WO2010074336A1 - Light-diffusing plate with light-collecting layer - Google Patents

Light-diffusing plate with light-collecting layer Download PDF

Info

Publication number
WO2010074336A1
WO2010074336A1 PCT/JP2009/071877 JP2009071877W WO2010074336A1 WO 2010074336 A1 WO2010074336 A1 WO 2010074336A1 JP 2009071877 W JP2009071877 W JP 2009071877W WO 2010074336 A1 WO2010074336 A1 WO 2010074336A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light diffusing
diffusing plate
protrusion
protrusions
Prior art date
Application number
PCT/JP2009/071877
Other languages
French (fr)
Japanese (ja)
Inventor
奥尚規
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2010074336A1 publication Critical patent/WO2010074336A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the present invention relates to a light diffusing plate that is prevented from being scratched and has high luminance in the front direction, and also relates to a high-quality surface light source device and liquid crystal display device that have high luminance in the front direction.
  • the term “the center of gravity of the protrusion” means an intersection (intersection) of a pair of diagonal lines of a substantially rectangular shape on the bottom surface of the protrusion that is substantially rectangular in plan view. To do.
  • a configuration in which a surface light source device is disposed as a backlight on the back side of a liquid crystal panel (image display unit) including a liquid crystal cell is known.
  • the surface light source device for the backlight a plurality of light sources are arranged in a lamp box (housing), and a light diffusion plate is arranged on the front side of these light sources, and further sufficient luminance is ensured in the front direction.
  • a surface light source device having a configuration in which a lenticular lens as a light condensing sheet is arranged on the front side of a light diffusion plate is known.
  • Patent Document 1 describes a surface light source device having such a configuration.
  • a surface light source device having a configuration in which a lenticular lens is disposed on the front side of a light diffusing plate via an adhesive layer is known as a device that can prevent scratching due to such rubbing (Japanese Patent Laid-Open No. 2006-208930). No. (Patent Document 2)). According to this configuration, since the light diffusing plate and the light condensing sheet are bonded via the pressure-sensitive adhesive layer, the light diffusing plate and the light condensing sheet do not rub against each other, and the occurrence of scratches can be prevented.
  • the latter surface light source device is not always sufficiently improved in luminance in the front direction. It is an object of the present invention to provide a light diffusing plate that is prevented from being scratched and has high luminance in the front direction, and a high-quality surface light source device and liquid crystal display device that have high luminance in the front direction. In order to achieve the above object, the present invention provides the following means.
  • a light diffusing plate comprising a light collecting sheet and a light diffusing substrate
  • the condensing sheet has a condensing lens forming surface and a condensing lens non-forming surface
  • One surface of the light diffusing substrate is a concavo-convex shape surface in which a plurality of protrusions are formed and a recess is provided between adjacent protrusions
  • the protrusion has a substantially rectangular shape having a pair of long sides and a pair of short sides in plan view, and the length of the long side on the bottom surface of the protrusion is 0.8 mm to 2.5 mm.
  • the length of the short side at the bottom of the substrate is 50 ⁇ m to 500 ⁇ m
  • the light diffusing substrate and the light condensing sheet are formed by bonding a projection on the uneven surface of the light diffusing substrate and a light condensing lens non-forming surface of the light condensing sheet via an adhesive layer.
  • a light diffusing plate in which an air layer is formed between the pressure-sensitive adhesive layer and the concave portion of the concavo-convex shape surface of the light diffusing substrate.
  • the light diffusing plate according to 3 or 4 above wherein [6] The light diffusing plate according to any one of 1 to 5 above and a plurality of light sources arranged on the back side of the light diffusing plate, so that the light condensing sheet is on the front side. A surface light source device in which the light diffusion plate is disposed. [7] The light diffusing plate according to any one of 1 to 5 above, a plurality of light sources arranged on the back side of the light diffusing plate, a liquid crystal panel arranged on the front side of the light diffusing plate, A liquid crystal display device in which the light diffusing plate is arranged so that the light condensing sheet is on the front side.
  • the projections of the concavo-convex shape surface of the light diffusing substrate and the surface on which the light condensing lens of the light condensing sheet is not formed are bonded via the adhesive layer.
  • the substrate and the light collecting sheet do not rub against each other, and the occurrence of scratches on the light diffusing plate is prevented.
  • an air layer exists between the pressure-sensitive adhesive layer and the concave portion of the concavo-convex shape surface of the light diffusing substrate, high brightness is obtained in the front direction.
  • the plurality of protrusions formed on the surface of the light diffusing substrate have a long side length of 0.8 mm to 2.5 mm and a short side length of 50 ⁇ m to 500 ⁇ m in plan view.
  • the air layer can be formed by simply laminating the light diffusing substrate having the specific uneven surface on one side and the light condensing sheet via an adhesive layer. Since the protrusion serves as a spacer to secure an air layer, it is excellent in productivity. In the invention of [2], since the plurality of protrusions are substantially parallel to each other in the length direction, sufficient bonding strength can be secured in the length direction of the protrusion, and along the length direction of the protrusion. Thus, it is difficult to separate the light diffusing substrate and the light collecting sheet.
  • the protrusions adjacent in the long side direction are spaced apart from each other at a constant interval, and the protrusions adjacent in the short side direction are spaced apart from each other at a constant interval. It is possible to more avoid the influence of these protrusions on the function and the display image quality.
  • the distance between the centroids of the projections adjacent in the long side direction is U
  • the barycentric position of the projections in the projection group forming a line in the long side direction is the projection group.
  • a distance of U / 2.2 to U / 1.8 is separated in the long side direction from the barycentric position of the closest protruding part among the plurality of protruding parts constituting the adjacent protruding part group adjacent in the short side direction. Therefore, even if the interval between the protrusions adjacent to each other in the long side direction or the interval between the protrusions adjacent to each other in the short side direction is large, Is prevented from coming into contact with or in close proximity to the concave portion of the concavo-convex shape surface of the light diffusing substrate, and thereby a sufficient air layer is secured, so that the luminance in the front direction can be further improved.
  • F is 400 ⁇ m or more and 5.0 mm or less, and the relational expression of 8.0 ⁇ F / L is established, so that it is formed between the pressure-sensitive adhesive layer and the concave portion of the concavo-convex shape surface of the light diffusing substrate.
  • Air gaps can be widened in the short side direction to transmit light with higher transmittance. Since it is possible to, it can be increased more brightness in the front direction.
  • a surface light source device is provided in which the light diffusing plate is prevented from being damaged and high-quality light with high brightness in the front direction can be obtained.
  • a liquid crystal display device is provided in which the light diffusing plate is prevented from being damaged and a high-quality image with high brightness in the front direction can be obtained.
  • FIG. 1 is a schematic view showing an embodiment of a liquid crystal display device according to the present invention.
  • FIG. 2 is a cross-sectional view showing an embodiment of a light diffusing plate according to the present invention.
  • FIG. 3 is a cross-sectional view showing a light diffusing substrate.
  • FIG. 4 is a plan view showing an example of the arrangement of the protrusions on the light diffusing substrate.
  • FIG. 5 is a plan view showing an arrangement mode of protrusions (projections) in the light diffusing substrates of Comparative Examples 2 and 3.
  • FIG. 1 An embodiment of a liquid crystal display device according to the present invention is shown in FIG.
  • (30) is a liquid crystal display device
  • (11) is a liquid crystal cell
  • (12) and (13) are polarizing plates
  • (1) is a surface light source device (backlight).
  • Polarizing plates (12) and (13) are respectively arranged on the upper and lower sides of the liquid crystal cell (11), and a liquid crystal panel (20) as an image display unit is constituted by these constituent members (11), (12) and (13).
  • the liquid crystal cell (11) those capable of displaying a color image are preferably used.
  • the said surface light source device (1) is arrange
  • this liquid crystal display device (30) is a direct liquid crystal display device.
  • the surface light source device (1) is a thin box-shaped lamp box (5) having a rectangular shape in plan view and having an upper surface side (front surface side) opened, and the lamp box (5) spaced apart from each other.
  • a light diffusion plate (3) disposed on the upper side (front side) of the plurality of light sources (2).
  • the said light diffusing plate (3) is mounted and fixed with respect to the said lamp box (5) so that the open surface may be block
  • a light reflecting layer (not shown) is provided on the inner surface of the lamp box (5).
  • a linear light source such as a cold cathode ray tube is used as the light source (2). As shown in FIG.
  • the light diffusing plate (3) includes a light diffusing substrate (31), a light collecting sheet (41), and an adhesive layer (40) arranged in parallel to each other.
  • the light diffusing substrate (31) has a large number of protrusions (32) formed on the surface, and a recess (a flat portion in this embodiment) between adjacent protrusions (32) (33). ) Is provided on one side (see FIG. 3).
  • the pressure-sensitive adhesive layer (40) is bonded via the pressure-sensitive adhesive layer (40), whereby the pressure-sensitive adhesive layer (40) and the concave-convex surface (34) of the light-diffusing substrate (31) are recessed (33).
  • the light diffusing substrate (31) and the light condensing sheet (41) are laminated and integrated in a state where the air layer (42) is present (see FIG. 2).
  • the said adhesive layer (40) is laminated
  • the protrusion (32) has a substantially rectangular shape having a pair of long sides (35) and (35) and a pair of short sides (36) and (36) in plan view (see FIG. 4).
  • the long side length (T) of the bottom surface (surface connected to the light diffusing substrate) of the projection (32) is set to 0.8 mm to 2.5 mm, and the bottom surface (light diffusion of the projection (32)).
  • the length (L) of the short side of the surface connected to the conductive substrate is set to 50 ⁇ m to 500 ⁇ m.
  • these multiple protrusions (32) are arranged in a scattered state over the whole in a plan view.
  • a large number of protrusions (32) are arranged in a zigzag shape in plan view.
  • the protrusions (32) adjacent in the long side direction are spaced apart from each other at a constant interval, and the protrusions (32) adjacent in the short side direction are spaced apart from each other at a constant interval. (See FIG. 4).
  • the constant separation interval in the long side direction and the constant separation interval in the short side direction may be different or the same.
  • the projecting portion (32) has a substantially semicircular cross section (see FIGS. 2 and 3).
  • the protrusion (32) is a cylindrical lens-shaped protrusion (substantially semi-cylindrical protrusion), and the plurality of cylindrical lens-shaped protrusions (32) are: They are arranged so as to be substantially parallel to each other in the length direction (axial direction) (see FIG. 4).
  • the cylindrical lens shape means that a substantially cylindrical body is cut by a plane parallel to the axial direction (length direction) (a plane including the axis or a plane not including the axis). The shape corresponding to any one of the members is meant.
  • the cylindrical lens-shaped protrusion (32) is a protrusion having a semi-cylindrical shape, that is, any one of the cylindrical bodies cut into two equally on a plane including the axis thereof. It is a protrusion part provided with the shape equivalent to one member (semi-cylindrical body).
  • the flat surface (cut surface) of the protrusion (32) having a semi-cylindrical shape is connected to the surface of the light diffusing substrate (31) (see FIGS. 2 and 3). It arrange
  • a linear light source is used as the light source (2), and the length direction of the linear light source (2) and the cylindrical lens-shaped protrusion (32) of the light diffusing substrate (31).
  • the length direction (long side direction) of the cylindrical lens-shaped protrusion (32) is arranged so as to substantially coincide with the longitudinal direction of the light diffusion plate (3).
  • the light diffusing plate (3) is disposed such that the light condensing sheet (41) is on the front side (the liquid crystal panel (20) side) (see FIG. 1). . That is, in other words, in the liquid crystal display device (30), the light diffusing plate (3) is disposed such that the light diffusing substrate (31) is on the back side (light source (2) side).
  • the light diffusing plate (3) according to the above configuration the projections (32) of the concavo-convex shape surface (34) of the light diffusing substrate (31) and the condensing lens non-forming surface of the light condensing sheet (41) are adhered. Since it is joined via the agent layer (40), the light diffusing substrate (31) and the light condensing sheet (41) do not rub against each other, and the light diffusing plate (3) is prevented from being damaged. Yes. Moreover, the light diffusing plate (3) according to the above configuration has an air layer between the pressure-sensitive adhesive layer (40) and the concave portion (flat portion) (33) of the uneven surface (34) of the light diffusing substrate (31).
  • the front light source device (1) can be illuminated with high luminance in the front direction (normal direction) (Q), and the front direction (normal line) in the liquid crystal display device (30). An image can be displayed with high brightness in the direction (Q).
  • the projection (32) having a substantially rectangular shape with a long side length (T) of 0.8 mm to 2.5 mm and a short side length (L) of 50 ⁇ m to 500 ⁇ m in plan view is light diffusive. Since it is formed on the surface of the substrate (31), it is possible to avoid an adverse effect of the projection (32) on the optical function of the light diffusing plate (3) and display an image with high quality image quality. .
  • the length (T) of the long side of the bottom surface of the protrusion (32) is 0.8 mm to 2.5 mm. If the length (T) is short, there is a problem in the moldability of the protrusion (32), and if it is long, the protrusion (32) is visually recognized through the liquid crystal panel and the image quality is deteriorated.
  • the length (L) of the short side of the bottom surface of the protrusion (32) is 50 to 500 ⁇ m. If the length (L) is short, it is difficult to produce a shape with high accuracy, and if the length (L) is long, the shape of the protrusion (32) may be visually recognized like a streak.
  • the position of the center of gravity of the protrusions (32) in the protrusion group forming a line in the long side direction ( G1) is U in the long side direction with respect to the gravity center position (G2) of the closest protrusion part (32) among the plurality of protrusion parts constituting the adjacent protrusion part group adjacent to the protrusion part group in the short side direction.
  • the distance between the centers of gravity (G) of the protrusions (32) adjacent in the short side direction is F and the length of the short side (36) on the bottom surface of the protrusion (32) is L, 400 ⁇ m ⁇ F ⁇ 5.0mm 8.0 ⁇ F / L It is preferable that the relational expression between the two is established (see FIG. 4).
  • an air layer (42) is sufficiently formed between the pressure-sensitive adhesive layer (40) and the concave portion (33) of the uneven surface (34) of the light diffusing substrate (31).
  • the light condensing sheet (41) bends and the light condensing sheet (41) has an uneven surface (34) of the light diffusing substrate (31). Can be prevented from coming into contact with or close to the recess (33).
  • the air space (42) can be widened in the short side direction, and light can be transmitted with higher transmittance. The luminance in the front direction can be further increased.
  • any material can be used as the light diffusing substrate (31) as long as it can diffuse transmitted light.
  • light diffusing particles are dispersed in a transparent material.
  • the plate is preferably used.
  • the light diffusing substrate (31) is not particularly limited.
  • the light diffusing substrate (31) is composed of a single layer plate made of a transparent resin, one or more other types made of a different transparent resin on at least one surface of a base layer made of a transparent resin.
  • a laminated plate in which layers are laminated is used.
  • substrate (31) For example, transparent resin, inorganic glass, etc. are mentioned.
  • the transparent resin a transparent thermoplastic resin is suitably used because it is easy to mold.
  • the transparent thermoplastic resin is not particularly limited.
  • polycarbonate resin ABS resin (acrylonitrile-butadiene-styrene copolymer resin), methacrylic resin, MS resin (methyl methacrylate-styrene copolymer resin).
  • Styrene resin AS resin (acrylonitrile-styrene copolymer resin), polyethylene terephthalate, olefin resin (polyethylene, polypropylene, cyclic polyolefin, cyclic olefin copolymer, etc.) and the like.
  • the light diffusing particles are particles that are incompatible with the transparent material constituting the light diffusing substrate (31) and have a refractive index different from that of the transparent resin and can diffuse transmitted light. Anything can be used without particular limitation.
  • inorganic particles such as silica particles, calcium carbonate particles, barium sulfate particles, titanium oxide particles, aluminum hydroxide particles, inorganic glass particles, mica particles, talc particles, white carbon particles, magnesium oxide particles, and zinc oxide particles.
  • organic particles such as methacrylic crosslinked resin particles, methacrylic high molecular weight resin particles, styrene crosslinked resin particles, styrene high molecular weight resin particles, and siloxane polymer particles may be used.
  • the light diffusing particles one kind of those exemplified above may be used, or two or more kinds thereof may be mixed and used.
  • the light diffusing particles those having a volume average particle diameter of 0.1 ⁇ m to 50 ⁇ m are usually used.
  • the volume average particle size (D 50 ) is determined by measuring the particle size and volume of all particles, integrating the volume sequentially from the smallest particle size, and the integrated volume is 50% of the total volume of all particles.
  • the particle diameter of the resulting particles The amount of the light diffusing particles used varies depending on the intended degree of diffusion of transmitted light, but the content of the light diffusing particles is usually 0.01 parts by mass to 20 parts by mass with respect to 100 parts by mass of the transparent material. is there.
  • the content of the light diffusing particles with respect to 100 parts by mass of the transparent material is preferably 0.1 to 10 parts by mass.
  • the absolute value of the difference between the refractive index of the transparent material and the refractive index of the light diffusing particles is preferably 0.02 or more, and the absolute value is 0.13 or less. From the viewpoint of sex. That is, the absolute value of the difference between the refractive index of the transparent material and the refractive index of the light diffusing particles is preferably in the range of 0.02 to 0.13.
  • the light diffusing substrate (31) may contain various additives such as an ultraviolet absorber, a heat stabilizer, an antioxidant, a weathering agent, a light stabilizer, a fluorescent brightener, and a processing stabilizer.
  • the thickness (N) of the light diffusing substrate (31) is usually 0.1 mm to 10 mm.
  • the cross-sectional shape of the projecting portion (32) is not particularly limited. For example, in addition to a substantially semicircular shape, a substantially semi-elliptical shape, a flat curved line shape, a substantially rectangular shape, a substantially triangular shape, etc. Examples include polygonal shapes.
  • the projecting portion (32) has a semicircular cross-sectional shape, and is formed in a cross-sectional shape that is symmetrical with respect to the normal line (perpendicular to the horizontal plane) passing through the center of the circle.
  • the right and left may be formed in a non-axisymmetric cross-sectional shape.
  • the left and right arcs may have a non-linearly symmetric cross-sectional shape in which the left arc swells more to the front side than the right arc.
  • a triangular shape is employed as the cross-sectional shape of the protrusion (32), it may be an isosceles triangular shape that is symmetrical to the left and right lines, or may be a triangular shape that is asymmetrical to the left and right.
  • a method for forming the protrusion (32) is not particularly limited, and examples thereof include a thermal transfer method using a mold, an injection molding method, a cutting method, a profile extrusion molding method, and a melt extrusion transfer molding method using an engraving roll. Can be mentioned.
  • the height (H) of the protrusion (32) is preferably 10 ⁇ m to 500 ⁇ m (see FIG. 3). When the height (H) is 10 ⁇ m or more, a sufficient spacer function can be obtained to sufficiently secure the air layer (42), and when the height (H) is 500 ⁇ m or less, the projection (32) can be molded. It will be easy.
  • the light condensing sheet (41) is not particularly limited.
  • a fine light condensing lens such as a fine prism lens, a fine convex lens, or a lenticular lens is formed over the entire surface of one side.
  • the transmitted light transmitted while diffusing the light diffusing substrate (31) is condensed in the normal direction (Q) of the light diffusing plate (3) by the condensing sheet (41).
  • This condensing sheet (41) is laminated with the light diffusing substrate (31) with the surface opposite to the side on which the condensing lens is formed (the condensing lens non-forming surface) as an overlapping surface. They are integrated (see FIG. 2).
  • the material of the light condensing sheet (41) is not particularly limited.
  • polycarbonate resin ABS resin (acrylonitrile-butadiene-styrene copolymer resin), methacrylic resin, methyl methacrylate-styrene copolymer
  • examples thereof include polymer resins, polystyrene resins, AS resins (acrylonitrile-styrene copolymer resins), polyolefin resins (polyethylene resins, polypropylene resins, etc.).
  • seat (41) For example, Sumitomo 3M "BEF” (brand name) (30-micrometer-thick acrylic type on a 125-micrometer-thick polyester film) A resin layer is formed, and V-grooves having a depth (D) of 25 ⁇ m and a groove bottom opening angle of 90 degrees are formed on the surface of the acrylic resin layer at a pitch interval (P) of 50 ⁇ m, see FIG. ), “Estina” (trade name) manufactured by Sekisui Film Co., Ltd., and the like.
  • the light condensing sheet (41) may contain various additives such as an ultraviolet absorber, a heat stabilizer, an antioxidant, a weathering agent, a light stabilizer, a fluorescent brightener, and a processing stabilizer. .
  • the thickness (C) of the light collecting sheet (41) is preferably 10 ⁇ m or more from the viewpoint of securing the bonding strength.
  • the thickness (C) of the light condensing sheet (41) is determined from the viewpoint of preventing bending, that is, the pressure-sensitive adhesive layer (40) is formed on the concave portion (34) of the concave and convex surface (34) of the light diffusing substrate (31). It is particularly preferably 30 ⁇ m or more from the viewpoint of preventing contact with 33) (see FIG. 2).
  • the thickness (C) of the light condensing sheet (41) is preferably 500 ⁇ m or less.
  • an acrylic adhesive, a urethane type adhesive, a polyether-type adhesive, a silicone type adhesive etc. are mentioned. Among these, it is preferable to use a colorless and transparent pressure-sensitive adhesive because a higher-quality display image can be formed.
  • a pressure-sensitive adhesive layer (40) a pressure-sensitive adhesive is usually used.
  • the refractive index of this adhesive is not specifically limited.
  • the thickness (M) of the pressure-sensitive adhesive layer (40) is preferably 10 ⁇ m to 30 ⁇ m (see FIG. 2). When the thickness (M) is 10 ⁇ m or more, sufficient bonding strength can be secured, and when the thickness (M) is 30 ⁇ m or less, the pressure-sensitive adhesive layer (40) is formed in the concave portion (33) of the light diffusing substrate (31). ) Can be prevented from coming into contact with each other, and a sufficient amount of air space (42) can be secured.
  • the thickness (M) of the pressure-sensitive adhesive layer (40) is particularly preferably set in the range of 5 ⁇ m to 25 ⁇ m.
  • the thickness (E) of the air layer (42) is usually 1 ⁇ m to 400 ⁇ m, and the preferred thickness (E) is 50 ⁇ m to 350 ⁇ m (see FIG. 2).
  • the light diffusing plate (3) of this invention is manufactured as follows, for example.
  • a pressure-sensitive adhesive layer (40) is laminated on one side of the light-collecting sheet (41) by laminating a double-sided pressure-sensitive adhesive film on the surface of the light-collecting sheet (41) where the light-collecting lens is not formed.
  • a light collecting sheet is obtained. You may laminate
  • the light diffusing substrate (31) and the light condensing sheet with adhesive (41) are overlapped so that the pressure-sensitive adhesive layer (40) is in contact with the uneven surface (34) of the light diffusing substrate (31). Clamp (press).
  • the projection part (32) of the light diffusable substrate (31) and the light condensing lens non-formation surface of the light condensing sheet (41) are joined via the pressure-sensitive adhesive layer (40).
  • a plate (3) is obtained.
  • the said manufacturing method is only what showed the example, and the light diffusing plate (3) of this invention is not limited to what was manufactured with such a manufacturing method.
  • the thickness (S) of the light diffusion plate (3) of the present invention is not particularly limited, but is preferably 1 mm to 5 mm (see FIG. 2).
  • the size (area) of the light diffusing plate (3) of the present invention is not particularly limited. For example, depending on the size of the target surface light source device (1) or liquid crystal display device (30). Although appropriately set, it is usually designed in a size of 20 cm ⁇ 30 cm to 150 cm ⁇ 200 cm. In the surface light source device (1) and the liquid crystal display device (30) of the present invention, the light source (2) is not particularly limited.
  • a linear light source such as a fluorescent tube, a halogen lamp, or a tungsten lamp is used.
  • a point light source such as a light emitting diode (LED) is used.
  • the light diffusing plate (3), the surface light source device (1), and the liquid crystal display device (30) according to the present invention are not particularly limited to those of the above-described embodiment, and the spirit is within the scope of the claims. Any design changes are allowed as long as they do not deviate from.
  • Transparent resin A Styrene resin (Toyo Styrene “HRM40”, refractive index 1.59)
  • Light diffusing agent A PMMA crosslinked particles (“SUMIPEX XC1A” manufactured by Sumitomo Chemical Co., Ltd., refractive index 1.49, volume average particle diameter 35 ⁇ m)
  • Light diffusing agent B crosslinked siloxane-based polymer particles (“Torefill DY33-719” manufactured by Toray Dow Corning Co., Ltd., refractive index 1.42, volume average particle diameter 2 ⁇ m).
  • Extrusion was performed by setting the temperature in the cylinder so that the temperature gradually decreased from the lower part of the hopper (200 ° C.) to the vicinity of the extrusion die (250 ° C.) toward the downstream.
  • Preparation of light diffusing agent master batch B 78.8 parts by mass of the transparent resin B, 20.0 parts by mass of the light diffusing agent A, 1.0 part by mass of LA-31 (manufactured by Asahi Denka Kogyo Co., Ltd.) which is an ultraviolet absorber, and a smilizer which is a heat stabilizer
  • LA-31 manufactured by Asahi Denka Kogyo Co., Ltd.
  • LA-31 manufactured by Asahi Denka Kogyo Co., Ltd.
  • GP manufactured by Sumitomo Chemical Co., Ltd.
  • a pellet-like light diffusing agent master batch B was obtained. Extrusion was performed by setting the temperature in the cylinder so that the temperature gradually decreased from the lower part of the hopper (200 ° C.) to the vicinity of the extrusion die (250 ° C.) toward the downstream.
  • Example 1 After 97.0 parts by mass of transparent resin A and 5.0 parts by mass of light diffusing agent masterbatch A are dry blended, they are melt-kneaded with a first extruder having a temperature in the cylinder of 190 to 250 ° C. and supplied to the feed block did. On the other hand, the light diffusing agent master batch B was melt-kneaded by a second extruder having a temperature in the cylinder of 190 to 250 ° C. and supplied to the feed block. The resin supplied from the first extruder to the feed block becomes an intermediate layer (base layer), and the resin supplied from the second extruder to the feed block becomes a surface layer (both sides).
  • Co-extrusion molding from a manifold die and clamping and cooling with a polishing roll make a light diffusibility consisting of a 2.0 mm thick three-layer laminate (intermediate layer 1.9 mm, surface layer 0.05 mm ⁇ 2)
  • a substrate (31) was produced.
  • a cylindrical lens-shaped protrusion (the cross-sectional shape is approximately the same) using a heat press (Shindo ASF hydraulic press, manufactured by Shindo Metal Industry Co., Ltd.).
  • a plurality of semi-cylindrical protrusions) (32) were formed in a projecting manner as shown in FIG.
  • a light diffusing substrate (31) having a thickness (N) of 2.0 mm (FIG. 3, 4).
  • N thickness of 2.0 mm
  • a number of short concave grooves corresponding to the protrusions are formed on the lower surface (press surface) of the metal mold on the upper side of the hot press machine.
  • pressurization was performed for about 3 minutes in the state which set the upper surface side temperature of the hot press machine to 160 degreeC, and set the lower surface side temperature to 70 degreeC.
  • the height (H) of the protrusion (32) is 150 ⁇ m
  • T length of the long side of the protrusion (32) is 800 ⁇ m.
  • the distance between the center of gravity (U) between the protrusions adjacent in the long side direction is 1200 ⁇ m
  • the length (L) of the short side of the protrusion (32) is 389 ⁇ m
  • the distance between the center of gravity between the protrusions adjacent in the short side direction (F) is designed to be 1650 ⁇ m and the shift distance (K) is 600 ⁇ m (see FIG. 4).
  • a thickness (M) of 20 ⁇ m is formed on one side of the condensing sheet A (41).
  • the pressure-sensitive adhesive layer (40) was laminated to obtain a light condensing sheet with pressure-sensitive adhesive.
  • the light diffusing substrate (31) and the pressure-sensitive condensing sheet (41) were overlapped so that the pressure-sensitive adhesive layer (40) was in contact with the uneven surface (34) of the light diffusing substrate (31).
  • a light diffusing plate (3) having a cross-sectional shape shown in FIG.
  • the thickness (between the adhesive layer (40) and the concave portion (flat portion) (33) of the light diffusing substrate (31) E
  • An air layer (42) of 130 ⁇ m could be formed.
  • Example 1 A light diffusing plate was produced in the same manner as in Example 1 except that the protrusion (32) was not formed on the light diffusing substrate obtained by coextrusion molding using a hot press.
  • the light diffusing substrate and the light collecting sheet A are bonded together by the adhesive layer, and there is no air layer between the light diffusing substrate and the light collecting sheet A.
  • the arithmetic average roughness Ra of the surface (superimposed surface) of the light diffusing substrate obtained by coextrusion molding is 4.78 ⁇ m, and the ten-point average roughness Rz of the surface irregularities is 28.61 ⁇ m.
  • the average interval Rsm of the unevenness was 148 ⁇ m.
  • ⁇ Comparative example 2> Extending continuously from one end side to the other end side along the longitudinal direction of the substrate obtained by changing the shape of the groove on the lower surface (press surface) of the metal mold on the upper side of the hot press machine (length 70 mm)
  • the light diffusing substrate (31) in which a number of cylindrical lens-shaped protrusions (protrusions) (see FIG. 5) are formed in a projecting manner in a parallel manner is used in the same manner as in Example 1.
  • a diffusion plate was produced.
  • the height (H) of the ridge is 150 ⁇ m
  • the length (L) of the short side of the ridge is 300 ⁇ m
  • the distance between the centers of gravity (F) between the ridges adjacent in the short side direction is 2250 ⁇ m. It was.
  • ⁇ Comparative Example 3> Extending continuously from one end side to the other end side along the longitudinal direction of the substrate obtained by changing the shape of the groove on the lower surface (press surface) of the metal mold on the upper side of the hot press machine (length 70 mm) (Ii) Except for using a light diffusing substrate (31) in which a large number of cylindrical lens-shaped protrusions (protrusions) (see FIG. 5) are formed in a projecting manner in parallel, they are collected in the same manner as in Example 1. A light diffusion plate with a light layer was prepared.
  • the height (H) of the ridges was 150 ⁇ m
  • the length (L) of the short sides of the ridges was 300 ⁇ m
  • the distance between the centers of gravity (F) between the ridges adjacent in the short side direction was 3250 ⁇ m. It was.
  • Each light diffusion plate produced as described above was evaluated according to the following evaluation method. These results are shown in Table 1.
  • Brightness uniformity (%) (C1 / C2) ⁇ 100
  • the value obtained by the above formula was defined as the luminance uniformity (%).
  • the luminance measurement was performed as follows. A liquid crystal television is placed on the floor in a dark room of constant temperature and humidity (temperature 25.0 ° C, humidity 50.0%) with the front side facing up (the back is in contact with the floor). The camera was placed face down on the upper position of the LCD TV so that the entire front surface of the TV was captured.
  • the distance from the front surface of the liquid crystal television to the camera is set to 65.0 cm
  • the measurement conditions of the luminance meter are set to SPEED: 1/500
  • GAIN 5, aperture: 16
  • the central portion of the front surface of the liquid crystal television is set.
  • the luminance at each measurement spot (2601 places) is measured by designating a range of 60 mm ⁇ 60 mm centering on the measurement spot, and the average value of these luminances is set as the average luminance (cd / m 2 ).
  • the luminance uniformity (%) was obtained from the minimum luminance value and the maximum luminance value among the measured values.
  • the surface light source device configured using the light diffusion plate of Example 1 of the present invention has high luminance in the front direction (normal direction) and excellent luminance uniformity. It was. Further, in the light diffusing plate of Example 1, the light diffusing substrate and the light condensing sheet are bonded via the adhesive layer, so that the light diffusing substrate and the light condensing sheet do not rub against each other, The light diffusing plate is not rubbed. In contrast, in the surface light source device configured using the light diffusing plate of Comparative Example 1, there is no air layer between the light diffusing substrate and the light collecting sheet due to the entire adhesion of the pressure-sensitive adhesive. In (normal direction), the luminance was remarkably low. Moreover, in the surface light source device comprised using the light diffusing plate of the comparative example 2 or the comparative example 3, the brightness
  • the light diffusing plate of the present invention is suitably used as a light diffusing plate for a surface light source device, but is not particularly limited to such applications.
  • the surface light source device of the present invention is preferably used as a backlight for a liquid crystal display device, but is not particularly limited to such applications.

Abstract

Disclosed is a light-diffusing plate comprised of a light-collecting sheet (41) and a light-diffusing substrate (31), wherein the light-collecting sheet (41) has a condenser lens formation surface and a condenser lens non-formation surface; one surface of said light-diffusing substrate (31) is formed into a corrugated surface (34) where multiple convex parts (32) are formed while forming concave parts (33) between adjacent convex parts (32); the convex part (32) is formed into a quasi-rectangular shape comprising a pair of long sides and a pair of short sides when viewed in a plan view, wherein the long side is 0.8‑2.5mm in length, and the short side is 50‑500µm in length, the light-diffusing substrate (31) and the light-collecting sheet (41) are stacked and integrated by joining the convex parts (32) on the corrugated surface of the light-diffusing substrate (31) and the condenser lens non-formation surface of the light-collecting sheet (41) via an adhesive layer (40); and an air layer (42) is formed between the adhesive layer (40) and the concave parts (33) on the corrugated surface of the light-diffusing substrate (31).

Description

集光層付き光拡散板Light diffusion plate with condensing layer
 本発明は、傷付きが防止され、正面方向に高い輝度を有する光拡散板に関し、また、正面方向に高い輝度を有する高品質の面光源装置及び液晶表示装置に関する。
 なお、この明細書及び特許請求の範囲において、「突起部の重心」の語は、平面視略矩形形状の突起部の底面における略矩形形状の一対の対角線の交点(交差点)を意味するものとする。
The present invention relates to a light diffusing plate that is prevented from being scratched and has high luminance in the front direction, and also relates to a high-quality surface light source device and liquid crystal display device that have high luminance in the front direction.
In this specification and claims, the term “the center of gravity of the protrusion” means an intersection (intersection) of a pair of diagonal lines of a substantially rectangular shape on the bottom surface of the protrusion that is substantially rectangular in plan view. To do.
 液晶表示装置としては、例えば液晶セルを備えた液晶パネル(画像表示部)の背面側に面光源装置がバックライトとして配置された構成のものが公知である。前記バックライト用の面光源装置としては、ランプボックス(筐体)内に複数の光源が配置されると共にこれら光源の前面側に光拡散板が配置され、さらに正面方向に十分な輝度を確保するべく光拡散板の前面側に集光性シートであるレンチキュラーレンズが配置された構成の面光源装置が知られている。例えば、特許第3123006号明細書(特許文献1)には、このような構成の面光源装置が記載されている。
 しかしながら、上記構成に係る面光源装置では、光拡散板の前面側に集光性シートが単に重ね合わされた形態であるために、光拡散板と集光性シートが互いに擦れ合って傷付きやすいという問題があった。
 このような擦れ合いによる傷付きを防止し得るものとして、光拡散板の前面側に粘着剤層を介してレンチキュラーレンズが配置された構成の面光源装置が知られている(特開2006−208930号公報(特許文献2)参照)。この構成によれば、光拡散板と集光性シートが粘着剤層を介して接合されているから、光拡散板と集光性シートとが擦れ合うことがなく、傷付き発生を防止できる。
As a liquid crystal display device, for example, a configuration in which a surface light source device is disposed as a backlight on the back side of a liquid crystal panel (image display unit) including a liquid crystal cell is known. As the surface light source device for the backlight, a plurality of light sources are arranged in a lamp box (housing), and a light diffusion plate is arranged on the front side of these light sources, and further sufficient luminance is ensured in the front direction. A surface light source device having a configuration in which a lenticular lens as a light condensing sheet is arranged on the front side of a light diffusion plate is known. For example, Japanese Patent No. 3123006 (Patent Document 1) describes a surface light source device having such a configuration.
However, in the surface light source device according to the above configuration, since the light collecting sheet is simply superimposed on the front side of the light diffusing plate, the light diffusing plate and the light collecting sheet are rubbed against each other and easily damaged. There was a problem.
A surface light source device having a configuration in which a lenticular lens is disposed on the front side of a light diffusing plate via an adhesive layer is known as a device that can prevent scratching due to such rubbing (Japanese Patent Laid-Open No. 2006-208930). No. (Patent Document 2)). According to this configuration, since the light diffusing plate and the light condensing sheet are bonded via the pressure-sensitive adhesive layer, the light diffusing plate and the light condensing sheet do not rub against each other, and the occurrence of scratches can be prevented.
 しかしながら、上記後者の面光源装置は、正面方向における輝度の向上は必ずしも十分なものではなかった。
 本発明は、傷付きが防止され、正面方向に高い輝度を有する光拡散板及び正面方向に高い輝度を有する高品質の面光源装置と液晶表示装置を提供することを目的とする。
 前記目的を達成するために、本発明は以下の手段を提供する。
 [1]集光性シートおよび光拡散性基板からなる光拡散板であり、
 該集光性シートは集光性レンズ形成面と集光性レンズ非形成面とを有し、
 該光拡散性基板の片面は、複数個の突起部が形成され、隣り合う突起部の間に凹部が設けられている凹凸形状面であり、
 前記突起部は、平面視において一対の長辺と一対の短辺を有する略矩形形状であり、前記突起部の底面における長辺の長さが0.8mm~2.5mmであり、前記突起部の底面における短辺の長さが50μm~500μmであり、
 前記光拡散性基板の凹凸形状面の突起部と前記集光性シートの集光性レンズ非形成面とが粘着剤層を介して接合されることによって前記光拡散性基板と前記集光性シートとが積層一体化され、前記粘着剤層と前記光拡散性基板の凹凸形状面の凹部との間に空気層が形成されている光拡散板。
 [2]前記複数個の突起部が、長さ方向において、互いに略平行状である前項1に記載の光拡散板。
 [3]長辺方向に隣り合う前記突起部は互いに一定間隔で離間しており、短辺方向に隣り合う前記突起部は互いに一定間隔で離間している前項2に記載の光拡散板。
 [4]長辺方向に隣り合う前記突起部同士の重心間距離をUとしたとき、長辺方向に一列を形成する突起部群における突起部の重心位置は、該突起部群に対し短辺方向に隣り合う隣接突起部群を構成する複数の突起部のうち最も近い突起部の重心位置から、長辺方向においてU/2.2~U/1.8の距離離れている前項3に記載の光拡散板。
 [5]長辺方向に隣り合う前記突起部同士の重心間距離をUとし、前記突起部の底面における長辺の長さをTとしたとき、
 1.3≦U/T≦2.2
の関係式が成立し、
 短辺方向に隣り合う前記突起部同士の重心間距離をFとし、前記突起部の底面における短辺の長さをLとしたとき、Fは400μm以上5.0mm以下であり、
 8.0≦F/L
の関係式が成立する前項3または4に記載の光拡散板。
 [6]前項1~5のいずれか1項に記載の光拡散板と、該光拡散板の背面側に配置された複数の光源とを備え、前記集光性シートが前面側になるように前記光拡散板が配置されている面光源装置。
 [7]前項1~5のいずれか1項に記載の光拡散板と、該光拡散板の背面側に配置された複数の光源と、前記光拡散板の前面側に配置された液晶パネルとを備え、前記集光性シートが前面側になるように前記光拡散板が配置されている液晶表示装置。
 [1]の発明では、光拡散性基板の凹凸形状面の突起部と集光性シートの集光性レンズが形成されていない面が粘着剤層を介して接合されているから、光拡散性基板と集光性シートとが擦れ合うことがなく、この光拡散板における傷付き発生が防止される。また、粘着剤層と光拡散性基板の凹凸形状面の凹部との間に空気層が存在するから、正面方向に高い輝度が得られる。また、光拡散性基板の表面に形成されている複数個の突起部が、平面視において長辺の長さが0.8mm~2.5mmで、短辺の長さが50μm~500μmである略矩形形状であるから、この光拡散板の光学機能にこれら突起部の影響が及んで表示画像の画質に影響が及ぶことを回避できる。更に、前記空気層は、上記特定の凹凸形状面を片面に備えた光拡散性基板と、集光性シートとを粘着剤層を介して積層するだけで形成でき、積層時に光拡散性基板の突起部がスペーサーの役割を果たして空気層を確保できるので、生産性に優れている。
 [2]の発明では、複数個の突起部が、長さ方向において、互いに略平行状であるから、突起部の長さ方向において十分な接合強度を確保でき、突起部の長さ方向に沿って光拡散性基板と集光性シートとを剥離させることが困難である。
 [3]の発明では、長辺方向に隣り合う突起部は互いに一定間隔で離間しており、短辺方向に隣り合う突起部は互いに一定間隔で離間しているから、この光拡散板の光学機能にこれら突起部の影響が及んで表示画像の画質に影響が及ぶことをより回避できる。
 [4]の発明では、長辺方向に隣り合う前記突起部同士の重心間距離をUとしたとき、長辺方向に一列を形成する突起部群における突起部の重心位置は、該突起部群に対し短辺方向に隣り合う隣接突起部群を構成する複数の突起部のうち最も近い突起部の重心位置から、長辺方向においてU/2.2~U/1.8の距離離れている(ずれている)から、長辺方向に隣り合う突起部同士の間隔や短辺方向に隣り合う突起部同士の間隔が大きい構成であっても、集光性シートが撓んで該集光性シートが光拡散性基板の凹凸形状面の凹部に接触したり近接するようなことが防止され、これにより十分な空気層が確保されるので、正面方向の輝度をさらに向上させることができる。
 [5]の発明では、長辺方向に隣り合う突起部同士の重心間距離をUとし、突起部の底面における長辺の長さをTとしたとき、1.3≦U/T≦2.2の関係式が成立するから、集光性シートが撓んで該集光性シートが光拡散性基板の凹凸形状面の凹部に接触したり近接するようなことが防止され、これにより十分な空気層が確保されるので、正面方向の輝度をさらに向上させることができると共に、短辺方向に隣り合う突起部同士の重心間距離をFとし、突起部の底面における短辺の長さをLとしたとき、Fは400μm以上5.0mm以下であり、8.0≦F/Lの関係式が成立するから、粘着剤層と光拡散性基板の凹凸形状面の凹部との間に形成される空気層の空隙を短辺方向において広くすることができて、より高い透過率で光を透過させることができるから、正面方向の輝度をより増大させることができる。
 [6]の発明では、光拡散板における傷付きが防止され、正面方向の輝度が高い高品質の光が得られる面光源装置が提供される。
 [7]の発明では、光拡散板における傷付きが防止され、正面方向の輝度が高い高品質の画像が得られる液晶表示装置が提供される。
However, the latter surface light source device is not always sufficiently improved in luminance in the front direction.
It is an object of the present invention to provide a light diffusing plate that is prevented from being scratched and has high luminance in the front direction, and a high-quality surface light source device and liquid crystal display device that have high luminance in the front direction.
In order to achieve the above object, the present invention provides the following means.
[1] A light diffusing plate comprising a light collecting sheet and a light diffusing substrate,
The condensing sheet has a condensing lens forming surface and a condensing lens non-forming surface,
One surface of the light diffusing substrate is a concavo-convex shape surface in which a plurality of protrusions are formed and a recess is provided between adjacent protrusions,
The protrusion has a substantially rectangular shape having a pair of long sides and a pair of short sides in plan view, and the length of the long side on the bottom surface of the protrusion is 0.8 mm to 2.5 mm. The length of the short side at the bottom of the substrate is 50 μm to 500 μm,
The light diffusing substrate and the light condensing sheet are formed by bonding a projection on the uneven surface of the light diffusing substrate and a light condensing lens non-forming surface of the light condensing sheet via an adhesive layer. Are laminated and integrated, and a light diffusing plate in which an air layer is formed between the pressure-sensitive adhesive layer and the concave portion of the concavo-convex shape surface of the light diffusing substrate.
[2] The light diffusing plate according to [1], wherein the plurality of protrusions are substantially parallel to each other in the length direction.
[3] The light diffusing plate according to [2], wherein the protrusions adjacent in the long side direction are spaced apart from each other at a constant interval, and the protrusions adjacent in the short side direction are spaced apart from each other at a constant interval.
[4] When the distance between the centroids of the protrusions adjacent to each other in the long side direction is U, the barycentric position of the protrusions in the protrusion group forming a line in the long side direction is the short side with respect to the protrusion group. 4. The preceding item 3, wherein a distance of U / 2.2 to U / 1.8 is separated in the long side direction from the position of the center of gravity of the closest protrusion among the plurality of protrusions constituting the adjacent protrusion group adjacent in the direction. Light diffusing plate.
[5] When the distance between the centers of gravity of the protrusions adjacent in the long side direction is U, and the length of the long side on the bottom surface of the protrusion is T,
1.3 ≦ U / T ≦ 2.2
Is established,
When the distance between the centers of gravity of the protrusions adjacent to each other in the short side direction is F and the length of the short side on the bottom surface of the protrusion is L, F is 400 μm or more and 5.0 mm or less,
8.0 ≦ F / L
5. The light diffusing plate according to 3 or 4 above, wherein
[6] The light diffusing plate according to any one of 1 to 5 above and a plurality of light sources arranged on the back side of the light diffusing plate, so that the light condensing sheet is on the front side. A surface light source device in which the light diffusion plate is disposed.
[7] The light diffusing plate according to any one of 1 to 5 above, a plurality of light sources arranged on the back side of the light diffusing plate, a liquid crystal panel arranged on the front side of the light diffusing plate, A liquid crystal display device in which the light diffusing plate is arranged so that the light condensing sheet is on the front side.
In the invention of [1], the projections of the concavo-convex shape surface of the light diffusing substrate and the surface on which the light condensing lens of the light condensing sheet is not formed are bonded via the adhesive layer. The substrate and the light collecting sheet do not rub against each other, and the occurrence of scratches on the light diffusing plate is prevented. Moreover, since an air layer exists between the pressure-sensitive adhesive layer and the concave portion of the concavo-convex shape surface of the light diffusing substrate, high brightness is obtained in the front direction. Further, the plurality of protrusions formed on the surface of the light diffusing substrate have a long side length of 0.8 mm to 2.5 mm and a short side length of 50 μm to 500 μm in plan view. Because of the rectangular shape, it is possible to avoid the influence of these protrusions on the optical function of the light diffusing plate and the image quality of the display image. Furthermore, the air layer can be formed by simply laminating the light diffusing substrate having the specific uneven surface on one side and the light condensing sheet via an adhesive layer. Since the protrusion serves as a spacer to secure an air layer, it is excellent in productivity.
In the invention of [2], since the plurality of protrusions are substantially parallel to each other in the length direction, sufficient bonding strength can be secured in the length direction of the protrusion, and along the length direction of the protrusion. Thus, it is difficult to separate the light diffusing substrate and the light collecting sheet.
In the invention of [3], the protrusions adjacent in the long side direction are spaced apart from each other at a constant interval, and the protrusions adjacent in the short side direction are spaced apart from each other at a constant interval. It is possible to more avoid the influence of these protrusions on the function and the display image quality.
In the invention of [4], when the distance between the centroids of the projections adjacent in the long side direction is U, the barycentric position of the projections in the projection group forming a line in the long side direction is the projection group. On the other hand, a distance of U / 2.2 to U / 1.8 is separated in the long side direction from the barycentric position of the closest protruding part among the plurality of protruding parts constituting the adjacent protruding part group adjacent in the short side direction. Therefore, even if the interval between the protrusions adjacent to each other in the long side direction or the interval between the protrusions adjacent to each other in the short side direction is large, Is prevented from coming into contact with or in close proximity to the concave portion of the concavo-convex shape surface of the light diffusing substrate, and thereby a sufficient air layer is secured, so that the luminance in the front direction can be further improved.
In the invention of [5], when the distance between the centers of gravity of the protrusions adjacent in the long side direction is U and the length of the long side on the bottom surface of the protrusion is T, 1.3 ≦ U / T ≦ 2. Since the relational expression 2 is established, it is possible to prevent the light collecting sheet from being bent and coming into contact with or coming close to the concave portion of the uneven surface of the light diffusing substrate. Since the layer is secured, the luminance in the front direction can be further improved, the distance between the centers of gravity of the protrusions adjacent in the short side direction is F, and the length of the short side on the bottom surface of the protrusion is L. In this case, F is 400 μm or more and 5.0 mm or less, and the relational expression of 8.0 ≦ F / L is established, so that it is formed between the pressure-sensitive adhesive layer and the concave portion of the concavo-convex shape surface of the light diffusing substrate. Air gaps can be widened in the short side direction to transmit light with higher transmittance. Since it is possible to, it can be increased more brightness in the front direction.
In the invention of [6], a surface light source device is provided in which the light diffusing plate is prevented from being damaged and high-quality light with high brightness in the front direction can be obtained.
In the invention of [7], a liquid crystal display device is provided in which the light diffusing plate is prevented from being damaged and a high-quality image with high brightness in the front direction can be obtained.
 図1は、本発明に係る液晶表示装置の一実施形態を示す模式図である。
 図2は、本発明に係る光拡散板の一実施形態を示す断面図である。
 図3は、光拡散性基板を示す断面図である。
 図4は、光拡散性基板における突起部の配置態様の一例を示す平面図である。
 図5は、比較例2、3の光拡散性基板における突条部(突起部)の配置態様を示す平面図である。
FIG. 1 is a schematic view showing an embodiment of a liquid crystal display device according to the present invention.
FIG. 2 is a cross-sectional view showing an embodiment of a light diffusing plate according to the present invention.
FIG. 3 is a cross-sectional view showing a light diffusing substrate.
FIG. 4 is a plan view showing an example of the arrangement of the protrusions on the light diffusing substrate.
FIG. 5 is a plan view showing an arrangement mode of protrusions (projections) in the light diffusing substrates of Comparative Examples 2 and 3. FIG.
 本発明に係る液晶表示装置の一実施形態を図1に示す。図1において、(30)は液晶表示装置、(11)は液晶セル、(12)(13)は偏光板、(1)は面光源装置(バックライト)である。前記液晶セル(11)の上下両側にそれぞれ偏光板(12)(13)が配置され、これら構成部材(11)(12)(13)によって画像表示部としての液晶パネル(20)が構成されている。なお、前記液晶セル(11)としては、カラー画像を表示可能なものが好ましく用いられる。
 前記面光源装置(1)は、前記液晶パネル(20)の下側の偏光板(13)の下面側(背面側)に配置されている。即ち、この液晶表示装置(30)は、直下型液晶表示装置である。
 前記面光源装置(1)は、平面視矩形状で上面側(前面側)が開放された薄箱型形状のランプボックス(5)と、該ランプボックス(5)内に相互に離間して配置された複数の光源(2)と、これら複数の光源(2)の上方側(前面側)に配置された光拡散板(3)とを備えている。前記光拡散板(3)は、前記ランプボックス(5)に対してその開放面を塞ぐように載置されて固定されている。また、前記ランプボックス(5)の内面には光反射層(図示しない)が設けられている。本実施形態では、前記光源(2)として、冷陰極線管等の線状光源が用いられている。
 前記光拡散板(3)は、図2に示すように、互いに平行状に配置された光拡散性基板(31)、集光性シート(41)及び粘着剤層(40)を備えてなる。前記光拡散性基板(31)は、表面に多数個の突起部(32)が形成されると共に隣り合う突起部(32)の間に凹部(本実施形態では平坦部になっている)(33)が設けられている凹凸形状面(34)を片面に有する(図3参照)。この光拡散性基板(31)の凹凸形状面(34)の突起部(32)と前記集光性シート(41)の集光性レンズ非形成面(集光性レンズが形成されていない側の面)が粘着剤層(40)を介して接着されており、これにより前記粘着剤層(40)と前記光拡散性基板(31)の凹凸形状面(34)の凹部(33)との間に空気層(42)が存在する状態で前記光拡散性基板(31)と前記集光性シート(41)とが積層一体化されている(図2参照)。なお、前記粘着剤層(40)は、前記集光性シート(41)の片面の略全面に隙間なく積層されている。
 前記突起部(32)は、平面視において一対の長辺(35)(35)と一対の短辺(36)(36)を有する略矩形形状である(図4参照)。前記突起部(32)の底面(光拡散性基板に連接する面)における長辺の長さ(T)は0.8mm~2.5mmに設定され、前記突起部(32)の底面(光拡散性基板に連接する面)における短辺の長さ(L)は50μm~500μmに設定されている。
 図4に示すように、これら多数個の突起部(32)が、平面視において全体にわたって散在状態に配置されている。多数個の突起部(32)が平面視においてジグザグ状に配置されている。本実施形態では、長辺方向に隣り合う突起部(32)は互いに一定間隔で離間して配置され、短辺方向に隣り合う突起部(32)は互いに一定間隔で離間して配置されている(図4参照)。なお、長辺方向の一定の離間間隔と、短辺方向の一定の離間間隔とは、異なっていてもよいし、同一であってもよい。
 本実施形態では、前記突起部(32)の断面形状は略半円形状である(図2、3参照)。即ち、本実施形態では、前記突起部(32)は、シリンドリカルレンズ形状の突条部(略半円柱形状の突条部)からなり、これら複数のシリンドリカルレンズ形状の突条部(32)が、長さ方向(軸線方向)において、互いに略平行状になるように配置されている(図4参照)。前記シリンドリカルレンズ形状とは、略円柱体をその軸線方向(長さ方向)に平行な平面(軸線を含む平面であってもよいし、軸線を含まない平面であってもよい)で切ったうちのいずれか一方の部材に相当する形状を意味するものである。
 本実施形態では、前記シリンドリカルレンズ形状の突条部(32)は、半円柱形状からなる突条部である、即ち円柱体をその軸線を含む平面で2つに均等に切ったうちのいずれか一方の部材(半円柱体)に相当する形状を備えた突条部である。この半円柱形状からなる突条部(32)の平面(切断面)が前記光拡散性基板(31)の表面に連接されている(図2、3参照)。前記半円柱形状からなる突条部(32)の円弧面が前記集光性シート(41)側に向けて突出するように配置されている(図2参照)。
 本実施形態では、前記光源(2)として線状光源が用いられており、この線状光源(2)の長さ方向と前記光拡散性基板(31)のシリンドリカルレンズ形状の突条部(32)の長さ方向(長辺方向)とが略一致するように配置されている。また、前記シリンドリカルレンズ形状の突条部(32)の長さ方向(長辺方向)は、前記光拡散板(3)の長手方向と略一致するように配置されている。
 前記液晶表示装置(30)において、前記光拡散板(3)は、その集光性シート(41)が前面側(液晶パネル(20)側)になるように配置されている(図1参照)。即ち、換言すれば、前記液晶表示装置(30)において、前記光拡散板(3)は、その光拡散性基板(31)が背面側(光源(2)側)になるように配置されている(図1参照)。
 上記構成に係る光拡散板(3)は、光拡散性基板(31)の凹凸形状面(34)の突起部(32)と集光性シート(41)の集光性レンズ非形成面が粘着剤層(40)を介して接合されているから、光拡散性基板(31)と集光性シート(41)とが擦れ合うことがなく、この光拡散板(3)における傷付きが防止されている。また、上記構成に係る光拡散板(3)は、粘着剤層(40)と光拡散性基板(31)の凹凸形状面(34)の凹部(平坦部)(33)との間に空気層(42)が存在するから、前記面光源装置(1)において正面方向(法線方向)(Q)に高い輝度で照明することができるし、前記液晶表示装置(30)において正面方向(法線方向)(Q)に高い輝度で画像を表示することができる。更に、平面視において長辺の長さ(T)が0.8mm~2.5mmで、短辺の長さ(L)が50μm~500μmである略矩形形状の突起部(32)が光拡散性基板(31)の表面に形成されているから、この光拡散板(3)の光学機能に該突起部(32)の悪影響が及ぶことを回避し、高品質の画質を備えた画像を表示できる。
 本発明において、前記突起部(32)の底面における長辺の長さ(T)は0.8mm~2.5mmである。該長さ(T)が短いと突起部(32)の成形性に問題が生じるし、長いと液晶パネルを通して突起部(32)が視認されて画像の品位が低下する。
 また、前記突起部(32)の底面における短辺の長さ(L)は50~500μmである。該長さ(L)が短いと精度良く形状を作製するのが困難であるし、長いと突起部(32)の形状が筋のように視認される恐れがある。
 本発明において、長辺方向に隣り合う突起部(32)同士の重心(G)間距離をUとしたとき、長辺方向に一列を形成する突起部群における突起部(32)の重心位置(G1)は、該突起部群に対し短辺方向に隣り合う隣接突起部群を構成する複数の突起部のうち最も近い突起部(32)の重心位置(G2)に対し、長辺方向においてU/2.2~U/1.8の距離離れている(ずれている)ことが好ましい(図4参照)。即ち、図4において、K=U/2.2~U/1.8の関係式が成立する構成であるのが好ましい。この構成を採用した場合には、長辺方向に隣り合う突起部(32)同士の間隔や短辺方向に隣り合う突起部(32)同士の間隔が大きい構成であっても、集光性シート(41)が撓んで該集光性シート(41)が光拡散性基板(31)の凹凸形状面(34)の凹部(33)に接触したり近接するようなことが防止され、十分な空気層(42)が確保されるので、正面方向の輝度をより向上させることができる。
 また、長辺方向に隣り合う突起部(32)同士の重心(G)間距離をUとし、突起部(32)の底面における長辺(35)の長さをTとしたとき、
 1.3≦U/T≦2.2
の関係式が成立する構成であるのが好ましい(図4参照)。この構成を採用した場合には、1.3≦U/Tであることで十分な空気層(42)を確保できると共に、U/T≦2.2であることで集光性シート(41)の撓みを防止できる。
 また、短辺方向に隣り合う突起部(32)同士の重心(G)間距離をFとし、突起部(32)の底面における短辺(36)の長さをLとしたとき、
 400μm≦F≦5.0mm
 8.0≦F/L
の両者の関係式が成立する構成であるのが好ましい(図4参照)。この構成を採用した場合には、粘着剤層(40)と光拡散性基板(31)の凹凸形状面(34)の凹部(33)との間に形成される空気層(42)の空隙を短辺方向において広くすることができて、より高い透過率で光を透過させることができるから、正面方向の輝度をさらに増大させることができる。
 即ち、Fが400μm以上であることで、粘着剤層(40)と光拡散性基板(31)の凹凸形状面(34)の凹部(33)との間に空気層(42)を十分に形成せしめることができると共に、Fが5.0mm以下であることで、集光性シート(41)が撓んで該集光性シート(41)が光拡散性基板(31)の凹凸形状面(34)の凹部(33)に接触したり近接することを防止できる。また、8.0≦F/Lの関係式が成立することで、空気層(42)の空隙を短辺方向において広くすることができて、より高い透過率で光を透過させることができるから、正面方向の輝度をさらに増大させることができる。
 本発明において、前記光拡散性基板(31)としては、透過光を拡散し得るものであればどのようなものでも使用できるが、中でも透明材料中に光拡散粒子(光拡散剤)が分散している板が好ましく用いられる。
 前記光拡散性基板(31)としては、特に限定されるものではないが、例えば、透明樹脂からなる単層板、透明樹脂からなる基層の少なくとも片面に異種の透明樹脂からなる1ないし複数の他層が積層された積層板等が用いられる。
 前記光拡散性基板(31)を構成する透明材料としては、特に限定されるものではないが、例えば透明樹脂、無機ガラス等が挙げられる。前記透明樹脂としては、成形が容易である点で、透明熱可塑性樹脂が好適に用いられる。この透明熱可塑性樹脂としては、特に限定されるものではないが、例えばポリカーボネート樹脂、ABS樹脂(アクリロニトリル−ブタジエン−スチレン共重合体樹脂)、メタクリル樹脂、MS樹脂(メタクリル酸メチル−スチレン共重合体樹脂)、スチレン系樹脂、AS樹脂(アクリロニトリル−スチレン共重合体樹脂)、ポリエチレンテレフタレート、オレフィン系樹脂(ポリエチレン、ポリプロピレン、環状ポリオレフィン、環状オレフィン共重合体等)等が挙げられる。
 前記光拡散粒子としては、光拡散性基板(31)を構成する透明材料に対して非相溶性であって且つこの透明樹脂と屈折率が相違する粒子であって透過光を拡散し得るものであれば、特に限定されず、どのようなものでも使用できる。例えば、シリカ粒子、炭酸カルシウム粒子、硫酸バリウム粒子、酸化チタン粒子、水酸化アルミニウム粒子、無機ガラス粒子、マイカ粒子、タルク粒子、ホワイトカーボン粒子、酸化マグネシウム粒子、酸化亜鉛粒子等の無機粒子であってもよいし、或いはメタクリル系架橋樹脂粒子、メタクリル系高分子量樹脂粒子、スチレン系架橋樹脂粒子、スチレン系高分子量樹脂粒子、シロキサン系重合体粒子等の有機粒子であってもよい。前記光拡散粒子としては、上記例示したもの等の1種を用いてもよいし、或いはこれらの2種以上を混合して用いてもよい。
 前記光拡散粒子としては、通常、その体積平均粒子径が0.1μm~50μmのものが用いられる。なお、体積平均粒子径(D50)は、全粒子の粒子径及び体積を測定し、小さい粒子径のものから順次体積を積算し、該積算体積が全粒子の合計体積に対して50%となる粒子の粒子径である。
 前記光拡散粒子の使用量は、目的とする透過光の拡散の程度により異なるが、通常、前記透明材料100質量部に対して光拡散粒子の含有量は0.01質量部~20質量部である。前記透明材料100質量部に対する光拡散粒子の含有量は0.1質量部~10質量部が好ましい。
 前記透明材料の屈折率と前記光拡散粒子の屈折率の差の絶対値は0.02以上であるのが光拡散性の観点から好ましく、前記絶対値は0.13以下であるのが光透過性の観点から好ましい。即ち、前記透明材料の屈折率と前記光拡散粒子の屈折率の差の絶対値は0.02~0.13の範囲であるのが好ましい。
 前記光拡散性基板(31)には、例えば紫外線吸収剤、熱安定剤、酸化防止剤、耐候剤、光安定剤、蛍光増白剤、加工安定剤等の各種添加剤を含有せしめてもよい。
 前記光拡散性基板(31)の厚さ(N)は、通常、0.1mm~10mmである。
 前記突起部(32)の断面形状としては、特に限定されるものではないが、例えば略半円形状の他、略半楕円形状、扁平湾曲線形状、或いは略矩形状、略三角形形状等の略多角形形状などが挙げられる。
 なお、上記実施形態では、前記突起部(32)の断面形状は半円形状であり、この円の中心を通る法線(水平面に対する垂直線)に対して左右線対称の断面形状に形成されているが、特にこのような構成に限定されるものではなく、左右が非線対称の断面形状に形成されていてもよい。例えば左側の円弧が右側の円弧よりも前面側に膨らんだ左右が非線対称の断面形状であってもよい。また、前記突起部(32)の断面形状として三角形形状を採用する場合において、左右線対称の二等辺三角形形状であってもよいし、或いは左右が非線対称の三角形形状であってもよい。
 前記突起部(32)の形成手法としては、特に限定されるものではないが、例えば金型による熱転写法、射出成形法、切削法、異形押出成形法、彫刻ロールによる溶融押出転写成形法等が挙げられる。
 前記突起部(32)の高さ(H)は、10μm~500μmであるのが好ましい(図3参照)。該高さ(H)が10μm以上であることでスペーサー機能が十分に得られて空気層(42)の空隙を十分に確保できると共に、500μm以下であることで該突起部(32)の成形が容易なものとなる。
 前記集光性シート(41)としては、特に限定されるものではないが、例えば微細なプリズムレンズ、微細な凸レンズ、レンチキュラーレンズ等の微細な集光性レンズが片面の全面にわたって形成されたシート等が挙げられる。前記光拡散性基板(31)を拡散しながら透過した透過光をこの集光性シート(41)で光拡散板(3)の法線方向(Q)に集光する。この集光性シート(41)は、集光性レンズが形成された側とは反対側の面(集光性レンズ非形成面)を重ね合わせ面にして前記光拡散性基板(31)と積層一体化される(図2参照)。
 前記集光性シート(41)の素材としては、特に限定されるものではないが、例えば、ポリカーボネート樹脂、ABS樹脂(アクリロニトリル−ブタジエン−スチレン共重合体樹脂)、メタクリル樹脂、メタクリル酸メチル−スチレン共重合体樹脂、ポリスチレン樹脂、AS樹脂(アクリロニトリル−スチレン共重合体樹脂)、ポリオレフィン樹脂(ポリエチレン樹脂、ポリプロピレン樹脂等)などが挙げられる。前記集光性シート(41)の市販品としては、特に限定されるものではないが、例えば住友スリーエム社製「BEF」(商品名)(厚さ125μmのポリエステルフィルム上に厚さ30μmのアクリル系樹脂層が形成され、このアクリル系樹脂層の表面に、深さ(D)が25μm、溝底部の開き角度が90度のV溝がピッチ間隔(P)50μmで形成されたもの。図2参照)、積水フィルム社製「エスティナ」(商品名)等が挙げられる。
 前記集光性シート(41)には、例えば紫外線吸収剤、熱安定剤、酸化防止剤、耐候剤、光安定剤、蛍光増白剤、加工安定剤等の各種添加剤を含有せしめてもよい。
 前記集光性シート(41)の厚さ(C)は、貼合強度を確保する観点から、10μm以上であるのが好ましい。また、前記集光性シート(41)の厚さ(C)は、撓みを生じさせない観点から、即ち粘着剤層(40)を光拡散性基板(31)の凹凸形状面(34)の凹部(33)に接触等させない観点から、30μm以上であるのが特に好ましい(図2参照)。コスト削減と、得られる光拡散板の厚さ削減の観点とから、前記集光性シート(41)の厚さ(C)は500μm以下が好ましい。
 前記粘着剤層(40)の素材としては、特に限定されるものではないが、例えばアクリル系粘着剤、ウレタン系粘着剤、ポリエーテル系粘着剤、シリコーン系粘着剤等が挙げられる。これらの中でも、無色透明の粘着剤を用いるのが、より高品質の表示画像を形成できる点で、好ましい。前記粘着剤層(40)としては、通常、感圧型接着剤が用いられる。なお、この粘着剤の屈折率は特に限定されない。
 前記粘着剤層(40)の厚さ(M)は、10μm~30μmであるのが好ましい(図2参照)。該厚さ(M)が10μm以上であることで十分な接合強度を確保することができると共に、30μm以下であることで光拡散性基板(31)の凹部(33)にこの粘着剤層(40)が接触することを防止できて、空気層(42)の空隙量を十分に確保できる。中でも、前記粘着剤層(40)の厚さ(M)は5μm~25μmの範囲に設定されるのが特に好ましい。
 また、前記空気層(42)の厚さ(E)は、通常、1μm~400μmであり、好ましい厚さ(E)は50μm~350μmである(図2参照)。
 本発明の光拡散板(3)は、例えば次のようにして製造される。前記集光性シート(41)の集光性レンズ非形成面に両面粘着フィルムを貼合することにより前記集光性シート(41)の片面に粘着剤層(40)を積層し、粘着剤付き集光性シートを得る。前記集光性シート(41)の集光性レンズ非形成面に粘着剤を塗布することによって前記集光性シート(41)の片面に粘着剤層(40)を積層してもよい。一方、片面に複数個の突起部(32)が形成されると共に隣り合う突起部(32)の間に凹部(33)が設けられている凹凸形状面(34)を有する光拡散性基板(31)を製作する(図3参照)。この光拡散性基板(31)の凹凸形状面(34)に前記粘着剤層(40)が接触するように光拡散性基板(31)と粘着剤付き集光性シート(41)を重ね合わせて挟圧する(プレスする)。これにより光拡散性基板(31)の突起部(32)と集光性シート(41)の集光性レンズ非形成面が粘着剤層(40)を介して接合されて、本発明の光拡散板(3)が得られる。
 なお、上記製造方法は、その一例を示したものに過ぎず、本発明の光拡散板(3)は、このような製造方法で製造されたものに限定されるものではない。
 なお、本発明の光拡散板(3)の厚さ(S)は、特に限定されるものではないが、1mm~5mmが好ましい(図2参照)。また、本発明の光拡散板(3)の大きさ(面積)は、特に限定されるものではなく、例えば目的とする面光源装置(1)や液晶表示装置(30)の大きさに応じて適宜設定されるものであるが、通常、20cm×30cm~150cm×200cmの大きさに設計される。
 本発明の面光源装置(1)及び液晶表示装置(30)において、前記光源(2)としては、特に限定されるものではないが、例えば蛍光管、ハロゲンランプ、タングステンランプ等の線状光源の他、発光ダイオード(LED)等の点状光源などが用いられる。
 本発明に係る光拡散板(3)、面光源装置(1)及び液晶表示装置(30)は、上記実施形態のものに特に限定されるものではなく、請求の範囲内であれば、その精神を逸脱するものでない限り、いかなる設計的変更をも許容するものである。
An embodiment of a liquid crystal display device according to the present invention is shown in FIG. In FIG. 1, (30) is a liquid crystal display device, (11) is a liquid crystal cell, (12) and (13) are polarizing plates, and (1) is a surface light source device (backlight). Polarizing plates (12) and (13) are respectively arranged on the upper and lower sides of the liquid crystal cell (11), and a liquid crystal panel (20) as an image display unit is constituted by these constituent members (11), (12) and (13). Yes. In addition, as the liquid crystal cell (11), those capable of displaying a color image are preferably used.
The said surface light source device (1) is arrange | positioned at the lower surface side (back side) of the polarizing plate (13) below the said liquid crystal panel (20). That is, this liquid crystal display device (30) is a direct liquid crystal display device.
The surface light source device (1) is a thin box-shaped lamp box (5) having a rectangular shape in plan view and having an upper surface side (front surface side) opened, and the lamp box (5) spaced apart from each other. And a light diffusion plate (3) disposed on the upper side (front side) of the plurality of light sources (2). The said light diffusing plate (3) is mounted and fixed with respect to the said lamp box (5) so that the open surface may be block | closed. A light reflecting layer (not shown) is provided on the inner surface of the lamp box (5). In the present embodiment, a linear light source such as a cold cathode ray tube is used as the light source (2).
As shown in FIG. 2, the light diffusing plate (3) includes a light diffusing substrate (31), a light collecting sheet (41), and an adhesive layer (40) arranged in parallel to each other. The light diffusing substrate (31) has a large number of protrusions (32) formed on the surface, and a recess (a flat portion in this embodiment) between adjacent protrusions (32) (33). ) Is provided on one side (see FIG. 3). The projection (32) of the uneven surface (34) of the light diffusing substrate (31) and the non-condensing lens forming surface (on the side where the condensing lens is not formed) of the condensing sheet (41). Surface) is bonded via the pressure-sensitive adhesive layer (40), whereby the pressure-sensitive adhesive layer (40) and the concave-convex surface (34) of the light-diffusing substrate (31) are recessed (33). The light diffusing substrate (31) and the light condensing sheet (41) are laminated and integrated in a state where the air layer (42) is present (see FIG. 2). In addition, the said adhesive layer (40) is laminated | stacked on the substantially whole surface of the single side | surface of the said condensing sheet | seat (41) without gap.
The protrusion (32) has a substantially rectangular shape having a pair of long sides (35) and (35) and a pair of short sides (36) and (36) in plan view (see FIG. 4). The long side length (T) of the bottom surface (surface connected to the light diffusing substrate) of the projection (32) is set to 0.8 mm to 2.5 mm, and the bottom surface (light diffusion of the projection (32)). The length (L) of the short side of the surface connected to the conductive substrate is set to 50 μm to 500 μm.
As shown in FIG. 4, these multiple protrusions (32) are arranged in a scattered state over the whole in a plan view. A large number of protrusions (32) are arranged in a zigzag shape in plan view. In the present embodiment, the protrusions (32) adjacent in the long side direction are spaced apart from each other at a constant interval, and the protrusions (32) adjacent in the short side direction are spaced apart from each other at a constant interval. (See FIG. 4). The constant separation interval in the long side direction and the constant separation interval in the short side direction may be different or the same.
In the present embodiment, the projecting portion (32) has a substantially semicircular cross section (see FIGS. 2 and 3). That is, in the present embodiment, the protrusion (32) is a cylindrical lens-shaped protrusion (substantially semi-cylindrical protrusion), and the plurality of cylindrical lens-shaped protrusions (32) are: They are arranged so as to be substantially parallel to each other in the length direction (axial direction) (see FIG. 4). The cylindrical lens shape means that a substantially cylindrical body is cut by a plane parallel to the axial direction (length direction) (a plane including the axis or a plane not including the axis). The shape corresponding to any one of the members is meant.
In the present embodiment, the cylindrical lens-shaped protrusion (32) is a protrusion having a semi-cylindrical shape, that is, any one of the cylindrical bodies cut into two equally on a plane including the axis thereof. It is a protrusion part provided with the shape equivalent to one member (semi-cylindrical body). The flat surface (cut surface) of the protrusion (32) having a semi-cylindrical shape is connected to the surface of the light diffusing substrate (31) (see FIGS. 2 and 3). It arrange | positions so that the circular arc surface of the protrusion part (32) which consists of the said semi-cylindrical shape may protrude toward the said condensing sheet | seat (41) side (refer FIG. 2).
In this embodiment, a linear light source is used as the light source (2), and the length direction of the linear light source (2) and the cylindrical lens-shaped protrusion (32) of the light diffusing substrate (31). ) In the length direction (long side direction). Further, the length direction (long side direction) of the cylindrical lens-shaped protrusion (32) is arranged so as to substantially coincide with the longitudinal direction of the light diffusion plate (3).
In the liquid crystal display device (30), the light diffusing plate (3) is disposed such that the light condensing sheet (41) is on the front side (the liquid crystal panel (20) side) (see FIG. 1). . That is, in other words, in the liquid crystal display device (30), the light diffusing plate (3) is disposed such that the light diffusing substrate (31) is on the back side (light source (2) side). (See FIG. 1).
In the light diffusing plate (3) according to the above configuration, the projections (32) of the concavo-convex shape surface (34) of the light diffusing substrate (31) and the condensing lens non-forming surface of the light condensing sheet (41) are adhered. Since it is joined via the agent layer (40), the light diffusing substrate (31) and the light condensing sheet (41) do not rub against each other, and the light diffusing plate (3) is prevented from being damaged. Yes. Moreover, the light diffusing plate (3) according to the above configuration has an air layer between the pressure-sensitive adhesive layer (40) and the concave portion (flat portion) (33) of the uneven surface (34) of the light diffusing substrate (31). (42) exists, the front light source device (1) can be illuminated with high luminance in the front direction (normal direction) (Q), and the front direction (normal line) in the liquid crystal display device (30). An image can be displayed with high brightness in the direction (Q). Furthermore, the projection (32) having a substantially rectangular shape with a long side length (T) of 0.8 mm to 2.5 mm and a short side length (L) of 50 μm to 500 μm in plan view is light diffusive. Since it is formed on the surface of the substrate (31), it is possible to avoid an adverse effect of the projection (32) on the optical function of the light diffusing plate (3) and display an image with high quality image quality. .
In the present invention, the length (T) of the long side of the bottom surface of the protrusion (32) is 0.8 mm to 2.5 mm. If the length (T) is short, there is a problem in the moldability of the protrusion (32), and if it is long, the protrusion (32) is visually recognized through the liquid crystal panel and the image quality is deteriorated.
The length (L) of the short side of the bottom surface of the protrusion (32) is 50 to 500 μm. If the length (L) is short, it is difficult to produce a shape with high accuracy, and if the length (L) is long, the shape of the protrusion (32) may be visually recognized like a streak.
In the present invention, when the distance between the centers of gravity (G) of the protrusions (32) adjacent in the long side direction is U, the position of the center of gravity of the protrusions (32) in the protrusion group forming a line in the long side direction ( G1) is U in the long side direction with respect to the gravity center position (G2) of the closest protrusion part (32) among the plurality of protrusion parts constituting the adjacent protrusion part group adjacent to the protrusion part group in the short side direction. A distance of /2.2 to U / 1.8 is preferable (see FIG. 4). That is, in FIG. 4, it is preferable that the relational expression of K = U / 2.2 to U / 1.8 is established. When this configuration is adopted, even if the interval between the projections (32) adjacent in the long side direction and the interval between the projections (32) adjacent in the short side direction are large, the light collecting sheet (41) is bent and the light condensing sheet (41) is prevented from coming into contact with or in close proximity to the concave portion (33) of the concavo-convex shape surface (34) of the light diffusing substrate (31). Since the layer (42) is secured, the luminance in the front direction can be further improved.
Further, when the distance between the centers of gravity (G) of the protrusions (32) adjacent in the long side direction is U, and the length of the long side (35) on the bottom surface of the protrusion (32) is T,
1.3 ≦ U / T ≦ 2.2
It is preferable that the relational expression is established (see FIG. 4). When this configuration is adopted, a sufficient air layer (42) can be secured when 1.3 ≦ U / T, and the light condensing sheet (41) when U / T ≦ 2.2. Can be prevented.
Further, when the distance between the centers of gravity (G) of the protrusions (32) adjacent in the short side direction is F and the length of the short side (36) on the bottom surface of the protrusion (32) is L,
400μm ≦ F ≦ 5.0mm
8.0 ≦ F / L
It is preferable that the relational expression between the two is established (see FIG. 4). When this configuration is adopted, the air layer (42) formed between the pressure-sensitive adhesive layer (40) and the concave portion (33) of the uneven surface (34) of the light diffusing substrate (31) Since the light can be widened in the short side direction and light can be transmitted with higher transmittance, the luminance in the front direction can be further increased.
That is, when F is 400 μm or more, an air layer (42) is sufficiently formed between the pressure-sensitive adhesive layer (40) and the concave portion (33) of the uneven surface (34) of the light diffusing substrate (31). In addition, the light condensing sheet (41) bends and the light condensing sheet (41) has an uneven surface (34) of the light diffusing substrate (31). Can be prevented from coming into contact with or close to the recess (33). Further, since the relational expression of 8.0 ≦ F / L is established, the air space (42) can be widened in the short side direction, and light can be transmitted with higher transmittance. The luminance in the front direction can be further increased.
In the present invention, any material can be used as the light diffusing substrate (31) as long as it can diffuse transmitted light. Among them, light diffusing particles (light diffusing agent) are dispersed in a transparent material. The plate is preferably used.
The light diffusing substrate (31) is not particularly limited. For example, the light diffusing substrate (31) is composed of a single layer plate made of a transparent resin, one or more other types made of a different transparent resin on at least one surface of a base layer made of a transparent resin. A laminated plate in which layers are laminated is used.
Although it does not specifically limit as a transparent material which comprises the said light diffusable board | substrate (31), For example, transparent resin, inorganic glass, etc. are mentioned. As the transparent resin, a transparent thermoplastic resin is suitably used because it is easy to mold. The transparent thermoplastic resin is not particularly limited. For example, polycarbonate resin, ABS resin (acrylonitrile-butadiene-styrene copolymer resin), methacrylic resin, MS resin (methyl methacrylate-styrene copolymer resin). ), Styrene resin, AS resin (acrylonitrile-styrene copolymer resin), polyethylene terephthalate, olefin resin (polyethylene, polypropylene, cyclic polyolefin, cyclic olefin copolymer, etc.) and the like.
The light diffusing particles are particles that are incompatible with the transparent material constituting the light diffusing substrate (31) and have a refractive index different from that of the transparent resin and can diffuse transmitted light. Anything can be used without particular limitation. For example, inorganic particles such as silica particles, calcium carbonate particles, barium sulfate particles, titanium oxide particles, aluminum hydroxide particles, inorganic glass particles, mica particles, talc particles, white carbon particles, magnesium oxide particles, and zinc oxide particles. Alternatively, organic particles such as methacrylic crosslinked resin particles, methacrylic high molecular weight resin particles, styrene crosslinked resin particles, styrene high molecular weight resin particles, and siloxane polymer particles may be used. As the light diffusing particles, one kind of those exemplified above may be used, or two or more kinds thereof may be mixed and used.
As the light diffusing particles, those having a volume average particle diameter of 0.1 μm to 50 μm are usually used. The volume average particle size (D 50 ) is determined by measuring the particle size and volume of all particles, integrating the volume sequentially from the smallest particle size, and the integrated volume is 50% of the total volume of all particles. The particle diameter of the resulting particles.
The amount of the light diffusing particles used varies depending on the intended degree of diffusion of transmitted light, but the content of the light diffusing particles is usually 0.01 parts by mass to 20 parts by mass with respect to 100 parts by mass of the transparent material. is there. The content of the light diffusing particles with respect to 100 parts by mass of the transparent material is preferably 0.1 to 10 parts by mass.
From the viewpoint of light diffusibility, the absolute value of the difference between the refractive index of the transparent material and the refractive index of the light diffusing particles is preferably 0.02 or more, and the absolute value is 0.13 or less. From the viewpoint of sex. That is, the absolute value of the difference between the refractive index of the transparent material and the refractive index of the light diffusing particles is preferably in the range of 0.02 to 0.13.
The light diffusing substrate (31) may contain various additives such as an ultraviolet absorber, a heat stabilizer, an antioxidant, a weathering agent, a light stabilizer, a fluorescent brightener, and a processing stabilizer. .
The thickness (N) of the light diffusing substrate (31) is usually 0.1 mm to 10 mm.
The cross-sectional shape of the projecting portion (32) is not particularly limited. For example, in addition to a substantially semicircular shape, a substantially semi-elliptical shape, a flat curved line shape, a substantially rectangular shape, a substantially triangular shape, etc. Examples include polygonal shapes.
In the above-described embodiment, the projecting portion (32) has a semicircular cross-sectional shape, and is formed in a cross-sectional shape that is symmetrical with respect to the normal line (perpendicular to the horizontal plane) passing through the center of the circle. However, it is not particularly limited to such a configuration, and the right and left may be formed in a non-axisymmetric cross-sectional shape. For example, the left and right arcs may have a non-linearly symmetric cross-sectional shape in which the left arc swells more to the front side than the right arc. Further, when a triangular shape is employed as the cross-sectional shape of the protrusion (32), it may be an isosceles triangular shape that is symmetrical to the left and right lines, or may be a triangular shape that is asymmetrical to the left and right.
A method for forming the protrusion (32) is not particularly limited, and examples thereof include a thermal transfer method using a mold, an injection molding method, a cutting method, a profile extrusion molding method, and a melt extrusion transfer molding method using an engraving roll. Can be mentioned.
The height (H) of the protrusion (32) is preferably 10 μm to 500 μm (see FIG. 3). When the height (H) is 10 μm or more, a sufficient spacer function can be obtained to sufficiently secure the air layer (42), and when the height (H) is 500 μm or less, the projection (32) can be molded. It will be easy.
The light condensing sheet (41) is not particularly limited. For example, a sheet in which a fine light condensing lens such as a fine prism lens, a fine convex lens, or a lenticular lens is formed over the entire surface of one side. Is mentioned. The transmitted light transmitted while diffusing the light diffusing substrate (31) is condensed in the normal direction (Q) of the light diffusing plate (3) by the condensing sheet (41). This condensing sheet (41) is laminated with the light diffusing substrate (31) with the surface opposite to the side on which the condensing lens is formed (the condensing lens non-forming surface) as an overlapping surface. They are integrated (see FIG. 2).
The material of the light condensing sheet (41) is not particularly limited. For example, polycarbonate resin, ABS resin (acrylonitrile-butadiene-styrene copolymer resin), methacrylic resin, methyl methacrylate-styrene copolymer Examples thereof include polymer resins, polystyrene resins, AS resins (acrylonitrile-styrene copolymer resins), polyolefin resins (polyethylene resins, polypropylene resins, etc.). Although it does not specifically limit as a commercial item of the said condensing sheet | seat (41), For example, Sumitomo 3M "BEF" (brand name) (30-micrometer-thick acrylic type on a 125-micrometer-thick polyester film) A resin layer is formed, and V-grooves having a depth (D) of 25 μm and a groove bottom opening angle of 90 degrees are formed on the surface of the acrylic resin layer at a pitch interval (P) of 50 μm, see FIG. ), “Estina” (trade name) manufactured by Sekisui Film Co., Ltd., and the like.
The light condensing sheet (41) may contain various additives such as an ultraviolet absorber, a heat stabilizer, an antioxidant, a weathering agent, a light stabilizer, a fluorescent brightener, and a processing stabilizer. .
The thickness (C) of the light collecting sheet (41) is preferably 10 μm or more from the viewpoint of securing the bonding strength. In addition, the thickness (C) of the light condensing sheet (41) is determined from the viewpoint of preventing bending, that is, the pressure-sensitive adhesive layer (40) is formed on the concave portion (34) of the concave and convex surface (34) of the light diffusing substrate (31). It is particularly preferably 30 μm or more from the viewpoint of preventing contact with 33) (see FIG. 2). From the viewpoint of cost reduction and thickness reduction of the light diffusion plate to be obtained, the thickness (C) of the light condensing sheet (41) is preferably 500 μm or less.
Although it does not specifically limit as a raw material of the said adhesive layer (40), For example, an acrylic adhesive, a urethane type adhesive, a polyether-type adhesive, a silicone type adhesive etc. are mentioned. Among these, it is preferable to use a colorless and transparent pressure-sensitive adhesive because a higher-quality display image can be formed. As the pressure-sensitive adhesive layer (40), a pressure-sensitive adhesive is usually used. In addition, the refractive index of this adhesive is not specifically limited.
The thickness (M) of the pressure-sensitive adhesive layer (40) is preferably 10 μm to 30 μm (see FIG. 2). When the thickness (M) is 10 μm or more, sufficient bonding strength can be secured, and when the thickness (M) is 30 μm or less, the pressure-sensitive adhesive layer (40) is formed in the concave portion (33) of the light diffusing substrate (31). ) Can be prevented from coming into contact with each other, and a sufficient amount of air space (42) can be secured. In particular, the thickness (M) of the pressure-sensitive adhesive layer (40) is particularly preferably set in the range of 5 μm to 25 μm.
The thickness (E) of the air layer (42) is usually 1 μm to 400 μm, and the preferred thickness (E) is 50 μm to 350 μm (see FIG. 2).
The light diffusing plate (3) of this invention is manufactured as follows, for example. A pressure-sensitive adhesive layer (40) is laminated on one side of the light-collecting sheet (41) by laminating a double-sided pressure-sensitive adhesive film on the surface of the light-collecting sheet (41) where the light-collecting lens is not formed. A light collecting sheet is obtained. You may laminate | stack an adhesive layer (40) on the single side | surface of the said condensing sheet | seat (41) by apply | coating an adhesive to the condensing lens non-formation surface of the said condensing sheet | seat (41). On the other hand, a light diffusing substrate (31) having a concavo-convex surface (34) in which a plurality of protrusions (32) are formed on one side and a recess (33) is provided between adjacent protrusions (32). ) (See FIG. 3). The light diffusing substrate (31) and the light condensing sheet with adhesive (41) are overlapped so that the pressure-sensitive adhesive layer (40) is in contact with the uneven surface (34) of the light diffusing substrate (31). Clamp (press). Thereby, the projection part (32) of the light diffusable substrate (31) and the light condensing lens non-formation surface of the light condensing sheet (41) are joined via the pressure-sensitive adhesive layer (40). A plate (3) is obtained.
In addition, the said manufacturing method is only what showed the example, and the light diffusing plate (3) of this invention is not limited to what was manufactured with such a manufacturing method.
The thickness (S) of the light diffusion plate (3) of the present invention is not particularly limited, but is preferably 1 mm to 5 mm (see FIG. 2). The size (area) of the light diffusing plate (3) of the present invention is not particularly limited. For example, depending on the size of the target surface light source device (1) or liquid crystal display device (30). Although appropriately set, it is usually designed in a size of 20 cm × 30 cm to 150 cm × 200 cm.
In the surface light source device (1) and the liquid crystal display device (30) of the present invention, the light source (2) is not particularly limited. For example, a linear light source such as a fluorescent tube, a halogen lamp, or a tungsten lamp is used. In addition, a point light source such as a light emitting diode (LED) is used.
The light diffusing plate (3), the surface light source device (1), and the liquid crystal display device (30) according to the present invention are not particularly limited to those of the above-described embodiment, and the spirit is within the scope of the claims. Any design changes are allowed as long as they do not deviate from.
 次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。
 <原材料>
(光拡散性基板の材料)
 透明樹脂A:スチレン樹脂(東洋スチレン製「HRM40」、屈折率1.59)
 透明樹脂B:MS樹脂(新日鐵化学製「MS200NT」、屈折率1.57、スチレン/メタクリル酸メチル=80質量部/20質量部)
 光拡散剤A:PMMA架橋粒子(住友化学製「スミペックスXC1A」、屈折率1.49、体積平均粒子径35μm
 光拡散剤B:架橋シロキサン系重合体粒子(東レダウコーニング社製「トレフィルDY33−719」、屈折率1.42、体積平均粒子径2μm)。
 (光拡散剤マスターバッチAの調製)
 透明樹脂Aを52.0質量部、光拡散剤Aを40.0質量部、光拡散剤Bを4.0質量部、紫外線吸収剤であるスミソーブ200(住友化学株式会社製)を2.0質量部、熱安定剤であるスミライザーGP(住友化学株式会社製)を2.0質量部ドライブレンドした後、このブレンド物を65mm2軸押出機のホッパーに投入し、シリンダー内で溶融混合した後、ストランド状に押出して裁断することによりペレット状の光拡散剤マスターバッチAを得た。なお、シリンダー内の温度は、ホッパーの下部(200℃)から押出ダイ付近(250℃)へと下流に向けて徐々に高温になるように設定して押出しを行った。
 (光拡散剤マスターバッチBの調製)
 透明樹脂Bを78.8質量部、光拡散剤Aを20.0質量部、紫外線吸収剤であるLA−31(旭電化工業株式会社製)を1.0質量部、熱安定剤であるスミライザーGP(住友化学株式会社製)を0.2質量部ドライブレンドした後、このブレンド物を65mm2軸押出機のホッパーに投入し、シリンダー内で溶融混合した後、ストランド状に押出して裁断することによりペレット状の光拡散剤マスターバッチBを得た。なお、シリンダー内の温度は、ホッパーの下部(200℃)から押出ダイ付近(250℃)へと下流に向けて徐々に高温になるように設定して押出しを行った。
 (集光性シートA)
 片面に深さ(D)が11.5μm、溝底部の開き角度が90度のV溝がピッチ間隔(P)23.0μmで形成された透明PET(ポリエチレンテレフタレート)樹脂製の厚さ(C)60μmのフィルムを用いた。
 <実施例1>
 透明樹脂A 97.0質量部、光拡散剤マスターバッチA 5.0質量部をドライブレンドした後、シリンダー内の温度が190~250℃の第1押出機で溶融混練して、フィードブロックに供給した。一方、光拡散剤マスターバッチBをシリンダー内の温度が190~250℃の第2押出機で溶融混練して、フィードブロックに供給した。
 前記第1押出機からフィードブロックに供給される樹脂が中間層(基層)となり、前記第2押出機からフィードブロックに供給される樹脂が表層(両面)となるように押出樹脂温度250℃でマルチマニホールドダイより共押出成形を行い、ポリシングロールで挟圧と冷却を行うことによって、厚さ2.0mmの3層積層板(中間層1.9mm、表層0.05mm×2)からなる光拡散性基板(31)を作製した。
 次に、得られた光拡散性基板(31)の片面の全面に、熱プレス機(神藤金属工業所製、シンドー式ASF型油圧プレス)を用いてシリンドリカルレンズ形状の突起部(断面形状が略半円柱形状の突起部)(32)を図4に示す配置態様で多数個突設形成せしめて、厚さ(N)が2.0mmの光拡散性基板(31)を得た(図3、4参照)。なお、前記熱プレス機の上方側の金属金型の下面(プレス面)には前記突起部に対応する短い凹溝が多数個穿設されている。また、前記熱プレス機による熱プレスでは、熱プレス機の上面側温度を160℃、下面側温度を70℃に設定した状態で約3分間加圧を行った。
 こうして得られた光拡散性基板(31)の凹凸形状面(34)は、突起部(32)の高さ(H)が150μm、突起部(32)の長辺の長さ(T)が800μm、長辺方向に隣り合う突起部同士の重心間距離(U)が1200μm、突起部(32)の短辺の長さ(L)が389μm、短辺方向に隣り合う突起部同士の重心間距離(F)が1650μm、ずれ距離(K)が600μmに設計された構成である(図4参照)。
 一方、集光性シートA(41)の集光性レンズ非形成面(平滑面)に両面粘着フィルムを貼合することにより集光性シートA(41)の片面に厚さ(M)20μmの粘着剤層(40)を積層し、粘着剤付き集光性シートを得た。
 前記光拡散性基板(31)の凹凸形状面(34)に前記粘着剤層(40)が接触するように光拡散性基板(31)と粘着剤付き集光性シート(41)を重ね合わせた後、これらを挟圧することによって、図2に示す断面形状を呈する光拡散板(3)を作製した。
 この集光層付き光拡散板(3)では、図2に示すように、粘着剤層(40)と光拡散性基板(31)の凹部(平坦部)(33)との間に厚さ(E)130μmの空気層(42)を形成することができた。
 <比較例1>
 共押出成形により得た光拡散性基板に対する熱プレス機を用いた突起部(32)の形成を行わなかった以外は、実施例1と同様にして光拡散板を作製した。この光拡散板では、光拡散性基板と集光性シートAとが粘着剤層により全面接着されており、光拡散性基板と集光性シートAとの間に空気層が存在しない。なお、共押出成形により得た光拡散性基板の表面(重ね合わせ面)の算術平均粗さRaは4.78μmであり、表面の凹凸の十点平均粗さRzは28.61μmであり、表面の凹凸の平均間隔Rsmは148μmであった。
 <比較例2>
 熱プレス機の上方側の金属金型の下面(プレス面)の凹溝の形状を変えることによって得た、基板の長手方向に沿って一端側から他端側に連続して延びる(長さ70mmの)シリンドリカルレンズ形状の突条部(突起部)(図5参照)が多数本平行状に突設形成された光拡散性基板(31)を用いた以外は、実施例1と同様にして光拡散板を作製した。
 なお、突条部の高さ(H)が150μm、突条部の短辺の長さ(L)が300μm、短辺方向に隣り合う突条部同士の重心間距離(F)が2250μmであった。
 <比較例3>
 熱プレス機の上方側の金属金型の下面(プレス面)の凹溝の形状を変えることによって得た、基板の長手方向に沿って一端側から他端側に連続して延びる(長さ70mmの)シリンドリカルレンズ形状の突条部(突起部)(図5参照)が多数本平行状に突設形成された光拡散性基板(31)を用いた以外は、実施例1と同様にして集光層付き光拡散板を作製した。
 なお、突条部の高さ(H)が150μm、突条部の短辺の長さ(L)が300μm、短辺方向に隣り合う突条部同士の重心間距離(F)が3250μmであった。
 上記のようにして作製された各光拡散板について下記評価法に従い評価を行った。これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 <平均輝度及び輝度均一度評価法>
 市販の20インチ型の液晶テレビから液晶パネル、各種光学フィルム及び光拡散板を取り外した後、ランプボックス(内部に複数本の蛍光管が相互に離間して配置されている)の縁枠部の前面に当接した状態に、上記で作製された光拡散板(実施例品・比較例品)を配置固定せしめてランプボックスの開放面を塞いだ。この光拡散板をセットした状態でその輝度を輝度測定計(株式会社アイ・システム製「Eye Scale−3WS」)を用いて測定した。輝度最小値を「C1」とし輝度最大値を「C2」としたとき、
輝度均一度(%)=(C1/C2)×100
上記式で求められる値を輝度均一度(%)とした。
 なお、前記輝度測定は、次のようにして行った。恒温恒湿(温度25.0℃、湿度50.0%)の暗室内の床面上に液晶テレビをその前面側を上面にして(背面が床面に当接するように)配置し、液晶テレビの前面の全面が写り込むように液晶テレビの上方位置にカメラを下向きに向けて配置した。この時、液晶テレビの前面からカメラまでの距離を65.0cmとし、輝度測定計の測定条件をSPEED:1/500、GAIN:5、絞り:16に設定して、液晶テレビの前面の中央部を中心とした60mm×60mmの範囲を測定スポットに指定して各測定スポット(2601箇所)での輝度をそれぞれ測定し、これら輝度の平均値を平均輝度(cd/m)とするとともに、これら測定値のうちの輝度最小値と輝度最大値から輝度均一度(%)を求めた。
 表1から明らかなように、本発明の実施例1の光拡散板を用いて構成された面光源装置では、正面方向(法線方向)において高い輝度が得られると共に輝度均一性にも優れていた。また、実施例1の光拡散板では、光拡散性基板と集光性シートとが粘着剤層を介して接合されているので、光拡散性基板と集光性シートとが擦れ合うことがなく、光拡散板に擦れ傷は生じない。
 これに対し、比較例1の光拡散板を用いて構成された面光源装置では、粘着剤の全面接着により光拡散性基板と集光性シートとの間に空気層が存在しないので、正面方向(法線方向)において輝度は格段に低いものであった。
 また、比較例2又は比較例3の光拡散板を用いて構成された面光源装置では、正面方向(法線方向)において輝度は得られなかった。
Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.
<Raw materials>
(Light diffusing substrate material)
Transparent resin A: Styrene resin (Toyo Styrene “HRM40”, refractive index 1.59)
Transparent resin B: MS resin (“MS200NT” manufactured by Nippon Steel Chemical Co., Ltd., refractive index 1.57, styrene / methyl methacrylate = 80 parts by mass / 20 parts by mass)
Light diffusing agent A: PMMA crosslinked particles (“SUMIPEX XC1A” manufactured by Sumitomo Chemical Co., Ltd., refractive index 1.49, volume average particle diameter 35 μm)
Light diffusing agent B: crosslinked siloxane-based polymer particles (“Torefill DY33-719” manufactured by Toray Dow Corning Co., Ltd., refractive index 1.42, volume average particle diameter 2 μm).
(Preparation of light diffusing agent master batch A)
52.0 parts by mass of the transparent resin A, 40.0 parts by mass of the light diffusing agent A, 4.0 parts by mass of the light diffusing agent B, and 2.0 of Sumisorb 200 (manufactured by Sumitomo Chemical Co., Ltd.) which is an ultraviolet absorber. After mass blending 2.0 parts by mass of Sumrizer GP (manufactured by Sumitomo Chemical Co., Ltd.), which is a heat stabilizer, this blend is put into a hopper of a 65 mm twin screw extruder, and melt-mixed in a cylinder. The pellet-shaped light diffusing agent masterbatch A was obtained by extruding into a strand and cutting. Extrusion was performed by setting the temperature in the cylinder so that the temperature gradually decreased from the lower part of the hopper (200 ° C.) to the vicinity of the extrusion die (250 ° C.) toward the downstream.
(Preparation of light diffusing agent master batch B)
78.8 parts by mass of the transparent resin B, 20.0 parts by mass of the light diffusing agent A, 1.0 part by mass of LA-31 (manufactured by Asahi Denka Kogyo Co., Ltd.) which is an ultraviolet absorber, and a smilizer which is a heat stabilizer After 0.2 parts by mass of GP (manufactured by Sumitomo Chemical Co., Ltd.) was dry blended, this blended product was put into a hopper of a 65 mm twin screw extruder, melted and mixed in a cylinder, and then extruded into strands and cut. A pellet-like light diffusing agent master batch B was obtained. Extrusion was performed by setting the temperature in the cylinder so that the temperature gradually decreased from the lower part of the hopper (200 ° C.) to the vicinity of the extrusion die (250 ° C.) toward the downstream.
(Condensable sheet A)
Thickness (C) made of transparent PET (polyethylene terephthalate) resin in which V-grooves with a depth (D) of 11.5 μm and a groove bottom opening angle of 90 degrees formed on one side with a pitch interval (P) of 23.0 μm A 60 μm film was used.
<Example 1>
After 97.0 parts by mass of transparent resin A and 5.0 parts by mass of light diffusing agent masterbatch A are dry blended, they are melt-kneaded with a first extruder having a temperature in the cylinder of 190 to 250 ° C. and supplied to the feed block did. On the other hand, the light diffusing agent master batch B was melt-kneaded by a second extruder having a temperature in the cylinder of 190 to 250 ° C. and supplied to the feed block.
The resin supplied from the first extruder to the feed block becomes an intermediate layer (base layer), and the resin supplied from the second extruder to the feed block becomes a surface layer (both sides). Co-extrusion molding from a manifold die and clamping and cooling with a polishing roll make a light diffusibility consisting of a 2.0 mm thick three-layer laminate (intermediate layer 1.9 mm, surface layer 0.05 mm × 2) A substrate (31) was produced.
Next, on the entire surface of one side of the obtained light diffusing substrate (31), a cylindrical lens-shaped protrusion (the cross-sectional shape is approximately the same) using a heat press (Shindo ASF hydraulic press, manufactured by Shindo Metal Industry Co., Ltd.). A plurality of semi-cylindrical protrusions) (32) were formed in a projecting manner as shown in FIG. 4 to obtain a light diffusing substrate (31) having a thickness (N) of 2.0 mm (FIG. 3, 4). Note that a number of short concave grooves corresponding to the protrusions are formed on the lower surface (press surface) of the metal mold on the upper side of the hot press machine. Moreover, in the heat press by the said hot press machine, pressurization was performed for about 3 minutes in the state which set the upper surface side temperature of the hot press machine to 160 degreeC, and set the lower surface side temperature to 70 degreeC.
In the uneven surface (34) of the light diffusing substrate (31) thus obtained, the height (H) of the protrusion (32) is 150 μm, and the length (T) of the long side of the protrusion (32) is 800 μm. The distance between the center of gravity (U) between the protrusions adjacent in the long side direction is 1200 μm, the length (L) of the short side of the protrusion (32) is 389 μm, and the distance between the center of gravity between the protrusions adjacent in the short side direction (F) is designed to be 1650 μm and the shift distance (K) is 600 μm (see FIG. 4).
On the other hand, by sticking a double-sided adhesive film to the non-condensing lens forming surface (smooth surface) of the condensing sheet A (41), a thickness (M) of 20 μm is formed on one side of the condensing sheet A (41). The pressure-sensitive adhesive layer (40) was laminated to obtain a light condensing sheet with pressure-sensitive adhesive.
The light diffusing substrate (31) and the pressure-sensitive condensing sheet (41) were overlapped so that the pressure-sensitive adhesive layer (40) was in contact with the uneven surface (34) of the light diffusing substrate (31). Thereafter, a light diffusing plate (3) having a cross-sectional shape shown in FIG.
In this light diffusing plate (3) with a condensing layer, as shown in FIG. 2, the thickness (between the adhesive layer (40) and the concave portion (flat portion) (33) of the light diffusing substrate (31) ( E) An air layer (42) of 130 μm could be formed.
<Comparative Example 1>
A light diffusing plate was produced in the same manner as in Example 1 except that the protrusion (32) was not formed on the light diffusing substrate obtained by coextrusion molding using a hot press. In this light diffusing plate, the light diffusing substrate and the light collecting sheet A are bonded together by the adhesive layer, and there is no air layer between the light diffusing substrate and the light collecting sheet A. The arithmetic average roughness Ra of the surface (superimposed surface) of the light diffusing substrate obtained by coextrusion molding is 4.78 μm, and the ten-point average roughness Rz of the surface irregularities is 28.61 μm. The average interval Rsm of the unevenness was 148 μm.
<Comparative example 2>
Extending continuously from one end side to the other end side along the longitudinal direction of the substrate obtained by changing the shape of the groove on the lower surface (press surface) of the metal mold on the upper side of the hot press machine (length 70 mm) The light diffusing substrate (31) in which a number of cylindrical lens-shaped protrusions (protrusions) (see FIG. 5) are formed in a projecting manner in a parallel manner is used in the same manner as in Example 1. A diffusion plate was produced.
The height (H) of the ridge is 150 μm, the length (L) of the short side of the ridge is 300 μm, and the distance between the centers of gravity (F) between the ridges adjacent in the short side direction is 2250 μm. It was.
<Comparative Example 3>
Extending continuously from one end side to the other end side along the longitudinal direction of the substrate obtained by changing the shape of the groove on the lower surface (press surface) of the metal mold on the upper side of the hot press machine (length 70 mm) (Ii) Except for using a light diffusing substrate (31) in which a large number of cylindrical lens-shaped protrusions (protrusions) (see FIG. 5) are formed in a projecting manner in parallel, they are collected in the same manner as in Example 1. A light diffusion plate with a light layer was prepared.
The height (H) of the ridges was 150 μm, the length (L) of the short sides of the ridges was 300 μm, and the distance between the centers of gravity (F) between the ridges adjacent in the short side direction was 3250 μm. It was.
Each light diffusion plate produced as described above was evaluated according to the following evaluation method. These results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
<Evaluation method of average brightness and brightness uniformity>
After removing the liquid crystal panel, various optical films, and the light diffusing plate from the commercially available 20-inch type liquid crystal television, the edge frame of the lamp box (in which a plurality of fluorescent tubes are arranged apart from each other) The light diffusing plate (Example product / Comparative product) produced above was placed and fixed in a state where it was in contact with the front surface, thereby closing the open surface of the lamp box. The luminance was measured using a luminance meter (“Eye Scale-3WS” manufactured by I-System Co., Ltd.) with the light diffusing plate set. When the minimum luminance value is “C1” and the maximum luminance value is “C2”,
Brightness uniformity (%) = (C1 / C2) × 100
The value obtained by the above formula was defined as the luminance uniformity (%).
The luminance measurement was performed as follows. A liquid crystal television is placed on the floor in a dark room of constant temperature and humidity (temperature 25.0 ° C, humidity 50.0%) with the front side facing up (the back is in contact with the floor). The camera was placed face down on the upper position of the LCD TV so that the entire front surface of the TV was captured. At this time, the distance from the front surface of the liquid crystal television to the camera is set to 65.0 cm, the measurement conditions of the luminance meter are set to SPEED: 1/500, GAIN: 5, aperture: 16, and the central portion of the front surface of the liquid crystal television is set. The luminance at each measurement spot (2601 places) is measured by designating a range of 60 mm × 60 mm centering on the measurement spot, and the average value of these luminances is set as the average luminance (cd / m 2 ). The luminance uniformity (%) was obtained from the minimum luminance value and the maximum luminance value among the measured values.
As is apparent from Table 1, the surface light source device configured using the light diffusion plate of Example 1 of the present invention has high luminance in the front direction (normal direction) and excellent luminance uniformity. It was. Further, in the light diffusing plate of Example 1, the light diffusing substrate and the light condensing sheet are bonded via the adhesive layer, so that the light diffusing substrate and the light condensing sheet do not rub against each other, The light diffusing plate is not rubbed.
In contrast, in the surface light source device configured using the light diffusing plate of Comparative Example 1, there is no air layer between the light diffusing substrate and the light collecting sheet due to the entire adhesion of the pressure-sensitive adhesive. In (normal direction), the luminance was remarkably low.
Moreover, in the surface light source device comprised using the light diffusing plate of the comparative example 2 or the comparative example 3, the brightness | luminance was not obtained in the front direction (normal line direction).
 本発明の光拡散板は、面光源装置用の光拡散板として好適に用いられるが、特にこのような用途に限定されるものではない。また、本発明の面光源装置は、液晶表示装置用のバックライトとして好適に用いられるが、特にこのような用途に限定されるものではない。 The light diffusing plate of the present invention is suitably used as a light diffusing plate for a surface light source device, but is not particularly limited to such applications. The surface light source device of the present invention is preferably used as a backlight for a liquid crystal display device, but is not particularly limited to such applications.
1…面光源装置
2…光源
3…光拡散板
20…液晶パネル
30…液晶表示装置
31…光拡散性基板
32…突起部
33…凹部
34…凹凸形状面
35…長辺
36…短辺
40…粘着剤層
41…集光性シート
42…空気層
G…突起部の重心
T…突起部の底面における長辺の長さ
L…突起部の底面における短辺の長さ
U…長辺方向に隣り合う突起部同士の重心間距離
F…短辺方向に隣り合う突起部同士の重心間距離
K…ずれ距離(長辺方向)
DESCRIPTION OF SYMBOLS 1 ... Surface light source device 2 ... Light source 3 ... Light diffusing plate 20 ... Liquid crystal panel 30 ... Liquid crystal display device 31 ... Light diffusable board | substrate 32 ... Projection part 33 ... Concave-shaped surface 35 ... Long side 36 ... Short side 40 ... Adhesive layer 41 ... Light condensing sheet 42 ... Air layer G ... Center of gravity T of projection part ... Length L of the long side at the bottom surface of the projection part ... Length U of the short side at the bottom surface of the projection part ... Adjacent to the long side direction Distance between center of gravity F of matching protrusions ... Distance between center of gravity K of protrusions adjacent in the short side direction ... Displacement distance (long side direction)

Claims (7)

  1.  集光性シートおよび光拡散性基板からなる光拡散板であり、
     該集光性シートは集光性レンズ形成面と集光性レンズ非形成面とを有し、
     該光拡散性基板の片面は、複数個の突起部が形成され、隣り合う突起部の間に凹部が設けられている凹凸形状面であり、
     前記突起部は、平面視において一対の長辺と一対の短辺を有する略矩形形状であり、前記突起部の底面における長辺の長さが0.8mm~2.5mmであり、前記突起部の底面における短辺の長さが50μm~500μmであり、
     前記光拡散性基板の凹凸形状面の突起部と前記集光性シートの集光性レンズ非形成面が粘着剤層を介して接合されることによって前記光拡散性基板と前記集光性シートとが積層一体化され、前記粘着剤層と前記光拡散性基板の凹凸形状面の凹部との間に空気層が形成されている光拡散板。
    A light diffusing plate comprising a light collecting sheet and a light diffusing substrate,
    The condensing sheet has a condensing lens forming surface and a condensing lens non-forming surface,
    One surface of the light diffusing substrate is a concavo-convex shape surface in which a plurality of protrusions are formed and a recess is provided between adjacent protrusions,
    The protrusion has a substantially rectangular shape having a pair of long sides and a pair of short sides in plan view, and the length of the long side on the bottom surface of the protrusion is 0.8 mm to 2.5 mm. The length of the short side at the bottom of the substrate is 50 μm to 500 μm,
    The light diffusing substrate and the light condensing sheet are bonded to each other by bonding the projections on the concavo-convex shape surface of the light diffusing substrate and the condensing lens non-forming surface of the light condensing sheet via an adhesive layer. Are laminated and integrated, and a light diffusion plate in which an air layer is formed between the pressure-sensitive adhesive layer and the concave portion of the concave-convex shape surface of the light-diffusing substrate.
  2.  前記複数個の突起部が、長さ方向において、互いに略平行状である請求項1に記載の光拡散板。 The light diffusing plate according to claim 1, wherein the plurality of protrusions are substantially parallel to each other in the length direction.
  3.  長辺方向に隣り合う前記突起部は互いに一定間隔で離間しており、短辺方向に隣り合う前記突起部は互いに一定間隔で離間している請求項2に記載の光拡散板。 The light diffusing plate according to claim 2, wherein the protrusions adjacent in the long side direction are spaced apart from each other at a constant interval, and the protrusions adjacent in the short side direction are spaced apart from each other at a constant interval.
  4.  長辺方向に隣り合う前記突起部同士の重心間距離をUとしたとき、
     長辺方向に一列を形成する突起部群における突起部の重心位置は、該突起部群に対し短辺方向に隣り合う隣接突起部群を構成する複数の突起部のうち最も近い突起部の重心位置から、長辺方向においてU/2.2~U/1.8の距離離れている請求項3に記載の光拡散板。
    When the distance between the centers of gravity of the protrusions adjacent in the long side direction is U,
    The position of the center of gravity of the protrusion in the protrusion group that forms a line in the long side direction is the center of gravity of the closest protrusion among the plurality of protrusions constituting the adjacent protrusion group adjacent to the protrusion group in the short side direction. The light diffusing plate according to claim 3, wherein the light diffusing plate is separated from the position by a distance of U / 2.2 to U / 1.8 in the long side direction.
  5.  長辺方向に隣り合う前記突起部同士の重心間距離をUとし、前記突起部の底面における長辺の長さをTとしたとき、
     1.3≦U/T≦2.2
    の関係式が成立し、
     短辺方向に隣り合う前記突起部同士の重心間距離をFとし、前記突起部の底面における短辺の長さをLとしたとき、Fは400μm以上5.0mm以下であり、
     8.0≦F/L
    の関係式が成立する請求項3または4に記載の光拡散板。
    When the distance between the centers of gravity of the protrusions adjacent to each other in the long side direction is U, and the length of the long side on the bottom surface of the protrusion is T,
    1.3 ≦ U / T ≦ 2.2
    Is established,
    When the distance between the centers of gravity of the protrusions adjacent to each other in the short side direction is F and the length of the short side on the bottom surface of the protrusion is L, F is 400 μm or more and 5.0 mm or less,
    8.0 ≦ F / L
    The light diffusing plate according to claim 3 or 4, wherein the following relational expression is satisfied.
  6.  請求項1~5のいずれか1項に記載の光拡散板と、該光拡散板の背面側に配置された複数の光源とを備え、前記集光性シートが前面側になるように前記光拡散板が配置されている面光源装置。 A light diffusing plate according to any one of claims 1 to 5 and a plurality of light sources arranged on a back side of the light diffusing plate, wherein the light condensing sheet is on the front side. A surface light source device in which a diffusion plate is disposed.
  7.  請求項1~5のいずれか1項に記載の光拡散板と、該光拡散板の背面側に配置された複数の光源と、前記光拡散板の前面側に配置された液晶パネルとを備え、前記集光性シートが前面側になるように前記光拡散板が配置されている液晶表示装置。 6. A light diffusing plate according to claim 1, a plurality of light sources arranged on the back side of the light diffusing plate, and a liquid crystal panel arranged on the front side of the light diffusing plate. The liquid crystal display device in which the light diffusing plate is arranged so that the light-collecting sheet is on the front side.
PCT/JP2009/071877 2008-12-25 2009-12-24 Light-diffusing plate with light-collecting layer WO2010074336A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008329121A JP2010152033A (en) 2008-12-25 2008-12-25 Light diffusion plate with light condensing layer
JP2008-329121 2008-12-25

Publications (1)

Publication Number Publication Date
WO2010074336A1 true WO2010074336A1 (en) 2010-07-01

Family

ID=42287919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071877 WO2010074336A1 (en) 2008-12-25 2009-12-24 Light-diffusing plate with light-collecting layer

Country Status (3)

Country Link
JP (1) JP2010152033A (en)
TW (1) TW201040586A (en)
WO (1) WO2010074336A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5853825B2 (en) * 2012-03-29 2016-02-09 Jsr株式会社 Top sheet for photoelectric conversion device, photoelectric conversion device, mold, and top sheet manufacturing device for photoelectric conversion device
JP2015219422A (en) * 2014-05-19 2015-12-07 Nltテクノロジー株式会社 Optical member and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292790A (en) * 1999-02-04 2000-10-20 Keiwa Inc Light diffusion sheet and back light unit using same
JP2002148417A (en) * 2000-11-08 2002-05-22 Dainippon Printing Co Ltd Optical sheet, method for manufacturing the same, surface light source device and display device
JP2005527864A (en) * 2002-05-28 2005-09-15 スリーエム イノベイティブ プロパティズ カンパニー Multifunction optical assembly
WO2007026776A1 (en) * 2005-08-30 2007-03-08 Mitsubishi Rayon Co., Ltd. Light deflection sheet and its manufacturing method
JP2009229877A (en) * 2008-03-24 2009-10-08 Sumitomo Chemical Co Ltd Light diffusion plate with light condensing layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292790A (en) * 1999-02-04 2000-10-20 Keiwa Inc Light diffusion sheet and back light unit using same
JP2002148417A (en) * 2000-11-08 2002-05-22 Dainippon Printing Co Ltd Optical sheet, method for manufacturing the same, surface light source device and display device
JP2005527864A (en) * 2002-05-28 2005-09-15 スリーエム イノベイティブ プロパティズ カンパニー Multifunction optical assembly
WO2007026776A1 (en) * 2005-08-30 2007-03-08 Mitsubishi Rayon Co., Ltd. Light deflection sheet and its manufacturing method
JP2009229877A (en) * 2008-03-24 2009-10-08 Sumitomo Chemical Co Ltd Light diffusion plate with light condensing layer

Also Published As

Publication number Publication date
TW201040586A (en) 2010-11-16
JP2010152033A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP2009229877A (en) Light diffusion plate with light condensing layer
US7932967B2 (en) Brightness enhancement film-laminated light diffuser plate and method for producing the same
KR100885608B1 (en) Multi-layered light diffusion plate and liquid crystal display device comprising the same
US20090262428A1 (en) Light diffusing sheet and backlight unit using the light diffusing sheet
US20070171671A1 (en) Light diffusing sheet and backlight unit using the light diffusing sheet
WO2006137459A1 (en) Light diffusing plate and lighting device using it
WO2007049515A1 (en) Light transmitting resin board
TWI710830B (en) Laminated sheet, liquid crystal display module, backlight unit and manufacturing method of laminated sheet
KR100808328B1 (en) Light Diffusing Plate
US20090296024A1 (en) Light diffuser plate with primer layer, process for producing the same, laminated optical member, surface light source apparatus and liquid crystal display
NL1036150C2 (en) Light diffuser plate with light-collecting layer.
KR20080047305A (en) Light diffuser plate, surface emission light source apparatus and liquid crystal display
JP4350739B2 (en) Light diffusing plate, surface light source device, and liquid crystal display device
JP2012108498A (en) Light-diffusing plate and method for manufacturing light-diffusing plate
JP2011107689A (en) Light diffusion plate, surface light source device, liquid crystal display device and method of producing surface shape transfer resin sheet
WO2010074336A1 (en) Light-diffusing plate with light-collecting layer
WO2012070467A1 (en) Light diffusion plate, surface light source device, liquid crystal display device, and method for producing surface profile transfer resin sheet
US20090129059A1 (en) Light collecting sheet-laminated light diffuser plate
JP4992280B2 (en) Liquid crystal display
JP4933322B2 (en) Light diffusing plate, surface light source device, and liquid crystal display device
JP2008233708A (en) Diffusion plate with double-sided configuration
WO2012002183A1 (en) Liquid crystal display device and multilayer optical member
JP2012145951A (en) Liquid crystal display device
JP6280302B2 (en) Light diffusion plate
KR20090059545A (en) Diffusion plate, backlight device comprising the same, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09835117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09835117

Country of ref document: EP

Kind code of ref document: A1