WO2010072061A1 - 可控波红外线生物效应系统 - Google Patents

可控波红外线生物效应系统 Download PDF

Info

Publication number
WO2010072061A1
WO2010072061A1 PCT/CN2009/071260 CN2009071260W WO2010072061A1 WO 2010072061 A1 WO2010072061 A1 WO 2010072061A1 CN 2009071260 W CN2009071260 W CN 2009071260W WO 2010072061 A1 WO2010072061 A1 WO 2010072061A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
filter assembly
assembly disk
lens
infrared
Prior art date
Application number
PCT/CN2009/071260
Other languages
English (en)
French (fr)
Inventor
高兴华
齐瑞群
徐峰
陈洪铎
Original Assignee
中国医科大学附属第一医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国医科大学附属第一医院 filed Critical 中国医科大学附属第一医院
Priority to US12/742,811 priority Critical patent/US8246668B2/en
Publication of WO2010072061A1 publication Critical patent/WO2010072061A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light

Definitions

  • the invention belongs to the field of infrared research and treatment devices, and in particular relates to a controllable wave infrared biological effect system.
  • infrared heating has a definite effect on certain skin diseases. More importantly, studies by molecular biology (laser capture microdissection, immunohistochemistry, PCR, real-time PCR, agarose gel electrophoresis, etc.) have confirmed that infrared light heating at a suitable wavelength and suitable temperature can affect the body. Immune cells, such as Langerhans cells, are activated by migration, and viruses infect cells. After the body successfully establishes an immune recognition for the pathogen, the lesions that have not been treated with infrared light in the distant parts of the body can also be removed.
  • infrared light can be divided into three bands that are different from the traditional physics near-middle-far infrared.
  • the biological infrared spectrum division and the infrared absorption rate of skin at different depths are shown in Figures 11 and 12.
  • Infrared technology is widely used in measurement, monitoring, imaging, physiotherapy and treatment.
  • the main effect is the application of infrared heat.
  • commercially available infrared heaters, heating bandages, etc. are generally only capable of coarse heating, and the wavelength, temperature control, and irradiation range are far from being able to study the biological effects of infrared rays and to treat certain skin diseases.
  • ultraviolet rays, Y-rays and X-rays the biological research of infrared rays and the corresponding medical applications are lacking and lagging.
  • Infrared rays at specific wavelengths have a definite biological effect on certain skin diseases, and do not cause discomfort such as pain, itching, and swelling in the test site, and are highly promising in the treatment of the corresponding diseases. It has become a hot topic in the field to select the precise wavelength of the selected area of the test object by selecting the infrared light of a specific wavelength to perform quantitative target control. There is no treatment or research system in the prior art that can automatically achieve the above functions.
  • the present invention aims to overcome the deficiencies of the prior art and to provide a controllable wave infrared ray having a simple structure, by selecting infrared light of a specific wavelength, performing precise illumination heating on the test object, performing temperature control, and reasonably determining the irradiation range.
  • Biological effect system aims to overcome the deficiencies of the prior art and to provide a controllable wave infrared ray having a simple structure, by selecting infrared light of a specific wavelength, performing precise illumination heating on the test object, performing temperature control, and reasonably determining the irradiation range.
  • Biological effect system aims to overcome the deficiencies of the prior art and to provide a controllable wave infrared ray having a simple structure, by selecting infrared light of a specific wavelength, performing precise illumination heating on the test object, performing temperature control, and reasonably determining the irradiation range.
  • the present invention is achieved as follows:
  • the controllable wave infrared biological effect system comprises a casing; the infrared light source, the first combined filter assembly disk, the convex lens, the concave lens, the second combined filter assembly disk, the optical cable receiving mechanism and the execution end are arranged in the casing
  • the first combined filter assembly disk is coaxial with the second combined filter assembly disk;
  • the convex lens is located between the infrared light source and the concave lens;
  • the first combined filter assembly disk and the second combined filter a sheet assembly disc is located between the concave lens and the cable receiving mechanism;
  • the first combined filter is mounted a first filter is disposed on the distribution plate; a second filter is disposed on the second combination filter assembly disk; the first filter and the second filter are coaxially corresponding;
  • the first The combined filter assembly disk, the convex lens, the concave lens and the combined filter assembly disk are parallel to each other; the output end of the cable receiving mechanism is connected to the execution end via the optical cable;
  • the first filter filters out ultraviolet light and visible light emitted by the infrared light source
  • the concave lens converts infrared incident light concentrated by the convex lens into a parallel beam
  • the second filter is configured to intercept infrared light of a desired wavelength
  • the cable receiving mechanism receives the light wave from the second filter and transmits it to the execution end via the optical cable.
  • the present invention further includes a third filter on the second combined filter assembly disk; an optical path channel is disposed on the first combined filter assembly disk; Coaxial with the third filter; the third filter is for intercepting infrared light of a desired wavelength; the cable receiving mechanism receives the light wave from the third filter and transmits the optical wave to the execution end via the optical cable.
  • the present invention is further provided with a parallel lens A and a dichroic lens B; the dichroic lens A and the dichroic lens B are respectively at an angle of 45 degrees to the disk surface of the combined filter assembly disk;
  • An optical path channel B is disposed on the combined filter assembly disk corresponding to the dichroic lens B;
  • a fourth filter is disposed on the first combined filter assembly disk; the fourth filter is
  • the dichroic lens A is coaxial; the dichroic lens A receives the light beams from the concave lens and the fourth filter, and after that, the dichroic lens B is conducted through the optical path channel B to the optical cable receiving mechanism.
  • the present invention may further be provided with a control system;
  • the control system includes a CPU, a display portion, a driving portion, and a temperature signal collecting portion; the temperature signal collecting portion is fixedly coupled to the executing end;
  • the output terminal is connected to the input end of the display portion;
  • the output end of the CPU is connected to the input end of the infrared light source via the driving portion;
  • the port of the temperature signal collecting portion is connected to the port of the CPU;
  • the temperature signal acquisition part is configured to collect a temperature signal, and send the acquired related data to the CPU for processing;
  • the CPU processes related data and issues a control command
  • the driving portion is for driving an infrared light source.
  • the present invention can also be fixedly provided with a driving motor and a bracket in the casing; a driven wheel is fixed on a central shaft of the first combined filter assembly disk and the second combined filter assembly disk; The first combined filter assembly disk and the second combined filter assembly disk are rotatable about the bracket; the output shaft of the drive motor is coupled to the driven wheel.
  • the present invention further has a fan fixed in the casing.
  • the light-passing aperture on the actuator end of the present invention can be an open-close structure.
  • the dichroic lens A and the dichroic lens B of the present invention have a transmittance of infrared light having a wavelength of 1400 to 2500 nm of 85% or more, and a transmittance of infrared light having a wavelength of 800 to 1300 nm of 5% or less.
  • the second filter of the present invention has a transmittance of infrared light having a wavelength of 1600 to 2600 nm greater than or equal to 85%, and a transmittance of infrared light having a wavelength of 750 to 1400 nm of 5% or less.
  • the third filter of the present invention has a transmittance of infrared light having a wavelength of 3000 to 5000 nm greater than or equal to 85%, and a transmittance of infrared light having a wavelength of 200 to 2700 nm of 5% or less.
  • the invention has a simple structure, and by selecting an infrared spectrum of a specific wavelength, it is possible to perform precise irradiation heating on the test object, perform temperature control, and reasonably determine the irradiation range.
  • the invention has the following characteristics:
  • the present invention adopts a spectral range which is divided according to the depth of penetration of infrared rays in different wavelengths in the skin. This division is more suitable for studying the infrared generated in the skin than the near, medium and far infrared rays divided by the conventional physics. Learning effect.
  • the present invention selectively selects a corresponding filter, so that infrared light of a specific wavelength divided according to biological characteristics can be obtained.
  • the present invention can accurately measure and control the temperature and duration of action of the above infrared light on the surface of the test object.
  • non-invasive treatment of some specific diseases can be performed, which is more tolerable than conventional means and reduces the pain of treatment.
  • Non-contact intervention can be achieved, completely avoiding cross-contagion.
  • the present invention can be used to study the biological effects of three specific wavelengths of infrared light on in vivo or ex vivo tissues, in vitro cultured cells, etc., and provide scarce implementation equipment for related research.
  • Figure 1 is a schematic view of the overall structure of the present invention
  • FIG. 2 is a schematic structural view of an execution end portion of the present invention
  • Figure 4-1 is a light path diagram of another embodiment of the present invention.
  • 4-2 is a light path diagram of a third embodiment of the present invention.
  • Figure 5-1 is a block diagram of the circuit of the control system of the present invention.
  • Figure 5-2 is a block diagram showing the circuit of the driving part of the control system of the present invention.
  • FIG. 6 is a schematic diagram of a specific circuit of a driving part of a control system of the present invention
  • 7 is a schematic diagram of a specific circuit of a display system of a control system of the present invention
  • Figure 8 is a flow chart of the main program of the control system of the present invention.
  • FIG. 9 is a flow chart of a subroutine for controlling the temperature of the control system of the present invention.
  • Figure 10 is a flow chart of the heating control subroutine of the control system of the present invention.
  • Figure 11 is a schematic view of the infrared spectral range
  • Figure 12 is a schematic diagram showing the penetration depth and absorption rate of infrared rays of different wavelengths.
  • the controllable wave infrared biological effect system includes a casing 16; and the housing 16 is provided with an infrared light source 1, a first combined filter assembly disk 2 a convex lens 3, a concave lens 4, a second combined filter assembly disk 5, a cable receiving mechanism 6 and an execution end 18; the first combined filter assembly disk 2 is coaxial with the second combined filter assembly disk 5;
  • the convex lens 3 is located between the infrared light source 1 and the concave lens 4; the first combined filter assembly disk 2 and the second combined filter assembly disk 5 are located between the concave lens 4 and the cable receiving mechanism 6;
  • the filter assembly disk 2 is provided with a first filter 23;
  • the second combination filter assembly disk 5 is provided with a second filter 7; the first filter 23 and the second filter 7 coaxially corresponding; the first combined filter assembly disk 2, the convex lens 3, the concave lens 4 and the combined filter assembly disk 5 are parallel to each other; the output end of the cable receiving mechanism
  • the substrate of the first filter 23 is selected to be ⁇ 30 ⁇ 1 ⁇ 3 ⁇ 0. 2 ⁇ ( ⁇ 780), uncoated, and the substrate of the second filter 7 is selected ⁇ 30 ⁇ 1 X 5 ⁇ 0. 2mm (IR- B film coating ⁇ 270).
  • the second filter 7 has a wavelength range of 1600 to 2600 nm and a transmittance T of 85%; the wavelength range is 750 ⁇ At 1400 nm, the transmittance T is 5%.
  • the present invention further comprises a third filter 9 on the second combined filter assembly disk 5; and an optical path on the first combined filter assembly disk 2 a channel 24; the optical path 24 is coaxial with the third filter 9; the third filter 9 is for intercepting infrared light of a desired wavelength; and the cable receiving mechanism 6 receives the third filter 9
  • the light wave is transmitted to the actuator 18 via the optical cable 8.
  • the substrate of the third filter 9 is selected from ⁇ 30 ⁇ 1 ⁇ 2 ⁇ 0.2 ⁇ ⁇ glass (IR-C film-based bismuth glass), and the third filter 9 has a wavelength range of 3000 nm to 5000 nm, and the transmittance T is uniform. 85%, the wavelength range is from 200nm to 2700nm, and the transmittance T is 5%.
  • the present invention further provides two-direction lens A10 and a two-direction lens B11 which are parallel to each other; the two-direction lens A10 and the two-direction lens B11 are respectively formed on the disk surface of the combined filter assembly disk 5.
  • a 45-degree angle on the combined filter assembly disk 5 corresponding to the dichroic lens B11 is provided with an optical path channel B13;
  • a fourth filter 25 is provided on the first combined filter assembly disk 2;
  • the fourth filter 25 is coaxial with the dichroic lens A10; the dichroic lens A10 receives the light beams from the concave lens 4 and the fourth filter 25, and passes through the optical path channel B13 through the dichroic lens B11. It is conducted to the cable receiving mechanism 6, and its optical path is shown in FIG.
  • the substrate of the fourth filter 25 can be selected from 030 ⁇ 1 3 ⁇ 0.21 1 11 1 1 (HB780), and is not coated; the substrate of the dichroic lens A10 and the dichroic lens B11 can be selected as ⁇ 30 ⁇ IX 5 ⁇ 0.2 mm ( IR-A film coating B270), when the wavelength range of the dichroic lens A10 and the dichroic lens B11 is 1400 ⁇ 2500nm, the transmittance is 1% 85%; and the wavelength range is 800 ⁇ 1300 nm, The over-rate T is 5%. As shown in FIGS.
  • the above-mentioned infrared light having a wavelength range of IR-A processed by the fourth filter 25, the dichroic lens A10, and the dichroic lens B11 mainly has a biological effect on the dermal tissue.
  • FIG. 3 it is an optical path diagram for realizing the above structure of the present invention.
  • the present invention further provides a control system; the control system includes a CPU, a display part, a driving part, and a temperature signal collecting part.
  • the temperature signal collecting portion 19 is fixedly coupled to the executing end 18; the output end of the CPU is connected to the input end of the display portion; and the output end of the CPU is connected to the input end of the infrared light source 1 via the driving portion; The port of the temperature signal collecting portion 19 is connected to the port of the CPU;
  • the temperature signal acquisition part is configured to collect a temperature signal, and send the acquired related data to the CPU for processing;
  • the CPU processes related data and issues a control command
  • the driving portion is for driving the infrared light source 1.
  • the present invention further has a driving motor 14 and a bracket 20 fixedly disposed in the housing 16; the first combined filter assembly disk 2 and the second combined filter assembly disk
  • the driven shaft 15 is fixedly disposed on the central shaft 22 of the fifth assembly; the first combined filter assembly disk 2 and the second combined filter assembly disk 5 are rotatable about the bracket 20; the output shaft of the drive motor 14 and the slave The moving wheels 15 are matched.
  • the output shaft of the drive motor 14 can transmit the output power to the driven wheel 15 by belt or gear transmission.
  • the present invention further has a fan 17 fixed in the casing 16.
  • the fan 17 can employ a temperature control device to control the opening of the fan 17.
  • the fan 17 is automatically turned on.
  • the fan 17 is automatically turned off.
  • the light-passing hole 21 on the actuator end 18 of the present invention may be an opening and closing structure.
  • the adjustment of the irradiation range can be achieved by rotating the irradiation range adjustment mechanism 12 on the actuator 18.
  • the above mechanism can be realized by the aperture adjustment mechanism of the camera.
  • FIG. 4-1 it is an optical path diagram of the infrared light passing through the optical path 24 and the third filter 9.
  • FIG. 4-2 it is an optical path diagram of the infrared light passing through the first filter 23 and the second filter 7.
  • the dichroic lens A10 and the dichroic lens B11 of the present invention have a transmittance of 85% or more for infrared light having a wavelength of 1400 to 2500 nm, and a transmittance of 5% or less for infrared light having a wavelength of 800 to 1300 nm.
  • the second filter 7 of the present invention has a transmittance of infrared light having a wavelength of 1600 to 2600 nm of 85% or more, and a transmittance of infrared light having a wavelength of 750 to 1400 nm of 5% or less.
  • the third filter 9 of the present invention has a transmittance of infrared light having a wavelength of 3000 to 5000 nm of 85% or more, and a transmittance of infrared light having a wavelength of 200 to 2700 nm of 5% or less.
  • Both the convex lens and the concave lens according to the present invention are infrared grade calcium fluoride lenses.
  • Substrate A total of 3 kinds, as follows
  • Coating material TI0 2 /SI0 2 , Ge0 2 /ZnS is assisted by ion source, and multi-layer film is coated.
  • Type 1 IR-A filter set, consisting of 3 pieces,
  • Type 2 IR-B filter set, consisting of 2 pieces
  • the third type IR-C filter set, consisting of one piece,
  • the overall structure of the temperature measurement and heating control system is shown in Figure 5-1.
  • the system mainly includes on-site temperature acquisition, real-time temperature display, heating control parameter setting, heating circuit control output, filter wheel motor drive and so on.
  • the temperature acquisition circuit transmits the field temperature to the single-chip microcomputer with a digital output.
  • the single-chip microcomputer combines the field temperature with the target temperature set by the user, and calculates the real-time control amount according to the incremental PID control algorithm that has been programmed and solidified.
  • the control quantity enables the photoelectric isolation driving circuit to determine the working state of the heating circuit, and the temperature is gradually stabilized to the target value set by the user.
  • Various state parameters during system operation are displayed by the LCD in real time.
  • the system control block diagram is shown in Figure 5-1; the system driver part is shown in Figure 5-2.
  • the system control algorithm system adopts the pulse width modulation (PWM) control method based on the incremental PID algorithm, that is, the duty cycle of the PWM square wave is obtained by the incremental PID algorithm.
  • PWM pulse width modulation
  • AV n Kp[(e n -e n . 1 ) J r(T/T i )e n J r(T ( /T)(e n .2en-&en-2)] where n is the nth Deviation values of times, n-1 times and n-2 times, Kp, ⁇ ;
  • T rf is the proportional coefficient, integral coefficient and differential coefficient, respectively, and T is the sampling period.
  • the MCU brings the difference between the field temperature and the user-set target temperature to the incremental PID algorithm formula every fixed time T.
  • the formula output determines the duty cycle of the P-square wave, and the subsequent heating circuit is based on the P-square wave.
  • the duty cycle determines the heating power.
  • Microchip Microcontrollers The system uses the PIC16F877 as the central processing unit.
  • Microchip's PIC family of microcontrollers features a reduced instruction set computer, Harvard dual bus and a two-stage instruction pipeline architecture for high cost performance. With high speed, low working voltage, low power consumption, large input and output direct drive LED capability (slow current up to 25mA), one-time programming, low price, small size, easy to learn and use.
  • the on-site temperature is obtained by the temperature sensor.
  • the temperature sensor uses Melexis MLX90614 temperature measurement module, which is a very convenient infrared temperature measurement device. All the modules are verified before leaving the factory, and can directly output linear or quasi-linear signals. , with good interchangeability, eliminating the complicated calibration process.
  • the LCD display circuit uses Hitachi's LM032L chip, and its connection to the PIC16F877 is shown in Figure 7.
  • Heater XI uses AC220V, 100W infrared heating lamp, and its wavelength covers the entire infrared range. Since the I/O port output load capacity of the PIC16F877 is up to 40 mA, the heating element cannot be directly driven.
  • the intermediate drive circuit must be used to control the working state of the power device. In practical applications, relays or AC contactors are usually used for indirect driving. Due to the mechanical contact characteristics of the relay or AC contactor, the stability and reliability of the overall control system are greatly reduced. In order to avoid the shortcomings of the mechanical contact switch, the system selects the complete photoelectric isolation in the main body of the thyristor. Inter-drive circuit.
  • the thyristor is a high-power switching type semiconductor device, which can work under high voltage and high current conditions, has the advantages of no mechanical contact, small volume, and easy installation, and is widely used in power electronic equipment.
  • the schematic diagram of the heating drive circuit is shown in Fig. 6.
  • the PIC16F887 calculates the real-time control based on the site temperature and the user-set target temperature and associated control parameters. Write this control amount to the register of the Timer 1 of the microcontroller to determine the duty cycle of the output PWM wave.
  • the bidirectional optocoupler of the current limiting protection resistor R4 is powered up, and the gate of the triac D1 is triggered to conduct through the signals of R1, R2 and the bidirectional optocoupler, and is heated.
  • the circuit is energized; during the low period of the PWM wave, the bidirectional optocoupler is turned off, the trigger signal of the bidirectional thyristor D1 gate is turned off, and the heating circuit is powered off and stops working.
  • R3 and C2 in the circuit form a RC absorption unit, which can reduce the overvoltage impact of the self-induced electromotive force generated by the inductive component in the heating circuit when the thyristor is turned off.
  • Rl and C1 form a low-pass filter unit, which can reduce the influence of the false trigger of the two-way optocoupler on the subsequent circuit.
  • the use of the two-way optocoupler completely isolates the strong and weak circuits, avoiding the interference of high-power devices on the single-chip microcomputer.
  • Software Design As shown in Figure 8, Figure 9 and Figure 10, the system program consists of the main program, temperature acquisition subroutine, heating control subroutine, keyboard scanning subroutine and interrupt subroutine.
  • the main program mainly completes the initialization and self-test of the various components of the heating control system, as well as the coordination of the various functional modules in the actual measurement.
  • Subroutines such as keyboard scan and control algorithms use PIC's rich interrupt resources to do this in the external interrupt and timer overflow interrupt routines.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Description

可控波红外线生物效应系统 技术领域
本发明属红外线研究与治疗装置领域, 尤其涉及一种可控波红外线生物 效应系统。
背景技术
从临床医学角度, 可采用多种物理方法治疗皮肤病, 常用的有激光、 冷 冻、 温热、 电灼等。 在一些肿瘤性、 赘生物性皮肤病的治疗中, 多采用适宜 物理方法进行损毁性去除,如:激光烧灼尖锐湿疣疣体,液氮冷冻 Bowen病(癌 前病变) 等。 这些方面的治疗均可造成一定创伤, 耐受性差, 给患者带来较 大痛苦。 同时由于皮肤兼有健康防护及美容等作用, 治疗皮肤病时需兼顾祛 病、 避免损毁容貌。 因此, 一些损毁性手段治疗某些皮肤肿瘤及赘生物就存 在很大弊端。
在探索非创伤性治疗的研究中, 卫生部皮肤病国家重点实验室——中国 医科大学附属第一医院皮肤科实验室研究发现红外加热对某些皮肤病有确切 疗效。 更重要的是, 通过分子生物学手段 (激光捕获显微切割、 免疫组化、 PCR、 real-time PCR、 琼脂糖凝胶电泳等) 研究证实, 适宜波长、 适宜温度 的红外光加热可以影响机体免疫细胞, 如 Langerhans 细胞游走活化, 病毒 感染细胞凋亡等。 机体成功建立针对病原的免疫识别之后, 身体远隔部位未 经红外光处理的病损也同样可以得到清除。
不同波长的光穿透皮肤的深度不同, 皮肤各层对不同波长红外线吸收率 也不同, 从而在不同皮肤层面引起的生物学效应也各异。 根据不同波长红外 光在皮肤中的穿透深度特征, 红外光可划分为三种不同于传统物理学近-中- 远红外的波段范围。 生物学红外波谱划分及不同深度皮肤对红外线吸收率示 意图如图 11、 12。
红外技术广泛应用于测量、 监控、 成像、 理疗治病等方面。 在医疗方面, 主要是应用红外线的热效应。 目前, 市售的红外加热仪、 加热绷带等普遍是 仅能粗略加热, 而波长、 温度控制以及辐照范围等方面远远达不到研究红外 线生物学效应以及治疗某些特定皮肤疾病的目的。 与紫外线、 Y射线及 X射 线相比较, 红外线的生物学研究以及相应的医疗应用较为缺乏、 滞后。 特定 波长红外线对某些皮肤疾病有确切生物学效应,并且不会使受试部位有疼痛、 痒、 胀等不适感觉, 在相应疾病的治疗方面极有前景。 通过选择特定波长的 红外光, 对受试物选定区域进行精确照射, 实施定量靶向控制已成为本领域 研究的热点课题。 现有技术中还不存在一种能自动实现上述功能的治疗、 研 究系统。
发明内容
本发明旨在克服现有技术的不足之处而提供一种结构简单, 通过选择特 定波长的红外光, 对受试物进行精确照射加热且实施温度控制并合理确定辐 照范围的可控波红外线生物效应系统。
为达到上述目的, 本发明是这样实现的:
可控波红外线生物效应系统, 包括壳体; 在所述壳体内配有红外光源、 第一组合滤光片装配盘、 凸透镜、 凹透镜、 第二组合滤光片装配盘、 光缆接 收机构及执行端;所述第一组合滤光片装配盘与第二组合滤光片装配盘同轴; 所述凸透镜位于红外光源与凹透镜之间; 所述第一组合滤光片装配盘与第二 组合滤光片装配盘位于凹透镜与光缆接收机构之间; 所述第一组合滤光片装 配盘设有第一滤光片; 所述第二组合滤光片装配盘上设有第二滤光片; 所述 第一滤光片与第二滤光片同轴对应; 所述第一组合滤光片装配盘、 凸透镜、 凹透镜及组合滤光片装配盘相互平行; 所述光缆接收机构的输出端经光缆与 执行端相接;
所述第一滤光片将红外光源发出的紫外光及可见光滤出;
所述凹透镜使经由凸透镜汇聚的红外入射光转换成平行光束;
所述第二滤光片用以截获所需波长的红外光;
所述光缆接收机构接收来自第二滤光片的光波,再经光缆传输至执行端。 作为一种优选方案, 本发明在所述第二组合滤光片装配盘上还设有第三 滤光片; 在所述第一组合滤光片装配盘上设有光路通道; 所述光路通道与第 三滤光片同轴; 所述第三滤光片用以截获所需波长的红外光; 所述光缆接收 机构接收来自第三滤光片的光波, 再经光缆传输至执行端。
作为另一种优选方案,本发明还设有相互平行的二向透镜 A及二向透镜 B; 所述二向透镜 A及二向透镜 B分别与组合滤光片装配盘的盘面呈 45 角;在所述 组合滤光片装配盘上对应二向透镜 B处设有光路通道 B; 在所述第一组合滤光 片装配盘上设有第四滤光片; 所述第四滤光片与二向透镜 A同轴; 所述二向透 镜 A接收来自凹透镜及第四滤光片的光束, 经其作用后再由二向透镜 B通过光 路通道 B传导到光缆接收机构中。
为增加控制效果, 本发明还可设有控制系统; 所述控制系统包括 CPU、 显 示部分、 驱动部分及温度信号采集部分; 所述温度信号采集部分固定配接于 执行端上; 所述 CPU的输出端接显示部分的输入端; 所述 CPU的输出端经驱动 部分与红外光源的输入端相接; 所述温度信号采集部分的端口接 CPU的端口; 所述温度信号采集部分用以采集温度信号,并将获取的相关数据送入 CPU 进行处理;
所述 CPU处理相关数据, 并发出控制指令;
所述驱动部分用以驱动红外光源。
另外, 本发明在所述壳体内还可固定设有驱动电机及支架; 在所述第一 组合滤光片装配盘与第二组合滤光片装配盘的中轴上固定设有从动轮; 所述 第一组合滤光片装配盘与第二组合滤光片装配盘可绕支架转动; 所述驱动电 机的输出轴与从动轮相配接。
其次, 本发明在所述壳体内还固定设有风扇。
再次, 本发明所述执行端上的通光孔可为开合结构。
本发明所述二向透镜 A及二向透镜 B对于波长为 1400〜2500nm红外光的透 过率大于等于 85%, 对于波长为 800〜1300nm红外光的透过率小于等于 5%。
本发明所述第二滤光片对于波长为 1600〜2600nm红外光的透过率大于等 于 85%, 对于波长为 750〜1400nm红外光的透过率小于等于 5%。
本发明所述第三滤光片对于波长为 3000〜5000nm红外光的透过率大于等 于 85%, 波长为 200〜2700nm红外光的透过率小于等于 5%。
本发明结构简单, 通过选择特定波长的红外光谱, 能对受试物进行精确 辐照加热且实施温度控制并合理确定辐照范围。
本发明与现有技术相比具有如下特点:
1、本发明采用根据不同波段的红外线在皮肤中的穿透深度划分的光谱范 围, 这种划分比传统物理学所划分的近、 中、 远红外线更适合用于研究红外 线在皮肤中产生的生物学效应。 2、本发明有针对性选用相应的滤光片, 从而可以实现获得根据生物学特 性划分的特定波长的红外光。
3、 本发明可精确测量并控制上述红外光在受试物表面的作用温度和时 长。
4、 通过本发明, 可对部分特定疾病进行非创伤性的治疗, 比传统手段更 容易耐受, 减少治疗痛苦。 可达到非接触式干预, 完全避免交叉传染。
5、本发明可用于研究三段特定波长红外光对在体或离体组织、体外培养 细胞等的生物学影响, 为相关研究提供稀缺的实施设备。
6、 可根据皮损大小自由调节光斑大小, 目前没有同类仪器。
7、可智能存储患者相关治疗信息,保存治疗参数,存储个性化治疗模式, 根据患者年龄、 性别、 发病部位及既往 "治疗耐受度"智能调节发射光源功 率, 达到最佳治疗状态。
附图说明
下面结合附图和具体实施方式对本发明作进一步说明。 本发明的保护范 围将不仅局限于下列内容的表述。
图 1为本发明的整体结构示意图;
图 2为本发明执行端部分结构示意图;
图 3为本发明一种实施方式光路图;
图 4-1为本发明另一种实施方式光路图;
图 4-2为本发明第三种实施方式光路图;
图 5-1为本发明控制系统电路原理框图;
图 5-2为本发明控制系统驱动部分电路原理框图;
图 6为本发明控制系统驱动部分具体电路原理图; 图 7为本发明控制系统控制系统显示部分具体电路原理图;
图 8为本发明控制系统主程序流程图;
图 9为本发明控制系统温度采集子程序流程图;
图 10为本发明控制系统加热控制子程序流程图;
图 11为红外光谱范围示意图;
图 12为不同波长红外线穿透皮肤深度及吸收率示意图。
具体实施方式
如图 1、 2所示, 作为一波段选择路线, 可控波红外线生物效应系统, 包 括壳体 16; 在所述壳体 16内配有红外光源 1、 第一组合滤光片装配盘 2、 凸透 镜 3、 凹透镜 4、 第二组合滤光片装配盘 5、 光缆接收机构 6及执行端 18; 所述 第一组合滤光片装配盘 2与第二组合滤光片装配盘 5同轴;所述凸透镜 3位于红 外光源 1与凹透镜 4之间;所述第一组合滤光片装配盘 2与第二组合滤光片装配 盘 5位于凹透镜 4与光缆接收机构 6之间; 所述第一组合滤光片装配盘 2设有第 一滤光片 23; 所述第二组合滤光片装配盘 5上设有第二滤光片 7; 所述第一滤 光片 23与第二滤光片 7同轴对应; 所述第一组合滤光片装配盘 2、 凸透镜 3、 凹 透镜 4及组合滤光片装配盘 5相互平行; 所述光缆接收机构 6的输出端经光缆 8 与执行端 18相接; 所述第一滤光片 23将红外光源 1发出的紫外光及可见光滤 出; 所述凹透镜 4使经由凸透镜 3汇聚的红外入射光转换成平行光束; 所述第 二滤光片 7用以截获所需波长的红外光; 所述光缆接收机构 6接收来自第二滤 光片 7的光波, 再经光缆 8传输至执行端 18。
第一滤光片 23的基片选择 Φ 30± 1 Χ 3± 0. 2πιπι (ΗΒ780), 不镀膜, 第二 滤光片 7的基片选择 Φ 30 ± 1 X 5 ± 0. 2mm ( IR-B膜系镀膜 Β270 )。上述第二滤 光片 7的波长范围在 1600〜2600nm, 透过率 T均 85%; 波长范围在 750〜 1400nm, 透过率 T均 5%。
为增加可选择波段的红外光,本发明在所述第二组合滤光片装配盘 5上还 设有第三滤光片 9; 在所述第一组合滤光片装配盘 2上设有光路通道 24; 所 述光路通道 24与第三滤光片 9同轴;所述第三滤光片 9用以截获所需波长的 红外光; 所述光缆接收机构 6接收来自第三滤光片 9的光波, 再经光缆 8传 输至执行端 18。
第三滤光片 9的基片选择 Φ30±1Χ2±0.2丽锗玻璃 (IR-C膜系镀膜锗 玻璃) 1片,第三滤光片 9的波长范围在 3000nm〜5000nm,透过率 T均 85%, 波长范围在 200nm〜2700nm透过率 T均 5%。
为增加可选择波段的红外光,本发明还设有相互平行的二向透镜 A10及二 向透镜 B11; 所述二向透镜 A10及二向透镜 B11分别与组合滤光片装配盘 5的盘 面呈 45 角;在所述组合滤光片装配盘 5上对应二向透镜 B11处设有光路通道光 路通道 B13; 在所述第一组合滤光片装配盘 2上设有第四滤光片 25; 所述第四 滤光片 25与二向透镜 A10同轴;所述二向透镜 A10接收来自凹透镜 4及第四滤光 片 25的光束, 经其作用后再由二向透镜 B11通过光路通道 B13传导到光缆接收 机构 6中, 其光路图见图 3。
第四滤光片 25的基片可选择030±1 3±0.2111111 (HB780), 不镀膜; 二 向透镜 A10及二向透镜 B11的基片可选择 Φ30± IX 5± 0.2mm (IR-A膜系镀 膜 B270), 二向透镜 A10及二向透镜 B11的波长范围在 1400〜2500nm的情况 下, 透过率 1^均 85%; 波长范围在 800〜1300 nm的情况下, 透过率 T均 5%。 如图 11、 12, 上述经过第四滤光片 25、 二向透镜 A10及二向透镜 B11处 理的波长范围为 IR-A的红外光主要对真皮组织的生物学效应突出。如图 3所 示, 为本发明实现上述结构的光路图。 如图 5-1、 图 5-2、 图 6及图 7, 为增加红外光波的控制精度, 本发明还设 有控制系统; 所述控制系统包括 CPU、 显示部分、 驱动部分及温度信号采集部 分 19; 所述温度信号采集部分 19固定配接于执行端 18上; 所述 CPU的输出端接 显示部分的输入端;所述 CPU的输出端经驱动部分与红外光源 1的输入端相接; 所述温度信号采集部分 19的端口接 CPU的端口;
所述温度信号采集部分用以采集温度信号,并将获取的相关数据送入 CPU 进行处理;
所述 CPU处理相关数据, 并发出控制指令;
所述驱动部分用以驱动红外光源 1。
为合理选择特定波段的红外光波, 本发明在所述壳体 16内还固定设有驱 动电机 14及支架 20;在所述第一组合滤光片装配盘 2与第二组合滤光片装配盘 5的中轴 22上固定设有从动轮 15; 所述第一组合滤光片装配盘 2与第二组合滤 光片装配盘 5可绕支架 20转动; 所述驱动电机 14的输出轴与从动轮 15相配接。 驱动电机 14的输出轴可采用皮带传动或齿轮传动方式将输出动力传输给从动 轮 15。
如图 1, 为调整系统的温度环境, 本发明在所述壳体 16内还固定设有风扇 17。 风扇 17可采用温控装置来控制风扇 17的开启。 当系统的环境温度高于设 定值时, 风扇 17自动开启。 当系统的环境温度低于设定值时, 风扇 17自动关 闭。
如图 2, 本发明所述执行端 18上的通光孔 21可为开合结构。 当需要调整执 行端 18的辐照范围时, 可通过旋转执行端 18上的辐照范围调整机构 12来实现 辐照范围的调整。 上述机构可采用相机的光圈调整机构来实现。 如图 4-1所示, 为红外光经光路通道 24及第三滤光片 9情况下的光路图。 如图 4-2所示,为红外光经第一滤光片 23及第二滤光片 7情况下的光路图。 本发明所述二向透镜 A10及二向透镜 Bl 1对于波长为 1400〜2500nm红外光 的透过率大于等于 85%,对于波长为 800〜1300nm红外光的透过率小于等于 5%。
本发明所述第二滤光片 7对于波长为 1600〜2600nm红外光的透过率大于 等于 85%, 对于波长为 750〜1400nm红外光的透过率小于等于 5%。
本发明所述第三滤光片 9对于波长为 3000〜5000nm红外光的透过率大于 等于 85%, 波长为 200〜2700nm红外光的透过率小于等于 5%。
两种透镜相关参数
本发明所涉及凸透镜及凹透镜均为红外级氟化钙透镜。
四种滤光片相关参数
一: 基片: 共 3种, 如下
Φ30±1Χ3±0.2mm (HB780), 不镀膜
Φ30±1Χ5±0.2πιπι (Β270), 镀膜(两种膜系镀膜得两种滤光片)
O30±lX2±0.2mm (锗玻璃), 镀膜
二: 3种镀膜滤光片, 均为单面镀膜, 指标如下:
1) IR-A红外滤光片
45° 入射, 取反射光
1400-2500nm T均 85%
800-1300nm T均 5%
2) IR-B红外滤光片
0。 入射
1600-2600nm T 85% 750-1400nm T均 5%
3) IR-C红外滤光片
0。 入射
3000nm-5000nm T均 85%
200nm-2700nm T均 5%
三: 镀膜材料: TI02/SI02, Ge02/ZnS用离子源辅助 , 镀多层膜。 四: 使用说明:
第 1种: IR-A滤光片组, 由 3片组成,
a) O30X3mm (HB780) 1片,
置于光源前, 0度入射, 用于过滤紫外和可见光; b) O30X5mm (IR- A膜系镀膜 B270) 2片,
在 HB780之后, 45度入射;
第 2种: IR-B滤光片组, 由 2片组成,
即:
a) O30X3mm (HB780) 1片,
置于光源前, 0度入射, 用于过滤紫外和可见光; b) O30X5mm (IR- B膜系镀膜 B270) 1片,
在 HB780之后, 0度入射;
第 3种: IR-C滤光片组, 由一片组成,
即:
a) Φ30Χ2丽 (IR- C膜系镀膜锗玻璃) 1片,
0度入射;
三种镀膜滤光片膜系参数 l££lt ZOIS ZOIS
L£' Ll ZO\ ZOIX
88Ό8 ZOIS ZOIS
ΖΖ ΙΖ ZO\ tztzz ZOIX
90'C6l ZOIS ZOIS
LVLW ZOIX Sl'90l ZOIX
00'6SZ ZOIS I8'm ZOIS
ZOIX ZOIX
ZOIS ZOIS
ZOIX \L \9\ ZOIX
ZOIS ZOIS
zvzn ZOIX Ltni ZO\ L661 ZOIS ZOIS
89Ί9Ϊ ZO\ won ZOIX s«z s 66i ZOIS £I Z0Z ZOIS
ZOIX £L6 l ZOIX
LS9 s«z 9'SIZ ZOIS LfZZZ ZOIS
9SSH 9££Zl ZOIX 'SZl ZOIX s«z S60 ZOIS 19'9^ ZOIS
6£LSl 08.86 ZOIX 66'Sll ZOIX s«z ZOIS St I ZOIS
ISl ZOIX Z£t6 ZO\
LO' LZ s«z 89·ε ZOIS £SS9l ZOIS
W6L\ 06·6Π ZO\ 18'SOl ZOIX
LY9ZZ s«z 99·ε ZOIS Z£S0Z ZOIS \ 9£\ ZOIX L90ZI ZOIX
LVL6Z s«z ZOIS ΐΐ'66ΐ ZOIS t9 \Z\ 80'S6 ZOIX 9£L0l ZOIX
££61Z s«z ZOIS LL91 ZOIS
LS £l ZOIX £106 ZOIX s«z w\ ZOIS on ZOIS
£VZ6 ZOIX ISL01 ZOIX
9£ Ll s«z ZOIS 6t l ZOIS
I8'60l a ZO\ S6T6 ZOIX s«z ZOIS WLW ZOIS
OLZOl 68·ε8 ZOIX ZOIX
W961 s«z 06'οει ZOIS ZVS91 ZOIS
6S'99 6Γ£ί ZOIX •88 ZOIX
6 Ζ s«z ZOIS ZOIS εΐ'ΐΐΐ '£6 ZOIX LO'U ZOIX s«z £LS l ZOIS fS9l ZOIS
SVLOl ZOIX L9S01 ZOIX
II I s«z on ZOIS L91SI ZOIS
OS'06 ΐΐ'98 ZO\ ZYtL ZOIX
IS9 I s«z ZOIS LL ZOIS
66 l£ S6'S8 ZOIX 9806 ZOIX 6'LH s«z win ZOIS ZS'66l ZOIS
Ζ09Π 88Ί , ZOIX 08·9 ZOIX
88· 6 s«z 8^861 ZOIS ZOIS
9V9£ ZOIX ZOIX Zl .0/600ZN3/X3d Ϊ90Ζ.0/0Ϊ0Ζ OAV 温度测量及加热控制系统的总体结构如图 5-1所示。 系统主要包括现场 温度采集、 实时温度显示、 加热控制参数设置、 加热电路控制输出、 滤光片 轮电机驱动等。 温度采集电路以数字输出将现场温度传至单片机, 单片机结合现场温度 与用户设定的目标温度, 按照已经编程固化的增量式 PID控制算法计算出实 时控制量。 以此控制量使能光电隔离驱动电路, 决定加热电路的工作状态, 使温度逐步稳定于用户设定的目标值。 系统运行过程中的各种状态参量均由 LCD实时显示。 系统控制框图如图 5-1; 系统驱动部分如图 5-2。 系统控制算法 系统采用基于增量式 PID算法的脉宽调制 (PWM)控制方法,即 PWM方波的 占空比由增量式 PID算法求得。 增量式 PID算法的输出量为
A Vn=Kp[(en-en.1)Jr(T/Ti)en Jr(T(/T)(en.2en-&en-2)] 式中, 分别为第 n次、 n-1次和 n-2次的偏差值, Kp、 Τ;、
Trf分别为比例系数、 积分系数和微分系数, T为采样周期。 单片机每隔固定时间 T将现场温度与用户设定目标温度的差值带入增量 式 PID算法公式, 由公式输出量决定 P醫方波的占空比, 后续加热电路根据 此 P醫方波的占空比决定加热功率。 现场温度与目标温度的偏差大则占空比 大, 加热电路的加热功率大, 使温度的实测值与设定值的偏差迅速减小; 反 之, 二者的偏差小则占空比减小, 加热电路加热功率减小, 直至目标值与实 测值相等, 达到自动控制的目的。 硬件设计 Microchip单片机 本系统采用 PIC16F877作为中央处理器, Microchip技术公司的 PIC系 列微控制器采用精简指令集计算机、哈佛 (Harvard)双总线和两级指令流水线 结构, 性能价格比高。 具有高速度、 低工作电压、 低功耗、 较大的输入输出 直接驱动 LED能力(灌电流可达 25mA)、一次性编程, 芯片的低价位、小体积、 指令简单易学易用。 现场温度采集
如图 6及图 7, 现场温度由温度传感器获得。在本系统中, 温度传感器选 用 Melexis公司生产的 MLX90614测温模块,它是应用非常方便的红外测温 装置, 其所有的模块都在出厂前进行了校验, 并且可以直接输出线性或准线 性信号, 具有很好的互换性, 免去了复杂的校正过程。
LCD显示电路
加热过程中, 被控对象的实际温度、 用户设定的目标温度等参量通过 LCD 显示电路实时显示。 LCD显示电路采用 Hitachi 公司的 LM032L芯片, 其与 PIC16F877的连接如下图 7所示。
加热驱动电路
加热器 XI选用 AC220V, 100W的红外加热灯, 其波长覆盖整个红外区间。 由于 PIC16F877的 I/O口输出负载能力最大为 40mA,无法直接驱动加热元件, 必须通过中间驱动电路实现单片机对功率设备工作状态的控制。实际应用中, 通常采用继电器或交流接触器间接驱动。 由于继电器或交流接触器具有机械 接触特点, 因而在很大程度上降低了控制系统整体的稳定性和可靠性。 为了 避免机械接触开关的缺点, 本系统选用以可控硅为主体的完全光电隔离的中 间驱动电路。 可控硅是大功率开关型半导体器件, 能在高电压、 大电流条件 下工作, 具有无机械接触、 体积小、 便于安装等优点, 广泛应用于电力电子 设备中。 加热驱动电路示意图如图 6所示。
PIC16F887根据现场温度和用户设定的目标温度及相关控制参数算出实 时控制量。 将此控制量写入单片机定时器 1的寄存器中, 以决定输出 PWM波 的占空比。在 PWM波的高电平期间, 通过限流保护电阻器 R4的双向光电耦合 器上电工作, 双向可控硅 D1的栅极被经由 Rl、 R2和双向光电耦合器的信号 触发导通, 加热电路得电工作; PWM波低电平期间, 双向光电耦合器截止, 双 向可控硅 D1栅极无触发信号被关断, 加热电路断电停止工作。 电路中的 R3、 C2组成阻容吸收单元, 可减小可控硅关断时加热电路中感 性元件所产生的自感电动势对可控硅的过压冲击。 Rl、 C1组成低通滤波单元, 能降低双向光电耦合器误触发对后续电路的影响。 同时, 双向光电耦合器的 使用彻底隔离了强弱电路, 避免了大功率器件对单片机的干扰。 软件设计 如图 8、 图 9及图 10, 系统程序由主程序、 温度采集子程序、 加热控制 子程序、 键盘扫描子程序和中断子程序等部分组成。 主程序主要完成加热控 制系统各部件的初始化和自检, 以及实际测量中各个功能模块的协调。 键盘 扫描和控制算法等子程序利用 PIC丰富的中断资源, 在外部中断和定时器溢 出中断子程序中完成上述工作。

Claims

1、 可控波红外线生物效应系统, 包括壳体 (16); 其特征在于, 在所述 壳体(16) 内配有红外光源 (1)、 第一组合滤光片装配盘 (2)、 凸透镜 (3)、 凹透镜(4)、第二组合滤光片装配盘(5)、光缆接收机构(6)及执行端(18); 所述第一组合滤光片装配盘 (2) 与第二组合滤光片装配盘 (5) 同轴; 所述 凸透镜(3)位于红外光源(1)与凹透镜 (4)之间; 所述第一组合滤光片装 配盘(2)与第二组合滤光片装配盘(5)位于凹透镜(4)与光缆接收机构(6) 之间; 所述第一组合滤光片装配盘 (2) 设有第一滤光片 (23); 所述第二组 合滤光片装配盘(5)上设有第二滤光片 (7); 所述第一滤光片 (23)与第二 滤光片 (7) 同轴对应; 所述第一组合滤光片装配盘(2)、 凸透镜 (3)、 凹透 镜 (4)及第二组合滤光片装配盘 (5)相互平行; 所述光缆接收机构 (6) 的 输出端经光缆 (8) 与执行端 (18) 相接;
所述第一滤光片 (23)将红外光源 (1) 发出的紫外光及可见光滤出; 所述凹透镜(4)使经由凸透镜(3)汇聚的红外入射光转换成平行光束; 所述第二滤光片 (7) 用以截获所需波长的红外光;
所述光缆接收机构(6)接收来自第二滤光片(7)的光波, 再经光缆(8) 传输至执行端 (18)。
2、 根据权利要求 1所述的可控波红外线生物效应系统, 其特征在于: 在 所述第二组合滤光片装配盘(5)上还设有第三滤光片 (9); 在所述第一组合 滤光片装配盘 (2) 上设有光路通道 (24); 所述光路通道 (24) 与第三滤光 片 (9) 同轴; 所述第三滤光片 (9) 用以截获所需波长的红外光; 所述光缆 接收机构 (6)接收来自第三滤光片 (9) 的光波, 再经光缆 (8)传输至执行 端 (18)。 3、 根据权利要求 1或 2所述的可控波红外线生物效应系统, 其特征在于: 还设有相互平行的二向透镜 A ( 10)及二向透镜 B(ll) ; 所述二向透镜 A ( 10) 及二向透镜 B (ll)分别与第二组合滤光片装配盘 (5) 的盘面呈 45 。角; 在所 述第二组合滤光片装配盘(5)上对应二向透镜 B(ll )处设有光路通道 B ( 13); 在所述第一组合滤光片装配盘 (2) 上设有第四滤光片 (25); 所述第四滤光 片(25)与二向透镜 A ( 10) 同轴; 所述二向透镜 A ( 10)接收来自凹透镜(4) 及第四滤光片 (25) 的光束, 经其作用后再由二向透镜 B (ll )通过光路通道 B
( 13)传导到光缆接收机构 (6) 中。
4、 根据权利要求 3所述的可控波红外线生物效应系统, 其特征在于: 还 设有控制系统; 所述控制系统包括 CPU、 显示部分、 驱动部分及温度信号采集 部分 (19); 所述温度信号采集部分 (19) 配接于执行端 (18) 上; 所述 CPU 的输出端接显示部分的输入端; 所述 CPU的输出端经驱动部分与红外光源(1) 的输入端相接; 所述温度信号采集部分 (19) 的端口接 CPU的端口;
所述温度信号采集部分用以采集温度信号,并将获取的相关数据送入 CPU 进行处理;
所述 CPU处理相关数据, 并发出控制指令;
所述驱动部分用以驱动红外光源 (1)。
5、 根据权利要求 4所述的可控波红外线生物效应系统, 其特征在于: 在 所述壳体(16) 内还固定设有驱动电机(14)及支架 (20); 在所述第一组合 滤光片装配盘 (2) 与第二组合滤光片装配盘 (5) 的中轴 (22) 上固定设有 从动轮(15); 所述第一组合滤光片装配盘(2)与第二组合滤光片装配盘(5) 可绕支架 (20)转动; 所述驱动电机(14) 的输出轴与从动轮(15)相配接。 6、 根据权利要求 5所述的可控波红外线生物效应系统, 其特征在于: 在 所述壳体(16) 内还固定设有风扇 (17)。
7、 根据权利要求 6所述的可控波红外线生物效应系统, 其特征在于: 所 述执行端 (18 )上的通光孔(21 )为开合结构。
8、 根据权利要求 3所述的可控波红外线生物效应系统, 其特征在于: 所 述二向透镜 A ( 10 )及二向透镜 B (l l )对于波长为 1400〜2500nm红外光的透过 率大于等于 85%, 对于波长为 800〜1300nm红外光的透过率小于等于 5%。
9、 根据权利要求 1所述的可控波红外线生物效应系统, 其特征在于: 所 述第二滤光片 (7 )对于波长为 1600〜2600nm红外光的透过率大于等于 85%, 对于波长为 750〜1400nm红外光的透过率小于等于 5%。
10、 根据权利要求 2所述的可控波红外线生物效应系统, 其特征在于: 所述第三滤光片(9 )对于波长为 3000〜5000nm红外光的透过率大于等于 85%, 波长为 200〜2700nm红外光的透过率小于等于 5%。
PCT/CN2009/071260 2008-12-23 2009-04-14 可控波红外线生物效应系统 WO2010072061A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/742,811 US8246668B2 (en) 2008-12-23 2009-04-14 Controllable infrared bioeffect system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008102300630A CN101757740B (zh) 2008-12-23 2008-12-23 可控波红外线皮肤病治疗仪
CN200810230063.0 2008-12-23

Publications (1)

Publication Number Publication Date
WO2010072061A1 true WO2010072061A1 (zh) 2010-07-01

Family

ID=42286863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071260 WO2010072061A1 (zh) 2008-12-23 2009-04-14 可控波红外线生物效应系统

Country Status (3)

Country Link
US (1) US8246668B2 (zh)
CN (1) CN101757740B (zh)
WO (1) WO2010072061A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103100148A (zh) * 2013-02-20 2013-05-15 李民主 一种医疗用热谱仪及温度控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020087345A (ko) * 2002-05-01 2002-11-22 덕 수 김 적외선 조사기
CN2559366Y (zh) * 2002-07-05 2003-07-09 长春市金乌电子仪器有限公司 脉冲式近红外线偏振光治疗仪
CN1666791A (zh) * 2005-03-24 2005-09-14 李家俊 一种碳素红外波动场治疗仪
CN1861214A (zh) * 2005-05-10 2006-11-15 徐福裕 可切换波长的多功能光疗器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531740A (en) * 1994-09-06 1996-07-02 Rapistan Demag Corporation Automatic color-activated scanning treatment of dermatological conditions by laser
CN1059130C (zh) * 1995-09-07 2000-12-06 黄益富 半导体绿色激光血管内照射治疗仪
CN2374148Y (zh) * 1998-05-29 2000-04-19 天津市津军新技术开发公司 多功能红外治疗仪
US6676655B2 (en) * 1998-11-30 2004-01-13 Light Bioscience L.L.C. Low intensity light therapy for the manipulation of fibroblast, and fibroblast-derived mammalian cells and collagen
US7133710B2 (en) * 2002-03-08 2006-11-07 Sensys Medical, Inc. Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy
EP1176779A3 (en) 2000-07-24 2004-02-04 ViaGOLD Direct Network Limited System and method for interconnecting world wide web sites
US20030212442A1 (en) * 2001-12-21 2003-11-13 Jackson Streeter Low level light therapy for the treatment of myocardial infarction
CN100511880C (zh) * 2002-12-10 2009-07-08 株式会社尼康 紫外光源、包括紫外光源的激光治疗设备和包括紫外光源的曝光设备
US8133180B2 (en) * 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
CN201085852Y (zh) * 2007-09-24 2008-07-16 游智勇 红外偏振光治疗仪
CN201316485Y (zh) * 2008-12-23 2009-09-30 中国医科大学附属第一医院 可控波红外线生物效应仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020087345A (ko) * 2002-05-01 2002-11-22 덕 수 김 적외선 조사기
CN2559366Y (zh) * 2002-07-05 2003-07-09 长春市金乌电子仪器有限公司 脉冲式近红外线偏振光治疗仪
CN1666791A (zh) * 2005-03-24 2005-09-14 李家俊 一种碳素红外波动场治疗仪
CN1861214A (zh) * 2005-05-10 2006-11-15 徐福裕 可切换波长的多功能光疗器

Also Published As

Publication number Publication date
CN101757740A (zh) 2010-06-30
US20100324634A1 (en) 2010-12-23
CN101757740B (zh) 2012-03-07
US8246668B2 (en) 2012-08-21

Similar Documents

Publication Publication Date Title
CN103239807B (zh) 一种多功能综合治疗平台
CN203468994U (zh) 生物调节无创治疗机
CN201316485Y (zh) 可控波红外线生物效应仪
WO2010072061A1 (zh) 可控波红外线生物效应系统
CN202590179U (zh) 一体式移动理疗装置
CN203447651U (zh) 一种可自动定位的皮肤类激光治疗装置
CN202437664U (zh) 一种可调式电动足灸盒装置
CN205163039U (zh) 一种乳腺肿瘤血氧纳米增强功能影像诊断与治疗系统
CN203953809U (zh) 一种多波段激光综合治疗仪
CN204219629U (zh) 一种激光理疗仪
CN206880946U (zh) 手持式家用光照治疗仪
CN204562104U (zh) 一种健康监控诊疗一体装置
CN114652965A (zh) 远红外、红光联合治疗仪的可调式红光照射装置
CN104042343B (zh) 一种多波段激光综合治疗仪
CN112516461A (zh) 一种全身热疗照射减少眩光干扰的方法和装置
CN203001696U (zh) 生理反馈远红外旋磁治疗仪
CN201200727Y (zh) 微电脑红外理疗仪
CN205322348U (zh) 一种用于骨科ct扫描的新型电脑骨伤愈合仪
CN205885738U (zh) 双人多层选药架
CN204364690U (zh) 直线偏振光疼痛治疗仪
CN104383645A (zh) 直线偏振光疼痛治疗仪
CN206261797U (zh) 一种基于单片机控制的按摩爪手装置
CN104548367A (zh) 一种低温输出的特定电磁波治疗器
CN2838663Y (zh) 激光减肥治疗仪
CN205649634U (zh) 智能温控回旋艾灸盒

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12742811

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834014

Country of ref document: EP

Kind code of ref document: A1