WO2010075710A1 - 大带宽系统物理上行控制信道的方法 - Google Patents

大带宽系统物理上行控制信道的方法 Download PDF

Info

Publication number
WO2010075710A1
WO2010075710A1 PCT/CN2009/074551 CN2009074551W WO2010075710A1 WO 2010075710 A1 WO2010075710 A1 WO 2010075710A1 CN 2009074551 W CN2009074551 W CN 2009074551W WO 2010075710 A1 WO2010075710 A1 WO 2010075710A1
Authority
WO
WIPO (PCT)
Prior art keywords
component carrier
carrier frequency
index
uplink
pdsch
Prior art date
Application number
PCT/CN2009/074551
Other languages
English (en)
French (fr)
Inventor
张禹强
戴博
郝鹏
梁春丽
喻斌
马志锋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP09835997A priority Critical patent/EP2381735A4/en
Priority to JP2011543968A priority patent/JP2012514397A/ja
Publication of WO2010075710A1 publication Critical patent/WO2010075710A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/323Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the physical layer [OSI layer 1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of mobile wireless communications, and more particularly to a method for physically uplinking control channels in a large bandwidth wireless communication system.
  • FIG. 1 shows a frame structure of an LTE (Long Term Evolution) system FDD (Frequency Division Duplex) mode and a TDD (Time Division Duplex) mode.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • a 10ms radio frame consists of twenty slots of length 0.5ms, numbered 0 ⁇ 19, and slots 2i and 2i+1 form a subframe of length 1ms.
  • (subframe) i In the frame structure of the TDD mode, a 10 ms radio frame consists of two half frames (half frames) of 5 ms long, and one field contains five subframes (subframes) of length 1 ms.
  • the subframe i is defined as two slots 2i and 2i+1 that are 0.5 ms long.
  • one slot contains seven symbols with a length of 66.7 ⁇ s, and the CP of the first symbol has a length of 5.21 ⁇ 5 , and the remaining six symbols The CP length is 4.69.
  • the Extended (Extended) CP one slot contains 6 symbols, and the CP length of all symbols is 16.67 ⁇ 5 .
  • LTE defines a PDCCH (Physical Downlink Control Channel) 7-load scheduling allocation and other control information.
  • the PCFICH Physical Control Format Indicator Channel
  • OFDM Orthogonal Frequency Division Multiplexing
  • the number of symbols is transmitted on the first OFDM symbol of the subframe, and the frequency position is determined by the system downlink bandwidth and the cell ID.
  • Each PDCCH is composed of a number of CCEs (Control Channel Elements), and the number of CCEs per subframe is determined by the number of PDCCHs and the downlink bandwidth.
  • LTE Release-8 defines six bandwidths: 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz and 20MHz.
  • LTE-Advanced (More Advancements for E-UTRA) is an evolved version of LTE Release-8.
  • E-UTRA Evolved UTRA
  • E-UTRAN Evolved UTRAN
  • ITU-R ITU-Radio communications sector, International Telecommunications
  • LTE-Advanced needs to meet the requirements of backward compatibility with LTE Release-8. The requirements are: LTE Release-8 terminals can work in LTE-Advanced networks; LTE-Advanced terminals can be in LTE Release-8 networks. Working in the middle.
  • LTE-Advanced should be able to operate in different frequency domain configurations, including a wider spectrum configuration than LTE Release-8 (eg, 100 MHz continuous spectrum resources) to achieve higher performance and target peak rates.
  • LTE Release-8 eg, 100 MHz continuous spectrum resources
  • the LTE-Advanced network needs to be able to access LTE users, its operating band needs to cover the current LTE band.
  • There is no allocated 100 MHz spectrum bandwidth allocated in this frequency band, so a direct technique that LTE-Advanced needs to solve is to aggregate several continuous component carrier carriers (Component carriers) distributed in different frequency bands.
  • 100MHz bandwidth that LTE-Advanced can use That is, for the aggregated spectrum, it is divided into n component carrier frequencies (spectrums), and the spectrum in each component carrier frequency (spectrum) is continuous.
  • Figure 2a shows the spectrum configuration scheme 1 .
  • the LTE-Advanced spectrum configuration consists of one LTE-Advanced defined system bandwidth, and the bandwidth is greater than the system bandwidth defined by LTE Release-8.
  • Figure 2b shows the spectrum configuration scheme 2, which means that the LTE-Advanced spectrum configuration consists of a system bandwidth defined by one LTE Release-8 and a system bandwidth defined by multiple LTE-Advanceds through carrier aggregation.
  • Figure 2c shows the spectrum configuration scheme 3, which means that the LTE-Advanced spectrum configuration is composed of a plurality of LTE Release-8 system bandwidths, which are aggregated by carrier aggregation.
  • the aggregation of the spectrum may be continuous spectrum aggregation or It is the aggregation of discontinuous spectrum.
  • the LTE Release-8 terminal can access the frequency band compatible with LTE Release-8, and the LTE-Advanced terminal can access both the LTE Release-8 compatible frequency band and the LTE-Advanced frequency band.
  • each component carrier frequency of LTE-Advanced needs to be able to access LTE users. This needs to ensure that the channel structure of each component carrier frequency is kept consistent with LTE.
  • LTE-Advanced is likely to have different numbers of available component carriers in the FDD duplex mode. Therefore, each downlink component carrier cannot correspond to the uplink control signal t PUCCH (Physical Uplink Control Channel). , physical uplink control channel), the PUCCH resource index that LTE has designed cannot work correctly.
  • PUCCH Physical Uplink Control Channel
  • the PUCCH resource index designed to transmit HARQ-ACK (Hybrid Automatic Repeat Request Acknowledgement) in the uplink is implicitly mapped by the minimum CCE allocated to the PDCCH of the user in the scheduled downlink subframe. I.e., / ⁇ : / ⁇ + ⁇ , where " ⁇ is the user sends the HARQ-ACK PUCCH resource index," transmission of the PDCCH CCE is the first CCE index of the corresponding, N CH configured by higher layers. For semi-statically scheduled PDSCH, « CH is configured by the upper layer.
  • the PUCCH resource index of the uplink HARQ-ACK is obtained by block interleaving the CCEs of the PDCCH allocated to the user in the scheduled downlink subframe. Since the number of downlink subframes in the radio frame may be more than the number of uplink subframes in the TDD mode, the feedback information of multiple downlink subframes may be sent in the same uplink subframe, thus defining the concept of the feedback window. .
  • the feedback window is all the downlink subframes corresponding to the uplink subframes (here, "corresponding" means that the downlink subframes are fed back the acknowledgement information in the uplink subframe).
  • a method of block interleaving mapping PUCCH resources is used, and the PUCCH resource index is calculated as follows: The terminal first selects a value from ⁇ 0, 1 , 2, 3 ⁇ such that the condition N p ⁇ n cca ⁇ N p is satisfied.
  • CE is the index of the first CCE where the PDCCH of the last downlink subframe scheduled to the terminal in the feedback window is located;
  • max ⁇ o, L[N R D B L x(N xp-4) ]/36" ⁇ , that is, the number of CCEs occupied by the PDCCH and the number of symbols in the feedback window, N ⁇ is the number of downlink RBs (resource blocks) in the system bandwidth, and N is occupied by each RB.
  • LTE-Advanced introduces carrier frequency aggregation, there is a problem in how the HARQ-ACK corresponding to the traffic channel of each PDSCH transmission of multiple downlink component carriers is indexed on one or more uplink component carrier frequencies. Since LTE-Advanced systems may support upstream and downstream (FDD) Duplex mode) The number of component carrier frequencies is not equal, so multiple downlink component carriers are introduced to correspond to one uplink component carrier frequency for feedback. This requires designing a PUCCH resource mapping method that maintains compatibility with LTE Release-8. Summary of the invention
  • the technical problem to be solved by the present invention is to provide an indication method suitable for LTE-Advanced PUCCH, which can ensure compatibility between the LTE-Advanced system and the LTE Release-8 system, so that the LTE-Advanced terminal obtains the maximum frequency selective gain.
  • the present invention provides a method for a physical uplink control channel of a large bandwidth system, where the method includes:
  • the index number of the uplink component carrier frequency of the physical uplink control channel PUCCH resource in the uplink transmission hybrid automatic repeat request acknowledgement HARQ-ACK corresponding to the dynamically scheduled physical downlink shared channel PDSCH is determined by the physical downlink control channel PDCCH in which the PDSCH is scheduled.
  • the downlink component carrier frequency index number mapping is obtained, or is a fixed value, or is obtained by high layer signaling or physical layer signaling, so as to indicate the physical uplink control channel of the large bandwidth system.
  • the step of mapping the index number of the uplink component carrier frequency by the downlink component carrier index number is:
  • the index number of the uplink component carrier frequency is consistent with the downlink component carrier frequency index number, or the index number of the uplink component carrier frequency is obtained by adding an offset to the downlink component carrier frequency index number.
  • the offset is obtained by high layer signaling or physical layer signaling. Further, the above method further includes:
  • An index of the PUCCH resource that transmits the HARQ-ACK in the uplink corresponding to the PDSCH on the uplink component carrier frequency is obtained by mapping the first or last control channel unit CCE index of the PDCCH scheduling the PDSCH, or by scheduling the PDSCH
  • the first or last CCE index of the PDCCH is obtained by adding an offset value mapping.
  • the index is determined by: Or + ° ff Se ⁇ ' eight, the index of the PUCCH resource on the uplink component carrier frequency, is the first or last CCE index of the PDCCH scheduling the PDSCH, N CH ,. o ei is the offset value.
  • the above method further includes:
  • An index of the PUCCH resource that transmits the HARQ-ACK in the uplink corresponding to the PDSCH on the uplink component carrier frequency is obtained by a block interleaving mapping.
  • the step of the block interleaving mapping includes: for a scheduling subframe that needs to be fed back on a carrier component of the downlink component, the PUCCH resource of the downlink component carrier is located in the first uplink component carrier frequency.
  • the calculation method of the index of the uplink component carrier frequency of the PUCCH resource of the downlink component carrier is as follows:
  • the step of the block interleaving mapping includes:
  • All CCEs are cascaded in the order of the pre-frequency domain and the time domain in the downlink component carrier where the PDCCH of the PDSCH is scheduled.
  • the CCE of the segment is added with a high-level or physical layer signaling offset mapping to obtain an index of the PUCCH resource of the uplink HARQ-ACK corresponding to the PDSCH on the uplink component carrier.
  • the present invention provides a method for a physical uplink control channel of a large bandwidth system, and the method includes: a physical uplink control channel PUSCH corresponding to the semi-persistently scheduled physical downlink shared channel PDSCH and transmitting a hybrid automatic repeat request for confirming HARQ-ACK in the uplink
  • the index number of the uplink component carrier frequency is obtained by mapping the downlink component carrier frequency index number where the PDSCH is located, or is notified by higher layer signaling.
  • the step of mapping the index number of the uplink component carrier frequency by the downlink component carrier index number is:
  • the index number of the uplink component carrier frequency is consistent with the downlink component carrier frequency index number, or the index number of the uplink component carrier frequency is obtained by adding an offset to the downlink component carrier frequency index number.
  • the offset is notified by higher layer signaling.
  • the above method further includes:
  • the PUCCH resource corresponding to the PDSCH corresponding to the uplink HARQ-ACK is obtained by the high layer signaling notification on the index of the uplink component carrier frequency.
  • the present invention proposes a method for indicating a physical uplink control channel in a large bandwidth system, which can ensure compatibility between the LTE-Advanced system and the LTE Release-8 system, and is beneficial to increase system capacity and scheduling flexibility of the LTE-Advanced system, so that LTE is enabled.
  • the Advanced terminal obtains the maximum frequency selective gain.
  • 1 is a schematic diagram of a frame structure of an FDD/TDD mode of an LTE system
  • Figure 2 is a schematic diagram of three spectrum configuration schemes of the LTE-Advanced system
  • FIG. 3 is a schematic diagram of mapping a CCE index to a PUCCH resource when the TDD mode of the LTE system is used for interleaving.
  • the main idea of the invention is:
  • a joint mapping, where an index number of an uplink component carrier frequency where the PUCCH resource is located may be used to schedule the PDSCH
  • the downlink component carrier frequency index number of the PDCCH is the same, or is obtained by the downlink component carrier frequency index number of the PDCCH that schedules the PDSCH plus an offset of the high layer signaling or the physical layer signaling; or directly by the high layer signaling. Notification or physical layer signaling; or a fixed value.
  • the index number of the PUCCH resource in the uplink component carrier frequency is obtained by mapping the index number of the last or first CCE of the PDCCH scheduling the PDSCH, or the index number of the last or first CCE of the PDCCH scheduling the PDSCH. Adding an offset mapping of a high-level or physical layer notification, or obtaining a block interleaving mapping, the specific block interleaving mapping method is shown in the following embodiment.
  • the corresponding PUCCH resource index for transmitting the HARQ-ACK in the uplink is mapped as follows:
  • the index of the uplink component carrier frequency where the PUCCH resource is located is mapped by the downlink component carrier frequency index number of the PDSCH plus an offset of the higher layer notification, or equal to the downlink component carrier frequency index number, or is notified by higher layer signaling. Or a fixed value.
  • the index of the PUCCH resource on the uplink component carrier frequency is notified by higher layer signaling.
  • the LTE-Advanced needs to be compatible with LTE users. If the LTE-Advanced aggregated carrier includes the LTE frequency band, the LTE user can access the LTE-Advanced network in the uplink and downlink frequency bands used by the LTE. At this time, the mapping method of the LTE user uplink control channel accessing the LTE-Advanced network is completely the same as the LTE design.
  • the number of downlink component carriers corresponding to one uplink component carrier frequency is k
  • the number of component carriers of uplink uplink spectrum aggregation is I
  • I is an arbitrary natural number
  • the number of component carriers of downlink spectrum aggregation is J
  • J is an arbitrary natural number.
  • LTE-Advanced works in FDD duplex and TDD duplex mode.
  • the PUCCH resource index corresponding to the dynamically scheduled PDSCH for transmitting the HARQ-ACK in the uplink is the first or last CCE index of the PDCCH allocated to the user on the scheduled downlink subframe, and the PDSCH is scheduled.
  • the downlink component carrier frequency index where the PDCCH is located is implicitly mapped.
  • L U is the PUCCH resource corresponding to the PDCCH corresponding to the PDCCH of the Jth downlink component carrier that is dynamically scheduled by the user in the first uplink component carrier frequency, and the PUCCH resource index number in the component carrier frequency;
  • N CH configured by the upper layer, indicating the number of PUCCH resources reserved by the ⁇ uplink component carrier frequency, Let the notification (high level or physical layer), or, be a fixed value.
  • the uplink component carrier frequency index number of the PUCCH resource index corresponding to the uplink HARQ-ACK corresponding to the PDSCH corresponding to the dynamically scheduled PDSCH of the user is consistent with the downlink component carrier frequency index number of the PDCCH for scheduling the PDSCH, or by higher layer signaling or physical Layer signaling, or by the downlink component carrier index number of the PDCCH scheduling the PDSCH plus a high-level signaling or physical layer signaling notification value X, and then modulating the uplink component carrier frequency (ie, by scheduling The downlink component carrier frequency index number of the PDCCH of the PDSCH is added by a high-level or physical layer signaling offset value, or is a fixed value; the PUCCH resource is on the uplink The index in the component carrier frequency is added to the first or last CCE index of the PDCCH scheduling the PDSCH by a higher-level configuration value N ⁇ CCH .
  • LTE-Advanced works in FDD duplex and TDD duplex mode, and for LTE-Advanced users, dynamic scheduling is performed on the uplink component of the source.
  • the frequency index is determined by the downlink component carrier frequency index in which the PDSCH is located, and the PUCCH resource index in the uplink component carrier frequency is the first or last CCE index of the PDCCH corresponding to the PDSCH in the scheduled downlink subframe. Mapped.
  • mapping method is:
  • CCEJ is the first or last CCE used to transmit the PDCCH in the first downlink component carrier frequency corresponding to the dynamic scheduling of the user.
  • Index; N c is the first or last CCE used to transmit the PDCCH in the first downlink component carrier frequency corresponding to the dynamic scheduling of the user.
  • N PUCCH is a fixed value
  • d is a logical sequence number of the downlink component carriers in the k downlink component carriers corresponding to the uplink component carrier frequency J, that is, d is a downlink component of the PDCCH scheduling the PDSCH.
  • LTE-Advanced works in TDD duplex mode.
  • the mapping method is:
  • the uplink component carrier frequency index in which the PUCCH resource of the HARQ-ACK is located is obtained by scheduling the downlink component carrier index mapping in which the PDCCH of the PDSCH is located, and the PUCCH resource index in the uplink component carrier frequency is obtained by block interleaving mapping.
  • ⁇ ⁇ ] ⁇ 3 ⁇ 4 ⁇ ⁇ ⁇ , [3 ⁇ 4 ⁇ ( ⁇ ⁇ x ⁇ -. 4)] / 36j ⁇ , i.e., the J-th feedback downlink component carrier within the window containing
  • the number of CCEs occupied by the PDCCH and the number of symbols is Pj
  • N Pj+ j is the number of CCEs occupied by the first downlink component carrier in the feedback window
  • the number of symbols is ⁇ +1, N ⁇ .
  • the number of RB (Resource Blocks) of j downlink component carrier frequencies, N is the number of frequency carriers occupied by each RB; then ⁇ ⁇ ⁇ — ⁇ + ⁇ + ⁇ + ⁇ , where ⁇ is in The number of subframes corresponding to the feedback window in the first downlink component carrier frequency, where ⁇ is the position index of all subframes in the feedback window in the feedback window in the feedback frame of the last downlink component carrier frequency in the feedback window.
  • the dynamically scheduled PDSCH is consistent with the downlink component carrier frequency index number of the PDCCH for scheduling the PDSCH, or is notified by higher layer signaling or physical layer signaling, or by the downlink component carrier frequency index number of the PDCCH scheduling the PDSCH.
  • the value of a high-level signaling or physical layer signaling is obtained by modulating the number of uplink component carrier frequencies (that is, the downlink component carrier frequency index of the PDCCH that schedules the PDSCH is added to a higher layer or physical layer signaling notification. The value is shifted to ) or is a fixed value.
  • the index of the PUCCH resource in the uplink component carrier frequency is obtained by block interleaving mapping.
  • one uplink component carrier frequency corresponds to multiple downlink component carrier frequencies
  • LTE-Advanced operates in TDD duplex mode
  • one uplink subframe corresponds to feedback control information of multiple downlink subframes.
  • the number of component carriers of the uplink spectrum aggregation is /, / is any natural number.
  • the number of carrier frequencies of the downlink spectrum spectrum is J, J is an arbitrary natural number, I ⁇ J.
  • mapping method For LTE-Advanced users, the mapping method is:
  • the uplink component carrier frequency index of the PUCCH resource in which the HARQ-ACK is transmitted in the uplink corresponding to the PDSCH in the downlink component carrier is dynamically scheduled by scheduling the PDSCH.
  • the downlink component carrier frequency index in which the PDCCH is located is determined, and the PUCCH resource index in the uplink component carrier frequency is obtained by block interleaving mapping.
  • the Jth downlink component carrier frequency contains
  • N PUCCH is a fixed value
  • d is a logical sequence number of the downlink component carrier frequency in the downlink component carrier frequency corresponding to the uplink component carrier frequency j, that is, the downlink component of the PDCCH for scheduling the PDSCH is carried.
  • one uplink component carrier frequency corresponds to multiple downlink component carrier frequencies
  • LTE-Advanced operates in TDD duplex mode
  • one uplink subframe corresponds to feedback control information of multiple downlink subframes.
  • the number of component carriers of the uplink spectrum aggregation is /, / is any natural number.
  • the number of carrier frequencies of the downlink spectrum spectrum is J, J is an arbitrary natural number, I ⁇ J.
  • mapping method For LTE-Advanced users, the mapping method is:
  • the index of the uplink component carrier frequency where the PUCCH resource is located is determined by scheduling the downlink component carrier frequency index of the PDCCH of the PDSCH plus an offset of a higher layer or physical layer signaling, or directly notified by higher layer or physical layer signaling.
  • the PUCCH resource index in the uplink component carrier frequency is obtained by block interleaving mapping.
  • the process of the block interleaving is as follows: All CCEs are concatenated in the order of the pre-frequency domain and the time domain in the downlink component carrier where the PDCCH is located, and then cascaded according to the maximum number of symbols of the PDCCH in the downlink component carrier.
  • the CCE is cut into several segments on average. The length of the last segment is not longer than the length of the preceding segments.
  • the offset mapping obtains an index of the uplink component carrier frequency of the PUCCH resource that transmits the HARQ-ACK in the uplink corresponding to the PDSCH.
  • the corresponding uplink component carrier frequency index number of the PUCCH resource in which the HARQ-ACK is transmitted in the uplink is added by the high-level signaling notification of the downlink component carrier frequency index number of the PDSCH.
  • the offset map is obtained.
  • the corresponding PUCCH resource index for transmitting the HARQ-ACK on the uplink component carrier frequency is notified by higher layer signaling.
  • the corresponding uplink component carrier frequency index number of the PUCCH resource in which the HARQ-ACK is transmitted in the uplink is notified by higher layer signaling.
  • the corresponding PUCCH resource index for transmitting the HARQ-ACK on the uplink component carrier frequency is notified by higher layer signaling.
  • the corresponding PUCCH resource index for transmitting the HARQ-ACK in the uplink component carrier frequency is notified by the high layer signaling, and is notified by the high layer signaling, or is a fixed value.
  • the PDSCH of the semi-persistent scheduling is the same as the index of the downlink component carrier frequency of the PDSCH, or is a fixed value, or is obtained by the offset component mapping of the downlink component carrier frequency index number of the PDSCH and a higher layer signaling. .
  • the present invention proposes a mapping method of an uplink control channel in a large bandwidth system, which can ensure compatibility between the LTE-Advanced system and the LTE Release-8 system, and is beneficial to increase
  • the system capacity and scheduling flexibility of the LTE-Advanced system enables the LTE-Advanced terminal to obtain the maximum frequency selective gain.
  • the present invention proposes a method for indicating a physical uplink control channel in a large bandwidth system, which can ensure compatibility between the LTE-Advanced system and the LTE Release-8 system, and is beneficial to increase system capacity and scheduling flexibility of the LTE-Advanced system, so that LTE is enabled.
  • the Advanced terminal obtains the maximum frequency selective gain.

Abstract

本发明提出了一种大带宽系统物理上行控制信道的方法,对动态调度的 PDSCH对应的在上行发送 HARQ-ACK的 PUCCH资源所在的上行分量载频的索引号由调度 PDSCH的 PDCCH所在的下行分量载频索引号映射得到,或为一固定值,或由高层信令或物理层信令通知;对半静态调度下由 PDSCH所在的下行分量载频索引号映射得到或由高层信令通知;以实现对大带宽系统物理上行控制信道进行指示。 本发明提出的方法,可以保证 LTE-Advanced系统与 LTE Release-8系统的兼容性,有利于增加 LTE-Advanced系统的系统容量和调度的灵活性,使得 LTE-Advanced终端获得最大的频率选择性增益。

Description

大带宽系统物理上行控制信道的方法
技术领域
本发明涉及移动无线通信领域, 特别是涉及大带宽无线通信系统中物理 上行控制信道的方法。
背景技术
图 1示出了 LTE ( Long Term Evolution, 长期演进)系统 FDD ( Frequency Division Duplex, 频分双工)模式和 TDD ( Time Division Duplex, 时分双工) 模式的帧结构。 FDD模式的帧结构中, 一个 10ms的 radio frame (无线帧)由 二十个长度为 0.5ms, 编号 0~19的 slot (时隙)组成, 时隙 2i和 2i+l组成长 度为 1ms的 subframe(子帧)i。 TDD模式的帧结构中,一个 10ms的 radio frame (无线帧) 由两个长为 5ms的 half frame (半帧))组成, 一个半帧包含 5个 长为 1ms的 subframe(子帧)。子帧 i定义为 2个长为 0.5ms的时隙 2i和 2i+l。 两种帧结构里, 对于 Normal CP ( Normal Cyclic Prefix, 标准循环前缀) , 一 个时隙包含 7个长度为 66.7 μs的符号, 其中第一个符号的 CP长度为 5.21 μ5 , 其余 6个符号的 CP长度为 4.69 对于 Extended ( Extended, 扩展) CP, 一个时隙包含 6个符号, 所有符号的 CP长度均为 16.67 μ5
LTE定义了 PDCCH ( Physical downlink control channel, 物理下行控制信 道) 7 载调度分配和其它控制信息; PCFICH ( Physical control format indicator channel , 物理控制格式指示信道)承载在一个子帧里用于传输 PDCCH 的 OFDM ( Orthogonal Frequency Division Multiplexing, 正交频分复用 )符号的 数目信息, 在子帧的第一个 OFDM符号上发送, 所在频率位置由系统下行带 宽与小区 ID决定。 每个 PDCCH由若干个 CCE ( Control Channel Element, 控 制信道单元)组成,每个子帧的 CCE数目由 PDCCH的数量和下行带宽决定。
LTE Release-8定义了 6种带宽: 1.4MHz、 3MHz、 5MHz、 10MHz、 15MHz 和 20MHz。 LTE-Advanced ( Further Advancements for E-UTRA )是 LTE Release-8的 演进版本。 除满足或超过 3GPP TR 25.913 : "Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN)"的所有相关需求外, 还要达到或 超过 ITU-R ( ITU-Radio communications sector , 国际电信联盟无线电通信组) 提出的 IMT-Advanced的需求。 LTE-Advanced需要满足与 LTE Release-8后向 兼容的需求, 该需求是指: LTE Release-8的终端可以在 LTE-Advanced的网 络中工作; LTE-Advanced的终端可以在 LTE Release-8的网络中工作。
另外, LTE-Advanced应能在不同大小的频语配置, 包括比 LTE Release-8 更宽的频谱配置 (如 100MHz的连续的频谱资源 ) 下工作, 以达到更高的性 能和目标峰值速率。 由于 LTE-Advanced网络需要能够接入 LTE用户, 所以 其操作频带需要覆盖目前 LTE频带。 在这个频段上已经不存在可分配的连续 100MHz的频谱带宽,所以 LTE-Advanced需要解决的一个直接技术是将几个 分布在不同频段上的连续分量载频(频谱) ( Component carrier )聚合起来形 成 LTE-Advanced可以使用的 100MHz带宽。 即对于聚集后的频谱,被划分为 n个分量载频(频谱) , 每个分量载频(频谱) 内的频谱是连续的。
频谱配置的方案主要有 3种, 如图 2 所示。 其中, 方格部分为与 LTE Release-8兼容的系统带宽, 斜线部分为 LTE-Advanced专有的系统带宽。 图 2a为频谱配置方案 1 , 是指 LTE-Advanced频谱配置由 1个 LTE-Advanced定 义的系统带宽组成, 且该带宽大于 LTE Release-8定义的系统带宽。 图 2b为 频谱配置方案 2 , 是指 LTE-Advanced频谱配置由一个 LTE Release-8定义的 系统带宽和多个 LTE-Advanced 定义的系统带宽通过频语聚集 ( carrier aggregation )组成。 图 2c为频谱配置方案 3 , 是指 LTE-Advanced频谱配置由 多个 LTE Release-8定义的系统带宽通过频谱聚集( carrier aggregation )组成, 其中, 上述频谱的聚集可以是连续频谱的聚集, 也可以是不连续频谱的聚集。 LTE Release-8终端能够接入兼容 LTE Release-8的频带, LTE-Advanced终端 既能够接入 LTE Release-8兼容的频带, 也能够接入 LTE-Advanced的频带。
考虑到与 LTE Release-8的兼容性, LTE-Advanced各分量载频都需要满 足可以接入 LTE用户, 这需要保证在每个分量载频的信道结构尽量保持与 LTE一致。 目前, LTE-Advanced很有可能在 FDD双工模式下, 上行和下行的可用 分量载频数目不一样, 这样, 每个下行分量载频就不能一一对应上行控制信 t PUCCH ( Physical Uplink Control Channel, 物理上行控制信道) , LTE已 经设计的 PUCCH资源索引就无法正确工作。
目前 LTE FDD双工模式下动态调度 PDSCH ( Physical Downlink Shared
Channel, 物理下行共享信道)设计的在上行发送 HARQ-ACK (混合自动重 传请求确认) 的 PUCCH资源索引是通过调度的下行子帧上分配给该用户的 PDCCH的最小 CCE隐含映射的。 即/^ :/^^ +^ , 其中《^^是用户发 送 HARQ-ACK的 PUCCH资源索引, 《CCE是对应传输 PDCCH的第一个 CCE 索引, N CH由高层配置。 对半静态调度的 PDSCH, « CH由高层配置。
对 LTE TDD 双工模式动态调度的 PDSCH, 上行发送 HARQ-ACK 的 PUCCH资源索引是通过调度的下行子帧上分配给该用户的 PDCCH的 CCE 经过块交织后得到。由于 TDD模式下可能存在一个无线帧中下行子帧数目多 于上行子帧数目的配置, 所以可能存在多个下行子帧的反馈信息在同一个上 行子帧中发送, 因此定义了反馈窗的概念。 反馈窗即上行子帧对应的所有下 行子帧(这里的 "对应" 是指这些下行子帧均在该上行子帧反馈确认信息)。
对 LTE TDD釆用了块交织映射 PUCCH资源的方法, 其 PUCCH资源索 引的计算方法如下: 终端首先从 {0, 1 , 2, 3}中选择一个值 使得满足条 件 Np≤ ncca < Np+l , 其中 CE是在反馈窗内调度给终端的最后一个下行子帧的 PDCCH所在的第一个 CCE的索引; ^ = max{o,L[NR D B Lx(N xp-4)]/36」} , 即此反 馈窗内含有 PDCCH且其符号数为 时所占有的 CCE数目, N^为系统带宽 内下行 RB ( Resource Block, 资源块)数目, N 为每个 RB所占的频率载波 数目; w^CCH = (M- m - l)xN +mxN +1CCE +N CCH , 其中 M是反馈窗对应的子 帧数目, m是反馈窗内基站调度给终端的最后一个子帧在反馈窗内所有子帧 中的位置索引, N CH由高层信令通知, 表示预留给半静态分配的 PUCCH资 源数目。 其映射关系示意图由图 3给出。
由于 LTE-Advanced 引入了载频聚合, 则存在多个下行分量载频的各 PDSCH传输的业务信道对应的 HARQ-ACK如何在一个或者多个上行分量载 频进行索引的问题。 由于 LTE-Advanced 系统可能会支持上行和下行( FDD 双工模式)分量载频数目不等, 所以还会引入多个下行分量载频对应一个上 行分量载频进行反馈。 这样就需要设计保持对 LTE Release-8 的兼容性的 PUCCH资源映射方法。 发明内容
本发明要解决的技术问题是提供一种适合 LTE-Advanced的 PUCCH的指 示方法, 可以保证 LTE-Advanced系统与 LTE Release-8系统的兼容性, 使得 LTE-Advanced终端获得最大的频率选择性增益。
为了解决上述问题, 本发明提出了一种大带宽系统物理上行控制信道的 方法, 所述方法包括:
动态调度的物理下行共享信道 PDSCH对应的在上行发送混合自动重传 请求确认 HARQ-ACK的物理上行控制信道 PUCCH资源所在的上行分量载频 的索引号由调度该 PDSCH的物理下行控制信道 PDCCH所在的下行分量载频 索引号映射得到, 或为一固定值, 或由高层信令或物理层信令通知得到, 从而实现对大带宽系统物理上行控制信道进行指示。
进一步地, 上述方法中, 所述上行分量载频的索引号由所述下行分量载 频索引号映射得到的步骤为:
所述上行分量载频的索引号与所述下行分量载频索引号一致, 或者, 所 述上行分量载频的索引号由所述下行分量载频索引号加上一偏移量得到。
进一步地, 上述方法中, 所述偏移量由高层信令或物理层信令通知得到。 进一步地, 上述方法还包括:
所述 PDSCH对应的在上行发送 HARQ-ACK的 PUCCH资源在所述上行 分量载频上的索引由调度该 PDSCH的 PDCCH的第一个或者最后一个控制信 道单元 CCE索引映射得到, 或者由调度该 PDSCH的 PDCCH的第一个或者 最后一个 CCE索引加上一偏移值映射得到。
进一步地, 上述方法中,
得到所述 PDSCH对应的在上行发送 HARQ-ACK的 PUCCH资源在所述 上行分量载频上的索引的映射步骤中, 所述索引由下式确定: 或 + °ffSe^ ' 八中, 为 所述 PUCCH资源在所述上行分量载频上的索引, 是调度该 PDSCH的 PDCCH的第一个或者最后一个 CCE索引, N CH ,.由高层配置, o ei为所述 偏移值。
进一步地, 上述方法还包括:
所述 PDSCH对应的在上行发送 HARQ-ACK的 PUCCH资源在所述上行 分量载频上的索引由块交织映射得到。
进一步地, 上述方法中, 所述块交织映射的步骤包括: 对于第 个下行分量载频上有需要反馈的调度子帧, 所述下行分量载频 的 PUCCH资源位于第 I个上行分量载频中, 所述下行分量载频的 PUCCH资 源在该上行分量载频的索引的计算方法如下:
终端首先从 {0 , 1 , 2 , 3}中选择一个值 Λ , 使得满足条件 Npj ≤ nCCE j < Npj+ j , 其中 nCCEJ是在第 J个下行分量载频反馈窗内调度给终端 的最后一个下行子帧的 PDCCH 所在的第一个 CCE 的索引 ; Npj =ηι¾χ{θ, [¾.χ(^Β x^. -4)] /36j} , 即反馈窗内第 _; 个下行分量载频含有
PDCCH且所述第 j个下行分量载频符号数为 Pj时所占有的 CCE数目, N Pj+ j 是反馈窗内第 个下行分量载频含有 PDCCH且所述第 j个下行分量载频符号 数为 +1时所占有的 CCE数目, N 为第 个下行分量载频的资源块数目, N 为每个资源块所占有的频率载波数目;则 PUCCH资源在该上行分量载频 的 索 引 UCCH,- = (M] -m] -l)xNPj + m] NPj+l + nCCEj + N^ccli , 或 者 UCCH,- = (M] -m} -l)xNpj + } xNpj+l +nCCEj + N^CCH + offset , 其中 M是第 j个下行 分量载频反馈窗对应的子帧数目, ^是在第 _;个下行分量载频反馈窗内基站 调度给终端的最后一个子帧在反馈窗内所有子帧中的位置索引, ο 为一偏 移值。
进一步地, 上述方法中, 所述偏移值由高层信令或物理层信令通知, 或 者,所述偏移值为 offset = xNPUCCH,其中, NPUCCH为固定值, d为调度该 PDSCH 的 PDCCH所在的下行分量载频在所述上行分量载频对应的 k个下行分量载 频中的逻辑序号。 进一步地, 上述方法中, 所述块交织映射的步骤包括:
在调度所述 PDSCH的 PDCCH所在的下行分量载频上按照先频域后时域 的顺序对所有 CCE进行级联,
按照该下行分量载频中 PDCCH最大的符号数将级联的 CCE平均分成若 干段, 其中最后一段的长度不大于前面各段的长度,
将分成段的 CCE加上一个高层或物理层信令通知的偏移量映射得到所 述 PDSCH对应的在上行发送 HARQ-ACK的 PUCCH资源在所述上行分量载 频上的索引。
本发明提出一种大带宽系统物理上行控制信道的方法, 所述方法包括: 半静态调度的物理下行共享信道 PDSCH对应的在上行发送混合自动重 传请求确认 HARQ-ACK的物理上行控制信道 PUCCH资源所在的上行分量载 频的索引号由该 PDSCH所在的下行分量载频索引号映射得到,或由高层信令 通知得到,
从而实现对大带宽系统物理上行控制信道进行指示。
进一步地, 上述方法中, 所述上行分量载频的索引号由所述下行分量载 频索引号映射得到的步骤为:
所述上行分量载频的索引号与所述下行分量载频索引号一致, 或者, 所 述上行分量载频的索引号由所述下行分量载频索引号加上一偏移量得到。
进一步地, 上述方法中, 所述偏移量由高层信令通知。
进一步地, 上述方法还包括:
所述 PDSCH对应的在上行发送 HARQ-ACK的 PUCCH资源在所述上行 分量载频的索引通过高层信令通知得到。
本发明提出在大带宽系统中物理上行控制信道的指示方法, 可以保证 LTE-Advanced 系统与 LTE Release-8 系统的兼容性, 有利于增加 LTE-Advanced系统的系统容量和调度的灵活性, 使得 LTE-Advanced终端获 得最大的频率选择性增益。 附图概述
图 1是 LTE系统 FDD/TDD模式的帧结构示意图;
图 2是 LTE - Advanced系统 3种频谱配置方案示意图; 以及
图 3是 LTE系统 TDD模式在釆用块交织时 CCE索引向 PUCCH资源索 引映射示意图。
本发明的较佳实施方式 用技术手段来解决技术问题, 并达成技术效果的实现过程能充分理解并据以 实施。
本发明的主要思想是:
对于 LTE-Advanced用户, 动态调度的 PDSCH, 其上行发送 HARQ-ACK 的 PUCCH资源索引通过调度该 PDSCH的 PDCCH所在的下行分量载频索引 号和该 PDCCH的最后一个 CCE或第一个 CCE的索引号联合映射, 其中, 该 PUCCH资源所在的上行分量载频的索引号可以和调度该 PDSCH的
PDCCH所在的下行分量载频索引号一致, 或者由调度该 PDSCH的 PDCCH 所在的下行分量载频索引号加上一个高层信令或物理层信令通知的偏移量得 到; 或者直接由高层信令通知或者物理层信令通知; 或者为一固定值。
该 PUCCH资源在该上行分量载频的索引号由调度该 PDSCH的 PDCCH 的最后一个或第一个 CCE的索引号映射得到,或由调度该 PDSCH的 PDCCH 的最后一个或第一个 CCE的索引号加上一个高层或物理层通知的偏移量映射 得到, 或者由块交织映射得到, 具体块交织映射方法见后续实施例。
对于 LTE-Advanced用户, 对半静态调度的 PDSCH, 对应的在上行发送 HARQ-ACK的 PUCCH资源索引通过如下方式映射:
PUCCH资源所在的上行分量载频的索引号由该 PDSCH所在的下行分量 载频索引号加上一个高层通知的偏移量映射, 或者等于该下行分量载频索引 号, 或者由高层信令通知, 或者为固定值。 PUCCH资源在该上行分量载频上 的索引通过高层信令通知。 由于 LTE-Advanced需要兼容 LTE用户, LTE-Advanced聚合的载波中包 含 LTE频段, 则 LTE用户可以在已经设计的 LTE使用的上下行频带接入 LTE-Advanced网络。 此时接入到 LTE-Advanced网络中的 LTE用户上行控制 信道的映射方法完全同 LTE的设计。
下面通过具体实施例进一步详细说明本发明。
假设一个上行分量载频对应的下行分量载频数目为 k, 上行经过频谱聚 合的分量载频数目为 I, I为任意自然数, 下行经过频谱聚合的分量载频数目 为 J, J为任意自然数。
实施例 1
LTE-Advanced工作在 FDD双工和 TDD双工模式下,
对于 LTE-Advanced 用户, 动态调度的 PDSCH 对应的在上行发送 HARQ-ACK 的 PUCCH 资源索引是通过调度的下行子帧上分配给该用户的 PDCCH的第一个或者最后一个 CCE索引结合调度该 PDSCH的 PDCCH所在 的下行分量载频索引隐含映射的。
映射方法可以为: uCC¾ 0' = «CCE, + ^PUCC¾ i '其中 '· =_/·≤ ,或者, ί = Χ ,或者, = C/ + )m0d/。
L U.是该用户对应动态调度在第 J 个下行分量载频的 PDCCH对应的 PUCCH资源在第 I个上行分量载频中, 及其在这个分量载频中 PUCCH资源 索引号; 是该用户对应动态调度的第 个下行分量载频中用于传输 PDCCH的第一个或者最后一个 CCE索引; N CH ,.由高层配置, 表示第 ι个 上行分量载频预留出来的 PUCCH资源数, 由信令通知(高层或者物理层), 或者, 为固定值。 即该用户动态调度的 PDSCH 对应的在上行发送 HARQ-ACK 的 PUCCH 资源索引所在的上行分量载频索引号和调度该 PDSCH的 PDCCH所在的下行分量载频索引号一致, 或者由高层信令或物理 层信令通知,或者由调度该 PDSCH的 PDCCH所在的下行分量载频索引号加 上一个高层信令或物理层信令通知的值 X再对上行分量载频数目取模得到 (即由调度该 PDSCH的 PDCCH所在的下行分量载频索引号加上一个高层或 物理层信令通知的偏移值得到) , 或者为固定值; 该 PUCCH资源在该上行 分量载频中的索引则为调度该 PDSCH的 PDCCH的第一个或最后一个 CCE 索引加上一个高层配置的值 N^CCH
实施例 2
当 k>l , 即一个上行分量载频对应多个下行分量载频时, LTE-Advanced 工作在 FDD双工和 TDD双工模式下,对于 LTE-Advanced用户,动态调度在 源所在的上行分量载频索引是通过该 PDSCH所在的下行分量载频索引确定 的, 而在这个上行分量载频中的 PUCCH资源索引是通过调度的下行子帧上 此 PDSCH对应的 PDCCH的第一个或者最后一个 CCE索引映射的。
映射方法为:
«PUCC¾ = "CCEj + ^PUCC¾ i + offset,其中 = (_/· + ) mod / ,或者, i = X。 是 该用户对应动态调度在第 个下行分量载频的 PDCCH对应的 PUCCH资源在 第 ,个上行分量载频中,并且其在这个分量载频中 PUCCH资源索引号; "CCEJ 是该用户对应动态调度的第 个下行分量载频中用于传输 PDCCH的第一个或 者最后一个 CCE索引; N c ,.由高层配置, 表示第 ,个上行分量载频预留出 来的 PUCCH资源数; 由高层信令通知, 或者, 为固定值, o 可由高 层信令或物理层信令通知, 或者 offset = xNPUCCH , NPUCCH为固定值, d为所述 下行分量载频在上行分量载频 J对应的 k个下行分量载频中逻辑序号, 即 d 为调度该 PDSCH的 PDCCH所在的下行分量载频在该上行分量载频对应的 k 个下行分量载频 中 的逻辑序号 。 当 k = 1 时也可以 釆用 ucc¾ u = nCCR + N^cc¾ + offset的映射方式。
实施例 3
LTE-Advanced工作在 TDD双工模式下,对于 LTE-Advanced用户, 映射 方法为:
动态调度在某个下行分量载频中的 PDSCH 对应的在上行发送
HARQ-ACK的 PUCCH资源所在的上行分量载频索引是通过调度该 PDSCH 的 PDCCH 所在的下行分量载频索引映射得到, 而在该上行分量载频中的 PUCCH资源索引是通过块交织映射得到。 对于第 J个下行分量载频上有需要反馈的调度子帧,其 PUCCH资源位于 第 ,个上行分量载频中(z= ,或者, i = X ,或者, = ( + )mod/ ) ,其 PUCCH 资源索引的计算方法如下: 终端首先从 {0, 1 , 2, 3}中选择一个值 Λ , 使得 满足条件 Npj < nCCE < Npj+ j , 其中 nCCEJ是在第 J个下行分量载频反馈窗内调 度给终端的最后一个下行子帧的 PDCCH 所在的第一个 CCE 的索引;
Νρ] = ηι¾χ{θ, [¾ χ(^Β x^. - 4)]/36j} , 即反馈窗内第 J 个下行分量载频含有
PDCCH且其符号数为 Pj时所占有的 CCE数目, N Pj+ j是反馈窗内第 ·个下行 分量载频含有 PDCCH且其符号数为 Λ +1时所占有的 CCE数目, N^.为第 j 个下行分量载频的 RB ( Resource Block, 资源块)数目, N 为每个 RB所占 的频率载波数目;则^^ ^ ^— ^^^ +^ + ^+^^ ,其中^ 是在第 个下行分量载频中反馈窗对应的子帧数目, ^是在第 个下行分量载 频中反馈窗内基站调度给终端的最后一个子帧在反馈窗内所有子帧中的位置 索引 由高层或者物理层信令通知,或者 为固定值。即动态调度的 PDSCH 和调度该 PDSCH的 PDCCH所在的下行分量载频索引号一致,或者由高层信 令或物理层信令通知,或者由调度该 PDSCH的 PDCCH所在的下行分量载频 索引号加上一个高层信令或物理层信令通知的值 再对上行分量载频数目取 模得到(即由调度该 PDSCH的 PDCCH所在的下行分量载频索引号加上一个 高层或物理层信令通知的偏移值得到) , 或者为固定值。 而该 PUCCH资源 在该上行分量载频的索引由块交织映射得到。
实施例 4
当 k>l , 即一个上行分量载频对应多个下行分量载频时, LTE-Advanced 工作在 TDD双工模式下,并且一个上行子帧对应反馈多个下行子帧的控制信 息。
上行经过频谱聚合的分量载频数目为 /, /为任意自然数。 下行经过频谱 聚合的分量载频数目为 J, J为任意自然数, I<J。
对于 LTE-Advanced用户, 映射方法为:
动态调度在某个下行分量载频中的 PDSCH 对应的在上行发送 HARQ-ACK的 PUCCH资源所在的上行分量载频索引是通过调度该 PDSCH 的 PDCCH 所在的下行分量载频索引确定的, 而在该上行分量载频中的 PUCCH资源索引通过块交织映射得到。
对于第 J个下行分量载频上有需要反馈的调度子帧,其 PUCCH资源位于 第 ,个上行分量载频中 ( = ( + )mod/, 或者, = ) , 其 PUCCH资源索 引的计算方法如下: 终端首先从 {0, 1 , 2 , 3}中选择一个值 , 使得满足条 件 NpjJ≤ nCCE j < Npj+ j , 其中 nCCEJ是在第 J个下行分量载频反馈窗内调度给终 端的最后一个下行子帧的 PDCCH 所在的第一个 CCE 的索引; Νρ] =ηι¾χ{θ,[[¾ χ(^Β Χ^. -4)]/36]} , 即反馈窗内第 J 个下行分量载频含有
PDCCH且其符号数为 p时所占有的 CCE数目, N 为第 j个下行分量载频 的 RB ( Resource Block, 资源块)数目, N 为每个 RB所含的频率载波数目; 则 = (M} -m} -l)xNPj +m] xNPj+l +nCCEj UCCH,- + offset , 其中^是在第 J个 下行分量载频中反馈窗对应的子帧数目, ^是在第 个下行分量载频中反馈 窗内基站调度给终端的最后一个子帧在反馈窗内所有子帧中的位置索引, X 由高层信令通知, 或者, 为固定值, o ei 可由高层信令通知, 或者 offset = xNPUCCH , NPUCCH为固定值, d为所述下行分量载频在上行分量载频 j 对应的 个下行分量载频中逻辑序号, 即 ί为调度该 PDSCH的 PDCCH所在 的下行分量载频在该上行分量载频对应的 个下行分量载频中的逻辑序号。
实施例 5
当 k>l , 即一个上行分量载频对应多个下行分量载频时, LTE-Advanced 工作在 TDD双工模式下,并且一个上行子帧对应反馈多个下行子帧的控制信 息。
上行经过频谱聚合的分量载频数目为 /, /为任意自然数。 下行经过频谱 聚合的分量载频数目为 J, J为任意自然数, I<J。
对于 LTE-Advanced用户, 映射方法为:
动态调度在下行分量载频中的 PDSCH对应的在上行发送 HARQ-ACK的
PUCCH资源所在的上行分量载频的索引是通过调度该 PDSCH的 PDCCH所 在的下行分量载频索引加上一个高层或物理层信令通知的偏移量确定, 或者 由高层或物理层信令直接通知, 而在该上行分量载频中的 PUCCH资源索引 通过块交织映射得到。 该块交织的流程如下: 在该 PDCCH所在的下行分量载频上按照先频域 后时域的顺序对所有 CCE进行级联, 然后按照该下行分量载频中 PDCCH最 大的符号数将级联的 CCE平均切成若干段,最后一段的长度不大于前面各段 的长度,也即多个 CCE会映射到同一个 PUCCH资源上,最后将分成段的 CCE 加上一个高层或物理层信令通知的偏移量映射得到所述 PDSCH对应的在上 行发送 HARQ-ACK的 PUCCH资源在所述上行分量载频的索引。
实施例 6
对于 LTE-Advanced用户, 对半静态调度的 PDSCH, 对应的在上行发送 HARQ-ACK的 PUCCH资源所在的上行分量载频索引号由该 PDSCH所在的 下行分量载频索引号加上一个高层信令通知的偏移量映射得到。 而对应的在 该上行分量载频发送 HARQ-ACK 的 PUCCH资源索引通过高层信令通知。
实施例 7
对于 LTE-Advanced用户, 对半静态调度的 PDSCH, 对应的在上行发送 HARQ-ACK的 PUCCH资源所在的上行分量载频索引号通过高层信令通知。 而对应的在该上行分量载频发送 HARQ-ACK的 PUCCH资源索引是通过高层 信令通知。
实施例 8
对于 LTE-Advanced用户, 对半静态调度的 PDSCH, 对应的在上行发送 HARQ-ACK的 PUCCH资源所在的上行分量载频索引号由该 PDSCH所在的 下行分量载频索引映射得到 (z= , 或者, i = X , 或者, = ( ' + )mod/ ) 。 而 对应的在该上行分量载频发送 HARQ-ACK的 PUCCH资源索引是通过高层信 令通知的, 由高层信令通知, 或者, 为固定值。 即半静态调度的 PDSCH 和该 PDSCH所在的下行分量载频的索引号一致, 或者为固定值, 或者由该 PDSCH所在的下行分量载频索引号加上一个高层信令通知的偏移量映射得 到。
本发明提出在大带宽系统中上行控制信道的映射方法, 可以保证 LTE-Advanced 系统与 LTE Release-8 系统的兼容性, 有利于增加 LTE-Advanced系统的系统容量和调度的灵活性, 使得 LTE-Advanced终端获 得最大的频率选择性增益。
以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化, 如本发明所应用的系统不 局限于 LTE-Advanced系统,凡在本发明的精神和原则之内,所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求范围之内。
工业实用性
本发明提出在大带宽系统中物理上行控制信道的指示方法, 可以保证 LTE-Advanced 系统与 LTE Release-8 系统的兼容性, 有利于增加 LTE-Advanced系统的系统容量和调度的灵活性, 使得 LTE-Advanced终端获 得最大的频率选择性增益。

Claims

权 利 要 求 书
1、 一种大带宽系统物理上行控制信道的方法, 其包括:
动态调度的物理下行共享信道 PDSCH对应的在上行发送混合自动重传 请求确认 HARQ-ACK的物理上行控制信道 PUCCH资源所在的上行分量载频 的索引号由调度该 PDSCH的物理下行控制信道 PDCCH所在的下行分量载频 索引号映射得到, 或为一固定值, 或由高层信令或物理层信令通知得到, 从而实现对大带宽系统物理上行控制信道进行指示。
2、 如权利要求 1所述的方法, 其中, 所述上行分量载频的索引号由所述 下行分量载频索引号映射得到的步骤为:
所述上行分量载频的索引号与所述下行分量载频索引号一致, 或者, 所 述上行分量载频的索引号由所述下行分量载频索引号加上一偏移量得到。
3、 如权利要求 2所述的方法, 其中, 所述偏移量由高层信令或物理层信 令通知得到。
4、 如权利要求 1所述的方法, 其还包括:
上行分量载频上的索引由调度该 PDSCH的 PDCCH的第一个或者最后一个控 制信道单元 CCE索引映射得到, 或者由调度该 PDSCH的 PDCCH的第一个 或者最后一个 CCE索引加上一偏移值映射得到。
5、 如权利要求 4所述的方法, 其中,
得到所述 PDSCH对应的在上行发送所述 HARQ-ACK的 PUCCH资源在 所述上行分量载频上的索引的映射步骤中, 所述索引由下式确定:
^PUCCH, i ― "CCEj. + ^PUCCH, i或 ^PUCCH, i ― "CCEj. + ^PUCCH, i + °ffSe^ ' 其中 ' ^ΡυθΟΗ,ί,;为 所述 PUCCH资源在所述上行分量载频上的索引, 是调度该 PDSCH的 PDCCH的第一个或者最后一个 CCE索引, N CH ,.由高层配置, o ei为所述 偏移值。
6、 如权利要求 1所述的方法, 其还包括: 上行分量载频上的索引由块交织映射得到。
7、 如权利要求 6所述的方法, 其中, 所述块交织映射的步骤包括: 对于第 个下行分量载频上有需要反馈的调度子帧, 所述下行分量载频 的 PUCCH资源位于第 I个上行分量载频中,
所述下行分量载频的 PUCCH资源在所述上行分量载频的索引的计算方 法如下:
终端首先从 {0 , 1 , 2 , 3}中选择一个值 Λ , 使得满足条件 Npj ≤ nCCE j < Npj+ j , 其中 nCCEJ是在第 J个下行分量载频反馈窗内调度给终端 的最后一个下行子帧的 PDCCH 所在的第一个 CCE 的索引 ; Νρ] = ηι¾χ{θ, [¾. χ(^Β x^. -4)]/36j} , 即反馈窗内第 _; 个下行分量载频含有
PDCCH且所述第 j个下行分量载频符号数为 Pj时所占有的 CCE数目, N Pj+ j 是反馈窗内第 个下行分量载频含有 PDCCH且所述第 j个下行分量载频符号 数为 +1时所占有的 CCE数目, N 为第 个下行分量载频的资源块数目, N 为每个资源块所占有的频率载波数目;则 PUCCH资源在该上行分量载频 的 索 引 UCCH,- = (M] -m] -l)xNPj + m} xNPj+1 + nCCEj + UCCH,- , 或 者 UCCH,- = (M] -m} -l)xNpj + } xNpj+l +nCCEj + N^CCH + offset , 其中 M是第 j个下行 分量载频反馈窗对应的子帧数目, ^是在第 _;个下行分量载频反馈窗内基站 调度给终端的最后一个子帧在反馈窗内所有子帧中的位置索引, ο 为一偏 移值。
8、 如权利要求 4、 5或 7所述的方法, 其中,
所述偏移值由高层信令或物理层信令通知, 或者, 所述偏移值为 offset = dxNmccK , 其中, NPUCCH为固定值, ί为调度该 PDSCH的 PDCCH所在 的下行分量载频在所述上行分量载频对应的 个下行分量载频中的逻辑序号。
9、 如权利要求 6所述的方法, 其中, 所述块交织映射的步骤包括: 在调度所述 PDSCH的 PDCCH所在的下行分量载频上按照先频域后时域 的顺序对所有 CCE进行级联,
按照该下行分量载频中 PDCCH最大的符号数将级联的 CCE平均分成若 干段, 其中最后一段的长度不大于前面各段的长度, 将分成段的 CCE加上一个高层或物理层信令通知的偏移量映射得到所 述 PDSCH对应的在上行发送 HARQ-ACK的 PUCCH资源在所述上行分量载 频上的索引。
10、 一种大带宽系统物理上行控制信道的方法, 其包括:
半静态调度的物理下行共享信道 PDSCH对应的在上行发送混合自动重 传请求确认 HARQ-ACK的物理上行控制信道 PUCCH资源所在的上行分量载 频的索引号由该 PDSCH所在的下行分量载频索引号映射得到,或由高层信令 通知得到,
从而实现对大带宽系统物理上行控制信道进行指示。
11、 如权利要求 10所述的方法, 其中, 所述上行分量载频的索引号由所 述下行分量载频索引号映射得到的步骤为:
所述上行分量载频的索引号与所述下行分量载频索引号一致, 或者, 所 述上行分量载频的索引号由所述下行分量载频索引号加上一偏移量得到。
12、 如权利要求 11所述的方法, 其中, 所述偏移量由高层信令通知。
13、 如权利要求 10至 12任一所述的方法, 其还包括:
所述 PDSCH对应的在上行发送 HARQ-ACK的 PUCCH资源在所述上行 分量载频的索引通过高层信令通知得到。
PCT/CN2009/074551 2008-12-31 2009-10-21 大带宽系统物理上行控制信道的方法 WO2010075710A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09835997A EP2381735A4 (en) 2008-12-31 2009-10-21 METHOD FOR A PHYSICAL UPLINK CONTROL CHANNEL OF A LARGE BANDWIDTH SYSTEM
JP2011543968A JP2012514397A (ja) 2008-12-31 2009-10-21 広帯域幅システム物理アップリンク制御チャネルの方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810192979.1 2008-12-31
CN2008101929791A CN101442818B (zh) 2008-12-31 2008-12-31 大带宽系统物理上行控制信道的指示方法

Publications (1)

Publication Number Publication Date
WO2010075710A1 true WO2010075710A1 (zh) 2010-07-08

Family

ID=40727021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074551 WO2010075710A1 (zh) 2008-12-31 2009-10-21 大带宽系统物理上行控制信道的方法

Country Status (4)

Country Link
EP (1) EP2381735A4 (zh)
JP (1) JP2012514397A (zh)
CN (1) CN101442818B (zh)
WO (1) WO2010075710A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013140436A1 (ja) * 2012-03-19 2015-08-03 富士通株式会社 無線通信システム、無線基地局、無線端末および無線通信方法
JP2017139773A (ja) * 2011-02-24 2017-08-10 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. キャリアアグリゲーションシステムに関する通信方法および装置
CN107070612A (zh) * 2010-09-20 2017-08-18 富士通株式会社 通信系统
US10028210B1 (en) 2017-03-23 2018-07-17 At&T Intellectual Property I, L.P. Encoding and decoding data for group common control channels
CN111277390A (zh) * 2015-12-31 2020-06-12 华为技术有限公司 下行反馈信息的传输方法、基站以及终端设备

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442818B (zh) * 2008-12-31 2012-07-18 中兴通讯股份有限公司 大带宽系统物理上行控制信道的指示方法
EP2675231B1 (en) * 2009-03-12 2019-01-16 Interdigital Patent Holdings, Inc. Method and apparatus for selecting and reselecting an uplink primary carrier
CN101925077B (zh) * 2009-06-09 2013-06-05 电信科学技术研究院 一种中继系统的传输和指示的方法及设备
CN101932025B (zh) * 2009-06-19 2015-07-29 夏普株式会社 上行控制信道数据传输方法
AU2010261246B2 (en) * 2009-06-19 2014-10-02 Mitsubishi Electric Corporation Mobile communication system
CN101932039B (zh) * 2009-06-22 2014-09-10 中兴通讯股份有限公司 一种半持久调度方法和系统
CN101651986B (zh) * 2009-06-22 2015-08-12 中兴通讯股份有限公司 多天线系统物理上行控制信道资源分配映射方法和系统
CN101932005B (zh) * 2009-06-26 2015-06-03 中兴通讯股份有限公司 动态物理上行控制信道资源预留与索引映射的方法及装置
CN101938841B (zh) * 2009-06-30 2016-03-09 华为技术有限公司 一种上行资源获取方法、调度方法、装置及系统
CN102036221B (zh) * 2009-09-25 2014-04-09 中兴通讯股份有限公司 Tpc-pusch-rnti分配方法和装置
CN102014495B (zh) * 2009-09-29 2012-07-18 电信科学技术研究院 载波调度方式确定方法、系统和设备
KR101821407B1 (ko) * 2009-12-16 2018-01-24 엘지전자 주식회사 무선 통신 시스템에서 수신 확인 전송 방법 및 장치
CN102025467B (zh) * 2009-12-30 2013-05-15 电信科学技术研究院 一种反馈信息的传输方法及传输装置
CN101795492B (zh) * 2010-01-15 2015-01-28 中兴通讯股份有限公司 一种多载波系统中物理上行控制信道资源的确定方法
US8478258B2 (en) 2010-03-05 2013-07-02 Intel Corporation Techniques to reduce false detection of control channel messages in a wireless network
WO2011120230A1 (zh) * 2010-04-01 2011-10-06 富士通株式会社 用于载波聚合系统中的上下行分量载波链接的方法和设备
EP2556708B1 (en) * 2010-04-07 2019-02-20 Nokia Technologies Oy Relay control channel search space configuration
CN102378338B (zh) * 2010-08-12 2015-08-12 中兴通讯股份有限公司 一种半持续调度模式下功率控制的方法和系统
KR101840199B1 (ko) 2010-11-02 2018-03-20 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어정보 송수신 방법 및 장치
KR101849107B1 (ko) 2011-02-17 2018-04-16 삼성전자주식회사 진화된 다운링크 물리 제어 채널에 대응하는 데이터 패킷들의 성공적 수신 여부를 피드백하기 위한 업링크 피드백 채널 할당 방법 및 장치
CN102724672B (zh) 2011-03-29 2017-02-08 中兴通讯股份有限公司 数据传输方法及装置
CN102215094B (zh) * 2011-06-01 2013-11-20 电信科学技术研究院 上行反馈信息发送及接收方法、系统和设备
CN107465491B (zh) 2011-06-27 2021-02-12 华为技术有限公司 确定控制信道资源的方法和用户设备
JP5895388B2 (ja) 2011-07-22 2016-03-30 シャープ株式会社 端末装置、基地局装置、集積回路および通信方法
CN102904666B (zh) * 2011-07-27 2016-05-04 普天信息技术研究院有限公司 基于dm-rs的增强pdcch的搜索空间处理方法
CN102316595B (zh) * 2011-09-30 2017-04-12 中兴通讯股份有限公司 大带宽系统物理上行控制信道资源确定方法及装置
US9413506B2 (en) 2011-10-24 2016-08-09 Lg Electronics Inc. Method and apparatus for allocating resources in wireless communication system
US9014210B2 (en) * 2011-11-04 2015-04-21 Qualcomm Incorporated Method and apparatus for managing retransmission resources
CN103095436B (zh) * 2011-11-07 2019-04-19 上海诺基亚贝尔股份有限公司 用于确定/辅助确定pucch的资源的方法及相应的装置
KR20130087975A (ko) * 2012-01-30 2013-08-07 주식회사 팬택 하이브리드 arq 지시 채널 매핑 방법
WO2013127089A1 (en) * 2012-03-02 2013-09-06 Nokia (China) Investment Co., Ltd. Pucch resource management mechanism for coordinated multi-point operation
CN113541882B (zh) 2012-03-05 2024-04-09 三星电子株式会社 用于无线通信的用户设备和基站的装置及其方法
CN103313368B (zh) * 2012-03-16 2018-12-04 中兴通讯股份有限公司 物理上行控制信道的功率控制方法及用户设备
CN108880755B (zh) * 2012-05-11 2021-06-15 太阳专利信托公司 无线通信终端装置、无线通信方法和集成电路
US8743820B2 (en) 2012-05-30 2014-06-03 Intel Corporation PUCCH resource allocation with enhanced PDCCH
CN103516474B (zh) 2012-06-28 2017-11-07 中兴通讯股份有限公司 物理上行控制信道资源确定方法及用户设备
JP5945073B2 (ja) * 2012-07-03 2016-07-05 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるアップリンク制御チャネルのためのリソース割当方法および装置
KR101584751B1 (ko) * 2012-08-16 2016-01-12 주식회사 케이티 송수신 포인트의 상향링크 제어채널 자원 설정 방법, 그 송수신 포인트, 단말의 상향링크 제어채널 자원 매핑방법 및 그 단말
CN103828281B (zh) * 2012-09-17 2017-12-05 华为技术有限公司 下行子帧反馈方法、基站及用户设备
JP6035621B2 (ja) 2012-09-28 2016-11-30 ノキア ソリューションズ アンド ネットワークス オサケユキチュア 通信システムにおけるe−pdcchに対するpucchリソース配分
US9112662B2 (en) * 2013-01-17 2015-08-18 Samsung Electronics Co., Ltd. Overhead reduction for transmission of acknowledgment signals
CN104144041B (zh) * 2013-05-07 2017-12-19 电信科学技术研究院 一种下行数据的反馈信息传输方法及装置
CN104811283A (zh) * 2014-01-23 2015-07-29 夏普株式会社 物理上行链路信道配置方法以及基站和用户设备
US20160212731A1 (en) * 2015-01-21 2016-07-21 Microsoft Technology Licensing, Llc Mapping between uplink and downlink resources
WO2018010077A1 (zh) * 2016-07-11 2018-01-18 广东欧珀移动通信有限公司 传输数据的方法和终端设备
KR20190101985A (ko) * 2017-01-05 2019-09-02 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 상향 제어 채널의 전송 방법, 네트워크 디바이스 및 단말기 디바이스
CN109756974B (zh) * 2017-11-02 2023-07-11 成都鼎桥通信技术有限公司 一种物理上行控制信道的发送方法及装置
CN114257351A (zh) 2018-08-08 2022-03-29 北京小米移动软件有限公司 混合自动重传请求harq反馈方法及装置
JP6853863B1 (ja) * 2019-10-03 2021-03-31 シャープ株式会社 端末装置、基地局装置、および、通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222291A (zh) * 2008-01-05 2008-07-16 中兴通讯股份有限公司 用于物理上行控制信道的发送方法和装置
CN101252783A (zh) * 2008-03-27 2008-08-27 中兴通讯股份有限公司 一种资源分配方法
WO2008157462A1 (en) * 2007-06-18 2008-12-24 Motorola, Inc. Use of the physical uplink control channel in a 3rd generation partnership project communication system
CN101442818A (zh) * 2008-12-31 2009-05-27 中兴通讯股份有限公司 大带宽系统物理上行控制信道的指示方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100407859C (zh) * 2004-11-30 2008-07-30 华为技术有限公司 一种共享信道配置信息的接收方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008157462A1 (en) * 2007-06-18 2008-12-24 Motorola, Inc. Use of the physical uplink control channel in a 3rd generation partnership project communication system
CN101222291A (zh) * 2008-01-05 2008-07-16 中兴通讯股份有限公司 用于物理上行控制信道的发送方法和装置
CN101252783A (zh) * 2008-03-27 2008-08-27 中兴通讯股份有限公司 一种资源分配方法
CN101442818A (zh) * 2008-12-31 2009-05-27 中兴通讯股份有限公司 大带宽系统物理上行控制信道的指示方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA);Physical layer procedures(Release 8), 3GPP TS 36.213 V8.4.0", 3 GPP TSG RAN, 30 September 2008 (2008-09-30), XP008141012 *
See also references of EP2381735A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107070612A (zh) * 2010-09-20 2017-08-18 富士通株式会社 通信系统
JP2017139773A (ja) * 2011-02-24 2017-08-10 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. キャリアアグリゲーションシステムに関する通信方法および装置
JPWO2013140436A1 (ja) * 2012-03-19 2015-08-03 富士通株式会社 無線通信システム、無線基地局、無線端末および無線通信方法
CN111277390A (zh) * 2015-12-31 2020-06-12 华为技术有限公司 下行反馈信息的传输方法、基站以及终端设备
CN111277390B (zh) * 2015-12-31 2022-04-29 华为技术有限公司 下行反馈信息的传输方法、基站以及终端设备
US11553472B2 (en) 2015-12-31 2023-01-10 Huawei Technologies Co., Ltd. Method for transmitting downlink feedback information, base station, and terminal device
US10028210B1 (en) 2017-03-23 2018-07-17 At&T Intellectual Property I, L.P. Encoding and decoding data for group common control channels
US10368304B2 (en) 2017-03-23 2019-07-30 At&T Intellectual Property I, L.P. Encoding and decoding data for group common control channels
US10694454B2 (en) 2017-03-23 2020-06-23 At&T Intellectual Property I, L.P. Encoding and decoding data for group common control channels

Also Published As

Publication number Publication date
CN101442818B (zh) 2012-07-18
EP2381735A1 (en) 2011-10-26
EP2381735A4 (en) 2012-05-23
CN101442818A (zh) 2009-05-27
JP2012514397A (ja) 2012-06-21

Similar Documents

Publication Publication Date Title
WO2010075710A1 (zh) 大带宽系统物理上行控制信道的方法
US11723033B2 (en) Method for transmitting uplink signal in wireless communication system and apparatus therefor
JP7313699B2 (ja) ワイヤレス通信システムにおけるアップリンク制御情報を送信するための方法、およびそれを使用する装置
US9602264B2 (en) Method for transmitting uplink control information, user equipment, method for receiving uplink control information, and base station
KR101573936B1 (ko) 다중 반송파 시스템에서 데이터 전송 방법 및 장치
US8817726B2 (en) Uplink transmission method and apparatus in wireless communication system
KR101648584B1 (ko) 다중 반송파 시스템에서 harq 수행 방법
DK2486692T3 (en) PUCCH resource allocation for carrier aggregation in LTE-advanced
US10057032B2 (en) Method and device for transmitting data for half-duplex device
CN113228549A (zh) 在无线通信系统中生成harq-ack码本的方法以及使用该方法的装置
CN116489794A (zh) 无线通信系统的资源分配方法、装置和系统
JP2019531644A (ja) 無線通信システムにおいて信号を送受信する方法及びそのための装置
CN112106316A (zh) 在无线通信系统中多路复用上行链路控制信息的方法和使用该方法的装置
WO2012152113A1 (zh) 大带宽系统物理上行控制信道资源确定方法及装置
US9179452B2 (en) Method for configuring and transmitting an HARQ ACK/NACK signal, and device using same
CN114175830A (zh) 在无线通信系统中发送和接收物理上行链路共享信道(pusch)的方法、装置和系统
CN113678536A (zh) 用于在无线通信系统中发射/接收控制信息的方法和设备
KR101601288B1 (ko) 다중 반송파 시스템에서 제어채널을 모니터링하는 장치 및 방법
WO2018010103A1 (zh) 传输数据的方法和终端设备
WO2013002685A1 (en) Scheduling of a user equipment in a radio communication system
WO2010048831A1 (zh) 在大带宽系统中数据传输的方法
EP2448158A2 (en) Uplink transmission method and apparatus in wireless communication system
CN114667796A (zh) 在无线通信系统中使用一个载波中的保护频带发送和接收信道的方法及其装置
JP2023545792A (ja) 無線通信システムにおいて上りリンクチャネルを送信する方法及びそのための装置
CN113508632B (zh) 用于无线通信系统中的免授权数据传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011543968

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5622/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009835997

Country of ref document: EP