WO2010074188A1 - Light diffusion plate, surface light source device, and liquid crystal display device - Google Patents

Light diffusion plate, surface light source device, and liquid crystal display device Download PDF

Info

Publication number
WO2010074188A1
WO2010074188A1 PCT/JP2009/071513 JP2009071513W WO2010074188A1 WO 2010074188 A1 WO2010074188 A1 WO 2010074188A1 JP 2009071513 W JP2009071513 W JP 2009071513W WO 2010074188 A1 WO2010074188 A1 WO 2010074188A1
Authority
WO
WIPO (PCT)
Prior art keywords
light diffusing
diffusing plate
propylene resin
light
liquid crystal
Prior art date
Application number
PCT/JP2009/071513
Other languages
French (fr)
Japanese (ja)
Inventor
濱松豊博
井山浩暢
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2010074188A1 publication Critical patent/WO2010074188A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays

Definitions

  • the present invention relates to a light diffusing plate having excellent heat resistance and capable of suppressing thermal deformation, and a surface light source device and a liquid crystal display device configured using the light diffusing plate.
  • a configuration in which a surface light source device is disposed as a backlight on the back side of a liquid crystal panel (image display unit) including a liquid crystal cell is known.
  • a surface light source device for the backlight a surface light source device having a configuration in which a plurality of light sources are disposed in a lamp box (housing) and a light diffusion plate is disposed on the front side of these light sources is known.
  • a lamp box housing
  • a light diffusion plate is disposed on the front side of these light sources.
  • the light diffusing plate used in the surface light source device as described above it is required to be lighter, hard to break, not to be deformed by heat from the light source, moisture, etc., acrylic resin or polycarbonate
  • acrylic resin or polycarbonate The above-mentioned conventional light diffusing plate made of a resin cannot satisfy all of the required characteristics.
  • the present applicant has found that if a propylene resin is used as a constituent resin, it is possible to provide a light diffusing plate that is lighter, has sufficient strength, and is not easily deformed by heat or moisture (Japanese Patent Laid-Open No. 2008-2008). -83660 (see Patent Document 2)).
  • a light diffusing plate used for the backlight is required to have a further excellent heat resistance.
  • An object of this invention is to provide the light diffusing plate which is excellent in intensity
  • the present invention provides the following means. [1] A light diffusion plate made of propylene resin having a tacticity of 95% or more.
  • a light diffusing plate comprising a resin composition containing 100 parts by mass of a propylene resin having a tacticity of 95% or more and 0.01 part by mass to 2.0 parts by mass of a nucleating agent.
  • the propylene resin has a melt flow rate of 0.5 g / 10 min to 30 g / 10 min measured under the conditions of a test temperature: 230 ° C. and a test load: 3.8 kg in accordance with JIS K7210-1999. 3.
  • a surface light source device comprising the light diffusing plate according to any one of items 1 to 3 and a plurality of light sources arranged on a back side of the light diffusing plate.
  • a liquid crystal display device comprising:
  • the light diffusing plate according to the invention of [1] contains a propylene resin having a tacticity of 95% or more, and therefore has high strength and excellent heat resistance. Deformation can be suppressed. That is, by improving both strength and heat resistance, thermal deformation is suppressed even under severe thermal conditions. Therefore, the obtained light diffusing plate can cope with an increase in the size, thickness and brightness of the surface light source device.
  • the light diffusion plate according to the invention of [2] is composed of a resin composition containing 100 parts by mass of a propylene resin having a tacticity of 95% or more and 0.01 part by mass to 2.0 parts by mass of a nucleating agent. It has high strength and excellent heat resistance, can suppress thermal deformation even under severe heat conditions, and can obtain a light diffusing plate with a good appearance by containing a specific amount of a nucleating agent. Therefore, the obtained light diffusing plate can cope with an increase in size, thickness and brightness of the surface light source device.
  • the melt flow rate of the propylene resin constituting the light diffusing plate is 0.5 to 30 g / 10 min, there is an advantage that it is easy to mold and the productivity can be further improved.
  • a light diffusing plate that can suppress thermal deformation even under severe thermal conditions is used, so that a high-quality surface light source device excellent in durability is provided.
  • a light diffusing plate that can suppress thermal deformation even under severe thermal conditions is used, so that a high-quality liquid crystal display device excellent in durability is provided.
  • FIG. 1 is a schematic view showing an embodiment of a liquid crystal display device according to the present invention.
  • FIG. 2 is a cross-sectional view showing an example of the concavo-convex shape formed on the surface of the light diffusion plate.
  • FIG. 3 is a cross-sectional view showing another example of the uneven shape formed on the surface of the light diffusion plate.
  • FIG. 4 is a perspective view showing another example of a substantially semicircular convex portion.
  • FIG. 5 is a cross-sectional view showing still another example of the uneven shape formed on the surface of the light diffusion plate.
  • FIG. 6 is a perspective view showing the substantially triangular convex portion of FIG.
  • FIG. 7 is a perspective view showing another example of the substantially triangular convex portion.
  • FIG. 1 An embodiment of a liquid crystal display device according to the present invention is shown in FIG.
  • (30) is a liquid crystal display device
  • (11) is a liquid crystal cell
  • (12) and (13) are polarizing plates
  • (1) is a surface light source device (backlight).
  • Polarizing plates (12) and (13) are respectively arranged on the upper and lower sides of the liquid crystal cell (11), and a liquid crystal panel (20) as an image display unit is constituted by these constituent members (11), (12) and (13).
  • the liquid crystal cell (11) those capable of displaying a color image are preferably used.
  • the said surface light source device (1) is arrange
  • this liquid crystal display device (30) is a direct liquid crystal display device.
  • the surface light source device (1) is a thin box-shaped lamp box (5) having a rectangular shape in plan view and having an upper surface side (front surface side) opened, and the lamp box (5) spaced apart from each other.
  • a light diffusion plate (3) disposed on the upper side (front side) of the plurality of light sources (2).
  • the said light diffusing plate (3) is mounted and fixed with respect to the said lamp box (5) so that the open surface may be block
  • a light reflecting layer (not shown) is provided on the inner surface of the lamp box (5).
  • the light diffusing plate (3) is made of a propylene resin having a tacticity of 95% or more.
  • the light diffusing plate (3) is made of a resin composition in which light diffusing particles and / or a nucleating agent are dispersed in a propylene resin having a tacticity of 95% or more.
  • the light diffusing plate (3) Since the light diffusing plate (3) according to the above configuration uses propylene resin as a constituent resin, it is lightweight, excellent in mechanical strength and hard to break, and excellent in heat resistance and moisture resistance due to heat and moisture. Difficult to deform. In addition, since propylene resin having a tacticity of 95% or more is used, the light diffusion plate (3) has high mechanical strength and excellent heat resistance, and therefore under severe heat conditions. Can suppress thermal deformation of the light diffusion plate (3). That is, by improving both the mechanical strength and heat resistance of the light diffusing plate (3), the thermal deformation of the light diffusing plate (3) is suppressed by these synergistic effects even under severe heat conditions.
  • the surface light source device (1) is increased in size, thickness, and brightness, thermal deformation of the light diffusing plate (3) is suppressed, and the surface light source device (1) is of high quality.
  • the propylene resin constituting the light diffusion plate (3) one having a tacticity of 95% or more is used. By using a propylene resin having a tacticity of 95% or more, both the strength and heat resistance of the light diffusion plate (3) can be improved, and the heat of the light diffusion plate (3) can be improved even under severe heat conditions. Deformation can be suppressed.
  • the tacticity means triad isotacticity (mm triad fraction) (unit:%) measured by 13 C-NMR. The larger this value (%), the better the stereoregularity of the methyl group arrangement of the propylene resin (ie, the higher the isotacticity). For example, in the case of 100% mm triad fraction, It shows that it is an isotactic polypropylene with methyl groups attached to the same side (the same configuration with respect to the polymer backbone of all methyl groups).
  • syndiotactic polypropylene in which the steric configurations of adjacent methyl groups are all reversed has a triad isotacticity (mm triad fraction) of 0%.
  • the tacticity (mm triad fraction) is measured as follows. That is, the propylene resin to be measured is dissolved by heating in a mixed solvent of orthodichlorobenzene / orthodichlorobenzene-d4, and 13 C-NMR of this solution is measured. In the 13 C-NMR spectrum obtained by measurement, “mm”, “mr”, and “rr” peaks are identified.
  • the value (%) calculated by the above formula is tacticity (mm triad fraction).
  • the light diffusing plate (3) is preferably composed of a resin composition containing 100 parts by mass of a propylene resin having a tacticity of 95% or more and 0.01 parts by mass to 2.0 parts by mass of a nucleating agent.
  • the content of the nucleating agent is 0.01 parts by mass or more, appearance of white spots and the like on the surface can be suppressed, and a light diffusing plate having a good appearance can be obtained, and 2.0 parts by mass or less. Therefore, it is possible to suppress a decrease in optical characteristics and an increase in cost due to poor dispersion of the nucleating agent.
  • the content of the nucleating agent is more preferably 0.02 to 1.5 parts by mass, and 0.03 to 1.0 parts by mass with respect to 100 parts by mass of propylene resin having a tacticity of 95% or more. Part is particularly preferred.
  • the nucleating agent is not particularly limited, and examples thereof include sorbitol nucleating agents, organophosphate nucleating agents, carboxylic acid metal salt nucleating agents, and rosin nucleating agents. It is done.
  • the sorbitol nucleating agent include dibenzylidene sorbitol, 1,3: 2,4-di (methylbenzylidene) sorbitol, 1,3: 2,4-di (ethylbenzylidene) sorbitol, 1,3: 2, 4-di (butylbenzylidene) sorbitol, 1,3: 2,4-di (methoxybenzylidene) sorbitol, 1,3: 2,4-di (ethoxybenzylidene) sorbitol, 1,3-chlorobenzylidene-2,4- Examples thereof include methylbenzylidene sorbitol, mono (methyl) dibenzylidene sorbitol, 1,3: 2,4-bis
  • organic phosphate nucleating agent examples include sodium bis (4-t-butylphenyl) phosphate, lithium bis (4-t-butylphenyl) phosphate, and bis (4-t-butylphenyl).
  • Aluminum phosphate 2,2′-methylene-bis (4,6-di-t-butylphenyl) phosphate sodium salt, 2,2′-methylene-bis (4,6-di-t-butylphenyl) Lithium phosphate, 2,2′-methylene-bis (4,6-di-t-butylphenyl) aluminum phosphate, 2,2′-methylidene-bis (4,6-di-t-butylphenyl) Calcium phosphate, 2,2′-ethylidene-bis (4,6-di-t-butylphenyl) phosphate sodium salt, 2,2′-ethylidene-bis (4,6-di-t-butylphenyl) phosphate Lithium salt,
  • carboxylic acid metal salt nucleating agent examples include aluminum benzoate, potassium benzoate, sodium benzoate, lithium benzoate, aluminum di-para-t-butylbenzoate, titanium di-para-t-butylbenzoate. , Chromium di-para-t-butylbenzoate, aluminum hydroxy-di-t-butylbenzoate, aluminum-p-butylbenzoate, sodium ⁇ -naphthoate, aluminum adipate, sodium sebacate, potassium sebacate, sebacic acid Aluminum and the like are listed, and examples of commercially available products include “AL-PTBBA” sold by Japan Chemtech. Examples of the rosin nucleating agent include rosin acid metal salts.
  • rosin acid metal salts include sodium rosin acid salt, potassium rosin acid salt, magnesium rosin acid salt, and the like. Examples thereof include “Pine Crystal KM-1300”, “Pine Crystal KM-1500”, and “Pine Crystal KR-50M” sold by Arakawa Chemical Industries.
  • a propylene resin which comprises the said light diffusing plate (3) based on JISK7210-1999, the melt flow rate (MFR) measured on condition of test temperature: 230 degreeC and test load: 3.8kg is. It is preferable to use a propylene resin having a weight of 0.5 g / 10 min to 30 g / 10 min.
  • the MFR is 0.5 g / 10 min or more, the amount of extrusion per unit time during extrusion molding can be increased, and when the MFR is 30 g / 10 min or less, molding becomes easy.
  • a propylene resin having a melt flow rate of 1.0 g / 10 min to 10 g / 10 min.
  • the propylene resin may be a homopolypropylene obtained by polymerizing propylene alone, or may be a copolymer of propylene and a copolymerizable component that can be copolymerized therewith.
  • the content of propylene units in the propylene resin is preferably 75% by mass or more in that sufficient rigidity is obtained.
  • the copolymer component is not particularly limited, and examples thereof include ⁇ -olefins such as ethylene and 1-butene.
  • the propylene resin preferably has a propylene unit content of 75 to 100% by mass, an ethylene unit content of 0 to 15% by mass, and a 1-butene unit content of 0 to 25% by mass.
  • the propylene resin is more preferably composed of a propylene unit content of 95 to 100% by mass, an ethylene unit content of 0 to 5% by mass, and a 1-butene unit content of 0 to 5% by mass.
  • the propylene resin includes a propylene unit content of 99 to 100% by mass, an ethylene unit content of 0 to 1% by mass, and a 1-butene unit content of 0 to 1% by mass (including homopolypropylene).
  • the light diffusing particle is not particularly limited as long as it is a particle having a refractive index different from that of the propylene resin and can diffuse light transmitted through a light diffusing plate containing the particle.
  • it may be inorganic particles such as glass particles, glass fibers, silica particles, aluminum hydroxide particles, calcium carbonate particles, barium sulfate particles, titanium oxide particles, talc, styrene polymer particles, acrylic polymers.
  • Organic particles such as particles and siloxane polymer particles may be used.
  • the light diffusing particles those having a volume average particle diameter in the range of 0.5 ⁇ m to 25 ⁇ m are usually used. Among these, a preferable lower limit value of the volume average particle diameter is 0.7 ⁇ m, and a preferable upper limit value of the volume average particle diameter is 20 ⁇ m, and a particularly preferable upper limit value is 10 ⁇ m.
  • the volume average particle size (D 50 ) is determined by measuring the particle size and volume of all particles, integrating the volume sequentially from the smallest particle size, and the integrated volume is 50% of the total volume of all particles. The particle diameter of the resulting particles.
  • the content of the light diffusing particles in the light diffusing plate (3) is preferably set in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the propylene resin.
  • the propylene resin or the resin composition constituting the light diffusion plate (3) is optionally provided with an ultraviolet absorber, a heat stabilizer, an antioxidant, a weathering agent, a light stabilizer, a fluorescent whitening agent, and a processing stabilizer. Such additives may be included.
  • the light diffusing plate (3) of this invention can be manufactured as follows, for example.
  • Extrusion method for extrusion molding injection molding method for injection molding, hot press for hot pressing, a resin composition in which light diffusing particles and / or nucleating agents are dispersed in propylene resin having a tacticity of 95% or more It can be produced by a known molding method such as a method.
  • the said manufacturing method is only what showed the example, and the light diffusing plate (3) of this invention is not limited to what was manufactured with such a manufacturing method.
  • the thickness of the light diffusing plate (3) is usually set in the range of 0.1 mm to 3 mm, preferably 0.5 mm to 3 mm.
  • the size of the light diffusing plate (3) is not particularly limited, and is appropriately set according to the size of the target surface light source device (1) or liquid crystal display device (30), for example.
  • the surface (one side or both sides) of the light diffusing plate (3) according to the present invention may be a flat surface as shown in FIG. 1 or may have an irregular shape such as a prism shape.
  • FIG. 2 an example of the uneven
  • a concavo-convex shape in which the cross-sectional shape is a triangular convex portion (V-shaped groove) is adopted.
  • V-shaped groove a concavo-convex shape in which the cross-sectional shape is a triangular convex portion
  • adjacent triangular convex portions (71) are formed in a continuous manner without any interval (in other words, adjacent V-shaped grooves (72) are formed in a continuous shape).
  • the configuration is not particularly limited to such a configuration, and adjacent triangular convex portions may be configured to be discontinuous with an interval (d 1 ).
  • the pitch interval (P 1 ) of the triangular protrusions (71) is preferably in the range of 30 ⁇ m to 500 ⁇ m.
  • the height (H 1 ) of the triangular convex portion (71) is preferably in the range of 30 ⁇ m to 500 ⁇ m.
  • the spacing distance (d 1 : not shown) between the adjacent triangular protrusions (71) is preferably in the range of 1 ⁇ m to 10 ⁇ m.
  • the apex angle ( ⁇ ) of the apex of the triangular convex portion (71) is preferably 10 to 100 °, and more preferably 10 to 90 °.
  • FIG. 3 shows another example of the uneven shape formed on the surface (one side or both sides) (6b) of the light diffusion plate (3).
  • an uneven shape including a substantially semicircular convex portion (81) having a substantially semicircular cross-sectional shape is employed.
  • adjacent semi-circular protrusions (81) are formed in a discontinuous manner with an interval (d 2 ), but are not particularly limited to such a configuration.
  • the pitch interval (P 2 ) of the substantially semicircular protrusions (81) is preferably in the range of 30 ⁇ m to 500 ⁇ m.
  • the height (H 2 ) of the substantially semicircular protrusion (81) is preferably in the range of 30 ⁇ m to 500 ⁇ m.
  • the spacing (d 2 ) between the adjacent substantially semicircular convex portions (81) is preferably in the range of 1 ⁇ m to 10 ⁇ m.
  • the substantially semicircular convex portion (81) includes not only those having a semicircular cross-sectional shape as shown in FIG. 3, but also a cylindrical body such as a cylindrical lens (82) shown in FIG.
  • the cross section may be in the shape of any arc of the cross section when cut by a plane that is parallel to the central axis and does not include the central axis.
  • the cross section may be a semi-elliptical arc or a semi-elliptical arc. It may be a part of a flat curved shape or the like.
  • the uneven shape formed on the surface (one side or both sides) (6b) of the light diffusing plate (3) may be a shape provided with a substantially semicircular concave groove in which the substantially semicircular convex portion is inverted. Good.
  • the substantially semi-circular groove includes those having a semicircular cross-sectional shape, and also, for example, a cylindrical body, such as a cylindrical lens, cut along a plane that is parallel to the central axis and does not include the central axis.
  • the cross section may have any arc shape, or the cross section may have a semi-elliptical arc shape, a flat curved shape that is a part of the semi-elliptical arc shape, or the like.
  • FIG. 5 the further another example of the uneven
  • 6b the further another example of the uneven
  • the left and right hypotenuses in the cross-sectional shape of the substantially triangular convex portion (91) are both straight at the tip side and curved at the base end side (bottom side) (curved bulging sideways at the center). That is, the left and right slopes of the substantially triangular convex portion (91) are composed of a straight portion (92) on the distal end side and a curved portion (93) on the proximal end side.
  • the adjacent substantially triangular protrusions (91) are formed in a discontinuous manner with an interval (d 3 ), but are not particularly limited to such a configuration and are adjacent to each other.
  • the pitch interval (P 3 ) of the substantially triangular convex portions (91) is preferably in the range of 30 ⁇ m to 500 ⁇ m.
  • the height (H 3 ) of the substantially triangular convex portion (91) is preferably in the range of 30 ⁇ m to 500 ⁇ m.
  • the spacing (d 3 ) between the adjacent substantially triangular convex portions (91) is in the range of 1 ⁇ m to 10 ⁇ m.
  • the apex angle ( ⁇ ) of the substantially triangular convex portion (91) is preferably 10 ° to 100 °, and more preferably 10 ° to 90 °.
  • the curve of the curved portion (93) may be, for example, an arc-shaped part or an elliptical arc-shaped part.
  • the arc-shaped part for example, a cylindrical lens having a circular arc shape in a cross section when the cylindrical body is cut by a plane that is parallel to the central axis and does not include the central axis, etc. Is mentioned.
  • the substantially triangular convex portion (91) is a slope formed by connecting the proximal-side curved portion (93) to the distal-side straight portion (92).
  • the present invention is not particularly limited to such a configuration.
  • a slope having only a curved portion (93) without a straight portion is provided.
  • a configuration may be adopted.
  • the pitch interval (P 1 ) (P 2 ) (P 3 ) of the concavo-convex convex portions does not necessarily have to be constant over the entire light diffusing plate (3), and the convex portions adjacent to each other partially or entirely.
  • (71) (81) (91) may be different.
  • the height (H 1 ) (H 2 ) (H 3 ) of the concavo-convex convex portions does not necessarily have to be constant over the entire light diffusion plate (3), and is partially or entirely adjacent. You may differ between convex parts (71) (81) (91). Similarly, the apex angle ( ⁇ ) ( ⁇ ) and the interval (d 1 ) (d 2 ) (d 3 ) of the concavo-convex shape do not necessarily have to be constant throughout the light diffusion plate (3). Alternatively, the protrusions (71) (81) (91) which are adjacent to each other may be different.
  • the light diffusing plate (3), the surface light source device (1), and the liquid crystal display device (30) according to the present invention are not particularly limited to those of the above-described embodiment, and the spirit is within the scope of the claims. Any design changes are allowed as long as they do not deviate from.
  • Example 1 After dry blending 100 parts by mass of propylene resin (“W101” manufactured by Sumitomo Chemical Co., Ltd.) and 0.3 part by mass of a phosphate ester nucleating agent (“ADEKA STAB NA11” manufactured by ADEKA), the mixture was supplied to an extruder and 200 A light diffusion plate (thickness 1.5 mm, width 250 mm) was obtained by melt-kneading at ⁇ 250 ° C and extruding at a die temperature of 250 to 260 ° C via a multi-manifold die.
  • W101 propylene resin manufactured by Sumitomo Chemical Co., Ltd.
  • ADEKA STAB NA11 phosphate ester nucleating agent
  • the tacticity of the propylene resin (“W101” manufactured by Sumitomo Chemical Co., Ltd.) measured by the following measurement method was 97.98%.
  • the melt flow rate (MFR) measured by the following measuring method about the said propylene resin (Sumitomo Chemical Co., Ltd. "W101") was 24.6 g / 10min.
  • a light diffusing plate was obtained in the same manner as in Example 1 except that “E111G” manufactured by Prime Polymer Co., Ltd. was used instead of “W101” manufactured by Sumitomo Chemical Co., Ltd. as the propylene resin.
  • the tacticity of the propylene resin (“E111G” manufactured by Prime Polymer Co., Ltd.) measured by the following measurement method was 97.67%.
  • the melt flow rate (MFR) measured by the following measuring method about the said propylene resin (“E111G” by Prime Polymer Co., Ltd.) was 1.6 g / 10min.
  • a light diffusing plate was obtained in the same manner as in Example 1 except that “F113G” manufactured by Prime Polymer Co., Ltd. was used instead of “W101” manufactured by Sumitomo Chemical Co., Ltd. as the propylene resin.
  • the tacticity of the propylene resin (“FSX20L8” manufactured by Sumitomo Chemical Co., Ltd.) measured by the following measurement method was 93.54%.
  • the melt flow rate (MFR) measured by the following measuring method about the said propylene resin (Sumitomo Chemical Co., Ltd. "FSX20L8") was 4.8 g / 10min.
  • the 13 C-NMR is measured using a Bruker NMR measuring apparatus (AVANCE 600).
  • AVANCE 600 Bruker NMR measuring apparatus
  • the peak observed at 21.14 to 22.10 ppm was identified as “mm”
  • the peak observed at 20.46 to 21.14 ppm was It was identified as “mr”
  • the peak observed at 19.75 to 20.40 ppm was identified as “rr”.
  • the value (%) calculated by the above formula is tacticity (mm triad fraction).
  • the light diffusing plates of Examples 1 to 3 of the present invention have a large bending elastic modulus and an excellent strength, and also have a high load deflection temperature and an excellent heat resistance. Therefore, thermal deformation can be suppressed even under severe thermal conditions.
  • the light diffusion plate of Comparative Example 1 has a low bending elastic modulus and a low deflection temperature under load, and it is difficult to prevent thermal deformation under severe thermal conditions.
  • the light diffusing plate of the present invention is suitably used as a light diffusing plate for a surface light source device, but is not particularly limited to such applications.
  • the surface light source device of the present invention is preferably used as a backlight for a liquid crystal display device, but is not particularly limited to such applications.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

Disclosed is a light diffusion plate (3) which is formed from a propylene resin having a tacticity of not less than 95%.  The light diffusion plate (3)is used in a surface light source device (1) which comprises a light source (2) that is arranged on the back side of the light diffusion plate (3).

Description

光拡散板及び面光源装置並びに液晶表示装置Light diffusing plate, surface light source device, and liquid crystal display device
 本発明は、優れた耐熱性を備え、熱変形を抑制できる光拡散板及び該光拡散板を用いて構成された面光源装置と液晶表示装置に関する。 The present invention relates to a light diffusing plate having excellent heat resistance and capable of suppressing thermal deformation, and a surface light source device and a liquid crystal display device configured using the light diffusing plate.
 液晶表示装置としては、例えば液晶セルを備えた液晶パネル(画像表示部)の背面側に、面光源装置がバックライトとして配置された構成のものが公知である。前記バックライト用の面光源装置としては、ランプボックス(筐体)内に複数の光源が配置されると共にこれら光源の前面側に光拡散板が配置された構成の面光源装置が知られている(特開2004−170937号公報(特許文献1)参照)。
 上記光拡散板としては、アクリル樹脂、ポリカーボネート樹脂で構成されたものが用いられることが多かった。
 上記のような面光源装置に用いられる光拡散板としては、より軽量であること、壊れ難いこと、光源等からの熱や、湿気等により変形しないことが求められているところ、アクリル樹脂やポリカーボネート樹脂からなる上記従来の光拡散板では、これら要求された特性の全てを満たすことはできなかった。
 本出願人は、鋭意研究した結果、構成樹脂としてプロピレン樹脂を用いれば、より軽量で、十分な強度を有し、熱や湿気により変形しにくい光拡散板を提供できることを見出した(特開2008−83660号公報(特許文献2)参照)。
As a liquid crystal display device, for example, a configuration in which a surface light source device is disposed as a backlight on the back side of a liquid crystal panel (image display unit) including a liquid crystal cell is known. As the surface light source device for the backlight, a surface light source device having a configuration in which a plurality of light sources are disposed in a lamp box (housing) and a light diffusion plate is disposed on the front side of these light sources is known. (Refer to Unexamined-Japanese-Patent No. 2004-170937 (patent document 1)).
As the light diffusing plate, those made of acrylic resin or polycarbonate resin are often used.
As the light diffusing plate used in the surface light source device as described above, it is required to be lighter, hard to break, not to be deformed by heat from the light source, moisture, etc., acrylic resin or polycarbonate The above-mentioned conventional light diffusing plate made of a resin cannot satisfy all of the required characteristics.
As a result of diligent research, the present applicant has found that if a propylene resin is used as a constituent resin, it is possible to provide a light diffusing plate that is lighter, has sufficient strength, and is not easily deformed by heat or moisture (Japanese Patent Laid-Open No. 2008-2008). -83660 (see Patent Document 2)).
 近年、バックライトユニットの大型化、薄型化、バックライトの高輝度化に伴い、バックライトに用いられる光拡散板としては、さらに耐熱性に優れたものが求められている。
 本発明者らの検討によれば、プロピレン樹脂製の光拡散板に対して非常に厳しい耐熱試験(85℃×50%RH、60時間)を行ったところ、若干の変形を生じ得ることがわかった。
 本発明は、強度と耐熱性に優れ、厳しい熱条件下においても熱変形を抑制できる光拡散板を提供することを目的とする。
 前記目的を達成するために、本発明は以下の手段を提供する。
 [1]タクティシティが95%以上であるプロピレン樹脂からなる光拡散板。
 [2]タクティシティが95%以上であるプロピレン樹脂100質量部および造核剤0.01質量部~2.0質量部含有する樹脂組成物からなる光拡散板。
 [3]前記プロピレン樹脂は、JIS K7210−1999に準拠して、試験温度:230℃、試験荷重:3.8kgの条件で測定したメルトフローレートが0.5g/10分~30g/10分である前項1または2に記載の光拡散板。
 [4]前項1~3のいずれか1項に記載の光拡散板と、該光拡散板の背面側に配置された複数の光源とを備える面光源装置。
 [5]前項1~3のいずれか1項に記載の光拡散板と、該光拡散板の背面側に配置された複数の光源と、該光拡散板の前面側に配置された液晶パネルとを備える液晶表示装置。
 [1]の発明に係る光拡散板は、タクティシティが95%以上であるプロピレン樹脂を含有するものであるから、強度が大きく且つ耐熱性にも優れており、従って厳しい熱条件下においても熱変形を抑制できる。即ち、強度及び耐熱性がともに向上することにより、厳しい熱条件下においても熱変形が抑制される。従って、得られた光拡散板は、面光源装置の大型化、薄型化、高輝度化にも対応可能となる。
 [2]の発明に係る光拡散板は、タクティシティが95%以上であるプロピレン樹脂100質量部および造核剤0.01質量部~2.0質量部を含有する樹脂組成物からなるから、強度が大きく耐熱性にも優れており、厳しい熱条件下においても熱変形を抑制できると共に、造核剤の特定量の含有により、外観の良好な光拡散板を得ることができる。従って、得られた光拡散板は、面光源装置の大型化、薄型化、高輝度化に対応可能となる。
 [3]の発明では、光拡散板を構成するプロピレン樹脂のメルトフローレートが0.5~30g/10分であるから、成形しやすく生産性をより向上できる利点がある。
 [4]の発明では、光拡散板として厳しい熱条件下においても熱変形を抑制できるものが用いられているから、耐久性に優れた高品質の面光源装置が提供される。
 [5]の発明では、光拡散板として厳しい熱条件下においても熱変形を抑制できるものが用いられているから、耐久性に優れた高品質の液晶表示装置が提供される。
In recent years, with an increase in size and thickness of a backlight unit and an increase in brightness of a backlight, a light diffusing plate used for the backlight is required to have a further excellent heat resistance.
According to the study by the present inventors, when a very severe heat resistance test (85 ° C. × 50% RH, 60 hours) was performed on a light diffusion plate made of propylene resin, it was found that slight deformation could occur. It was.
An object of this invention is to provide the light diffusing plate which is excellent in intensity | strength and heat resistance, and can suppress a thermal deformation also on severe thermal conditions.
In order to achieve the above object, the present invention provides the following means.
[1] A light diffusion plate made of propylene resin having a tacticity of 95% or more.
[2] A light diffusing plate comprising a resin composition containing 100 parts by mass of a propylene resin having a tacticity of 95% or more and 0.01 part by mass to 2.0 parts by mass of a nucleating agent.
[3] The propylene resin has a melt flow rate of 0.5 g / 10 min to 30 g / 10 min measured under the conditions of a test temperature: 230 ° C. and a test load: 3.8 kg in accordance with JIS K7210-1999. 3. The light diffusing plate according to 1 or 2 above.
[4] A surface light source device comprising the light diffusing plate according to any one of items 1 to 3 and a plurality of light sources arranged on a back side of the light diffusing plate.
[5] The light diffusing plate according to any one of items 1 to 3, a plurality of light sources arranged on the back side of the light diffusing plate, a liquid crystal panel arranged on the front side of the light diffusing plate, A liquid crystal display device comprising:
The light diffusing plate according to the invention of [1] contains a propylene resin having a tacticity of 95% or more, and therefore has high strength and excellent heat resistance. Deformation can be suppressed. That is, by improving both strength and heat resistance, thermal deformation is suppressed even under severe thermal conditions. Therefore, the obtained light diffusing plate can cope with an increase in the size, thickness and brightness of the surface light source device.
The light diffusion plate according to the invention of [2] is composed of a resin composition containing 100 parts by mass of a propylene resin having a tacticity of 95% or more and 0.01 part by mass to 2.0 parts by mass of a nucleating agent. It has high strength and excellent heat resistance, can suppress thermal deformation even under severe heat conditions, and can obtain a light diffusing plate with a good appearance by containing a specific amount of a nucleating agent. Therefore, the obtained light diffusing plate can cope with an increase in size, thickness and brightness of the surface light source device.
In the invention of [3], since the melt flow rate of the propylene resin constituting the light diffusing plate is 0.5 to 30 g / 10 min, there is an advantage that it is easy to mold and the productivity can be further improved.
In the invention of [4], a light diffusing plate that can suppress thermal deformation even under severe thermal conditions is used, so that a high-quality surface light source device excellent in durability is provided.
In the invention of [5], a light diffusing plate that can suppress thermal deformation even under severe thermal conditions is used, so that a high-quality liquid crystal display device excellent in durability is provided.
 図1は、本発明に係る液晶表示装置の一実施形態を示す模式図である。
 図2は、光拡散板の表面に形成される凹凸形状の一例を示す断面図である。
 図3は、光拡散板の表面に形成される凹凸形状の他の例を示す断面図である。
 図4は、略半円凸部の他の例を示す斜視図である。
 図5は、光拡散板の表面に形成される凹凸形状のさらに他の例を示す断面図である。
 図6は、図5の略三角形凸部を示す斜視図である。
 図7は、略三角形凸部の他の例を示す斜視図である。
FIG. 1 is a schematic view showing an embodiment of a liquid crystal display device according to the present invention.
FIG. 2 is a cross-sectional view showing an example of the concavo-convex shape formed on the surface of the light diffusion plate.
FIG. 3 is a cross-sectional view showing another example of the uneven shape formed on the surface of the light diffusion plate.
FIG. 4 is a perspective view showing another example of a substantially semicircular convex portion.
FIG. 5 is a cross-sectional view showing still another example of the uneven shape formed on the surface of the light diffusion plate.
FIG. 6 is a perspective view showing the substantially triangular convex portion of FIG.
FIG. 7 is a perspective view showing another example of the substantially triangular convex portion.
 本発明に係る液晶表示装置の一実施形態を図1に示す。図1において、(30)は液晶表示装置、(11)は液晶セル、(12)(13)は偏光板、(1)は面光源装置(バックライト)である。前記液晶セル(11)の上下両側にそれぞれ偏光板(12)(13)が配置され、これら構成部材(11)(12)(13)によって画像表示部としての液晶パネル(20)が構成されている。なお、前記液晶セル(11)としては、カラー画像を表示可能なものが好ましく用いられる。
 前記面光源装置(1)は、前記液晶パネル(20)の下側の偏光板(13)の下面側(背面側)に配置されている。即ち、この液晶表示装置(30)は、直下型液晶表示装置である。
 前記面光源装置(1)は、平面視矩形状で上面側(前面側)が開放された薄箱型形状のランプボックス(5)と、該ランプボックス(5)内に相互に離間して配置された複数の光源(2)と、これら複数の光源(2)の上方側(前面側)に配置された光拡散板(3)とを備えている。前記光拡散板(3)は、前記ランプボックス(5)に対してその開放面を塞ぐように載置されて固定されている。また、前記ランプボックス(5)の内面には光反射層(図示しない)が設けられている。前記光源(2)としては、特に限定されるものではないが、例えば冷陰極管、熱陰極管、EEFL(外部電極蛍光ランプ)等の線状光源の他、発光ダイオード(LED)等の点状光源などが用いられる。
 前記光拡散板(3)は、タクティシティが95%以上であるプロピレン樹脂からなる。本実施形態では、前記光拡散板(3)は、タクティシティが95%以上であるプロピレン樹脂に、光拡散粒子および/または造核剤が分散した樹脂組成物からなる。
 上記構成に係る光拡散板(3)は、構成樹脂としてプロピレン樹脂を用いているから、軽量で、機械的強度に優れていて壊れ難く、また耐熱性及び耐湿性に優れていて熱や湿気により変形しにくい。また、プロピレン樹脂としては、タクティシティが95%以上であるものを用いているから、光拡散板(3)は、機械的強度が大きく且つ耐熱性にも優れており、従って厳しい熱条件下においても光拡散板(3)の熱変形を抑制できる。即ち、光拡散板(3)の機械的強度及び耐熱性がともに向上することにより、これらの相乗効果で厳しい熱条件下においても光拡散板(3)の熱変形が抑制される。従って、前記面光源装置(1)を大型化、薄型化、高輝度化しても光拡散板(3)の熱変形が抑制されており、高品質のものとなる。
 本発明において、前記光拡散板(3)を構成するプロピレン樹脂としては、タクティシティが95%以上であるものを用いる。タクティシティが95%以上であるプロピレン樹脂を用いることにより、光拡散板(3)の強度及び耐熱性の両方を向上させることができて、厳しい熱条件下においても光拡散板(3)の熱変形を抑制できる。中でも、タクティシティが96%以上であるプロピレン樹脂を用いるのが好ましく、タクティシティが97%以上であるプロピレン樹脂を用いるのが特に好ましい。
 前記タクティシティは、13C−NMRにより測定されるトライアッドアイソタクティシティ(mmトライアッド分率)(単位:%)を意味する。この数値(%)が大きいものほどプロピレン樹脂のメチル基の配置の立体規則性が良いこと(即ちアイソタクティシティーが高いこと)を示し、例えばmmトライアッド分率100%の場合には理論上全てのメチル基が同じ側に付いた(全てのメチル基のポリマー骨格に対する立体配置が同じである)アイソタクチックポリプロピレンであることを示す。なお、隣り合うメチル基同士の立体配置が全て逆であるシンジオタクチックポリプロピレンは、前記トライアッドアイソタクティシティ(mmトライアッド分率)は0%である。
 前記タクティシティ(mmトライアッド分率)の測定は、次のようにして行う。即ち、測定対象のプロピレン樹脂をオルトジクロロベンゼン/オルトジクロロベンゼン−d4の混合溶媒に加熱溶解せしめ、この溶解液の13C−NMRを測定する。測定して得られた13C−NMRスペクトルにおいて「mm」、「mr」、「rr」の各ピークを同定する。
(mmのピーク強度)÷{(mmのピーク強度)+(mrのピーク強度)+(rrのピーク強度)}×100
上記計算式で算出される値(%)がタクティシティ(mmトライアッド分率)である。
 なお、測定対象のプロピレン樹脂がエチレン単位を含むものである場合には、エチレンに隣接するプロピレンユニットのメチル基の影響を排除するために、37.9ppmに観測されるSαγピーク強度を用いて、「mm」及び「mr」の積分強度を補正するものとする。
 前記光拡散板(3)は、タクティシティが95%以上であるプロピレン樹脂100質量部および造核剤0.01質量部~2.0質量部を含有する樹脂組成物からなることが好ましい。前記造核剤の含有量が0.01質量部以上であることで、表面に白点等の出現が抑制され、外観の良好な光拡散板を得ることができると共に、2.0質量部以下であることで造核剤の分散不良による光学特性の低下およびコスト増大を抑制できる。前記造核剤の含有量は、タクティシティが95%以上であるプロピレン樹脂100質量部に対して0.02質量部~1.5質量部がより好ましく、0.03質量部~1.0質量部が特に好ましい。
 前記造核剤としては、特に限定されるものではないが、例えば、ソルビトール系造核剤、有機リン酸塩系造核剤、カルボン酸の金属塩造核剤、ロジン系造核剤などが挙げられる。
 前記ソルビトール系造核剤としては、例えばジベンジリデンソルビトール、1,3:2,4−ジ(メチルベンジリデン)ソルビトール、1,3:2,4−ジ(エチルベンジリデン)ソルビトール、1,3:2,4−ジ(ブチルベンジリデン)ソルビトール、1,3:2,4−ジ(メトキシベンジリデン)ソルビトール、1,3:2,4−ジ(エトキシベンジリデン)ソルビトール、1,3−クロルベンジリデン−2,4−メチルベンジリデンソルビトール、モノ(メチル)ジベンジリデンソルビトール、1,3:2,4−ビス−O−(3,4−ジメチルベンジリデン)−D−ソルビトールなどが挙げられ、市販されているものとしては、例えばMilliken社から販売されている「Millad3988」、三井化学社から販売されている「NC−4」、新日本理化社から販売されている「Gel All−MD」などが挙げられる。
 前記有機リン酸塩系造核剤としては、例えばビス(4−t−ブチルフェニル)リン酸ナトリウム塩、ビス(4−t−ブチルフェニル)リン酸リチウム塩、ビス(4−t−ブチルフェニル)リン酸アルミニウム塩、2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)リン酸ナトリウム塩、2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)リン酸リチウム塩、2,2’−メチレン−ビス(4,6−ジ−t−ブチルフェニル)リン酸アルミニウム塩、2,2’−メチリデン−ビス(4,6−ジ−t−ブチルフェニル)リン酸カルシウム塩、2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)リン酸ナトリウム塩、2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)リン酸塩リチウム、2,2’−エチリデン−ビス(4,6−ジ−t−ブチルフェニル)リン酸アルミニウム塩、ビス−(4−t−ブチルフェニル)リン酸カルシウム塩などが挙げられ、市販されているものとしては、例えばADEKA社から販売されている「アデカスタブNA−11」、「アデカスタブNA−21」、「アデカスタブNA−27」、「アデカスタブNA−71」等が挙げられる。
 前記カルボン酸の金属塩造核剤としては、例えば安息香酸アルミニウム、安息香酸カリウム、安息香酸ナトリウム、安息香酸リチウム、ジ−パラ−t−ブチル安息香酸アルミニウム、ジ−パラ−t−ブチル安息香酸チタン、ジ−パラ−t−ブチル安息香酸クロム、ヒドロキシ−ジ−t−ブチル安息香酸アルミニウム、アルミニウム−p−ブチルベンゾエート、β−ナフトエ酸ナトリウム、アジピン酸アルミニウム、セバシン酸ナトリウム、セバシン酸カリウム、セバシン酸アルミニウムなどが挙げられ、市販されているものとしては、例えばジャパンケムテック社から販売されている「AL−PTBBA」等が挙げられる。
 前記ロジン系造核剤としては、ロジン酸金属塩が挙げられ、ロジン酸金属塩としては、例えばロジン酸ナトリウム塩、ロジン酸カリウム塩、ロジン酸マグネシウム塩などが挙げられ、市販されているものとしては、例えば荒川化学工業社から販売されている「パインクリスタル KM−1300」、「パインクリスタル KM−1500」、「パインクリスタル KR−50M」などが挙げられる。
 また、前記光拡散板(3)を構成するプロピレン樹脂としては、JIS K7210−1999に準拠して、試験温度:230℃、試験荷重:3.8kgの条件で測定したメルトフローレート(MFR)が0.5g/10分~30g/10分であるプロピレン樹脂を用いるのが好ましい。MFRが0.5g/10分以上であることで押出成形時の単位時間当たりの押出量を大きくすることができると共に、MFRが30g/10分以下であることで成形が容易となる。中でも、前記メルトフローレートが1.0g/10分~10g/10分であるプロピレン樹脂を用いるのが特に好ましい。
 また、前記プロピレン樹脂としては、プロピレンを単独で重合させて得られるホモポリプロピレンであってもよいし、プロピレン及びこれと共重合し得る共重合成分の共重合体であってもよい。十分な剛性が得られる点で、前記プロピレン樹脂中のプロピレン単位の含有率は75質量%以上であるのが好ましい。前記共重合成分としては、特に限定されるものではないが、例えばエチレン、1−ブテン等のα−オレフィンなどが挙げられる。
 前記プロピレン樹脂としては、プロピレン単位含有率75~100質量%、エチレン単位含有率0~15質量%、および1−ブテン単位含有率0~25質量%からなるものが好ましい。また、前記プロピレン樹脂としては、プロピレン単位含有率95~100質量%、エチレン単位含有率0~5質量%、および1−ブテン単位含有率0~5質量%からなるものがより好ましい。更には、前記プロピレン樹脂としては、プロピレン単位含有率99~100質量%、エチレン単位含有率0~1質量%、および1−ブテン単位含有率0~1質量%からなるもの(ホモポリプロピレンを含む)が最も好ましい。
 前記光拡散粒子(光拡散剤)としては、前記プロピレン樹脂と屈折率が異なる粒子であって、該粒子を含有する光拡散板を透過する光を拡散し得るものであれば、特に限定されない。例えば、ガラス粒子、ガラス繊維、シリカ粒子、水酸化アルミニウム粒子、炭酸カルシウム粒子、硫酸バリウム粒子、酸化チタン粒子、タルク等の無機粒子であってもよいし、スチレン系重合体粒子、アクリル系重合体粒子、シロキサン系重合体粒子等の有機粒子であってもよい。
 前記光拡散粒子としては、通常、その体積平均粒子径が0.5μm~25μmの範囲にあるものが用いられる。中でも、体積平均粒子径の好ましい下限値は0.7μmであり、また体積平均粒子径の好ましい上限値は20μmであり、特に好ましい上限値は10μmである。なお、体積平均粒子径(D50)は、全粒子の粒子径及び体積を測定し、小さい粒子径のものから順次体積を積算し、該積算体積が全粒子の合計体積に対して50%となる粒子の粒子径である。
 前記光拡散板(3)における光拡散粒子の含有量は、前記プロピレン樹脂100質量部に対して0.01質量部~20質量部の範囲に設定されるのが好ましい。該含有量が0.01質量部以上であることで光拡散効果が十分に得られるものとなると共に、20質量部以下であることで十分な機械的強度を確保できる。
 前記光拡散板(3)を構成するプロピレン樹脂又は樹脂組成物に、必要に応じて、紫外線吸収剤、熱安定剤、酸化防止剤、耐候剤、光安定剤、蛍光増白剤、加工安定剤等の添加剤を含有せしめてもよい。
 本発明の光拡散板(3)は、例えば次のようにして製造できる。前記タクティシティが95%以上であるプロピレン樹脂に、光拡散粒子および/または造核剤を分散させた樹脂組成物を、押出成形する押出成形法、射出成形する射出成形法、熱プレスする熱プレス法等の公知の成形法によって製造できる。前記製造方法は、その例を示したものに過ぎず、本発明の光拡散板(3)は、このような製造方法で製造されたものに限定されるものではない。
 なお、前記光拡散板(3)の厚さは、通常0.1mm~3mm、好ましくは0.5mm~3mmの範囲に設定される。
 また、前記光拡散板(3)の大きさは、特に限定されるものではなく、例えば目的とする面光源装置(1)や液晶表示装置(30)の大きさに応じて適宜設定されるものであるが、中でも、20型(縦30cm、横40cm)以上の大きさに設計される光拡散板として特に好適である。
 本発明に係る光拡散板(3)の表面(片面または両面)は、図1に示すような平坦面であってもよいし、プリズム状等の凹凸形状が形成されていてもよい。
 図2に、本発明の光拡散板(3)の表面(片面または両面)(6b)に形成される凹凸形状の一例を示す。図2では、断面形状が三角形凸部(V字溝)の凹凸形状が採用されている。この図2の例では、隣り合う三角形凸部(71)が間隔をあけることなく連続状に形成されている(換言すれば、隣り合うV字溝(72)が連続状に形成されている)が、特にこのような構成に限定されるものではなく、隣り合う三角形凸部が間隔(d)をあけた非連続状に構成されていてもよい。前記三角形凸部(71)のピッチ間隔(P)は30μm~500μmの範囲であるのが好ましい。また、前記三角形凸部(71)の高さ(H)は30μm~500μmの範囲であるのが好ましい。前記隣り合う三角形凸部(71)の離間間隔(d:図示せず)は1μm~10μmの範囲であるのが好ましい。また、前記三角形凸部(71)の頂部の頂角(θ)は10~100°であるのが好ましく、中でも10~90°であるのがより好ましい。
 図3に、光拡散板(3)の表面(片面または両面)(6b)に形成される凹凸形状の他の例を示す。図3では、断面形状が略半円形状である略半円凸部(81)を含む凹凸形状が採用されている。この図3の例では、隣り合う略半円凸部(81)が間隔(d)をあけて非連続状に形成されているが、特にこのような構成に限定されるものではなく、隣り合う略半円凸部(81)が間隔をあけることなく連続状に(即ちd=0)構成されていてもよい。前記略半円凸部(81)のピッチ間隔(P)は30μm~500μmの範囲であるのが好ましい。また、前記略半円凸部(81)の高さ(H)は30μm~500μmの範囲であるのが好ましい。また、前記隣り合う略半円凸部(81)の離間間隔(d)は1μm~10μmの範囲であるのが好ましい。なお、前記略半円凸部(81)とは、図3に示すような断面形状が半円形状であるものを含む他、例えば図4に示すシリンドリカルレンズ(82)のように、円柱体をその中心軸線に平行であって、該中心軸線を含まない平面で切断した場合の断面のいずれかの弧状である形状であってもよいし、或いは断面が半楕円弧状や、該半楕円弧状の一部である扁平湾曲状等の形状であってもよい。
 また、前記光拡散板(3)の表面(片面または両面)(6b)に形成される凹凸形状としては、上記略半円凸部が反転した略半円凹溝を備えた形状であってもよい。前記略半円凹溝とは、断面形状が半円形状であるものを含む他、例えばシリンドリカルレンズのように、円柱体をその中心軸線に平行であって、該中心軸線を含まない平面で切断した場合の断面のいずれかの弧状である形状であってもよいし、或いは断面が半楕円弧状や、該半楕円弧状の一部である扁平湾曲状等の形状であってもよい。
 図5に、光拡散板(3)の表面(片面または両面)(6b)に形成される凹凸形状のさらに他の例を示す。図5では、断面形状が略三角形形状である略三角形凸部(91)を含む凹凸形状が採用されている。前記略三角形凸部(91)の断面形状における左右の斜辺は、いずれも先端側が直線であり、基端側(底辺側)が曲線(中央部で側方に向けて膨らむ曲線)である。即ち、前記略三角形凸部(91)の左右の斜面は、先端側の直線部(92)と、基端側の曲線部(93)とからなる。この図5の例では、隣り合う略三角形凸部(91)が間隔(d)をあけて非連続状に形成されているが、特にこのような構成に限定されるものではなく、隣り合う略三角形凸部(91)が間隔をあけることなく連続状に(即ちd=0)構成されていてもよい。前記略三角形凸部(91)のピッチ間隔(P)は30μm~500μmの範囲であるのが好ましい。また、前記略三角形凸部(91)の高さ(H)は30μm~500μmの範囲であるのが好ましい。また、前記隣り合う略三角形凸部(91)の離間間隔(d)は1μm~10μmの範囲であるのが好ましい。前記略三角形凸部(91)の頂角(α)は10°~100°であるのが好ましく、中でも10°~90°であるのがより好ましい。前記曲線部(93)の曲線は、例えば、円弧状の一部、楕円弧状の一部であってもよい。前記円弧状の一部としては、例えばシリンドリカルレンズのように、円柱体をその中心軸線に平行であって、該中心軸線を含まない平面で切断した場合の断面のいずれかの弧状である形状等が挙げられる。なお、上記実施形態(図5、図6)では、前記略三角形凸部(91)としては、先端側の直線部(92)に基端側の曲線部(93)が連接されてなる斜面を備えた構成が採用されているが、特にこのような構成に限定されるものではなく、例えば図7に示すように、直線部を有さずに曲線部(93)のみからなる斜面を備えた構成を採用してもよい。
 前記凹凸形状の凸部のピッチ間隔(P)(P)(P)は、光拡散板(3)の全体にわたって必ずしも一定である必要はなく、部分的に又は全体にわたって隣り合う凸部(71)(81)(91)間で異なっていてもよい。また、前記凹凸形状の凸部の高さ(H)(H)(H)も、光拡散板(3)の全体にわたって必ずしも一定である必要はなく、部分的に又は全体にわたって隣り合う凸部(71)(81)(91)間で異なっていてもよい。前記凹凸形状の頂角(θ)(α)及び間隔(d)(d)(d)についても同様に、光拡散板(3)の全体にわたって必ずしも一定である必要はなく、部分的に又は全体にわたって隣り合う凸部(71)(81)(91)間で異なっていてもよい。
 本発明に係る光拡散板(3)、面光源装置(1)及び液晶表示装置(30)は、上記実施形態のものに特に限定されるものではなく、請求の範囲内であれば、その精神を逸脱するものでない限りいかなる設計的変更をも許容するものである。
An embodiment of a liquid crystal display device according to the present invention is shown in FIG. In FIG. 1, (30) is a liquid crystal display device, (11) is a liquid crystal cell, (12) and (13) are polarizing plates, and (1) is a surface light source device (backlight). Polarizing plates (12) and (13) are respectively arranged on the upper and lower sides of the liquid crystal cell (11), and a liquid crystal panel (20) as an image display unit is constituted by these constituent members (11), (12) and (13). Yes. In addition, as the liquid crystal cell (11), those capable of displaying a color image are preferably used.
The said surface light source device (1) is arrange | positioned at the lower surface side (back side) of the polarizing plate (13) below the said liquid crystal panel (20). That is, this liquid crystal display device (30) is a direct liquid crystal display device.
The surface light source device (1) is a thin box-shaped lamp box (5) having a rectangular shape in plan view and having an upper surface side (front surface side) opened, and the lamp box (5) spaced apart from each other. And a light diffusion plate (3) disposed on the upper side (front side) of the plurality of light sources (2). The said light diffusing plate (3) is mounted and fixed with respect to the said lamp box (5) so that the open surface may be block | closed. A light reflecting layer (not shown) is provided on the inner surface of the lamp box (5). Although it does not specifically limit as said light source (2), For example, in addition to linear light sources, such as a cold-cathode tube, a hot cathode tube, and EEFL (external electrode fluorescent lamp), dot-like, such as light emitting diodes (LED) A light source or the like is used.
The light diffusing plate (3) is made of a propylene resin having a tacticity of 95% or more. In this embodiment, the light diffusing plate (3) is made of a resin composition in which light diffusing particles and / or a nucleating agent are dispersed in a propylene resin having a tacticity of 95% or more.
Since the light diffusing plate (3) according to the above configuration uses propylene resin as a constituent resin, it is lightweight, excellent in mechanical strength and hard to break, and excellent in heat resistance and moisture resistance due to heat and moisture. Difficult to deform. In addition, since propylene resin having a tacticity of 95% or more is used, the light diffusion plate (3) has high mechanical strength and excellent heat resistance, and therefore under severe heat conditions. Can suppress thermal deformation of the light diffusion plate (3). That is, by improving both the mechanical strength and heat resistance of the light diffusing plate (3), the thermal deformation of the light diffusing plate (3) is suppressed by these synergistic effects even under severe heat conditions. Therefore, even if the surface light source device (1) is increased in size, thickness, and brightness, thermal deformation of the light diffusing plate (3) is suppressed, and the surface light source device (1) is of high quality.
In the present invention, as the propylene resin constituting the light diffusion plate (3), one having a tacticity of 95% or more is used. By using a propylene resin having a tacticity of 95% or more, both the strength and heat resistance of the light diffusion plate (3) can be improved, and the heat of the light diffusion plate (3) can be improved even under severe heat conditions. Deformation can be suppressed. Among them, it is preferable to use a propylene resin having a tacticity of 96% or more, and it is particularly preferable to use a propylene resin having a tacticity of 97% or more.
The tacticity means triad isotacticity (mm triad fraction) (unit:%) measured by 13 C-NMR. The larger this value (%), the better the stereoregularity of the methyl group arrangement of the propylene resin (ie, the higher the isotacticity). For example, in the case of 100% mm triad fraction, It shows that it is an isotactic polypropylene with methyl groups attached to the same side (the same configuration with respect to the polymer backbone of all methyl groups). Note that syndiotactic polypropylene in which the steric configurations of adjacent methyl groups are all reversed has a triad isotacticity (mm triad fraction) of 0%.
The tacticity (mm triad fraction) is measured as follows. That is, the propylene resin to be measured is dissolved by heating in a mixed solvent of orthodichlorobenzene / orthodichlorobenzene-d4, and 13 C-NMR of this solution is measured. In the 13 C-NMR spectrum obtained by measurement, “mm”, “mr”, and “rr” peaks are identified.
(Mm peak intensity) ÷ {(mm peak intensity) + (mr peak intensity) + (rr peak intensity)} × 100
The value (%) calculated by the above formula is tacticity (mm triad fraction).
When the propylene resin to be measured contains an ethylene unit, in order to eliminate the influence of the methyl group of the propylene unit adjacent to ethylene, the Sαγ peak intensity observed at 37.9 ppm is used, and “mm ”And“ mr ”are corrected.
The light diffusing plate (3) is preferably composed of a resin composition containing 100 parts by mass of a propylene resin having a tacticity of 95% or more and 0.01 parts by mass to 2.0 parts by mass of a nucleating agent. When the content of the nucleating agent is 0.01 parts by mass or more, appearance of white spots and the like on the surface can be suppressed, and a light diffusing plate having a good appearance can be obtained, and 2.0 parts by mass or less. Therefore, it is possible to suppress a decrease in optical characteristics and an increase in cost due to poor dispersion of the nucleating agent. The content of the nucleating agent is more preferably 0.02 to 1.5 parts by mass, and 0.03 to 1.0 parts by mass with respect to 100 parts by mass of propylene resin having a tacticity of 95% or more. Part is particularly preferred.
The nucleating agent is not particularly limited, and examples thereof include sorbitol nucleating agents, organophosphate nucleating agents, carboxylic acid metal salt nucleating agents, and rosin nucleating agents. It is done.
Examples of the sorbitol nucleating agent include dibenzylidene sorbitol, 1,3: 2,4-di (methylbenzylidene) sorbitol, 1,3: 2,4-di (ethylbenzylidene) sorbitol, 1,3: 2, 4-di (butylbenzylidene) sorbitol, 1,3: 2,4-di (methoxybenzylidene) sorbitol, 1,3: 2,4-di (ethoxybenzylidene) sorbitol, 1,3-chlorobenzylidene-2,4- Examples thereof include methylbenzylidene sorbitol, mono (methyl) dibenzylidene sorbitol, 1,3: 2,4-bis-O- (3,4-dimethylbenzylidene) -D-sorbitol, "Millad 3988" sold by Milliken, sold by Mitsui Chemicals "NC-4", and the like "Gel All-MD," which is available from New Japan Chemical Company.
Examples of the organic phosphate nucleating agent include sodium bis (4-t-butylphenyl) phosphate, lithium bis (4-t-butylphenyl) phosphate, and bis (4-t-butylphenyl). Aluminum phosphate, 2,2′-methylene-bis (4,6-di-t-butylphenyl) phosphate sodium salt, 2,2′-methylene-bis (4,6-di-t-butylphenyl) Lithium phosphate, 2,2′-methylene-bis (4,6-di-t-butylphenyl) aluminum phosphate, 2,2′-methylidene-bis (4,6-di-t-butylphenyl) Calcium phosphate, 2,2′-ethylidene-bis (4,6-di-t-butylphenyl) phosphate sodium salt, 2,2′-ethylidene-bis (4,6-di-t-butylphenyl) phosphate Lithium salt, 2,2'-eth Examples thereof include aluminum salt of redene-bis (4,6-di-t-butylphenyl) phosphate, calcium salt of bis- (4-t-butylphenyl) phosphate, and commercially available products such as those sold by ADEKA “ADK STAB NA-11”, “ADK STAB NA-21”, “ADK STAB NA-27”, “ADK STAB NA-71”, and the like.
Examples of the carboxylic acid metal salt nucleating agent include aluminum benzoate, potassium benzoate, sodium benzoate, lithium benzoate, aluminum di-para-t-butylbenzoate, titanium di-para-t-butylbenzoate. , Chromium di-para-t-butylbenzoate, aluminum hydroxy-di-t-butylbenzoate, aluminum-p-butylbenzoate, sodium β-naphthoate, aluminum adipate, sodium sebacate, potassium sebacate, sebacic acid Aluminum and the like are listed, and examples of commercially available products include “AL-PTBBA” sold by Japan Chemtech.
Examples of the rosin nucleating agent include rosin acid metal salts. Examples of rosin acid metal salts include sodium rosin acid salt, potassium rosin acid salt, magnesium rosin acid salt, and the like. Examples thereof include “Pine Crystal KM-1300”, “Pine Crystal KM-1500”, and “Pine Crystal KR-50M” sold by Arakawa Chemical Industries.
Moreover, as a propylene resin which comprises the said light diffusing plate (3), based on JISK7210-1999, the melt flow rate (MFR) measured on condition of test temperature: 230 degreeC and test load: 3.8kg is. It is preferable to use a propylene resin having a weight of 0.5 g / 10 min to 30 g / 10 min. When the MFR is 0.5 g / 10 min or more, the amount of extrusion per unit time during extrusion molding can be increased, and when the MFR is 30 g / 10 min or less, molding becomes easy. Among these, it is particularly preferable to use a propylene resin having a melt flow rate of 1.0 g / 10 min to 10 g / 10 min.
The propylene resin may be a homopolypropylene obtained by polymerizing propylene alone, or may be a copolymer of propylene and a copolymerizable component that can be copolymerized therewith. The content of propylene units in the propylene resin is preferably 75% by mass or more in that sufficient rigidity is obtained. The copolymer component is not particularly limited, and examples thereof include α-olefins such as ethylene and 1-butene.
The propylene resin preferably has a propylene unit content of 75 to 100% by mass, an ethylene unit content of 0 to 15% by mass, and a 1-butene unit content of 0 to 25% by mass. The propylene resin is more preferably composed of a propylene unit content of 95 to 100% by mass, an ethylene unit content of 0 to 5% by mass, and a 1-butene unit content of 0 to 5% by mass. Further, the propylene resin includes a propylene unit content of 99 to 100% by mass, an ethylene unit content of 0 to 1% by mass, and a 1-butene unit content of 0 to 1% by mass (including homopolypropylene). Is most preferred.
The light diffusing particle (light diffusing agent) is not particularly limited as long as it is a particle having a refractive index different from that of the propylene resin and can diffuse light transmitted through a light diffusing plate containing the particle. For example, it may be inorganic particles such as glass particles, glass fibers, silica particles, aluminum hydroxide particles, calcium carbonate particles, barium sulfate particles, titanium oxide particles, talc, styrene polymer particles, acrylic polymers. Organic particles such as particles and siloxane polymer particles may be used.
As the light diffusing particles, those having a volume average particle diameter in the range of 0.5 μm to 25 μm are usually used. Among these, a preferable lower limit value of the volume average particle diameter is 0.7 μm, and a preferable upper limit value of the volume average particle diameter is 20 μm, and a particularly preferable upper limit value is 10 μm. The volume average particle size (D 50 ) is determined by measuring the particle size and volume of all particles, integrating the volume sequentially from the smallest particle size, and the integrated volume is 50% of the total volume of all particles. The particle diameter of the resulting particles.
The content of the light diffusing particles in the light diffusing plate (3) is preferably set in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the propylene resin. When the content is 0.01 parts by mass or more, the light diffusion effect can be sufficiently obtained, and when the content is 20 parts by mass or less, sufficient mechanical strength can be secured.
The propylene resin or the resin composition constituting the light diffusion plate (3) is optionally provided with an ultraviolet absorber, a heat stabilizer, an antioxidant, a weathering agent, a light stabilizer, a fluorescent whitening agent, and a processing stabilizer. Such additives may be included.
The light diffusing plate (3) of this invention can be manufactured as follows, for example. Extrusion method for extrusion molding, injection molding method for injection molding, hot press for hot pressing, a resin composition in which light diffusing particles and / or nucleating agents are dispersed in propylene resin having a tacticity of 95% or more It can be produced by a known molding method such as a method. The said manufacturing method is only what showed the example, and the light diffusing plate (3) of this invention is not limited to what was manufactured with such a manufacturing method.
The thickness of the light diffusing plate (3) is usually set in the range of 0.1 mm to 3 mm, preferably 0.5 mm to 3 mm.
The size of the light diffusing plate (3) is not particularly limited, and is appropriately set according to the size of the target surface light source device (1) or liquid crystal display device (30), for example. However, among them, it is particularly suitable as a light diffusing plate designed to have a size of 20 type (length 30 cm, width 40 cm) or more.
The surface (one side or both sides) of the light diffusing plate (3) according to the present invention may be a flat surface as shown in FIG. 1 or may have an irregular shape such as a prism shape.
In FIG. 2, an example of the uneven | corrugated shape formed in the surface (one side or both surfaces) (6b) of the light diffusing plate (3) of this invention is shown. In FIG. 2, a concavo-convex shape in which the cross-sectional shape is a triangular convex portion (V-shaped groove) is adopted. In the example of FIG. 2, adjacent triangular convex portions (71) are formed in a continuous manner without any interval (in other words, adjacent V-shaped grooves (72) are formed in a continuous shape). However, the configuration is not particularly limited to such a configuration, and adjacent triangular convex portions may be configured to be discontinuous with an interval (d 1 ). The pitch interval (P 1 ) of the triangular protrusions (71) is preferably in the range of 30 μm to 500 μm. The height (H 1 ) of the triangular convex portion (71) is preferably in the range of 30 μm to 500 μm. The spacing distance (d 1 : not shown) between the adjacent triangular protrusions (71) is preferably in the range of 1 μm to 10 μm. Further, the apex angle (θ) of the apex of the triangular convex portion (71) is preferably 10 to 100 °, and more preferably 10 to 90 °.
FIG. 3 shows another example of the uneven shape formed on the surface (one side or both sides) (6b) of the light diffusion plate (3). In FIG. 3, an uneven shape including a substantially semicircular convex portion (81) having a substantially semicircular cross-sectional shape is employed. In the example of FIG. 3, adjacent semi-circular protrusions (81) are formed in a discontinuous manner with an interval (d 2 ), but are not particularly limited to such a configuration. The matching semi-circular convex portions (81) may be formed continuously (that is, d 2 = 0) without any interval. The pitch interval (P 2 ) of the substantially semicircular protrusions (81) is preferably in the range of 30 μm to 500 μm. The height (H 2 ) of the substantially semicircular protrusion (81) is preferably in the range of 30 μm to 500 μm. In addition, the spacing (d 2 ) between the adjacent substantially semicircular convex portions (81) is preferably in the range of 1 μm to 10 μm. Note that the substantially semicircular convex portion (81) includes not only those having a semicircular cross-sectional shape as shown in FIG. 3, but also a cylindrical body such as a cylindrical lens (82) shown in FIG. It may be in the shape of any arc of the cross section when cut by a plane that is parallel to the central axis and does not include the central axis. Alternatively, the cross section may be a semi-elliptical arc or a semi-elliptical arc. It may be a part of a flat curved shape or the like.
Further, the uneven shape formed on the surface (one side or both sides) (6b) of the light diffusing plate (3) may be a shape provided with a substantially semicircular concave groove in which the substantially semicircular convex portion is inverted. Good. The substantially semi-circular groove includes those having a semicircular cross-sectional shape, and also, for example, a cylindrical body, such as a cylindrical lens, cut along a plane that is parallel to the central axis and does not include the central axis. In this case, the cross section may have any arc shape, or the cross section may have a semi-elliptical arc shape, a flat curved shape that is a part of the semi-elliptical arc shape, or the like.
In FIG. 5, the further another example of the uneven | corrugated shape formed in the surface (one side or both sides) (6b) of a light diffusing plate (3) is shown. In FIG. 5, the uneven | corrugated shape containing the substantially triangular convex part (91) whose cross-sectional shape is a substantially triangular shape is employ | adopted. The left and right hypotenuses in the cross-sectional shape of the substantially triangular convex portion (91) are both straight at the tip side and curved at the base end side (bottom side) (curved bulging sideways at the center). That is, the left and right slopes of the substantially triangular convex portion (91) are composed of a straight portion (92) on the distal end side and a curved portion (93) on the proximal end side. In the example of FIG. 5, the adjacent substantially triangular protrusions (91) are formed in a discontinuous manner with an interval (d 3 ), but are not particularly limited to such a configuration and are adjacent to each other. The substantially triangular convex portions (91) may be configured continuously (i.e., d 3 = 0) without any interval. The pitch interval (P 3 ) of the substantially triangular convex portions (91) is preferably in the range of 30 μm to 500 μm. The height (H 3 ) of the substantially triangular convex portion (91) is preferably in the range of 30 μm to 500 μm. Further, it is preferable that the spacing (d 3 ) between the adjacent substantially triangular convex portions (91) is in the range of 1 μm to 10 μm. The apex angle (α) of the substantially triangular convex portion (91) is preferably 10 ° to 100 °, and more preferably 10 ° to 90 °. The curve of the curved portion (93) may be, for example, an arc-shaped part or an elliptical arc-shaped part. As the arc-shaped part, for example, a cylindrical lens having a circular arc shape in a cross section when the cylindrical body is cut by a plane that is parallel to the central axis and does not include the central axis, etc. Is mentioned. In the above-described embodiment (FIGS. 5 and 6), the substantially triangular convex portion (91) is a slope formed by connecting the proximal-side curved portion (93) to the distal-side straight portion (92). However, the present invention is not particularly limited to such a configuration. For example, as shown in FIG. 7, a slope having only a curved portion (93) without a straight portion is provided. A configuration may be adopted.
The pitch interval (P 1 ) (P 2 ) (P 3 ) of the concavo-convex convex portions does not necessarily have to be constant over the entire light diffusing plate (3), and the convex portions adjacent to each other partially or entirely. (71) (81) (91) may be different. Further, the height (H 1 ) (H 2 ) (H 3 ) of the concavo-convex convex portions does not necessarily have to be constant over the entire light diffusion plate (3), and is partially or entirely adjacent. You may differ between convex parts (71) (81) (91). Similarly, the apex angle (θ) (α) and the interval (d 1 ) (d 2 ) (d 3 ) of the concavo-convex shape do not necessarily have to be constant throughout the light diffusion plate (3). Alternatively, the protrusions (71) (81) (91) which are adjacent to each other may be different.
The light diffusing plate (3), the surface light source device (1), and the liquid crystal display device (30) according to the present invention are not particularly limited to those of the above-described embodiment, and the spirit is within the scope of the claims. Any design changes are allowed as long as they do not deviate from.
 次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。
 <実施例1>
 プロピレン樹脂(住友化学社製「W101」)100質量部、およびリン酸エステル系造核剤(ADEKA社製「アデカスタブNA11」)0.3質量部をドライブレンドした後、押出機に供給して200~250℃で溶融混練し、マルチマニホールドダイを経由してダイ温度250~260℃で押出すことによって、光拡散板(厚さ1.5mm、幅250mm)を得た。
 上記プロピレン樹脂(住友化学社製「W101」)について下記測定法で測定したタクティシティは97.98%であった。また、上記プロピレン樹脂(住友化学社製「W101」)について下記測定法により測定したメルトフローレート(MFR)は24.6g/10分であった。
 <実施例2>
 プロピレン樹脂として、住友化学社製「W101」に代えて、プライムポリマー社製「E111G」を用いた以外は、実施例1と同様にして光拡散板を得た。
 上記プロピレン樹脂(プライムポリマー社製「E111G」)について下記測定法で測定したタクティシティは97.67%であった。また、上記プロピレン樹脂(プライムポリマー社製「E111G」)について下記測定法により測定したメルトフローレート(MFR)は1.6g/10分であった。
 <実施例3>
 プロピレン樹脂として、住友化学社製「W101」に代えて、プライムポリマー社製「F113G」を用いた以外は、実施例1と同様にして光拡散板を得た。
 上記プロピレン樹脂(プライムポリマー社製「F113G」)について下記測定法で測定したタクティシティは97.97%であった。また、上記プロピレン樹脂(プライムポリマー社製「F113G」)について下記測定法により測定したメルトフローレート(MFR)は8.4g/10分であった。
 <比較例1>
 プロピレン樹脂として、住友化学社製「W101」に代えて、住友化学社製「FSX20L8」を用いた以外は、実施例1と同様にして光拡散板を得た。
 上記プロピレン樹脂(住友化学社製「FSX20L8」)について下記測定法で測定したタクティシティは93.54%であった。また、上記プロピレン樹脂(住友化学社製「FSX20L8」)について下記測定法により測定したメルトフローレート(MFR)は4.8g/10分であった。
 <プロピレン樹脂のタクティシティの測定方法>
 測定対象のプロピレン樹脂(樹脂単独、即ち造核剤を含有しない)300mgをオルトジクロロベンゼン/オルトジクロロベンゼン−d4の混合溶媒(80体積%/20体積%)3mLに加熱溶解せしめ、この溶解液を用いてブルカー社製NMR測定装置(AVANCE600)で13C−NMRを測定する。得られた13C−NMRスペクトルにおいて、テトラメチルシランを基準として、21.14~22.10ppmに観測されるピークを「mm」と同定し、20.46~21.14ppmに観測されるピークを「mr」と同定し、19.75~20.40ppmに観測されるピークを「rr」と同定した。
(mmのピーク強度)÷{(mmのピーク強度)+(mrのピーク強度)+(rrのピーク強度)}×100
上記計算式で算出される値(%)がタクティシティ(mmトライアッド分率)である。
 なお、測定対象のプロピレン樹脂がエチレン単位を含むものである場合には、エチレンに隣接するプロピレンユニットのメチル基の影響を排除するために、37.9ppmに観測されるSαγピーク強度を用いて、「mm」及び「mr」の積分強度を補正した。
 <プロピレン樹脂のメルトフローレートの測定方法>
 JIS K7210−1999に準拠して、試験温度:230℃、試験荷重:3.8kgの条件でプロピレン樹脂のメルトフローレート(MFR)を測定した。
Figure JPOXMLDOC01-appb-T000001
 上記のようにして得られた各光拡散板について下記評価法に従い評価を行った。評価結果を表1に示す。
 <曲げ弾性率測定法>
 JIS K7203−1995に準拠して光拡散板の曲げ弾性率(MPa)を測定した。
 <荷重たわみ温度評価法>
 J1S K7207−1995に準拠して荷重0.45MPaにて光拡散板の荷重たわみ温度(℃)を測定した。
 表から明らかなように、本発明の実施例1~3の光拡散板は、曲げ弾性率が大きくて優れた強度を備えていると共に、荷重たわみ温度が高くて優れた耐熱性を備えているから、厳しい熱条件下においても熱変形を抑制できる。
 これに対し、比較例1の光拡散板は、曲げ弾性率が低い上に、荷重たわみ温度が低く、厳しい熱条件下においては熱変形の防止は困難である。
Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.
<Example 1>
After dry blending 100 parts by mass of propylene resin (“W101” manufactured by Sumitomo Chemical Co., Ltd.) and 0.3 part by mass of a phosphate ester nucleating agent (“ADEKA STAB NA11” manufactured by ADEKA), the mixture was supplied to an extruder and 200 A light diffusion plate (thickness 1.5 mm, width 250 mm) was obtained by melt-kneading at ~ 250 ° C and extruding at a die temperature of 250 to 260 ° C via a multi-manifold die.
The tacticity of the propylene resin (“W101” manufactured by Sumitomo Chemical Co., Ltd.) measured by the following measurement method was 97.98%. Moreover, the melt flow rate (MFR) measured by the following measuring method about the said propylene resin (Sumitomo Chemical Co., Ltd. "W101") was 24.6 g / 10min.
<Example 2>
A light diffusing plate was obtained in the same manner as in Example 1 except that “E111G” manufactured by Prime Polymer Co., Ltd. was used instead of “W101” manufactured by Sumitomo Chemical Co., Ltd. as the propylene resin.
The tacticity of the propylene resin (“E111G” manufactured by Prime Polymer Co., Ltd.) measured by the following measurement method was 97.67%. Moreover, the melt flow rate (MFR) measured by the following measuring method about the said propylene resin ("E111G" by Prime Polymer Co., Ltd.) was 1.6 g / 10min.
<Example 3>
A light diffusing plate was obtained in the same manner as in Example 1 except that “F113G” manufactured by Prime Polymer Co., Ltd. was used instead of “W101” manufactured by Sumitomo Chemical Co., Ltd. as the propylene resin.
The tacticity of the propylene resin ("F113G" manufactured by Prime Polymer Co., Ltd.) measured by the following measurement method was 97.97%. Moreover, the melt flow rate (MFR) measured with the following measuring method about the said propylene resin ("F113G" by Prime Polymer Co., Ltd.) was 8.4 g / 10min.
<Comparative Example 1>
A light diffusing plate was obtained in the same manner as in Example 1 except that “FSX20L8” manufactured by Sumitomo Chemical Co., Ltd. was used instead of “W101” manufactured by Sumitomo Chemical Co., Ltd. as the propylene resin.
The tacticity of the propylene resin (“FSX20L8” manufactured by Sumitomo Chemical Co., Ltd.) measured by the following measurement method was 93.54%. Moreover, the melt flow rate (MFR) measured by the following measuring method about the said propylene resin (Sumitomo Chemical Co., Ltd. "FSX20L8") was 4.8 g / 10min.
<Measurement method of tacticity of propylene resin>
300 mg of propylene resin to be measured (resin alone, ie, containing no nucleating agent) was dissolved by heating in 3 mL of a mixed solvent of orthodichlorobenzene / orthodichlorobenzene-d4 (80% by volume / 20% by volume). The 13 C-NMR is measured using a Bruker NMR measuring apparatus (AVANCE 600). In the obtained 13 C-NMR spectrum, with reference to tetramethylsilane, the peak observed at 21.14 to 22.10 ppm was identified as “mm”, and the peak observed at 20.46 to 21.14 ppm was It was identified as “mr”, and the peak observed at 19.75 to 20.40 ppm was identified as “rr”.
(Mm peak intensity) ÷ {(mm peak intensity) + (mr peak intensity) + (rr peak intensity)} × 100
The value (%) calculated by the above formula is tacticity (mm triad fraction).
When the propylene resin to be measured contains an ethylene unit, in order to eliminate the influence of the methyl group of the propylene unit adjacent to ethylene, the Sαγ peak intensity observed at 37.9 ppm is used, and “mm ”And“ mr ”integrated intensities were corrected.
<Measurement method of melt flow rate of propylene resin>
Based on JIS K7210-1999, the melt flow rate (MFR) of the propylene resin was measured under the conditions of a test temperature: 230 ° C. and a test load: 3.8 kg.
Figure JPOXMLDOC01-appb-T000001
Each light diffusion plate obtained as described above was evaluated according to the following evaluation method. The evaluation results are shown in Table 1.
<Bending elastic modulus measurement method>
Based on JIS K7203-1995, the bending elastic modulus (MPa) of the light diffusing plate was measured.
<Load deflection temperature evaluation method>
Based on J1S K7207-1995, the deflection temperature under load (° C.) of the light diffusion plate was measured at a load of 0.45 MPa.
As is clear from the table, the light diffusing plates of Examples 1 to 3 of the present invention have a large bending elastic modulus and an excellent strength, and also have a high load deflection temperature and an excellent heat resistance. Therefore, thermal deformation can be suppressed even under severe thermal conditions.
On the other hand, the light diffusion plate of Comparative Example 1 has a low bending elastic modulus and a low deflection temperature under load, and it is difficult to prevent thermal deformation under severe thermal conditions.
 本発明の光拡散板は、面光源装置用の光拡散板として好適に用いられるが、特にこのような用途に限定されるものではない。また、本発明の面光源装置は、液晶表示装置用のバックライトとして好適に用いられるが、特にこのような用途に限定されるものではない。 The light diffusing plate of the present invention is suitably used as a light diffusing plate for a surface light source device, but is not particularly limited to such applications. The surface light source device of the present invention is preferably used as a backlight for a liquid crystal display device, but is not particularly limited to such applications.
1…面光源装置
2…光源
3…光拡散板
20…液晶パネル
30…液晶表示装置
DESCRIPTION OF SYMBOLS 1 ... Surface light source device 2 ... Light source 3 ... Light diffusing plate 20 ... Liquid crystal panel 30 ... Liquid crystal display device

Claims (5)

  1.  タクティシティが95%以上であるプロピレン樹脂からなる光拡散板。 A light diffusion plate made of propylene resin with a tacticity of 95% or more.
  2.  タクティシティが95%以上であるプロピレン樹脂100質量部および造核剤0.01質量部~2.0質量部を含有する樹脂組成物からなる光拡散板。 A light diffusing plate comprising a resin composition containing 100 parts by mass of a propylene resin having a tacticity of 95% or more and 0.01 parts by mass to 2.0 parts by mass of a nucleating agent.
  3.  前記プロピレン樹脂は、JIS K7210−1999に準拠して、試験温度:230℃、試験荷重:3.8kgの条件で測定したメルトフローレートが0.5g/10分~30g/10分である請求項1または2に記載の光拡散板。 The propylene resin has a melt flow rate of 0.5 g / 10 min to 30 g / 10 min measured under conditions of a test temperature: 230 ° C. and a test load: 3.8 kg in accordance with JIS K7210-1999. 3. The light diffusing plate according to 1 or 2.
  4.  請求項1~3のいずれか1項に記載の光拡散板と、該光拡散板の背面側に配置された複数の光源とを備える面光源装置。 A surface light source device comprising: the light diffusing plate according to any one of claims 1 to 3; and a plurality of light sources arranged on a back side of the light diffusing plate.
  5.  請求項1~3のいずれか1項に記載の光拡散板と、該光拡散板の背面側に配置された複数の光源と、該光拡散板の前面側に配置された液晶パネルとを備える液晶表示装置。 A light diffusing plate according to any one of claims 1 to 3, a plurality of light sources arranged on the back side of the light diffusing plate, and a liquid crystal panel arranged on the front side of the light diffusing plate. Liquid crystal display device.
PCT/JP2009/071513 2008-12-22 2009-12-17 Light diffusion plate, surface light source device, and liquid crystal display device WO2010074188A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008325502 2008-12-22
JP2008-325502 2008-12-22
JP2009-069941 2009-03-23
JP2009069941 2009-03-23

Publications (1)

Publication Number Publication Date
WO2010074188A1 true WO2010074188A1 (en) 2010-07-01

Family

ID=42287793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071513 WO2010074188A1 (en) 2008-12-22 2009-12-17 Light diffusion plate, surface light source device, and liquid crystal display device

Country Status (3)

Country Link
JP (1) JP2010250273A (en)
TW (1) TW201037366A (en)
WO (1) WO2010074188A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675101A (en) * 1992-08-26 1994-03-18 Mitsui Toatsu Chem Inc Light scattering medium and its production
JPH10182899A (en) * 1996-12-27 1998-07-07 Mitsui Chem Inc Biaxially oriented polypropylene film
JP2008083660A (en) * 2006-08-28 2008-04-10 Sumitomo Chemical Co Ltd Light diffusing plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675101A (en) * 1992-08-26 1994-03-18 Mitsui Toatsu Chem Inc Light scattering medium and its production
JPH10182899A (en) * 1996-12-27 1998-07-07 Mitsui Chem Inc Biaxially oriented polypropylene film
JP2008083660A (en) * 2006-08-28 2008-04-10 Sumitomo Chemical Co Ltd Light diffusing plate

Also Published As

Publication number Publication date
TW201037366A (en) 2010-10-16
JP2010250273A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP4281785B2 (en) Light diffusion plate
US7726826B2 (en) Direct-type backlight device
EP2029935B1 (en) Device for signs
JP4552563B2 (en) Direct backlight unit
DE112006001480T5 (en) Light-diffusing polycarbonate resin composition and light-distributing plate using the resin composition
US7857475B2 (en) Direct-type backlight device
DE112005001068T5 (en) Light-shielding multi-layer high-reflection polycarbonate film, and thermoformed body and housing using the same
JP4933512B2 (en) Light guide plate
KR20090101835A (en) Light diffuser plate with light-collecting layer
SK50732008A3 (en) Light diffuser plate
JP2006339033A (en) Direct backlight unit
JP2011170254A (en) Light diffusion optical member
CN1768279A (en) Light diffusing plate
JP2006195276A (en) Direct-type backlight
JP2006310150A (en) Direct backlight device
WO2010074188A1 (en) Light diffusion plate, surface light source device, and liquid crystal display device
US20100040850A1 (en) Resin composition and diffusion plate
WO2010074312A1 (en) Light diffusion plate
KR20110068208A (en) Preparing of light guide plate by extruding engraving
JP2010250272A (en) Light diffusion plate, surface light source device, and liquid crystal display device
JPWO2010005051A1 (en) Direct type backlight device and liquid crystal display device
KR20120078618A (en) Light guide plate and backlight unit assembly
JP2010070608A5 (en)
JP2010211171A (en) Light diffusing plate, surface light source device, and liquid crystal display device
JP5045481B2 (en) Light diffusion plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834984

Country of ref document: EP

Kind code of ref document: A1