shield, frozen food display case Las; cover glass measuring instruments, and films to be attached to the article surface. The most preferred application is glass for automobiles and building materials.
 また、本発明の表面親水性部材に防汚効果を期待する場合には、その基材は、例えば、ガラス、プラスチック以外にも、金属、セラミックス、木、石、セメント、コンクリート、繊維、布帛、紙、それらの組合せ、それらの積層体が、いずれも好適に利用できる。
 防汚効果を有する部材が適用可能な用途としては、建材、外壁や屋根のような建物外装、建物内装、窓枠、窓ガラス、構造部材、自動車、鉄道車両、航空機、船舶、自転車、オートバイのような乗物の外装及び塗装、機械装置や物品の外装、防塵カバー及び塗装、交通標識、各種表示装置、広告塔、道路用防音壁、鉄道用防音壁、橋梁、ガードレールの外装及び塗装、トンネル内装及び塗装、碍子、太陽電池カバー、太陽熱温水器集熱カバー、ビニールハウス、車両用照明灯のカバー、住宅設備、便器、浴槽、洗面台、照明器具、照明カバー、台所用品、食器、食器洗浄器、食器乾燥器、流し、調理レンジ、キッチンフード、換気扇、及び上記物品表面に貼付させるためのフィルムを含む。
 看板、交通標識、防音壁、ビニールハウス、碍子、乗物用カバー、テント材、反射板、雨戸、網戸、太陽電池用カバー、太陽熱温水器等の集熱器用カバー、街灯、舗道、屋外照明、人工滝・人工噴水用石材・タイル、橋、温室、外壁材、壁間や硝子間のシーラー、ガードレール、ベランダ、自動販売機、エアコン室外機、屋外ベンチ、各種表示装置、シャッター、料金所、料金ボックス、屋根樋、車両用ランプ保護カバー、防塵カバー及び塗装、機械装置や物品の塗装、広告塔の外装及び塗装、構造部材、住宅設備、便器、浴槽、洗面台、照明器具、台所用品、食器、食器乾燥器、流し、調理レンジ、キッチンフード、換気扇、窓レール、窓枠、トンネル内壁、トンネル内照明、窓サッシ、熱交換器用放熱フィン、舗道、浴室用洗面所用鏡、ビニールハウス天井、洗面化粧台、自動車ボディ、及びそれら物品に貼着可能なフィルム、ワッペン等を含む。
 雪国用屋根材、アンテナ、送電線等への適用も可能であり、その際は、着雪防止性にも優れた特性が得られる。
In addition, when the antifouling effect is expected for the surface hydrophilic member of the present invention, the base material is, for example, metal, ceramics, wood, stone, cement, concrete, fiber, fabric, in addition to glass and plastic, Any of paper, combinations thereof, and laminates thereof can be suitably used.
Applications with antifouling components include building materials, building exteriors such as exterior walls and roofs, building interiors, window frames, window glass, structural members, automobiles, railway vehicles, aircraft, ships, bicycles, motorcycles Exterior and painting of such vehicles, machinery and equipment exteriors, dust covers and coatings, traffic signs, various display devices, advertising towers, road noise barriers, railway noise barriers, bridges, guardrail exteriors and coatings, tunnel interiors And paint, insulators, solar battery covers, solar water heater heat collector covers, greenhouses, vehicle lighting cover, housing equipment, toilets, bathtubs, sinks, lighting fixtures, lighting covers, kitchenware, dishes, dishwashers A dish dryer, a sink, a cooking range, a kitchen hood, a ventilation fan, and a film to be attached to the surface of the article.
Signs, traffic signs, sound barriers, plastic houses, insulators, vehicle covers, tent materials, reflectors, shutters, screen doors, solar battery covers, solar water heater covers, street lamps, pavements, outdoor lighting, artificial Waterfalls / artificial fountain stones / tiles, bridges, greenhouses, exterior walls, sealers between walls and glass, guardrails, verandas, vending machines, air conditioner outdoor units, outdoor benches, various display devices, shutters, toll booths, price boxes Roof coverings, vehicle lamp protection covers, dust covers and coatings, painting of machinery and equipment, exterior and coating of advertising towers, structural members, housing equipment, toilets, bathtubs, washstands, lighting fixtures, kitchen utensils, tableware, Tableware dryer, sink, cooking range, kitchen hood, ventilation fan, window rail, window frame, tunnel inner wall, tunnel lighting, window sash, heat exchanger fins, pavement, bathroom toilet mirror, Neil House ceiling, including vanity, an automobile body, and the liquid to be attached for allowing the film to them the goods, the emblem and the like.
It can also be applied to snow country roofing materials, antennas, power transmission lines, etc., and in that case, characteristics excellent in snow accretion prevention can be obtained.
 また本発明の表面親水性部材に水等の速乾性を期待する場合にも、その基材は、例えば、ガラス、プラスチック以外にも、金属、セラミックス、木、石、セメント、コンクリート、繊維、布帛、紙、それらの組合せ、それらの積層体が、いずれも好適に利用できる。水等の速乾性効果を有する部材が適用可能な用途としては、建材、外壁や屋根のような建物外装、建物内装、窓枠、窓ガラス、構造部材、自動車、鉄道車両、航空機、船舶、自転車、オートバイのような乗物の外装及び塗装、機械装置や物品の外装、防塵カバー及び塗装、交通標識、各種表示装置、広告塔、道路用防音壁、鉄道用防音壁、橋梁、ガードレールの外装及び塗装、トンネル内装及び塗装、碍子、太陽電池カバー、太陽熱温水器集熱カバー、ビニールハウス、車両用照明灯のカバー、住宅設備、便器、浴槽、洗面台、照明器具、照明カバー、台所用品、食器、食器洗浄器、食器乾燥器、流し、調理レンジ、キッチンフード、換気扇、及び上記物品表面に貼付させるためのフィルムを含む。
 看板、交通標識、防音壁、ビニールハウス、碍子、乗物用カバー、テント材、反射板、雨戸、網戸、太陽電池用カバー、太陽熱温水器等の集熱器用カバー、街灯、舗道、屋外照明、人工滝・人工噴水用石材・タイル、橋、温室、外壁材、壁間や硝子間のシーラー、ガードレール、ベランダ、自動販売機、エアコン室外機、屋外ベンチ、各種表示装置、シャッター、料金所、料金ボックス、屋根樋、車両用ランプ保護カバー、防塵カバー及び塗装、機械装置や物品の塗装、広告塔の外装及び塗装、構造部材、住宅設備、便器、浴槽、洗面台、照明器具、台所用品、食器、食器乾燥器、流し、調理レンジ、キッチンフード、換気扇、窓レール、窓枠、トンネル内壁、トンネル内照明、窓サッシ、熱交換器用放熱フィン、舗道、浴室用洗面所用鏡、ビニールハウス天井、洗面化粧台、自動車ボディ、及びそれら物品に貼着可能なフィルム、ワッペン等を含む。またこれらの用途に使用される製品を製造する工程において乾燥工程を有する場合は乾燥時間が短縮でき生産性が向上する効果も期待できる。
In addition, when the surface hydrophilic member of the present invention is expected to have quick drying properties such as water, the base material may be, for example, metal, ceramics, wood, stone, cement, concrete, fiber, fabric in addition to glass and plastic. , Paper, combinations thereof, and laminates thereof can be suitably used. Applications that can be applied to members that have a quick-drying effect such as water include building materials, building exteriors such as outer walls and roofs, building interiors, window frames, window glass, structural members, automobiles, railway vehicles, aircraft, ships, and bicycles. , Exteriors and paintings of vehicles such as motorcycles, exteriors of machinery and equipment, dustproof covers and paintings, traffic signs, various display devices, advertising towers, soundproof walls for roads, soundproof walls for railways, bridges, guardrails and paints , Tunnel interior and painting, insulator, solar battery cover, solar water heater heat collection cover, plastic house, vehicle lighting cover, housing equipment, toilet, bathtub, wash basin, lighting fixture, lighting cover, kitchenware, tableware, It includes a dishwasher, a dish dryer, a sink, a cooking range, a kitchen hood, a ventilation fan, and a film for application to the surface of the article.
Signs, traffic signs, sound barriers, plastic houses, insulators, vehicle covers, tent materials, reflectors, shutters, screen doors, solar battery covers, solar water heater covers, street lamps, pavements, outdoor lighting, artificial Waterfalls / artificial fountain stones / tiles, bridges, greenhouses, exterior walls, sealers between walls and glass, guardrails, verandas, vending machines, air conditioner outdoor units, outdoor benches, various display devices, shutters, toll booths, price boxes Roof coverings, vehicle lamp protection covers, dust covers and coatings, painting of machinery and equipment, exterior and coating of advertising towers, structural members, housing equipment, toilets, bathtubs, washstands, lighting fixtures, kitchen utensils, tableware, Tableware dryer, sink, cooking range, kitchen hood, ventilation fan, window rail, window frame, tunnel inner wall, tunnel lighting, window sash, heat exchanger fins, pavement, bathroom toilet mirror, Neil House ceiling, including vanity, an automobile body, and the liquid to be attached for allowing the film to them the goods, the emblem and the like. Further, in the case of having a drying process in the process of manufacturing products used for these applications, the drying time can be shortened and the productivity can be expected to be improved.
 上記用途の中でも、本発明に係る親水性部材は、フィン材であることが好ましく、アルミニウム製フィン本体を有するフィン材であることが好ましい。すなわち、本発明のフィン材は、フィン本体(好ましくはアルミニウム製フィン本体)と、フィン本体の表面の少なくとも一部に設けられた親水性層とを具備するフィン材であって、前記親水性層は、本発明に係る親水性組成物が塗設されてなる。
 室内エアコンや自動車エアコン等の熱交換器等に用いられるアルミニウム製フィン材(アルミニウム製フィン本体そのもの)は、冷房時に発生する凝集水が水滴となりフィン間にとどまることで水のブリッジが発生し、冷房能力が低下する。またフィン間に埃などが付着することでも、同様に冷房能力が低下する。これらの問題に対し、本発明の親水性膜形成用組成物がフィン本体に塗設されてなるフィン材によれば、親水性、防汚性、及びそれらの持続性に優れたフィン材が得られる。
 本発明に係るフィン材は、パルミチン酸に1時間曝気、30分水洗、30分乾燥を5サイクル繰返した後の水接触角が40°以下であることが好ましい。
Among the above uses, the hydrophilic member according to the present invention is preferably a fin material, and is preferably a fin material having an aluminum fin main body. That is, the fin material of the present invention is a fin material comprising a fin main body (preferably an aluminum fin main body) and a hydrophilic layer provided on at least a part of the surface of the fin main body. Is formed by coating the hydrophilic composition according to the present invention.
Aluminum fin material (aluminum fin body itself) used in heat exchangers such as indoor air conditioners and automobile air conditioners causes water droplets to form as water droplets and stay between the fins, resulting in water bridges. Ability is reduced. In addition, the adhering of dust or the like between the fins similarly reduces the cooling capacity. To solve these problems, the fin material in which the composition for forming a hydrophilic film of the present invention is applied to the fin body provides a fin material excellent in hydrophilicity, antifouling property, and sustainability thereof. It is done.
The fin material according to the present invention preferably has a water contact angle of 40 ° or less after 5 cycles of 1-hour aeration, 30-minute water washing, and 30-minute drying of palmitic acid.
 フィン材のフィン本体に用いられるアルミニウムとしては、表面が脱脂されたもの、必要に応じて化成処理されたアルミニウム板を挙げることができる。アルミニウム製のフィン本体は、表面が化成処理されていることが親水化処理皮膜の付着性、耐食性などの点から好適である。上記化成処理としては、例えば、クロメート処理を挙げることができ、その代表例として、アルカリ塩-クロム酸塩法(B.V.法、M.B.V.法、E.W.法、アルロック法、ピルミン法)、クロム酸法、クロメート法、リン酸クロム酸法などの処理法、及びクロム酸クロムを主体とした組成物による無水洗塗布型処理法などが挙げられる。 Examples of the aluminum used for the fin body of the fin material include those having a degreased surface and, if necessary, a chemically treated aluminum plate. It is preferable that the surface of the fin body made of aluminum is subjected to a chemical conversion treatment in terms of adhesion of the hydrophilic treatment film, corrosion resistance, and the like. Examples of the chemical conversion treatment include chromate treatment, and typical examples thereof include alkali salt-chromate method (BV method, MBV method, EW method, Al And a treatment method such as a chromic acid method, a chromate method, and a chromic phosphate method, and an anhydrous washing coating type treatment with a composition mainly composed of chromium chromate.
 例えば、熱交換器用フィン材のフィン本体に用いられるアルミニウム等薄板としては、JIS規格で、1100、1050、1200、1N30等の純アルミニウム板、2017、2014等のAl-Cu系合金板、3003、3004等のAl-Mn系合金板、5052、5083等のAl-Mg系合金板、更には6061等のAl-Mg-Si系合金板等のいずれを用いても良く、またその形状はシート及びコイルのいずれでも良い。 For example, as a thin plate of aluminum used for the fin body of the fin material for heat exchanger, according to JIS standard, pure aluminum plate such as 1100, 1050, 1200, 1N30, Al—Cu based alloy plate such as 2017, 2014, 3003, Any of Al-Mn alloy plates such as 3004, Al-Mg alloy plates such as 5052 and 5083, and Al-Mg-Si alloy plates such as 6061 may be used. Any of the coils may be used.
 また、本発明に係るフィン材は、熱交換器に用いることが好ましい。本発明に係るフィン材を用いた熱交換器は、優れた親水性、防汚性及びそれらの持続性を有しているので、フィン間に水滴や埃などが付着するのを防止することができる。熱交換器としては、例えば、室内用クーラーやエアコン、建設機械用オイルクーラー、自動車のラジエーター、キャパシタ等に使用される熱交換器が挙げられる。
 また、本発明に係るフィン材を用いた熱交換器をエアコンに使用することが好ましい。本発明に係るフィン材は、優れた親水性、防汚性及びそれらの持続性を有しているので、前述のような冷房能力の低下等の問題が改善されたエアコンを提供することができる。エアコンとしては、ルームエアコン、パッケージエアコン、カーエアコン等、いずれのものでもよい。
 その他、本発明の熱交換器、エアコンには公知の技術(例えば特開2002-106882号公報、特開2002-156135号公報など)を用いることができ、特に制限されない。
Moreover, it is preferable to use the fin material which concerns on this invention for a heat exchanger. Since the heat exchanger using the fin material according to the present invention has excellent hydrophilicity, antifouling property and durability thereof, it is possible to prevent water droplets and dust from adhering between the fins. it can. Examples of the heat exchanger include heat exchangers used for indoor coolers, air conditioners, construction machine oil coolers, automobile radiators, capacitors, and the like.
Moreover, it is preferable to use the heat exchanger using the fin material according to the present invention for an air conditioner. Since the fin material according to the present invention has excellent hydrophilicity, antifouling property and sustainability thereof, it is possible to provide an air conditioner in which problems such as a decrease in cooling capacity as described above are improved. . The air conditioner may be any one of a room air conditioner, a packaged air conditioner, a car air conditioner, and the like.
In addition, publicly known techniques (for example, JP 2002-106882 A, JP 2002-156135 A, etc.) can be used for the heat exchanger and the air conditioner of the present invention, and are not particularly limited.
 熱交換器用フィン材は、アルミニウム板の表面に加水分解性シリル基を有する親水性ポリマーを含有する親水性組成物を塗布、乾燥して形成される親水性層を有する熱交換器用フィン材の表面に、ポリエチレングリコール及びポリプロピレングリコールよりなる群の中から選ばれた少なくとも1種類の物質を含有する潤滑剤組成物を塗布、乾燥して親水性層に潤滑剤組成物を吸着又は含浸させて摩擦係数が0.05~0.25である潤滑層を形成させることにより製造することができる。
 親水性組成物と潤滑剤組成物の乾燥温度は、130~230℃であることが好ましい。
The heat exchanger fin material has a hydrophilic layer formed by applying and drying a hydrophilic composition containing a hydrophilic polymer having a hydrolyzable silyl group on the surface of an aluminum plate. And applying a lubricant composition containing at least one substance selected from the group consisting of polyethylene glycol and polypropylene glycol, and drying to adsorb or impregnate the lubricant composition in the hydrophilic layer. Can be produced by forming a lubricating layer having a thickness of 0.05 to 0.25.
The drying temperature of the hydrophilic composition and the lubricant composition is preferably 130 to 230 ° C.
 以下、本発明を実施例によって詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
 <アルミニウム基材脱脂処理>
 アルミニウム板(A1200、厚み0.1mm)をアルカリ性洗浄液(横浜油脂社製、セミクリーンA 5質量%水溶液)に10分浸漬し、水洗を3回繰り返した。
<Aluminum base degreasing treatment>
An aluminum plate (A1200, thickness 0.1 mm) was immersed in an alkaline cleaning liquid (Yokohama Yushi Co., Ltd., Semi-clean A 5 mass% aqueous solution) for 10 minutes, and washing with water was repeated three times.
 <ポリマーA-1の合成>
 500ml三口フラスコにアクリルアミド13.2g、アクリルアミド-3-(エトキシシリル)プロピル11.6g、及び1-メトキシ-2-プロパノール280gを入れ、80℃窒素気流下、2,2’-アゾビス(2-メチルプロピオン酸)ジメチル1.8gを加えた。6時間攪拌しながら同温度に保った後、室温まで冷却した。その後、反応液をアセトン2リットル中に投入し、析出した固体をろ取した。得られた固体をアセトンにて洗浄後、親水性ポリマーA-1を得た。乾燥後の質量は23.6gであった。GPC(ポリエチレンオキシド標準)により求めたポリマーの質量平均分子量は22000であった。
 以後、実施例にて使用したポリマーA-2~A-5及び比較例にて使用したポリマーA-9~A-10を上記と同様の手法により合成した。ポリマーA-1~A-5及びポリマーA-9~A-10の構造を以下に示す。
<Synthesis of Polymer A-1>
A 500 ml three-necked flask is charged with 13.2 g of acrylamide, 11.6 g of acrylamide-3- (ethoxysilyl) propyl and 280 g of 1-methoxy-2-propanol, and 2,2′-azobis (2-methyl) under a nitrogen stream at 80 ° C. 1.8 g of dimethyl propionate) was added. The mixture was kept at the same temperature with stirring for 6 hours, and then cooled to room temperature. Thereafter, the reaction solution was poured into 2 liters of acetone, and the precipitated solid was collected by filtration. The obtained solid was washed with acetone to obtain hydrophilic polymer A-1. The mass after drying was 23.6 g. The mass average molecular weight of the polymer determined by GPC (polyethylene oxide standard) was 22,000.
Thereafter, Polymers A-2 to A-5 used in Examples and Polymers A-9 to A-10 used in Comparative Examples were synthesized by the same method as described above. The structures of polymers A-1 to A-5 and polymers A-9 to A-10 are shown below.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 <ポリマーBの合成>
 三口フラスコにアクリルアミド30g、3-メルカプトプロピルトリメトキシシラン3.5g、ジメチルホルムアミド52gを入れて窒素気流下、65℃まで加熱し、2,2'-アゾビス(2,4-ジメチルバレロニトリル)0.38g添加し、反応を開始した。6時間攪拌した後、室温まで戻して酢酸エチル1.5L中に投入したところ固体が析出した。その後、濾過を行い、充分酢酸エチルで洗浄し、乾燥を行った。こうして、ポリマーB-1を得た。GPC(ポリエチレンオキシド標準)で求めたポリマーBの質量平均分子量は11000であった。
 以後、実施例にて使用したポリマーB-2~B-3を上記と同様の手法により合成した。ポリマーB-1~B-3の構造を以下に示す。
<Synthesis of polymer B>
30 g of acrylamide, 3.5 g of 3-mercaptopropyltrimethoxysilane, and 52 g of dimethylformamide were placed in a three-necked flask and heated to 65 ° C. in a nitrogen stream, and 2,2′-azobis (2,4-dimethylvaleronitrile) 0. 38 g was added to start the reaction. After stirring for 6 hours, the mixture was returned to room temperature and poured into 1.5 L of ethyl acetate, and a solid precipitated. Then, it filtered, wash | cleaned sufficiently with ethyl acetate, and dried. In this way, Polymer B-1 was obtained. The mass average molecular weight of the polymer B determined by GPC (polyethylene oxide standard) was 11,000.
Thereafter, the polymers B-2 to B-3 used in the examples were synthesized by the same method as described above. The structures of the polymers B-1 to B-3 are shown below.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 実施例1~42及び比較例1~11
 <親水性組成物>
 下記表1~3に示すように、純水に親水性ポリマーを溶かし、触媒液を加えて2時間攪拌し、界面活性剤水溶液を加えて攪拌して調製した。なお、表1~3中、界面活性剤及び触媒の配合量は、溶剤を除いた量を示す。
 <潤滑剤組成物>
 下記表1~3に示すように、純水にポリエチレングリコール(PEG)(和光純薬(株)社製)、ポリプロピレングリコール(PPG)(和光純薬(株)社製)、ポリアクリルアミド(和光純薬(株)社製)又はポリビニルピロリドン(PVP)(和光純薬(株)社製)、界面活性剤水溶液を溶解し調製した。
 <塗布>
 脱脂済みアルミニウム板に親水性組成物を#8バーにて塗布し、表1~3に示す温度で15秒間加熱、乾燥して親水性層を形成した。更に、その上に潤滑剤組成物を#3バーにて塗布し、表1~3に示す温度で15秒間加熱、乾燥して潤滑層を形成し、試験片とした。
 表1~3の乾燥温度は、親水性層と潤滑層の両方の乾燥温度で、潤滑層がない場合は親水性層のみの乾燥温度を示す。
 なお、表1~3中の膜厚は、試験片をカットし、断面をSEMで観察して算出した。
 [評価]
 得られた試験片について、下記の通り評価した。評価結果を下記表4~6に示す。
 <面状>
 親水性層は、いずれも問題なかったため、潤滑層のみの塗布面状を目視で観察で確認した。
 ○:問題なし △:ムラ発生 ×:ハジキ発生 -:潤滑層なし
 <親水性>
 協和界面科学DROP MASTER 500にて蒸留水の接触角を測定した。
  ○:14°以下 △:15~20° ×:21°以上
 <密着性>
 親水性層上にセロハンテープを貼着したのちに剥がし、潤滑層、親水性層が剥がれるか目視で確認した。
  ○:剥れなし △:部分的に剥れ有り ×:全面的に剥れ
 <防汚性>
 50mlガラス容器にパルミチン酸を0.2gとり、潤滑層側がパルチミン酸に曝されるように試験片により蓋をして105℃/1時間曝気後、30分間流水洗浄、80℃/30分間乾燥を1サイクルとし、5サイクル後の接触角を測定した。
  ◎:30°以下 ○:31~40° △:41~70° ×:71°以上
 <摩擦係数>
 バウデンレーベン式摩擦試験機(新東科学社製)を用いて、鋼球直径:3/16インチ、荷重:0.2kgf、滑り速度:3.87mm/秒、温度:24℃の条件で測定した。
  ○:0.15以下 △:0.16~0.25 ×:0.25以上
 <防錆性>
 JIS Z2371に準じて試験を行い、腐食面積率からレイティングナンバ(RN)を調べた。
  ○:RN≧9.5  ×:RN<9.5
Examples 1 to 42 and Comparative Examples 1 to 11
<Hydrophilic composition>
As shown in Tables 1 to 3 below, a hydrophilic polymer was dissolved in pure water, a catalyst solution was added and stirred for 2 hours, and an aqueous surfactant solution was added and stirred. In Tables 1 to 3, the amounts of the surfactant and the catalyst are the amounts excluding the solvent.
<Lubricant composition>
As shown in Tables 1 to 3 below, polyethylene glycol (PEG) (manufactured by Wako Pure Chemical Industries, Ltd.), polypropylene glycol (PPG) (manufactured by Wako Pure Chemical Industries, Ltd.), and polyacrylamide (Wako Pure Chemical Industries, Ltd.) are added to pure water. (Manufactured by Yakuhin Co., Ltd.) or polyvinylpyrrolidone (PVP) (manufactured by Wako Pure Chemical Industries, Ltd.) and an aqueous surfactant solution were prepared.
<Application>
A hydrophilic composition was applied to a degreased aluminum plate with a # 8 bar, and heated and dried at the temperatures shown in Tables 1 to 3 for 15 seconds to form a hydrophilic layer. Further, the lubricant composition was applied thereon with a # 3 bar and heated and dried at the temperatures shown in Tables 1 to 3 for 15 seconds to form a lubricating layer, which was used as a test piece.
The drying temperatures in Tables 1 to 3 are the drying temperatures of both the hydrophilic layer and the lubricating layer, and when there is no lubricating layer, the drying temperature of only the hydrophilic layer.
The film thicknesses in Tables 1 to 3 were calculated by cutting the test piece and observing the cross section with SEM.
[Evaluation]
The obtained test piece was evaluated as follows. The evaluation results are shown in Tables 4 to 6 below.
<Surface shape>
Since there was no problem in any of the hydrophilic layers, the coated surface shape of only the lubricating layer was confirmed by visual observation.
○: No problem △: Unevenness ×: Repelling-: No lubrication layer <Hydrophilicity>
The contact angle of distilled water was measured with Kyowa Interface Science DROP MASTER 500.
○: 14 ° or less Δ: 15 to 20 ° ×: 21 ° or more <Adhesion>
The cellophane tape was adhered on the hydrophilic layer and then peeled off, and it was visually confirmed whether the lubricating layer and the hydrophilic layer were peeled off.
○: No peeling △: Partial peeling ×: Full peeling <Anti-fouling>
Take 0.2g of palmitic acid in a 50ml glass container, cover with a test piece so that the lubricating layer is exposed to palmitic acid, aerate at 105 ° C / 1 hour, wash with running water for 30 minutes, and dry at 80 ° C / 30 minutes. One cycle was measured, and the contact angle after 5 cycles was measured.
◎: 30 ° or less ○: 31-40 ° △: 41-70 ° ×: 71 ° or more <Friction coefficient>
Measured using a Bowden-Leben type friction tester (manufactured by Shinto Kagaku Co., Ltd.) under the conditions of steel ball diameter: 3/16 inch, load: 0.2 kgf, sliding speed: 3.87 mm / sec, temperature: 24 ° C. did.
○: 0.15 or less Δ: 0.16 to 0.25 ×: 0.25 or more <rust prevention>
A test was conducted in accordance with JIS Z2371, and the rating number (RN) was examined from the corrosion area rate.
○: RN ≧ 9.5 ×: RN <9.5
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 以下、表1~3中の、比較例にて使用した親水性ポリマーA-6~A-8及び実施例、比較例にて使用した触媒液、界面活性剤水溶液を示す。 Hereinafter, the hydrophilic polymers A-6 to A-8 used in Comparative Examples and the catalyst solutions and surfactant aqueous solutions used in Examples and Comparative Examples are shown in Tables 1 to 3.
 <ポリマーA-6~8>
 ポリマーA-6:ポリアクリルアミド(和光純薬社製)を用いた。
 ポリマーA-7:ポリビニルピロリドン(和光純薬社製)を用いた。
 ポリマーA-8:ポリビニルアルコール(和光純薬社製)を用いた。 
<Polymers A-6 to 8>
Polymer A-6: Polyacrylamide (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
Polymer A-7: Polyvinylpyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
Polymer A-8: Polyvinyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) was used.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 <触媒液>
 触媒1:エタノール1.8g、アセチルアセトン0.1g、テトラエトキシチタン0.1g、蒸留水0.015gを混合し、1時間攪拌して調製した。
 触媒2:ジルコゾールZA-30(ZrO(C水溶液、第一稀元素化学(株)製)触媒3:オルガチックスTC-310((OH) 2 Ti[OCH(CH)COOH] 2水溶液、マツモト交商(株)社製)   
<Catalyst solution>
Catalyst 1: 1.8 g of ethanol, 0.1 g of acetylacetone, 0.1 g of tetraethoxytitanium and 0.015 g of distilled water were mixed and prepared by stirring for 1 hour.
Catalyst 2: Zircozole ZA-30 (ZrO (C 2 H 3 O 2 ) 2 aqueous solution, manufactured by Daiichi Rare Elemental Chemical Co., Ltd.) Catalyst 3: Orgatechs TC-310 ((OH) 2 Ti [OCH (CH 3 ) COOH] 2 aqueous solution, manufactured by Matsumoto Kosho Co., Ltd.)
 <界面活性剤水溶液>
 下記構造式のアニオン系界面活性剤の5質量%水溶液を用いた。
<Surfactant aqueous solution>
A 5% by mass aqueous solution of an anionic surfactant having the following structural formula was used.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表4~6から、本発明の親水性部材は、親水性、防汚性、耐摩擦性、密着性、防錆性に優れていることが明らかである。 From Tables 4 to 6, it is clear that the hydrophilic member of the present invention is excellent in hydrophilicity, antifouling properties, friction resistance, adhesion, and rust prevention properties.
 本発明によれば、親水性、防汚性、潤滑性、密着性、防錆性に優れた親水性部材及び親水性、防汚性、耐摩擦性、密着性、防錆性に優れた熱交換器用フィン材の製造方法を提供することができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年1月5日出願の日本特許出願(特願2009-000382)に基づくものであり、その内容はここに参照として取り込まれる。
According to the present invention, a hydrophilic member excellent in hydrophilicity, antifouling property, lubricity, adhesion, and rust prevention property and heat excellent in hydrophilicity, antifouling property, friction resistance, adhesion property, and rust prevention property The manufacturing method of the fin material for exchangers can be provided.
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on Jan. 5, 2009 (Japanese Patent Application No. 2009-000382), the contents of which are incorporated herein by reference.

Claims (14)

  1.  基材上に加水分解性シリル基を有する親水性ポリマーを含有する親水性組成物から形成される親水性層を有し、更にその上に摩擦係数が0.05~0.25である潤滑層を有することを特徴とする親水性部材。 A lubricating layer having a hydrophilic layer formed from a hydrophilic composition containing a hydrophilic polymer having a hydrolyzable silyl group on a substrate, and having a friction coefficient of 0.05 to 0.25 on the hydrophilic layer. A hydrophilic member characterized by comprising:
  2.  前記親水性部材の水滴接触角が、20°以下であることを特徴とする請求項1に記載の親水性部材。 The hydrophilic member according to claim 1, wherein a water droplet contact angle of the hydrophilic member is 20 ° or less.
  3.  前記潤滑層が、ポリエチレングリコール及びポリプロピレングリコールよりなる群の中から選ばれた少なくとも1種類の潤滑剤を含有する潤滑層であることを特徴とする請求項1又は2に記載の親水性部材。 The hydrophilic member according to claim 1 or 2, wherein the lubricating layer is a lubricating layer containing at least one lubricant selected from the group consisting of polyethylene glycol and polypropylene glycol.
  4.  前記ポリエチレングリコール及びポリプロピレングリコールの質量平均分子量が、1000~4000であることを特徴とする請求項3に記載の親水性部材。 The hydrophilic member according to claim 3, wherein the polyethylene glycol and polypropylene glycol have a mass average molecular weight of 1000 to 4000.
  5.  前記潤滑層の膜厚が、0.01~0.3μmであることを特徴とする請求項1~4のいずれかに記載の親水性部材。 The hydrophilic member according to any one of claims 1 to 4, wherein the lubricating layer has a thickness of 0.01 to 0.3 µm.
  6.  前記親水性層が、下記一般式(I-1)で表される構造及び下記一般式(I-2)で表される構造を含む親水性ポリマー(I)を全固形分に対して50質量%以上含有する親水性組成物を塗布、乾燥させることで得られることを特徴とする請求項1~5のいずれかに記載の親水性部材。
    Figure JPOXMLDOC01-appb-C000001
     一般式(I-1)及び(I-2)中、R101~R108はそれぞれ独立に水素原子又は炭化水素基を表す。pは1~3の整数を表し、L101及びL102は、それぞれ独立に単結合又は多価の有機連結基を表す。x及びyは組成比を表し、xは0<x<100、yは0<y<100となる数を表す。A101は-OH、-OR、-COR、-CO、-CON(R)(R)、-N(R)(R)、-NHCOR、-NHCO、-OCON(R)(R)、-NHCON(R)(R)、-SO、-OSO、-SO、-NHSO、-SON(R)(R)、-N(R)(R)(R)、-N(R)(R)(Rc)(R)、-PO(R)(R)、-OPO(R)(R)、又は-PO(R)(R)を表す。ここで、R、R及びRは、それぞれ独立に水素原子又は直鎖、分岐又は環状のアルキル基を表し、Rは、直鎖、分岐又は環状のアルキル基を表し、R及びRは、それぞれ独立に水素原子又は直鎖、分岐又は環状のアルキル基、アルカリ金属、アルカリ土類金属、又はオニウムを表し、Rはハロゲンイオン、無機アニオン、又は有機アニオンを表す。
    The hydrophilic layer contains 50 mass of the hydrophilic polymer (I) containing the structure represented by the following general formula (I-1) and the structure represented by the following general formula (I-2) with respect to the total solid content. The hydrophilic member according to any one of claims 1 to 5, which is obtained by applying and drying a hydrophilic composition containing at least%.
    Figure JPOXMLDOC01-appb-C000001
    In the general formulas (I-1) and (I-2), R 101 to R 108 each independently represents a hydrogen atom or a hydrocarbon group. p represents an integer of 1 to 3, and L 101 and L 102 each independently represent a single bond or a polyvalent organic linking group. x and y represent a composition ratio, x represents a number satisfying 0 <x <100 and y represents 0 <y <100. A 101 represents —OH, —OR a , —COR a , —CO 2 R e , —CON (R a ) (R b ), —N (R a ) (R b ), —NHCOR d , —NHCO 2 R a , —OCON (R a ) (R b ), —NHCON (R a ) (R b ), —SO 3 R e , —OSO 3 R e , —SO 2 R d , —NHSO 2 R d , —SO 2 N (R a ) (R b ), —N (R a ) (R b ) (R c ), —N (R a ) (R b ) (R c ) (R g ), —PO 3 (R e ) (R f ), —OPO 3 (R e ) (R f ), or —PO 3 (R d ) (R e ). Here, R a , R b and R c each independently represent a hydrogen atom or a linear, branched or cyclic alkyl group, R d represents a linear, branched or cyclic alkyl group, R e and R f each independently represents a hydrogen atom or a linear, branched or cyclic alkyl group, an alkali metal, an alkaline earth metal, or onium, and R g represents a halogen ion, an inorganic anion, or an organic anion.
  7.  前記親水性組成物が、親水性ポリマー(I)を含む加水分解性シリル基を有する親水ポリマーを全固形分に対して80質量%以上含有し、かつ前記一般式(I-2)に於けるA101が、-CONH、-CONH(R)、又は-CON(R5(式中、Rは、それぞれ独立に直鎖、分岐又は環状のアルキル基を表す)を表すことを特徴とする請求項6に記載の親水性部材。 The hydrophilic composition contains a hydrolyzable silyl group-containing hydrophilic polymer containing the hydrophilic polymer (I) in an amount of 80% by mass or more based on the total solid content, and in the general formula (I-2) A 101 represents —CONH 2 , —CONH (R 5 ), or —CON (R 5 ) 2 (wherein R 5 independently represents a linear, branched, or cyclic alkyl group). The hydrophilic member according to claim 6, wherein
  8.  前記基材がアルミニウム板であることを特徴とする請求項1~7のいずれかに記載の親水性部材。 The hydrophilic member according to any one of claims 1 to 7, wherein the substrate is an aluminum plate.
  9.  請求項1~8のいずれかに記載の親水性部材を用いたフィン材。 A fin material using the hydrophilic member according to any one of claims 1 to 8.
  10.  請求項9に記載のフィン材がアルミニウム製であるアルミニウム製フィン材。 An aluminum fin material, wherein the fin material according to claim 9 is made of aluminum.
  11.  請求項10に記載のアルミニウム製フィン材を用いた熱交換器。 A heat exchanger using the aluminum fin material according to claim 10.
  12.  請求項11に記載の熱交換器を用いたエアコン。 An air conditioner using the heat exchanger according to claim 11.
  13.  アルミニウム板の表面に加水分解性シリル基を有する親水性ポリマーを含有する親水性組成物を塗布、乾燥して形成される親水性層を有する熱交換器用フィン材の表面に、潤滑剤組成物を塗布、乾燥して親水性層に潤滑剤組成物を吸着又は含浸させて摩擦係数が0.05~0.25である潤滑層を形成させることを特徴とする、熱交換器用フィン材の製造方法。 A lubricant composition is applied to the surface of a fin material for a heat exchanger having a hydrophilic layer formed by applying a hydrophilic composition containing a hydrophilic polymer having a hydrolyzable silyl group to the surface of an aluminum plate and drying. A method for producing a fin material for a heat exchanger, comprising applying and drying to adsorb or impregnate a lubricant composition in a hydrophilic layer to form a lubricating layer having a friction coefficient of 0.05 to 0.25 .
  14.  前記親水性組成物及び潤滑剤組成物の乾燥温度が、それぞれ独立に130~230℃であることを特徴とする請求項13に記載の熱交換器用フィン材の製造方法。 The method for producing a fin material for a heat exchanger according to claim 13, wherein the drying temperature of the hydrophilic composition and the lubricant composition is independently 130 to 230 ° C.
PCT/JP2009/071262 2009-01-05 2009-12-21 Hydrophilic member and method for producing fin material for heat exchangers WO2010076872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-000382 2009-01-05
JP2009000382A JP2010155441A (en) 2009-01-05 2009-01-05 Hydrophilic member and method of manufacturing fin material for heat exchanger

Publications (1)

Publication Number Publication Date
WO2010076872A1 true WO2010076872A1 (en) 2010-07-08

Family

ID=42309923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071262 WO2010076872A1 (en) 2009-01-05 2009-12-21 Hydrophilic member and method for producing fin material for heat exchangers

Country Status (2)

Country Link
JP (1) JP2010155441A (en)
WO (1) WO2010076872A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6374219B2 (en) * 2014-05-23 2018-08-15 三菱アルミニウム株式会社 Fin material for heat exchanger and manufacturing method thereof
KR101528708B1 (en) * 2014-09-02 2015-06-16 한양대학교 산학협력단 Heat exchanger with superhydrophobicity and method of manufacturing the same
US10503063B2 (en) 2014-09-01 2019-12-10 Industry-University Cooperation Foundation Hanyang University Super water repellent polymer hierarchical structure, heat exchanger having super water repellency, and manufacturing method therefor
JP6717659B2 (en) * 2015-07-06 2020-07-01 株式会社神戸製鋼所 Resin coated metal plate, resin composition, fin material for heat exchanger and air conditioner
WO2017006878A1 (en) * 2015-07-06 2017-01-12 株式会社神戸製鋼所 Resin-coated metal plate, resin composition, fin material for heat exchanger, and air-conditioner
JP6558337B2 (en) 2016-09-30 2019-08-14 ブラザー工業株式会社 Overcoat agent and image forming method
JP6555536B2 (en) 2016-09-30 2019-08-07 ブラザー工業株式会社 Overcoat agent and image forming method
JP7108925B2 (en) * 2018-08-29 2022-07-29 パナソニックIpマネジメント株式会社 Heat exchanger with antifouling coating film
JP2022161706A (en) * 2021-04-09 2022-10-21 株式会社神戸製鋼所 Aluminum fin material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153311A (en) * 1984-08-22 1986-03-17 Kyowa Gas Chem Ind Co Ltd Hydrophilic copolymer and its preparation
JPH0639347A (en) * 1992-07-24 1994-02-15 Showa Alum Corp Manufacture of precoated fine material for heat exchanger
JPH0914888A (en) * 1995-06-30 1997-01-17 Kobe Steel Ltd Aluminum fin and manufacture thereof
JP2001353817A (en) * 2000-06-14 2001-12-25 Dainippon Ink & Chem Inc Low abrasive structure
JP2007225174A (en) * 2006-02-22 2007-09-06 Fujifilm Corp Heat exchanger
JP2008284715A (en) * 2007-05-15 2008-11-27 Fujifilm Corp Hydrophilic member
WO2008143143A1 (en) * 2007-05-15 2008-11-27 Fujifilm Corporation Hydrophilic coating composition and hydrophilic member using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153311A (en) * 1984-08-22 1986-03-17 Kyowa Gas Chem Ind Co Ltd Hydrophilic copolymer and its preparation
JPH0639347A (en) * 1992-07-24 1994-02-15 Showa Alum Corp Manufacture of precoated fine material for heat exchanger
JPH0914888A (en) * 1995-06-30 1997-01-17 Kobe Steel Ltd Aluminum fin and manufacture thereof
JP2001353817A (en) * 2000-06-14 2001-12-25 Dainippon Ink & Chem Inc Low abrasive structure
JP2007225174A (en) * 2006-02-22 2007-09-06 Fujifilm Corp Heat exchanger
JP2008284715A (en) * 2007-05-15 2008-11-27 Fujifilm Corp Hydrophilic member
WO2008143143A1 (en) * 2007-05-15 2008-11-27 Fujifilm Corporation Hydrophilic coating composition and hydrophilic member using the same

Also Published As

Publication number Publication date
JP2010155441A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP5124496B2 (en) Hydrophilic member
JP5469837B2 (en) Hydrophilic composition
JP5427382B2 (en) Hydrophilic member, fin material, aluminum fin material, heat exchanger and air conditioner
WO2009119690A1 (en) Composite for forming a hydrophilic film, and hydrophilic member
WO2010044443A1 (en) Hydrophilic composition and hydrophilic member having antifungal activity
JP2009256564A (en) Composition for formation of hydrophilic film, and hydrophilic member
WO2009093688A1 (en) Hydrophilic composition having mildewproofing effect and hydrophilic member
WO2010076872A1 (en) Hydrophilic member and method for producing fin material for heat exchangers
JP2008279736A (en) Hydrophilic member and its manufacturing method
JP2008308659A (en) Composition for forming hydrophilic film, hydrophilic member and method for producing hydrophilic member
JP2009079076A (en) Hydrophilic polymer, composition for forming hydrophilic film, and hydrophilic member
JP2010070735A (en) Hydrophilic composition, hydrophilic member, fin material, heat exchanger, and air conditioner
WO2010027001A1 (en) Method for producing hydrophilic member and hydrophilic member
WO2009116598A1 (en) Hydrophilic composition
JP2008308658A (en) Composition for forming hydrophilic film, hydrophilic member and method for producing hydrophilic member
JP2010047739A (en) Hydrophilic composition, and hydrophilic member using the same, heat exchanger, air conditioner
JP2009235128A (en) Composition for forming hydrophilic film, and hydrophilic member
WO2010087417A1 (en) Hydrophilic composition, hydrophilic member, fin material, heat exchanger, and air conditioner
JP2011073359A (en) Hydrophilic member
JP2008222998A (en) Hydrophilic composition and hydrophilic member
JP2008253985A (en) Hydrophilic member and process for producing the same
JP2008285530A (en) Composition for forming hydrophilic film and hydrophilic member
WO2009096532A1 (en) Hydrophilic member
JP2011046897A (en) Hydrophilic composition, hydrophilic member, fin material, heat exchanger, and air conditioner
JP2009185088A (en) Hydrophilic polymer, composition for forming hydrophilic membrane and hydrophilic member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09836211

Country of ref document: EP

Kind code of ref document: A1