WO2010075777A1 - 信号编码、解码方法及装置、系统 - Google Patents

信号编码、解码方法及装置、系统 Download PDF

Info

Publication number
WO2010075777A1
WO2010075777A1 PCT/CN2009/076218 CN2009076218W WO2010075777A1 WO 2010075777 A1 WO2010075777 A1 WO 2010075777A1 CN 2009076218 W CN2009076218 W CN 2009076218W WO 2010075777 A1 WO2010075777 A1 WO 2010075777A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
core layer
enhancement layer
sample
enhancement
Prior art date
Application number
PCT/CN2009/076218
Other languages
English (en)
French (fr)
Inventor
胡晨
刘泽新
苗磊
陈龙吟
张清
肖玮
哈维·米希尔·塔迪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09836064.7A priority Critical patent/EP2352230B8/en
Publication of WO2010075777A1 publication Critical patent/WO2010075777A1/zh
Priority to US13/111,834 priority patent/US8380526B2/en
Priority to US13/210,127 priority patent/US8140343B2/en
Priority to US13/738,786 priority patent/US20130124216A1/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/16Vocoder architecture
    • G10L19/18Vocoders using multiple modes
    • G10L19/24Variable rate codecs, e.g. for generating different qualities using a scalable representation such as hierarchical encoding or layered encoding

Definitions

  • Embodiments of the present invention relate to the field of voice audio coding and decoding, and in particular, to a signal encoding and decoding method, apparatus, and system. Background technique
  • G.711 is a completely PCM-based speech codec technology
  • G.722 It is a speech codec technology based on Adaptive Differential Pulse Code Modulation (ADPCM), in which ADPCM is an improved PCM.
  • ADPCM Adaptive Differential Pulse Code Modulation
  • This technique is usually used for narrowband signals or wideband signals. Since the human vocal range is mainly concentrated in narrowband or wideband, this technique has a good speech codec effect.
  • the core layers of their corresponding extended codecs are referred to as the core layers of their corresponding extended codecs.
  • the above extended method is compatible with the traditional codec method, but it also brings some problems. Since the core layer generally adopts a simple PCM codec method, its codec quality is not high, and its corresponding extension method is to ensure the entire broadband. The quality of the signal must be further enhanced by the codec quality of the core layer.
  • the enhancement method of the codec quality of the core layer in the prior art is generally divided into the following two types: one is to add the extra bit, and the core layer is enhanced by using pre-processing (such as noise shaping processing) technology or post-processing technology, and the advantages thereof. It does not consume extra bits, but its scope of application has certain limitations. For most traditional codecs, the use of this method can not get better enhancement effects;
  • the other is to increase the accuracy of the core layer coding by adding sufficient scalar quantization or vector quantization bits without changing the traditional core layer codec method.
  • the disadvantage of this method is that it requires a large amount of Extra bits, if the core layer is a PCM-based scalar quantizer, each sample takes 2 bits to enhance, greatly increasing the burden of the extended codec. In many cases, there are not enough bits to guarantee the enhancement of the core layer. quality.
  • Embodiments of the present invention provide a signal encoding and decoding method, apparatus, and system.
  • the enhancement quality of the core layer can be improved.
  • the embodiment of the invention provides a signal encoding method, including:
  • the output includes the core layer signal encoding and the enhancement layer signal encoded code stream.
  • the embodiment of the invention provides a signal decoding method, including:
  • An embodiment of the present invention provides a signal encoding apparatus, including:
  • a core layer coding module configured to encode a core layer signal to obtain a core layer signal coding
  • one or more enhanced sample selection module configured to perform coding according to a number of bits that can be used by the enhancement layer and the core layer signal, Enhanced sample code for enhancement layer signal encoding
  • an enhancement layer coding module configured to obtain enhancement layer signal coding of the enhanced sample
  • an output module configured to output a code stream including the core layer signal coding and the enhancement layer signal coding.
  • An embodiment of the present invention provides a signal decoding apparatus, including:
  • a receiving module configured to receive a code stream including a core layer signal coding and an enhancement layer signal coding; and one or more enhanced sample selection module, configured to select according to the number of bits that the enhancement layer can use and the received code stream Enhancing samples for enhancement layer signal decoding;
  • an enhancement layer decoding module configured to decode the enhancement layer signal of the enhanced sample to obtain an enhancement layer signal
  • a correction module configured to obtain the corrected core layer signal according to the enhancement layer signal and the code stream.
  • An embodiment of the present invention provides a signal encoding and decoding system, including:
  • a signal encoding device configured to encode a core layer signal to obtain a core layer signal coding; and select an enhanced sample that needs to perform enhancement layer signal coding according to a number of bits that can be used by the enhancement layer and the core layer signal coding; An enhancement layer signal encoding of the enhanced sample; outputting a code stream including the core layer signal encoding and the enhancement layer signal encoding;
  • a signal decoding apparatus receiving a code stream including a core layer signal coding and an enhancement layer signal coding; selecting an enhanced sample that needs to perform enhancement layer signal decoding according to the number of bits that the enhancement layer can use and the received code stream; The enhancement layer signal encoding of the enhanced sample is decoded to obtain an enhancement layer signal; and the corrected core layer signal is obtained according to the enhancement layer signal and the code stream.
  • the specific enhancement needs to be selected.
  • the enhancement code of the signal coding performs the enhancement layer signal coding and decoding on the selected enhancement sample.
  • the enhancement quality of the core layer can be improved.
  • FIG. 1 is a flowchart of a signal encoding method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a signal encoding method according to Embodiment 2 of the present invention.
  • FIG. 3 is a flowchart of step 203 in a signal encoding method according to Embodiment 2 of the present invention.
  • step 203 is a flowchart of step 203 in the third signal encoding method according to the embodiment of the present invention.
  • FIG. 5 is a flowchart of step 203 in the fourth signal encoding method according to the fourth embodiment of the present invention.
  • FIG. 6 is a schematic diagram of step 203 in a signal encoding method according to Embodiment 4 of the present invention.
  • FIG. 7 is a flowchart of a signal decoding method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a signal decoding method according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic structural diagram of a signal encoding apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a signal decoding apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a signal encoding and decoding system according to an embodiment of the present invention. detailed description
  • FIG. 1 it is a flowchart of a signal encoding method according to an embodiment of the present invention, which specifically includes the following steps:
  • Step 101 Encode the core layer signal to obtain a core layer signal coding.
  • Step 102 Select, according to the number of bits that the enhancement layer can use and the core layer signal coding, to select an enhanced sample that needs to perform enhancement layer signal coding;
  • Step 103 Acquire an enhancement layer signal coding of the enhanced sample point.
  • Step 104 Output a code stream including a core layer signal coding and an enhancement layer signal coding.
  • the specific enhancement signal needs to be selected.
  • the enhanced samples of the code are used to perform enhancement layer signal coding on the selected enhancement samples, and when there is not enough bit number for the enhancement layer to use, the enhancement quality of the core layer can be improved.
  • the embodiment may be applied to an extended coding apparatus based on PCM coding, that is, a core layer signal coding method may be a PCM coding method;
  • the G.722 encoder using ADPCM coding, that is, the core layer signal coding method may be an ADPCM coding method; this embodiment is also applicable to other extended coding devices based on PCM or evolved from PCM, for example, G.711/G .711.1 is the core layer or G.722/G.711/G.711.1 with noise shaping or post-processing as the core layer of the extended coding device, etc., that is, the core layer signal coding method may be a PCM/ADPCM coding method including noise shaping.
  • it can be applied to other types of extensions, such as broadband extension or full-band extension or stereo expansion with narrowband signal coding as the core layer.
  • G.722 is a core layer, wherein the core layer signal includes a wideband signal and/or a narrowband signal.
  • the core layer may select enhancement samples in units of samples of one frame, or divide each sample into several sub-frames, and select enhancement samples in units of samples of one sub-frame; this embodiment takes a current frame An example is introduced.
  • Step 201 Perform banding processing on the input signal to obtain a wideband signal and a narrowband signal; the wideband signal frequency ranges from 4000 to 8000 Hz, and the narrowband signal frequency ranges from 50 to 4000 Hz; for convenience of description, the current frame of the core layer wideband signal is represented by N The total number of samples, using S(n) to represent the nth sample, 1 ⁇ ⁇ ⁇ ⁇ .
  • Step 202 respectively encoding the wideband signal and the narrowband signal to obtain a wideband signal encoding and a narrowband signal encoding, that is, a core layer signal encoding;
  • Wideband signal coding is obtained by this coding method, and the wideband signal coding includes a wideband signal index IH(n) and a wideband signal prediction value code SH(n).
  • the method of encoding the narrowband signal is similar to the method of encoding the wideband signal described above, and details are not described herein again.
  • the enhancement layer signal coding may be performed while the core layer coding of the wideband signal and the narrowband signal is performed.
  • the following steps 203-204 describe the process of selecting the enhanced sample and enhancement layer signal coding, which may be after step 202 or simultaneously with step 202. carried out.
  • Step 203 Select, according to the number of bits that the enhancement layer can use, an enhanced sample that needs to perform enhancement layer signal coding in the current frame.
  • the number of frame enhancement samples; in this embodiment, ⁇ may be 1.
  • is determined.
  • the enhanced sample can also be selected by the following embodiments.
  • step 203 it is a flowchart of step 203 in the signal encoding method of the second embodiment of the present invention, where the step specifically includes:
  • Step 2031 determining whether the product of ⁇ and ⁇ is less than ⁇ , and if yes, executing step 2032; No, 'J, performing step 2033;
  • is 1, and the product of ⁇ and ⁇ is less than ⁇ , indicating that there is currently insufficient number of bits for the enhancement layer to use. Therefore, it is necessary to determine specific enhancement samples for the enhancement of the current frame of the enhancement layer according to the properties of the UI and the core layer;
  • Step 2033 Determine ⁇ is equal to ⁇ , select a sample used by the current frame as an enhanced sample, and end; in this embodiment, ⁇ is 1, and the product of ⁇ and ⁇ is greater than or equal to ⁇ , indicating that there are sufficient bits currently existed. The number is used by the enhancement layer, therefore, all the samples of the current frame are selected as enhancement samples;
  • the enhanced sample can be determined according to the size of the specified signal.
  • the sample is selected as the enhanced sample.
  • the designated signal may be a core layer time domain PCM local decoded value.
  • the specified signal may be a residual signal locally decoded by the core layer, or a signal decoded locally by the core layer (eg, The wideband signal decoded locally by the core layer), or the signal decoded locally by the core layer and subjected to noise shaping, or the residual signal that is locally decoded by the core layer and subjected to noise shaping.
  • selecting the enhanced sample comprises: obtaining a moving average of the specified signal of the sample numbered n; the sliding average is an average value of the absolute value of the specified signal of the sample whose label is less than n; It is determined whether the sample labeled n is an enhanced sample requiring enhancement layer signal coding.
  • steps 2034-203B are performed, and in steps 2034-203B, the residual signal of the core layer locally decoded is specified by the designated signal.
  • Step 2034 Assign n to 0, select the sample with the current frame numbered as 0 as the enhanced sample, and select the first sample of the current frame as the enhanced sample; since there is no sliding average, ⁇ The first sample of each frame always satisfies the condition;
  • Step 2035 determining whether the number of selected enhanced samples is equal to EN, and if so, ending; otherwise, performing step 2036;
  • this step determines the selected enhanced sample. Whether the number is equal to EN, that is, this step determines whether EN is equal to 1, and when EN is equal to 1, after the first sample is selected as the enhanced sample, step 203 is ended.
  • Step 2036 assign n to n+1;
  • Step 2037 determining whether the absolute value of the residual signal of the local layer decoded by the core layer marked with n samples is greater than the sliding average of the residual signal of the local decoded core of the sample core layer with the label less than n, and if yes, executing step 2038; Otherwise, go to step 2036;
  • the absolute value of the residual signal after local decoding of the core layer labeled n samples is abs(DH(n)), and the moving average of the residual signal after local decoding of the sample core layer with the label less than n is
  • Step 2038 Select a sample labeled n as an enhanced sample point
  • Step 2039 determining whether the number of selected enhanced samples is equal to EN, and if so, ending; otherwise, performing step 203A;
  • Step 203A determining the number of remaining samples plus the number of selected enhanced samples is equal to EN, and if so, executing step 203B; otherwise, performing step 2036;
  • the remaining samples refer to other samples that have not yet passed step 2037.
  • Step 203B Select all the remaining samples as enhancement samples, and end.
  • Step 204 Encode the symbol of the specified residual of the enhanced sample to obtain an enhancement layer signal encoding.
  • the residual symbol is obtained by subtracting the original signal of the enhanced sample from the core decoded local decoded signal of the enhanced sample, and the residual symbol is encoded to obtain an enhanced sample.
  • the enhancement layer signal coding wherein the original signal may be an input signal of the core layer or a signal input into the PCM code in the core layer, and the core layer local decoded signal may be a local decoded signal of the core layer or a PCM locally decoded signal in the core layer;
  • the original residual signal EH(n) of the enhanced sample may be locally decoded after being decoded by the core layer.
  • the residual signal DH(n) is subtracted to obtain a residual symbol, and the residual symbol is encoded to obtain an enhancement layer signal coding of the enhanced sample;
  • the selected enhancement samples are subjected to residual coding in the enhancement layer, and a method of coding the residual symbols is specifically adopted.
  • Subtracting EH(n) from DH(n) is equivalent to subtracting the original wideband signal S(n) from the locally decoded wideband signal Sd(n), and ⁇ according to the subtraction result, the residual symbol is obtained.
  • This residual symbol is encoded. For example, it is determined whether the subtraction of EH(n) and DH(n) is greater than or equal to 0.
  • Step 205 Output a code stream including a core layer signal coding and an enhancement layer signal coding.
  • the foregoing steps 201-205 in the embodiment describe the signal encoding method without the feedback mechanism.
  • the embodiment may be further applied to the encoding device with the feedback mechanism.
  • the method may further include: enhancing the sample The enhancement layer coding performs local decoding; corrects the locally decoded signal Sd(n) of the core layer according to the locally decoded enhancement layer signal; and determines the broadband signal prediction value of the subsequent sample according to the corrected core layer signal, Thereby improving the prediction accuracy of subsequent samples.
  • the core layer has a buffering or prediction mechanism, that is, the core layer needs local decoding values of the previous samples when encoding the current samples, as in the embodiment, the core layer of G.722 needs to be used before the current sample prediction.
  • the local decoding value of the sample in this case, the enhancement layer signal can be encoded as a buffer value, thereby improving the subsequent coding precision of the core layer.
  • the core layer enhancement method is adaptively adjusted according to the number of bits that the enhancement layer can use.
  • the sample used in the current frame can be selected as the enhanced sample, when there is not enough
  • the number of bits is used by the enhancement layer to determine the specific enhancement samples needed for the enhancement of the current frame of the enhancement layer according to the properties of the UI and the core layer, and the core layer quality and the enhancement layer quality are effective.
  • Balanced effectively utilizes the core layer coding and the locally decoded information to obtain the enhancement layer coding, which reduces the bit number consumption of the enhancement layer; and, in this embodiment, the Sd(n) can be corrected according to the locally decoded enhancement layer signal. Then, the prediction value of the broadband signal of the subsequent sample is determined, and the prediction accuracy of the subsequent sample is improved.
  • step 203 in the method for encoding a signal according to the third embodiment of the present invention.
  • the difference between the third embodiment and the second embodiment is the step 203.
  • step 203 of the embodiment after step 2032 is performed, Includes:
  • Step 301 Calculate an average value of absolute values of all sample specified signals in the current frame
  • Step 302 Starting from the first sample point, sequentially selecting a sample point whose absolute value of the specified signal is greater than the average value as the enhancement sample point until the number of enhancement samples is equal to EN.
  • FIG. 5 it is a flowchart of step 203 in the fourth signal encoding method according to the embodiment of the present invention.
  • FIG. 6 is a schematic diagram of step 203 in the fourth signal encoding method according to the fourth embodiment of the present invention, and the fourth embodiment and the second embodiment. The difference is that in step 203, in step 203 of the embodiment, after step 2032 is performed, the method includes:
  • Step 401 Select a sample point as an enhancement sample every other sample point
  • sample D(0) D(l) D(N-2), D(N-1), select a sample point for every other sample as an enhancement sample, for example, select D (0). ), D(2) D(N-2).
  • Step 402 Determine the number of selected enhanced samples, if the number is greater than EN, perform step 403; if the number is less than EN, perform step 404; if the number is equal to EN, end;
  • Step 403 Starting from the specified sample point in the enhanced sample, sequentially removing the enhanced sample until the number of enhanced samples is equal to EN;
  • Step 404 Starting from the first unselected sample point, sequentially selecting the unselected sample as the enhanced sample until the number of enhanced samples is equal to EN.
  • FIG. 7 it is a flowchart of a signal decoding method according to an embodiment of the present invention, which specifically includes the following steps:
  • Step 501 Receive a code stream that includes a core layer signal coding and an enhancement layer signal coding.
  • Step 502 Select, according to the number of bits that the enhancement layer can use and the received code stream, an enhanced sample that needs to perform enhancement layer signal decoding.
  • Step 503 Decode the enhancement layer signal of the enhanced sample to obtain an enhancement layer signal.
  • Step 504 Obtain the corrected core layer signal according to the enhancement layer signal and the code stream.
  • a specific enhanced sample that needs to be decoded by the enhancement layer is selected, and the enhancement layer is decoded by the enhancement layer, when there is not enough bit number for the enhancement layer. , can improve the quality of the core layer.
  • the embodiment may be applied to an extended decoding device based on PCM decoding, that is, a core layer signal decoding method may be a PCM decoding method;
  • the G.722 decoder using ADPCM decoding, that is, the core layer signal decoding method can be an ADPCM decoding method;
  • this embodiment can also be applied to other extended decoding devices based on PCM or evolved from PCM, for example, G.711/G .711.1 is the core layer or G.722/G.711/G.711.1 with noise shaping or post-processing as the core layer extension decoding device, etc., that is, the core layer signal decoding method may be a PCM/ADPCM decoding method including noise shaping.
  • it can also be applied to other types of extensions, such as broadband extension or full-band extension or stereo expansion with narrowband signal decoding as the core layer.
  • G.722 is a core layer, wherein the core layer includes a wideband signal and a narrowband signal.
  • the core layer may select enhancement samples in units of samples of one frame, or divide each sample into several sub-frames, and select enhancement samples in units of samples of one sub-frame; this embodiment takes a current frame An example is introduced.
  • Step 601 Receive a code stream that includes a core layer signal coding and an enhancement layer signal coding; the core layer signal coding includes a wideband signal coding and a narrowband signal coding;
  • Step 602 Decode the narrowband signal encoding and the wideband signal encoding separately to obtain a narrowband signal. Number and broadband signal;
  • the method for decoding the narrowband signal is similar to the method for decoding the wideband signal described above, and will not be described herein.
  • the enhancement layer signal decoding may be performed while the core layer decoding of the wideband signal and the narrowband signal is performed.
  • the following steps 603-604 describe the process of selecting the enhanced sample and enhancement layer signal decoding, which may be after step 602 or simultaneously with step 602. carried out.
  • Step 603 Select, according to the number of bits that the enhancement layer can use, an enhanced sample that needs to perform enhancement layer signal decoding in the current frame.
  • the number of frame enhancement samples; in this embodiment, ⁇ may be 1.
  • is determined.
  • the relationship between the product of ⁇ and ⁇ and ⁇ can be directly assigned to ⁇ , and then one enhanced sample can be selected, and the enhanced sample can also be selected by the following embodiment.
  • the first way obtaining the moving average of the specified signal of the sample with the label ⁇ ; the sliding average is the average value of the absolute value of the specified signal of the sample with the label less than ⁇ ; ⁇ according to the sliding average, Whether the sample labeled n is an enhanced sample requiring enhancement of the enhancement layer signal.
  • the designated signal may be a prediction residual signal decoded by the core layer, or a signal decoded by the core layer (for example, a wideband signal decoded by a core layer), or a signal decoded by a core layer and decoded by a noise layer or a core layer. And after the noise shaping residual signal.
  • this method can be the same as the method of selecting enhanced samples described in the second embodiment of the above signal encoding method.
  • the second way Calculate the average value of the absolute value of all the sample specified signals in the current frame; from the first sample point, sequentially select the sample with the absolute value of the specified signal greater than the average value as the enhanced sample point, until the enhanced sample point
  • the number is equal to EN.
  • the designated signal may be a prediction residual signal decoded by the core layer, or a signal decoded by the core layer (for example, a wideband signal decoded by a core layer), or a signal decoded by a core layer and decoded by a noise layer or a core layer. And after the noise shaping residual signal.
  • this method can be the same as the method of selecting enhanced samples described in the third embodiment of the above signal decoding method.
  • the third way select one sample every other sample as the enhanced sample; when the number of enhanced samples is greater than EN, start from the specified sample in the enhanced sample, sequentially remove the enhanced sample until the enhanced sample
  • the number of points is equal to EN; when the number of enhanced samples is less than EN, starting from the first unselected sample, sequentially select the unselected sample as the enhanced sample until the number of enhanced samples Equal to EN.
  • this method can be the same as the method of selecting enhanced samples described in the fourth embodiment of the above signal decoding method.
  • Step 604 Encode the enhancement layer signal of the enhanced sample to obtain an enhancement layer signal.
  • the enhancement layer signal is a symbol of a specified residual, for example, if the enhancement layer is encoded. If the code is 1 bit "1", it means that the sign of the specified residual is positive; if the enhancement layer signal is coded as 1 bit "0", it means that the sign of the specified residual is negative.
  • Step 605 ⁇ according to the symbol of the specified residual and the core layer signal index, obtain the enhancement layer signal index IH_new(n);
  • the core layer signal index is specifically a wideband signal index IH(n), and the wideband signal index
  • IH(n) is an index corresponding to the wideband signal quantization table.
  • a more refined enhancement layer signal quantization table is used, and the wideband signal index IH(n) is corrected to the enhancement layer signal index IH_new(n).
  • the wideband signal index IH(n) can be corrected using a preset algorithm.
  • a simple binary left shift method can be used.
  • Step 606 Find an enhancement layer signal quantization table according to the enhancement layer signal index IH_new(n), and obtain a quantized value corresponding to IH—new(n);
  • Step 607 Add the quantized value corresponding to IH_new(n) to the predicted value of the wideband signal SH(n) (ie, the predicted value of the core layer signal) to obtain the corrected core layer signal.
  • the enhancement layer according to the number of bits that the enhancement layer can use, a specific enhancement sample is selected, and the enhancement layer signal is decoded for the selected enhancement sample.
  • the core can be improved.
  • the enhanced quality of the layer; and, in this embodiment, the wideband signal index is modified according to the sign of the specified residual, thereby obtaining a more accurate wideband signal.
  • the method for the third embodiment of the present invention differs from the second embodiment in that the method for obtaining the corrected core layer signal is different.
  • the method for obtaining the corrected core layer signal in the embodiment includes: The set correction factor corrects the prediction residual signal decoded by the core layer; and adds the corrected core layer prediction residual signal to the core layer signal prediction value to obtain the corrected core layer signal.
  • the broadband signal indexes corresponding to the four quantized values are 0, 1, 2, 3, respectively, for the correspondence with the index of the corrected wideband signal.
  • the relationship is consistent, and four correction factors need to be preset, namely attenu0, attenul, attenu2, and attenu3, as shown in Table 1, which is the sign of the specified residual, IH(n), correction factor and corrected prediction residual.
  • Table 1 is the sign of the specified residual, IH(n), correction factor and corrected prediction residual.
  • the corrected residual signal DH(n) is used by the correction factor attenuO.
  • the correction is made, and the corrected result is the result of rounding off the DH(n)*atte dish 0.
  • the four correction factors may be different values, or may be the same value, or any two or two identical values; wherein the rounding method may be the above rounding method, or may be directly taken. The whole method.
  • FIG. 9 is a schematic structural diagram of a signal encoding apparatus according to an embodiment of the present invention.
  • the body includes: a core layer encoding module 11, one or more enhanced sample selecting modules, one or more enhancement layer encoding modules, and an output module 12, and only one enhanced sample selecting module 13 and one enhanced layer encoding module 14 are shown in FIG.
  • the core layer encoding module 11 encodes the core layer signal to obtain a core layer signal encoding
  • the enhanced sample selecting module 13 selects the number of bits that can be used by the enhancement layer and the core layer signal encoding, and selects an enhancement layer signal encoding.
  • Enhancing the sample the enhancement layer encoding module 14 acquires the enhancement layer signal encoding of the enhancement sample
  • the output module 12 is configured to output the code stream including the core layer signal coding and the enhancement layer signal coding.
  • the embodiment When the embodiment includes multiple enhancement layer coding modules, the embodiment is a scalable hierarchical structure, and the extension layer is multiple.
  • Each extension layer includes an enhancement layer coding module, and each extension layer can be allocated a certain layer. The number of bits is used to enhance the quality of the broadband core layer, thus enabling embedded coding.
  • At least one of the plurality of extension layers includes an enhanced sample selection module, and some or all of the extension layers may include an enhanced sample selection module.
  • the following is an example of including two enhancement layer coding modules (the first enhancement layer coding module and the second enhancement layer coding module respectively):
  • the first enhancement layer coding module and the second enhancement layer coding module respectively allocate the number of bits of A and B; the enhanced sample selection module selects a enhancement sample that needs the first enhancement layer coding module to perform enhancement layer signal coding according to the number of bits A. Point, according to the number of bits B, select b enhancement samples that require the second enhancement layer coding module to perform enhancement layer signal coding; the first enhancement layer coding module encodes the enhancement layer signals of the a enhancement samples by using the number of bits A, The second enhancement layer coding module encodes the enhancement layer signals of the b enhancement samples by using the bit number B; the output module includes the core layer signal coding, the enhancement layer signal coding output by the first enhancement layer coding module, and the second enhancement layer coding module. The output enhancement layer signal encoded code stream is output.
  • the first enhancement layer coding module and the second enhancement layer coding module may use the same enhancement layer coding method or different enhancement layer coding methods.
  • the enhancement layer encoding module 14 may be specifically configured to encode the symbol of the specified residual of the enhanced sample to obtain the enhancement layer signal coding. Further, if the method of encoding the residual symbol is used, the enhancement layer coding module 14 of this embodiment may include: a residual symbol acquisition unit 15 and an enhancement layer coding unit 16; wherein the residual symbol acquisition unit 15 The original signal is subtracted from the core layer local decoded signal of the enhanced sample to obtain a residual symbol; the enhancement layer encoding unit 16 will be the residual The symbols are encoded to obtain an enhancement layer signal encoding of the enhanced samples.
  • the feedback module may further include: a local decoding module 17, a correction module 18, and a prediction value acquisition module 19; wherein, the local decoding module 17 locally decodes the enhancement layer signal encoding of the enhanced sample; The locally decoded enhancement layer signal corrects the locally decoded signal of the core layer; the predicted value acquisition module 19 determines the predicted value of the core layer signal of the subsequent sample according to the corrected core layer signal.
  • an enhanced sample that needs to be encoded by the enhancement layer is selected, and the enhancement layer is encoded by the enhancement layer, when there is not enough bit number for the enhancement layer to use, Can improve the enhanced quality of the core layer.
  • FIG. 10 it is a schematic structural diagram of a signal decoding apparatus according to an embodiment of the present invention.
  • the embodiment specifically includes: a receiving module 21, one or more enhanced sample selecting modules, one or more enhancement layer decoding modules, and a correction module 22; Only an example including one enhanced sample selection module 23 and one enhancement layer decoding module 24 is shown, wherein the receiving module 21 receives a code stream including core layer signal coding and enhancement layer signal coding; the enhanced sample selection module 23 is based on the enhancement layer The number of bits that can be used and the received code stream, select an enhanced sample that needs to be decoded by the enhancement layer signal; the enhancement layer decoding module 24 decodes the enhancement layer signal of the enhanced sample to obtain an enhancement layer signal; the correction module 22 The corrected core layer signal is obtained according to the enhancement layer signal and the code stream.
  • the embodiment may further include a core layer decoding module 25, which decodes the core layer signal to obtain a core layer signal prediction value, a core layer signal index, a core layer decoded prediction residual signal, and a core layer.
  • the decoded signal is a core layer decoding module 25, which decodes the core layer signal to obtain a core layer signal prediction value, a core layer signal index, a core layer decoded prediction residual signal, and a core layer.
  • the embodiment When the embodiment includes multiple enhancement layer decoding modules, the embodiment is a scalable hierarchical structure, and the extension layer is multiple, and each extension layer includes an enhancement layer decoding module, and each extension layer can be allocated a certain The number of bits is used to enhance the quality of the broadband core layer, thereby enabling embedded decoding. At least one of the plurality of extension layers includes an enhanced sample selection module, and some or all of the extension layers may include an enhanced sample selection module.
  • the following is an example of including two enhancement layer decoding modules (the first enhancement layer decoding module and the second enhancement layer decoding module respectively):
  • the enhancement sample selection module selects a enhancement sample that requires the first enhancement layer decoding module to perform enhancement layer signal decoding according to the number of bits A, and selects the second enhancement layer decoding module to perform enhancement layer signal decoding according to the number of bits B.
  • Enhancement samples; the first enhancement layer decoding module decodes the enhancement layer signals of the a enhancement samples by using the bit number A, and the second enhancement layer decoding module decodes the enhancement layer signals of the b enhancement samples by using the bit number B
  • the correction module obtains the corrected core layer signal according to the enhancement layer signal output by the first enhancement layer decoding module and the enhancement layer signal output by the second enhancement layer decoding module, respectively.
  • the first enhancement layer decoding module and the second enhancement layer decoding module may adopt the same enhancement layer decoding method, or may use different enhancement layer decoding methods.
  • the modification module 22 may include: an enhancement layer signal index acquisition unit 26, an enhancement layer quantization unit 27, and a first modification unit 28, wherein the enhancement layer signal index acquisition unit 26 is Specifying a symbol of the residual and a core layer signal index to obtain an enhancement layer signal index; the enhancement layer quantization unit 27 searches for the quantization value corresponding to the enhancement layer signal index according to the enhancement layer signal index; the first modification unit 28 indexes the enhancement layer signal The corresponding quantized value is added to the predicted value of the core layer signal to obtain a corrected core layer signal.
  • the correction module 22 may further include: a second correction unit and a core layer signal acquisition unit; wherein the second correction unit corrects the prediction residual signal decoded by the core layer by using a preset correction factor according to the symbol of the specified residual
  • the core layer signal acquisition unit adds the corrected core layer prediction residual signal to the core layer signal prediction value to obtain the corrected core layer signal.
  • a specific enhanced sample that needs to be decoded by the enhancement layer is selected, and the enhancement layer is decoded by the enhancement layer, when there is not enough bit number for the enhancement layer. , can improve the quality of the core layer.
  • FIG. 11 is a schematic structural diagram of a signal encoding and decoding system according to an embodiment of the present invention.
  • the embodiment specifically includes a signal encoding device 31 and a signal decoding device 32.
  • the signal encoding device 31 encodes a core layer signal to obtain a core layer signal.
  • Encoding according to the number of bits that the enhancement layer can use and the core layer signal coding, select enhancement samples that need to perform enhancement layer signal coding; acquire enhancement layer signal coding of enhanced samples; output includes core layer signal coding and enhancement layer signal coding
  • the code stream decoding device 32 receives the code stream including the core layer signal coding and the enhancement layer signal coding; The number of bits that can be used by the strong layer and the received code stream, select an enhanced sample that needs to be decoded by the enhancement layer signal; decode the enhancement layer signal of the enhanced sample to obtain an enhancement layer signal; And the code stream, the corrected core layer signal is obtained.
  • the signal encoding device 31 in the present embodiment may be any of the embodiments described above in the signal encoding device of the embodiment of the present invention.
  • the signal decoding device 32 may be any of the embodiments described above in the signal decoding device of the embodiment of the present invention.
  • the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Description

信号编码、 解码方法及装置、 系统
本申请要求于 2008年 12月 30日提交中国专利局、 申请号为
200810247589.X, 发明名称为 "信号编码、 解码方法及装置、 系统" 的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明实施例涉及语音音频编解码领域, 尤其涉及一种信号编码、 解码 方法及装置、 系统。 背景技术
在 20世纪 80年代,传统语音编解码方法均基于脉冲编码调制(Pulse Code Modulation, 以下简称: PCM )技术, 例如: G.711 即是一种完全基于 PCM 的语音编解码技术, G.722 则是基于自适应差分脉冲编码调制 (Adaptive Differential Pulse Code Modulation, 以下简称: ADPCM )的语音编解码技术, 其中 ADPCM为改进的 PCM。 这种技术通常用于窄带信号或宽带信号, 由于 人的发音范围也主要集中在窄带或宽带, 所以该技术具有较好的语音编解码 效果。
随着网络技术的发展, 网络带宽的日益增长, 网络传输速率越来越高, 人们对通信中语音音频的质量要求也越来越高, 宽带、 超宽带、 甚至于全带 和立体声的语音音频信号编解码传输技术已经被越来越多的通信标准组织列 入了研究范围。 为了避免与传统语音编解码方法不兼容, 绝大多数带宽扩展 技术标准采取在原有的窄带或宽带单声道编解码器基 上进行扩展的方法, 例如国际电信通讯联盟 ( International Telecommunication Union, 以下简称: ITU ) 的 G.711的宽带扩展标准 G.711.1 以及 G.711.1/G.722联合超宽带立体 声扩展项目等。 这些传统的窄带或宽带编解码方法被称之为其对应的扩展编 解码器的核心层(core layer ) 。 上述扩展的方法与传统的编解码方法相兼容, 但也带来了一些问题, 由 于核心层一般采用简单的 PCM编解码方法,其编解码质量不高, 而其对应的 扩展方法为了保证整个宽带信号的质量, 必须对核心层的编解码质量作进一 步的增强。 现有技术中核心层的编解码质量的增强方法一般分为以下两种: 一种是不增加额外的比特, 利用前处理(如噪声整形处理)技术或后处 理技术进行核心层增强, 其优点是不耗费额外的比特, 但其适用范围有一定 的局限性, 对于大多数传统编解码器, 使用该方法的不能得到较好的增强效 果;
另一种是在不改变传统核心层编解码方法的前提下, 通过增加充足的标 量量化或矢量量化比特, 用以提高核心层编码的精度, 从而增强核心层质量; 该方法的缺点是需要大量额外的比特, 如果核心层为基于 PCM 的标量量化 器, 则每个样点需要耗费 2比特来增强, 大大增加了扩展编解码器的负担, 很多时候没有充足的比特, 无法保证核心层的增强质量。 发明内容
本发明实施例提供了一种信号编码、 解码方法及装置、 系统, 当没有充 足的比特数供增强层使用时, 能提高核心层的增强质量。
本发明实施例提供了一种信号编码方法, 包括:
将核心层信号进行编码, 得到核心层信号编码;
根据增强层所能使用的比特数和所述核心层信号编码, 选择需要进行增 强层信号编码的增强样点;
获取所述增强样点的增强层信号编码;
输出包括所述核心层信号编码以及所述增强层信号编码的码流。
本发明实施例提供了一种信号解码方法, 包括:
接收包括核心层信号编码以及增强层信号编码的码流;
根据增强层所能使用的比特数和接收到的所述码流, 选择需要进行增强 层信号解码的增强样点; 将所述增强样点的所述增强层信号编码进行解码, 得到增强层信号; 根据所述增强层信号和所述码流, 获得修正后的核心层信号。
本发明实施例提供了一种信号编码装置, 包括:
核心层编码模块, 用于将核心层信号进行编码, 得到核心层信号编码; 一个以上增强样点选择模块, 用于根据增强层所能使用的比特数和所述 核心层信号编码, 选择需要进行增强层信号编码的增强样点;
一个以上增强层编码模块, 用于获取所述增强样点的增强层信号编码; 输出模块, 用于输出包括所述核心层信号编码以及所述增强层信号编码 的码流。
本发明实施例提供了一种信号解码装置, 包括:
接收模块, 用于接收包括核心层信号编码以及增强层信号编码的码流; 一个以上增强样点选择模块, 用于根据增强层所能使用的比特数和接收 到的所述码流, 选择需要进行增强层信号解码的增强样点;
一个以上增强层解码模块, 用于将所述增强样点的所述增强层信号编码 进行解码, 得到增强层信号;
修正模块, 用于根据所述增强层信号和所述码流, 获得修正后的核心层 信号。
本发明实施例提供了一种信号编解码系统, 包括:
信号编码装置, 用于将核心层信号进行编码, 得到核心层信号编码; 根 据增强层所能使用的比特数和所述核心层信号编码, 选择需要进行增强层信 号编码的增强样点; 获取所述增强样点的增强层信号编码; 输出包括所述核 心层信号编码以及所述增强层信号编码的码流;
信号解码装置, 接收包括核心层信号编码以及增强层信号编码的码流; 根据增强层所能使用的比特数和接收到的所述码流, 选择需要进行增强层信 号解码的增强样点; 将所述增强样点的所述增强层信号编码进行解码, 得到 增强层信号; 根据所述增强层信号和所述码流, 获得修正后的核心层信号。
本发明实施例根据增强层所能使用的比特数, 选择具体需要进行增强层 信号编码的增强样点, 对选择的增强样点进行增强层信号编解码, 当没有充 足的比特数供增强层使用时, 能够提高核心层的增强质量。 附图说明
图 1为本发明实施例一信号编码方法的流程图;
图 2为本发明实施例二信号编码方法的流程图;
图 3为本发明实施例二信号编码方法中步骤 203的流程图;
图 4为本发明实施例三信号编码方法中步骤 203的流程图;
图 5为本发明实施例四信号编码方法中步骤 203的流程图;
图 6为本发明实施例四信号编码方法中步骤 203的示意图;
图 7为本发明实施例一信号解码方法的流程图;
图 8为本发明实施例二信号解码方法的流程图;
图 9为本发明实施例信号编码装置的结构示意图;
图 10为本发明实施例信号解码装置的结构示意图;
图 11为本发明实施例信号编解码系统的结构示意图。 具体实施方式
下面通过附图和实施例, 对本发明实施例的技术方案做进一步的详细描 述。
如图 1所示, 为本发明实施例一信号编码方法的流程图, 具体包括如下 步骤:
步骤 101、 将核心层信号进行编码, 得到核心层信号编码;
步骤 102、 根据增强层所能使用的比特数和核心层信号编码, 选择需要 进行增强层信号编码的增强样点;
步骤 103、 获取增强样点的增强层信号编码;
步骤 104、 输出包括核心层信号编码以及增强层信号编码的码流。
本实施例根据增强层所能使用的比特数, 选择具体需要进行增强层信号 编码的增强样点, 对选择的增强样点进行增强层信号编码, 当没有充足的比 特数供增强层使用时, 能够提高核心层的增强质量。
如图 2所示, 为本发明实施例二信号编码方法的流程图, 本实施例可以 适用于基于 PCM编码的扩展编码装置, 即核心层信号编码方法可以为 PCM 编码方法; 其核心层可以为采用 ADPCM编码的 G.722编码器, 即核心层信 号编码方法可以为 ADPCM编码方法; 本实施例也可以适用于其他基于 PCM 或者由 PCM演变而来的扩展编码装置, 例如以 G.711/G.711.1为核心层或者 带噪声整形或后处理的 G.722/G.711/G.711.1为核心层的扩展编码装置等, 即 核心层信号编码方法可以为包含噪声整形的 PCM/ADPCM编码方法; 同时, 还可以适用于其他类型的扩展, 例如以窄带信号编码为核心层的宽带扩展或 全带扩展或立体声扩展等。
本实施例适用于 G.722为核心层的扩展编码装置, 其中, 核心层信号包 括宽带信号和 /或窄带信号。 核心层可以以一个帧的样点为单位选取增强样 点, 也可以将每帧样点分为若干个子帧, 以一个子帧的样点为单位选取增强 样点; 本实施例以一当前帧为例进行介绍。
本实施例具体包括如下步骤:
步骤 201、 将输入信号进行分带处理, 得到宽带信号和窄带信号; 宽带信号频率范围为 4000-8000Hz, 窄带信号频率范围为 50-4000HZ; 为 了叙述方便, 用 N表示核心层宽带信号的当前帧样点的总个数, 用 S(n)表示 第 n个样点, 1 < η < Ν。
步骤 202、 将宽带信号和窄带信号分别进行编码, 得到宽带信号编码和 窄带信号编码, 即核心层信号编码;
对于宽带信号, G.722采用 ADPCM编码方法, 对每个输入样点 S(n)依 次进行预测编码, 得到预测值 SH(n) ; 计算原始残差信号 EH(n), EH(n)=S(n)-SH(n); 将 EH(n)进行 PCM编码, 得到宽带信号索引 IH(n), 具体 地说, 采用宽带信号量化表, 查找该宽带信号量化表中与 EH(n)最为接近的 量化值, 该量化值对应的索引即为该样点的宽带信号索引 IH(n); 将 EH(n)进 行本地解码, 得到本地解码后的残差信号 DH(n); 将预测值与本地解码后的 残差信号相加可以得到本地解码后的宽带信号 Sd(n), Sd(n)=SH(n)+DH(n)。 通过这种编码方法得到宽带信号编码, 该宽带信号编码中包括宽带信号索引 IH(n)和宽带信号预测值编码 SH(n)。
窄带信号的编码的方法与上述宽带信号的编码方法类似,在此不再赘述。 对宽带信号和窄带信号进行核心层编码的同时, 可以进行增强层信号编 码, 下述步骤 203-204描述了选择增强样点和增强层信号编码的过程, 可以 在步骤 202之后或与步骤 202同时执行。
步骤 203、 根据增强层所能使用的比特数, 选择当前帧需要进行增强层 信号编码的增强样点;
用 B表示增强层所能使用的比特数, 用 α表示增强因子, 用 Ν表示当前 帧样点的总个数, 用 η表示样点的标号, 0 < η < Ν-1, 用 EN表示当前帧增强 样点的个数; 本实施例中, α可以为 1。
根据 Β和 α的乘积与 Ν的关系, 确定 ΕΝ。 本实施例可以 ^居 Β和 α的 乘积与 Ν的关系,直接给 ΕΝ赋值,进而选择 ΕΝ个增强样点,如 Β=19, α=1 , Ν=40时, 可以直接选择 ΕΝ=19个增强样点, 也可以通过以下的实施方式选 择增强样点。
如图 3所示, 为本发明实施例二信号编码方法中步骤 203的流程图, 该 步骤具体包括:
步骤 2031、 判断 Β与 α的乘积是否小于 Ν, 若是, 则执行步骤 2032; 否 贝 'J, 执行步骤 2033;
步骤 2032、 确定 EN等于 B与 α的乘积, 即 ΕΝ=Β, 执行步骤 2034; 本 实施例中, α为 1, Β与 α的乘积小于 Ν, 表明当前没有充足的比特数供增强 层使用, 因此, 需要根据 ΕΝ和核心层的性质确定增强层当前帧所需增强的 具体增强样点;
步骤 2033、 确定 ΕΝ等于 Ν, 选择当前帧所用样点为增强样点, 结束; 本实施例中, α为 1, Β与 α的乘积大于或等于 Ν, 表明当前存在充足的比特 数供增强层使用, 因此, 选择当前帧所有样点为增强样点;
在执行完步骤 2032后, 可以根据指定信号的大小来确定增强样点, 当指 定信号的大小满足一定条件时, 则将该样点选为增强样点。 由于核心层在时 域编码, 因此指定信号可以为核心层时域 PCM本地解码值, 具体地, 该指定 信号可以为核心层本地解码后的残差信号,或者核心层本地解码后的信号(例 如核心层本地解码后的宽带信号) , 或者核心层本地解码并经过噪声整形后 的信号, 或者核心层本地解码并经过噪声整形后的残差信号。
具体地说, 选择增强样点包括: 获取标号为 n的样点的指定信号的滑动 平均值; 该滑动平均值为标号小于 n的样点的指定信号绝对值的平均值; 根 据滑动平均值, 确定标号为 n的样点是否为需要进行增强层信号编码的增强 样点。
进一步的, 其中确定标号为 n的样点是否为需要增强层信号编码的增强 样点包括: 若 n=0, 则将标号为 0的样点选为需要增强层信号编码的增强样 点; 若11≠0, 则判断剩下样点个数加上已选择的增强样点个数是否等于 EN; 若是, 则将剩下样点选为需要增强层信号编码的增强样点, 结束; 否则, 则 判断标号为 n的样点的指定信号的绝对值是否大于滑动平均值, 若是, 则将 标号为 n的样点选为需要增强层信号编码的增强样点, 直至增强样点个数等 于 EN; 否则, 则标号为 n的样点不选为需要增强层信号编码的增强样点。
采用一种较佳的实施方式描述上述过程, 即: 在执行完步骤 2032后, 执 行步骤 2034-203B, 在步骤 2034-203B 中, 以指定信号为核心层本地解码后 的残差信号进行说明。
步骤 2034、 将 n赋值为 0, 将当前帧的标号为 0的样点选为增强样点, 即将当前帧的第一个样点选为增强样点; 由于还没有滑动平均值, ^^设每一 帧的第一个样点总满足条件;
步骤 2035、 判断已选择的增强样点的个数是否等于 EN, 若是, 则结束; 否则, 执行步骤 2036;
当选择了第一个样点作为增强样点后, 本步骤判断已选择的增强样点的 个数是否等于 EN, 也就是说, 本步骤判断 EN是否等于 1, 当 EN等于 1时, 将第一个样点选为增强样点后, 结束步骤 203。
步骤 2036、 将 n赋值为 n+1 ;
步骤 2037、 判断标号为 n样点的核心层本地解码后的残差信号绝对值是 否大于标号小于 n的样点核心层本地解码后的残差信号的滑动平均值,若是, 则执行步骤 2038; 否则, 执行步骤 2036;
其中, 标号为 n 样点的核心层本地解码后的残差信号绝对值为 abs(DH(n)),标号小于 n的样点核心层本地解码后的残差信号的滑动平均值为
[abs(DH(0))+abs(DH(l))+ +abs(DH(n-l))] ÷ n。在实际应用中, 为了简化计 算复杂度, 可以将除法计算转化为乘法计算, 例如: 用 "threshold— avg"表示 abs(DH(0))+abs(DH(l))+ ...... +abs(DH(n-l)), 本步骤中判断过程即为判断 abs(DH(n)) x n是否大于 "threshold— avg" 。
步骤 2038、 将标号为 n的样点选为增强样点;
步骤 2039、 判断已选择的增强样点的个数是否等于 EN, 若是, 则结束; 否则, 执行步骤 203A;
步骤 203A、判断剩下样点的个数加上已选择的增强样点的个数是否等于 EN, 若是, 则执行步骤 203B; 否则, 执行步骤 2036;
其中剩下样点是指其他还未经过步骤 2037的样点。
步骤 203B、 将剩下样点全部选为增强样点, 结束。
步骤 204、 将增强样点的指定残差的符号进行编码, 得到增强层信号编 码;
本步骤可以通过以下实施方式来实现: 才 据增强样点的原始信号与增强 样点的核心层本地解码信号相减的结果得到残差符号, 将该残差符号进行编 码, 得到增强样点的增强层信号编码; 其中原始信号可以为核心层的输入信 号或核心层中输入 PCM编码的信号,核心层本地解码信号可以为核心层的本 地解码信号或核心层中 PCM本地解码的信号;
具体地, 可以根据增强样点的原始残差信号 EH(n)与核心层本地解码后 的残差信号 DH(n)相减的结果得到残差符号, 将该残差符号进行编码, 得到 增强样点的增强层信号编码;
本实施例在增强层中对所选择的增强样点进行残差编码, 具体采用编码 残差符号的方法。将 EH(n)与 DH(n)相减, 等价于原始宽带信号 S(n)与本地解 码后的宽带信号 Sd(n)相减, ^^据该相减结果得到残差符号, 将该残差符号进 行编码。 举例来说, 判断 EH(n)与 DH(n)相减是否大于或等于 0, 若是, 得到 残差符号为正,在增强层信号编码写入 1比特 "1"表示残差符号为正; 否贝 "J , 得到残差符号为负, 在增强层信号编码写入 1比特 "0" 表示残差符号为负。 这种对残差符号进行编码的方法具有复杂度低、 效率高等优点。
步骤 205、 输出包括核心层信号编码以及增强层信号编码的码流。
本实施例中上述步骤 201-205描述了没有反馈机制的信号编码方法, 本 实施例还可以进一步应用于带反馈机制的编码装置, 具体地说, 在步骤 205 之前还可以包括: 将增强样点的增强层编码进行本地解码; 根据本地解码后 的增强层信号, 对核心层本地解码后的信号 Sd(n)进行修正; 根据修正后的核 心层信号, 确定后续样点的宽带信号预测值, 从而提高后续样点的预测精度。
作为一种更优的实施方式,如果 B足够大时,可以首先设定增强因子 α=1, 将当前帧的所有样点为增强样点; 然后再将 α调整为其他小于 1的值, 例如 α=0.475或更小的值, 这样余下的比特数(即 Β-Β*α )可以用于进一步增强, 进一步提高了信号编解码的精度。
如果核心层带有缓存或预测机制, 即核心层对当前样点编码时需要之前 样点的本地解码值时, 如本实施例中 G.722的核心层对当前样点预测时需要 用到之前样点的本地解码值, 这种时候可以将增强层信号编码作为缓存值, 从而提高核心层后续编码精度。
本实施例中, 根据增强层所能使用的比特数自适应调整核心层增强的方 法, 当存在充足的比特数供增强层使用, 可以选择当前帧所用样点为增强样 点, 当没有充足的比特数供增强层使用, 根据 ΕΝ和核心层的性质确定增强 层当前帧所需增强的具体增强样点, 做到了核心层质量和扩展层质量的有效 平衡; 有效地利用了核心层编码和本地解码的信息得到增强层编码, 减少了 增强层的比特数消耗; 并且, 本实施例还可以根据本地解码的增强层信号, 对 Sd(n)进行修正, 进而确定后续样点的宽带信号预测值, 提高了后续样点的 预测精度。
如图 4所示, 为本发明实施例三信号编码方法中步骤 203的流程图, 实 施例三与实施例二的区别在于步骤 203, 本实施例的步骤 203 中, 在执行完 步骤 2032后, 包括:
步骤 301、 计算当前帧所有样点指定信号绝对值的平均值;
步骤 302、 从第一个样点开始, 顺序选择指定信号绝对值大于该平均值 的样点作为增强样点, 直至增强样点的个数等于 EN。
如图 5所示, 为本发明实施例四信号编码方法中步骤 203的流程图, 如 图 6所示, 为本发明实施例四信号编码方法中步骤 203的示意图, 实施例四 与实施例二的区别在于步骤 203,本实施例的步骤 203中,在执行完步骤 2032 后, 包括:
步骤 401、 每隔一个样点选择一个样点作为增强样点;
见图 6, 在样点 D(0)、 D(l) D(N-2)、 D(N-1)中, 每隔一个样点选 择一个样点作为增强样点, 例如选择 D(0)、 D(2) D(N-2)。
步骤 402、判断选择的增强样点的个数,若该个数大于 EN,执行步骤 403; 若该个数小于 EN, 执行步骤 404; 若该个数等于 EN, 结束;
步骤 403、 从增强样点中的指定样点开始, 顺序去除增强样点, 直至增 强样点的个数等于 EN;
见图 6, 从指定样点 D(4)开始, 顺序去除增强样点, 如: D(4)和 D(6), 直至增强样点的个数等于 EN。
步骤 404、 从第一个未被选择的样点开始, 顺序选择未被选择的样点作 为增强样点, 直至增强样点的个数等于 EN。
见图 6, 从第一个未被选择的样点 D(l)开始, 顺序选择未被选择的样点 作为增强样点, 如: D(l)、 D(3)、 D(5), 直至增强样点的个数等于 EN。 如图 7所示, 为本发明实施例一信号解码方法的流程图, 具体包括如下 步骤:
步骤 501、 接收包括核心层信号编码以及增强层信号编码的码流; 步骤 502、 根据增强层所能使用的比特数和接收到的码流, 选择需要进 行增强层信号解码的增强样点;
步骤 503、 将增强样点的增强层信号编码进行解码, 得到增强层信号; 步骤 504、 根据增强层信号和码流, 获得修正后的核心层信号。
本实施例根据增强层所能使用的比特数, 选择具体的需要进行增强层信 号解码的增强样点, 对选择的增强样点进行增强层信号解码, 当没有充足的 比特数供增强层使用时, 能够提高核心层的增强质量。
如图 8所示, 为本发明实施例二信号解码方法的流程图, 本实施例可以 适用于基于 PCM解码的扩展解码装置, 即核心层信号解码方法可以为 PCM 解码方法; 其核心层可以为采用 ADPCM解码的 G.722解码器, 即核心层信 号解码方法可以为 ADPCM解码方法; 本实施例也可以适用于其他基于 PCM 或者由 PCM演变而来的扩展解码装置, 例如以 G.711/G.711.1为核心层或者 带噪声整形或后处理的 G.722/G.711/G.711.1为核心层的扩展解码装置等, 即 核心层信号解码方法可以为包含噪声整形的 PCM/ADPCM解码方法; 同时, 还可以适用于其他类型的扩展, 例如以窄带信号解码为核心层的宽带扩展或 全带扩展或立体声扩展等。
本实施例适用于 G.722为核心层的扩展解码装置, 其中, 核心层包括宽 带信号和窄带信号。 核心层可以以一个帧的样点为单位选取增强样点, 也可 以将每帧样点分为若干个子帧, 以一个子帧的样点为单位选取增强样点; 本 实施例以一当前帧为例进行介绍。
本实施例具体包括如下步骤:
步骤 601、 接收包括核心层信号编码以及增强层信号编码的码流; 核心 层信号编码包括宽带信号编码和窄带信号编码;
步骤 602、 将窄带信号编码和宽带信号编码分别进行解码, 得到窄带信 号和宽带信号;
对于宽带信号编码, G.722采用 ADPCM解码方法: 将宽带信号预测值 编码进行解码得到宽带信号预测值 SH(n) (即核心层信号预测值); 对宽带信 号索引 IH(n) (即核心层信号索引)进行 PCM解码, 得到核心层解码后的预 测残差信号, 其值与核心层本地解码后的残差信号 DH(n)相同; 进而, 将宽 带信号预测值与核心层解码后的预测残差信号相加, 得到核心层解码后的宽 带信号 Sd(n), Sd(n)= SH(n)+ DH(n)。
窄带信号的解码的方法与上述宽带信号的解码方法类似,在此不再赘述。 对宽带信号和窄带信号进行核心层解码的同时, 可以进行增强层信号解 码, 下述步骤 603-604描述了选择增强样点和增强层信号解码的过程, 可以 在步骤 602之后或与步骤 602同时执行。
步骤 603、 根据增强层所能使用的比特数, 选择当前帧需要进行增强层 信号解码的增强样点;
用 B表示增强层所能使用的比特数, 用 α表示增强因子, 用 Ν表示当前 帧样点的总个数, 用 η表示样点的标号, 0 < η < Ν-1, 用 EN表示当前帧增强 样点的个数; 本实施例中, α可以为 1。
根据 Β和 α的乘积与 Ν的关系, 确定 ΕΝ。 本实施例可以 ^居 Β和 α的 乘积与 Ν的关系, 直接给 ΕΝ赋值, 进而选择 ΕΝ个增强样点, 也可以通过 以下的实施方式选择增强样点。
本实施例中, 首先判断 Β与 α的乘积是否小于 Ν, 若是, 则确定 ΕΝ等 于 Β与 α的乘积, 选择 ΕΝ个当前帧增强样点, 表明当前没有充足的比特数 供增强层使用, 因此, 需要根据 ΕΝ和核心层的性质确定增强层当前帧所需 增强的具体增强样点; 否则, 确定 ΕΝ等于 Ν, 表明当前存在充足的比特数 供增强层使用, 因此, 选择当前帧所用样点为增强样点。
其中, 选择 ΕΝ个当前帧增强样点可以采用以下三种方式:
第一种方式: 获取标号为 η的样点的指定信号的滑动平均值; 该滑动平 均值为标号小于 η的样点的指定信号绝对值的平均值; ^^据滑动平均值, 确 定标号为 n的样点是否为需要进行增强层信号解码的增强样点。 进一步的, 其中确定标号为 n 的样点是否为需要增强层信号解码的增强样点包括: 若 n=0, 则将标号为 0的样点选为需要增强层信号解码的增强样点; 若 11≠0, 则判断剩下样点个数加上已选择的增强样点个数是否等于 EN; 若是, 则将剩 下样点选为需要增强层信号解码的增强样点, 结束; 否则, 则判断标号为 n 的样点的指定信号的绝对值是否大于滑动平均值, 若是, 则将标号为 n的样 点选为需要增强层信号解码的增强样点, 直至增强样点个数等于 EN; 否则, 则标号为 n的样点不选为需要增强层信号解码的增强样点。 其中, 该指定信 号可以为核心层解码后的预测残差信号, 或者核心层解码后的信号(例如核 心层解码后的宽带信号) , 或者核心层解码并经过噪声整形后的信号或核心 层解码并经过噪声整形后的残差信号。 具体地说, 这种方式可以与上述信号 编码方法实施例二中所述的选择增强样点的方法相同。
第二种方式: 计算当前帧所有样点指定信号绝对值的平均值; 从第一个 样点开始, 顺序选择指定信号绝对值大于平均值的样点作为增强样点, 直至 增强样点的个数等于 EN。其中, 该指定信号可以为核心层解码后的预测残差 信号, 或者核心层解码后的信号 (例如核心层解码后的宽带信号) , 或者核 心层解码并经过噪声整形后的信号或核心层解码并经过噪声整形后的残差信 号。 具体地说, 这种方式可以与上述信号解码方法实施例三中所述的选择增 强样点的方法相同。
第三种方式: 每隔一个样点选择一个样点作为增强样点; 当增强样点的 个数大于 EN时, 从增强样点中的指定样点开始, 顺序去除增强样点, 直至 增强样点的个数等于 EN; 当增强样点的个数小于 EN时, 从第一个未被选择 的样点开始, 顺序选择未被选择的样点作为增强样点, 直至增强样点的个数 等于 EN。具体地说,这种方式可以与上述信号解码方法实施例四中所述的选 择增强样点的方法相同。
步骤 604、 将增强样点的增强层信号编码进行解码, 得到增强层信号; 本实施例中增强层信号为指定残差的符号, 举例来说, 若增强层信号编 码为 1比特 " 1" , 则表示指定残差的符号为正; 若增强层信号编码为 1比特 "0" , 则表示指定残差的符号为负。
步骤 605、 ^^据指定残差的符号和核心层信号索引, 获得增强层信号索 引 IH— new(n);
本实施例中核心层信号索引具体为宽带信号索引 IH(n),该宽带信号索引
IH(n)为宽带信号量化表对应的索引, 本实施例采用更为细化的增强层信号量 化表, 并将宽带信号索引 IH(n)修正为增强层信号索引 IH— new(n), 具体地, 可以采用预先设定的算法对宽带信号索引 IH(n)进行修正。
举例来说, 可以采用简单的二进制左移方法, 当指定残差的符号为正时, 将 IH(n)的二进制位数左移 1 位, 最后 1 位设定为 " 1 " , 即 IH— new(n)= IH(n)*2+l ; 当指定残差的符号为负时, 将 IH(n)的二进制位数左移 1位, 最 后 1位设定为 "0" , 即 IH— new(n)= IH(n)*2。
步骤 606、 根据增强层信号索引 IH— new(n), 查找增强层信号量化表, 得 到 IH— new(n)对应的量化值;
步骤 607、 将 IH— new(n)对应的量化值与宽带信号预测值 SH(n) (即核心 层信号预测值)相加, 得到修正后的核心层信号。
本实施例中, 根据增强层所能使用的比特数, 选择具体的增强样点, 对 选择的增强样点进行增强层信号解码, 当没有充足的比特数供增强层使用时, 也能提高核心层的增强质量; 并且, 本实施例根据指定残差的符号, 对宽带 信号索引进行修正, 进而得到更为精确的宽带信号。
本发明实施例三信号解码方法与实施例二的区别在于获取修正后的核心 层信号的方法不同, 本实施例获取修正后的核心层信号的方法具体包括: 根 据指定残差的符号, 利用预先设定的修正因子, 对核心层解码后的预测残差 信号进行修正; 将修正后的核心层预测残差信号与核心层信号预测值相加, 得到修正后的核心层信号。
举例来说, 若在宽带信号量化表中共有 4个量化值, 该 4个量化值对应 的宽带信号索引分别为 0、 1、 2、 3 , 为了与修正后的宽带信号的索引的对应 关系保持一致,需要预先设定 4个修正因子,分别为 attenu0、 attenul、 attenu2、 attenu3 , 如表 1所示, 为指定残差的符号、 IH(n)、 修正因子与修正后的预测 残差信号的对照表。
表 1. 指定残差的符号、 IH(n)、 修正因子与修正后的预测残差信号的对 照表
Figure imgf000017_0001
如表 1 所示, 当指定残差的符号为正时, 对于宽带信号索引为 IH(n)=0 的样点来说, 采用修正因子 attenuO, 对解码后的预测残差信号 DH(n)进行 修正, 得到修正后的结果为 DH(n)*atte皿 0四舍五入取整的结果。
本实施例中,上述 4个修正因子可以为不同的值,也可以为相同的值, 或者为任意两两相同的值;其中,取整的方法可以为上述四舍五入的方法, 也可以为直接取整的方法。
如图 9所示, 为本发明实施例信号编码装置的结构示意图, 本实施例具 体包括: 核心层编码模块 11、 一个以上增强样点选择模块、 一个以上增强层 编码模块以及输出模块 12, 图 9中仅示出包括一个增强样点选择模块 13和 一个增强层编码模块 14的例子, 其中核心层编码模块 11将核心层信号进行 编码, 得到核心层信号编码; 增强样点选择模块 13根据增强层所能使用的比 特数和核心层信号编码, 选择需要进行增强层信号编码的增强样点; 增强层 编码模块 14获取增强样点的增强层信号编码; 输出模块 12, 用于输出包括 核心层信号编码以及增强层信号编码的码流。
当本实施例包含多个增强层编码模块时,本实施例为可伸缩的分层结构, 其扩展层为多个, 每个扩展层包括一个增强层编码模块, 每个扩展层都可以 分配一定的比特数用于增强宽带核心层的质量, 从而实现了嵌入式编码。 在 多个扩展层中至少一层包含增强样点选择模块, 也可以部分或全部扩展层都 包含增强样点选择模块。 下面以包括两个增强层编码模块(分别为第一增强 层编码模块和第二增强层编码模块)为例进行说明:
分别给第一增强层编码模块和第二增强层编码模块分配 A和 B 的比特 数; 增强样点选择模块根据比特数 A选择需要第一增强层编码模块进行增强 层信号编码的 a个增强样点, 根据比特数 B选择需要第二增强层编码模块进 行增强层信号编码的 b个增强样点; 第一增强层编码模块采用比特数 A对 a 个增强样点的增强层信号进行编码, 第二增强层编码模块采用比特数 B对 b 个增强样点的增强层信号进行编码; 输出模块将包括核心层信号编码、 第一 增强层编码模块输出的增强层信号编码以及第二增强层编码模块输出的增强 层信号编码的码流进行输出。 其中, 第一增强层编码模块和第二增强层编码 模块可以采用相同的增强层编码方法, 也可以采用不同的增强层编码方法。
上述增强层编码模块 14 可以具体用于将增强样点的指定残差的符号进 行编码, 得到所述增强层信号编码。 进一步的, 若采用编码残差符号的方法, 本实施例的增强层编码模块 14可以包括: 残差符号获取单元 15和增强层编 码单元 16; 其中残差符号获取单元 15 ^^据增强样点的原始信号与增强样点 的核心层本地解码信号相减的结果得到残差符号;增强层编码单元 16将残差 符号进行编码, 得到增强样点的增强层信号编码。
本实施例若采用反馈机制, 还可以包括: 本地解码模块 17、 修正模块 18 和预测值获取模块 19; 其中, 本地解码模块 17将增强样点的增强层信号编 码进行本地解码; 修正模块 18根据本地解码后的增强层信号, 对核心层本地 解码后的信号进行修正; 预测值获取模块 19根据修正后的核心层信号, 确定 后续样点的核心层信号的预测值。
本实施例根据增强层所能使用的比特数, 选择具体需要进行增强层信号 编码的增强样点, 对选择的增强样点进行增强层信号编码, 当没有充足的比 特数供增强层使用时, 能够提高核心层的增强质量。
如图 10所示, 为本发明实施例信号解码装置的结构示意图, 本实施例具 体包括: 接收模块 21、 一个以上增强样点选择模块、 一个以上增强层解码模 块以及修正模块 22; 图 10中仅示出包括一个增强样点选择模块 23和一个增 强层解码模块 24的例子, 其中, 接收模块 21接收包括核心层信号编码以及 增强层信号编码的码流;增强样点选择模块 23根据增强层所能使用的比特数 和接收到的码流, 选择需要进行增强层信号解码的增强样点; 增强层解码模 块 24将增强样点的增强层信号编码进行解码, 得到增强层信号; 修正模块 22根据增强层信号和码流, 获得修正后的核心层信号。
本实施例还可以包括核心层解码模块 25, 该核心层解码模块 25将核心 层信号编码进行解码, 得到核心层信号预测值、 核心层信号索引、 核心层解 码后的预测残差信号以及核心层解码后的信号。
当本实施例包含多个增强层解码模块时,本实施例为可伸缩的分层结构, 其扩展层为多个, 每个扩展层包括一个增强层解码模块, 每个扩展层都可以 分配一定的比特数用于增强宽带核心层的质量, 从而实现了嵌入式解码。 在 多个扩展层中至少一层包含增强样点选择模块, 也可以部分或全部扩展层都 包含增强样点选择模块。 下面以包括两个增强层解码模块(分别为第一增强 层解码模块和第二增强层解码模块)为例进行说明:
分别给第一增强层解码模块和第二增强层解码模块分配 A和 B 的比特 数; 增强样点选择模块根据比特数 A选择需要第一增强层解码模块进行增强 层信号解码的 a个增强样点, 根据比特数 B选择需要第二增强层解码模块进 行增强层信号解码的 b个增强样点; 第一增强层解码模块采用比特数 A对 a 个增强样点的增强层信号进行解码, 第二增强层解码模块采用比特数 B对 b 个增强样点的增强层信号进行解码; 修正模块分别根据第一增强层解码模块 输出的增强层信号以及第二增强层解码模块输出的增强层信号, 获取修正后 的核心层信号。 其中, 第一增强层解码模块和第二增强层解码模块可以采用 相同的增强层解码方法, 也可以采用不同的增强层解码方法。
进一步的, 若增强层信号为指定残差的符号, 则修正模块 22可以包括: 增强层信号索引获取单元 26、 增强层量化单元 27以及第一修正单元 28, 其 中增强层信号索引获取单元 26根据指定残差的符号和核心层信号索引,获得 增强层信号索引; 增强层量化单元 27才艮据增强层信号索引, 查找增强层信号 索引对应的量化值;第一修正单元 28将增强层信号索引对应的量化值与核心 层信号预测值相加, 得到修正后的核心层信号。 修正模块 22还可以包括: 第 二修正单元和核心层信号获取单元;其中第二修正单元根据指定残差的符号, 利用预先设定的修正因子, 对核心层解码后的预测残差信号进行修正; 核心 层信号获取单元将修正后的核心层预测残差信号与核心层信号预测值相加, 得到修正后的核心层信号。
本实施例根据增强层所能使用的比特数, 选择具体的需要进行增强层信 号解码的增强样点, 对选择的增强样点进行增强层信号解码, 当没有充足的 比特数供增强层使用时, 能够提高核心层的增强质量。
如图 11所示, 为本发明实施例信号编解码系统的结构示意图, 本实施例 具体包括信号编码装置 31和信号解码装置 32, 其中信号编码装置 31将核心 层信号进行编码, 得到核心层信号编码; 根据增强层所能使用的比特数和核 心层信号编码, 选择需要进行增强层信号编码的增强样点; 获取增强样点的 增强层信号编码; 输出包括核心层信号编码以及增强层信号编码的码流; 信 号解码装置 32接收包括核心层信号编码以及增强层信号编码的码流;根据增 强层所能使用的比特数和接收到的码流, 选择需要进行增强层信号解码的增 强样点; 将增强样点的增强层信号编码进行解码, 得到增强层信号; ^^据增 强层信号和码流, 获得修正后的核心层信号。
本实施例中信号编码装置 31 可以为上述本发明实施例信号编码装置所 述的任一实施例,信号解码装置 32可以为上述本发明实施例信号解码装置所 述的任一实施例。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机 可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤, 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程 序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明实施例的技术方案, 而非对其限制; 尽管参照前述实施例对本发明实施例进行了详细的说明, 本领域的普通技术人员应当理解: 其依然可以对前述各实施例所记载的技 术方案进行修改, 或者对其中部分技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明实施例各实施例技术方案 的精神和范围。

Claims

权 利 要 求
1、 一种信号编码方法, 其特征在于包括:
对核心层信号进行编码, 得到核心层信号编码;
根据增强层进行编码所能使用的比特数和所述核心层信号编码, 选择增 强层信号进行编码需要的增强样点;
获取所述增强样点的增强层信号编码;
输出包括所述核心层信号编码以及所述增强层信号编码的码流。
2、 根据权利要求 1 所述的信号编码方法, 其特征在于, 所述选择增强 层信号进行编码需要的增强样点包括: 根据所述增强层所能使用的比特数和 增强因子的乘积与样点总个数的关系, 确定增强样点的个数。
3、 根据权利要求 1所述的信号编码方法, 其特征在于, 用 N表示样点 的总个数, 用 EN表示增强样点的个数, 用 n表示样点的标号, 0 < η < Ν-1 ; 所述选择需要进行增强层信号编码的增强样点包括:
获取标号为 n的样点的指定信号的滑动平均值; 所述滑动平均值为标号 小于 n的样点的指定信号绝对值的平均值;
根据所述滑动平均值, 确定标号为 n的样点是否为所述需要进行增强层 信号编码的增强样点。
4、 根据权利要求 1所述的信号编码方法, 其特征在于, 用 EN表示增 强样点的个数; 所述选择需要进行增强层信号编码的增强样点包括:
计算所有样点指定信号绝对值的平均值;
从第一个样点开始, 顺序选择指定信号绝对值大于所述平均值的样点作 为所述需要进行增强层信号编码的增强样点, 直至增强样点的个数等于 EN。
5、 根据权利要求 4或 3所述的信号编码方法, 其特征在于, 所述指定 信号为核心层本地解码后的残差信号或核心层本地解码后的信号或核心层本 地解码并经过噪声整形后的信号或核心层本地解码并经过噪声整形后的残差 信号。
6、 根据权利要求 1所述的信号编码方法, 其特征在于, 用 EN表示增 强样点的个数; 所述选择需要进行增强层信号编码的增强样点包括:
每隔一个样点选择一个样点作为需要进行增强层信号编码的增强样点; 当增强样点的个数大于 EN时, 从增强样点中的指定样点开始, 顺序去 除增强样点, 直至增强样点的个数等于 EN;
当增强样点的个数小于 EN时, 从第一个未被选择的样点开始, 顺序选 择未被选择的样点作为增强样点, 直至增强样点的个数等于 EN。
7、 根据权利要求 1或 2所述的信号编码方法, 其特征在于, 所述获取 增强样点的增强层信号编码包括:
^^据所述增强样点的原始信号与所述增强样点的核心层本地解码信号相 减的结果得到残差符号; 所述原始信号为核心层的输入信号或核心层中输入 PCM编码的信号; 所述核心层本地解码信号为所述核心层的本地解码信号或 所述核心层中 PCM本地解码的信号;
将所述残差符号进行编码, 得到所述增强样点的增强层信号编码。
8、 根据权利要求 2所述的信号编码方法, 其特征在于, 在输出码流之 前还包括:
将所述增强样点的增强层信号编码进行本地解码;
根据所述本地解码后的增强层信号, 对所述核心层本地解码后的信号进 行修正;
根据修正后的核心层信号, 确定后续样点的核心层信号的预测值。
9、 一种信号解码方法, 其特征在于包括:
接收包括核心层信号编码以及增强层信号编码的码流;
根据增强层进行编码所能使用的比特数和接收到的所述码流, 选择增强 层信号进行解码需要的增强样点;
将所述增强样点的所述增强层信号编码进行解码, 得到增强层信号; 根据所述增强层信号和所述码流, 获得修正后的核心层信号。
10、 根据权利要求 9所述的信号解码方法, 其特征在于, 所述选择增强 样点包括: 根据所述增强层所能使用的比特数和增强因子的乘积与样点总个 数的关系, 确定增强样点的个数。
11、 根据权利要求 9所述的信号解码方法, 其特征在于, 用 N表示样 点的总个数,用 EN表示增强样点的个数,用 n表示样点的标号, 0 < η < Ν-1 ; 所述选择需要进行增强层信号解码的增强样点包括:
获取标号为 n的样点的指定信号的滑动平均值; 所述滑动平均值为标号 小于 n的样点的指定信号绝对值的平均值;
根据所述滑动平均值, 确定标号为 n的样点是否为所述需要进行增强层 信号解码的增强样点。
12、 根据权利要求 9所述的信号解码方法, 其特征在于, 用 EN表示增 强样点的个数; 所述需要进行增强层信号解码的增强样点包括:
计算所有样点指定信号绝对值的平均值;
从第一个样点开始, 顺序选择指定信号绝对值大于所述平均值的样点作 为所述需要进行增强层信号解码的增强样点, 直至增强样点的个数等于 EN。
13、 根据权利要求 9所述的信号解码方法, 其特征在于, 用 EN表示增 强样点的个数; 所述需要进行增强层信号解码的增强样点包括:
每隔一个样点选择一个样点作为需要进行增强层信号解码的增强样点; 当增强样点的个数大于 EN时, 从增强样点中的指定样点开始, 顺序去 除增强样点, 直至增强样点的个数等于 EN;
当增强样点的个数小于 EN时, 从第一个未被选择的样点开始, 顺序选择 未被选择的样点作为增强样点, 直至增强样点的个数等于 EN。
14、 根据权利要求 9所述的信号解码方法, 其特征在于还包括: 将所述 核心层信号编码进行解码, 得到核心层信号预测值、 核心层信号索引、 核心 层解码后的预测残差信号以及核心层解码后的信号,
所述增强层信号为指定残差的符号, 所述根据增强层信号, 获得修正后 的核心层信号包括:
根据所述指定残差的符号和所述核心层信号索引,获得增强层信号索引; 根据所述增强层信号索引, 查找增强层信号索引对应的量化值; 将所述增强层信号索引对应的量化值与所述核心层信号预测值相加, 得 到所述修正后的核心层信号。
15、 根据权利要求 9所述的信号解码方法, 其特征在于, 还包括: 将所 述核心层信号编码进行解码, 得到核心层信号预测值、 核心层信号索引、 核 心层解码后的预测残差信号以及核心层解码后的信号,
所述增强层信号为指定残差的符号; 所述根据增强层信号, 获得修正后 的核心层信号包括:
根据所述指定残差的符号, 利用预先设定的修正因子, 对核心层解码后 的预测残差信号进行修正;
将修正后的核心层预测残差信号与核心层信号预测值相加, 得到所述修 正后的核心层信号。
16、 一种信号编码装置, 其特征在于包括:
核心层编码模块, 用于将核心层信号进行编码, 得到核心层信号编码; 一个以上增强样点选择模块, 用于根据增强层所能使用的比特数和所述 核心层信号编码, 选择需要进行增强层信号编码的增强样点;
一个以上增强层编码模块, 用于获取所述增强样点的增强层信号编码; 输出模块, 用于输出包括所述核心层信号编码以及所述增强层信号编码 的码流。
17、 根据权利要求 16所述的信号编码装置, 其特征在于, 所述增强层 编码模块包括:
残差符号获取单元, 用于^^据所述增强样点的原始信号与所述增强样点 的核心层本地解码信号相减的结果得到残差符号;
增强层编码单元, 用于将所述残差符号进行编码, 得到所述增强样点的 增强层信号编码。
18、 一种信号解码装置, 其特征在于包括:
接收模块, 用于接收包括核心层信号编码以及增强层信号编码的码流; 一个以上增强样点选择模块, 用于根据增强层所能使用的比特数和接收 到的所述码流, 选择需要进行增强层信号解码的增强样点;
一个以上增强层解码模块, 用于将所述增强样点的所述增强层信号编码 进行解码, 得到增强层信号;
修正模块, 用于根据所述增强层信号和所述码流, 获得修正后的核心层 信号。
19、 根据权利要求 18所述的信号解码装置, 其特征在于还包括: 核心层 解码模块, 用于将所述核心层信号编码进行解码, 得到核心层信号预测值、 核心层信号索引、 核心层解码后的预测残差信号以及核心层解码后的信号。
20、 根据权利要求 19所述的信号解码装置, 其特征在于, 所述增强层信 号为指定残差的符号; 所述修正模块包括:
增强层信号索引获取单元, 用于根据所述指定残差的符号和所述核心层 信号索引, 获得增强层信号索引;
增强层量化单元, 用于才艮据所述增强层信号索引, 查找增强层信号索引 对应的量化值;
第一修正单元, 用于将所述增强层信号索 ^ )对应的量化值与所述核心层 信号预测值相加, 得到所述修正后的核心层信号。
21、 根据权利要求 19所述的信号解码装置, 其特征在于, 所述增强层信 号为指定残差的符号; 所述修正模块包括:
第二修正单元, 用于根据所述指定残差的符号, 利用预先设定的修正因 子, 对核心层解码后的预测残差信号进行修正;
核心层信号获取单元, 用于将修正后的核心层预测残差信号与核心层信号预 测值相加, 得到所述修正后的核心层信号。
PCT/CN2009/076218 2008-12-30 2009-12-29 信号编码、解码方法及装置、系统 WO2010075777A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09836064.7A EP2352230B8 (en) 2008-12-30 2009-12-29 Signal encoding method and signal encoding device for a speech or audio signal
US13/111,834 US8380526B2 (en) 2008-12-30 2011-05-19 Method, device and system for enhancement layer signal encoding and decoding
US13/210,127 US8140343B2 (en) 2008-12-30 2011-08-15 Method, device and system for signal encoding and decoding
US13/738,786 US20130124216A1 (en) 2008-12-30 2013-01-10 Method, Device and System for Signal Encoding and Decoding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810247589.X 2008-12-30
CN200810247589XA CN101771417B (zh) 2008-12-30 2008-12-30 信号编码、解码方法及装置、系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/111,834 Continuation US8380526B2 (en) 2008-12-30 2011-05-19 Method, device and system for enhancement layer signal encoding and decoding

Publications (1)

Publication Number Publication Date
WO2010075777A1 true WO2010075777A1 (zh) 2010-07-08

Family

ID=42309821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076218 WO2010075777A1 (zh) 2008-12-30 2009-12-29 信号编码、解码方法及装置、系统

Country Status (4)

Country Link
US (3) US8380526B2 (zh)
EP (1) EP2352230B8 (zh)
CN (1) CN101771417B (zh)
WO (1) WO2010075777A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101548318B (zh) * 2006-12-15 2012-07-18 松下电器产业株式会社 编码装置、解码装置以及其方法
CN101771417B (zh) * 2008-12-30 2012-04-18 华为技术有限公司 信号编码、解码方法及装置、系统
EP2348504B1 (en) * 2009-03-27 2014-01-08 Huawei Technologies Co., Ltd. Encoding and decoding method and device
US10405228B2 (en) * 2017-06-08 2019-09-03 Qualcomm Incorporated System information block providing cell access information supporting wideband coverage enhancement in wireless communication networks
GB2607123B (en) * 2021-10-25 2023-10-11 V Nova Int Ltd Enhancement decoding implementation and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470050A (zh) * 2000-10-20 2004-01-21 ����ɭ�绰�ɷ����޹�˾ 可感知地改善的编码声信号的增强
CN1689069A (zh) * 2002-09-06 2005-10-26 松下电器产业株式会社 声音编码设备和声音编码方法
CN1890711A (zh) * 2003-10-10 2007-01-03 新加坡科技研究局 将数字信号编码成可扩缩比特流的方法和对可扩缩比特流解码的方法
CN101206860A (zh) * 2006-12-20 2008-06-25 华为技术有限公司 一种可分层音频编解码方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289308B1 (en) * 1990-06-01 2001-09-11 U.S. Philips Corporation Encoded wideband digital transmission signal and record carrier recorded with such a signal
US5680508A (en) 1991-05-03 1997-10-21 Itt Corporation Enhancement of speech coding in background noise for low-rate speech coder
KR100335609B1 (ko) 1997-11-20 2002-10-04 삼성전자 주식회사 비트율조절이가능한오디오부호화/복호화방법및장치
DE10102159C2 (de) 2001-01-18 2002-12-12 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Erzeugen bzw. Decodieren eines skalierbaren Datenstroms unter Berücksichtigung einer Bitsparkasse, Codierer und skalierbarer Codierer
EP1489599B1 (en) * 2002-04-26 2016-05-11 Panasonic Intellectual Property Corporation of America Coding device and decoding device
EP1619664B1 (en) * 2003-04-30 2012-01-25 Panasonic Corporation Speech coding apparatus, speech decoding apparatus and methods thereof
KR20070007851A (ko) * 2004-04-28 2007-01-16 마츠시타 덴끼 산교 가부시키가이샤 계층 부호화 장치 및 계층 부호화 방법
CN101044554A (zh) 2004-10-13 2007-09-26 松下电器产业株式会社 可扩展性编码装置、可扩展性解码装置以及可扩展性编码方法
KR100738077B1 (ko) * 2005-09-28 2007-07-12 삼성전자주식회사 계층적 오디오 부호화 및 복호화 장치와 방법
US7835904B2 (en) * 2006-03-03 2010-11-16 Microsoft Corp. Perceptual, scalable audio compression
US20080059154A1 (en) * 2006-09-01 2008-03-06 Nokia Corporation Encoding an audio signal
WO2008062990A1 (en) 2006-11-21 2008-05-29 Samsung Electronics Co., Ltd. Method, medium, and system scalably encoding/decoding audio/speech
KR101449431B1 (ko) 2007-10-09 2014-10-14 삼성전자주식회사 계층형 광대역 오디오 신호의 부호화 방법 및 장치
KR100921867B1 (ko) 2007-10-17 2009-10-13 광주과학기술원 광대역 오디오 신호 부호화 복호화 장치 및 그 방법
US8639519B2 (en) 2008-04-09 2014-01-28 Motorola Mobility Llc Method and apparatus for selective signal coding based on core encoder performance
US8219408B2 (en) 2008-12-29 2012-07-10 Motorola Mobility, Inc. Audio signal decoder and method for producing a scaled reconstructed audio signal
CN101771417B (zh) 2008-12-30 2012-04-18 华为技术有限公司 信号编码、解码方法及装置、系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1470050A (zh) * 2000-10-20 2004-01-21 ����ɭ�绰�ɷ����޹�˾ 可感知地改善的编码声信号的增强
CN1689069A (zh) * 2002-09-06 2005-10-26 松下电器产业株式会社 声音编码设备和声音编码方法
CN1890711A (zh) * 2003-10-10 2007-01-03 新加坡科技研究局 将数字信号编码成可扩缩比特流的方法和对可扩缩比特流解码的方法
CN101206860A (zh) * 2006-12-20 2008-06-25 华为技术有限公司 一种可分层音频编解码方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2352230A4 *

Also Published As

Publication number Publication date
US8380526B2 (en) 2013-02-19
US20110286549A1 (en) 2011-11-24
US20130124216A1 (en) 2013-05-16
EP2352230A1 (en) 2011-08-03
US8140343B2 (en) 2012-03-20
EP2352230A4 (en) 2012-04-25
CN101771417A (zh) 2010-07-07
US20110216839A1 (en) 2011-09-08
EP2352230B1 (en) 2017-04-12
CN101771417B (zh) 2012-04-18
EP2352230B8 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
TWI405187B (zh) 可縮放語音及音訊編碼解碼器、包括可縮放語音及音訊編碼解碼器之處理器、及用於可縮放語音及音訊編碼解碼器之方法及機器可讀媒體
CN102089813B (zh) 音频编码器和音频解码器
RU2510974C2 (ru) Способ кодирования, способ декодирования, устройство кодера, устройство декодера, программа и носитель записи
JP6793675B2 (ja) 音声符号化装置
KR20100085018A (ko) 신호 처리 방법 및 장치
KR101170137B1 (ko) 복잡성이 축소된 벡터 인덱싱 및 탈-인덱싱
WO2010139257A1 (zh) 压缩编码和解码的方法、编码器和解码器以及编码装置
BRPI0910787B1 (pt) método para codificar um símbolo, método para decodificar um símbolo, método para transmitir um símbolo de um transmissor a um receptor, codificador, decodificador e sistema para transmitir um símbolo de um transmissor a um receptor
WO2010075777A1 (zh) 信号编码、解码方法及装置、系统
EP2022045A2 (en) Decoding of predictively coded data using buffer adaptation
JP4970046B2 (ja) ディジタル信号圧縮のためのコーディングのために用いられるマルチパルス・ディクショナリのインデクス間のトランスコーディング
WO2023197809A1 (zh) 一种高频音频信号的编解码方法和相关装置
RU2769255C2 (ru) Аудиокодеры, аудиодекодеры, способы и компьютерные программы, применяющие кодирование и декодирование младших значащих битов
JP6165151B2 (ja) 改善された階層符号化
TW201209805A (en) Device and method for efficiently encoding quantization parameters of spectral coefficient coding
JP5226851B2 (ja) 向上階層の符号化装置並びに復号化装置及びその方法
KR102380642B1 (ko) 스테레오 신호 인코딩 방법 및 인코딩 장치
WO2010108332A1 (zh) 编码和解码方法及装置
KR20140005201A (ko) 계층적 인코더에서 개선 스테이지의 개선된 인코딩
CA2765523A1 (en) Coding method, decoding method, and device and recording medium using the methods
CN110660400B (zh) 立体声信号的编码、解码方法、编码装置和解码装置
EP1941616A1 (en) Method and device to provide arithmetic decoding of scalable bsac audio data
WO2009152723A1 (zh) 嵌入式编解码方法和装置
CN112992161A (zh) 音频编码方法、音频解码方法、装置、介质及电子设备
JP5635213B2 (ja) 符号化方法、符号化装置、復号方法、復号装置、プログラム及び記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09836064

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009836064

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009836064

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE