WO2010072111A1 - 移动终端调整频偏的方法和装置 - Google Patents

移动终端调整频偏的方法和装置 Download PDF

Info

Publication number
WO2010072111A1
WO2010072111A1 PCT/CN2009/075097 CN2009075097W WO2010072111A1 WO 2010072111 A1 WO2010072111 A1 WO 2010072111A1 CN 2009075097 W CN2009075097 W CN 2009075097W WO 2010072111 A1 WO2010072111 A1 WO 2010072111A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
frequency offset
downlink
serving cell
signal strength
Prior art date
Application number
PCT/CN2009/075097
Other languages
English (en)
French (fr)
Inventor
李萍
马毅华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010072111A1 publication Critical patent/WO2010072111A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/04Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant

Definitions

  • the present invention relates to the field of time division code division multiple access mobile communication systems, and more particularly to a method and apparatus for adjusting a frequency offset of a terminal in a high speed environment of a mobile communication system.
  • Code division multiple access has the advantages of large capacity, strong anti-multipath fading capability and high frequency band utilization, and has become the mainstream of the third generation mobile communication wireless transmission technology, among which TD-SCDMA (Time Division-Synchronous Code Division Multiple Access) Code division multiple access) is a representative system and has been widely used.
  • the LTE (Long Term Evolution) project is the largest new technology development project initiated by the 3GPP (3rd Generation Partnership Project) in the past two years. It has improved and enhanced 3G air access technology. It has become a research hotspot technology in the field of wireless communication.
  • a Doppler shift is generated between the base station and the terminal.
  • the effect of such frequency shift is particularly significant.
  • the Doppler shift will cause a frequency error between the receiver and the transmitter, which will seriously affect the link performance and will have an impact on the system's capacity and coverage.
  • the magnitude of the Doppler shift is related to the relative motion velocity. The relationship between them is: f
  • is the angle between the direction of movement of the terminal and the direction of signal propagation; V is the speed of the terminal movement; c is the propagation speed of the electromagnetic wave; is the carrier frequency.
  • the speed of higher-speed vehicles is generally in the range of 150km to 250km per hour. In the next few years, the speed of vehicles with many traffic sections will reach 300-350km/h. Within this speed range, the Doppler shift will exceed 400 Hz, and the base station and terminal must complete sufficient frequency offset compensation to meet the quality of service requirements.
  • estimating the frequency error between the transmitter and the frequency error correction is a must-have.
  • the downlink signal frequency is locked, and then the uplink signal is sent.
  • the relative motion direction of the terminal and the base station is different, and a frequency offset of positive and negative is generated, which is set as the transmission frequency of the base station.
  • the frequency of the signal received by the negative frequency offset base station will be - 2 ⁇ , and the frequency of the signal received by the terminal is /.
  • a positive frequency offset is generated, the frequency at which the base station receives the signal is +, and the frequency of the signal received by the terminal is /.
  • the technical problem to be solved by the present invention is to provide a method and device for adjusting a frequency offset of a mobile terminal, by adjusting the frequency offset to the frequency offset determined by the serving cell and the neighboring cell in advance, thereby avoiding The frequency hopping problem generated when the terminal transfers from the serving cell to the neighboring cell is avoided.
  • a method for a mobile terminal to adjust a frequency offset comprising the following steps:
  • the terminal detects the downlink broadcast signal strength or the pilot signal strength of the serving cell and the neighboring cell; the terminal determines whether the difference between the downlink broadcast signal strength or the pilot signal strength of the serving cell and the neighboring cell with the strongest signal strength is greater than a threshold value:
  • the terminal calculates a downlink frequency offset according to the broadcast channel or the pilot code of the serving cell, and uses the frequency offset as the frequency offset estimation value of the mobile terminal;
  • the terminal calculates the downlink frequency offset of the serving cell according to the broadcast channel or the pilot code of the serving cell, calculates the downlink frequency offset of the strongest neighboring cell according to the broadcast channel or the pilot code of the strongest neighboring cell, and combines the two frequency offsets.
  • the terminal local carrier frequency is corrected with a smooth terminal frequency offset estimation value.
  • the downlink broadcast signal strength of the terminal detecting the serving cell and the neighboring cell can be obtained by measuring the downlink synchronization code of the time division synchronization code division multiple access system or the received signal code power of the primary common control physical channel.
  • the terminal calculates the downlink frequency offset value according to the downlink synchronization code or the broadcast channel of the serving cell.
  • the terminal calculates the downlink frequency offset value A of the serving cell according to the downlink synchronization code or the broadcast channel of the serving cell. /sCT TM e -. Dl , calculating the downlink frequency offset value of the neighboring cell according to the downlink synchronization code or the broadcast channel of the strongest neighboring cell.
  • the method for combining the downlink frequency offset estimation value 4 termmal of the terminal is:
  • R ⁇ CP Service — cell + ⁇ * RSC7 J Primaiyjieighbor _ cell is the neighboring cell weighting factor
  • the value range is 0 ⁇ ⁇ 2
  • the value is determined by simulation or actual scene
  • ⁇ 0 ⁇ 1 is the downlink signal strength of the serving cell
  • ⁇ 0 ⁇ . 1 is the downlink signal strength of the strongest neighboring cell.
  • the pilot signal strength of the terminal detecting the serving cell and the neighboring cell is obtained by measuring the reference symbol received power of the cell reference symbol of the long-term evolution system.
  • the terminal calculates the downlink frequency offset value according to the pilot code of the serving cell or the primary and secondary downlink synchronization codes using the phase difference of the subcarriers.
  • the terminal filters the frequency offset estimation value again, and the filtering method is:
  • the instantaneous terminal downlink frequency offset estimation value calculated on the nth subframe is represented, ⁇ is a filter coefficient, 0 ⁇ f ⁇ l , and the filtered octet is used as a terminal smoothing downlink frequency offset estimation value of the nth subframe, and The terminal smoothes the downlink frequency offset estimation value as a value for correcting the local carrier frequency of the terminal.
  • the threshold is a serving cell dominant threshold and can be obtained through simulation or wireless scenario testing.
  • the apparatus for adjusting a frequency offset of a mobile terminal of the present invention includes a detecting unit for detecting a downlink broadcast signal strength or a pilot signal strength of a serving cell and a neighboring cell, and further includes:
  • a determining unit configured to connect to an output end of the detecting unit, configured to determine whether a difference between a downlink broadcast signal strength or a pilot signal strength of the serving cell and the strongest neighboring cell is greater than a threshold;
  • the frequency offset estimation value calculation unit is connected to the output end of the determining unit, and when the difference between the downlink broadcast signal strengths of the serving cell and the strongest neighboring cell is greater than a threshold, the downlink frequency offset is calculated according to the broadcast channel or the pilot code of the serving cell. And using the frequency offset as the frequency offset estimation value of the terminal; when the difference between the downlink broadcast signal strengths of the serving cell and the strongest neighboring cell is less than or equal to the threshold, calculating the downlink of the serving cell according to the broadcast channel or the pilot code of the serving cell Frequency offset, calculate the downlink frequency offset of the strongest neighboring cell according to the broadcast channel or the pilot code of the strongest neighboring cell, and combine the two frequency offsets as the frequency offset estimation value of the terminal.
  • the apparatus for adjusting frequency offset of the mobile terminal of the present invention further includes a frequency offset estimation value filtering unit connected to the output end of the frequency offset estimation value calculation unit, configured to filter the frequency offset estimation value, and use the filtered output value as the correction terminal local carrier.
  • the value of the frequency; the filtering method is:
  • the instantaneous terminal downlink frequency offset estimation value calculated on the nth subframe is represented, ⁇ is a filter coefficient, 0 ⁇ f ⁇ l , and the filtered octet is used as a terminal smoothing downlink frequency offset estimation value of the nth subframe, and The terminal smoothes the downlink frequency offset estimation value as a value for correcting the local carrier frequency of the terminal.
  • the method and device for adjusting the frequency offset of the mobile terminal of the present invention have the following advantages compared with the prior art method: Before the cell reselection or the cell handover process occurs, the terminal adjusts the frequency offset to the frequency determined by the serving cell and the neighboring cell in advance. On the other hand, the frequency offset mutation problem faced by the terminal when transferring from the serving cell to the neighboring cell is avoided, and the performance of the terminal in the high-speed mobile environment is improved. At the same time, the method and device are also applicable to the terminal of low-speed motion, which has no effect on the performance of the low-speed motion terminal while improving the performance of the terminal at high speed. DRAWINGS
  • Figure 1 is a schematic diagram of frequency offset during terminal movement
  • FIG. 2 is a flowchart of an embodiment of a method for adjusting a frequency offset of a mobile terminal according to the present invention
  • FIG. 3 is a structural block diagram of an embodiment of an apparatus for adjusting a frequency offset of a mobile terminal according to the present invention. detailed description
  • the apparatus for adjusting a frequency offset of the mobile terminal of the present invention includes: a detecting unit 1 for detecting downlink signal strength or pilot signal strength, and a judgment for determining a broadcast signal strength or a pilot signal strength.
  • the unit 2 the frequency offset estimated value calculating unit 3, and the frequency offset estimated value filtering unit 4. among them,
  • the detecting unit 1 is configured to detect downlink broadcast signal strengths of the serving cell and the neighboring cell;
  • the determining unit 2 is connected to the output end of the detecting unit 1 for determining whether the difference between the downlink broadcast signal strength of the serving cell and the strongest neighboring cell or the downlink pilot signal strength of the serving cell and the strongest neighboring cell is greater than a threshold;
  • the frequency offset estimated value calculating unit 3 is connected to the output terminal of the determining unit 2, and calculates a frequency offset estimated value based on the judgment result of the determining unit 2.
  • the code calculates the downlink frequency offset, or, in the LTE system, calculates the downlink frequency offset according to the pilot code of the serving cell or the primary and secondary downlink synchronization codes, and uses the frequency offset as the frequency offset estimation value of the mobile terminal;
  • the downlink frequency offset of the serving cell is calculated according to the broadcast channel or the downlink synchronization code of the serving cell, or, in the LTE system, according to The pilot code or the primary and secondary downlink
  • the frequency offset estimation value filtering unit 4 is connected to the output end of the frequency offset estimated value calculating unit 3 for filtering the frequency offset estimated value and using the filtered output value as a value for correcting the local carrier frequency of the terminal.
  • the method for adjusting a frequency offset of a mobile terminal includes the following steps: Step 202: A terminal detects a downlink broadcast signal strength or a pilot signal strength of a serving cell and a neighboring cell.
  • Step 204 The terminal determines whether the difference between the downlink broadcast signal strength or the pilot signal strength of the serving cell and the strongest neighboring cell is greater than a threshold. If yes, go to step 206; if no, go to step 208.
  • Step 206 The terminal calculates a downlink frequency offset according to the broadcast channel or the pilot code of the serving cell, and uses the frequency offset as the frequency offset estimation value of the mobile terminal.
  • the terminal detects the downlink broadcast signal strength of the serving cell and the neighboring cell by measuring the downlink synchronization code (SYNC_DL) of the TD-SCDMA system and the primary common control physical channel (PCCPCH) channel.
  • Received signal code power (RSCP, Received Signal Code Power) is obtained.
  • the pilot signal strength can be obtained by measuring the reference signal received power (RSRP, Reference Signals Receive Power) of the downlink pilot code signals of the LTE system.
  • step 204 in the TD-SCDMA system, the process of determining whether the difference between the downlink broadcast signal strengths of the serving cell and the strongest neighbor cell is greater than a threshold is as follows:
  • RSCP S is the downlink signal strength of the serving cell; The downlink signal strength of the neighboring cell with the strongest downlink signal strength;
  • the process of determining whether the difference between the pilot signal strengths of the serving cell and the strongest neighboring cell is greater than a threshold is as follows:
  • Xiao- yi - ce nie is the downlink reference symbol strength of the neighboring cell with the strongest downlink signal strength
  • Threshold is the "serving cell dominant threshold", obtained through simulation or wireless scenario testing.
  • TD-SCDMA system a terminal serving cell according to the DwPTS (downlink preamble) calculating a downlink broadcast channel or frequency offset value ⁇ TM - ⁇ 11, and is 4 TM. e —. Dl is used as the downlink frequency offset estimation value of the terminal, and TM 1 is used to correct the local carrier frequency of the terminal.
  • the terminal calculates the downlink according to the pilot code of the serving cell or the primary and secondary synchronization codes.
  • the frequency offset value ⁇ !e TM ce - ceU and the terminal local carrier frequency is corrected by using ⁇ , !e TM ce - ceU as the terminal downlink offset estimation value ⁇ ⁇ TMTM ⁇ .
  • the terminal calculates the downlink frequency offset value ⁇ ⁇ TM according to the DwPTS (downlink synchronization code) of the serving cell or the broadcast channel, or according to the pilot code or the primary and secondary synchronization codes.
  • according to the DwPTS (downlink synchronization code) or broadcast channel of the strongest neighboring cell, or the pilot code or the primary and secondary synchronization codes, calculate the downlink frequency offset value 3 ⁇ 4mary_ neighbor_cell, and; ervice_cell and 3 ⁇ 4mary_ neighbor-cell
  • the terminal frequency offset estimate termmal is used as the terminal to correct the terminal local carrier frequency.
  • the merging method given by the present invention is:
  • the terminal may filter the ⁇ 3 1 again and use the filtered value output value as the value for correcting the local carrier frequency.
  • the method provided by the present invention is as follows:
  • terminal smoothing downlink frequency offset estimation value of the nth subframe, and use this “terminal smoothing downlink frequency offset estimation value” to correct the terminal local carrier frequency.
  • the terminal calculates the downlink frequency offset value A/ser TM e - through the DwPTS (downlink synchronization code) signal broadcast by the TD-SCDMA cell.
  • the method of dl can be calculated using a well-known sequence correlation method for a downlink synchronization code sequence.
  • the method for calculating the downlink frequency offset value ⁇ s ⁇ 11 of the pilot code of the LTE system or the primary and secondary synchronization codes can be calculated by using the known subcarrier phase difference method, and the subcarrier phase difference method is as disclosed in 2007.
  • the technical solution described in the Chinese patent application entitled “Method for Estimating and Correcting Orthogonal Frequency Division Multiplexed Carrier Frequency Deviation" on October 17, the publication number CN101056291A; or the publication date is 2007 8
  • the invention titled CN101014029A is the technical solution described in the Chinese Patent Application of "Method for Generating OFDM Synchronization Training Sequence and Synchronization Method Based on the Training Sequence".
  • the terminal After the frequency offset adjustment process, the terminal adjusts the frequency offset to the frequency offset determined by the serving cell and the neighboring cell in advance before the cell reselection or the cell handover process occurs, thereby preventing the terminal from transferring from the serving cell to the neighboring cell.
  • the frequency offset problem faced by the terminal improves the performance of the terminal in a high-speed mobile environment.

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

移动终端调整频偏的方法和装置 技术领域
本发明涉及时分码分多址移动通信系统领域, 尤其涉及移动通信系统 在高速环境下的终端调整频偏的方法和装置。 背景技术
码分多址具有容量大、 抗多径衰落能力强和频带利用率高等优点, 已 成为第三代移动通信无线传输技术的主流, 其中 TD-SCDMA ( Time Division- Synchronous Code Division Multiple Access, 时分同步码分多址 )就 是具有代表性的系统, 目前已经被广泛应用。 LTE ( Long Term Evolution , 长期演进)项目是近两年来 3GPP ( 3rd Generation Partnership Project, 第三 代合作伙伴计划)启动的最大的新技术研发项目, 它改进并增强了 3G的空 中接入技术, 也成为现在无线通信领域的研究热点技术。
随着我国高速公路的陆续修建, 以及铁路的不断提速, 高速交通运输 已在较大范围内应用, 并大步向前发展。 这样, 需要在高速交通工具上进 行通讯业务的终端用户也越来越多, 这就要求网络覆盖能提供良好的通信 服务质量。
由于终端的移动, 会在基站和终端之间产生多普勒频移, 在移动通信 系统中, 特别是在高速场景下, 这种频移的影响尤其明显。 多普勒频移将 使接收机和发射机之间产生频率误差, 这将会严重影响链路性能, 还会对 系统的容量和覆盖范围产生影响。
多普勒频移的大小和相对运动速度大小有关, 它们之间的关系是: f
fd = -— xvx cos ^ 其中, Θ为终端移动方向和信号传播方向之间的夹角; V是终端运动速 度; c为电磁波传播速度; 为载波频率。
较高速的交通工具速度一般在每小时 150km ~ 250km范围内, 在今后 几年内, 陆续会有不少交通路段的交通工具的速度达到 300 ~ 350km/h。 在 此速度范围内, 多普勒频移将超过 400Hz, 基站和终端必须完成足够的频 偏补偿才能满足业务质量的要求。
对于接收机来说, 估计和发射机之间的频率误差并完成频率误差校正 是必须完成的功能。 终端接收到 的频移信号后锁定下行信号频率, 再发 送上行信号。 终端和基站的相对运动方向不同, 会产生正负不同的频偏, 设 是基站的发射频率, 当终端向远离基站的方向运动时, 会产生负频偏 基站所接收信号的频率将是 -2··^ , 而终端接收到的信号的频率是 /。 - ; 当终端向靠近基站的方向运动时, 会产生正频偏 , 基站接收信号 的频率是 + , 而终端接收到的信号的频率是/。 + , 如图 1所示, 当终 端在两个基站之间运动时, 在从一个基站驶向另一个基站的时, 终端为了 完成小区重选和切换过程, 需要相继接收相邻两个小区的信号, 这时两个 小区的下行信号之间会出现频率跳变, 即从频率 - 跳到频率/。+ , 终 端将会有 2* 的频率跳变。 过大的频率偏移量会造成通信质量的急剧下降, 严重的时候会导致下行链路中断。
终端如果对这种频偏跳变情况进行补偿, 那么能将系统性能大大提升, 尤其是当频偏较大时(对应终端运动速度较高时)。 因此寻找简单稳定的终 端频偏调整方式对工程实现具有重要意义。 发明内容
本发明要解决的技术问题在于提供一种移动终端调整频偏的方法和装 置, 通过提前将频偏调整到服务小区和邻小区综合决定的频偏上, 从而避 免了终端从服务小区向邻小区转移时所产生的频率跳变问题。
为解决上述技术问题, 本发明是通过以下技术方案实现的:
一种移动终端调整频偏的方法, 该方法包括如下步骤:
终端检测服务小区和邻小区的下行广播信号强度或导频信号强度; 终端判断服务小区和信号强度最强的邻小区的下行广播信号强度或导 频信号强度之差是否大于门限值:
若是, 终端根据服务小区的广播信道或导频码计算下行频偏, 并以此 频偏作为移动终端的频偏估计值;
若否, 终端根据服务小区的广播信道或导频码计算服务小区下行频偏, 根据最强邻小区的广播信道或导频码计算最强邻小区的下行频偏, 并合并 这两个频偏作为移动终端的频偏估计值, 用平滑的终端频偏估计值校正终 端本地载波频率。
终端检测服务小区和邻小区的下行广播信号强度可以通过测量时分同 步码分多址系统的下行同步码或者主公共控制物理信道的接收信号码功率 获得。
当时分同步码分多址系统中服务小区和信号强度最强的邻小区的下行 广播信号强度之差大于门限值时, 终端根据服务小区的下行同步码或广播 信道计算下行频偏值。
当时分同步码分多址系统中服务小区和最强的邻小区的下行广播信号 强度之差小于或等于门限时, 终端根据服务小区的下行同步码或广播信道 计算服务小区的下行频偏值 A/sCTe-。dl , 根据最强邻小区的下行同步码或广播 信道计算邻小区的下行频偏值
Figure imgf000005_0001
, 所述终端的下行频偏估计值 4 termmal的合并方法为:
erminal _ " * ; ervice cell + (1 _ ") * A ftimary— neighbor— cell service cell
= =
其中 , R^CPServicecell + β * RSC7J Primaiyjieighbor_cell , 为邻小区权重因子, 取值 范围为 0 < ≤2 , 取值由仿真或者实际场景确定, ^0^1。^11为服务小区的 下行信号强度, ^0^^ 。 1为最强邻小区的下行信号强度。
其中, 终端检测服务小区和邻小区的导频信号强度是通过测量长期演 进系统的小区参考符号的参考符号接收功率获得。
其中, 长期演进系统中, 终端根据服务小区的导频码或主、 辅下行同 步码釆用子载波相位差的方式计算下行频偏值。
较优的实施方式是, 终端对频偏估计值再次滤波, 其滤波方法为:
J terminal n ^ terminal n-\ J terminal w
其中 表示第 n子帧上计算得到的瞬时终端下行频偏估计值, ε为 滤波系数, 0 < f < l , 滤波后的八 ^作为第 n子帧的终端平滑下行频偏估 计值, 并以此终端平滑下行频偏估计值作为校正终端本地载波频率的值。
所述门限为服务小区占优门限, 可通过仿真或无线场景测试获得。 本发明的移动终端调整频偏的装置, 包括用于检测服务小区和邻小区 的下行广播信号强度或导频信号强度的检测单元, 此外还包括:
判断单元, 连接所述检测单元的输出端, 用于判断服务小区和最强的 邻小区的下行广播信号强度或导频信号强度之差是否大于门限;
频偏估计值计算单元, 连接所述判断单元的输出端, 当服务小区和最 强的邻小区的下行广播信号强度之差大于门限时, 根据服务小区的广播信 道或导频码计算下行频偏, 并以此频偏作为终端的频偏估计值; 当服务小 区和最强的邻小区的下行广播信号强度之差小于或等于门限时, 根据服务 小区的广播信道或导频码计算服务小区下行频偏, 根据最强邻小区的广播 信道或导频码计算最强邻小区的下行频偏, 并合并这两个频偏作为终端的 频偏估计值。 本发明的移动终端调整频偏的装置还包括连接所述频偏估计值计算单 元输出端的频偏估计值滤波单元, 用于对频偏估计值进行滤波, 并以滤波 输出值作为校正终端本地载波频率的值; 其滤波方式为:
J terminal n ^ terminal n-\ J terminal w
其中 表示第 n子帧上计算得到的瞬时终端下行频偏估计值, ε为 滤波系数, 0 < f < l , 滤波后的八 ^作为第 n子帧的终端平滑下行频偏估 计值, 并以此终端平滑下行频偏估计值作为校正终端本地载波频率的值。
本发明移动终端调整频偏的方法和装置与现有技术方法相比具有如下 优点: 终端在发生小区重选或者小区切换过程前, 提前将频偏调整到由服 务小区和邻小区综合决定的频偏上, 避免了终端从服务小区向邻小区转移 时所面临的频偏突变问题, 提高了终端在高速移动环境下的性能。 同时该 方法和装置也适用于低速运动的终端, 在提高终端高速移动时性能的同时 对低速运动的终端性能没有影响。 附图说明
图 1 是终端移动过程中的频偏示意图;
图 2 是本发明移动终端调整频偏的方法实施例的流程图;
图 3为本发明移动终端调整频偏的装置实施例的结构方框图。 具体实施方式
以下结合附图对本发明的优选实施例进行说明。
如图 3 所示, 本发明移动终端调整频偏的装置包括依次连接的: 用于 下行广播信号强度或者导频信号强度检测的检测单元 1、用于广播信号强度 或者导频信号强度判断的判断单元 2、频偏估计值计算单元 3以及频偏估计 值滤波单元 4。 其中,
检测单元 1用于检测服务小区和邻小区的下行广播信号强度; 判断单元 2连接于检测单元 1 的输出端, 用于判断服务小区和最强的 邻小区的下行广播信号强度或者服务小区和最强的邻小区的下行导频信号 强度之差是否大于门限;
所述频偏估计值计算单元 3连接于判断单元 2的输出端, 根据判断单 元 2 的判断结果计算频偏估计值。 当服务小区和最强的邻小区的下行广播 信号强度或者服务小区和最强的邻小区的导频信号强度之差大于门限时, 在 TD-SCDMA系统中,根据服务小区的广播信道或下行同步码计算下行频 偏, 或者, 在 LTE系统中, 根据服务小区的导频码或主、 辅下行同步码计 算下行频偏, 并以此频偏作为移动终端的频偏估计值; 当服务小区和最强 的邻小区的下行广播信号强度之差小于或等于门限时,在 TD-SCDMA系统 中, 根据服务小区的广播信道或下行同步码计算服务小区下行频偏, 或者, 在 LTE系统中, 根据导频码或及主、辅下行同步码计算服务小区下行频偏, 根据最强邻小区的广播信道或下行同步码计算最强邻小区的下行频偏, 或 者根据导频码或及主、 辅下行同步码计算最强邻小区的下行频偏, 并合并 这两个频偏作为移动终端的频偏估计值。
所述频偏估计值滤波单元 4连接频偏估计值计算单元 3的输出端, 用 于对频偏估计值进行滤波, 并以滤波输出值作为校正终端本地载波频率的 值。
如图 2所示, 本发明的移动终端调整频偏的方法包括如下步骤: 步骤 202,终端检测服务小区和邻小区的下行广播信号强度或者导频信 号强度。
步骤 204,终端判断服务小区和最强的邻小区的下行广播信号强度或者 导频信号强度之差是否大于门限, 若是, 至步骤 206; 若否, 至步骤 208。
步骤 206, 终端根据服务小区的广播信道或者导频码计算下行频偏, 并 以此频偏作为移动终端的频偏估计值。 步骤 208,终端根据服务小区的广播信道或导频码计算服务小区下行频 偏, 根据最强邻小区的广播信道或者导频码计算最强邻小区的下行频偏, 并合并这两个频偏作为移动终端的频偏估计值。
在步骤 202 中, 终端检测服务小区和邻小区的下行广播信号强度可以 通过测量 TD-SCDMA系统的下行同步码(SYNC— DL )和主公共控制物理 信道 ( PCCPCH, Primary Common Control Physical Channel )信道的接收信 号码功率 (RSCP, Received Signal Code Power )获得。 导频信号强度可以 通过测量 LTE系统的下行导频码 区参考符号 ( Cell-specific reference signals )的参考符号接收功率(RSRP, Reference Signals Receive Power )获 付。
在步骤 204中, TD-SCDMA系统中, 终端判断服务小区和最强的邻小 区的下行广播信号强度之差是否大于门限的过程如下所述:
RSCPSer/lce cen -RSC Pnmary neighbor cell > Threshold
其中 RSCPS 为服务小区的下行信号强度;
Figure imgf000009_0001
为下行信 号强度最强的邻小区的下行信号强度;
LTE 系统中, 终端判断服务小区和最强的邻小区的导频信号强度之差 是否大于门限的过程如下所述:
ceU -讚 — r n > Threshold
其中 为服务小区的下行参考符号强度; 蕭 ―一— ce„为 下行信号强度最强的邻小区的下行参考符号强度;
Threshold为 "服务小区占优门限", 通过仿真或者无线场景测试获得。 步骤 206中, TD-SCDMA系统中, 终端根据服务小区的 DwPTS (下行 同步码)或广播信道计算下行频偏值 Δ ™—∞11 , 并以 4 ™。e—。dl作为终端的下 行频偏估计值 ,™1去校正终端本地载波频率。
LTE 系统中, 终端根据服务小区的导频码或主、 辅同步码来计算下行 频偏值 ^ !ece-ceU,并以 Δ, !ece-ceU作为终端的下行频偏估计值 Δ^™™ι去校正终端 本地载波频率。
步骤 208中, 终端根据服务小区的 DwPTS (下行同步码 )或广播信道, 或者根据导频码或主、 辅同步码计算下行频偏值 Δ^™。^ιι , 根据最强邻小区 的 DwPTS (下行同步码)或广播信道, 或者导频码或主、 辅同步码计算下 行频偏值 ¾mary— neighbor— cell ,并将 ; ervice_cell和 ¾mary— neighbor— cell合并作为终端的下行频 偏估计值 termmal去校正终端本地载波频率。作为一个实施例, 本发明给出的 合并方法为:
erminal _ " * ervice cell + (1 _ ") * A ftimary— neighbor— cell 其中 ,
Figure imgf000010_0001
, 为邻小区权重因子, 取值 范围为 G < ≤ 2 , 取值由仿真或者实际场景确定。
可选的并可优化的, 在步骤 206和 208中, 终端可以对^^ 31再次滤波 并以滤波值输出值作为校正本地载波频率的值, 本发明给出的方法如下:
J terminal n ^ terminal n-\ J terminal w
其中 表示第 n子帧( subframe )上通过步骤 206或者步骤 208计 算得到的瞬时 "终端下行频偏估计值", f为滤波系数, 0 < f < l , 滤波后的
A/temnal„作为第 n子帧的 "终端平滑下行频偏估计值",并以此"终端平滑下行 频偏估计值"去校正终端本地载波频率。
步骤 206和 208中终端通过 TD-SCDMA小区广播的 DwPTS (下行同 步码)信号计算下行频偏值 A/sere-。dl的方法可以釆用众所周知的针对下行同 步码序列的序列相关法来计算。
LTE系统导频码或者主、 辅同步码计算下行频偏值 ^s ^11的方法可以 釆用已知的子载波相位差法来计算, 子载波相位差法如釆用公开日为 2007 年 10月 17 日、 公开号为 CN101056291A的发明名称为 "正交频分多路信 号载波频率偏差估计与纠正的方法" 的中国专利申请中记载的技术方案; 或釆用公开日为 2007年 8月 8日、公开号为 CN101014029A的发明名称为 "OFDM 同步训练序列的生成方法和基于该训练序列的同步方法" 的中国 专利申请中记载的技术方案。
经过上述频偏调整过程, 终端将在发生小区重选或者小区切换过程前, 提前将频偏调整到由服务小区和邻小区综合决定的频偏上, 避免了终端从 服务小区向邻小区转移时所面临的频偏突变问题, 提高了终端在高速移动 环境下的性能。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于 本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精 神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。

Claims

权利要求书
1、一种移动终端调整频偏的方法,其特征在于,该方法包括如下步骤: 终端检测服务小区和邻小区的下行广播信号强度或导频信号强度; 终端判断服务小区和信号强度最强的邻小区的下行广播信号强度或导 频信号强度之差是否大于门限值:
若是, 终端根据服务小区的广播信道或导频码计算下行频偏, 并以此 频偏作为终端的频偏估计值;
若否, 终端根据服务小区的广播信道或导频码计算服务小区下行频偏, 根据信号强度最强邻小区的广播信道或导频码计算信号强度最强邻小区的 下行频偏, 并合并这两个频偏作为终端的频偏估计值, 用频偏估计值校正 终端本地载波频率。
2、 根据权利要求 1所述的移动终端调整频偏的方法, 其特征在于: 所 述终端检测服务小区和邻小区的下行广播信号强度, 通过测量时分同步码 分多址系统的下行同步码或主公共控制物理信道的接收信号码功率获得。
3、 根据权利要求 1所述的移动终端调整频偏的方法, 其特征在于: 当 时分同步码分多址系统中服务小区和信号强度最强的邻小区的下行广播信 号强度之差大于门限值时, 终端根据服务小区的下行同步码或广播信道计 算下行频偏值。
4、 根据权利要求 1所述的移动终端调整频偏的方法, 其特征在于: 当 时分同步码分多址系统中服务小区和最强的邻小区的下行广播信号强度之 差小于或等于门限值时, 终端根据服务小区的广播信道或下行同步码计算 服务小区的下行频偏值4 ^™。^u , 根据最强邻小区的广播信道或下行同步码 计算邻小区的下行频偏值
Figure imgf000012_0001
; 所述终端的下行频偏估计值 Δ^™ι的合并方法为: erminal _ " * ervice cell + (1 _ ") * A ftimary— neighbor— cell 其中 ,
Figure imgf000013_0001
, 为邻小区权重因子, 取值 范围为 0 < ≤2 , 的取值由仿真或实际场景确定, f为服务小区 的下行信号强度, ^0^^ 。 1为最强邻小区的下行信号强度。
5、 根据权利要求 1所述的移动终端调整频偏的方法, 其特征在于: 所 述终端检测服务小区和邻小区的导频信号强度, 通过测量长期演进系统的 小区参考符号的参考符号接收功率获得。
6、 根据权利要求 1所述的移动终端调整频偏的方法, 其特征在于: 长 期演进系统中, 终端根据小区的导频码, 或主、 辅下行同步码釆用子载波 相位差的方式计算下行频偏值。
7、 根据权利要求 1至 6中任一项所述的移动终端调整频偏的方法, 其 特征在于: 所述方法还包括: 终端在利用频偏估计值校正终端本地载波频 率之前, 还包括对频偏估计值进行滤波, 其滤波方法为:
J terminal n ^ terminal n-\ J terminal w
其中 表示第 n子帧上计算得到的瞬时终端下行频偏估计值, ε为 滤波系数, 0 < f < l , 滤波后的八 ^作为第 n子帧的终端平滑下行频偏估 计值, 并以此终端平滑下行频偏估计值作为校正终端本地载波频率的值。
8、 根据权利要求 1至 6任一项所述的移动终端调整频偏的方法, 其特 征在于: 所述门限为服务小区占优门限, 通过仿真或无线场景测试获得。
9、 一种移动终端调整频偏的装置, 包括用于检测服务小区和邻小区的 下行广播信号强度或导频信号强度的检测单元, 其特征在于还包括:
判断单元, 连接所述检测单元的输出端, 用于判断服务小区和信号强 度最强的邻小区的下行广播信号强度或导频信号强度之差是否大于门限 值; 频偏估计值计算单元, 连接所述判断单元的输出端, 当服务小区和最 强的邻小区的下行广播信号强度之差大于门限值时, 根据服务 d、区的广播 信道或导频码计算下行频偏, 并以此频偏作为终端的频偏估计值; 当服务 小区和最强的邻小区的下行广播信号强度之差小于或等于门限值时, 根据 服务小区的广播信道或导频码计算服务小区下行频偏, 根据最强邻小区的 广播信道或导频码计算最强邻小区的下行频偏, 并合并这两个频偏作为终 端的频偏估计值。
1 0、 根据权利要求 9所述的移动终端调整频偏的装置, 其特征在于: 还包括连接所述频偏估计值计算单元输出端的频偏估计值滤波单元, 用于 对频偏估计值进行滤波, 并以滤波输出值作为校正终端本地载波频率的值; 其滤波方式为:
J terminal n ^ terminal n-\ J terminal w
其中 表示第 n子帧上计算得到的瞬时终端下行频偏估计值, ε为 滤波系数, 0 < f < l , 滤波后的八 ^作为第 n子帧的终端平滑下行频偏估 计值, 并以此终端平滑下行频偏估计值作为校正终端本地载波频率的值。
PCT/CN2009/075097 2008-12-26 2009-11-23 移动终端调整频偏的方法和装置 WO2010072111A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810241971.X 2008-12-26
CN200810241971A CN101771434A (zh) 2008-12-26 2008-12-26 移动终端调整频偏的方法和装置

Publications (1)

Publication Number Publication Date
WO2010072111A1 true WO2010072111A1 (zh) 2010-07-01

Family

ID=42286888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075097 WO2010072111A1 (zh) 2008-12-26 2009-11-23 移动终端调整频偏的方法和装置

Country Status (2)

Country Link
CN (1) CN101771434A (zh)
WO (1) WO2010072111A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021109147A1 (zh) * 2019-12-06 2021-06-10 华为技术有限公司 一种频率调整方法及通信装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904998B (zh) * 2012-12-28 2017-02-08 联芯科技有限公司 移动终端频率调整方法和装置
CN105848186B (zh) * 2016-04-26 2019-04-16 合肥工业大学 一种无线网络节点射频频率偏差在线自适应修正方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040190657A1 (en) * 2003-02-21 2004-09-30 Hiroyuki Seki Communications device with doppler frequency estimation functions
CN1588834A (zh) * 2004-09-16 2005-03-02 北京天碁科技有限公司 一种频偏估计装置和方法
CN1905713A (zh) * 2006-08-08 2007-01-31 北京天碁科技有限公司 移动终端频偏估计和频偏调整的方法和系统
CN101316400A (zh) * 2007-05-29 2008-12-03 大唐移动通信设备有限公司 一种进行小区重选和切换的方法、系统及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040190657A1 (en) * 2003-02-21 2004-09-30 Hiroyuki Seki Communications device with doppler frequency estimation functions
CN1588834A (zh) * 2004-09-16 2005-03-02 北京天碁科技有限公司 一种频偏估计装置和方法
CN1905713A (zh) * 2006-08-08 2007-01-31 北京天碁科技有限公司 移动终端频偏估计和频偏调整的方法和系统
CN101316400A (zh) * 2007-05-29 2008-12-03 大唐移动通信设备有限公司 一种进行小区重选和切换的方法、系统及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021109147A1 (zh) * 2019-12-06 2021-06-10 华为技术有限公司 一种频率调整方法及通信装置

Also Published As

Publication number Publication date
CN101771434A (zh) 2010-07-07

Similar Documents

Publication Publication Date Title
CN101444015B (zh) 宽带无线通信系统中的上行链路(ul)功率控制装置和方法
RU2327289C2 (ru) Способ и устройство для адаптивного управления мощностью с разомкнутым контуром с помощью tdd
US5483668A (en) Method and apparatus providing handoff of a mobile station between base stations using parallel communication links established with different time slots
EP1779551B1 (en) Method and system for generating switching timing signal for separating transmitting and receving signal in rf repeater rf mobile telecommunication network using tdd and ofdm modulation
KR101538973B1 (ko) Cdma2000­lte 네트워크 재선택
EP3596851A1 (en) Rlm monitoring using signaled dynamic parameter
JP2010521892A5 (zh)
JP5186600B2 (ja) 移動通信における周波数オフセットの推定・補償の方法及びシステム
CN101317343A (zh) 移动通信系统及其中的邻区干扰抑制方法、及基站节点
CA2678546A1 (en) Power control method and apparatus
KR20070061365A (ko) 시간 분할 송수신 방식의 이동통신 시스템에서 레인징신호를 이용한 상향 링크 시간 동기 방법 및 장치
EP2720500B1 (en) Mobile station device, base station device, communication system, and communication method
JP7382717B2 (ja) 通信システム
WO2018028892A1 (en) Terminal device, telecommunications networks and methods
KR102043138B1 (ko) 분산 셀 구조의 이동 통신 시스템에서 기지국간 동기화 방법 및 장치
WO2010072111A1 (zh) 移动终端调整频偏的方法和装置
KR20010070959A (ko) 주파수간 탐색을 수행하는 방법 및 장치
WO2006110774A2 (en) Method and system for performing uplink synchronization
WO2016082606A1 (zh) 一种频偏校正方法及装置
CN100415054C (zh) 基站内软切换确定多径位置的方法
Anwar et al. A mobility improvement handover scheme for mobile-WiMAX
WO2014206377A1 (zh) 功率控制方法、装置及ue
CN102598791A (zh) 用于小区间切换的方法以及装置
CN110798809A (zh) 一种时延估计方法和装置
Chen et al. A handover algorithm for broadband wireless access system on railway

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834064

Country of ref document: EP

Kind code of ref document: A1