WO2010076851A1 - Therapeutic/prophylactic agent for infections which relies on regulation of il-17a/il-17f - Google Patents

Therapeutic/prophylactic agent for infections which relies on regulation of il-17a/il-17f Download PDF

Info

Publication number
WO2010076851A1
WO2010076851A1 PCT/JP2009/007341 JP2009007341W WO2010076851A1 WO 2010076851 A1 WO2010076851 A1 WO 2010076851A1 JP 2009007341 W JP2009007341 W JP 2009007341W WO 2010076851 A1 WO2010076851 A1 WO 2010076851A1
Authority
WO
WIPO (PCT)
Prior art keywords
mice
cells
il17f
infection
il17a
Prior art date
Application number
PCT/JP2009/007341
Other languages
French (fr)
Japanese (ja)
Inventor
岩倉洋一郎
石亀晴道
角田茂
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Publication of WO2010076851A1 publication Critical patent/WO2010076851A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knockout animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine

Definitions

  • the present invention relates to a non-human mammal having a deletion and / or insertion mutation at the IL-17F locus on a chromosome useful as an infectious disease model animal, and a screening for an infectious disease treatment / prevention drug using the non-human mammal.
  • the present invention relates to a method, an infection protective agent containing IL-17F protein or the like as an active ingredient, and a method for screening an infectious disease treatment / prevention drug using the expression level of IL-17F or IL-23 as an index.
  • Naive CD4 + T cells are classified into multiple helper T cell subsets, including Th1 and Th2 cells, based on cytokine production characteristics and effector functions.
  • Th17 cells that preferentially produce IL-17A, IL-17F, IL-21 and IL-22 have been identified in mice (Non-patent Documents 1 and 2).
  • Differentiation of Th17 cells is induced by TGF- ⁇ and IL-6 (Non-Patent Documents 3 to 5) or IL-21 (Non-Patent Documents 6 to 8), and is promoted by synchronized activities of IL-1 and TNF. (Non-patent document 9).
  • IL-23 is required for Th17 cell proliferation, survival and effector function, and IL-17A and IL-17F production is promoted by this T cell subset (Non-patent Documents 5 and 8).
  • IL-17F and IL-17A are highly homologous proteins belonging to the 1L-17 protein family encoded by genes that are close to each other in both humans and mice (Non-Patent Documents 9 to 11).
  • IL-17A and IL-17F have been reported to be able to bind to the same receptor complex consisting of IL-17RA and IL-17RC (Non-patent Documents 12 and 13), and these cytokines have similar biological properties. It has been suggested to have a function.
  • IL-17A and IL-17F both induce the production of antimicrobial peptides (defensins), cytokines (IL-6, G-CSF, GM-CSF) and chemokines (CXCL1, CXCL2, CXCL5) It promotes granulocyte production and neutrophil recruitment (Non-Patent Documents 9 to 11).
  • IL-17F or IL-17A in the lung increases proinflammatory cytokine and chemokine expression and causes inflammation with neutrophil infiltration (Non-Patent Documents 14 to 17).
  • Non-patent Documents 1 and 18 autoimmune diseases such as IBD
  • CHS contact hypersensitivity
  • DTH delayed hypersensitivity
  • Th17 cells are also involved in host defense against infection because antigen-presenting cells stimulated with microbial products such as LPS, peptidoglycan and zymosan produce large amounts of IL-23 and cause Th17 cell development It has been suggested (Non-Patent Documents 19 to 21).
  • Il17ra ⁇ / ⁇ mice and / or Il23a ⁇ / ⁇ mice can be identified as Klebsiella pneumoniae in the lung (Non-patent Document 22) and Citrobacter rodentium in the intestine (Non-patent Documents 4 and 13). Sensitive to However, the relative involvement of IL-17A and IL-17F in autoimmune and allergic diseases and host defense processes remains unclear.
  • IL-17F had the highest homology with IL-17A in the IL-17 family, and was thought to be involved in the development of inflammatory diseases because it shared receptors with IL-17A.
  • the role of IL-17F in vivo is almost unknown.
  • the genes encoding IL-17A and IL-17F are located in the vicinity of the same chromosome, in order to produce double-deficient mice of IL-17A and IL-17F, two consecutive times in ES cells It was technically difficult to require homologous recombination.
  • An object of the present invention is to prepare IL-17F -deficient mice and IL-17A and IL-17F double-deficient mice and to elucidate the function of IL-17F in vivo using these mice.
  • another object of the present invention is to provide a therapeutic agent for infectious diseases by controlling IL-17F function.
  • the present inventors have intensively studied to solve the above problems, and for the purpose of discriminating differences in functions of IL-17F and IL-17A in the host defense mechanism against immune response and bacterial infection, IL-17F (Il17f -/- ) Or IL-17A and IL-17F (Il17a -/- Il17f -/- ) mice were generated and these were treated with Il17a -/- mice (Nakae et al., Immunity 17, 375-387 , 2002) showed that IL-17A and IL-17F play different roles in the development of immune responses against T cell mediated inflammation and bacterial infection.
  • the present invention has been completed based on these findings.
  • the following inventions Binds to (i) IL-17F protein, or (ii) IL-17 receptor A (IL-17RA) or IL-17 receptor C (IL-17RC) and has the same function as IL-17F
  • An infection protective agent containing the indicated substance as an active ingredient (2) The infection protective agent according to (1), which is used to protect against microbial infection in the mucous membrane.
  • Infectious disease treatment comprising administering a test substance to IL-17F-producing cells and selecting a test substance that increases the expression level of IL-17F or IL-23 in the IL-17F-producing cells as a candidate substance -Screening methods for prophylactic drugs.
  • a non-human mammal having a deletion and / or insertion mutation at the IL-17F locus on the chromosome (5) A non-human mammal having a deletion and / or insertion mutation at both the IL-17A locus and the IL-17F locus on the chromosome. (6) The non-human mammal according to (5), wherein susceptibility to opportunistic infection is increased. (7) The non-human mammal according to any one of (4) to (6), which is used as an infectious disease model animal. (8) The non-human mammal according to any one of (4) to (7), which is a rodent. (9) The non-human mammal according to any one of (4) to (8), which is a mouse.
  • test substance is administered to the non-human mammal according to any one of (4) to (9), the degree of infection susceptibility in the non-human mammal is measured, and the test substance is not administered;
  • a method for screening an infectious disease treatment / prevention drug comprising selecting, as a candidate substance, a test substance that reduces infection susceptibility.
  • Infection protective ability can be promoted by specifically expressing IL-17F in epithelial cells.
  • IL-17F unlike IL-17A, it is possible to activate only the beneficial infection-protective ability without inducing a harmful inflammatory response.
  • IL-17A producing cells and IL-17F producing cells are different, and it was shown that IL-17F can be artificially induced in non-lymphocytes of the intestinal tract.
  • IL-17F-deficient mice and IL-17A / IL-17F double-deficient masses were produced for the first time in the present invention.
  • the knockout non-human mammal of the present invention can be used to elucidate the role of IL-17A / IL-17F in vivo and its molecular mechanism, to analyze the structure of the IL-17 receptor and to analyze the ligand properties, IL-17A / IL It is useful for the development of a specific induction method for -17F.
  • IL-17F contributes to the development of spontaneous autoimmune arthritis in Il1rn ⁇ / ⁇ mice.
  • A Profiles of intracellular IL-17F, IL-17A and IFN- ⁇ expression in LN cells of wild type (WT) and arthritic Il1rn ⁇ / ⁇ mice stimulated with PMA and ionomycin in vitro.
  • B Profiles of intracellular IL-17F, IL-17A and IFN- ⁇ expression in cells of ankle joints of wild type (WT) and arthritic Il1rn ⁇ / ⁇ mice stimulated with PMA and ionomycin.
  • C Expression of IL-17A and IL-17F mRNA in arthritic Il1rn ⁇ / ⁇ mouse joints.
  • E Wild type (WT), Il17a + / + Il17f + / + Illrn -/- , Il17f -/- I1lrn -/- , and Il17a -/- Il1rn -/- mouse LN cells stimulated with PMA and ionomycin Intracellular IL-17A expression.
  • Data represent 2 (C, E) or 3 (A, B) independent experiments. Increased susceptibility of Il17a ⁇ / ⁇ Il17f ⁇ / ⁇ mice to opportunistic S. aureus infection.
  • (B) Immunoglobulin titer in serum of 8-10 week old mice (n 6-8 / group). Similar results were observed in the C57BL / 6J background.
  • (D) BALB / cA background Il17a -/- Il17f -/- mice (n 10 / group) submandibular LN with or without oral antibiotics between 4 and 8 weeks of age Weight.
  • (G) Survival rate of mice after iv injection with S. aureus 1 ⁇ 10 7 CFU (n 11 / group). Data represent two independent experiments.
  • (H) Staphylococcus aureus CFU (n 4 / group) in kidney homogenate collected 3 days after iv injection of S. aureus 1 ⁇ 10 7 CFU. Data represent two independent experiments.
  • IL-17F and IL-17A are required for protection against C. rodentium infection.
  • Wild-type (WT), Il17f -/- , Il17a -/- and Il17a -/- Il17f -/- mice were orally infected with C. rodentium 2 x 10 8 CFU and the colon and spleen were postinfected It was collected at the time.
  • CFU of C. rodentium in colon homogenates (n 10-16 / group). Data represent results collected from 2 or 3 independent experiments.
  • B Visualization of C. rodentium at the distal colon site 14 days after oral infection (up, 40 ⁇ , down, 120 ⁇ ). Data represent 4-6 mice in each group.
  • C, D Colon weight (C) and spleen weight (D) after oral infection as shown in (A).
  • IL-17F and IL-17A are produced by different cells.
  • A IL-17A and IL-17F mRNA expression in the colon, small intestine and peripheral LN of wild type (WT) mice was analyzed using real-time RT-PCR. Expression in LN cells was taken as 1.
  • B IL-17A and IL-17F expression in mouse colon 7 and 14 days after infection with C. rodentium was measured using real-time RT-PCR. The RNA sample is a collection of samples of 4-6 mice in each group. Expression in uninfected wild type (WT) mice was taken as 1.
  • C, D Intracellular IL-17F, IL-17A and IFN- ⁇ expression in colonic PMA and ionomycin-stimulated lymphocytes of uninfected mice (C) or mice (D) 14 days after infection with C. rodentium Profiles.
  • H, I Wild type (WT) and Rag2 ⁇ / ⁇ mouse splenocytes (5 ⁇ 10 5 cells) (H) or MLN (1.5 ⁇ 10 5 cells) (I), LPS 5 ⁇ g / ml and IL ⁇ 23 Cultured for 72 hours in a 24-well plate or 48-well plate, respectively, in the presence or absence of 20 ng / ml, and the amounts of IL-17A and IL-17F in the culture supernatant were measured using ELISA.
  • J Colon of epithelial (CD45 ⁇ and high FSC / SSC, gates R1 and R3) cells and intraepithelial immune cells (CD45 + , gate R2) in uninfected wild type (WT) mice using flow cytometry. And the expression of IL-17F and IL-17A was examined using RT-PCR.
  • K Expression of IL-17A and IL-17F in mouse colonic epithelial cell lines (CMT93 or Colon26) was examined using RT-PCR. Data represent 2 (A, B, K) or 3 (CJ) independent experiments. IL-17RA and IL-17RC show different tissue distributions.
  • (E) C57BL / 6J mouse CD4 + T cells obtained by MACS sorting were stimulated with IL-17A or IL-17F 5 to 250 ng / ml for 48 hours, and CCL2 in the culture supernatant was bio-Plex suspension array system Measured using (Bio-Rad).
  • G, H, I Colonic epithelial cell line (CMT93) (G), peritoneal macrophages (H) of C3H / HeJ mice, or CD4 + T cells (I) of C57BL / 6J mice, IL-17A or IL- Stimulate for 24 hours (G, H) or 48 hours (I) individually with 17F 50 ng / ml or in combination with IL-17A and IL-17F 50 ng / ml.
  • GM-CSF, CCL3 or CXCL1 were measured using a Bio-Plex suspension array system (Bio-Rad). ND, not detected. * P ⁇ 0.05, ** p ⁇ 0.01 and *** p ⁇ 0.001 for medium only.
  • Il17f -/- and Il17a -/- Il17f -/- mice are generated by replacing exon 2 and 3 of the Il17f gene with hygromycin B phosphotransferase (hph) resistance gene using Il17a +/- ES cells did.
  • hph hygromycin B phosphotransferase
  • the diphtheria toxin A (DT) gene was ligated to the 5 ′ end of the genomic fragment for negative selection.
  • the outer homologous region shown in the targeting allele was used as a genomic probe for Southern blot analysis.
  • Southern blot analysis for target clone screening was performed using BamHI.
  • B Correct targeting of the Il17f locus was confirmed by genomic Southern blot analysis. Endogenous (9.5 kb) and / or mutations using 3 ′ probes and BamHI digested tail DNA from Il17f WT (+ / +), heterozygous (+/-) and mutated (-/-) littermates A band of (7.2 kb) was detected.
  • C Expression of IL-17A and IL-17F mRNA.
  • A Proliferative response of LN cells 48 hours after mitogen stimulation.
  • B Proliferative response of splenic T cells 48 hours after stimulation with plates coated with anti-CD3 mAb.
  • C The amount of IFN- ⁇ in the culture supernatant of (B) was quantified using ELISA.
  • D Production of IL-17A by DO11.10 and Il17f ⁇ / ⁇ DO11.10 LN cells cultured with OVA peptide ⁇ IL-23 for 3 days.
  • E Wild type of C57BL / 6J background cultured for 72 hours in the presence of anti-CD3 and anti-CD28 monoclonal antibodies and TGF- ⁇ , IL-6, anti-IL-4 monoclonal antibody and anti-IFN- ⁇ monoclonal antibody ( WT), IL-17F and IL-17A intracellular expression profiles in CD4 + T cells from Il17f ⁇ / ⁇ , Il17a ⁇ / ⁇ and Il17a ⁇ / ⁇ Il17f ⁇ / ⁇ mice.
  • AC All data represent results from at least two independent experiments. IL-17A but not IL-17F is required for the development of EAE.
  • mice were immunized intradermally with chicken collagen type II emulsified with CFA at several sites on the tail base of mice.
  • A, B Shows the incidence (A) and severity (B) of CIA (16-17 mice per group). * P ⁇ 0.05 for WT mice was determined using the ⁇ 2 test.
  • IL-17A is involved in the development of DTH.
  • A Intracellular IL-17F, IL-17A and IFN- ⁇ profiles in mBSA stimulated LN cells. Wild type (WT) mice were immunized with mBSA / CFA and 10 days after immunization, LN cells were cultured for 72 hours in the presence or absence of 50 ⁇ g / ml mBSA.
  • (C) mBSA-specific LN cell proliferation response induced by culturing with 50 ⁇ g / ml mBSA for 72 hours as in (A) (n 5 / group).
  • mice were sensitized intraperitoneally with OVA in alum and administered aerosolized OVA. Twenty-four hours after the last OVA inhalation, BAL fluid was collected and BAL cells were counted. Data show pooled results from two independent experiments (10-19 mice per group).
  • B Total number of cells in BAL fluid. Il17f + / + , Il17f +/ ⁇ and Il17f ⁇ / ⁇ DO11.10 mice were treated with aerosolized OVA or PBS for 4 days without sensitization. BAL fluid was collected and BAL cells were counted 24 hours after the last OVA or PBS inhalation. Data show pooled results from two independent experiments (12-14 mice per group).
  • mice Mono, monocytes / macrophages; Lym, lymphocytes; Neu, neutrophils; Eos, eosinophils.
  • IL-17F is produced by innate immune cells in response to IL-23.
  • A C57BL / 6J wild type (WT) and Rag2 ⁇ / ⁇ mouse splenocytes (1 ⁇ 10 6 to 5 ⁇ 10 4 cells) in the presence or absence of 0.01 to 100 ng / ml IL-23 Then, the cells were cultured in a 96-well plate for 72 hours, and the amounts of IL-17A and IL-17F in the culture supernatant were measured using ELISA.
  • B The whole colon of BALB / cA wild type (WT) and CB-17 SCID mice was cultured for 24 hours in the presence or absence of 20 ng / ml IL-23.
  • C BALB / cA wild type (WT) and CB-17 SCID mouse splenocytes (5 ⁇ 10 5 cells) in 24-well plates in the presence or absence of 5 measured using ELISA Cultured.
  • D Flow cytometry of CD11c and CD11b expression on splenocytes from BALB / cA WT and CB-17 SCID mice.
  • E Flow cytometry of expression of CD11c, CD11b and DX5 on MACS sorted CD11c + or CD11b + splenocytes from CB-17 SCID mice.
  • F Flow cytometry of CD11c, CD11b, DX5, Gr-1, F4 / 80 and B220 expression on MACS sorted CD11c and CD11b negative cell fractions derived from CB-17 SCID splenocytes.
  • A, B, C Peritoneal macrophages from C3H / HeJ mice (A), CD4 + T cells from C57BL / 6J mice (B), or colonic epithelial cell line (CMT93) (C), 50 ng / ml Stimulated for 24 hours (A, B) or 48 hours (C) with IL-17A or IL-17F individually or in combination with 50 ng / ml IL-17A and IL-17F, and the indicated cytokines in the culture supernatant And the amount of chemokine was measured by using a Bio-Plex suspension array system (Bio-Rad). ND, not detected. * P ⁇ 0.05, ** p ⁇ 0.01 and *** p ⁇ 0.001 for medium alone. All data represent 3 independent experiments.
  • the present invention relates to a non-human mammal having a deletion and / or insertion mutation in the IL-17F locus on the chromosome, and the IL-17A locus and the IL-17F locus on the chromosome. Relates to a non-human mammal having a deletion and / or insertion mutation in both.
  • the IL-17F gene is inactivated by having a deletion and / or insertion mutation at the IL-17F locus on the chromosome, and has a function of expressing IL-17F. It is lost.
  • Non-human mammals with deletion and / or insertion mutations at both the IL-17A and IL-17F loci on the chromosome have increased susceptibility to opportunistic infections such as S. aureus. It has the feature of being.
  • the knockout non-human mammal of the present invention described above can be used as an infectious disease model animal.
  • non-human mammals examples include rodents such as mice, hamsters, guinea pigs, rats, rabbits, dogs, cats, goats, sheep, cows, pigs, monkeys, etc.
  • Rodents such as mice, hamsters, guinea pigs, rats, rabbits and the like are preferable from the viewpoint of easy growth and use, and among these, mice are most preferable.
  • a non-human mammal having a deletion and / or insertion mutation at the IL-17F locus on the chromosome, and a deletion and / or insertion mutation at both the IL-17A locus and the IL-17F locus on the chromosome can be produced by introducing a mutation into a target gene (IL-17F gene) by embryonic stem cells (ES cells) by homologous gene recombination.
  • IL-17F gene embryonic stem cells
  • ES cells embryonic stem cells
  • a predetermined region within the IL-17F gene is selected as a drug selection marker gene (for example, hygromycin B phosphotransferase in the following examples)
  • a drug selection marker gene for example, hygromycin B phosphotransferase in the following examples
  • a transgene is constructed using a targeting vector (homologous recombination vector) replaced with (hph) resistance gene) and introduced into mouse embryonic stem cells (ES cells) by electroporation or the like.
  • Il17a +/ ⁇ Il17f +/ ⁇ ES cells may be obtained by introducing the targeting vector for knockout of the IL-17F gene described above.
  • ES cells that have undergone homologous recombination with the drug are selected by PCR and Southern blotting, etc., and ES cells that have undergone homologous recombination with fertilized mice are mixed by the collective chimera method to obtain chimeric mice, Finally, an IL-17F gene knockout mouse can be produced from a chimeric chimeric mouse in which ES cells have differentiated into germ cells in the individual chimeric mouse.
  • a targeting vector for homologous recombination of embryonic stem cells (ES cells) is constructed using genomic DNA of IL-17F gene.
  • Genomic DNA should be isolated from the same animal species (more preferably from the same strain) as the animal species from which the ES cells are to be produced so that recombination occurs more efficiently when homologous recombination is performed. Is preferred. For example, when obtaining a genomic clone of mouse IL-17F gene, it can be screened from a mouse genomic library using a cDNA probe of IL-17F gene derived from mouse.
  • a targeting vector containing the disabled IL-17F gene Using a targeting vector containing the disabled IL-17F gene, homologous recombination is performed on the genomic DNA of the IL-17F gene in ES cells.
  • an IL-17F gene whose function has been disabled an IL-17F gene whose partial region has been deleted, or an IL-17F gene whose function has been disabled by introducing an insertion mutation can be used. .
  • a selection marker gene for example, drug resistance gene
  • a part of the isolated genomic DNA of IL-17F gene is deleted by restriction enzyme treatment, and a selectable marker gene (for example, drug resistance gene) in which a promoter is linked instead of the deleted DNA region
  • a targeting vector can be prepared by inserting.
  • a promoter having strong expression activity in ES cells phosphoglycerate kinase-1 (PGK-1) promoter, elongation factor 2 (EF-2) promoter, MC-1 promoter and the like can be used.
  • the promoter activity is greatly influenced by the locus to be targeted and its DNA region, in general, the stronger the promoter, the better. Therefore, the PGK-1 promoter is particularly preferably used.
  • a selectable marker gene a neomycin resistance gene, a hygromycin B phosphotransferase gene, a thymidine kinase gene, a diphtheria toxin A gene fragment, a lacZ gene, etc. can be used depending on the purpose for negative selection.
  • Selectable marker genes linked to the promoter include, for example, neomycin resistance gene cassette (neo cassette, provided as pKJ2), hygromycin B phosphotransferase gene cassette (hph cassette), thymidine kinase gene cassette (tk cassette, provided as pMCtk), diphtheria toxin
  • selectable marker genes that are commercially available while inserted into a plasmid, such as A gene fragment cassette (donated as DT-A cassette, pMCDT-A or pMC1DT-A), lacZ gene cassette (donated as pBSlacZ) Also good.
  • the targeting vector may be constructed using any selection marker among the selection markers linked to these promoters.
  • ES cells For example, mouse ES cells can be used. Examples of mouse-derived ES cells include, but are not particularly limited to, TT2 cells, AB-1 cells, J1 cells, R1 cells, and E14.1 cells.
  • a targeting vector in which the IL-17F gene has a non-functional sequence is introduced into ES cells. Then, the genomic DNA sequence of the target IL-17F gene in the ES cell is replaced by homologous recombination with the DNA sequence of the disabled IL-17F gene in the targeting vector. Homologous recombination can be generated stochastically using the homology between the IL-17F gene genomic DNA sequence and the sequence of the unmodified portion in the targeting vector.
  • an electroporation method As a method for introducing the targeting vector into ES cells, an electroporation method, a calcium phosphate method, a DEAE-dextran method, or the like can be used. From the viewpoint of efficiency and ease of work, electroporation is preferred.
  • the obtained recombinant ES cells are plated on an appropriate feeder cell layer and screened for homologous recombinants using a selection marker introduced into ES cells by homologous recombination in an ES culture solution. Selective culture can be performed. Depending on the type of the selectable marker gene, for example, neomycin (G418, GIBCO BRL) or hygromycin B (Calbiochem) can be contained in the culture medium. For example, colonies that survive on days 6-8 of selective culture can be picked as resistant clones. After picking up resistant clones and growing them, further screening can be performed to see if the target IL-17F gene is targeted. For example, whether the target IL-17F gene is targeted at the DNA level can be confirmed by PCR, Southern blot hybridization, or the like.
  • ES cells obtained by homologous recombination are transplanted into the 8-cell stage or blastocyst embryo.
  • a chimeric animal can be produced by transplanting the embryo into which the ES cell has been transplanted into the uterus of a pseudopregnant temporary parent and giving birth.
  • Examples of the method for transplanting ES cells into the embryo include a micromanipulation method and an aggregation method.
  • mice for example, female mice subjected to superovulation treatment with hormone agents (for example, using PMSG having FSH-like action and hCG having LH action) are mated with male mice.
  • embryos are collected from the uterus on day 2.5 after fertilization when using an 8-cell stage embryo, and on day 3.5 after fertilization when using a blastocyst.
  • the embryos thus collected can be injected in vitro with ES cells that have undergone homologous recombination using a targeting vector to produce a chimeric embryo.
  • a pseudopregnant female mouse for use as a foster parent can be obtained by mating a normal-period female mouse with a male mouse castrated by vagina ligation or the like.
  • a chimeric animal can be produced by transplanting the chimeric embryo produced by the above method into the uterus to the produced pseudopregnant mouse, and allowing it to become pregnant and give birth. It is desirable to create female mice that collect fertilized eggs and pseudopregnant mice that become foster mothers from a group of female mice in the same sexual cycle in order to ensure that implantation and pregnancy of the chimeric embryo occur. .
  • mice male mice derived from embryos transplanted with ES cells are selected. After the male embryonic mouse derived from the selected ES cell transplanted embryo matures, this mouse is mated with a female mouse of a pure mouse strain, and the ES cell-derived hair color appears in the next-generation offspring. It can be confirmed that it has been introduced into the germ line of mice. In order to confirm that the ES cell has been introduced into the germ line, various traits can be used as an index, but it is desirable to use a coat color in consideration of ease of confirmation. In mice, the fur color of agouti, black, ocher (cinnamon), chocolate (chocolate) and white (albino) is known.
  • a mouse strain to be mated with the chimeric mouse can be appropriately selected in consideration of the origin strain.
  • an individual in which a target gene is deleted can be obtained by selecting an animal into which a recombinant ES cell transplanted into an embryo is introduced into the germ line and breeding the chimeric animal.
  • IL-17F gene-deficient homozygous mice can be obtained.
  • mice used for backcrossing can be appropriately selected by those skilled in the art. Examples of mice that can be used include, but are not limited to, BALB / c, C57BL / 6, DBA / 1, ICR, and the like.
  • the above-described knockout non-human mammal of the present invention can be used to screen a therapeutic / prophylactic agent for infectious diseases.
  • the test substance is administered to the above-described non-human mammal of the present invention, the degree of infection susceptibility in the non-human mammal is measured, and the infection susceptibility is reduced compared to the case where the test substance is not administered.
  • a test substance as a candidate substance, it is possible to screen for an infectious disease treatment / prevention drug.
  • the measurement of the degree of infection susceptibility is not particularly limited, and can be performed, for example, by the method described in (8) Infection with Staphylococcus aureus in the method (I) in the following Examples or a method analogous thereto.
  • test substance used in the screening method of the present invention examples include peptides, proteins, non-peptide compounds, synthetic compounds, fermentation products, cell extracts, plant extracts, animal tissue extracts, plasma, and the like. These compounds may be novel compounds or known compounds.
  • a library containing a large number of molecules such as a peptide library or a compound library can also be used as a test substance.
  • test substance for example, oral administration, intravenous injection and the like are used.
  • the dosage of the test substance can be appropriately selected according to the administration method, the nature of the test substance, and the like.
  • the substance obtained by using the screening method of the present invention is a substance selected from the above-mentioned test substances, and has a therapeutic / preventive effect against infectious diseases, and therefore can be used as a therapeutic / prophylactic agent for infectious diseases. . Furthermore, a compound derived from the substance obtained by the above screening can also be used as a medicament.
  • Infection protective agent In the present invention, pathogenic E. coli (C. rodentium) infection in IL-17F knockout mice and opportunistic infection by S. aureus in IL-17A / IL-17F double knockout mice It was shown that the sensitivity to increased. That is, this finding is equivalent to IL-17F by binding to (i) IL-17F protein, or (ii) IL-17 receptor A (IL-17RA) or IL-17 receptor C (IL-17RC). A substance exhibiting the above function indicates that it is effective as an anti-infection agent. Therefore, according to the present invention, IL-17F binds to (i) IL-17F protein, or (ii) IL-17 receptor A (IL-17RA) or IL-17 receptor C (IL-17RC). An infection protective agent containing a substance exhibiting a function equivalent to that as an active ingredient is provided.
  • Opportunistic infections are caused by bacteria, viruses, protozoa, etc. such as Gram-negative bacteria (E. coli, Klebsiella, Pseudomonas aeruginosa, etc.), Gram-positive bacteria (S. aureus, Streptococcus pneumoniae, Streptococcus, Enterococcus, etc.)
  • the anti-infective agent of the invention can also be applied to protect these opportunistic infectious agents. Among these, it can be preferably used particularly for S. aureus and E. coli.
  • the IL-17F of the present invention is used for the purpose of protecting opportunistic infections in these patients.
  • (Or Il-17F-like substance) can be used.
  • IL-17F of the present invention can improve mucosal immunity, in addition to opportunistic infection protection, for example, when used in combination with a mucosal vaccine, when improving systemic immunity via mucosal immunity promotion,
  • the anti-infection agent of the present invention can also be used when promoting mucosal immunity, such as when it is desired to promote protection against intestinal infection bacteria.
  • IL-17F of the present invention can also be referred to as a mucosal immunity promoter or mucosal immunity activator. Therefore, the infection-protecting agent of the present invention can be widely used for protecting mucosal microbial infection.
  • the mucous membrane include respiratory (tracheal, lung, etc.) mucosa and digestive tract (intestinal tract, stomach, etc.) mucous membrane.
  • IL-17F As a substance that binds to IL-17 receptor A (IL-17RA) or IL-17 receptor C (IL-17RC) and exhibits a function equivalent to IL-17F, a partial peptide of IL-17F protein, or IL Examples include, but are not limited to, a protein consisting of an amino acid sequence substantially identical to -17F protein or an amino acid sequence having high homology, or a partial peptide thereof.
  • IL-17F protein or (ii) a substance that binds to IL-17 receptor A (IL-17RA) or IL-17 receptor C (IL-17RC) and exhibits a function equivalent to that of IL-17F It can be administered orally or parenterally after being dissolved or suspended in a suitable sterile vehicle.
  • a parenteral route of administration for example, systemic administration such as intravenous, intraarterial, intramuscular, intraperitoneal, intratracheal, etc., or local administration may be used.
  • the dose of the infection protective agent of the present invention varies depending on the route of administration, the severity of the disease, the animal species to be administered, the drug acceptability of the administration target, body weight, age, etc.
  • the amount ranges from about 0.0001 to about 10 mg / kg, preferably from about 0.001 to about 1 mg / kg, and can be administered once or divided into several times.
  • it can determine suitably in the range of said description, such as an administration route and dosage.
  • IL-17F knockout mice pathogenic Escherichia coli (C. rodentium) infection is used in IL-17F knockout mice, and S. aureus is used in IL-17A / IL-17F double knockout mice. S. aureus) has been shown to increase susceptibility to opportunistic infections.
  • IL-17F production has been found to be stimulated by IL-23. That is, based on these findings, a test substance that can administer a test substance to IL-17F-producing cells and increase the expression level of IL-17F or IL-23 in the IL-17F-producing cells is used to treat infections. It turns out to be a candidate substance for preventive drugs.
  • a test substance is administered to IL-17F-producing cells, and a test substance that increases the expression level of IL-17F or IL-23 in the IL-17F-producing cells is selected as a candidate substance.
  • a method for screening an infectious disease treatment / prevention drug is provided.
  • IL-17F producing cells epithelial cells, innate immune cells, Th17 cells and the like can be used.
  • test substance the same substance as described in the screening method using the (2) knockout non-human mammal in the present specification can be used.
  • the expression level of IL-17F or IL-23 in IL-17F-producing cells can be measured by a conventional method by methods known to those skilled in the art, such as RT-PCR method or Northern blot method.
  • the screening method shown in the present embodiment can be used as a screening method for a mucosal immunity promoter as well as a screening method for infectious disease treatment / prevention drugs.
  • the nucleotide sequence of the mouse IL-17F gene (NCBI accession number: Genebank NM — 145856.2) is shown in SEQ ID NO: 54, and the amino acid sequence is shown in SEQ ID NO: 55.
  • the nucleotide sequence of the human IL-17F gene (NCBI accession number: AF384857.1) is shown in SEQ ID NO: 56, and the amino acid sequence is shown in SEQ ID NO: 57.
  • the following examples further illustrate the present invention, but the scope of the present invention is not limited by the examples.
  • Il17f -/- Il17rn -/- and Il17a -/- Il17f -/- Il1rn -/- mice are made by crossing Il17f -/- and Il17a -/- Il17f -/- mice with Il1rn -/- mice Then, 8 generations were backcrossed to BALB / cA mice (Horai, R., et al. (2004) J. Clin. Invest. 114, 1603-1611).
  • Rag2 ⁇ / ⁇ mice were obtained from the Central Laboratory for Experimental Animals.
  • C3H / HeJ and C3H / HeN or CB-17SCID mice were purchased from Japan SLC or Japan Marie, respectively. All mice were maintained under specific pathogen-free conditions in an environmentally controlled breeding room at the Human Disease Model Research Center (University of Tokyo Institute of Medical Science). Experiments were performed according to laboratory ethical guidelines for animal experiments and safety guidelines for genetic manipulation experiments.
  • Thyl.2 + , CD4 + , B220 + , CDllc + , CD1lb + cells were respectively anti-mouse Thyl.2, CD4, B220, CD1Ic and CD11b monoclonal antibodies (Miltenyi Biotec ) And according to the manufacturer's instructions and then isolated from the spleen using autoMACS (Miltenyi Biotec).
  • peritoneal macrophages elicited by thioglycolic acid peritoneal cells were collected by injecting mice intraperitoneally with 2 ml of 4% thioglycolic acid (Nissui) and washing with PBS 4 days after injection. .
  • CMT39 cells, peritoneal macrophages or CD4 + T cells were treated with recombinant mouse IL-17A or IL-17F (R & D systems) 5 to 250 ng / ml for 6 to 48 hours to determine the amount of cytokines, chemokines and antimicrobial peptides .
  • CCL2 ⁇ , IL-1 ⁇ , IL-9, IL-10, IL-12 / 23 p40, IL-12 p70, IL-13, G-CSF, GM-CSF, IFN- ⁇ , CXCL1 in the culture supernatant The amounts of CCL2, CCL3, CCL4 and CCL5 were measured using the Bio-Plex system (Bio-Rad) according to the manufacturer's instructions. The amount of C. rodentium specific Ig in the serum was measured as previously reported (Bry, L., et al. (2004) J. Immunol. 172, 433-441).
  • the cells were fixed with 4% paraformaldehyde. After washing with a permeation buffer (a staining buffer containing 0.1% saponin [Sigma]), the cells were treated with PE anti-mouse IFN- ⁇ monoclonal antibody (XMG1.2, BD Pharmingen), PE anti-mouse IL-17A monoclonal antibody (TC11 -18H10, BD Pharmingen) or goat anti-mouse IL-17F polyclonal antibody (AF2057 or BAF2057, R & D systems).
  • PE anti-mouse IFN- ⁇ monoclonal antibody XMG1.2, BD Pharmingen
  • PE anti-mouse IL-17A monoclonal antibody TC11 -18H10, BD Pharmingen
  • goat anti-mouse IL-17F polyclonal antibody AF2057 or BAF2057, R & D systems.
  • Alexa Fluor 488 anti-goat IgG A-11055; Invitrogen
  • PE anti-goat IgG Santa Cruz
  • FITC-streptavidin BD Pharmingen
  • the targeting vector is a phosphoglycerate kinase (PGK) 1 promoter containing a 2.1 kb genomic fragment containing the second and third exons of the Il17f gene. It was constructed by replacement with a 2.5 kb DNA fragment encoding the hygromycin B phosphotransferase (hph) resistance gene under the control of. The diphtheria toxin A (DT) gene under the control of the MC1 promoter was ligated to the 5 ′ end of the targeting vector for negative selection.
  • PGK phosphoglycerate kinase
  • Il17a +/- , Il17f +/- or Il17a +/- Il17f +/- ES cells (E14.1) were obtained from Il17a +/- ES cells electroporated with targeting vectors, and chimeric mice were (Nakae, S., et al. (2002) Immunity 17, 375-387.).
  • Il17f ⁇ / ⁇ DO11.10 transgenic mice were generated by crossing Il17f ⁇ / ⁇ with DO11.10 mice, a gift of Dr. Dennis Y. Loh (Washington University School of Medicine). The genotyping of Il17a ⁇ / ⁇ mice was performed as previously reported (Nakae, S., et al. (2002) Immunity 17, 375-387.).
  • PCR primers were used for genotyping IL-17F: Primer 1: 5'-TGG TAC TGC ATC AAA GTG ACA GTC-3 '(SEQ ID NO: 51); Primer 2: 5'-AAG GGT TCA GAG TCT GCG CTG CTC-3 ′ (SEQ ID NO: 52); Primer 3: 5′-GGA AGA TAG CAG GCA TGC TGG-3 ′ (SEQ ID NO: 53). Primers 1 and 2 were used to detect the wild type (WT) allele (800 bp) and primers 1 and 3 were used to detect the mutant allele (500 bp).
  • WT wild type
  • primers 1 and 3 were used to detect the mutant allele (500 bp).
  • Th17 cells are 1 ⁇ g / ml of anti-CD3 monoclonal antibody purified from the culture supernatant of 145.2C11 cells, 1 ⁇ g / ml of anti-CD28 monoclonal antibody (37.51; eBioscience), anti-mouse IFN- ⁇ (XMG1.2, kindly provided by Dr. Yoshimoto 10 ⁇ g / ml, anti-mouse IL-4 (11B11, generously granted by Dr.
  • EAE MOG-induced EAE was examined as previously reported ( Komiyama, Y., et al. (2006) J. Immunol. 177, 566-573.). Briefly, 129 / Ola x C57BL / 6J mice were treated with 300 ⁇ g MOG35-55 peptide emulsified with CFA containing 5 mg / ml of heated Mycobacterium tuberculosis H37RA (Difco) on day 0 On the 7th day, the other side was immunized subcutaneously. Pertussis toxin (Alexis) (200 ng) was injected intravenously on days 0 and 2. After the first immunization, EAE severity was monitored and graded from 0 to 5: 0, no disease, 1, tail dragging, 2, hindlimb weakness, 3, hindlimb paralysis, 4, hindlimb And forelimb paralysis, 5, morbidity and death
  • CIA CIA was examined as previously reported (Nakae et al., 2003). Briefly, C57BL / 6J background mice were challenged with 100 ⁇ l of CFA-emulsified avian IIC (Sigma) 1 mg / ml and heat-killed Mycobacterium tuberculosis H37RA (Difco) 5 mg / ml at several sites at the base of the tail. Vaccinated. Twenty-one days after the first immunization, the mice were again administered intradermally with collagen / CFA near the location of the first injection. The onset of arthritis was determined by macroscopic evaluation. The swelling and redness of each joint was examined and the severity graded from 0 to 3 for each foot: 0, no change, 1, mild swelling of the footpad and / or redness of the footpad, 2, joint Obvious swelling, 3, severe joint swelling and tonic change
  • Ovalbumin-induced pulmonary inflammation Mice were sensitized intraperitoneally with OVA / alum 100 ⁇ g / ml on days 0 and 12, and OVA (1% in PBS) for 20 minutes on days 21, 22 and 23 was administered to the respiratory tract by nebulization with and the lung inflammation in BALF was assessed 24 hours after the last OVA administration.
  • OVA / PBS-induced lung inflammation Il17f + / + , Il17f +/- or Il17f -/- mice mated with DO11.10 mice were administered daily for 4 days and OVA (1% in PBS) for 20 minutes did.
  • colonic epithelial cells To isolate colonic epithelial cells, the colon was dissected longitudinally and washed to remove feces. The colon was then cut into short pieces, transferred to a 50 ml conical tube and incubated at 37 ° C. for 60 minutes with slow shaking in RPMI 1640 containing 2% FCS and EDTA 2.5 mM. The cell suspension was passed through a strainer. To purify colonic epithelial cells, cells were stained with FITC anti CD45mAb (BD Pharmingen), CD45 - , high FSC / SSC populations The Institute of Medical Science, were separated on a FACSAria system (Becton Dickinson) in FACS Core Laboratory .
  • CD45mAb BD Pharmingen
  • colon lymphocytes including intraepithelial and lamina limbal lymphocytes
  • the colon is minced and transferred to a 50 ml conical tube and gently shaken in RPMI 1640 containing 2% FCS and type VIII collagenase (Sigma) 200 U / ml Incubated for 60 minutes at 37 ° C. Suspended cells were passed through a strainer. These cells were resuspended in 5 ml of 80% fraction of a 40:80 Percoll gradient (Amersham Biosciences) and this solution was placed under 5 ml of 40% fraction in a 15 ml conical tube. Percoll gradient separation was performed by centrifugation at 2200 rpm for 20 minutes at room temperature. Colon lymphocytes gathered in the middle layer of the Percoll gradient.
  • Colon organ culture Three pieces of colon (0.5 cm x 0.5 cm) were washed with cold PBS supplemented with penicillin and streptomycin (GIBCO). These fragments were cultured in serum-free RPMI1640 medium supplemented with penicillin and streptomycin in the presence or absence of IL-23 (R & B systems) 20 ng / ml. After 24 hours, the supernatant was centrifuged and a constant volume was stored at -80 ° C until analysis.
  • IL-17F contributes to the development of arthritis in IL-1 receptor antagonist-deficient (Il1rn ⁇ / ⁇ ) mice.
  • Il17a ⁇ / ⁇ , Il17f ⁇ / ⁇ and Il17a ⁇ / ⁇ Il17f ⁇ / ⁇ mice were generated (FIG. 7). These mice were born healthy at the expected Mendelian ratio, were fertile, and did not show gross phenotypic abnormalities, including lymphocyte-like cell populations.
  • IL-17A production is normal in Il17f ⁇ / ⁇ mice
  • IL-17A and IL-17F are TGF- ⁇ and IL ⁇ It was not required for 6-induced Th17 cell differentiation (FIG. 8).
  • IL-17A plays an important role in the spontaneous development of arthritis in Il1rn ⁇ / ⁇ mice (Nakae, S., et al. (2003b) Proc. Natl. Acad. Sci. USA 100, 5986-5990.). Arthritis Il1rn ⁇ / ⁇ LN cells have more IL-17F-producing cells than wild-type (WT) LN cells, which also produce IL-17A, which is also true for IFN- ⁇ -producing cells ( Horai, R., et al. (2004) J. Clin. Invest. 114, 1603-1611.) (FIG. 1A).
  • IL-17A + IL-17F + cell count and IL-17A and IL-17F mRNA expression were also enhanced in LN cells from arthritic Il1rn ⁇ / ⁇ mice (FIGS. 1B and 1C).
  • the onset of arthritis is observed in Il17f -/- Il1rn -/- mice compared to the littermate Il17f + / + Il1rn -/- and Il17f +/- Il1rn -/- controls during the 30-week observation period. Although significant, suppression was partial (FIG. 1D).
  • Table 2 Disease incidence (number of diseased mice / total number of mice in group), mortality (number of dead mice / total number of mice in group), start date (mean day of clinical disease start ⁇ SEM), and disease severity (Maximum disease score median ⁇ SEM) is shown for mice of all genotypes. a; Only mice that developed clinical signs of disease were analyzed.
  • Il17a ⁇ / ⁇ Il17f ⁇ / ⁇ mice show increased susceptibility to opportunistic infections by S. aureus.
  • WT wild type
  • Il17f -/- or Il17a -/- mice This effect was observed in various genetic backgrounds including C57BL / 6J, BALB / cA and 129 / OlaXC57BL / 6J strains (FIG. 2A).
  • IgM titers were similar between Il17a ⁇ / ⁇ Il17f ⁇ / ⁇ mice and wild type (WT) mice.
  • mice When cultured the mucocutaneous tissue homogenates from these mice, wild-type (WT), Il17f - / - and IL17A - / - as compared to the case of a sample from a mouse, Il17a - / - Il17f - / - mice Since more bacteria were observed in the homogenate (FIGS. 2E and 2F), both IL-17A and IL-17F are crucial to protect mice from mucocutaneous S. aureus infection It was suggested. To investigate whether IL-17A and IL-17F play a role in systemic infection with S. aureus, mice were administered S. aureus by intravenous injection.
  • Il17f -/- , Il17a -/- and Il17a -/- Il17f -/- mice had substantially more bacteria detected at each time point after infection than in wild-type (WT) mice
  • Bacterial load in mutant mice decreased by day 21 and returned to wild-type (WT) levels by day 28 after infection in all genotype mice.
  • colonic bacterial counts were similar among Il17f ⁇ / ⁇ , Il17a ⁇ / ⁇ and Il17a ⁇ / ⁇ Il17f ⁇ / ⁇ mice.
  • IL-17F and IL-17A are required for ⁇ -defensin expression in the colon.
  • the antibacterial mechanism induced by IL-17A and IL-17F was analyzed. (Mundy, R., et al., (2005) Cell. Microbiol. 7, 1697-1706.) Serum levels of C. rodentium-specific IgG increased in all mutant mice (FIG. 14), suggesting that the humoral immune response against C. rodentium is not involved in delayed bacterial clearance in Il17f ⁇ / ⁇ , Il17a ⁇ / ⁇ and Il17a ⁇ / ⁇ Il17f ⁇ / ⁇ mice.
  • IL-17F and IL-17A are produced by different cells in the colon.
  • IL-17A mRNA is more highly expressed in the small intestine than in the colon (Ivanov, II, et al. (2006) Cell 126, 1121-1133.).
  • IL-17F mRNA expression in the colon was higher than in the small intestine (FIG. 5A).
  • WT wild type mice
  • IL-17A mRNA expression was unaffected by IL-17F deficiency and vice versa.
  • IL-17A and IL-17F producing cells were found in colon lymphocytes of uninfected wild type (WT) mice (FIG. 5C)
  • the population of IL-17F producing cells that also produce IL-17A is: Increased in infected wild type (WT) mice (FIG. 5D).
  • WT uninfected wild type mice
  • FIG. 5D the coordinated production of IL-17A and IL-17F by LN cells after the onset of DTH, EAE or arthritis
  • IL-17A and IL-17F may be produced by different cells in the colon because the kinetics of induction differ between the two molecules and IL-17F producing cells were rarely found in colon lymphocytes .
  • the mRNA expression of these molecules was examined in the colons of recombinant activating gene-2 deficient (Rag2 ⁇ / ⁇ ) mice in the absence of T and B cells.
  • IL-17A mRNA expression in mesenteric LN (MLN) was much higher than in colon 7 days after C. rodentium infection in wild type (WT) mice (FIG. 5E).
  • WT wild type mice
  • IL-17A mRNA levels are markedly reduced in Rag2 ⁇ / ⁇ mice (approximately 20% of wild type (WT)) (FIGS.
  • Th17 cells are the major producers of IL-17A. It was suggested that there is. In contrast, the amount of IL-17F expression was only reduced by about 50% in the MLN of these mice (FIGS. 5E and 5F). IL-17A mRNA expression was also significantly reduced in the colons of Rag2 ⁇ / ⁇ mice, whereas IL-17F mRNA expression was similar between wild-type (WT) and Rag2 ⁇ / ⁇ mice (FIG. 5E and 5F). Furthermore, IL-17F production in whole colon culture supernatants from Rag2 ⁇ / ⁇ mice was increased by treatment with IL-23, but IL-17A production was not increased.
  • IL-17A and IL-17F production are both induced in whole colon culture supernatants from wild type (WT) mice, and IL-17F can also be produced by non-T and non-B cells.
  • WT wild type mice
  • IL-17F can also be produced by non-T and non-B cells.
  • FIG. 5G Next, it was investigated which cells produce IL-17F in response to IL-23.
  • stimulation with IL-23 increased IL-17F production in splenocytes or MLNs derived from Rag2 ⁇ / ⁇ or CB-17 SCID mice compared to wild type (WT) mice. Only a small amount of IL-17A was produced in these cells (FIGS. 5H, 5I and FIG. 16).
  • CD11b low DX5 + CD11c ⁇ Gr1 ⁇ B220 ⁇ F4 / 80 ⁇ Gr1 ⁇ cells tend to mainly produce IL-17F after stimulation with IL-23 (FIG. 15).
  • IL-17F is expressed in lung epithelial cells (EC) (Suzuki, S., et al. (2007) Int. Arch. Allergy Immunol. 143 (Suppl 1), 89-94.) Whether it was expressed in EC was also examined. IL-17F mRNA was detected in CD45-colon ECs obtained by sorting by FACS from infected wild type (WT) mice, but IL-17A mRNA was not detected. This result is in contrast to CD45 + intraepithelial immune cells and ConA stimulated splenocytes in which both IL-17A and IL-17F were detected (FIG. 5J).
  • EC lung epithelial cells
  • IL-17F mRNA was expressed in the mouse colon EC system, but IL-17A was not expressed (FIG. 5K). These results indicate that, in response to C. rodentium infection, IL-17F is produced by non-T non-B innate immune cells and colon EC in addition to infiltrating lymphocytes.
  • IL-17RC is strongly expressed in colonic epithelial cells.
  • Two receptor molecules, IL-17RA and IL-17RC have been reported to bind to IL-17A and IL-17F (Toy, D., et al. (2006) J. Immunol. 177, 36- 39 .; Zheng, Y., et al. (2008) Nat. Med. 14, 282-289.).
  • the binding affinities of IL-17A and IL-17F for these receptors are different (Hymowitz, SG, et al., (2001) EMBO J. 20, 5332-5341 .; Kuestner, RE, et al., (2007) J.
  • IL-17RA mRNA was strongly expressed in lymphoid tissues such as thymus, spleen and LN (FIG. 6A). .
  • IL-17RC mRNA was abundantly expressed in non-hematopoietic tissues such as colon, small intestine and lung (FIG. 6A).
  • T cells and macrophage cells expressed more IL-17RA mRNA than the colon EC line, whereas colon EC expressed more IL-17RC mRNA than the T cells (Fig. 6B).
  • IL-17RA or Act1 mRNA is constitutively expressed in Thyl.2 + cells, B220 + cells, CD11c + cells, CD11b + cells, peritoneal macrophages and colon epithelial cells (CMT93), whereas IL-17RC mRNA is It was also found to be detected only in peritoneal macrophages and colon EC (FIG. 6C). That is, the tissue distribution of these receptors is significantly different, and IL-17RC is preferentially expressed in colon EC.
  • IL-17F can transmit signals to T cells, peritoneal macrophages or colon epithelial cells.
  • IL-17A can induce IL-6 by peritoneal macrophages, CCL2 by CD4 + T cells, or lipocalin 2 and ⁇ -defensin 3 by colonic epithelial cells (CMT93) in a dose-dependent manner (FIGS. 6D to 6F).
  • 50 ng / ml IL-17A was found to be sufficient to induce multiple cytokines and chemokines in these cells (FIGS. 6D-6J and FIG. 16).
  • IL-17F treatment in colonic epithelial cells induced the majority of the inflammatory mediators examined, but IL-17F activity was only slightly compared to IL-17A activity. (Figs. 6F, 6G and Fig. 16).
  • IL-17A also induced the production of multiple cytokines and chemokines in CDC4 + T cells, but not IL-17F. No synergistic effect was observed between IL-17A and IL-17F (FIGS. 6F, 6G and FIG. 16). These results indicate that IL-17A and IL-17F can induce the expression of cytokines and antimicrobial peptides in a manner that differs specifically to the cell type.
  • IL-17A is essential for the development of DTH, CHS, EAE, CIA and arthritis in Il1rn ⁇ / ⁇ mice, whereas IL-17F is not essential for the induction of these responses, It was shown that it has no effect on the effect of IL-17A on these disorders.
  • IL-17A and IL-17F are produced simultaneously by Th17 cells and bind to the same receptor, but IL-17F is less active in these immune responses compared to IL-17A. It shows that it does not have.
  • the cytokine-inducing activity of IL-17F from macrophages or T cells is much lower than IL-17A.
  • IL-17A enhances immune responses by activating T cell stimulation (Nakae, S., et al. (2002) Immunity 17, 375-387 .; Nakae, S., et al. (2003b) Proc. Natl Acad. Sci. USA 100, 5986-5990.), Macrophages (Da Silva, CA, et al. (2008) J. Immunol. 181, 4279-4286 .; Jovanovic, DV, et al. (1998) J. Immunol. 160, 3513-3521.) And dendritic cells (A Antonysamy, MA, et al. (1999) Immunol. 162, 577-584 .; Coury, F., et al. (2008) Nat. Med.
  • Inflammation is induced by inducing cytokines from various cell types, including). Therefore, there is a possibility that this cytokine does not act in allergic and autoimmune responses due to the low cytokine-inducing activity of IL-17F on immune cells.
  • Il17a -/- Il17f -/- mice were shown to be susceptible to opportunistic infections with Staphylococcus aureus, indicating that IL-17A and IL-17F are important for host defense against this bacterium .
  • IL-17A and IL-17F complement each other here because Il17f ⁇ / ⁇ and Il17a ⁇ / ⁇ mice show normal sensitivity to S. aureus.
  • IL-17A and IL-17F have been shown to be involved in the response to C. rodentium. Bacterial burden in the colon after infection with C.
  • rodentium showed a similar increase in Il17f -/- , Il17a -/- and Il17a -/- Il17f -/- mice, with only one IL-17 protein It was suggested that only deficiency would make them completely susceptible to C. rodentium infection. In particular, splenomegaly and colon hypertrophy associated with severe colon inflammation are more prominent in Il17f -/- than in Il17a -/- , and IL-17F protects colon epithelial cells from the pathogenic effects of this bacterium. It was shown to be more important than IL-17A. The result that both IL-17A and IL-17F are required for protection against C. rodentium is not the case for S. aureus, where either IL-17A or IL-17F is sufficient for protection. Clearly in contrast, suggesting a different defense mechanism against S. aureus and C. rodentium infection.
  • ⁇ -Defensin production was found to be impaired in the infected colon of Il17a -/- and Il17f -/- mice, and only one of IL-17A or IL-17F stimulated ⁇ -defensin production from EC
  • both IL-17A and IL-17F have been shown to be required for the induction of these molecules in vivo (Kao, CY, et al. (2004) J. Immunol. 173, 3482-3491. Liang, SC, et al. (2006) J. Exp. Med. 203, 2271-2279.). Since ⁇ -defensins play an important role in the immune response against these pathogens (LeBlanc, PM, et al.
  • IL-17A and IL-17F were directed against C. rodentium, since the production of C. rodentium specific antibodies in Il17f ⁇ / ⁇ , Il17a ⁇ / ⁇ and Il17a ⁇ / ⁇ Il17f ⁇ / ⁇ mice was normal. It is not necessary for the acquired immune response.
  • IL-17A and IL-17F producing cells in the colon are different, IL-17F is mainly produced by colon EC and innate immune cells, while most of IL-17A is likely to be Th17 cells It was found to be produced by Rag2-dependent cells. Furthermore, the data in this example show that IL-17A production is significantly induced after bacterial infection, whereas the induction of IL-17F is less pronounced in the infected colon. These results indicate that colonic EC and / or IL-17F from innate immune cells induce antimicrobial peptides in EC, resulting in protection against early bacterial invasion and spread. The distinct effects of IL-17A and IL-17F and the obvious synergy between these two molecules in defensin induction also explains why these two cytokines do not complement in C. rodentium infection in the colon Can be explained.
  • Il17ra -/- mice were reported to show ulcerative syndrome around the mouth and eyes mucosa by staphylococcal colonization (Schwarzenberger, P., et al., (2002) J. Cell. Biochem. Suppl 38, 88-95.). This phenotype is very similar to that seen in Il17a -/- Il17f -/- mice, suggesting that IL-17RA is involved in both IL-17A and IL-17F signaling The However, it was found that IL-17RC is strongly expressed in colonic epithelial cells, while IL-17RA is preferentially expressed in immune cells such as macrophages and T cells.
  • IL-17F The binding affinity of IL-17F to IL-17RA is much lower than IL-17A (Hymowitz, SG, et al. (2001) EMBO J. 20, 5332-5341 .; Wright, JF, et al., (2008). J. Immunol. 181, 2799-2805.), Since only IL-17F binds to IL-17RC in mice (Kuestner, RE, et al. (2007) J. Immunol. 179, 5462-5473.) The use of these receptors for 17A and IL-17F appears to be different.
  • IL-17A and IL-17F differ in colon epithelial cells, macrophages and T cells, and both IL-17A and IL-17F are neutrophil chemoattractants and ⁇ -Defensin could be induced, but only IL-17A was shown to be able to efficiently induce cytokines in macrophages and T cells.
  • IL-17RA and IL-17RC can also form homodimers (Kramer, JM, et al. (2006) J. Immunol.
  • IL-17RA is an IL-25 signaling Interacts with IL-17RB (Rickel, EA, et al. (2008) J. Immunol. 181, 4299-4310.). Therefore, in addition to the difference in production cells, the distribution of cell-type specific IL-17 receptors and the binding affinity of IL-17A and IL-17F to these receptors It is important for both host and host defense responses and can explain whether only IL-17F is involved in epithelial cells in innate immune responses.

Abstract

Disclosed are an IL-17F-knockout mouse and an IL-17A/IL-17F-double knockout mouse.  The function of IL-17F in vivo can be revealed using the mice.  Specifically disclosed is an agent for protecting from infections, which comprises (i) an IL-17F protein or (ii) a substance capable of binding to an IL-17 receptor A (IL-17RA) or an IL-17 receptor C (IL-17RC) to exhibit an equivalent function to that of IL-17F as an active ingredient.

Description

IL-17A/ IL-17F制御による感染症治療・予防薬Infectious disease treatment / prevention drug controlled by IL-17A / 薬 IL-17F
 本発明は、感染症モデル動物として有用な染色体上のIL-17F遺伝子座に欠失及び/又は挿入変異を有する非ヒト哺乳動物、上記非ヒト哺乳動物を用いた感染症治療・予防薬のスクリーニング方法、IL-17Fタンパク質などを有効成分として含む感染防御剤、並びにIL-17F又はIL-23の発現量を指標とした感染症治療・予防薬のスクリーニング方法に関する。 The present invention relates to a non-human mammal having a deletion and / or insertion mutation at the IL-17F locus on a chromosome useful as an infectious disease model animal, and a screening for an infectious disease treatment / prevention drug using the non-human mammal. The present invention relates to a method, an infection protective agent containing IL-17F protein or the like as an active ingredient, and a method for screening an infectious disease treatment / prevention drug using the expression level of IL-17F or IL-23 as an index.
 ナイーブCD4+T細胞は、サイトカイン産生特性およびエフェクター機能に基づいて、Th1およびTh2細胞を含む複数のヘルパーT細胞サブセットに分類される。最近、IL-17A、IL-17F、IL-21およびIL-22を優先的に産生するTh17細胞がマウスで同定された(非特許文献1及び2)。Th17細胞の分化は、TGF-βとIL-6(非特許文献3から5)、またはIL-21(非特許文献6から8)によって誘導され、IL-1およびTNFの同調した活性によって促進する(非特許文献9)。IL-23は、Th17細胞の増殖、生存およびエフェクター機能に必要で、このT細胞サブセットによってIL-17AおよびIL-17F産生が促進される(非特許文献5及び8)。 Naive CD4 + T cells are classified into multiple helper T cell subsets, including Th1 and Th2 cells, based on cytokine production characteristics and effector functions. Recently, Th17 cells that preferentially produce IL-17A, IL-17F, IL-21 and IL-22 have been identified in mice (Non-patent Documents 1 and 2). Differentiation of Th17 cells is induced by TGF-β and IL-6 (Non-Patent Documents 3 to 5) or IL-21 (Non-Patent Documents 6 to 8), and is promoted by synchronized activities of IL-1 and TNF. (Non-patent document 9). IL-23 is required for Th17 cell proliferation, survival and effector function, and IL-17A and IL-17F production is promoted by this T cell subset (Non-patent Documents 5 and 8).
 IL-17FおよびIL-17Aは、ヒトおよびマウスの両方で互いに近接する遺伝子によってコードされる1L-17タンパク質ファミリーに属する相同性の高いタンパク質である(非特許文献9から11)。IL-17AおよびIL-17Fは、IL-17RAおよびIL-17RCからなる同一の受容体複合体に結合し得ることが報告され(非特許文献12及び13)、これらのサイトカインが類似の生物学的機能を有することが示唆されている。この知見と一致して、IL-17AおよびIL-17Fはいずれも抗菌ペプチド(デフェンシン)、サイトカイン(IL-6、G-CSF、GM-CSF)およびケモカイン(CXCL1、CXCL2、CXCL5)の産生を誘導し、顆粒球生成および好中球動員を促進する(非特許文献9から11)。肺におけるIL-17FまたはIL-17Aの過剰発現は、炎症誘発性サイトカインおよびケモカイン発現を増加させ、好中球浸潤を伴う炎症を引き起こす(非特許文献14から17)。 IL-17F and IL-17A are highly homologous proteins belonging to the 1L-17 protein family encoded by genes that are close to each other in both humans and mice (Non-Patent Documents 9 to 11). IL-17A and IL-17F have been reported to be able to bind to the same receptor complex consisting of IL-17RA and IL-17RC (Non-patent Documents 12 and 13), and these cytokines have similar biological properties. It has been suggested to have a function. Consistent with this finding, IL-17A and IL-17F both induce the production of antimicrobial peptides (defensins), cytokines (IL-6, G-CSF, GM-CSF) and chemokines (CXCL1, CXCL2, CXCL5) It promotes granulocyte production and neutrophil recruitment (Non-Patent Documents 9 to 11). Overexpression of IL-17F or IL-17A in the lung increases proinflammatory cytokine and chemokine expression and causes inflammation with neutrophil infiltration (Non-Patent Documents 14 to 17).
 IL-12-IFN-γシグナリングよりもIL-23-IL-17Aシグナリングの方が、マウスにおいて、実験的自己免疫性脳脊髄炎(EAE)、コラーゲン誘導性関節炎(CIA)および炎症性腸疾患(IBD)などの自己免疫疾患ならびに接触過敏症(CHS)および遅延型過敏症(DTH)などのアレルギー疾患の発症に関与するといういくつかの証拠が確認されている(非特許文献1及び18)。最近の研究では、LPS、ペプチドグリカンおよびザイモザンのような微生物産物で刺激された抗原提示細胞が大量のIL-23を産生し、Th17細胞の発達を引き起こすので、Th17細胞も感染に対する宿主の防御に関与することが示唆されている(非特許文献19から21)。さらに、Il17ra-/-マウスおよび/またはIl23a-/-マウスは、肺における肺炎桿菌(Klebsiella pneumoniae)( 非特許文献22)および腸におけるシトロバクター ローデンチウム(Citrobacter rodentium)( 非特許文献4及び13)に対して感受性が高い。しかし、IL-17AおよびIL-17Fが自己免疫疾患およびアレルギー疾患ならびに宿主防御プロセスに対する相対的な関与についてはまだ解明されていない。 In mice, experimental autoimmune encephalomyelitis (EAE), collagen-induced arthritis (CIA), and inflammatory bowel disease (in IL-23-IL-17A signaling rather than IL-12-IFN-γ signaling) Some evidence has been identified that is involved in the development of autoimmune diseases such as IBD) and allergic diseases such as contact hypersensitivity (CHS) and delayed hypersensitivity (DTH) (Non-patent Documents 1 and 18). In recent studies, Th17 cells are also involved in host defense against infection because antigen-presenting cells stimulated with microbial products such as LPS, peptidoglycan and zymosan produce large amounts of IL-23 and cause Th17 cell development It has been suggested (Non-Patent Documents 19 to 21). In addition, Il17ra − / − mice and / or Il23a − / − mice can be identified as Klebsiella pneumoniae in the lung (Non-patent Document 22) and Citrobacter rodentium in the intestine (Non-patent Documents 4 and 13). Sensitive to However, the relative involvement of IL-17A and IL-17F in autoimmune and allergic diseases and host defense processes remains unclear.
 IL-17FはIL-17ファミリーの中で最もIL-17Aと相同性が高く、IL-17Aとレセプターを共有していることから炎症性疾患の発症に関与していると考えられていたが、生体内におけるIL-17Fの役割はほとんど未解明であった。また、IL-17AとIL-17Fをコードする遺伝子は同じ染色体上の近傍に位置することから、IL-17AとIL-17Fの二重欠損マウスを作製するためにはES細胞において連続した2度の相同組み換えが必要となり技術的に困難であった。本発明は、IL-17F 欠損マウス及びIL-17AとIL-17F二重欠損マウスを作製し、これを用いて生体内におけるIL-17Fの機能を解明することを解決すべき課題とした。さらに本発明は、IL-17F機能を制御することによる感染症治療薬を提供することを解決すべき課題とした。 IL-17F had the highest homology with IL-17A in the IL-17 family, and was thought to be involved in the development of inflammatory diseases because it shared receptors with IL-17A. The role of IL-17F in vivo is almost unknown. In addition, since the genes encoding IL-17A and IL-17F are located in the vicinity of the same chromosome, in order to produce double-deficient mice of IL-17A and IL-17F, two consecutive times in ES cells It was technically difficult to require homologous recombination. An object of the present invention is to prepare IL-17F -deficient mice and IL-17A and IL-17F double-deficient mice and to elucidate the function of IL-17F in vivo using these mice. Furthermore, another object of the present invention is to provide a therapeutic agent for infectious diseases by controlling IL-17F function.
 本発明者らは上記課題を解決するために鋭意検討し、免疫応答および細菌感染に対する宿主防御機構におけるIL-17FおよびIL-17Aの機能の違いを判別することを目的として、IL-17F(Il17f-/-)またはIL-17AおよびIL-17F両方(Il17a-/-Il17f-/-)を欠損するマウスを作製し、これらをIl17a-/-マウス(Nakae et al., Immunity 17, 375-387, 2002)と一緒に使用して、IL-17AおよびIL-17FがT細胞媒介炎症および細菌感染に対する免疫応答の発症に異なる役割を担うことを示した。本発明はこれらの知見に基づいて完成したものである。 The present inventors have intensively studied to solve the above problems, and for the purpose of discriminating differences in functions of IL-17F and IL-17A in the host defense mechanism against immune response and bacterial infection, IL-17F (Il17f -/- ) Or IL-17A and IL-17F (Il17a -/- Il17f -/- ) mice were generated and these were treated with Il17a -/- mice (Nakae et al., Immunity 17, 375-387 , 2002) showed that IL-17A and IL-17F play different roles in the development of immune responses against T cell mediated inflammation and bacterial infection. The present invention has been completed based on these findings.
 即ち、本発明によれば以下の発明が提供される。
(1) (i)IL-17Fタンパク質、又は(ii)IL-17受容体A(IL-17RA)又はIL-17受容体C (IL-17RC)に結合してIL-17Fと同等の機能を示す物質を有効成分として含む、感染防御剤。
(2) 粘膜での微生物感染を防御するために使用する、(1)に記載の感染防御剤。
(3) IL-17F産生細胞に被験物質を投与し、上記IL-17F産生細胞におけるIL-17F又はIL-23の発現量を増大させる被験物質を候補物質として選択することを含む、感染症治療・予防薬のスクリーニング方法。
(4) 染色体上のIL-17F遺伝子座に欠失及び/又は挿入変異を有する、非ヒト哺乳動物。
(5) 染色体上のIL-17A遺伝子座及びIL-17F遺伝子座の両方に欠失及び/又は挿入変異を有する、非ヒト哺乳動物。
(6) 日和見感染への感受性が増加している、(5)に記載の非ヒト哺乳動物。
(7) 感染症モデル動物として使用される、(4)から(6)の何れか1項に記載の非ヒト哺乳動物。
(8) げっ歯類である、(4)から(7)の何れか1項に記載の非ヒト哺乳動物。
(9) マウスである、(4)から(8)の何れか1項に記載の非ヒト哺乳動物。
(10) 感染症治療・予防薬をスクリーニングするための、(4)から(9)の何れか1項に記載の非ヒト哺乳動物の使用。
(11) (4)から(9)の何れか1項に記載の非ヒト哺乳動物に被験物質を投与し、上記非ヒト哺乳動物における感染感受性の程度を測定し、被験物質を投与しない場合と比較して感染感受性を低下させる被験物質を候補物質として選択することを含む、感染症治療・予防薬のスクリーニング方法。
That is, according to the present invention, the following inventions are provided.
(1) Binds to (i) IL-17F protein, or (ii) IL-17 receptor A (IL-17RA) or IL-17 receptor C (IL-17RC) and has the same function as IL-17F An infection protective agent containing the indicated substance as an active ingredient.
(2) The infection protective agent according to (1), which is used to protect against microbial infection in the mucous membrane.
(3) Infectious disease treatment comprising administering a test substance to IL-17F-producing cells and selecting a test substance that increases the expression level of IL-17F or IL-23 in the IL-17F-producing cells as a candidate substance -Screening methods for prophylactic drugs.
(4) A non-human mammal having a deletion and / or insertion mutation at the IL-17F locus on the chromosome.
(5) A non-human mammal having a deletion and / or insertion mutation at both the IL-17A locus and the IL-17F locus on the chromosome.
(6) The non-human mammal according to (5), wherein susceptibility to opportunistic infection is increased.
(7) The non-human mammal according to any one of (4) to (6), which is used as an infectious disease model animal.
(8) The non-human mammal according to any one of (4) to (7), which is a rodent.
(9) The non-human mammal according to any one of (4) to (8), which is a mouse.
(10) Use of the non-human mammal according to any one of (4) to (9) for screening for an infectious disease therapeutic / prophylactic agent.
(11) When the test substance is administered to the non-human mammal according to any one of (4) to (9), the degree of infection susceptibility in the non-human mammal is measured, and the test substance is not administered; A method for screening an infectious disease treatment / prevention drug, comprising selecting, as a candidate substance, a test substance that reduces infection susceptibility.
 IL-17Fを特異的に上皮細胞で発現させることによって、感染防御能を促進することができる。特に、IL-17Aとは異なり、有害な炎症反応を惹起させることなく、有益な感染防御能のみを活性化することができる。本発明においては、IL-17A産生細胞とIL-17F産生細胞とが異なることを明らかにし、腸管の非リンパ球においてIL-17Fを人為的に誘導できることが示された。さらに、IL-17F欠損マウス、及びIL-17A/IL-17F二重欠損マススは、本発明において初めて作製されたものである。本発明のノックアウト非ヒト哺乳動物は、IL-17A/IL-17Fの生体内における役割分担とその分子機序の解明、IL-17受容体の構造解析とリガンド特性の解析、IL-17A/IL-17Fの特異的な誘導法の開発などに有用である。 Infection protective ability can be promoted by specifically expressing IL-17F in epithelial cells. In particular, unlike IL-17A, it is possible to activate only the beneficial infection-protective ability without inducing a harmful inflammatory response. In the present invention, it was clarified that IL-17A producing cells and IL-17F producing cells are different, and it was shown that IL-17F can be artificially induced in non-lymphocytes of the intestinal tract. Furthermore, IL-17F-deficient mice and IL-17A / IL-17F double-deficient masses were produced for the first time in the present invention. The knockout non-human mammal of the present invention can be used to elucidate the role of IL-17A / IL-17F in vivo and its molecular mechanism, to analyze the structure of the IL-17 receptor and to analyze the ligand properties, IL-17A / IL It is useful for the development of a specific induction method for -17F.
IL-17FはIl1rn-/-マウスにおける自然発症自己免疫関節炎の発症に寄与する。(A) in vitroにおいてPMAおよびイオノマイシンで刺激した野生型(WT)および関節炎Il1rn-/-マウスのLN細胞における細胞内IL-17F、IL-17AおよびIFN-γ発現のプロファイル。(B) PMAおよびイオノマイシンで刺激した野生型(WT)および関節炎Il1rn-/-マウスの足首関節の細胞における細胞内IL-17F、IL-17AおよびIFN-γ発現のプロファイル。(C) 関節炎Il1rn-/-マウスの関節におけるIL-17AおよびIL-17FmRNAの発現。(D) Il1rn-/-マウスにおける関節炎発症率および重症度スコア。左図:Il1rn-/-バックグラウンドのIl17f+/+、Il17f+/-およびIl17f-/-マウス。右図:Il1rn-/-バックグラウンドのIl17a+/+Il17f+/+、Il17a+/-Il17f+/-およびIl17a-/-Il17f-/-マウス(n=15~22/群)。χ2検定を使用して測定した場合で、Il17f+/+またはIl17a+/+Il17f+/+マウスに対して、*、p<0.05および**、p<0.01。(E) PMAおよびイオノマイシンで刺激した野生型(WT)、Il17a+/+Il17f+/+Illrn -/-、Il17f-/-I1lrn-/-、およびIl17a-/-Il1rn-/-マウスのLN細胞における細胞内IL-17A発現。データは、2回(C、E)または3回(A、B)の独立した実験を表す。IL-17F contributes to the development of spontaneous autoimmune arthritis in Il1rn − / − mice. (A) Profiles of intracellular IL-17F, IL-17A and IFN-γ expression in LN cells of wild type (WT) and arthritic Il1rn − / − mice stimulated with PMA and ionomycin in vitro. (B) Profiles of intracellular IL-17F, IL-17A and IFN-γ expression in cells of ankle joints of wild type (WT) and arthritic Il1rn − / − mice stimulated with PMA and ionomycin. (C) Expression of IL-17A and IL-17F mRNA in arthritic Il1rn − / − mouse joints. (D) Arthritis incidence and severity score in Il1rn − / − mice. Left: Il1rn − / − background Il17f + / + , Il17f +/− and Il17f − / − mice. Right: Il1rn − / − background Il17a + / + Il17f + / + , Il17a +/− Il17f +/− and Il17a − / − Il17f − / − mice (n = 15-22 / group). *, p <0.05 and **, p <0.01 for Il17f + / + or Il17a + / + Il17f + / + mice as measured using the χ 2 test. (E) Wild type (WT), Il17a + / + Il17f + / + Illrn -/- , Il17f -/- I1lrn -/- , and Il17a -/- Il1rn -/- mouse LN cells stimulated with PMA and ionomycin Intracellular IL-17A expression. Data represent 2 (C, E) or 3 (A, B) independent experiments. 日和見黄色ブドウ球菌感染に対するIl17a-/-Il17f-/-マウスの感受性の増加。(A) 12~16週齢のBALB/cAマウス(n=3~8/群)の顎下LNの重量および肉眼的形態。(B) 8~10週齢のマウス(n=6~8/群)の血清におけるイムノグロブリン力価。同様の結果がC57BL/6Jバックグラウンドでも認められた。(C) 鼻および口の周辺のIl17a-/-Il17f-/-皮膚粘膜組織の病理(H&E、上、40×;下、120×)。データは各群4匹のマウスを表している。(D) 4~8週齢の間に経口抗生物質投与を行った場合と行わなかった場合のBALB/cAバックグラウンドIl17a-/-Il17f-/-マウス(n=10/群)の顎下LNの重量。(E) 12~16週齢のBALB/cAマウスの皮膚粘膜組織から回収された細菌コロニーを示す代表的プレート。(F) 12~16週齢のマウスの皮膚粘膜組織のホモジネート中の黄色ブドウ球菌のCFU。データは、3回の独立した実験から収集した。(G) 黄色ブドウ球菌1×107CFUをi.v.注射した後のマウスの生存率(n=11/群)。データは、2回の独立した実験を表す。(H) 黄色ブドウ球菌1×107CFUをi.v.注射して、3日後に回収した腎臓ホモジネートにおける黄色ブドウ球菌CFU(n=4/群)。データは、2回の独立した実験を表す。WTに対して*p<0.05、**p<0.05および***p<0.05。Increased susceptibility of Il17a − / − Il17f − / − mice to opportunistic S. aureus infection. (A) Weight and macroscopic morphology of submandibular LN of BALB / cA mice (n = 3-8 / group) aged 12-16 weeks. (B) Immunoglobulin titer in serum of 8-10 week old mice (n = 6-8 / group). Similar results were observed in the C57BL / 6J background. (C) Il17a − / − Il17f − / − pathology of mucosal tissue around the nose and mouth (H & E, upper, 40 ×; lower, 120 ×). Data represent 4 mice in each group. (D) BALB / cA background Il17a -/- Il17f -/- mice (n = 10 / group) submandibular LN with or without oral antibiotics between 4 and 8 weeks of age Weight. (E) Representative plate showing bacterial colonies recovered from skin mucosal tissue of 12-16 week old BALB / cA mice. (F) CFU of Staphylococcus aureus in homogenate of mucocutaneous tissue of 12-16 week old mice. Data was collected from 3 independent experiments. (G) Survival rate of mice after iv injection with S. aureus 1 × 10 7 CFU (n = 11 / group). Data represent two independent experiments. (H) Staphylococcus aureus CFU (n = 4 / group) in kidney homogenate collected 3 days after iv injection of S. aureus 1 × 10 7 CFU. Data represent two independent experiments. * P <0.05, ** p <0.05 and *** p <0.05 versus WT. IL-17FおよびIL-17AはC.ローデンチウム感染に対する防御に必要である。野生型(WT)、Il17f-/-、Il17a-/-およびIl17a-/-Il17f-/-マウスにC.ローデンチウム2×108CFUを経口的に感染させ、結腸および脾臓を感染後の指示した時点で採取した。(A) 結腸ホモジネートにおけるC.ローデンチウムのCFU(n=10~16/群)。データは、2回または3回の独立した実験から収集した結果を示す。(B) 経口感染して14日後の結腸遠位部位におけるC.ローデンチウムの視覚化(上、40×、下、120×)。データは各群4~6匹のマウスを表している。(C、D) (A)で示したような経口感染後の結腸重量(C)および脾臓重量(D)。データは、2回または3回の独立した実験から収集した結果を示す。(E、F) 経口感染の14日後の結腸遠位部位における組織病理(E)および腸陰窩の長さ(F)(H&E、40×)。データは、3回の別々の実験から収集した。野生型(WT)マウスに対して*p<0.05、**p<0.01および***p<0.001。IL-17F and IL-17A are required for protection against C. rodentium infection. Wild-type (WT), Il17f -/- , Il17a -/- and Il17a -/- Il17f -/- mice were orally infected with C. rodentium 2 x 10 8 CFU and the colon and spleen were postinfected It was collected at the time. (A) CFU of C. rodentium in colon homogenates (n = 10-16 / group). Data represent results collected from 2 or 3 independent experiments. (B) Visualization of C. rodentium at the distal colon site 14 days after oral infection (up, 40 ×, down, 120 ×). Data represent 4-6 mice in each group. (C, D) Colon weight (C) and spleen weight (D) after oral infection as shown in (A). Data represent results collected from 2 or 3 independent experiments. (E, F) Histopathology (E) and intestinal crypt length (F) at the distal colon site 14 days after oral infection (H & E, 40 ×). Data was collected from 3 separate experiments. * P <0.05, ** p <0.01 and *** p <0.001 for wild type (WT) mice. IL-17FおよびIL-17AはC.ローデンチウム感染中のβ-デフェンシン発現の誘導に必要である。(A) C.ローデンチウムに感染して14日後の結腸における炎症メディエーターの発現を半定量RT-PCRを使用して測定した。(B) C.ローデンチウムに感染して14日後の結腸における抗菌ペプチドの発現をリアルタイムRT-PCRを使用して測定した。RNA試料は、各群の6~8匹のマウスから収集した。全データは、3回の独立した実験を表す。IL-17F and IL-17A are required for the induction of β-defensin expression during C. rodentium infection. (A) Expression of inflammatory mediators in the colon 14 days after infection with C. rodentium was measured using semi-quantitative RT-PCR. (B) The expression of antimicrobial peptides in the colon 14 days after infection with C. rodentium was measured using real-time RT-PCR. RNA samples were collected from 6-8 mice in each group. All data represent 3 independent experiments. IL-17FおよびIL-17Aは異なる細胞によって産生される。(A) リアルタイムRT-PCRを使用して野生型(WT)マウスの結腸、小腸および末梢LNのIL-17AおよびIL-17FmRNA発現を分析した。LN細胞における発現を1とした。(B) C.ローデンチウムに感染して7日後および14日後のマウス結腸におけるIL-17AおよびIL-17Fの発現をリアルタイムRT-PCRを使用して測定した。RNA試料は、各群の4~6匹のマウスの試料の収集物である。未感染野生型(WT)マウスにおける発現を1とした。(C、D) 未感染マウス(C)またはC.ローデンチウムに感染して14日後のマウス(D)の結腸PMAおよびイオノマイシン刺激リンパ細胞における細胞内IL-17F、IL-17AおよびIFN-γ発現のプロファイル。(E、F) C.ローデンチウムに感染して7日後のC57BL/6J 野生型(WT)およびRag2-/-マウスの結腸およびMLNについて、IL-17AおよびIL-17FmRNA発現をリアルタイムRT-PCRを使用して分析した(E)(n=5~6/群)。野生型(WT)結腸における発現を1とした。Rag2-/-マウスの結腸およびMLNにおけるこれらのサイトカインの発現は、野生型(WT)マウスにおける発現のパーセンテージとして測定した(F)。(G) 未感染野生型(WT)、Rag2-/-およびIl17a-/-Il17f-/-マウスの結腸全体をIL-23 20ng/mlの存在下または非存在下で24時間培養した。上清中のIL-17AまたはIL-17Fの濃度をELISAによって測定し、各試料の全タンパク質含量に対して標準化した(n=5~8/群)。同様の結果がC.B-17SCIDマウスでも認められた。(H、I)野生型(WT)およびRag2-/-マウスの脾細胞(5×105細胞)(H)またはMLN(1.5×105細胞)(I)を、LPS 5μg/mlおよびIL-23 20ng/mlの存在下または非存在下で、それぞれ24ウェルプレートまたは48ウェルプレートで72時間培養し、培養上清中のIL-17AおよびIL-17Fの量をELISAを使用して測定した。(J) 結腸上皮(CD45-および高FSC/SSC、ゲートR1およびR3)細胞および上皮内免疫細胞(CD45+、ゲートR2)をフローサイトメトリーを使用して未感染野生型(WT)マウスの結腸から単離し、IL-17FおよびIL-17Aの発現をRT-PCRを使用して調べた。(K)マウス結腸上皮細胞系(CMT93またはColon26)におけるIL-17AおよびIL-17Fの発現をRT-PCRを使用して調べた。データは、2回(A、B、K)または3回(C~J)の独立した実験を表す。IL-17F and IL-17A are produced by different cells. (A) IL-17A and IL-17F mRNA expression in the colon, small intestine and peripheral LN of wild type (WT) mice was analyzed using real-time RT-PCR. Expression in LN cells was taken as 1. (B) IL-17A and IL-17F expression in mouse colon 7 and 14 days after infection with C. rodentium was measured using real-time RT-PCR. The RNA sample is a collection of samples of 4-6 mice in each group. Expression in uninfected wild type (WT) mice was taken as 1. (C, D) Intracellular IL-17F, IL-17A and IFN-γ expression in colonic PMA and ionomycin-stimulated lymphocytes of uninfected mice (C) or mice (D) 14 days after infection with C. rodentium Profiles. (E, F) Real-time RT-PCR for IL-17A and IL-17F mRNA expression in colon and MLN of C57BL / 6J wild type (WT) and Rag2 -/- mice 7 days after infection with C. rodentium Analyzed using (E) (n = 5-6 / group). Expression in wild type (WT) colon was taken as 1. Expression of these cytokines in the colon and MLN of Rag2 − / − mice was measured as a percentage of expression in wild type (WT) mice (F). (G) Whole colon of uninfected wild type (WT), Rag2 − / − and Il17a − / − Il17f − / − mice were cultured for 24 hours in the presence or absence of IL-23 20 ng / ml. The concentration of IL-17A or IL-17F in the supernatant was measured by ELISA and normalized to the total protein content of each sample (n = 5-8 / group). Similar results were observed in CB-17SCID mice. (H, I) Wild type (WT) and Rag2 − / − mouse splenocytes (5 × 10 5 cells) (H) or MLN (1.5 × 10 5 cells) (I), LPS 5 μg / ml and IL− 23 Cultured for 72 hours in a 24-well plate or 48-well plate, respectively, in the presence or absence of 20 ng / ml, and the amounts of IL-17A and IL-17F in the culture supernatant were measured using ELISA. (J) Colon of epithelial (CD45 and high FSC / SSC, gates R1 and R3) cells and intraepithelial immune cells (CD45 + , gate R2) in uninfected wild type (WT) mice using flow cytometry. And the expression of IL-17F and IL-17A was examined using RT-PCR. (K) Expression of IL-17A and IL-17F in mouse colonic epithelial cell lines (CMT93 or Colon26) was examined using RT-PCR. Data represent 2 (A, B, K) or 3 (CJ) independent experiments. IL-17RAおよびIL-17RCは異なる組織分布を示す。(A、B) 129/Ola×C57BL/6J 野生型(WT)マウス(A)および異なる細胞系(B)の組織におけるIL-17RAおよびIL-17RCの発現をリアルタイムRT-PCRで測定した。(C) MACSソーティングによって得られた異なる細胞集団におけるIL-17RA、IL-17RCおよびAct1の発現をRT-PCRを使用して測定した。(D) 腹腔マクロファージをIL-17AもしくはIL-17F 5~250ng/mlまたはLPS 10~100ng/mlで24時間刺激し、培養上清中のIL-6量をELISAを使用して測定した。(E) MACSソーティングによって得られたC57BL/6JマウスのCD4+T細胞をIL-17AまたはIL-17F 5~250ng/mlで48時間刺激し、培養上清中のCCL2をBio-Plexサスペンションアレイシステム(Bio-Rad)を使用して測定した。(F) IL-17AもしくはIL-17F 5~250ng/mlで個別に、またはIL-17AおよびIL-17F 50~250ng/mlを組み合わせて6時間刺激した結腸上皮細胞系(CMT93)におけるリポカリン2およびβ-デフェンシン3の発現を、リアルタイムRT-PCRを使用して測定した。(G、H、I) 結腸上皮細胞系(CMT93)(G)、C3H/HeJマウスの腹腔マクロファージ(H)、またはC57BL/6JマウスのCD4+T細胞(I)を、IL-17AもしくはIL-17F 50ng/mlで個別に、またはIL-17AおよびIL-17F 50ng/mlを組み合わせて24時間(G、H)または48時間(I)刺激し、培養上清中のIL-1β、IL-9、GM-CSF、CCL3またはCXCL1をBio-Plexサスペンションアレイシステム(Bio-Rad)を使用して測定した。ND、検出せず。培地のみに対して、*p<0.05、**p<0.01および***p<0.001。全データは、3回の独立した実験を表す。IL-17RA and IL-17RC show different tissue distributions. (A, B) 129 / Ola × C57BL / 6J Wild-type (WT) mice (A) and IL-17RA and IL-17RC expression in tissues of different cell lines (B) were measured by real-time RT-PCR. (C) The expression of IL-17RA, IL-17RC and Act1 in different cell populations obtained by MACS sorting was measured using RT-PCR. (D) Peritoneal macrophages were stimulated with IL-17A or IL-17F 5 to 250 ng / ml or LPS 10 to 100 ng / ml for 24 hours, and the amount of IL-6 in the culture supernatant was measured using ELISA. (E) C57BL / 6J mouse CD4 + T cells obtained by MACS sorting were stimulated with IL-17A or IL-17F 5 to 250 ng / ml for 48 hours, and CCL2 in the culture supernatant was bio-Plex suspension array system Measured using (Bio-Rad). (F) Lipocalin 2 in a colonic epithelial cell line (CMT93) stimulated for 6 hours with IL-17A or IL-17F individually or in combination with IL-17A and IL-17F 50-250 ng / ml and β-defensin 3 expression was measured using real-time RT-PCR. (G, H, I) Colonic epithelial cell line (CMT93) (G), peritoneal macrophages (H) of C3H / HeJ mice, or CD4 + T cells (I) of C57BL / 6J mice, IL-17A or IL- Stimulate for 24 hours (G, H) or 48 hours (I) individually with 17F 50 ng / ml or in combination with IL-17A and IL-17F 50 ng / ml. , GM-CSF, CCL3 or CXCL1 were measured using a Bio-Plex suspension array system (Bio-Rad). ND, not detected. * P <0.05, ** p <0.01 and *** p <0.001 for medium only. All data represent 3 independent experiments. Il17f-/-およびIl17a-/-Il17f-/-マウスの作製。Il17a+/-ES細胞を用いてハイグロマイシンBホスホトランスフェラーゼ(hph)耐性遺伝子でIl17f遺伝子のエクソン2および3を置換することによって、Il17f-/-マウスおよびIl17a-/-Il17f-/-マウスを作製した。(A) マウスIl17f遺伝子座(野生型(WT)対立遺伝子)、IL-17Fターゲティング構築物、および予測される変異体Il17f遺伝子(標的対立遺伝子)の構造。エクソンは、ボックスで表す。Il17f遺伝子のエクソン2および3は、hph耐性遺伝子で置換した。ジフテリア毒素A(DT)遺伝子をネガティブ選択のためにゲノム断片の5'末端に連結した。ターゲティング対立遺伝子に示される外側の相同領域を、サザンブロット分析のためのゲノムプローブとして用いた。標的クローンスクリーニングのためのサザンブロット分析は、BamHIを用いて実施した。(B) Il17f遺伝子座の正しいターゲティングを、ゲノムのサザンブロット分析によって確認した。3'プローブ、ならびにIl17f WT(+/+)、ヘテロ接合性(+/-)および変異(-/-)の同腹仔由来のBamHI消化テールDNAを用いて、内因(9.5kb)および/または変異(7.2kb)のバンドを検出した。(C) IL-17AおよびIL-17F mRNAの発現。ConAで48時間刺激した脾細胞からRNAを単離し、IL-17AおよびIL-17FのmRNA量を、RT-PCRを用いて測定した。Generation of Il17f -/- and Il17a -/- Il17f -/- mice. Il17f -/- mice and Il17a -/- Il17f -/- mice are generated by replacing exon 2 and 3 of the Il17f gene with hygromycin B phosphotransferase (hph) resistance gene using Il17a +/- ES cells did. (A) Structure of mouse Il17f locus (wild type (WT) allele), IL-17F targeting construct, and predicted mutant Il17f gene (target allele). Exons are represented by boxes. Exons 2 and 3 of the Il17f gene were replaced with hph resistant genes. The diphtheria toxin A (DT) gene was ligated to the 5 ′ end of the genomic fragment for negative selection. The outer homologous region shown in the targeting allele was used as a genomic probe for Southern blot analysis. Southern blot analysis for target clone screening was performed using BamHI. (B) Correct targeting of the Il17f locus was confirmed by genomic Southern blot analysis. Endogenous (9.5 kb) and / or mutations using 3 ′ probes and BamHI digested tail DNA from Il17f WT (+ / +), heterozygous (+/-) and mutated (-/-) littermates A band of (7.2 kb) was detected. (C) Expression of IL-17A and IL-17F mRNA. RNA was isolated from splenocytes stimulated with ConA for 48 hours, and the mRNA levels of IL-17A and IL-17F were measured using RT-PCR. IL-17Fは、in vitroでのTh17分化に必要とされない。(A) マイトジェン刺激から48時間後のLN細胞の増殖応答。(B) 抗CD3 mAbでコーティングしたプレートでの刺激から48時間後の脾臓のT細胞の増殖応答。(C) (B)の培養上清中のIFN-γの量をELISAを用いて定量した。(D) OVAペプチド±IL-23で3日間培養したDO11.10およびIl17f-/-DO11.10 LN細胞によるIL-17Aの産生。(E) 抗CD3および抗CD28モノクローナル抗体とTGF-β、IL-6、抗IL-4モノクローナル抗体および抗IFN-γモノクローナル抗体の存在下で72時間培養した、C57BL/6Jバックグラウンドの野生型(WT)、Il17f-/-、Il17a-/-およびIl17a-/-Il17f-/-マウス由来のCD4+T細胞における、IL-17FおよびIL-17Aの細胞内発現プロフィール。(A~C)全てのデータは、少なくとも2つの独立した実験からの結果を表す。IL-17F is not required for Th17 differentiation in vitro. (A) Proliferative response of LN cells 48 hours after mitogen stimulation. (B) Proliferative response of splenic T cells 48 hours after stimulation with plates coated with anti-CD3 mAb. (C) The amount of IFN-γ in the culture supernatant of (B) was quantified using ELISA. (D) Production of IL-17A by DO11.10 and Il17f − / − DO11.10 LN cells cultured with OVA peptide ± IL-23 for 3 days. (E) Wild type of C57BL / 6J background cultured for 72 hours in the presence of anti-CD3 and anti-CD28 monoclonal antibodies and TGF-β, IL-6, anti-IL-4 monoclonal antibody and anti-IFN-γ monoclonal antibody ( WT), IL-17F and IL-17A intracellular expression profiles in CD4 + T cells from Il17f − / − , Il17a − / − and Il17a − / − Il17f − / − mice. (AC) All data represent results from at least two independent experiments. IL-17FではなくIL-17Aが、EAEの発症に必要とされる。(A) 野生型(WT)、Il17f-/-、Il17a-/-およびIl17a-/-Il17f-/-マウス(群につきn=12~18)におけるMOG誘導EAEの間の臨床スコア。*WTマウスに対するp<0.05は、Mann-WhitneyのU検定を用いて決定した。データは、2つの独立した実験からのプールした結果を示す。(B) MOG免疫接種(H&E、120×)から42日後のマウスの腰髄の組織病理。データは、群につき4~6匹のマウスを表す。(C) LN細胞(n=5~8/群)のMOG特異的増殖応答。マウスはMOGで免疫接種した。免疫接種の10日後に、LN細胞を50μg/mlのMOGペプチドの存在下または非存在下で72時間培養し、[3H]チミジンの取込みを測定した。*MOGペプチド存在下でのWT細胞培養に対するp<0.05。(D) (C)に示す培養上清中のIL-17Aの量をELISAを用いて定量した。(E) (C)の場合のようにMOGペプチドで刺激したCD4+T細胞における細胞内のIL-17AおよびIL-17Fのプロフィール。データは、2つ(C、D、E)の独立した実験を代表する。IL-17A but not IL-17F is required for the development of EAE. (A) Clinical score during MOG-induced EAE in wild type (WT), Il17f − / − , Il17a − / − and Il17a − / − Il17f − / − mice (n = 12-18 per group). * P <0.05 for WT mice was determined using the Mann-Whitney U test. Data show pooled results from two independent experiments. (B) Histopathology of the lumbar spinal cord of mice 42 days after MOG immunization (H & E, 120 ×). Data represent 4-6 mice per group. (C) MOG-specific proliferative response of LN cells (n = 5-8 / group). Mice were immunized with MOG. Ten days after immunization, LN cells were cultured for 72 hours in the presence or absence of 50 μg / ml MOG peptide and [ 3 H] thymidine incorporation was measured. * P <0.05 for WT cell culture in the presence of MOG peptide. (D) The amount of IL-17A in the culture supernatant shown in (C) was quantified using ELISA. (E) Intracellular IL-17A and IL-17F profiles in CD4 + T cells stimulated with MOG peptide as in (C). Data are representative of two (C, D, E) independent experiments. IL-17Fは、CIAの発症に必要とされない。0および21日目にマウスのテール基部の数箇所に、CFAで乳化したニワトリコラーゲンII型で皮内に免疫接種した。(A、B) CIAの発生率(A)および重症度(B)を示す(1群につき16~17匹のマウス)。*WTマウスに対するp<0.05は、χ2検定を用いて決定した。IL-17F is not required for the development of CIA. On days 0 and 21, mice were immunized intradermally with chicken collagen type II emulsified with CFA at several sites on the tail base of mice. (A, B) Shows the incidence (A) and severity (B) of CIA (16-17 mice per group). * P <0.05 for WT mice was determined using the χ 2 test. IL-17Aは、DTHの発症に関与する。(A) mBSA刺激LN細胞における、細胞内のIL-17F、IL-17AおよびIFN-γのプロフィール。野生型(WT)マウスをmBSA/CFAで免疫接種し、免疫接種の10日後に、LN細胞を50μg/mlのmBSAの存在下または非存在下で72時間培養した。(B)野生型(WT)、Il17f-/-、Il17a-/-およびIl17a-/-Il17f-/-マウス(1群につき13~17匹)におけるmBSA誘導DTH応答の間の足蹠厚の増加。**WTマウスに対するp<0.01。データは、2つの独立した実験からのプールした結果を示す。(C) (A)(n=5/群)の場合のように50μg/mlのmBSAで72時間培養することにより誘導されたmBSA特異的LN細胞増殖応答。(D) (A)に記載される培養条件を用いたmBSA刺激CD4+T細胞における細胞内IFN-γおよびIL-17Aのプロフィール。(E) (B)で用いたマウス由来の血清中のメチル化BSA特異的Igの量。mBSA投与の1週間後、血清を収集し、mBSA特異的AbレベルをELISA(n=13~17/群)によって測定した。**WTマウスに対するp<0.01。データは、2つ(A)または3つ(C、D)の独立した実験を表す。IL-17A is involved in the development of DTH. (A) Intracellular IL-17F, IL-17A and IFN-γ profiles in mBSA stimulated LN cells. Wild type (WT) mice were immunized with mBSA / CFA and 10 days after immunization, LN cells were cultured for 72 hours in the presence or absence of 50 μg / ml mBSA. (B) Increased footpad thickness during mBSA-induced DTH response in wild type (WT), Il17f − / − , Il17a − / − and Il17a − / − Il17f − / − mice (13-17 mice per group) . ** p <0.01 vs WT mice. Data show pooled results from two independent experiments. (C) mBSA-specific LN cell proliferation response induced by culturing with 50 μg / ml mBSA for 72 hours as in (A) (n = 5 / group). (D) Profiles of intracellular IFN-γ and IL-17A in mBSA-stimulated CD4 + T cells using the culture conditions described in (A). (E) Amount of methylated BSA-specific Ig in the mouse-derived serum used in (B). One week after mBSA administration, serum was collected and mBSA-specific Ab levels were measured by ELISA (n = 13-17 / group). ** p <0.01 vs WT mice. Data represent 2 (A) or 3 (C, D) independent experiments. IL-17Fは、CHS応答に不可欠でない。低用量(0.1%)または高用量(3.0%)のTNCBの投与後の耳膨張を、2回目の投与の24時間後に測定した(1群につき6~10匹のマウス)。IL-17F is not essential for CHS response. Ear swelling after administration of low dose (0.1%) or high dose (3.0%) TNCB was measured 24 hours after the second dose (6-10 mice per group). IL-17Fは、OVA/ミョウバン誘導好酸球性およびOVA誘導好中球性の肺炎症に不可欠でない。(A) BAL流体中の細胞数。マウスは、ミョウバン中のOVAを腹腔内に感作させ、エアゾール化OVAを投与した。最後のOVA吸入から24時間後に、BAL流体を収集し、BAL細胞を計数した。データは、2つの独立した実験(1群につき10~19匹のマウス)からのプールした結果を示す。(B) BAL流体中の合計細胞数。Il17f+/+、Il17f+/-およびIl17f-/-DO11.10マウスを、感作なしで4日間、エアゾール化OVAまたはPBSで処理した。最後のOVAまたはPBSの吸入から24時間後に、BAL流体を収集し、BAL細胞を計数した。データは、2つの独立した実験(1群につき12~14匹のマウス)からのプールした結果を示す。Mono、単球/マクロファージ; Lym、リンパ球; Neu、好中球; Eos、好酸球。IL-17F is not essential for OVA / alum-induced eosinophilic and OVA-induced neutrophilic lung inflammation. (A) Number of cells in BAL fluid. Mice were sensitized intraperitoneally with OVA in alum and administered aerosolized OVA. Twenty-four hours after the last OVA inhalation, BAL fluid was collected and BAL cells were counted. Data show pooled results from two independent experiments (10-19 mice per group). (B) Total number of cells in BAL fluid. Il17f + / + , Il17f +/− and Il17f − / − DO11.10 mice were treated with aerosolized OVA or PBS for 4 days without sensitization. BAL fluid was collected and BAL cells were counted 24 hours after the last OVA or PBS inhalation. Data show pooled results from two independent experiments (12-14 mice per group). Mono, monocytes / macrophages; Lym, lymphocytes; Neu, neutrophils; Eos, eosinophils. 経口感染から14日後のマウスの血清中のC.ローデンチウム特異的抗体量。マウスは、図3に示すようにC.ローデンチウム(2×108CFU)を経口感染させた。14日後、血清を収集し、血清中のC.ローデンチウム特異的Ig量をELISAを用いて測定した。データは、2つの別々の実験からのプールした結果を示す。野生型(WT)マウスに対して*p<0.05、** p<0.01および*** p<0.001。The amount of C. rodentium-specific antibody in the serum of mice 14 days after oral infection. Mice were orally infected with C. rodentium (2 × 10 8 CFU) as shown in FIG. After 14 days, serum was collected and the amount of C. rodentium specific Ig in the serum was measured using ELISA. Data shows pooled results from two separate experiments. * P <0.05, ** p <0.01 and *** p <0.001 for wild type (WT) mice. IL-17Fは、IL-23に応答して自然免疫細胞によって産生される。(A) C57BL/6J 野生型(WT)およびRag2-/-マウスの脾細胞(1×106~5×104細胞)を、0.01~100ng/mlのIL-23の存在下または非存在下で、96ウェルプレートで72時間培養し、ELISAを用いて培養上清中のIL-17AおよびIL-17Fの量を測定した。(B) BALB/cA 野生型(WT)およびC.B-17 SCIDマウスの全結腸を、20ng/mlのIL-23の存在下または非存在下で24時間培養した。上清中のIL-17AまたはIL-17Fの濃度をELISAによって測定し、各試料(n=5/群)について総タンパク含有量に対して標準化した。Rag2-/-マウスでも同様の結果が観察された。(C) BALB/cA 野生型(WT)およびC.B-17 SCIDマウスの脾細胞(5×105細胞)を、ELISAを用いて測定された5の存在下または非存在下で、24ウェルプレートで培養した。(D) BALB/cA WTおよびC.B-17 SCIDマウス由来の脾細胞上の、CD11cおよびCD11bの発現のフローサイトメトリー。(E) C.B-17 SCIDマウス由来のMACSソートCD11c+またはCD11b+脾細胞上のCD11c、CD11bおよびDX5の発現のフローサイトメトリー。(F) C.B-17 SCID脾細胞由来のMACSソートCD11cおよびCD11b陰性細胞分画上のCD11c、CD11b、DX5、Gr-1、F4/80およびB220の発現のフローサイトメトリー。(G) C.B-17 SCIDマウス由来の脾細胞をミクロビーズ結合抗マウスCD11cおよびCD11bで染色し、陽性および陰性細胞分画(5×105細胞)を20ng/mlのIL-23の存在下または非存在下で24ウェルプレートで72時間培養し、培養上清中のIL-17AおよびIL-17Fの量をELISAで測定した。データは、2つ(A、G)または3つ(B~F)の独立した実験を表す。IL-17F is produced by innate immune cells in response to IL-23. (A) C57BL / 6J wild type (WT) and Rag2 − / − mouse splenocytes (1 × 10 6 to 5 × 10 4 cells) in the presence or absence of 0.01 to 100 ng / ml IL-23 Then, the cells were cultured in a 96-well plate for 72 hours, and the amounts of IL-17A and IL-17F in the culture supernatant were measured using ELISA. (B) The whole colon of BALB / cA wild type (WT) and CB-17 SCID mice was cultured for 24 hours in the presence or absence of 20 ng / ml IL-23. The concentration of IL-17A or IL-17F in the supernatant was measured by ELISA and normalized to the total protein content for each sample (n = 5 / group). Similar results were observed in Rag2 − / − mice. (C) BALB / cA wild type (WT) and CB-17 SCID mouse splenocytes (5 × 10 5 cells) in 24-well plates in the presence or absence of 5 measured using ELISA Cultured. (D) Flow cytometry of CD11c and CD11b expression on splenocytes from BALB / cA WT and CB-17 SCID mice. (E) Flow cytometry of expression of CD11c, CD11b and DX5 on MACS sorted CD11c + or CD11b + splenocytes from CB-17 SCID mice. (F) Flow cytometry of CD11c, CD11b, DX5, Gr-1, F4 / 80 and B220 expression on MACS sorted CD11c and CD11b negative cell fractions derived from CB-17 SCID splenocytes. (G) Spleen cells from CB-17 SCID mice were stained with microbead-conjugated anti-mouse CD11c and CD11b and positive and negative cell fractions (5 × 10 5 cells) in the presence of 20 ng / ml IL-23 or The cells were cultured in a 24-well plate for 72 hours in the absence, and the amounts of IL-17A and IL-17F in the culture supernatant were measured by ELISA. Data represent 2 (A, G) or 3 (BF) independent experiments. マクロファージ、T細胞および結腸ECにおけるIL-17AまたはIL-17Fによるサイトカインおよびケモカイン産生の異なる調節。(A、B、C) C3H/HeJマウス由来の腹腔マクロファージ(A)、C57BL/6Jマウス由来のCD4+T細胞(B)、または結腸上皮細胞系(CMT93)(C)を、50ng/mlのIL-17AもしくはIL-17Fで個々に、または50ng/mlのIL-17AおよびIL-17Fの組合せで24時間(A、B)または48時間(C)刺激し、培養上清中の表示したサイトカインおよびケモカインの量を、Bio-Plex懸濁液アレイシステム(Bio-Rad)を用いることにより測定した。ND、検出せず。培地単独に対して、* p<0.05、** p<0.01および*** p<0.001。全てのデータは、3つの独立した実験を表す。Different regulation of cytokine and chemokine production by IL-17A or IL-17F in macrophages, T cells and colon EC. (A, B, C) Peritoneal macrophages from C3H / HeJ mice (A), CD4 + T cells from C57BL / 6J mice (B), or colonic epithelial cell line (CMT93) (C), 50 ng / ml Stimulated for 24 hours (A, B) or 48 hours (C) with IL-17A or IL-17F individually or in combination with 50 ng / ml IL-17A and IL-17F, and the indicated cytokines in the culture supernatant And the amount of chemokine was measured by using a Bio-Plex suspension array system (Bio-Rad). ND, not detected. * P <0.05, ** p <0.01 and *** p <0.001 for medium alone. All data represent 3 independent experiments.
 以下、本発明について具体的に説明する。
(1)ノックアウト非ヒト哺乳動物
 本発明は、染色体上のIL-17F遺伝子座に欠失及び/又は挿入変異を有する非ヒト哺乳動物、並びに染色体上のIL-17A遺伝子座及びIL-17F遺伝子座の両方に欠失及び/又は挿入変異を有する非ヒト哺乳動物に関する。本発明のノックアウト非ヒト哺乳動物においては、染色体上のIL-17F遺伝子座に欠失及び/又は挿入変異を有することにより、IL-17F遺伝子が不活性化され、IL-17Fを発現する機能が喪失している。染色体上のIL-17A遺伝子座及びIL-17F遺伝子座の両方に欠失及び/又は挿入変異を有する非ヒト哺乳動物は、黄色ブドウ球菌(S. aureus)等による日和見感染への感受性が増加しているという特徴を有する。上記した本発明のノックアウト非ヒト哺乳動物は、感染症モデル動物として使用できる。
Hereinafter, the present invention will be specifically described.
(1) Knockout non-human mammal The present invention relates to a non-human mammal having a deletion and / or insertion mutation in the IL-17F locus on the chromosome, and the IL-17A locus and the IL-17F locus on the chromosome. Relates to a non-human mammal having a deletion and / or insertion mutation in both. In the knockout non-human mammal of the present invention, the IL-17F gene is inactivated by having a deletion and / or insertion mutation at the IL-17F locus on the chromosome, and has a function of expressing IL-17F. It is lost. Non-human mammals with deletion and / or insertion mutations at both the IL-17A and IL-17F loci on the chromosome have increased susceptibility to opportunistic infections such as S. aureus. It has the feature of being. The knockout non-human mammal of the present invention described above can be used as an infectious disease model animal.
 非ヒト哺乳動物としては、例えば、マウス、ハムスター、モルモット、ラット、ウサギ等のげっ歯類の他、イヌ、ネコ、ヤギ、ヒツジ、ウシ、ブタ、サル等を使用することができるが、作製、育成及び使用の簡便さなどの観点から見て、マウス、ハムスター、モルモット、ラット、ウサギ等のげっ歯類が好ましく、そのなかでもマウスが最も好ましい。 Examples of non-human mammals that can be used include rodents such as mice, hamsters, guinea pigs, rats, rabbits, dogs, cats, goats, sheep, cows, pigs, monkeys, etc. Rodents such as mice, hamsters, guinea pigs, rats, rabbits and the like are preferable from the viewpoint of easy growth and use, and among these, mice are most preferable.
 染色体上のIL-17F遺伝子座に欠失及び/又は挿入変異を有する非ヒト哺乳動物、及び染色体上のIL-17A遺伝子座及びIL-17F遺伝子座の両方に欠失及び/又は挿入変異を有する非ヒト哺乳動物は、胚性幹細胞(ES細胞)において相同遺伝子組換え法によって標的遺伝子(IL-17F遺伝子)に変異を導入することにより作製することができる。例えば、IL-17F遺伝子ノックアウトマウスを作製する場合は、まずマウスゲノムライブラリーからマウスIL-17F遺伝子を単離する。IL-17F遺伝子内の所定の領域(例えば、以下の実施例ではIl17f遺伝子の第2および第3のエクソンを含有する領域)を薬剤選択マーカー遺伝子(例えば、以下の実施例ではハイグロマイシンBホスホトランスフェラーゼ(hph)耐性遺伝子)で置換したターゲティングベクター(相同組換えベクター)を用いて導入遺伝子を構築し、電気穿孔法などによりマウス胚性幹細胞(ES細胞)に導入する。ここで、染色体上のIL-17A遺伝子座及びIL-17F遺伝子座の両方に欠失及び/又は挿入変異を有する非ヒト哺乳動物を作製するためには、Il17a+/-ES細胞に対して、上記したIL-17F遺伝子のノックアウト用のターゲティングベクターを導入することにより、Il17a+/-Il17f+/-ES細胞を取得すればよい。次に、薬剤により相同組換えを起こしたES細胞をPCR法とサザンブロットなどにより選別し、マウス受精卵と相同組換えを起こしたES細胞を集合キメラ法により混ぜ合わせ、キメラマウスを取得し、キメラマウス個体内でES細胞が生殖細胞に分化した生殖キメラマウスから最終的にIL-17F遺伝子ノックアウトマウスを作製することができる。 A non-human mammal having a deletion and / or insertion mutation at the IL-17F locus on the chromosome, and a deletion and / or insertion mutation at both the IL-17A locus and the IL-17F locus on the chromosome A non-human mammal can be produced by introducing a mutation into a target gene (IL-17F gene) by embryonic stem cells (ES cells) by homologous gene recombination. For example, when an IL-17F gene knockout mouse is prepared, a mouse IL-17F gene is first isolated from a mouse genomic library. A predetermined region within the IL-17F gene (for example, the region containing the second and third exons of the Il17f gene in the following examples) is selected as a drug selection marker gene (for example, hygromycin B phosphotransferase in the following examples) A transgene is constructed using a targeting vector (homologous recombination vector) replaced with (hph) resistance gene) and introduced into mouse embryonic stem cells (ES cells) by electroporation or the like. Here, in order to create a non-human mammal having a deletion and / or insertion mutation in both the IL-17A locus and the IL-17F locus on the chromosome, against Il17a +/- ES cells, Il17a +/− Il17f +/− ES cells may be obtained by introducing the targeting vector for knockout of the IL-17F gene described above. Next, ES cells that have undergone homologous recombination with the drug are selected by PCR and Southern blotting, etc., and ES cells that have undergone homologous recombination with fertilized mice are mixed by the collective chimera method to obtain chimeric mice, Finally, an IL-17F gene knockout mouse can be produced from a chimeric chimeric mouse in which ES cells have differentiated into germ cells in the individual chimeric mouse.
 以下、ノックアウト非ヒト哺乳動物の作製方法について説明する。
(IL-17F遺伝子の単離)
 IL-17F遺伝子のゲノムDNAを用いて、胚性幹細胞(ES細胞)の相同組換えを行うための、ターゲティングベクターを構築する。ゲノムDNAは、相同組換えを行うときにより効率よく組換えが生じるよう、作製しようとするES細胞が由来する動物種と同一の動物種(更に好ましくは、同じ系統の動物)から単離することが好ましい。例えば、マウスIL-17F遺伝子のゲノムクローンを取得する場合は、マウス由来のIL-17F遺伝子のcDNAプローブを使用して、マウスゲノムライブラリーからスクリーニングすることができる。
Hereinafter, a method for producing a knockout non-human mammal will be described.
(Isolation of IL-17F gene)
A targeting vector for homologous recombination of embryonic stem cells (ES cells) is constructed using genomic DNA of IL-17F gene. Genomic DNA should be isolated from the same animal species (more preferably from the same strain) as the animal species from which the ES cells are to be produced so that recombination occurs more efficiently when homologous recombination is performed. Is preferred. For example, when obtaining a genomic clone of mouse IL-17F gene, it can be screened from a mouse genomic library using a cDNA probe of IL-17F gene derived from mouse.
(ターゲティングベクターの構築)
 機能を不能にしたIL-17F遺伝子を含むターゲティングベクターを使用して、ES細胞中のIL-17F遺伝子のゲノムDNAを相同組換えを行う。機能を不能にしたIL-17F遺伝子としては、一部の領域を欠失させたIL-17F遺伝子、又は挿入変異を導入することにより機能を不能にしたIL-17F遺伝子などを使用することができる。
(Construction of targeting vector)
Using a targeting vector containing the disabled IL-17F gene, homologous recombination is performed on the genomic DNA of the IL-17F gene in ES cells. As an IL-17F gene whose function has been disabled, an IL-17F gene whose partial region has been deleted, or an IL-17F gene whose function has been disabled by introducing an insertion mutation can be used. .
 相同組換え体のスクリーニングを容易に行うという観点から、ターゲティングベクターには選択マーカー遺伝子(例えば、薬剤耐性遺伝子など)を組み込むことが好ましい。具体的には、単離されたIL-17F遺伝子のゲノムDNAの一部を制限酵素処理により削除し、削除されたDNA領域の代わりにプロモーターを連結した選択マーカー遺伝子(例えば、薬剤耐性遺伝子など)を挿入することにより、ターゲティングベクターを作製することができる。ES細胞中で強い発現活性を有するプロモーターとしてはホスホグリセリン酸キナーゼ-1(PGK-1)プロモーター、伸長因子2(EF-2)プロモーター、MC-1プロモーターなどを使用することができる。ターゲティングを行う遺伝子座、およびそのDNA領域により、プロモーター活性は大きく影響されるため、一般にはプロモーターは強力であるほどよい。従って特に好ましくは、PGK-1プロモータを使用する。選択マーカー遺伝子としては、ネオマイシン耐性遺伝子、ハイグロマイシンBホスホトランスフェラーゼ遺伝子、ネガティブ選択用にはチミジンキナーゼ遺伝子、ジフテリア毒素A遺伝子断片、lacZ遺伝子などを目的に応じて使用することができる。 From the viewpoint of facilitating screening of homologous recombinants, it is preferable to incorporate a selection marker gene (for example, drug resistance gene) into the targeting vector. Specifically, a part of the isolated genomic DNA of IL-17F gene is deleted by restriction enzyme treatment, and a selectable marker gene (for example, drug resistance gene) in which a promoter is linked instead of the deleted DNA region A targeting vector can be prepared by inserting. As a promoter having strong expression activity in ES cells, phosphoglycerate kinase-1 (PGK-1) promoter, elongation factor 2 (EF-2) promoter, MC-1 promoter and the like can be used. Since the promoter activity is greatly influenced by the locus to be targeted and its DNA region, in general, the stronger the promoter, the better. Therefore, the PGK-1 promoter is particularly preferably used. As a selectable marker gene, a neomycin resistance gene, a hygromycin B phosphotransferase gene, a thymidine kinase gene, a diphtheria toxin A gene fragment, a lacZ gene, etc. can be used depending on the purpose for negative selection.
 プロモーターと連結した選択マーカー遺伝子は、たとえばネオマイシン耐性遺伝子カセット(neoカセット、pKJ2として供与)、ハイグロマイシンBホスホトランスフェラーゼ遺伝子カセット(hphカセット)、チミジンキナーゼ遺伝子カセット(tkカセット、pMCtkとして供与)、ジフテリア毒素A遺伝子断片カセット(DT-Aカセット、pMCDT-AまたはpMC1DT-Aとして供与)、lacZ遺伝子カセット(pBSlacZとして供与)などの、プラスミドに挿入された状態で市販されている選択マーカー遺伝子を使用してもよい。ターゲティングベクターは、これらのプロモーターを連結した選択マーカーのうち、どの選択マーカーを使用して構築してもよい。 Selectable marker genes linked to the promoter include, for example, neomycin resistance gene cassette (neo cassette, provided as pKJ2), hygromycin B phosphotransferase gene cassette (hph cassette), thymidine kinase gene cassette (tk cassette, provided as pMCtk), diphtheria toxin Using selectable marker genes that are commercially available while inserted into a plasmid, such as A gene fragment cassette (donated as DT-A cassette, pMCDT-A or pMC1DT-A), lacZ gene cassette (donated as pBSlacZ) Also good. The targeting vector may be constructed using any selection marker among the selection markers linked to these promoters.
(ターゲティングベクターによる相同組換え)
 上記で作製したターゲティングベクターを使用して、細胞において相同組換えを行う。この遺伝子ターゲティング法においては、ES細胞を使用することが好ましい。例えば、マウスのES細胞を使用することができる。マウス由来のES細胞としては、TT2細胞、AB-1細胞、J1細胞、R1細胞、E14.1細胞などがあるが、特に限定されるものではない。本発明では、IL-17F遺伝子を機能不能な配列にしたターゲティングベクターをES細胞中に導入する。そしてES細胞中の目的とするIL-17F遺伝子のゲノムDNA配列を、ターゲティングベクター中の機能不能にしたIL-17F遺伝子のDNA配列による相同組換えによって置換する。相同組換えは、IL-17F遺伝子ゲノムDNA配列と、ターゲティングベクター中の非改変部分の配列との相同性を利用して、確率的に生じさせることができる。
(Homologous recombination with targeting vector)
Using the targeting vector prepared above, homologous recombination is performed in cells. In this gene targeting method, it is preferable to use ES cells. For example, mouse ES cells can be used. Examples of mouse-derived ES cells include, but are not particularly limited to, TT2 cells, AB-1 cells, J1 cells, R1 cells, and E14.1 cells. In the present invention, a targeting vector in which the IL-17F gene has a non-functional sequence is introduced into ES cells. Then, the genomic DNA sequence of the target IL-17F gene in the ES cell is replaced by homologous recombination with the DNA sequence of the disabled IL-17F gene in the targeting vector. Homologous recombination can be generated stochastically using the homology between the IL-17F gene genomic DNA sequence and the sequence of the unmodified portion in the targeting vector.
 ターゲティングベクターをES細胞に導入する方法としては、エレクトロポレーション法、リン酸カルシウム法、DEAE-デキストラン法などを使用することができる。効率及び作業の容易性の観点から、エレクトロポレーション法が好ましい。 As a method for introducing the targeting vector into ES cells, an electroporation method, a calcium phosphate method, a DEAE-dextran method, or the like can be used. From the viewpoint of efficiency and ease of work, electroporation is preferred.
(相同組換え体のスクリーニング)
 得られた組換えES細胞を、適当なフィーダー細胞層上にプレーティングし、ES培養液中で、相同組換えによってES細胞に導入された選択マーカーを用いて、相同組換え体のスクリーニングである選択培養を行うことができる。培養液中には、選択マーカー遺伝子の種類に依存して、たとえばネオマイシン(G418, GIBCO BRL)やハイグロマイシンB(Calbiochem)を含めることができる。例えば、選択培養6-8日目に生存するコロニーを耐性クローンとして採取することができる。耐性クローンをピックアップし、増殖させた後、目的とするIL-17F遺伝子がターゲティングされているかどうかを調べるため、更にスクリーニングを行うことができる。例えば、PCR法、サザンブロットハイブリダイゼーション法などによりDNAレベルで目的とするIL-17F遺伝子がターゲティングされているかどうかを確認することができる。
(Screening for homologous recombinants)
The obtained recombinant ES cells are plated on an appropriate feeder cell layer and screened for homologous recombinants using a selection marker introduced into ES cells by homologous recombination in an ES culture solution. Selective culture can be performed. Depending on the type of the selectable marker gene, for example, neomycin (G418, GIBCO BRL) or hygromycin B (Calbiochem) can be contained in the culture medium. For example, colonies that survive on days 6-8 of selective culture can be picked as resistant clones. After picking up resistant clones and growing them, further screening can be performed to see if the target IL-17F gene is targeted. For example, whether the target IL-17F gene is targeted at the DNA level can be confirmed by PCR, Southern blot hybridization, or the like.
(ノックアウト非ヒト哺乳動物の作製)
 相同組換えにより得られた組換えES細胞を、8細胞期または胚盤胞の胚内に移植する。このES細胞を移植した胚を偽妊娠仮親の子宮内に移植して出産させることによりキメラ動物を作製することができる。ES細胞を胚内に移植する方法としては、たとえばマイクロマニピュレーション法、凝集法などが挙げられる。マウスの場合、例えば、ホルモン剤(たとえば、FSH様作用を有するPMSGおよびLH作用を有するhCGを使用)により過排卵処理を施した雌マウスを、雄マウスと交配させる。その後、8細胞期胚を用いる場合には受精から2.5日目に、胚盤胞を用いる場合には受精から3.5日目に、それぞれ子宮から初期発生胚を回収する。このように回収した胚に対して、ターゲティングベクターを用いて相同組換えを行ったES細胞をin vitroにおいて注入し、キメラ胚を作製することができる。
(Production of knockout non-human mammals)
Recombinant ES cells obtained by homologous recombination are transplanted into the 8-cell stage or blastocyst embryo. A chimeric animal can be produced by transplanting the embryo into which the ES cell has been transplanted into the uterus of a pseudopregnant temporary parent and giving birth. Examples of the method for transplanting ES cells into the embryo include a micromanipulation method and an aggregation method. In the case of mice, for example, female mice subjected to superovulation treatment with hormone agents (for example, using PMSG having FSH-like action and hCG having LH action) are mated with male mice. Thereafter, early embryos are collected from the uterus on day 2.5 after fertilization when using an 8-cell stage embryo, and on day 3.5 after fertilization when using a blastocyst. The embryos thus collected can be injected in vitro with ES cells that have undergone homologous recombination using a targeting vector to produce a chimeric embryo.
 仮親にするための偽妊娠雌マウスは、正常性周期の雌マウスを、精管結紮などにより去勢した雄マウスと交配することにより得ることができる。作出した偽妊娠マウスに対して、上記方法で作成したキメラ胚を子宮内移植し、妊娠・出産させることによりキメラ動物を作製することができる。キメラ胚の着床、妊娠がより確実に起こるようにするために、受精卵を採取する雌マウスと仮親になる偽妊娠マウスとを、同一の性周期にある雌マウス群から作出することが望ましい。 A pseudopregnant female mouse for use as a foster parent can be obtained by mating a normal-period female mouse with a male mouse castrated by vagina ligation or the like. A chimeric animal can be produced by transplanting the chimeric embryo produced by the above method into the uterus to the produced pseudopregnant mouse, and allowing it to become pregnant and give birth. It is desirable to create female mice that collect fertilized eggs and pseudopregnant mice that become foster mothers from a group of female mice in the same sexual cycle in order to ensure that implantation and pregnancy of the chimeric embryo occur. .
 このようなキメラマウスの中から、ES細胞移植胚由来の雄マウスを選択する。選択したES細胞移植胚由来のオスのキメラマウスが成熟した後、このマウスを純系マウス系統のメスマウスと交配させ、そして次世代産仔にES細胞由来の被毛色が現れることにより、ES細胞がキメラマウスの生殖系列へ導入されたことを確認することができる。ES細胞が生殖系列へ導入されたことを確認するためには、様々な形質を指標として用いることができるが、確認の容易さを考慮して、被毛色により行うことが望ましい。マウスにおいては、野ネズミ色(agouti)、黒色(black)、黄土色(cinnamon)、チョコレート色(chocolate)、および白色(アルビノ、albino)の被毛色が知られているが、使用するES細胞の由来系統を考慮して、キメラマウスと交配させるマウス系統を適宜選択することができる。このように、胚内に移植された組換えES細胞が生殖系列に導入された動物を選択し、そのキメラ動物を繁殖することにより目的とする遺伝子を欠損する個体を得ることができる。得られたIL-17F遺伝子欠損ヘテロ接合体マウスどうしを交配させることにより、IL-17F遺伝子欠損ホモ接合体マウスを得ることができる。 From these chimeric mice, male mice derived from embryos transplanted with ES cells are selected. After the male embryonic mouse derived from the selected ES cell transplanted embryo matures, this mouse is mated with a female mouse of a pure mouse strain, and the ES cell-derived hair color appears in the next-generation offspring. It can be confirmed that it has been introduced into the germ line of mice. In order to confirm that the ES cell has been introduced into the germ line, various traits can be used as an index, but it is desirable to use a coat color in consideration of ease of confirmation. In mice, the fur color of agouti, black, ocher (cinnamon), chocolate (chocolate) and white (albino) is known. A mouse strain to be mated with the chimeric mouse can be appropriately selected in consideration of the origin strain. As described above, an individual in which a target gene is deleted can be obtained by selecting an animal into which a recombinant ES cell transplanted into an embryo is introduced into the germ line and breeding the chimeric animal. By crossing the obtained IL-17F gene-deficient heterozygous mice, IL-17F gene-deficient homozygous mice can be obtained.
 目的とする遺伝的構成の動物を得るためには、4世代~8世代程度同一系統と戻し交配を行うことが好ましい。戻し交配に用いるマウスは当業者が適宜選択することができる。使用することができるマウスとしては、例えばBALB/c、C57BL/6、DBA/1、ICRなどが挙げられるが、これらに限定されない。 In order to obtain an animal with the desired genetic composition, it is preferable to perform backcrossing with the same strain for about 4 to 8 generations. A mouse used for backcrossing can be appropriately selected by those skilled in the art. Examples of mice that can be used include, but are not limited to, BALB / c, C57BL / 6, DBA / 1, ICR, and the like.
(2)ノックアウト非ヒト哺乳動物を用いたスクリーニング方法
 上記した本発明のノックアウト非ヒト哺乳動物を用いて、感染症治療・予防薬をスクリーニングすることができる。具体的には、上記した本発明の非ヒト哺乳動物に被験物質を投与し、上記非ヒト哺乳動物における感染感受性の程度を測定し、被験物質を投与しない場合と比較して感染感受性を低下させる被験物質を候補物質として選択することにより、感染症治療・予防薬のスクリーニングを行うことができる。
(2) Screening method using knockout non-human mammal The above-described knockout non-human mammal of the present invention can be used to screen a therapeutic / prophylactic agent for infectious diseases. Specifically, the test substance is administered to the above-described non-human mammal of the present invention, the degree of infection susceptibility in the non-human mammal is measured, and the infection susceptibility is reduced compared to the case where the test substance is not administered. By selecting a test substance as a candidate substance, it is possible to screen for an infectious disease treatment / prevention drug.
 感染感受性の程度を測定は、特に限定されないが、例えば、以下の実施例における(I)方法の(8)黄色ブドウ球菌の感染に記載の方法またはこれに準じた方法により行うことができる。 The measurement of the degree of infection susceptibility is not particularly limited, and can be performed, for example, by the method described in (8) Infection with Staphylococcus aureus in the method (I) in the following Examples or a method analogous thereto.
 本発明のスクリーニング方法に供される被験物質としては、例えば、ペプチド、タンパク、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、植物抽出液、動物組織抽出液、血漿などが挙げられ、これら化合物は新規な化合物であってもよいし、公知の化合物であってもよい。またペプチドライブラリーや化合物ライブラリーなど、多数の分子を含むライブラリーを被験物質として使用することもできる。 Examples of the test substance used in the screening method of the present invention include peptides, proteins, non-peptide compounds, synthetic compounds, fermentation products, cell extracts, plant extracts, animal tissue extracts, plasma, and the like. These compounds may be novel compounds or known compounds. A library containing a large number of molecules such as a peptide library or a compound library can also be used as a test substance.
 本発明の非ヒト哺乳動物に被験物質を投与する方法としては、例えば、経口投与、静脈注射などが用いられる。また、被験物質の投与量は、投与方法、被験物質の性質などにあわせて適宜選択することができる。 As a method for administering the test substance to the non-human mammal of the present invention, for example, oral administration, intravenous injection and the like are used. The dosage of the test substance can be appropriately selected according to the administration method, the nature of the test substance, and the like.
 本発明のスクリーニング方法を用いて得られる物質は、上記した被験物質から選ばれた物質であり、感染症に対して治療・予防効果を有するので、感染症治療・予防薬として使用することができる。さらに、上記スクリーニングで得られた物質から誘導される化合物も同様に医薬として用いることができる。 The substance obtained by using the screening method of the present invention is a substance selected from the above-mentioned test substances, and has a therapeutic / preventive effect against infectious diseases, and therefore can be used as a therapeutic / prophylactic agent for infectious diseases. . Furthermore, a compound derived from the substance obtained by the above screening can also be used as a medicament.
(3)感染防御剤
 本発明においては、IL-17Fノックアウトマウスでは病原性大腸菌(C.rodentium)感染およびIL-17A/IL-17F二重ノックアウトマウスでは黄色ブドウ球菌(S.aureus)による日和見感染への感受性が増加することが示された。即ち、この知見は、(i)IL-17Fタンパク質、又は(ii)IL-17受容体A(IL-17RA)又はIL-17受容体C (IL-17RC)に結合してIL-17Fと同等の機能を示す物質は、感染防御剤として有効であることを示す。従って、本発明によれば、 (i)IL-17Fタンパク質、又は(ii)IL-17受容体A(IL-17RA)又はIL-17受容体C (IL-17RC)に結合してIL-17Fと同等の機能を示す物質を有効成分として含む感染防御剤が提供される。
(3) Infection protective agent In the present invention, pathogenic E. coli (C. rodentium) infection in IL-17F knockout mice and opportunistic infection by S. aureus in IL-17A / IL-17F double knockout mice It was shown that the sensitivity to increased. That is, this finding is equivalent to IL-17F by binding to (i) IL-17F protein, or (ii) IL-17 receptor A (IL-17RA) or IL-17 receptor C (IL-17RC). A substance exhibiting the above function indicates that it is effective as an anti-infection agent. Therefore, according to the present invention, IL-17F binds to (i) IL-17F protein, or (ii) IL-17 receptor A (IL-17RA) or IL-17 receptor C (IL-17RC). An infection protective agent containing a substance exhibiting a function equivalent to that as an active ingredient is provided.
 日和見感染は、例えば、グラム陰性菌(大腸菌、クレブジエラ、緑膿菌など)、グラム陽性菌(黄色ブドウ球菌、肺炎球菌、連鎖球菌、エンテロコッカスなど)などの細菌、ウイルス、原虫などにより起こるため、本発明の感染防御剤は、これら日和見感染病原因子の防御にも応用することができる。この中でも、特に、黄色ブドウ球菌や大腸菌に対しては好適に使用することができる。日和見感染は、AIDS患者、白血病患者、抗がん剤やステロイド薬などの免疫低下を伴う治療を受けている患者において起こりやすいため、こうした患者の日和見感染防御の目的で、本発明のIL-17F(またはIl-17F様物質)を利用することができる。また、本発明のIL-17Fは粘膜免疫を向上させ得ることから、日和見感染防御以外にも、例えば、粘膜ワクチンと併用する場合、粘膜免疫促進を介して全身性免疫を向上させるような場合、腸管感染細菌などの防御を促進したい場合などの、粘膜免疫を促進させる場合にも、本発明の感染防御剤を使用することができる。この点から、本発明のIL-17Fは粘膜免疫促進剤あるいは、粘膜免疫活性化剤と称することもできる。したがって、本発明の感染防御剤は広く粘膜の微生物感染を防御するために使用することができる。ここで、粘膜とは、呼吸器(気管、肺など)粘膜や消化管(腸管、胃など)粘膜などを挙げることができる。 Opportunistic infections are caused by bacteria, viruses, protozoa, etc. such as Gram-negative bacteria (E. coli, Klebsiella, Pseudomonas aeruginosa, etc.), Gram-positive bacteria (S. aureus, Streptococcus pneumoniae, Streptococcus, Enterococcus, etc.) The anti-infective agent of the invention can also be applied to protect these opportunistic infectious agents. Among these, it can be preferably used particularly for S. aureus and E. coli. Since opportunistic infections are likely to occur in AIDS patients, leukemia patients, and patients undergoing treatment with immune depression such as anticancer drugs and steroid drugs, the IL-17F of the present invention is used for the purpose of protecting opportunistic infections in these patients. (Or Il-17F-like substance) can be used. In addition, since IL-17F of the present invention can improve mucosal immunity, in addition to opportunistic infection protection, for example, when used in combination with a mucosal vaccine, when improving systemic immunity via mucosal immunity promotion, The anti-infection agent of the present invention can also be used when promoting mucosal immunity, such as when it is desired to promote protection against intestinal infection bacteria. From this point, IL-17F of the present invention can also be referred to as a mucosal immunity promoter or mucosal immunity activator. Therefore, the infection-protecting agent of the present invention can be widely used for protecting mucosal microbial infection. Here, examples of the mucous membrane include respiratory (tracheal, lung, etc.) mucosa and digestive tract (intestinal tract, stomach, etc.) mucous membrane.
 IL-17受容体A(IL-17RA)又はIL-17受容体C (IL-17RC)に結合してIL-17Fと同等の機能を示す物質としては、IL-17Fタンパク質の部分ペプチド、あるいはIL-17Fタンパク質と実質的に同一のアミノ酸配列又は高い相同性を有するアミノ酸配列からなるタンパク質またはその部分ペプチドなどが挙げられるが、これらに限定されるものではない。 As a substance that binds to IL-17 receptor A (IL-17RA) or IL-17 receptor C (IL-17RC) and exhibits a function equivalent to IL-17F, a partial peptide of IL-17F protein, or IL Examples include, but are not limited to, a protein consisting of an amino acid sequence substantially identical to -17F protein or an amino acid sequence having high homology, or a partial peptide thereof.
 (i)IL-17Fタンパク質、又は(ii)IL-17受容体A(IL-17RA)又はIL-17受容体C (IL-17RC)に結合してIL-17Fと同等の機能を示す物質は、適当な無菌のビヒクルに溶解もしくは懸濁して、経口的又は非経口的に投与することができる。非経口的投与経路としては、例えば、静脈内、動脈内、筋肉内、腹腔内、気道内等の全身投与でもよいし、局所投与でもよい。 (i) IL-17F protein, or (ii) a substance that binds to IL-17 receptor A (IL-17RA) or IL-17 receptor C (IL-17RC) and exhibits a function equivalent to that of IL-17F It can be administered orally or parenterally after being dissolved or suspended in a suitable sterile vehicle. As a parenteral route of administration, for example, systemic administration such as intravenous, intraarterial, intramuscular, intraperitoneal, intratracheal, etc., or local administration may be used.
 本発明の感染防御剤の投与量は、投与経路、病気の重篤度、投与対象となる動物種、投与対象の薬物受容性、体重、年齢等によって異なるが、通常、成人1日あたり有効成分量として約0.0001~約10mg/kg、好ましくは約0.001~約1mg/kgの範囲であり、これを1回もしくは数回に分けて投与することができる。なお、粘膜免疫促進剤などとして用いる場合にも、投与経路、投与量など上記の記載の範囲で適宜決定することができる。 The dose of the infection protective agent of the present invention varies depending on the route of administration, the severity of the disease, the animal species to be administered, the drug acceptability of the administration target, body weight, age, etc. The amount ranges from about 0.0001 to about 10 mg / kg, preferably from about 0.001 to about 1 mg / kg, and can be administered once or divided into several times. In addition, also when using as a mucosal immunity promoter etc., it can determine suitably in the range of said description, such as an administration route and dosage.
(4)感染症治療・予防薬のスクリーニング方法
 本発明においては、IL-17Fノックアウトマウスでは病原性大腸菌(C.rodentium)感染、およびIL-17A/IL-17F二重ノックアウトマウスでは黄色ブドウ球菌(S.aureus)による日和見感染への感受性が増加することが示された。また、IL-17Fの産生は、IL-23により刺激されることが判明している。即ち、これらの知見から、IL-17F産生細胞に被験物質を投与し、上記IL-17F産生細胞におけるIL-17F又はIL-23の発現量を増大させることができる被験物質は、感染症治療・予防薬の候補物質になることが分かる。
 即ち、本発明によれば、IL-17F産生細胞に被験物質を投与し、上記IL-17F産生細胞におけるIL-17F又はIL-23の発現量を増大させる被験物質を候補物質として選択することを含む、感染症治療・予防薬のスクリーニング方法が提供される。
(4) Infectious Disease Treatment / Prevention Screening Method In the present invention, pathogenic Escherichia coli (C. rodentium) infection is used in IL-17F knockout mice, and S. aureus is used in IL-17A / IL-17F double knockout mice. S. aureus) has been shown to increase susceptibility to opportunistic infections. In addition, IL-17F production has been found to be stimulated by IL-23. That is, based on these findings, a test substance that can administer a test substance to IL-17F-producing cells and increase the expression level of IL-17F or IL-23 in the IL-17F-producing cells is used to treat infections. It turns out to be a candidate substance for preventive drugs.
That is, according to the present invention, a test substance is administered to IL-17F-producing cells, and a test substance that increases the expression level of IL-17F or IL-23 in the IL-17F-producing cells is selected as a candidate substance. A method for screening an infectious disease treatment / prevention drug is provided.
 IL-17F産生細胞としては、上皮細胞、自然免疫細胞、Th17細胞などを使用することができる。被験物質としては、本明細書中の上記(2)ノックアウト非ヒト哺乳動物を用いたスクリーニング方法に記載したものと同様の物質を使用することができる。また、IL-17F産生細胞におけるIL-17F又はIL-23の発現量は、当業者に公知の方法、例えば、RT-PCR法、ノーザンブロット法などにより常法により測定することができる。
 なお、本実施形態に示すスクリーニング方法は、感染症治療・予防薬のスクリーニング方法であると同時に、粘膜免疫促進剤のスクリーニング方法としても用いることができる。
 マウスIL-17F遺伝子(NCBI登録番号:Genebank NM_145856.2)の塩基配列を配列番号54に示し、アミノ酸配列を配列番号55に示す。ヒトIL-17F遺伝子(NCBI登録番号: AF384857.1)の塩基配列を配列番号56に示し、アミノ酸配列を配列番号57に示す。
 以下の実施例によって本発明をさらに具体的に説明するが、本発明の範囲は実施例によって限定されるものではない。
As IL-17F producing cells, epithelial cells, innate immune cells, Th17 cells and the like can be used. As the test substance, the same substance as described in the screening method using the (2) knockout non-human mammal in the present specification can be used. The expression level of IL-17F or IL-23 in IL-17F-producing cells can be measured by a conventional method by methods known to those skilled in the art, such as RT-PCR method or Northern blot method.
In addition, the screening method shown in the present embodiment can be used as a screening method for a mucosal immunity promoter as well as a screening method for infectious disease treatment / prevention drugs.
The nucleotide sequence of the mouse IL-17F gene (NCBI accession number: Genebank NM — 145856.2) is shown in SEQ ID NO: 54, and the amino acid sequence is shown in SEQ ID NO: 55. The nucleotide sequence of the human IL-17F gene (NCBI accession number: AF384857.1) is shown in SEQ ID NO: 56, and the amino acid sequence is shown in SEQ ID NO: 57.
The following examples further illustrate the present invention, but the scope of the present invention is not limited by the examples.
(I)方法
(1)マウス
 Il17f-/-およびIl17a-/-Il17f-/-マウスは、図7に示す通り作製した。129/Ola×C57BL/6JバックグラウンドのIl17a-/-( Nakae, S., 他、(2002) Immunity 17, 375-387)、Il17f-/-およびIl17a-/-Il17f-/-マウス、またはC57BL/6Jマウス(日本エスエルシー)に8世代もしくはBALB/cAマウス(日本クレア)に4世代戻し交配したマウスを使用した。マウスの性別および月齢(2~3月齢)は、全実験群で一致させた。Il17f-/-Il17rn-/-およびIl17a-/-Il17f-/-Il1rn-/-マウスは、Il17f-/-およびIl17a-/-Il17f-/-マウスとIl1rn-/-マウスを交配することによって作製し、BALB/cAマウスに8世代戻し交配した(Horai, R., 他、(2004) J. Clin. Invest. 114, 1603-1611)。Rag2-/-マウスは、実験動物中央研究所から入手した。C3H/HeJおよびC3H/HeNまたはC.B.-17SCIDマウスはそれぞれ、日本エスエルシーまたは日本クレアから購入した。マウスは全て、ヒト疾患モデル研究センター(東京大学医科学研究所)の環境制御された飼育室で特定の病原体のない条件下で維持した。実験は、動物実験の研究所倫理的指針および遺伝子操作実験の安全性指針に従って実施した。
(I) Method (1) Mouse Il17f − / − and Il17a − / − Il17f − / − mice were prepared as shown in FIG. Il17a -/- (Nakae, S., et al., (2002) Immunity 17, 375-387), Il17f -/- and Il17a -/- Il17f -/- mice, or C57BL with 129 / Ola x C57BL / 6J background / 6J mice (Japan SLC) were used for 8 generations or BALB / cA mice (Clea Japan) were backcrossed for 4 generations. Mice's sex and age (2-3 months old) were matched in all experimental groups. Il17f -/- Il17rn -/- and Il17a -/- Il17f -/- Il1rn -/- mice are made by crossing Il17f -/- and Il17a -/- Il17f -/- mice with Il1rn -/- mice Then, 8 generations were backcrossed to BALB / cA mice (Horai, R., et al. (2004) J. Clin. Invest. 114, 1603-1611). Rag2 − / − mice were obtained from the Central Laboratory for Experimental Animals. C3H / HeJ and C3H / HeN or CB-17SCID mice were purchased from Japan SLC or Japan Claire, respectively. All mice were maintained under specific pathogen-free conditions in an environmentally controlled breeding room at the Human Disease Model Research Center (University of Tokyo Institute of Medical Science). Experiments were performed according to laboratory ethical guidelines for animal experiments and safety guidelines for genetic manipulation experiments.
(2)細胞の単離
 Thyl.2+、CD4+、B220+、CDllc+、CD1lb+細胞はそれぞれ、マイクロビーズに結合した抗マウスThyl.2、CD4、B220、CD1IcおよびCD11bモノクローナル抗体 (Miltenyi Biotec)を用いて製造元の指示に従って染色した後、autoMACS(Miltenyi Biotec)を用いて脾臓から単離した。チオグリコール酸によって惹起された腹腔マクロファージを単離するために、マウスに4%チオグリコール酸(日水)2mlを腹腔内注射し、注射の4日後にPBSで洗浄することによって腹腔細胞を収集した。
(2) Isolation of cells Thyl.2 + , CD4 + , B220 + , CDllc + , CD1lb + cells were respectively anti-mouse Thyl.2, CD4, B220, CD1Ic and CD11b monoclonal antibodies (Miltenyi Biotec ) And according to the manufacturer's instructions and then isolated from the spleen using autoMACS (Miltenyi Biotec). To isolate peritoneal macrophages elicited by thioglycolic acid, peritoneal cells were collected by injecting mice intraperitoneally with 2 ml of 4% thioglycolic acid (Nissui) and washing with PBS 4 days after injection. .
(3)細胞培養
 マウスT細胞株(BW5147)、B細胞株(X5563)、マクロファージ細胞株(RAW264)および結腸上皮細胞株(CMT93またはColon26)は、10%FBSを含有するRPMI1640(Sigma)で培養した。マウス樹状細胞株(DC2.4)は、10%FBS、HEPESおよび非必須アミノ酸(GIBCO)を含有するRPMI1640で培養した。サイトカイン、ケモカインおよび抗菌ペプチドの量を測定するため、CMT39細胞、腹腔マクロファージまたはCD4+T細胞を組換えマウスIL-17AまたはIL-17F(R&D systems)5~250ng/mlで6~48時間処理した。
(3) Cell culture Mouse T cell line (BW5147), B cell line (X5563), macrophage cell line (RAW264) and colonic epithelial cell line (CMT93 or Colon26) were cultured in RPMI1640 (Sigma) containing 10% FBS. did. The mouse dendritic cell line (DC2.4) was cultured in RPMI 1640 containing 10% FBS, HEPES and nonessential amino acids (GIBCO). CMT39 cells, peritoneal macrophages or CD4 + T cells were treated with recombinant mouse IL-17A or IL-17F (R & D systems) 5 to 250 ng / ml for 6 to 48 hours to determine the amount of cytokines, chemokines and antimicrobial peptides .
(4)サイトカイン、ケモカインおよび抗原特異的Igの測定
 培養上清中のIFN-γ、IL-6(OptEIA(商標)キット、BD Pharmingen)、IL-17AおよびIL-17F (DuoSet ELISA kit, R&D systems)の濃度は、ELISAを使用して製造元の指示に従って測定した。培養上清中のIL-1α、IL-1β、IL-9、IL-10、IL-12/23 p40、IL-12 p70、IL-13、G-CSF、GM-CSF、IFN-γ、CXCL1、CCL2、CCL3、CCL4およびCCL5の量は、Bio-Plex system(Bio-Rad)を用いて製造元の指示に従って測定した。血清中のC.ローデンチウム特異的Igの量は、既報の通りに測定した(Bry, L., 他、(2004) J.Immunol. 172, 433-441)。
(4) Measurement of cytokines, chemokines and antigen-specific Ig IFN-γ, IL-6 (OptEIA ™ kit, BD Pharmingen), IL-17A and IL-17F (DuoSet ELISA kit, R & D systems) in the culture supernatant ) Was measured using an ELISA according to the manufacturer's instructions. IL-1α, IL-1β, IL-9, IL-10, IL-12 / 23 p40, IL-12 p70, IL-13, G-CSF, GM-CSF, IFN-γ, CXCL1 in the culture supernatant The amounts of CCL2, CCL3, CCL4 and CCL5 were measured using the Bio-Plex system (Bio-Rad) according to the manufacturer's instructions. The amount of C. rodentium specific Ig in the serum was measured as previously reported (Bry, L., et al. (2004) J. Immunol. 172, 433-441).
(5)フローサイトメトリー
 細胞は、PMA(Sigma)50ng/ml、イオノマイシン(Sigma)500ng/mlおよびモネンシン(Sigma)1μMで5時間刺激した。細胞内サイトカイン染色は、既報の通りに実施した(Komiyama, Y., 他、(2006) J. Immunol. 177, 566-573)。細胞は、FcR結合を遮断するために染色緩衝液(2%FCSおよび0.1%アジ化ナトリウムを含有するHBSS)中で抗マウスCD16/CD32モノクローナル抗体(2.4G2)で処理し、次いで、APC-抗CD4モノクローナル抗体(Gk1.5、BioLegend)で染色した。洗浄後、細胞を4%パラホルムアルデヒドで固定した。透過緩衝液(0.1%サポニン[Sigma]を溶かした染色緩衝液)で洗浄後、細胞をPE抗マウスIFN-γモノクローナル抗体(XMG1.2、BD Pharmingen)、PE抗マウスIL-17Aモノクローナル抗体(TC11-18H10、BD Pharmingen)またはヤギ抗マウスIL-17Fポリクローナル抗体(AF2057もしくはBAF2057、R&D systems)とインキュベートした。2次染色のために、Alexa Fluor 488抗ヤギIgG(A-11055;Invitrogen)、PE抗ヤギIgG(Santa Cruz)またはFITC-ストレプトアビジン(BD Pharmingen)を使用した。細胞は、FACSCalibur system(Becton Dickinson)で分析し、データはFlowJoソフトウェア(Tree Star)で分析した。
(5) Flow cytometry Cells were stimulated with PMA (Sigma) 50 ng / ml, ionomycin (Sigma) 500 ng / ml and monensin (Sigma) 1 μM for 5 hours. Intracellular cytokine staining was performed as previously reported (Komiyama, Y., et al. (2006) J. Immunol. 177, 566-573). Cells are treated with anti-mouse CD16 / CD32 monoclonal antibody (2.4G2) in staining buffer (HBSS containing 2% FCS and 0.1% sodium azide) to block FcR binding and then APC-anti Stained with CD4 monoclonal antibody (Gk1.5, BioLegend). After washing, the cells were fixed with 4% paraformaldehyde. After washing with a permeation buffer (a staining buffer containing 0.1% saponin [Sigma]), the cells were treated with PE anti-mouse IFN-γ monoclonal antibody (XMG1.2, BD Pharmingen), PE anti-mouse IL-17A monoclonal antibody (TC11 -18H10, BD Pharmingen) or goat anti-mouse IL-17F polyclonal antibody (AF2057 or BAF2057, R & D systems). For secondary staining, Alexa Fluor 488 anti-goat IgG (A-11055; Invitrogen), PE anti-goat IgG (Santa Cruz) or FITC-streptavidin (BD Pharmingen) was used. Cells were analyzed with a FACSCalibur system (Becton Dickinson) and data were analyzed with FlowJo software (Tree Star).
(6)リアルタイムRT-PCR
 全RNAは、Sepasol試薬(ナカライテスク)を使用して、製造元の指示に従って抽出した。RNAはオリゴdTプライマーの存在下で変性させ、次いで高効率cDNA逆転写キット(Applied Biosystems)を使用して逆転写した。定量的リアルタイムRT-PCRは、SYBR Green qPCRキット(Invitrogen)およびiCycler system(Bio-Rad)を用いて、以下の表1に記載したプライマーセット(配列番号1から50)を使用して実施した。
(6) Real-time RT-PCR
Total RNA was extracted using Sepasol reagent (Nacalai Tesque) according to the manufacturer's instructions. RNA was denatured in the presence of oligo dT primers and then reverse transcribed using a high efficiency cDNA reverse transcription kit (Applied Biosystems). Quantitative real-time RT-PCR was performed using the SYBR Green qPCR kit (Invitrogen) and iCycler system (Bio-Rad) using the primer sets (SEQ ID NOs: 1 to 50) described in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(7)関節炎の臨床評価
 Il1rn-/-マウスにおける関節炎の発症は、既報の通りに肉眼的評価によってモニターした(Horai, R., 他、(2004) J. Clin. Invest. 114, 1603-1611)。各足の関節炎の発症は、肉眼的評価によって以下の通りに等級付けした。0、変化なし、1、軽度の腫脹、2、明らかな関節の腫脹、3、重度の関節の腫脹および強直性の変化。
(7) Clinical Evaluation of Arthritis The onset of arthritis in Il1rn − / − mice was monitored by gross evaluation as previously reported (Horai, R., et al. (2004) J. Clin. Invest. 114, 1603-1611 ). The incidence of arthritis in each foot was graded as follows by macroscopic evaluation. 0, no change, 1, mild swelling, 2, obvious joint swelling, 3, severe joint swelling and tonicity change.
(8)黄色ブドウ球菌の感染
 黄色ブドウ球菌834は、既報の通りに調製した(Nakane, A., 他、(1995) Infect. Immun. 63, 1165-1172)。細菌はトリプトソイ寒天(Difco)上で37℃で12時間培養し、トリプトソイブロス(Difco)に接種し、さらに12時間インキュベートした。菌体は遠心によって収集し、PBSに再懸濁した。再懸濁した細胞の濃度は、550nmで分光測定することによって調節した。マウスに、PBSに溶かした生黄色ブドウ球菌細胞1×107CFUを含有する溶液200μlを静脈感染させた。感染組織中の細菌負荷を測定するために、腎臓をホモジナイズし、滅菌PBSによって10倍段階で希釈した。細菌CFUは、37℃で12時間培養後にトリプトソイ寒天上にそれぞれの希釈液を播種することによって測定した。
(8) Infection with Staphylococcus aureus S. aureus 834 was prepared as previously reported (Nakane, A., et al. (1995) Infect. Immun. 63, 1165-1172). Bacteria were cultured on tryptic soy agar (Difco) at 37 ° C. for 12 hours, inoculated into tryptic soy broth (Difco) and incubated for an additional 12 hours. The cells were collected by centrifugation and resuspended in PBS. The concentration of resuspended cells was adjusted by spectrophotometry at 550 nm. Mice were intravenously infected with 200 μl of a solution containing 1 × 10 7 CFU of live S. aureus cells dissolved in PBS. To measure the bacterial load in infected tissues, kidneys were homogenized and diluted 10-fold with sterile PBS. Bacterial CFU was measured by seeding the respective dilutions on tryptic soy agar after culturing at 37 ° C. for 12 hours.
(9)C.ローデンチウムの感染
 C.ローデンチウム感染は、既報の通り実施した(Nagai, T., 他、(2005) J. Biol. Chem. 280, 2998-3011.)。簡単に説明すると、129/Ola×C57BL/6Jマウスに強制経口投与によって細菌懸濁液200μl(2×108CFU/頭)を接種した。コロニー形成アッセイのために、結腸を採取し、ホモジナイズして、滅菌的に希釈したホモジネートをマッコンキー寒天(Difco)に播種した。組織化学的分析のために、結腸をPBSに溶かした4%パラホルムアルデヒドで4℃で一晩固定し、組織凍結培地(Leica Jung)中で凍結した。凍結した切片を調製し、抗C.ローデンチウム血清で既報の通り染色した(Nagai, T., 他、(2005) J. Biol. Chem. 280, 2998-3011)。
(9) C. rodentium infection C. rodentium infection was performed as previously reported (Nagai, T., et al. (2005) J. Biol. Chem. 280, 2998-3011.). Briefly, 129 / Ola × C57BL / 6J mice were inoculated with 200 μl of bacterial suspension (2 × 10 8 CFU / head) by oral gavage. For colony formation assays, colons were harvested, homogenized, and sterile diluted homogenates were seeded on MacConkey agar (Difco). For histochemical analysis, colons were fixed with 4% paraformaldehyde in PBS overnight at 4 ° C. and frozen in tissue freezing medium (Leica Jung). Frozen sections were prepared and stained with anti-C. Rodentium serum as previously reported (Nagai, T., et al. (2005) J. Biol. Chem. 280, 2998-3011).
(10)統計
 特に指示しない限り、結果は全て平均およびSEMで示す。独立スチューデントt検定、マンホイットニーのU検定またはχ2検定を結果を統計学的に分析するために使用した。p<0.05のとき、差は有意であるとした。
(10) Statistics Unless otherwise indicated, all results are expressed as mean and SEM. Independent student t-test, Mann-Whitney U test or χ 2 test was used to statistically analyze the results. Differences were considered significant when p <0.05.
(11)Il17f-/-およびIl17a-/-Il17f-/-マウスの作製
 ターゲティングベクターは、Il17f遺伝子の第2および第3のエクソンを含有する2.1kbゲノム断片をホスホグリセリン酸キナーゼ(PGK)1プロモータの制御下のハイグロマイシンBホスホトランスフェラーゼ(hph)耐性遺伝子をコードする2.5kb DNA断片で置換することによって構築した。MC1プロモータの制御下にあるジフテリア毒素A(DT)遺伝子を、ネガティブ選択のためにターゲティングベクターの5'末端に連結した。Il17a+/-、Il17f+/-またはIl17a+/-Il17f+/-ES細胞(E14.1)は、ターゲティングベクターをエレクトロポレーションしたIl17a+/-ES細胞から取得し、キメラマウスは、既報の通りに作製した(Nakae, S., 他、(2002) Immunity 17, 375-387.)。Il17f-/-DO11.10トランスジェニックマウスは、Il17f-/-を、Dennis Y. Loh博士(Washington University School of Medicine)に恵与されたDO11.10マウスと交配することによって作製した。Il17a-/-マウスの遺伝子型同定は、既報の通りに実施した(Nakae, S., 他、(2002) Immunity 17, 375-387.)。IL-17Fの遺伝子型同定のために、以下のPCRプライマーを使用した:プライマー1:5'-TGG TAC TGC ATC AAA GTG ACA GTC-3' (配列番号51);プライマー2:5'-AAG GGT TCA GAG TCT GCG CTG CTC-3'(配列番号52);プライマー3:5'-GGA AGA TAG CAG GCA TGC TGG-3'(配列番号53)。プライマー1および2は野生型(WT)対立遺伝子(800bp)、プライマー1および3は変異型対立遺伝子(500bp)を検出するために使用した。
(11) Generation of Il17f − / − and Il17a − / − Il17f − / − mice The targeting vector is a phosphoglycerate kinase (PGK) 1 promoter containing a 2.1 kb genomic fragment containing the second and third exons of the Il17f gene. It was constructed by replacement with a 2.5 kb DNA fragment encoding the hygromycin B phosphotransferase (hph) resistance gene under the control of. The diphtheria toxin A (DT) gene under the control of the MC1 promoter was ligated to the 5 ′ end of the targeting vector for negative selection. Il17a +/- , Il17f +/- or Il17a +/- Il17f +/- ES cells (E14.1) were obtained from Il17a +/- ES cells electroporated with targeting vectors, and chimeric mice were (Nakae, S., et al. (2002) Immunity 17, 375-387.). Il17f − / − DO11.10 transgenic mice were generated by crossing Il17f − / − with DO11.10 mice, a gift of Dr. Dennis Y. Loh (Washington University School of Medicine). The genotyping of Il17a − / − mice was performed as previously reported (Nakae, S., et al. (2002) Immunity 17, 375-387.). The following PCR primers were used for genotyping IL-17F: Primer 1: 5'-TGG TAC TGC ATC AAA GTG ACA GTC-3 '(SEQ ID NO: 51); Primer 2: 5'-AAG GGT TCA GAG TCT GCG CTG CTC-3 ′ (SEQ ID NO: 52); Primer 3: 5′-GGA AGA TAG CAG GCA TGC TGG-3 ′ (SEQ ID NO: 53). Primers 1 and 2 were used to detect the wild type (WT) allele (800 bp) and primers 1 and 3 were used to detect the mutant allele (500 bp).
(12)In VitroにおけるT細胞分化
 脾臓CD4+T細胞は、autoMACS (Miltenyi Biotech)を使用してポジティブ選択によって単離した。Th17細胞は、145.2C11細胞の培養上清から精製した抗CD3モノクローナル抗体1μg/ml、抗CD28モノクローナル抗体(37.51; eBioscience)1μg/ml、抗マウスIFN-γ(XMG1.2、Yoshimoto博士によって恵与された)10μg/ml、抗マウスIL-4(11B11、Yoshimoto博士によって恵与された)10μg/ml、組換えヒトTGF-β(PeproTech)1ng/mlおよび組換えマウスIL-6(R&D systems)20ng/mlの存在下でCD4+細胞を3日間培養することによって誘導した。IL-23誘導IL-17A産生を測定するために、DO11.10マウスのリンパ節細胞をOVA323~339ペプチド0.1μMおよび組換えマウスIL-23(R&D systems)0.1~10ng/mlの存在下で培養した。
(12) T cell differentiation in In vitro Spleen CD4 + T cells were isolated by positive selection using autoMACS (Miltenyi Biotech). Th17 cells are 1μg / ml of anti-CD3 monoclonal antibody purified from the culture supernatant of 145.2C11 cells, 1μg / ml of anti-CD28 monoclonal antibody (37.51; eBioscience), anti-mouse IFN-γ (XMG1.2, kindly provided by Dr. Yoshimoto 10 μg / ml, anti-mouse IL-4 (11B11, generously granted by Dr. Yoshimoto) 10 μg / ml, recombinant human TGF-β (PeproTech) 1 ng / ml and recombinant mouse IL-6 (R & D systems) CD4 + cells were induced by culturing for 3 days in the presence of 20 ng / ml. To measure IL-23-induced IL-17A production, lymph node cells from DO11.10 mice were present in the presence of 0.1 μM OVA 323-339 peptide and 0.1-10 ng / ml recombinant mouse IL-23 (R & D systems). Cultured.
(13)CHS
 2,4,6-トリニトロクロロベンゼン(TNCB; 東京化成)誘導性のCHSは、既報の通り実施した(Nakae, S., 他、(2002) Immunity 17, 375-387.)。簡単に説明すると、129/Ola×C57BL/6Jバックグラウンドのマウスの腹部の皮膚をアセトンおよびオリーブ油混合物(4:1)に溶解した低用量(0.3%)または高用量(3%)TNCB 25μlで感作した。5日後、耳に1%TNCB 25μlを投与した。2回目の投与の24時間後、マウスを安楽死させ、耳組織のディスクを取り出し、重量を測定した。耳の腫脹は以下の通りに算定した:耳腫脹の増加(mg)=投与した耳の重量(mg)-媒体で処理した耳の重量(mg)。
(13) CHS
2,4,6-Trinitrochlorobenzene (TNCB; Tokyo Kasei) -induced CHS was performed as previously reported (Nakae, S., et al. (2002) Immunity 17, 375-387.). Briefly, the skin of the abdomen of 129 / Ola x C57BL / 6J background mice was sensitized with 25 μl of low (0.3%) or high (3%) TNCB dissolved in acetone and olive oil mixture (4: 1). Made. Five days later, 25 μl of 1% TNCB was administered to the ear. Mice were euthanized 24 hours after the second dose, ear tissue discs were removed and weighed. Ear swelling was calculated as follows: Increased ear swelling (mg) = weight of ear administered (mg) −weight of ear treated with vehicle (mg).
(14)DTH
 メチル-BSA誘導DTHは、既報の通りに調べた(Nakae, S., 他、(2002) Immunity 17, 375-387.)。簡単に説明すると、C57BL/6Jバックグラウンドのマウスを、完全フロイントアジュバント(CFA;Difco)を含むmBSA(Sigma)1.25mg/mlで尾の基部の皮下を感作した。感作の7日後、マウスの1足蹠にmBSA200μg/20μlを投与し、同量のPBSを別の足蹠に注射した。足蹠の腫脹は、ダイアル付きノギスで測定し、結果は以下の通り計算した。
足蹠腫脹の程度(mg)=mBSAを注射した足蹠の厚さ(mg)-PBSを注射した足蹠の厚さ(mg)
(14) DTH
Methyl-BSA-induced DTH was examined as previously reported (Nakae, S., et al. (2002) Immunity 17, 375-387.). Briefly, C57BL / 6J background mice were sensitized subcutaneously at the base of the tail with mBSA (Sigma) 1.25 mg / ml containing complete Freund's adjuvant (CFA; Difco). Seven days after the sensitization, 200 μg / 20 μl of mBSA was administered to one footpad of the mouse, and the same amount of PBS was injected into another footpad. The swelling of the footpad was measured with a caliper with a dial, and the results were calculated as follows.
Footpad swelling degree (mg) = thickness of footpad injected with mBSA (mg)-thickness of footpad injected with PBS (mg)
(15)EAE
 MOG誘導EAEは、既報の通り調べた(Komiyama, Y., 他、(2006) J. Immunol. 177, 566-573.)。簡単に説明すると、129/Ola×C57BL/6Jマウスに、加熱死結核菌(Mycobacterium tuberculosis)H37RA(Difco)5mg/mlを含有するCFAで乳化したMOG35~55ペプチド300μgを0日目に片方の側部、7日目にもう一方の側部に皮下免疫接種した。百日咳毒素(Alexis)(200ng)を0および2日目に静脈内注射した。最初の免疫接種の後、EAEの重症度をモニターし、0~5の等級を付けた:0、疾患なし、1、尾の引きずり、2、後肢の脱力、3、後肢の麻痺、4、後肢および前肢の麻痺、5、病的状態および死亡
(15) EAE
MOG-induced EAE was examined as previously reported (Komiyama, Y., et al. (2006) J. Immunol. 177, 566-573.). Briefly, 129 / Ola x C57BL / 6J mice were treated with 300 μg MOG35-55 peptide emulsified with CFA containing 5 mg / ml of heated Mycobacterium tuberculosis H37RA (Difco) on day 0 On the 7th day, the other side was immunized subcutaneously. Pertussis toxin (Alexis) (200 ng) was injected intravenously on days 0 and 2. After the first immunization, EAE severity was monitored and graded from 0 to 5: 0, no disease, 1, tail dragging, 2, hindlimb weakness, 3, hindlimb paralysis, 4, hindlimb And forelimb paralysis, 5, morbidity and death
(16)CIA
 CIAは、既報の通り調べた(Nakae et al., 2003)。簡単に説明すると、C57BL/6Jバックグラウンドマウスに、CFAで乳化したトリIIC(Sigma)1mg/mlおよび加熱死結核菌H37RA(Difco)5mg/mlの100μlを、尾の基部の数箇所に皮下免疫接種した。初回免疫接種の21日後に、マウスにコラーゲン/CFAを最初の注射位置の近くで再度皮内に投与した。関節炎の発症は、肉眼的評価によって判定した。各関節の腫脹および発赤を調べ、重症度を各足について0から3に等級付けした:0、変化なし、1、関節の軽度の足蹠の腫脹および/または足蹠の発赤、2、関節の明らかな腫脹、3、関節の重篤な腫脹および強直性の変化
(16) CIA
CIA was examined as previously reported (Nakae et al., 2003). Briefly, C57BL / 6J background mice were challenged with 100 μl of CFA-emulsified avian IIC (Sigma) 1 mg / ml and heat-killed Mycobacterium tuberculosis H37RA (Difco) 5 mg / ml at several sites at the base of the tail. Vaccinated. Twenty-one days after the first immunization, the mice were again administered intradermally with collagen / CFA near the location of the first injection. The onset of arthritis was determined by macroscopic evaluation. The swelling and redness of each joint was examined and the severity graded from 0 to 3 for each foot: 0, no change, 1, mild swelling of the footpad and / or redness of the footpad, 2, joint Obvious swelling, 3, severe joint swelling and tonic change
(17)卵白アルブミン誘導肺炎症
 マウスは、0および12日目にOVA/alum 100μg/mlで腹腔内感作し、21、22および23日目にOVA(PBS中1%)を20分間超音波で噴霧することによって気道に投与し、最後のOVA投与の24時間後にBALFにおける肺炎症を評価した。OVA/PBS誘導肺炎症のために、DO11.10マウスと交配したIl17f+/+、Il17f+/-またはIl17f-/-マウスを毎日4日間、OVA(PBS中1%)を20分間気道に投与した。
(17) Ovalbumin-induced pulmonary inflammation Mice were sensitized intraperitoneally with OVA / alum 100 μg / ml on days 0 and 12, and OVA (1% in PBS) for 20 minutes on days 21, 22 and 23 Was administered to the respiratory tract by nebulization with and the lung inflammation in BALF was assessed 24 hours after the last OVA administration. For OVA / PBS-induced lung inflammation, Il17f + / + , Il17f +/- or Il17f -/- mice mated with DO11.10 mice were administered daily for 4 days and OVA (1% in PBS) for 20 minutes did.
(18)結腸上皮細胞の単離
 結腸上皮細胞を単離するために、結腸を縦方向に切開し、糞便物を除去するために洗浄した。次に、結腸を短い断片に切断し、50ml円錐管に移し、2%FCSおよびEDTA2.5mMを含有するRPMI1640中でゆっくり振盪しながら37℃で60分間インキュベートした。細胞懸濁液をこし器に通過させた。結腸上皮細胞を精製するために、細胞をFITC抗CD45mAb(BD Pharmingen)で染色し、CD45-、高FSC/SSC集団をThe Institute of Medical Science, FACS Core LaboratoryにおいてFACSAria system(Becton Dickinson)で分離した。上皮内および固有層リンパ細胞を含む結腸リンパ細胞を単離するために、結腸を刻み、50ml円錐管に移し、2%FCSおよびVIII型コラゲナーゼ(Sigma)200U/mlを含有するRPMI1640中でゆっくり振盪しながら37℃で60分間インキュベートした。懸濁した細胞をこし器に通過させた。これらの細胞を40:80パーコール勾配(Amersham Biosciences)の80%画分5mlに再懸濁し、この溶液を15ml円錐管内の40%画分5mlの下に入れた。パーコール勾配分離は、室温で2200rpmで20分間遠心することによって実施した。結腸リンパ細胞は、パーコール勾配の中間層に集まった。
(18) Isolation of colonic epithelial cells To isolate colonic epithelial cells, the colon was dissected longitudinally and washed to remove feces. The colon was then cut into short pieces, transferred to a 50 ml conical tube and incubated at 37 ° C. for 60 minutes with slow shaking in RPMI 1640 containing 2% FCS and EDTA 2.5 mM. The cell suspension was passed through a strainer. To purify colonic epithelial cells, cells were stained with FITC anti CD45mAb (BD Pharmingen), CD45 - , high FSC / SSC populations The Institute of Medical Science, were separated on a FACSAria system (Becton Dickinson) in FACS Core Laboratory . To isolate colon lymphocytes, including intraepithelial and lamina propria lymphocytes, the colon is minced and transferred to a 50 ml conical tube and gently shaken in RPMI 1640 containing 2% FCS and type VIII collagenase (Sigma) 200 U / ml Incubated for 60 minutes at 37 ° C. Suspended cells were passed through a strainer. These cells were resuspended in 5 ml of 80% fraction of a 40:80 Percoll gradient (Amersham Biosciences) and this solution was placed under 5 ml of 40% fraction in a 15 ml conical tube. Percoll gradient separation was performed by centrifugation at 2200 rpm for 20 minutes at room temperature. Colon lymphocytes gathered in the middle layer of the Percoll gradient.
(19)結腸器官の培養
 結腸の3断片(0.5cm×0.5cm)を、ペニシリンおよびストレプトマイシン(GIBCO)を補充した冷却PBSで洗浄した。これらの断片を、IL-23(R&B systems)20ng/mlの存在下または非存在下で、ペニシリンおよびストレプトマイシンを補充した無血清RPMI1640培地で培養した。24時間後、上清を遠心し、分析するまで一定量を-80℃で保存した。
(19) Colon organ culture Three pieces of colon (0.5 cm x 0.5 cm) were washed with cold PBS supplemented with penicillin and streptomycin (GIBCO). These fragments were cultured in serum-free RPMI1640 medium supplemented with penicillin and streptomycin in the presence or absence of IL-23 (R & B systems) 20 ng / ml. After 24 hours, the supernatant was centrifuged and a constant volume was stored at -80 ° C until analysis.
(20)微生物学的分析
 標本をIl17a-/-Il17f-/-マウスから採取し、血液寒天プレート(栄研化学)または卵黄マンニトール塩培地(栄研化学)で37℃で2日間インキュベートした。各プレートから複数のコロニーを無作為に選択し、IDtestSP-18(日水製薬)を使用して細菌を同定した。日和見細菌コロニー形成を検出するために、鼻および口周囲の皮膚粘膜組織をBALB/cAマウスから採取した。これらの組織をホモジナイズし、滅菌PBSで10倍段階で希釈した。細菌CFU値は、37℃で12時間培養後、トリプトソイ寒天(Difco)に各希釈物を播種することによって測定した。
(20) Microbiological analysis Specimens were collected from Il17a − / − Il17f − / − mice and incubated at 37 ° C. for 2 days on blood agar plates (Eiken Chemical) or egg yolk mannitol salt medium (Eiken Chemical). Multiple colonies were randomly selected from each plate and bacteria were identified using IDtestSP-18 (Nissui Pharmaceutical). To detect opportunistic bacterial colonization, skin and mucosal tissues around the nose and mouth were collected from BALB / cA mice. These tissues were homogenized and diluted 10-fold with sterile PBS. Bacterial CFU values were measured by seeding each dilution on tryptic soy agar (Difco) after culturing at 37 ° C. for 12 hours.
(II)結果
(1)IL-17Fは、IL-1受容体アンタゴニスト欠損(Il1rn-/-)マウスにおいて関節炎の発症に寄与する。
 免疫系におけるIL-17FとIL-17Aの機能の違いを解明するために、Il17a-/-、Il17f-/-およびIl17a-/-Il17f-/-マウスを作製した(図7)。これらのマウスは予想されるメンデル比で健康に生まれ、稔性であり、リンパ球様細胞集団も含めて表現型の肉眼的異常を示さなかった。増殖応答およびIFN-γ産生はIl17a-/-Il17f-/-マウスで正常、IL-17A産生はIl17f-/-マウスで正常であり、IL-17A及びIL-17Fは、TGF-βとIL-6誘導性のTh17細胞分化に必要とされなかった(図8)。
(II) Results (1) IL-17F contributes to the development of arthritis in IL-1 receptor antagonist-deficient (Il1rn − / − ) mice.
In order to elucidate the difference in function of IL-17F and IL-17A in the immune system, Il17a − / − , Il17f − / − and Il17a − / − Il17f − / − mice were generated (FIG. 7). These mice were born healthy at the expected Mendelian ratio, were fertile, and did not show gross phenotypic abnormalities, including lymphocyte-like cell populations. Proliferative response and IFN-γ production are normal in Il17a − / − Il17f − / − mice, IL-17A production is normal in Il17f − / − mice, IL-17A and IL-17F are TGF-β and IL− It was not required for 6-induced Th17 cell differentiation (FIG. 8).
 IL-17Aは、Il1rn-/-マウスにおける関節炎の自然発症で重要な役割を担う(Nakae, S., 他、(2003b) Proc. Natl.Acad. Sci. USA 100, 5986-5990.)。関節炎Il1rn-/- LN細胞には、野生型(WT)LN細胞よりも多くのIL-17F産生細胞があり、それらはIL-17Aも産生し、そのことは、IFN-γ産生細胞でも当てはまる (Horai, R., 他、(2004) J. Clin. Invest. 114, 1603-1611.)(図1A)。IL-17A+IL-17F+細胞数ならびにIL-17AおよびIL-17FのmRNA発現も、関節炎Il1rn-/-マウス由来のLN細胞で増強されていた(図1Bおよび1C)。関節炎の発症は、30週の観察期間中、同腹仔のIl17f+/+Il1rn-/-およびIl17f+/-Il1rn-/-対照と比較して、Il17f-/-Il1rn-/-マウスの場合、有意ではあるが抑制は部分的であった (図1D)。Il17f-/-Il1rn-/-マウスの場合と比較して、関節炎発症はIl17a-/-Il17f-/-Il1rn-/-マウスで著しく抑制された(図1D)。Il17a+/+Il17f+/+Il1rn-/-およびIl17f-/-Il1rn-/-マウス由来のLNにおけるIL-17A+ T 細胞集団に変化はなかった (図1E)。 IL-17A plays an important role in the spontaneous development of arthritis in Il1rn − / − mice (Nakae, S., et al. (2003b) Proc. Natl. Acad. Sci. USA 100, 5986-5990.). Arthritis Il1rn − / − LN cells have more IL-17F-producing cells than wild-type (WT) LN cells, which also produce IL-17A, which is also true for IFN-γ-producing cells ( Horai, R., et al. (2004) J. Clin. Invest. 114, 1603-1611.) (FIG. 1A). IL-17A + IL-17F + cell count and IL-17A and IL-17F mRNA expression were also enhanced in LN cells from arthritic Il1rn − / − mice (FIGS. 1B and 1C). The onset of arthritis is observed in Il17f -/- Il1rn -/- mice compared to the littermate Il17f + / + Il1rn -/- and Il17f +/- Il1rn -/- controls during the 30-week observation period. Although significant, suppression was partial (FIG. 1D). Compared with Il17f − / − Il1rn − / − mice, the development of arthritis was markedly suppressed in Il17a − / − Il17f − / − Il1rn − / − mice (FIG. 1D). There was no change in IL-17A + T cell populations in LN from Il17a + / + Il17f + / + Il1rn − / − and Il17f − / − Il1rn − / − mice (FIG. 1E).
 同様に、IL-17Aが重要な役割を担う、EAE、CIA、DTH、2,4,6-トリニトロクロロベンゼン(TNCB)誘導性CHS、DO11.10マウスでOVAによって誘導される好中球性気道炎症(Komiyama, Y., 他、(2006) J. Immunol. 177, 566-573.;Nakae, S., 他、(2002) Immunity 17, 375-387.:Nakae, S., 他、(2003a) J.Immunol. 171, 6173-6177.;Nakae, S., 他、(2007) Blood 109, 3640-3648.)も、Il17f-/-マウスで正常に発現した(図9~図13および表2)。これらの結果は、IL-17AはT細胞依存性自己免疫およびアレルギー応答で主要な役割を担うが、IL-17Fのこれらの応答への寄与はあるとしてもわずかに過ぎないことを示す。 Similarly, neutrophilic airways induced by OVA in EAE, CIA, DTH, 2,4,6-trinitrochlorobenzene (TNCB) -induced CHS, DO11.10 mice, where IL-17A plays an important role Inflammation (Komiyama, Y., et al. (2006) J. Immunol. 177, 566-573 .; Nakae, S., et al. (2002) Immunity 17, 375-387 .: Nakae, S., et al. (2003a ) J. Immunol. 171, 6173-6177 .; Nakae, S., et al. (2007) Blood 109, 3640-3648.) Were also normally expressed in Il17f − / − mice (FIGS. 9-13 and Tables). 2). These results indicate that IL-17A plays a major role in T cell-dependent autoimmune and allergic responses, but IL-17F contributes little if any to these responses.
表2:疾患発生率(群における、有病マウス数/マウス総数)、死亡率(群における、致死マウス数/マウス総数)、開始日(臨床疾患開始の平均日±SEM)、および疾患重症度(最大疾患スコア中央値±SEM)を、全ての遺伝子型のマウスについて示す。
a;疾患の臨床徴候を発症したマウスだけを分析した。
Table 2: Disease incidence (number of diseased mice / total number of mice in group), mortality (number of dead mice / total number of mice in group), start date (mean day of clinical disease start ± SEM), and disease severity (Maximum disease score median ± SEM) is shown for mice of all genotypes.
a; Only mice that developed clinical signs of disease were analyzed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(2)Il17a-/-Il17f-/-マウスは黄色ブドウ球菌(S. aureus)による日和見感染への感受性の増加を示す。
 Il17a-/-Il17f-/-マウスの下顎骨下LNが年齢に伴い拡大するが、野生型(WT)、Il17f-/-またはIl17a-/-マウスでは拡大しないことを見出した。この影響は、C57BL/6J、BALB/cAおよび129/OlaXC57BL/6J系統を含む様々な遺伝的バックグラウンドで観察された(図2A)。8~10週齢では、Il17a-/-Il17f-/-マウスと野生型(WT)マウスとの間でIgM力価は類似していた。しかし、総IgG、IgG1、IgG2aおよびIgG2b力価は、野生型(WT)マウスと比較してIl17a-/-Il17f-/-マウスでは2~4倍増加し、Il17a-/-Il17f-/-マウスでのIgG3力価は減少していた(図2B)。興味深いことに、Il17a-/-Il17f-/-マウスには、鼻および口の周囲に粘膜皮膚膿瘍が発生した(図2C)。組織分析により、特にIl17a-/-Il17f-/-マウスの粘膜皮膚組織に、フィブリンに包まれた膿瘍および著しい白血球浸潤が認められた。
(2) Il17a − / − Il17f − / − mice show increased susceptibility to opportunistic infections by S. aureus.
We found that the submandibular LN of Il17a -/- Il17f -/- mice expands with age, but not wild type (WT), Il17f -/- or Il17a -/- mice. This effect was observed in various genetic backgrounds including C57BL / 6J, BALB / cA and 129 / OlaXC57BL / 6J strains (FIG. 2A). At 8-10 weeks of age, IgM titers were similar between Il17a − / − Il17f − / − mice and wild type (WT) mice. However, total IgG, IgG1, IgG2a and IgG2b titers, IL17A compared to wild-type (WT) mice - / - Il17f - / - in mouse increased 2-4 fold, Il17a - / - Il17f - / - mice IgG3 titer was decreased in (FIG. 2B). Interestingly, Il17a − / − Il17f − / − mice developed mucocutaneous abscesses around the nose and mouth (FIG. 2C). Histological analysis revealed a fibrin-encapsulated abscess and significant leukocyte infiltration, especially in the mucosal skin tissue of Il17a − / − Il17f − / − mice.
 LNの拡大、皮下膿瘍形成および抗体産生の増加は、Il17a-/-Il17f-/-マウスが感染に応答していた可能性を示唆する。この考えを裏付けるように、抗生物質での治療により、Il17a-/-Il17f-/-マウスの下顎骨下のLN拡大は抑制された(図2D)。次に、Il17a-/-Il17f-/-マウスの鼻および口の周囲の粘膜皮膚組織からの感染微生物の回収を試みた。日和見細菌である黄色ブドウ球菌がこれらのマウスの患部組織から回収された。これらのマウスからの粘膜皮膚組織ホモジネートを培養した場合、野生型(WT)、Il17f-/-およびIl17a-/-マウスからの試料の場合と比較して、Il17a-/-Il17f-/-マウスのホモジネートにおいてより多くの細菌が観察されたことから(図2Eおよび2F)、IL-17AおよびIL-17Fの両方が、マウスを粘膜皮膚の黄色ブドウ球菌感染から保護するために極めて重要であることが示唆された。IL-17AおよびIL-17Fが黄色ブドウ球菌による全身感染症で役割を担うかどうかを調べるために、マウスに黄色ブドウ球菌を静脈内注射によって投与した。しかし、野生型(WT)およびIl17a-/-Il17f-/-マウスの間で、生存期間および72時間後に腎臓から回収された細菌数に差は認められなかった(図2Gおよび図2H)。これらの結果は、IL-17AおよびIL-17Fの両方が、黄色ブドウ球菌に対する全身性ではなく局所の感染からの保護において重要な役割を担っていることを示唆している。 Increased LN, subcutaneous abscess formation and increased antibody production suggest that Il17a − / − Il17f − / − mice may have responded to infection. In support of this idea, treatment with antibiotics suppressed LN expansion under the mandible of Il17a − / − Il17f − / − mice (FIG. 2D). Next, an attempt was made to collect infectious microorganisms from mucocutaneous tissue around the nose and mouth of Il17a − / − Il17f − / − mice. An opportunistic staphylococcus aureus was recovered from the affected tissues of these mice. When cultured the mucocutaneous tissue homogenates from these mice, wild-type (WT), Il17f - / - and IL17A - / - as compared to the case of a sample from a mouse, Il17a - / - Il17f - / - mice Since more bacteria were observed in the homogenate (FIGS. 2E and 2F), both IL-17A and IL-17F are crucial to protect mice from mucocutaneous S. aureus infection It was suggested. To investigate whether IL-17A and IL-17F play a role in systemic infection with S. aureus, mice were administered S. aureus by intravenous injection. However, there were no differences in survival and the number of bacteria recovered from the kidney after 72 hours between wild type (WT) and Il17a − / − Il17f − / − mice (FIGS. 2G and 2H). These results suggest that both IL-17A and IL-17F play an important role in protecting against local but not systemic infections against S. aureus.
(3)C.ローデンチウム感染に対する宿主防御にはIL-17FおよびIL-17Aの両方が必要である。
 Il17a-/-Il17f-/-マウスは黄色ブドウ球菌による日和見感染に感受性であったので、実験上のC.ローデンチウム感染に対するIl17f-/-、Il17a-/-およびIl17a-/-Il17f-/-マウスの感受性を調べた。C.ローデンチウムを経口感染させた後、野生型(WT)129/Ola×C57BL/65マウスの結腸内の細菌数は感染後14日まで増加し、その後に減少した(図3A)。野生型(WT)マウスの場合よりもIl17f-/-、Il17a-/-およびIl17a-/-Il17f-/-マウスの結腸では、感染後の各時点において実質的により多数の細菌が検出されたが、変異体マウスにおける細菌負荷は21日目までに低下し、全ての遺伝子型のマウスにおいて感染後28日目までには野生型(WT)レベルまで戻った。注目すべきは、結腸の細菌数は、Il17f-/-、Il17a-/-およびIl17a-/-Il17f-/-のマウス間で類似していた。感染の14日後、野生型(WT)マウスの遠位結腸の場合と比較してIl17f-/-、Il17a-/-およびIl17a-/-Il17f-/-マウスの遠位結腸において、細菌集団の著しい膨張が観察された(図3B)。さらに、Il17f-/-およびIl17a-/-Il17f-/-マウスでは結腸および脾臓の顕著な腫大が観察されたが、Il17a-/-マウスでは軽度の腫大だけが検出された(図3Cおよび3D)。これらの結果と一致して、感染の14日後に、Il17a-/-マウスの場合と比較して、激しい炎症性の変化がIl17f-/-およびIl17a-/-Il17f-/-マウスの結腸で観察されたことから、この細菌に対する免疫応答においてIL-17FがIL-17Aよりも大きな役割を担うことが示唆された(図3Eおよび3F)。これらの結果は、IL-I7AおよびIL-17Fの両方が、C.ローデンチウム感染から宿主を防御するるために重要な役割を担っていることを明確に示している。
(3) Host defense against C. rodentium infection requires both IL-17F and IL-17A.
Il17a -/- Il17f -/- mice were susceptible to opportunistic infections by S. aureus, so Il17f -/- , Il17a -/- and Il17a -/- Il17f -/- against experimental C. rodentium infection The sensitivity of the mice was examined. After oral infection with C. rodentium, the number of bacteria in the colon of wild type (WT) 129 / Ola × C57BL / 65 mice increased up to 14 days after infection and then decreased (FIG. 3A). Although Il17f -/- , Il17a -/- and Il17a -/- Il17f -/- mice had substantially more bacteria detected at each time point after infection than in wild-type (WT) mice Bacterial load in mutant mice decreased by day 21 and returned to wild-type (WT) levels by day 28 after infection in all genotype mice. Of note, colonic bacterial counts were similar among Il17f − / − , Il17a − / − and Il17a − / − Il17f − / − mice. 14 days after infection, a marked increase in the bacterial population in the distal colon of Il17f − / − , Il17a − / − and Il17a − / − Il17f − / − mice compared to the distal colon of wild type (WT) mice Swelling was observed (FIG. 3B). In addition, significant enlargement of the colon and spleen was observed in Il17f − / − and Il17a − / − Il17f − / − mice, but only mild swelling was detected in Il17a − / − mice (FIG. 3C and 3D). Consistent with these results, 14 days after infection, IL17A - / - as compared to the case of mice, severe inflammatory changes IL17F - / - and Il17a - / - Il17f - / - observed in the colon of mice This suggested that IL-17F plays a greater role than IL-17A in the immune response against this bacterium (FIGS. 3E and 3F). These results clearly show that both IL-I7A and IL-17F play an important role in protecting the host from C. rodentium infection.
(4)IL-17FおよびIL-17Aは結腸でのβ-デフェンシンの発現に必要である。
 IL-17AおよびIL-17Fによって誘導される抗細菌機構を分析した。細菌クリアランスに重要である(Mundy, R., 他、(2005) Cell. Microbiol. 7, 1697-1706.)C.ローデンチウム特異的IgGの血清量は、全ての変異体マウスにおいて増加したことから(図14)、C.ローデンチウムに対する液性免疫応答は、Il17f-/-、Il17a-/-およびIl17a-/-Il17f-/-マウスにおける遅延型細菌クリアランスに関与しないことが示唆された。
(4) IL-17F and IL-17A are required for β-defensin expression in the colon.
The antibacterial mechanism induced by IL-17A and IL-17F was analyzed. (Mundy, R., et al., (2005) Cell. Microbiol. 7, 1697-1706.) Serum levels of C. rodentium-specific IgG increased in all mutant mice (FIG. 14), suggesting that the humoral immune response against C. rodentium is not involved in delayed bacterial clearance in Il17f − / − , Il17a − / − and Il17a − / − Il17f − / − mice.
 IL-17AおよびIL-17Fはともに、好中球動員および抗微生物性ペプチド産生を誘導することによって自然免疫を調節する(Ouyang, W., 他、(2008) Immunity 28, 454-467.)。しかし、野生型(WT)マウスと比較すると、CXCL1およびCXCL2などの好中球化学誘引物質、およびIFN-γ、IL-1β、IL-6、TNFおよびiNOSなどの炎症誘発性メディエーターのmRNA発現は、C.ローデンチウム感染の14日後に、Il17f-/-、Il17a-/-およびIl17a-/-Il17f-/-マウスの結腸で同様に増加した(図4A)。しかし、β-デフェンシン1、3および4などの抗微生物性ペプチドの発現はC.ローデンチウム感染から14日目に、Il17f-/-、Il17a-/-およびIl17a-/-Il17f-/-マウスの結腸で著しく損なわれたが、β-デフェンシン2、リポカリン2、S100A8、S100A9、Reg3βおよびReg3γの発現は損なわれなかった(図4B)。これらの結果から、IL-17FおよびIL-17Aの両方が、C.ローデンチウムに対する宿主防御に重要なβ-デフェンシンの発現を誘導するのに重要であることが示された。 Both IL-17A and IL-17F regulate innate immunity by inducing neutrophil recruitment and antimicrobial peptide production (Ouyang, W., et al. (2008) Immunity 28, 454-467.). However, compared to wild type (WT) mice, mRNA expression of neutrophil chemoattractants such as CXCL1 and CXCL2 and pro-inflammatory mediators such as IFN-γ, IL-1β, IL-6, TNF and iNOS 14 days after infection with C. rodentium, there was a similar increase in the colons of Il17f − / − , Il17a − / − and Il17a − / − Il17f − / − mice (FIG. 4A). However, the expression of antimicrobial peptides such as β- defensins 1, 3 and 4 was observed on the 14th day after C. rodentium infection, in Il17f − / − , Il17a − / − and Il17a − / − Il17f − / − mice. Although significantly impaired in the colon, expression of β-defensin 2, lipocalin 2, S100A8, S100A9, Reg3β and Reg3γ was not impaired (FIG. 4B). These results indicated that both IL-17F and IL-17A are important in inducing the expression of β-defensin, which is important for host defense against C. rodentium.
(5)IL-17FおよびIL-17Aは結腸において異なる細胞によって産生される。
 IL-17A mRNAは、結腸よりも小腸で高発現する(Ivanov, I.I.,他、(2006) Cell 126, 1121-1133.)。対照的に、結腸でのIL-17F mRNA発現は、小腸での発現よりも高かった(図5A)。C.ローデンチウム感染の間、IL-17AおよびIL-17FのmRNA発現は野生型(WT)マウスの結腸で誘導されたが、IL-17AのmRNA発現の増大はより大きかった(14日目;IL-17A:29倍;IL-17F:14倍)(図5B)。これらの条件下では、IL-17A mRNAの発現はIL-17Fの欠損により影響されず、その逆も同様であった。少数のIL-17AおよびIL-17F産生細胞が未感染野生型(WT)マウスの結腸リンパ球で見出されたが(図5C)、IL-17Aも産生するIL-17F産生細胞の集団は、感染野生型(WT)マウスで増加した(図5D)。しかし、DTH、EAEまたは関節炎の発症後のLN細胞によるIL-17AおよびIL-17Fの協調した産生(図1Aおよび図11)とは対照的に、結腸リンパ球におけるIL-17A+IL-17F-細胞の割合は、IL-17A-IL-17F+細胞の割合よりはるかに大きかった(図5D)。IL-17A+およびIL-17F+の細胞は何れもIl17a-/-Il17f-/-結腸リンパ球集団では観察されなかったが、IFN-γ+の細胞数は、C.ローデンチウム感染の間、著しく増加した(図5D)。
(5) IL-17F and IL-17A are produced by different cells in the colon.
IL-17A mRNA is more highly expressed in the small intestine than in the colon (Ivanov, II, et al. (2006) Cell 126, 1121-1133.). In contrast, IL-17F mRNA expression in the colon was higher than in the small intestine (FIG. 5A). During C. rodentium infection, IL-17A and IL-17F mRNA expression was induced in the colon of wild type (WT) mice, but the increase in IL-17A mRNA expression was greater (day 14; IL-17A: 29 times; IL-17F: 14 times) (FIG. 5B). Under these conditions, IL-17A mRNA expression was unaffected by IL-17F deficiency and vice versa. Although a small number of IL-17A and IL-17F producing cells were found in colon lymphocytes of uninfected wild type (WT) mice (FIG. 5C), the population of IL-17F producing cells that also produce IL-17A is: Increased in infected wild type (WT) mice (FIG. 5D). However, in contrast to the coordinated production of IL-17A and IL-17F by LN cells after the onset of DTH, EAE or arthritis (FIGS. 1A and 11), IL-17A + IL-17F in colon lymphocytes The percentage of cells was much greater than the percentage of IL-17A IL-17F + cells (FIG. 5D). Although neither IL-17A + nor IL-17F + cells were observed in the Il17a − / − Il17f − / − colon lymphocyte population, IFN-γ + cell counts were observed during C. rodentium infection. There was a marked increase (Figure 5D).
 誘導の動態が2分子間で異なり、IL-17F産生細胞は結腸リンパ球でほとんど見出されなかったので、IL-17AおよびIL-17Fは結腸中で異なる細胞によって産生されている可能性がある。これらの分子のmRNA発現を、T細胞およびB細胞が存在しない組換え活性化遺伝子-2欠損(Rag2-/-)マウスの結腸で調べた。腸間膜LN(MLN)でのIL-17A mRNAの発現は、野生型(WT)マウスでのC.ローデンチウム感染から7日目の結腸での発現より非常に高かった(図5E)。しかし、IL-17A mRNAの量はRag2-/-マウスで著しく減少し(野生型(WT)の約20%)(図5Eおよび5F)、MLNではTh17細胞がIL-17Aの主要な産生細胞であることが示唆された。対照的に、IL-17F発現の量は、これらのマウスのMLNでは約50%減少しただけであった(図5Eおよび5F)。IL-17A mRNAの発現はRag2-/-マウスの結腸でも著しく減少したが、IL-17F mRNAの発現は、野生型(WT)およびRag2-/-マウスの間で同様であった(図5Eおよび5F)。さらに、Rag2-/-マウス由来の全結腸培養上清におけるIL-17Fの産生は、IL-23による処理によって増加したが、IL-17Aの産生は増加しなかった。また、IL-17AおよびIL-17Fの産生は何れも、野生型(WT)マウス由来の全結腸培養上清において誘導され、IL-17Fが、非Tおよび非B細胞によっても産生されることが示された(図5G)。次に、IL-23に応答してどの細胞がIL-17Fを産生するかについて調べた。興味深いことに、IL-23による刺激により、野生型(WT)マウスの場合と比較してRag2-/-またはC.B-17 SCIDマウス由来の脾細胞またはMLNにおいては、IL-17F産生が増加したが、これらの細胞では少量のIL-17Aだけが産生された(図5H、5Iおよび図16)。自然免疫細胞の中では、CD11blowDX5+CD11c-Gr1-B220-F4/80-Gr1-細胞は、IL-23による刺激後、主にIL-17Fを産生する傾向がある (図15)。 IL-17A and IL-17F may be produced by different cells in the colon because the kinetics of induction differ between the two molecules and IL-17F producing cells were rarely found in colon lymphocytes . The mRNA expression of these molecules was examined in the colons of recombinant activating gene-2 deficient (Rag2 − / − ) mice in the absence of T and B cells. IL-17A mRNA expression in mesenteric LN (MLN) was much higher than in colon 7 days after C. rodentium infection in wild type (WT) mice (FIG. 5E). However, IL-17A mRNA levels are markedly reduced in Rag2 − / − mice (approximately 20% of wild type (WT)) (FIGS. 5E and 5F), and in MLN, Th17 cells are the major producers of IL-17A. It was suggested that there is. In contrast, the amount of IL-17F expression was only reduced by about 50% in the MLN of these mice (FIGS. 5E and 5F). IL-17A mRNA expression was also significantly reduced in the colons of Rag2 − / − mice, whereas IL-17F mRNA expression was similar between wild-type (WT) and Rag2 − / − mice (FIG. 5E and 5F). Furthermore, IL-17F production in whole colon culture supernatants from Rag2 − / − mice was increased by treatment with IL-23, but IL-17A production was not increased. IL-17A and IL-17F production are both induced in whole colon culture supernatants from wild type (WT) mice, and IL-17F can also be produced by non-T and non-B cells. Was shown (FIG. 5G). Next, it was investigated which cells produce IL-17F in response to IL-23. Interestingly, stimulation with IL-23 increased IL-17F production in splenocytes or MLNs derived from Rag2 − / − or CB-17 SCID mice compared to wild type (WT) mice. Only a small amount of IL-17A was produced in these cells (FIGS. 5H, 5I and FIG. 16). Among innate immune cells, CD11b low DX5 + CD11c Gr1 B220 F4 / 80 Gr1 cells tend to mainly produce IL-17F after stimulation with IL-23 (FIG. 15).
 IL-17Fは肺上皮細胞(EC)で発現するので(Suzuki, S., 他、(2007) Int. Arch. Allergy Immunol. 143 (Suppl 1), 89-94.)、IL-17Fが結腸のECでも発現するかどうかを調べた。感染野生型(WT)マウス由来のFACSでソートして得られたCD45- 結腸ECではIL-17F mRNAが検出されたが、IL-17A mRNAは検出されなかった。この結果は、IL-17A及びIL-17Fの両方が検出されたCD45+上皮内免疫細胞およびConA刺激脾細胞とは対照的である(図5J)。さらに、IL-17FのmRNAはマウス結腸EC系で発現していたが、IL-17Aは発現していなかった(図5K)。これらの結果は、C.ローデンチウム感染に応答して、IL-17Fが、浸潤リンパ球に加えて非T非B自然免疫細胞および結腸ECによって産生されることを示している。 IL-17F is expressed in lung epithelial cells (EC) (Suzuki, S., et al. (2007) Int. Arch. Allergy Immunol. 143 (Suppl 1), 89-94.) Whether it was expressed in EC was also examined. IL-17F mRNA was detected in CD45-colon ECs obtained by sorting by FACS from infected wild type (WT) mice, but IL-17A mRNA was not detected. This result is in contrast to CD45 + intraepithelial immune cells and ConA stimulated splenocytes in which both IL-17A and IL-17F were detected (FIG. 5J). Furthermore, IL-17F mRNA was expressed in the mouse colon EC system, but IL-17A was not expressed (FIG. 5K). These results indicate that, in response to C. rodentium infection, IL-17F is produced by non-T non-B innate immune cells and colon EC in addition to infiltrating lymphocytes.
(6)IL-17RCは、結腸上皮細胞で強く発現する。
 2つの受容体分子、IL-17RAおよびIL-17RCは、IL-17AおよびIL-17Fに結合することが報告されている(Toy, D., 他、(2006) J. Immunol. 177, 36-39.; Zheng, Y., 他、(2008) Nat. Med. 14, 282-289.)。これらの受容体に対するIL-17AおよびIL-17Fの結合親和性は異なる(Hymowitz, S.G., 他、(2001) EMBO J. 20, 5332-5341.; Kuestner, R.E., 他、(2007) J. Immunol. 179, 5462-5473.; Wright, J.F., 他、(2008). J. Immunol. 181, 2799-2805.)ので、これらの分子の組織分布を調べた。既報の通り(Kuestner, R.E., 他、(2007) J. Immunol. 179, 5462-5473.)、IL-17RA mRNAは、胸腺、脾臓およびLNなどのリンパ組織で強く発現していた(図6A)。一方、IL-17RC mRNAは、結腸、小腸および肺などの非造血組織で多量に発現していた(図6A)。これらの結果と一致して、T細胞およびマクロファージ細胞は、結腸EC系よりも多量のIL-17RA mRNAを発現したが、結腸ECは、T細胞よりも多量のIL-17RC mRNAを発現した(図6B)。IL-17RAまたはAct1のmRNAは、Thyl.2+細胞、B220+細胞、CD11c+細胞、CD11b+細胞、腹腔マクロファージおよび結腸上皮細胞(CMT93)で構成的に発現されるが、IL-17RC mRNAは、腹腔マクロファージおよび結腸ECだけで検出されることも判明した(図6C)。即ち、これらの受容体の組織分布は著しく異なり、結腸ECではIL-17RCが優先的に発現している。
(6) IL-17RC is strongly expressed in colonic epithelial cells.
Two receptor molecules, IL-17RA and IL-17RC, have been reported to bind to IL-17A and IL-17F (Toy, D., et al. (2006) J. Immunol. 177, 36- 39 .; Zheng, Y., et al. (2008) Nat. Med. 14, 282-289.). The binding affinities of IL-17A and IL-17F for these receptors are different (Hymowitz, SG, et al., (2001) EMBO J. 20, 5332-5341 .; Kuestner, RE, et al., (2007) J. Immunol 179, 5462-5473 .; Wright, JF, et al. (2008). J. Immunol. 181, 2799-2805.) The tissue distribution of these molecules was examined. As previously reported (Kuestner, RE, et al. (2007) J. Immunol. 179, 5462-5473.), IL-17RA mRNA was strongly expressed in lymphoid tissues such as thymus, spleen and LN (FIG. 6A). . On the other hand, IL-17RC mRNA was abundantly expressed in non-hematopoietic tissues such as colon, small intestine and lung (FIG. 6A). Consistent with these results, T cells and macrophage cells expressed more IL-17RA mRNA than the colon EC line, whereas colon EC expressed more IL-17RC mRNA than the T cells (Fig. 6B). IL-17RA or Act1 mRNA is constitutively expressed in Thyl.2 + cells, B220 + cells, CD11c + cells, CD11b + cells, peritoneal macrophages and colon epithelial cells (CMT93), whereas IL-17RC mRNA is It was also found to be detected only in peritoneal macrophages and colon EC (FIG. 6C). That is, the tissue distribution of these receptors is significantly different, and IL-17RC is preferentially expressed in colon EC.
 次に、IL-17Fが、T細胞、腹腔マクロファージまたは結腸上皮細胞にシグナルを伝達できるかどうかを調べた。その結果、IL-17Aが、腹腔マクロファージによるIL-6、CD4+ T細胞によるCCL2、または結腸上皮細胞(CMT93)によるリポカリン2およびβ-デフェンシン3を用量依存的に誘導できること(図6D~6F)、並びにこれらの細胞において複数のサイトカインおよびケモカインを誘導するには50ng/mlのIL-17Aで十分であることが判明した(図6D~6Jおよび図16)。IL-6産生がC3H/HeN(LPS感受性)およびC3H/HeJ(LPS非感受性)マウスに由来するIL-17A処理腹腔マクロファージで観察されることが判明したことから、IL-17Aのサイトカイン誘導活性は、混在したLPSの影響ではない(図6D)。しかし、IL-6、CCL3およびG-CSFの産生がIL-17F(50ng/ml)による処理によって腹腔マクロファージで誘導されたのに対して、このIL-17Fは、IL-17Aによって誘導された他の炎症メディエーターを増加させることはできなかった(図6D、6Hおよび図16)。対照的に、IL-17Aと同様に、結腸上皮細胞でのIL-17F処理は、調べた炎症メディエーターの大部分を誘導したが、IL-17Fの活性はIL-17Aの活性と比較してわずかに低かった(図6F、6Gおよび図16)。IL-17Aは、CDC4+ T細胞で複数のサイトカインおよびケモカインの産生も誘導したが、IL-17Fは誘導しなかった。IL-17AとIL-17Fとの間では相乗効果は認められなかった (図6F、6Gおよび図16)。これらの結果は、IL-17AおよびIL-17Fは、サイトカインおよび抗微生物性ペプチドの発現を細胞型に特異的に異なる様式で誘導できることを示している。 Next, it was examined whether IL-17F can transmit signals to T cells, peritoneal macrophages or colon epithelial cells. As a result, IL-17A can induce IL-6 by peritoneal macrophages, CCL2 by CD4 + T cells, or lipocalin 2 and β-defensin 3 by colonic epithelial cells (CMT93) in a dose-dependent manner (FIGS. 6D to 6F). And 50 ng / ml IL-17A was found to be sufficient to induce multiple cytokines and chemokines in these cells (FIGS. 6D-6J and FIG. 16). Since IL-6 production was observed in IL-17A-treated peritoneal macrophages derived from C3H / HeN (LPS sensitive) and C3H / HeJ (LPS insensitive) mice, the cytokine-inducing activity of IL-17A was It is not the influence of mixed LPS (FIG. 6D). However, IL-6, CCL3 and G-CSF production was induced in peritoneal macrophages by treatment with IL-17F (50 ng / ml), whereas this IL-17F was induced by IL-17A Inflammatory mediators could not be increased (FIGS. 6D, 6H and FIG. 16). In contrast, like IL-17A, IL-17F treatment in colonic epithelial cells induced the majority of the inflammatory mediators examined, but IL-17F activity was only slightly compared to IL-17A activity. (Figs. 6F, 6G and Fig. 16). IL-17A also induced the production of multiple cytokines and chemokines in CDC4 + T cells, but not IL-17F. No synergistic effect was observed between IL-17A and IL-17F (FIGS. 6F, 6G and FIG. 16). These results indicate that IL-17A and IL-17F can induce the expression of cytokines and antimicrobial peptides in a manner that differs specifically to the cell type.
(III)考察
 本実施例では、IL-17AはIl1rn-/-マウスにおけるDTH、CHS、EAE、CIAおよび関節炎の発症に不可欠であるが、IL-17Fはこれらの応答の誘導に必須ではなく、これらの障害に対するIL-17Aの効果に対して何ら影響を及ぼさないことを示した。これらの観察結果は、IL-17AおよびIL-17Fは、Th17細胞によって同時に産生し、同一の受容体に結合するが、IL-17Fはこれらの免疫応答においてIL-17Aと比較して低い活性しか持たないことを示している。これに関し、マクロファージまたはT細胞からのIL-17Fのサイトカイン誘導活性はIL-17Aよりもずっと低いことが判明した。IL-17AはT細胞刺激を活性化することによって免疫応答を増強し(Nakae, S., 他、(2002) Immunity 17, 375-387.;Nakae, S., 他、(2003b) Proc. Natl.Acad. Sci. USA 100, 5986-5990.)、マクロファージ(Da Silva, C.A., 他、(2008) J. Immunol. 181, 4279-4286.; Jovanovic, D.V., 他、(1998) J. Immunol. 160, 3513-3521.)および樹状細胞(A Antonysamy, M.A.,他 (1999) Immunol. 162, 577-584.; Coury, F., 他、(2008) Nat. Med. 14, 81-87.)を含む様々な種類の細胞からサイトカインを誘導することによって炎症を誘発する。従って、免疫細胞に対するIL-17Fのサイトカイン誘導活性が低いために、アレルギー応答および自己免疫応答においてこのサイトカインが作用しないという可能性がある。
(III) Discussion In this example, IL-17A is essential for the development of DTH, CHS, EAE, CIA and arthritis in Il1rn − / − mice, whereas IL-17F is not essential for the induction of these responses, It was shown that it has no effect on the effect of IL-17A on these disorders. These observations indicate that IL-17A and IL-17F are produced simultaneously by Th17 cells and bind to the same receptor, but IL-17F is less active in these immune responses compared to IL-17A. It shows that it does not have. In this regard, it was found that the cytokine-inducing activity of IL-17F from macrophages or T cells is much lower than IL-17A. IL-17A enhances immune responses by activating T cell stimulation (Nakae, S., et al. (2002) Immunity 17, 375-387 .; Nakae, S., et al. (2003b) Proc. Natl Acad. Sci. USA 100, 5986-5990.), Macrophages (Da Silva, CA, et al. (2008) J. Immunol. 181, 4279-4286 .; Jovanovic, DV, et al. (1998) J. Immunol. 160, 3513-3521.) And dendritic cells (A Antonysamy, MA, et al. (1999) Immunol. 162, 577-584 .; Coury, F., et al. (2008) Nat. Med. 14, 81-87. Inflammation is induced by inducing cytokines from various cell types, including). Therefore, there is a possibility that this cytokine does not act in allergic and autoimmune responses due to the low cytokine-inducing activity of IL-17F on immune cells.
 また、Il17a-/-Il17f-/-マウスは黄色ブドウ球菌による日和見感染症に感受性であることが示され、IL-17AおよびIL-17Fがこの細菌に対する宿主防御に重要であることが示された。Il17f-/-およびIl17a-/-マウスは黄色ブドウ球菌に対して正常な感受性を示すことから、IL-17AおよびIL-17Fはここでは互いに補足し合っている。さらに、IL-17AおよびIL-17FはC.ローデンチウムに対する応答に関与することが示された。C.ローデンチウムへの感染後の結腸における細菌負荷は、Il17f-/-、Il17a-/-およびIl17a-/-Il17f-/-マウスにおいて同様の増加を示し、1種のIL-17タンパク質のみが欠損しただけでC.ローデンチウム感染に対して完全に感受性になることが示唆された。特に、重篤な結腸炎症に関連のある脾腫大および結腸肥大は、Il17a-/-よりもIl17f-/-で顕著で、結腸上皮細胞をこの細菌の病原効果から防御するにはIL-17FがIL-17Aよりも重要であることが示された。IL-17AおよびIL-17Fの両方がC.ローデンチウムに対する防御に必要であるという本結果は、IL-17AまたはIL-17Fのいずれかがあれば防御に十分である黄色ブドウ球菌の場合とは明らかに対照的で、黄色ブドウ球菌およびC.ローデンチウム感染に対する防御機構が異なることを示唆している。 In addition, Il17a -/- Il17f -/- mice were shown to be susceptible to opportunistic infections with Staphylococcus aureus, indicating that IL-17A and IL-17F are important for host defense against this bacterium . IL-17A and IL-17F complement each other here because Il17f − / − and Il17a − / − mice show normal sensitivity to S. aureus. Furthermore, IL-17A and IL-17F have been shown to be involved in the response to C. rodentium. Bacterial burden in the colon after infection with C. rodentium showed a similar increase in Il17f -/- , Il17a -/- and Il17a -/- Il17f -/- mice, with only one IL-17 protein It was suggested that only deficiency would make them completely susceptible to C. rodentium infection. In particular, splenomegaly and colon hypertrophy associated with severe colon inflammation are more prominent in Il17f -/- than in Il17a -/- , and IL-17F protects colon epithelial cells from the pathogenic effects of this bacterium. It was shown to be more important than IL-17A. The result that both IL-17A and IL-17F are required for protection against C. rodentium is not the case for S. aureus, where either IL-17A or IL-17F is sufficient for protection. Clearly in contrast, suggesting a different defense mechanism against S. aureus and C. rodentium infection.
 β-デフェンシン産生がIl17a-/-およびIl17f-/-マウスの感染結腸では損なわれていることが判明したことから、IL-17AまたはIL-17Fの片方のみでECからのβ-デフェンシン産生を促進できるが、IL-17AおよびIL-17Fの両方がin vivoにおけるこれらの分子の誘導に必要であることが示された(Kao, C.Y., 他、 (2004)  J. Immunol. 173, 3482-3491.; Liang, S.C., 他、(2006) J. Exp. Med. 203, 2271-2279.)。β-デフェンシンは、これらの病原体に対する免疫応答において重要な役割を果たすので(LeBlanc, P.M., 他、(2008) Cell Host Microbe 3, 146-157.; Simmons, C.P., 他、(2002) J. Immunol. 168, 1804-1812.)、β-デフェンシン産生の欠損はIl17a-/-およびIl17f-/-マウスのC.ローデンチウムに対する感受性の増加に関係すると考えられる。これらのin vivoデータは、C.ローデンチウムに対する防御におけるIL-17AとIL-17Fの間の相乗作用の可能性を示唆するが、標的として結腸上皮細胞系を使用してもin vitroにおいてこれらの分子間の相乗性を観察することはできなかったので、これらの細胞系の応答はin vivoにおける結腸デフェンシン産生細胞とは異なる可能性があることが示唆された。in vivoにおいて、黄色ブドウ球菌に対する防御におけるIL-17AとIL-17Fの間の相乗性は観察できなかった。Il17f-/-、Il17a-/-およびIl17a-/-Il17f-/-マウスにおけるC.ローデンチウム特異的抗体の産生は正常であったので、IL-17AおよびIL-17Fは、C.ローデンチウムに対する獲得免疫応答には必要でない。 β-Defensin production was found to be impaired in the infected colon of Il17a -/- and Il17f -/- mice, and only one of IL-17A or IL-17F stimulated β-defensin production from EC However, both IL-17A and IL-17F have been shown to be required for the induction of these molecules in vivo (Kao, CY, et al. (2004) J. Immunol. 173, 3482-3491. Liang, SC, et al. (2006) J. Exp. Med. 203, 2271-2279.). Since β-defensins play an important role in the immune response against these pathogens (LeBlanc, PM, et al. (2008) Cell Host Microbe 3, 146-157 .; Simmons, CP, et al. (2002) J. Immunol 168, 1804-1812.), Deficiency in β-defensin production is thought to be associated with increased sensitivity of Il17a − / − and Il17f − / − mice to C. rodentium. These in vivo data suggest a possible synergy between IL-17A and IL-17F in protection against C. rodentium, but these in vitro using the colon epithelial cell line as a target Intermolecular synergies could not be observed, suggesting that the response of these cell lines may be different from colon defensin-producing cells in vivo. In vivo, no synergy between IL-17A and IL-17F in the protection against S. aureus could be observed. IL-17A and IL-17F were directed against C. rodentium, since the production of C. rodentium specific antibodies in Il17f − / − , Il17a − / − and Il17a − / − Il17f − / − mice was normal. It is not necessary for the acquired immune response.
 結腸におけるIL-17AおよびIL-17F産生細胞は異なっており、IL-17Fは主に結腸ECおよび自然免疫細胞によって産生される一方、IL-17Aの大部分は、Th17細胞である可能性が高いRag2依存性細胞によって産生されることが判明した。さらに、本実施例のデータによれば、IL-17A産生は細菌感染後に著しく誘導される一方、IL-17Fの誘導は感染した結腸でもそれほど顕著ではないことが示される。これらの結果は、結腸ECおよび/または自然免疫細胞由来のIL-17FはECにおいて抗菌ペプチドを誘導し、初期の細菌侵入および拡散に対する防御をもたらすことを示している。IL-17AおよびIL-17Fのこのような異なる作用およびデフェンシン誘導におけるこれら2つの分子の間の明白な相乗性によってまた、なぜこれらの2種類のサイトカインが結腸におけるC.ローデンチウム感染において相補しないかを説明することができる。 IL-17A and IL-17F producing cells in the colon are different, IL-17F is mainly produced by colon EC and innate immune cells, while most of IL-17A is likely to be Th17 cells It was found to be produced by Rag2-dependent cells. Furthermore, the data in this example show that IL-17A production is significantly induced after bacterial infection, whereas the induction of IL-17F is less pronounced in the infected colon. These results indicate that colonic EC and / or IL-17F from innate immune cells induce antimicrobial peptides in EC, resulting in protection against early bacterial invasion and spread. The distinct effects of IL-17A and IL-17F and the obvious synergy between these two molecules in defensin induction also explains why these two cytokines do not complement in C. rodentium infection in the colon Can be explained.
 Il17ra-/-マウスが、ブドウ球菌属のコロニー形成によって、口および目の粘膜周囲に潰瘍性症候群を示すことが報告された(Schwarzenberger, P., 他、(2002) J. Cell. Biochem. Suppl. 38, 88-95.)。この表現型は、Il17a-/-Il17f-/-マウスで認められたものと非常に類似しており、IL-17RAがIL-17AおよびIL-17F両方のシグナリングに関与していることが示唆される。しかし、IL-17RCは結腸上皮細胞において強く発現する一方、IL-17RAはマクロファージおよびT細胞などの免疫細胞において優先的に発現することが判明した。IL-17FのIL-17RAに対する結合親和性は、IL-17Aよりもずっと低く(Hymowitz, S.G., 他、(2001) EMBO J. 20, 5332-5341.; Wright, J.F., 他、(2008). J. Immunol. 181, 2799-2805.)、IL-17FのみがマウスにおいてIL-17RCに結合するので(Kuestner, R.E., 他、(2007) J. Immunol. 179, 5462-5473.)、IL-17AおよびIL-17Fのこれらの受容体の使用は異なるものと考えられる。これらの知見の裏付けとして、IL-17AおよびIL-17Fの効果が結腸上皮細胞、マクロファージおよびT細胞において異なり、IL-17AおよびIL-17Fの両方は結腸上皮細胞において好中球化学誘引物質およびβ-デフェンシンを誘導することができるが、IL-17AのみがマクロファージおよびT細胞においてサイトカインを効率的に誘導できることが示された。これらの結果は、IL-17RA-IL-17RCヘテロ二量体複合体以外の形態の受容体が結腸では関与していることを示唆している。実際、IL-17RAおよびIL-17RCはホモ二量体を形成することもでき(Kramer, J.M., 他、(2006) J. Immunol. 176, 711-715.)、IL-17RAはIL-25シグナリングのためにIL-17RBと相互作用する(Rickel, E.A., 他、(2008) J. Immunol. 181, 4299-4310.)。従って、産生細胞の違いに加えて、細胞種特異的なIL-17受容体の分布ならびにIL-17AおよびIL-17Fのこれらの受容体に対する結合親和性の違いによって、なぜIL-17Aがアレルギー応答および宿主の防御応答の両方に重要で、IL-17Fのみが上皮細胞に自然免疫応答に関与するのかを説明することができる。 Il17ra -/- mice were reported to show ulcerative syndrome around the mouth and eyes mucosa by staphylococcal colonization (Schwarzenberger, P., et al., (2002) J. Cell. Biochem. Suppl 38, 88-95.). This phenotype is very similar to that seen in Il17a -/- Il17f -/- mice, suggesting that IL-17RA is involved in both IL-17A and IL-17F signaling The However, it was found that IL-17RC is strongly expressed in colonic epithelial cells, while IL-17RA is preferentially expressed in immune cells such as macrophages and T cells. The binding affinity of IL-17F to IL-17RA is much lower than IL-17A (Hymowitz, SG, et al. (2001) EMBO J. 20, 5332-5341 .; Wright, JF, et al., (2008). J. Immunol. 181, 2799-2805.), Since only IL-17F binds to IL-17RC in mice (Kuestner, RE, et al. (2007) J. Immunol. 179, 5462-5473.) The use of these receptors for 17A and IL-17F appears to be different. In support of these findings, the effects of IL-17A and IL-17F differ in colon epithelial cells, macrophages and T cells, and both IL-17A and IL-17F are neutrophil chemoattractants and β -Defensin could be induced, but only IL-17A was shown to be able to efficiently induce cytokines in macrophages and T cells. These results suggest that forms of receptors other than the IL-17RA-IL-17RC heterodimeric complex are involved in the colon. In fact, IL-17RA and IL-17RC can also form homodimers (Kramer, JM, et al. (2006) J. Immunol. 176, 711-715.), IL-17RA is an IL-25 signaling Interacts with IL-17RB (Rickel, EA, et al. (2008) J. Immunol. 181, 4299-4310.). Therefore, in addition to the difference in production cells, the distribution of cell-type specific IL-17 receptors and the binding affinity of IL-17A and IL-17F to these receptors It is important for both host and host defense responses and can explain whether only IL-17F is involved in epithelial cells in innate immune responses.
 IL-17AにもIL-17Fにも応答しないIl22-/-およびIl17rc-/-マウスの最近の研究によって、IL-17AおよびIL-17Fではなく、IL-23に応答して発現したIL-22がC.ローデンチウムに対する早期宿主応答に必須であることが示された(Zheng, Y., 他、(2008) Nat. Med. 14, 282-289.)。IL-22は、C.ローデンチウム感染中に樹状細胞など自然免疫細胞によって産生され、結腸ECにおいてRegファミリー抗菌タンパク質の発現を誘導する(Zheng, Y., 他、(2008) Nat. Med. 14, 282-289.)。Il17rc-/-マウスを使用したこれらの観察結果は、IL-17AおよびIL-17Fの両方がC.ローデンチウムに対する宿主防御に関与するという本発明の知見と見かけ上矛盾するが、本発明のデータはIL-22の関与と合致する。 Recent studies of Il22 − / − and Il17rc − / − mice that do not respond to IL-17A or IL-17F show that IL-22 expressed in response to IL-23 but not IL-17A and IL-17F Has been shown to be essential for the early host response to C. rodentium (Zheng, Y., et al. (2008) Nat. Med. 14, 282-289.). IL-22 is produced by innate immune cells such as dendritic cells during C. rodentium infection and induces expression of Reg family antibacterial proteins in colon EC (Zheng, Y., et al. (2008) Nat. Med. 14, 282-289.). These observations using Il17rc − / − mice seemingly contradictory to our findings that both IL-17A and IL-17F are involved in host defense against C. rodentium, but our data Is consistent with IL-22 involvement.
 本発明では、アレルギー応答および細菌感染に対する防御におけるIL-17FおよびIL-17Aの異なる関与が示された。本発明の知見は、IL-17AおよびIL-17F媒介応答の分子機構についての理解をもたらし、アレルギー疾患および細菌感染の新たな治療法の開発に有用である。 In the present invention, different involvement of IL-17F and IL-17A in allergic response and defense against bacterial infection was shown. The findings of the present invention provide an understanding of the molecular mechanisms of IL-17A and IL-17F mediated responses and are useful in the development of new therapies for allergic diseases and bacterial infections.

Claims (11)

  1. (i)IL-17Fタンパク質、又は(ii)IL-17受容体A(IL-17RA)又はIL-17受容体C (IL-17RC)に結合してIL-17Fと同等の機能を示す物質を有効成分として含む、感染防御剤。 (i) a substance that binds to IL-17F protein or (ii) IL-17 receptor A (IL-17RA) or IL-17 receptor C (IL-17RC) and exhibits a function equivalent to that of IL-17F Infection protective agent containing as an active ingredient.
  2. 粘膜での微生物感染を防御するために使用する、請求項1に記載の感染防御剤。 The infection protective agent according to claim 1, which is used to protect against microbial infection in the mucosa.
  3. IL-17F産生細胞に被験物質を投与し、上記IL-17F産生細胞におけるIL-17F又はIL-23の発現量を増大させる被験物質を候補物質として選択することを含む、感染症治療・予防薬のスクリーニング方法。 A therapeutic / prophylactic agent for infectious diseases, comprising administering a test substance to IL-17F-producing cells and selecting a test substance that increases the expression level of IL-17F or IL-23 in the IL-17F-producing cells as a candidate substance Screening method.
  4. 染色体上のIL-17F遺伝子座に欠失及び/又は挿入変異を有する、非ヒト哺乳動物。 A non-human mammal having a deletion and / or insertion mutation at the IL-17F locus on the chromosome.
  5. 染色体上のIL-17A遺伝子座及びIL-17F遺伝子座の両方に欠失及び/又は挿入変異を有する、非ヒト哺乳動物。 A non-human mammal having a deletion and / or insertion mutation at both the IL-17A locus and the IL-17F locus on the chromosome.
  6. 日和見感染への感受性が増加している、請求項5に記載の非ヒト哺乳動物。 6. The non-human mammal according to claim 5, wherein the susceptibility to opportunistic infection is increased.
  7. 感染症モデル動物として使用される、請求項4から6の何れか1項に記載の非ヒト哺乳動物。 The non-human mammal according to any one of claims 4 to 6, which is used as an infectious disease model animal.
  8. げっ歯類である、請求項4から7の何れか1項に記載の非ヒト哺乳動物。 The non-human mammal according to any one of claims 4 to 7, which is a rodent.
  9. マウスである、請求項4から8の何れか1項に記載の非ヒト哺乳動物。 The non-human mammal according to any one of claims 4 to 8, which is a mouse.
  10. 感染症治療・予防薬をスクリーニングするための、請求項4から9の何れか1項に記載の非ヒト哺乳動物の使用。 The use of the non-human mammal according to any one of claims 4 to 9, for screening an infectious disease therapeutic / prophylactic agent.
  11. 請求項4から9の何れか1項に記載の非ヒト哺乳動物に被験物質を投与し、上記非ヒト哺乳動物における感染感受性の程度を測定し、被験物質を投与しない場合と比較して感染感受性を低下させる被験物質を候補物質として選択することを含む、感染症治療・予防薬のスクリーニング方法。 The test substance is administered to the non-human mammal according to any one of claims 4 to 9, the degree of infection susceptibility in the non-human mammal is measured, and the infection susceptibility is compared with the case where the test substance is not administered. A method for screening an infectious disease treatment / prevention drug, comprising selecting a test substance that lowers the risk as a candidate substance.
PCT/JP2009/007341 2008-12-30 2009-12-28 Therapeutic/prophylactic agent for infections which relies on regulation of il-17a/il-17f WO2010076851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14138008P 2008-12-30 2008-12-30
US61/141,380 2008-12-30

Publications (1)

Publication Number Publication Date
WO2010076851A1 true WO2010076851A1 (en) 2010-07-08

Family

ID=42309904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007341 WO2010076851A1 (en) 2008-12-30 2009-12-28 Therapeutic/prophylactic agent for infections which relies on regulation of il-17a/il-17f

Country Status (1)

Country Link
WO (1) WO2010076851A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAAK S. ET AL.: "IL-17A and IL-17F do not contribute vitally to autoimmune neuro- inflammation in mice", JOURNAL OF CLINICAL INVESTIGATION, vol. 119, no. 1, 2009, pages 61 - 69, Retrieved from the Internet <URL:http://www.jci.org/articles/view/35997> [retrieved on 20081215] *
ISHIGAME H. ET AL.: "The Roles of Interleukin (IL)-17A and IL-17F in the Development of Inflammatory Responses", CYTOKINE, vol. 39, no. 1, 2007, pages 17 - 18, 62 *
LIANG S.C. ET AL.: "Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides", JOURNAL OF EXPERIMENTAL MEDICINE, vol. 203, no. 10, 2006, pages 2271 - 2279 *
WU Q. ET AL.: "IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection", MICROBES AND INFECTION, vol. 9, no. 1, 2007, pages 78 - 86 *

Similar Documents

Publication Publication Date Title
Kamanaka et al. Memory/effector (CD45RBlo) CD4 T cells are controlled directly by IL-10 and cause IL-22–dependent intestinal pathology
Ishigame et al. Differential roles of interleukin-17A and-17F in host defense against mucoepithelial bacterial infection and allergic responses
Reynolds et al. Interleukin-17B antagonizes interleukin-25-mediated mucosal inflammation
Price et al. Marking and quantifying IL-17A-producing cells in vivo
Lee et al. Late developmental plasticity in the T helper 17 lineage
Yang et al. Regulation of inflammatory responses by IL-17F
Dalrymple et al. Interleukin-6-deficient mice are highly susceptible to Listeria monocytogenes infection: correlation with inefficient neutrophilia
Kühn et al. Interleukin-10-deficient mice develop chronic enterocolitis
Wei et al. Altered immune responses and susceptibility to Leishmania major and Staphylococcus aureus infection in IL-18-deficient mice
Kopf et al. IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses
Banks et al. Lymphotoxin-alpha-deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness.
US7731953B2 (en) Methods for use of TSLP and agonists and antagonists thereof
US8894996B2 (en) Immunoadjuvant composition and use thereof
US20080166338A1 (en) Il-21 as a regulator of immunoglobin production
US20230148575A1 (en) Genetically modified non-human animal with human or chimeric il1b and/or il1a
US20040016010A1 (en) IL-21 receptor knockout animal and methods of use thereof
US20140302027A1 (en) Methods of treating periodontal inflammation and periodontal bone loss
WO2010076851A1 (en) Therapeutic/prophylactic agent for infections which relies on regulation of il-17a/il-17f
Yeom et al. Prevalence of Helicobacter hepaticus, murine norovirus, and Pneumocystis carinii and eradication efficacy of cross-fostering in genetically engineered mice
JP5888693B2 (en) Interstitial pneumonia model and its use
Lewis Understanding Immune-mediated Responses During the Pathogenesis of Muco-obstructive Airway Disease in Mice
Elson et al. In vivo models of inflammatory bowel disease
Zhou The function of IL-17F in infection and inflammation
JP5164034B2 (en) Screening method for mucosal vaccine adjuvant
JP4100595B2 (en) Mycoplasma-derived lipoprotein / lipopeptide non-responsive model non-human animal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09836191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP