WO2010072489A1 - Energiespeicher mit einer oberfläche und einem den energiespeicher umgebendes fluid - Google Patents

Energiespeicher mit einer oberfläche und einem den energiespeicher umgebendes fluid Download PDF

Info

Publication number
WO2010072489A1
WO2010072489A1 PCT/EP2009/065616 EP2009065616W WO2010072489A1 WO 2010072489 A1 WO2010072489 A1 WO 2010072489A1 EP 2009065616 W EP2009065616 W EP 2009065616W WO 2010072489 A1 WO2010072489 A1 WO 2010072489A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy store
energy
energy storage
fluid
elements
Prior art date
Application number
PCT/EP2009/065616
Other languages
English (en)
French (fr)
Inventor
Ursula Bartenschlager
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP09759720A priority Critical patent/EP2377195A1/de
Publication of WO2010072489A1 publication Critical patent/WO2010072489A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/08Cooling arrangements; Heating arrangements; Ventilating arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5038Heating or cooling of cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • batteries also includes accumulators, which can be electrically charged and discharged again over many cycles.
  • Batteries consist of individual galvanic cells, the battery cells, which provide a voltage characteristic of the combination of materials used in the cell. In order to build a battery from these battery cells, which can supply the required amounts of power and energy, the individual battery cells are electrically connected in series and / or in parallel. For heating and / or cooling of the respective energy storage liquid or gaseous fluids are usually provided, which are guided past the surface of the energy storage or surrounding it. If a body flows at low speed, the flow flows laminar, ie without turbulence. As the flow velocity increases, the vortices separate from the
  • This vortex street is formed by the so-called Karman vortex street, formed by the vortex forming on the body, flowing away from the flow and finally dissipating.
  • Karman vortex street formed by the vortex forming on the body, flowing away from the flow and finally dissipating.
  • individual vortices arise on the left and right sides of the flow around each
  • An inventive energy storage device has a surface and a fluid surrounding the energy store. It is provided that the surface of the energy storage at least partially has elements, wherein the elements influence the fluid such that a turbulent flow is formed.
  • the invention basically makes use of the principle of a microturbulent surface, in which laminar flow regions are excited in such a way due to transverse flows that flow change occurs within the boundary layer from laminar to turbulent. In this way, a better mixing of the near-surface fluid with the cooler fluid in the more distant environment of the energy storage can be achieved. At the same time, this flow envelope causes the formation of a Karman vortex street to be avoided in the case of transversely flowed cylindrical energy stores.
  • the surface of the energy storage device comprises a smooth surface area, wherein the elements are formed at least partially, but advantageously substantially over the entire area, outwardly projecting from the surface material and / or internally recessed, it being conceivable that - at least in one area - the elements in Essentially as spherical cal and / or polygonal depressions and / or slots and / or as spherical and / or polygonal elevations and / or shapes and / or ribs are formed.
  • Such a surface structure reduces both the flow resistance and the formation of separation zones.
  • a plurality of energy storage devices are aligned parallel to each other and side by side, so that the fluid flows past between two adjacent energy storage and the heat transfer between the individual energy storage, ie a direct heat exchange between them possible.
  • additional heat transport devices such as, for example, a supply and discharge line for the fluid, are usually provided.
  • the energy store according to the invention is an electrochemical energy store, such as a battery or a rechargeable battery, and / or an electrical energy store, such as a capacitor.
  • the rechargeable battery (the accumulator) is an electrochemical energy store which can be electrically charged and rechargeable for many cycles and which has individual galvanic cells, the battery cells, which supply a voltage characteristic of the combination of materials of the respective cell.
  • it is energy storage with lithium ion technology.
  • the outer shape of the energy storage is not fixed and can be both angular and round, flat, thick, have elongated and / or compressed forms.
  • the individual battery cells are electrically connected in series and / or in parallel.
  • a battery element of the battery is a single battery cell or a compact battery arrangement with electrically connected battery cells, wherein the individual battery cell is the smallest element unit of the battery.
  • the fluid is preferably a liquid fluid, that is to say a liquid, or a gaseous fluid, that is to say a gas, wherein a pump device for supplying and / or removing the fluid is preferably provided.
  • a pump device for supplying and / or removing the fluid is preferably provided.
  • the gas the ambient air of the energy storage and for the pumping device, a fan.
  • the gaseous fluid of the wind can be used, which is available directly at the installation itself.
  • the use of a natural convection flow as a gaseous fluid is also conceivable.
  • the surface of the energy store - at least partially - made of a material having high thermal conductivity, preferably a thermally conductive plastic material or metal. Due to the manufacturing process of both capacitors and batteries, which usually involves a joining process, it is particularly advantageous that the elements can be directly embossed, pressed and / or crimped from the surface material of the energy store itself. In this case, a copper or aluminum material is particularly advantageous. Alternatively, however, an impression of the elements on the surface is conceivable, if no
  • Joining process is performed. Furthermore, the elements can already be produced during the production of the surface material, or the outer sleeve of the energy store, so that an additional manufacturing step is unnecessary during the production of the energy store.
  • the energy store is particularly suitable for a hybrid vehicle and / or an electric vehicle, the energy store in this case being particularly preferably designed as a nickel-metal hydride battery or a lithium-ion battery.
  • the energy storage is particularly suitable for electrical circuits, for example in control units, in which case it is particularly preferably designed as an electrolytic capacitor.
  • Fig. 1 is a schematic perspective view of an inventive
  • Fig. 2a is a detail view of the area A of FIG. 1 with a first possible
  • FIG. 2b shows a detailed view of the area A of FIG. 1 with a second possible
  • the energy store 10 is a single battery cell each having two contact elements 20, 25, one plus pole 20 and one minus pole 25.
  • the energy store 10 is essentially cuboid and has a surface 15 on.
  • the surface 15 comprises a surface pair of opposite side surfaces which are significantly larger than the surfaces of the other surface pairs.
  • the two respective contact elements 20, 25 of the battery cell are arranged.
  • the heat generated during operation of the energy storage 10 waste heat is dissipated via a fluid which is passed directly past the surface 15 of the energy storage device 10.
  • the surface 15 of the energy accumulator 10 has elements 16, 17 according to the invention, at least in some regions, which influence the fluid in such a way that a turbulent / microturbulent flow is formed which forms vortices within the fluid.
  • FIGS. 2a and 2b two possible embodiments of such a surface structure are shown, wherein the
  • Surface 15 in FIG. 2a has several recesses and a kind of golf ball structure 16 forms.
  • the surface 15 in FIG. 2b has a plurality of scale-like elements 17, which resemble a shark skin.
  • any surface structures are conceivable which cause a turbulent and / or microturbulent flow at the usual flow velocities of the fluid and can thereby form such vortices within the fluid.
  • These vortices are preferably close to the lower dissipation limit so that a better mixing of the fluid is ensured, a homogeneous heat transfer is possible and the temperature difference between the energy accumulators 10 can be reduced.
  • the fluid is mostly used for cooling the energy storage device 10, it is also referred to as coolant and the corresponding circuit as the coolant circuit.
  • the fluid is preferably a water-based, oil-based or gaseous coolant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Battery Mounting, Suspending (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

Die Erfindung betrifft einen Energiespeicher (10) mit einer Oberfläche (15) und einem den Energiespeicher (10) umgebendes Fluid. Es ist vorgesehen, dass die Oberfläche (15) des Energiespeichers (10) zumindest bereichsweise Elemente (16, 17) aufweist, wobei die Elemente (16, 17) das Fluid derart beeinflussen, dass eine turbulente Strömung entsteht.

Description

Beschreibung
ENERGIESPEICHER MIT EINER OBERFLÄCHE UND EINEM. DEN ENERGIESPEICHER UMGEBENDES FLUID
Titel
Enerqiespeicher
Stand der Technik
Ein derartiger Energiespeicher ist bekannt, wobei unter dem Begriff Energiespeicher im Zusammenhang mit dieser Patentanmeldung sowohl Kondensatoren als auch Batterien zu verstehen sind. Dabei umfasst der Begriff Batterien auch Ak- kumulatoren, welche über viele Zyklen elektrisch geladen und wieder entladen werden können. Batterien bestehen aus einzelnen galvanischen Zellen, den Batteriezellen, die eine für die verwendete Materialkombination der Zelle charakteristische Spannung liefern. Um aus diesen Batteriezellen eine Batterie aufzubauen, die die geforderten Leistungs- und Energiemengen liefern kann, werden die ein- zelnen Batteriezellen elektrisch in Serie und/oder parallel geschaltet. Zum Heizen und/oder Kühlen der jeweiligen Energiespeicher sind in der Regel flüssige oder gasförmige Fluide vorgesehen, die an der Oberfläche der Energiespeicher vorbeigeführt werden oder dieses umgeben. Wird ein Körper mit niedriger Geschwindigkeit angeströmt, fließt die Strömung laminar, also ohne Turbulenzen. Bei einer Zunahme der Strömungsgeschwindigkeit lösen sich die Wirbel von der
Oberfläche des umströmenden Körpers ab und bilden ein mehr oder weniger periodisch verlaufendes Wirbelsystem aus. Diese Wirbelstraße aus sich am umströmten Körper bildenden, von der Strömung fortgetriebenen und schließlich dissipierten Wirbeln bildet die sogenannte Karmansche Wirbelstraße. Dabei ent- stehen einzelne Wirbel an der jeweils linken und rechten Seite des umströmten
Körpers, welche sich entgegengesetzt zueinander drehen. Die Strömung zwi- schen diesen beiden Wirbeln verläuft in Richtung des umströmten Körpers und somit gegenläufig zu der eigentlichen, äußeren Strömung. Dabei erweist sich allerdings als nachteilig, dass durch die Kärmänsche Wirbelstraße der Strömungswiderstand der Energiespeicher steigt und damit der Energiebedarf für die Be- reitstellung der Fluidströmung erhöht wird. Darüber hinaus werden durch eine
Karmansche Wirbelstraße sowohl Geräuschemissionen als auch Schwingungen im System angeregt, wobei letztere im Resonanzfall negative Auswirkungen auf die Zuverlässigkeit haben. Je nach Einsatzbereich werden unterschiedlich hohe Anforderungen an die Lebensdauer derartiger Energiespeicher gestellt, welche nur eingehalten werden können, wenn das Temperaturniveau auf der der Energiespeicheroberfläche entsprechend gesenkt werden kann. Das Kühlsystem für derartige Energiespeicher ist somit umso effizienter, je homogener das Temperaturniveau der einzelnen Energiespeicher ist und umso weniger Energie aufgewendet werden muss, um die Verlustleistung vom Energiespeichern abzuführen.
Offenbarung der Erfindung
Ein erfindungsgemäßer Energiespeicher weist eine Oberfläche und ein den E- nergiespeicher umgebendes Fluid auf. Dabei ist vorgesehen, dass die Oberfläche des Energiespeichers zumindest bereichsweise Elemente aufweist, wobei die Elemente das Fluid derart beeinflussen, dass eine turbulente Strömung entsteht. Dabei mach sich die Erfindung grundsätzlich das Prinzip einer mikroturbulenten Oberfläche zu nutze, bei der laminare Strömungsbereiche aufgrund von Querströmungen derart angeregt werden, dass Strömungsumschlag innerhalb der Grenzschicht von laminar zu turbulent entsteht. Auf diese Weise kann eine bessere Durchmischung des oberflächennahen Fluids mit dem kühleren Fluid in der ferneren Umgebung des Energiespeichers erzielt werden. Gleichzeitig bewirkt dieser Strömungsumschlag, dass bei quer angeströmten zylindrischen E- nergiespeichern die Ausbildung einer Karmanschen Wirbelstraße vermeidbar ist.
Vorteilhafterweise umfasst die Oberfläche des Energiespeichers einen glatten Oberflächenbereich, wobei die Elemente zumindest bereichsweise, vorteilhafterweise aber im Wesentlichen flächendeckend, aus dem Oberflächenmaterial nach außen hervorstehend und/oder innen vertieft ausgebildet sind, wobei denkbar ist, dass- zumindest in einem Bereich - die Elemente im Wesentlichen als sphäri- sche und/oder polygonale Vertiefungen und/oder Schlitze und/oder als sphärische und/oder polygonale Erhöhungen und/oder Formen und/oder Rippen ausgebildet sind. Eine derartige Oberflächenstruktur verringert sowohl den Strömungswiderstand als auch die Ausbildung von Ablösezonen. Auf diese Weise kann beispielsweise bei einem querangeströmten zylindrischen Energiespeicher erst bei einer höheren Anströmgeschwindigkeit eine Karmansche Wirbelstraße ausgebildet werden, wobei die Rezirkulationszonen im Nachlauf der des quer angeströmten Energiespeichers kleiner sind, so dass einerseits die entstehenden Geräuschemissionen reduziert werden können und andererseits ein geringerer Strömungswiderstand und damit ein geringerer Energieaufwand für das Kühlsystem notwendig ist. Bei einem längsangeströmten zylindrischen Energiespeicher hingegen wird ein besserer Wärmeübergang erzeugt, weswegen diese Variante für eine höhere Leistungsdicht eingesetzt werden kann. Durch die Elemente entstehen somit turbulente und/oder mikroturbulente Strömungen, wodurch das FIu- id an den Grenzschichten der Oberfläche besser zirkuliert, so dass ein homogener Wärmeübergang zwischen den einzelnen Energiespeichern gewährleistet und der jeweilige Temperaturunterschied verringert werden kann.
Vorteilhafterweise sind dabei mehrere Energiespeicher parallel zueinander und nebeneinander ausgerichtet, so dass das Fluid jeweils zwischen zwei benachbarten Energiespeichern vorbeiströmt und den Wärmetransfer zwischen den einzelnen Energiespeichern, also einen direkten Wärmeaustausch zwischen diesen, ermöglicht. Um das Fluid zum Energiespeicher hin- und/oder von dem Energiespeicher wegzuleiten sind in der Regel zusätzliche Wärmetransporteinrichtun- gen, wie beispielsweise eine Zu- und Abfuhrleitung für das Fluid vorgesehen.
Vorteilhafterweise handelt es sich bei dem erfindungsgemäßen Energiespeicher um einen elektrochemischen Energiespeicher, wie beispielsweise eine Batterie oder ein Akkumulator, und/ oder einen elektrischen Energiespeicher, wie bei- spielsweise einen Kondensator. Dabei ist die wiederaufladbare Batterie (der Akkumulator) ein über viele Zyklen elektrisch ladbarer und wieder entladbarer elektrochemischer Energiespeicher, der einzelne galvanische Zellen, die Batteriezellen, aufweist, die eine für die verwendete Materialkombination der jeweiligen Zelle charakteristische Spannung liefern. Insbesondere handelt es sich um Energie- Speicher mit Lithium Ionen Technologie. Ferner ist die äußere Form des Energiespeichers nicht festgelegt und kann sowohl eckige als auch runde, flache, dicke, längliche und/oder gestauchte Formen aufweisen. Um eine geforderte Leistungsund Energiekapazität der Batterie zu erreichen, werden die einzelnen Batteriezellen elektrisch in Serie und/oder parallel geschaltet. Ein Batterieelement der Batterie ist eine einzelne Batteriezelle oder eine kompakte Batterieanordnung mitein- ander elektrisch verschalteter Batteriezellen, wobei die einzelne Batteriezelle die kleinste Elemente-Einheit der Batterie ist.
Bevorzugt ist das Fluid ein flüssiges Fluid, also eine Flüssigkeit, oder ein gasförmiges Fluid, also ein Gas, wobei bevorzugt eine Pumpeinrichtung zur Zufuhr und/oder Abfuhr des Fluid vorgesehen ist. Anstelle einer aktiven Luftbewegung wird als Gas vorzugsweise die Umgebungsluft des Energiespeichers und für die Pumpeinrichtung ein Lüfter verwendet. So kann beispielsweise bei Fahrzeugen als gasförmiges Fluid der Fahrtwind verwendet werden, welcher unmittelbar am Einbauort selber zur Verfügung steht. Denkbar ist aber auch die Verwendung ei- ner natürlichen Konvektionsströmung als gasförmiges Fluid.
In einer besonders bevorzugten Ausführungsform besteht die Oberfläche des Energiespeichers- zumindest teilweise - aus einem Material mit hoher thermischer Leitfähigkeit, vorzugsweise einem thermisch leitfähigen Kunststoffmaterial oder Metall. Aufgrund des Herstellungsprozesses von sowohl Kondensatoren als auch Batterien, welcher in der Regel einen Fügeprozess beinhaltet, ist es besonders vorteilhaft, dass die Elemente unmittelbar aus dem Oberflächenmaterial des Energiespeichers selbst geprägt, gepresst und/oder gebördelt werden können. Dabei ist ein Kupfer- oder Aluminiummaterial besonders vorteilhaft. Alternativ ist aber auch eine Aufprägung der Elemente auf die Oberfläche denkbar, wenn kein
Fügeprozess durchgeführt wird. Ferner können die Elemente bereits bei der Herstellung des Oberflächenmaterials, bzw. der Außenhülse des Energiespeichers hergestellt werden, so dass ein zusätzlicher Fertigungsschritt während der Herstellung des Energiespeichers unnötig ist.
Der Energiespeicher ist insbesondere für ein Hybridfahrzeug und/oder ein Elekt- rofahrzeug geeignet, wobei der Energiespeicher in diesem Fall besonders bevorzugt als Nickel-Metallhydrid-Batterie oder eine Lithium-Ionen-Batterie ausgebildet ist. Darüber hinaus ist der Energiespeicher insbesondere für elektrische Schal- tungen, zum Beispiel in Steuergeräten geeignet, wobei er in diesem Fall besonders bevorzugt als Elektrolytkondensator ausgebildet ist. Nachfolgend wird die Erfindung unter Bezugnahme auf die anliegenden Zeichnungen näher erläutert. Dabei ist zu beachten, dass die Figuren nur einen beschreibenden Charakter haben und nicht dazu gedacht sind, die Erfindung in irgendeiner Form einzuschränken.
Es zeigen:
Fig. 1 eine schematisch perspektivische Darstellung eines erfindungsgemäßen
Energiespeichers;
Fig. 2a eine Detailansicht des Bereichs A aus Fig. 1 mit einer ersten möglichen
Oberflächenvariante des Energiespeichers;
Fig. 2b eine Detailansicht des Bereichs A aus Fig. 1 mit einer zweiten möglichen
Oberflächenvariante des Energiespeichers.
Die Figur 1 zeigt einen erfindungsgemäßen Energiespeicher 10. Im vorliegenden Ausführungsbeispiel ist der Energiespeicher 10 eine einzelne Batteriezelle jeweils zwei Kontaktelementen 20, 25, einem Plus-Pol 20 und einem Minus-Pol 25. Der Energiespeicher 10 ist im Wesentlichen quaderförmig und weist eine Oberfläche 15 auf. Die Oberfläche 15 umfasst ein Flächenpaar gegenüberliegender Seitenflächen, die deutlich größer sind, als die Flächen der anderen Flächenpaa- re. An einer ersten Fläche einer der anderen Flächenpaare des Energiespeichers
10 sind die jeweils zwei Kontakteelemente 20, 25 der Batteriezelle angeordnet. Die im Betrieb des Energiespeichers 10 entstehende Abwärme wird über ein Fluid, welches unmittelbar an der Oberfläche 15 des Energiespeichers 10 vorbeigeleitet wird, abgeführt. Auf diese Weise können mehrere nebeneinander und/oder hintereinander angeordnete Energiespeicher 10 untereinander thermisch gut leitend verbunden werden. Die Oberfläche 15 des Energiespeichers 10 weist erfindungsgemäße zumindest bereichsweise Elemente 16, 17 auf, welche das Fluid derart beeinflussen, dass eine turbulente/mikroturbulente Strömung entsteht, die innerhalb des Fluid Wirbel ausbildet. In den Fig. 2a und 2b sind zwei mögliche Ausführungsvarianten einer derartigen Oberflächenstruktur dargestellt, wobei die
Oberfläche 15 in der Fig. 2a mehrere Vertiefungen aufweist und eine Art Golf- ballstruktur 16 ausbildet. Dagegen weist die Oberfläche 15 in der Fig. 2b mehrere schuppenartige Elemente 17, die einer Haifischhaut ähneln, auf. Grundsätzlich ist aber jede Oberflächenstrukturen denkbar, welche bei den gängigen Anströ- mungsgeschwindigkeiten des Fluid eine turbulente und/oder mikroturbulente Strömung verursachen und dabei derartige Wirbel innerhalb des Fluid ausbilden kann. Diese Wirbel liegen vorzugsweise nahe an der unteren Dissipationsgrenze, so dass eine bessere Durchmischung des Fluid gewährleistet, ein homogener Wärmeübergang ermöglicht und der Temperaturunterschied zwischen den Energiespeichern 10 verringert werden kann. Auf diese Weise weisen alle Energie- Speicher 10 an der Oberfläche 15 nahezu die gleiche Temperatur auf, so dass der Temperaturunterschied zwischen jeder einzelnen Seitenflächen/Oberflächen 15 der Energiespeicher 10 und/oder der einzelnen Seitenflächen/Oberflächen 15 untereinander im gesamten Arbeits-Temperaturbereich des Energiespeichers nur wenige Kelvin (K) beträgt. Da das Fluid zumeist zum Kühlen des Energiespei- chers 10 genutzt wird, wird es auch als Kühlmittel und der entsprechende Kreislauf als Kühlmittelkreislauf bezeichnet. Das Fluid ist vorzugsweise ein wasserbasiertes, ölbasiertes oder gasförmiges Kühlmittel.

Claims

Ansprüche
1 . Energiespeicher (10) mit einer Oberfläche (15) und einem den Energie- Speicher (10) umgebendes Fluid, dadurch gekennzeichnet, dass die O- berfläche (15) des Energiespeichers (10) zumindest bereichsweise Elemente (16, 17) aufweist, wobei die Elemente (16, 17) das Fluid derart beeinflussen, dass eine turbulente Strömung entsteht.
2. Energiespeicher (10) nach Anspruch 1 , dadurch gekennzeichnet, dass der Energiespeicher (10) ein elektrochemischer Energiespeicher, wie beispielsweise eine Batterie oder ein Akkumulator ist.
3. Energiespeicher (10) nach Anspruch 1 , dadurch gekennzeichnet, dass der Energiespeicher (10) ein elektrischer Energiespeicher, wie beispielsweise einen Kondensator ist.
4. Energiespeicher (10) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Fluid ein gasförmiges und/oder ein flüssiges Fluid ist.
5. Energiespeicher (10) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Oberfläche (15) aus Kunststoff und/oder Metall besteht.
6. Energiespeicher (10) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Oberfläche (15) einen glatten Oberflächenbereich bildet und die Elemente (16, 17) aus dem Oberflächenmaterial nach außen hervorstehend und/oder innen vertieft ausgebildet sind.
7. Energiespeicher (10) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Elemente (16, 17) aus dem Oberflächenmaterial des Energiespeichers (10) selbst geprägt, gepresst und/oder gebördelt sind.
8. Energiespeicher (10) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Elemente (16, 17) im Wesentlichen als sphärische und/oder polygonale Vertiefungen und/oder Schlitze ausgebildet sind.
9. Energiespeicher (10) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Elemente (16, 17) im Wesentlichen als sphärische und/oder polygonale Erhöhungen und/oder Formen und/oder Rippen ausgebildet sind.
10. Energiespeicher (10) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Energiespeicher (10) für ein Hybridfahrzeug und/oder ein Elektrofahrzeug ist.
1 1 . Energiespeicher (10) nach einem der Ansprüche 1 bis 9, dadurch ge- kennzeichnet, dass der Energiespeicher (10) für ein Steuergerät ist.
12. Energiespeicher (10) nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass der Energiespeicher (10) eine Nickel-Metallhydrid- Batterie oder eine Lithium-Ionen-Batterie ist.
13. Energiespeicher (1 1 ) nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass der Energiespeicher (10) ein Elektrolytkondensator ist.
PCT/EP2009/065616 2008-12-15 2009-11-23 Energiespeicher mit einer oberfläche und einem den energiespeicher umgebendes fluid WO2010072489A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09759720A EP2377195A1 (de) 2008-12-15 2009-11-23 Energiespeicher mit einer oberfläche und einem den energiespeicher umgebendes fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008054656.9 2008-12-15
DE200810054656 DE102008054656A1 (de) 2008-12-15 2008-12-15 Die Erfindung betrifft einen Energiespeicher mit einer Oberfläche und einem den Energiespeicher umgebendes Fluid

Publications (1)

Publication Number Publication Date
WO2010072489A1 true WO2010072489A1 (de) 2010-07-01

Family

ID=41630967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/065616 WO2010072489A1 (de) 2008-12-15 2009-11-23 Energiespeicher mit einer oberfläche und einem den energiespeicher umgebendes fluid

Country Status (3)

Country Link
EP (1) EP2377195A1 (de)
DE (1) DE102008054656A1 (de)
WO (1) WO2010072489A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016217483A1 (de) 2016-09-14 2018-03-15 Robert Bosch Gmbh Batteriemodul mit einer Mehrzahl an Batteriezellen und Batterie
DE102016219284A1 (de) 2016-10-05 2018-04-05 Bayerische Motoren Werke Aktiengesellschaft Elektrischer Energiespeicher mit einer Notkühleinrichtung
DE102016219283A1 (de) 2016-10-05 2018-04-05 Bayerische Motoren Werke Aktiengesellschaft Elektrischer Energiespeicher mit zwischen den Zellen angeordneten Kühlplatten zur Notkühlung
DE102016219286A1 (de) 2016-10-05 2018-04-05 Bayerische Motoren Werke Aktiengesellschaft Elektrischer Energiespeicher mit Energiespeicherzellen deren Seitenflächen mit einem Muster versehen sind
DE102022119658A1 (de) 2022-08-04 2024-02-15 Audi Aktiengesellschaft Karosseriekomponente zum Austausch thermischer Energie

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492779A (en) * 1994-10-24 1996-02-20 General Motors Corporation Heat dissipating battery
WO2005043650A2 (en) * 2003-10-28 2005-05-12 Johnson Controls Technology Company Battery system with improved heat dissipation
US20060216579A1 (en) * 2005-03-25 2006-09-28 Kyu-Woong Cho Rechargeable battery module
WO2007081759A1 (en) * 2006-01-06 2007-07-19 Johnson Controls Technology Company Battery system with manifold for effluent release

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492779A (en) * 1994-10-24 1996-02-20 General Motors Corporation Heat dissipating battery
WO2005043650A2 (en) * 2003-10-28 2005-05-12 Johnson Controls Technology Company Battery system with improved heat dissipation
US20060216579A1 (en) * 2005-03-25 2006-09-28 Kyu-Woong Cho Rechargeable battery module
WO2007081759A1 (en) * 2006-01-06 2007-07-19 Johnson Controls Technology Company Battery system with manifold for effluent release

Also Published As

Publication number Publication date
DE102008054656A1 (de) 2010-06-17
EP2377195A1 (de) 2011-10-19

Similar Documents

Publication Publication Date Title
EP0917230B1 (de) Akkumulatorenbatterie mit Temperiervorrichtung
DE112007002809T5 (de) Elektrisches Leistungszuführsystem
DE102008056859B4 (de) Vorrichtung zur Spannungsversorgung eines Kraftfahrzeugs mit einer Kühleinrichtung
DE102011118686B4 (de) Batterie mit aktiv gekühlter Stromschiene, Verfahren zur Kühlung der Stromschiene, Verwendung der Batterie, Fahrzeug und Stromschiene
WO2011138156A1 (de) Elektrischer energiespeicher, kühlvorrichtung
DE102013218674A1 (de) Batteriezelle, Batterie und Fahrzeug
WO2010072489A1 (de) Energiespeicher mit einer oberfläche und einem den energiespeicher umgebendes fluid
DE102014001975A1 (de) Batterie für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zur Herstellung einer Batterie für ein Kraftfahrzeug
DE102010050993A1 (de) Batterie mit Zellverbund
EP2382678A1 (de) Batteriemodul mit isolierendem schichtelement
EP3319148A1 (de) Batteriemodul
DE102013215975B4 (de) Abstandshalter für eine Batterie, Batterie und Kraftfahrzeug
WO2015180997A1 (de) Elektrischer energiespeicher
DE102018222404B4 (de) Anordnung zur elektrischen Verbindung elektrochemischer Speicherzellen und/oder Zellmodule untereinander sowie Batterie oder Fahrzeug dazu
WO2013023847A1 (de) Batteriemodul mit luftkühlung sowie kraftfahrzeug
DE102015108426B4 (de) Vorrichtung zur Kühlung einer Batterie
DE102016004526A1 (de) Temperiervorrichtung für eine elektrische Batterie
DE102013222130A1 (de) Wärmeübertrager
DE102014105123A1 (de) Batteriesystem und Verfahren zum Betreiben eines Batteriesystems
WO2013023848A1 (de) Batteriezelle, batteriezellenmodul, batterie und kraftfahrzeug
DE102011115561B4 (de) Wärmemanagementkomponente für ein ress-batteriemodul und verfahren zum steuern der wärmeenergie eines ress-batteriemoduls
DE102010062858B4 (de) Batteriezelle
DE102012219384A1 (de) Modulverbinder für Batteriepacks, Batteriepack sowie Kraftfahrzeug
DE102019220014A1 (de) Kühlkörper für eine Batteriezelle, Batteriemodul und Fluggerät
WO2019228823A1 (de) Elektrischer energiespeicher

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09759720

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009759720

Country of ref document: EP