WO2010072022A1 - 一种异频多跳中继网络中的帧结构、中继站及数据传输方法 - Google Patents

一种异频多跳中继网络中的帧结构、中继站及数据传输方法 Download PDF

Info

Publication number
WO2010072022A1
WO2010072022A1 PCT/CN2008/073633 CN2008073633W WO2010072022A1 WO 2010072022 A1 WO2010072022 A1 WO 2010072022A1 CN 2008073633 W CN2008073633 W CN 2008073633W WO 2010072022 A1 WO2010072022 A1 WO 2010072022A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay station
terminal
base station
station
hop relay
Prior art date
Application number
PCT/CN2008/073633
Other languages
English (en)
French (fr)
Inventor
陈玉芹
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to PCT/CN2008/073633 priority Critical patent/WO2010072022A1/zh
Publication of WO2010072022A1 publication Critical patent/WO2010072022A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of wireless communications, and more particularly to a frame structure, a relay station, and a data transmission method in an inter-frequency multi-hop relay network.
  • the wireless communication system uses electromagnetic waves to perform communication between the base station and the wireless communication device terminal.
  • the wireless communication device terminal may be a fixed terminal or a mobile terminal, such as a notebook computer with a wireless network card, a mobile phone terminal, or the like.
  • a base station is disposed within a geographic area for providing signal coverage for the area, the area being referred to as a cell.
  • the coverage of a base station is limited by many factors, such as tall buildings that block signals from the base station, creating an undesirable shaded area.
  • the signal strength is weak, thereby increasing the error rate of the data.
  • one or more relay stations may be placed between the base station and the terminal for relaying signals between the base station and the terminal, thereby achieving coverage expansion and a boosting capacity of the system capacity.
  • a multi-hop relay system one or several relay stations (RSs) are set in a multi-hop relay base station (MR-BS) and Between mobile terminals (Mobile Stations, MS for short).
  • the relay station can be a fixed or mobile station.
  • the base station supporting multi-hop relay will be referred to as a base station hereinafter.
  • the IEEE 802.16j (referred to as 16j) standard defines a multi-hop relay system based on the IEEE 802.16e standard to obtain coverage area expansion and system capacity increase. Since the 16j standard requires strict backward compatibility with IEEE 802.16e terminals, there are many limitations in the design of the frame structure.
  • the multi-hop relay frame structure is divided into a downlink subframe and an uplink subframe.
  • the downlink subframe and the uplink subframe include an access area and a relay area.
  • the access area is used for data interaction between the base station or the relay station and the terminal, and the relay area is used for data interaction between the base station or the relay station and the relay station.
  • the link between the base station or the relay station and the terminal is called the access link
  • the link between the base station or the relay station and the relay station is called For the relay link.
  • the relay station is also an effective means of extending the coverage of the cell and improving the system capacity, and is also explicitly placed in the system requirements. Since the design of the terminal can be changed in the 16m system, the frame structure can be optimized accordingly.
  • a base station and a relay station can transmit data on the same frequency or on different frequencies.
  • the system capacity is smaller, so the inter-frequency relay transmission is another solution in the industry. put forward.
  • the base station performs data interaction with the MS and the odd-hop RS station connected to itself on the carrier frequency 1; and the odd-hop RS station is connected to the MS and the even-hop RS station connected to itself on the carrier frequency 2. Perform data interaction.
  • the technical problem to be solved by the present invention is to provide a frame structure, a relay station and a data transmission method in an inter-frequency multi-hop relay network.
  • the present invention provides an inter-frequency multi-hop relay network data transmission method, which is applied to a communication system including a base station, a relay station, and a terminal, where: the hop relay station simultaneously receives downlink data from the base station on the downlink subframe. And uplink data from the connected terminal or the lower even-hop relay station;
  • the base station receives uplink data from the connected terminal or the lower layer odd hop relay station in the uplink subframe, and the odd hop relay station simultaneously transmits the uplink data to the base station and the downlink data to the connected terminal or the lower even hop relay station.
  • the foregoing method may further have the following feature: the base station performs data transmission on the carrier frequency with a terminal connected to itself or an odd hop relay station, and the odd hop relay station is connected to the terminal or even hop connected to itself on the carrier frequency two.
  • the relay station performs data transmission.
  • the foregoing method may further have the following features: using a time division, frequency division or time-frequency two-dimensional method for the access link between the base station or the relay station and the terminal, and between the base station or the relay station and the relay station. Resource scheduling is performed along the link.
  • the present invention provides an inter-frequency multi-hop relay network frame structure, which includes an uplink subframe and a downlink subframe, where:
  • the downlink subframe is used for transmitting downlink data sent by the base station to the connected terminal or the odd hop relay station, and is also used for uplink data sent by the simultaneous transmission terminal or the even hop relay station to the connected odd hop relay station;
  • the uplink subframe is used for transmitting uplink data sent by the terminal or the odd-hop relay station to the connected base station, and is also used for simultaneously transmitting downlink data sent by the odd-hop relay station to the terminal or the lower-layer even-hop relay station.
  • the foregoing frame structure may further include the following features: the downlink subframe and the uplink subframe respectively include a carrier frequency 1 and a carrier frequency 2, where the carrier frequency is used between the transmission base station and the connected terminal or the odd-hop relay station. Data, the carrier frequency 2 is used for transmitting data between an odd-hop relay station and a connected terminal or even-hop relay station.
  • the foregoing frame structure may also have the following features: the downlink subframe and the uplink subframe occupy different time resources.
  • the present invention provides an inter-frequency multi-hop relay network data transmission method, which is applied to a communication system including a base station, a relay station and a terminal, and the base station or the relay station and the terminal perform data transmission in the access areas of the downlink subframe and the uplink subframe, the base station Or the relay station and the relay station perform data transmission in the relay area of the downlink subframe and the uplink subframe, where:
  • the base station transmits downlink data to the odd hop relay station in the relay area of the downlink subframe, and the odd hop relay station simultaneously receives the uplink data from the lower even hop relay station and the downlink data from the base station in the relay area of the downlink subframe;
  • the base station receives uplink data from the odd hop relay station in the relay area of the uplink subframe; the odd hop data is sent to the base station.
  • the foregoing method may further have the following feature: the base station or the relay station is connected to the downlink subframe
  • the inbound area sends downlink data to the terminal, and receives uplink data from the terminal in the access area of the uplink subframe.
  • the foregoing method may further have the following feature: the relay station simultaneously transmits downlink data to the connected terminal on the carrier frequency 1 and the carrier frequency 2 of the access region of the downlink subframe; and the carrier frequency of the access station in the uplink subframe of the relay station And receiving uplink data from the connected terminal simultaneously with the carrier frequency 2.
  • the present invention provides an inter-frequency multi-hop relay network frame structure, which includes an uplink subframe and a downlink subframe, and the uplink subframe and the downlink subframe are respectively divided into an access region and a relay region, and the access region is used for transmission.
  • Data exchanged between the base station or the relay station and the terminal, the relay area is used for transmitting data exchanged between the base station or the relay station and the relay station, where:
  • the relay area of the downlink subframe is used for simultaneously transmitting downlink data sent by the base station to the odd hop relay station and uplink data sent by the lower even hop relay station to the odd hop relay station;
  • the relay area of the uplink subframe is used for simultaneously transmitting uplink data sent by the odd-hop relay station to the base station and downlink data sent to the even-hop relay station.
  • the foregoing frame structure may also have the following features: the downlink subframe and the uplink subframe occupy different time resources; the access region and the relay region occupy different time resources on the downlink subframe and the uplink subframe.
  • the foregoing frame structure may further include the following, the access area of the downlink subframe is used for transmitting downlink data that is sent by the base station or the relay station to the terminal, and the access area of the uplink subframe is used by the transmission terminal to send to the base station. Or uplink data of the relay station.
  • the foregoing frame structure may further include the following features: the access region of the downlink subframe includes a carrier frequency 1 and a carrier frequency 2, and is used for simultaneously transmitting downlink data sent by the relay station to the terminal; and accessing the uplink subframe The area includes a carrier frequency 1 and a carrier frequency 2, and is used for simultaneously transmitting uplink data sent by the terminal to the relay station.
  • the invention provides an inter-frequency multi-hop relay network data transmission method, which is applied to a communication system including a base station, a relay station and a terminal, wherein:
  • the base station sends downlink data to the connected terminal or odd hop relay on the carrier frequency 1 of the downlink subframe.
  • the odd hop relay station transmits downlink data to the connected terminal or the lower even hop relay station on the carrier frequency 2 of the downlink subframe;
  • the terminal or odd hop relay station transmits uplink data to the connected base station on the carrier frequency of the uplink subframe, and the terminal or the even hop relay station transmits uplink data to the upper layer odd hop relay station on the carrier frequency 2 of the uplink subframe.
  • the foregoing method may further have the following features: using a time division, frequency division or time-frequency two-dimensional method to perform resources on the access link between the base station or the relay station and the terminal, and the relay link between the base station or the relay station and the relay station. Scheduling.
  • the present invention provides an inter-frequency multi-hop relay network frame structure, which includes an uplink subframe and a downlink subframe, where:
  • the carrier frequency of the downlink subframe is used for transmitting downlink data sent by the base station to the connected terminal or the odd-hop relay station, and the carrier frequency 2 of the downlink subframe is used for transmitting the odd-hop relay station to the connected terminal or the lower-layer even-hop relay station.
  • the carrier frequency of the uplink subframe is used for uplink data sent by the transmission terminal or the odd-hop relay station to the connected base station, and the carrier frequency 2 of the uplink subframe is used for uplink of the transmission terminal or the even-hop relay station to the upper-layer odd-hop relay station. data.
  • the foregoing frame structure may also have the following features: the downlink subframe and the uplink subframe occupy different time resources.
  • the present invention provides a relay station operating on two carrier frequencies, wherein the relay station has two sets of transceiver devices, and the two sets of transceiver devices operate on different carrier frequencies, and the relay stations use different carrier frequencies simultaneously with the upper station. Communicate with the underlying site.
  • the frame structure and the data transmission method provided by the present invention do not need to further divide the access area and the relay area in the downlink subframe and the uplink subframe, thereby saving the time interval overhead.
  • Another frame structure and data transmission method provided by the present invention can be compatible with existing terminals.
  • the relay station provided by the present invention can simultaneously communicate with upper and lower sites.
  • FIG. 1 is a schematic diagram of a wireless multi-hop relay network according to an embodiment of the present invention.
  • 3 is a bidirectional transmission relay frame structure of the inter-frequency relay area according to the present invention.
  • FIG. 4 is a cross-frequency one-way transmission relay frame structure according to the present invention.
  • the three frame structure scheme proposed by the present invention is applicable to an inter-frequency multi-hop relay network
  • the inter-frequency network refers to a carrier frequency between a base station and a terminal and an odd-hop relay station, and between an odd-hop relay station and a terminal and a lower-layer even-hop relay station.
  • the carrier frequency of the work is different.
  • the base station performs data interaction with the MS and odd hop RS stations connected to itself on the carrier frequency 1; and the odd hop RS station performs data interaction with the MS and even hop RS stations connected to itself on the carrier frequency 2.
  • a wireless multi-hop relay network in accordance with an embodiment of the present invention is illustrated.
  • signal transmission between the base station and the terminal is accomplished via one-hop or multi-hop relay.
  • the BS interacts with MS1, MS2, RSI, and RS3 using carrier frequency.
  • RS1 and RS3 interact with MS3, MS4, RS2, and MS7 and MS8 using carrier frequency two.
  • RS1 and RS3 directly connected to the BS are the first hop RS, that is, an odd hop RS; and RS2 connected to the RS1 is the second hop RS, that is, an even hop RS.
  • the frame structure of the scheme divides one radio frame into a downlink subframe and an uplink subframe according to the transmission state of the base station.
  • the uplink subframe and the downlink subframe occupy different time resources.
  • the base station sends downlink data to the connected terminal and the odd-hop relay station;
  • the odd-hop relay station simultaneously receives downlink data from the base station and uplink data from the connected terminal and the lower-layer even-hop relay station, and the even-hop relay station transmits downlink data to the terminal;
  • the base station receives uplink data from the connected terminal and the odd-hop relay station; the odd-hop relay station simultaneously transmits downlink data to the connected terminal and the lower-layer even-hop relay station and transmits uplink data to the base station, and the terminal transmits the uplink data to the even-hop relay station.
  • the frame structure divides the frame into a downlink subframe and an uplink subframe according to the transmission state of the BS.
  • the BS transmits downlink data to the connected MS and the odd hop RS; the odd hop RS simultaneously receives downlink data from the BS and uplink data from the connected MS and the lower even hop RS.
  • the BS receives uplink data from the connected MS and the odd hop RS; the odd hop RS simultaneously transmits data to the connected MS and the even hop RS and BS.
  • resource scheduling can be flexibly performed on the access link and the relay link, for example, one or more of time division, frequency division, and time-frequency two-dimensional processing can be used. Distinguish and so on.
  • the advantage of the scheme is that the access area and the relay area are not further divided in the downlink subframe and the uplink subframe, thereby reducing the number of the divided regions in the frame structure and the overhead caused by the time gap between the regions;
  • the relay station can transmit and receive data in one frame, in the two-hop relay structure, the data exchange between the base station and the terminal through the relay station can be completed within one frame, which reduces the delay of the multi-hop relay data transmission.
  • Scheme 2 Two-way transmission frame structure in the inter-frequency relay area (out of band+relay zone bidirectional)
  • the relay station has two sets of transceiver devices, and the two sets of transceiver devices operate on different carrier frequencies.
  • the relay station can simultaneously receive data from the upper station (base station or relay station) and the lower layer station (terminal or relay station), or simultaneously Send data to the upper and lower sites.
  • the access link and the relay link are transmitted in a time division multiplexing manner, and the relay station performs bidirectional data transmission only on the relay link, that is, the bidirectional data transmission occurs in the frame. In the relay area of the structure.
  • the frame structure is divided into a downlink subframe and an uplink subframe according to a transmission state of the base station.
  • the downlink subframe and the uplink subframe are respectively divided into an access area and a relay area.
  • the downlink subframe and the uplink subframe occupy different time resources; the access region and the relay region occupy different time resources on the downlink subframe and the uplink subframe.
  • In the access area data transmission between the base station or the relay station and the terminal is performed; in the relay area, data transmission between the base station or the relay station and the relay station is performed.
  • the base station and the relay station send downlink data to the terminal; in the relay region of the downlink subframe, the base station sends downlink data to the odd hop relay station, and the odd hop relay station simultaneously receives downlink data from the base station and Uplink data of the lower even-hop relay station.
  • the relay station can simultaneously transmit downlink data to the connected terminal on two carrier frequencies (carrier frequency 1 and carrier frequency 2).
  • the base station and the relay station receive uplink data from the terminal; in the relay region of the uplink subframe, the odd-hop relay station simultaneously transmits uplink data to the base station and downlink data to the lower-layer even-hop relay station.
  • the relay station can simultaneously receive uplink data from the connected terminal on two carrier frequencies (carrier frequency 1 and carrier frequency 2).
  • Scheme 3 Inter-frequency transmission relay frame structure (out ofband+Intel scheme)
  • the relay station has a set of transceiver devices that can only receive or transmit data in one direction at the same time.
  • the frame structure is divided into a downlink subframe and an uplink subframe, and the downlink subframe and the uplink subframe occupy different time resources, where:
  • the base station transmits downlink data to the connected terminal and the odd hop relay station on the carrier frequency one; the odd hop relay station transmits the downlink data to the connected terminal and the even hop relay station on the carrier frequency two; in the uplink subframe, The terminal and the odd hop relay station transmit uplink data to the connected base station on the carrier frequency 1; the terminal and the even hop relay station transmit uplink data to the connected odd hop relay station on the carrier frequency 2.
  • the resource transmission of the access link and the relay link can be flexibly scheduled, for example, time division, frequency division or time-frequency two-dimensional differentiation can be used.
  • the advantage of this solution is that the access area and the relay area are no longer divided in the uplink and downlink subframes, thereby reducing the overhead caused by the gap between the areas.
  • the frame structure and the data transmission method proposed by the invention do not need to divide the area, thereby reducing the overhead caused by the time gap.
  • Another frame structure and data transmission method proposed by the present invention can be compatible with a legacy terminal.
  • the present invention also proposes a relay station that can simultaneously communicate with an upper station and a lower station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Description

一种异频多跳中继网络中的帧结构、 中继站及数据传输方法
技术领域
本发明涉及无线通信领域, 更具体地涉及一种异频多跳中继网络中的帧 结构、 中继站及数据传输方法。
背景技术
无线通信系统使用电磁波来进行基站与无线通信设备终端之间的通信。 该无线通信设备终端可以是固定终端或者移动终端, 例如带有无线网卡的笔 记本电脑, 手机终端等。 在蜂窝无线通信系统中, 基站被布置在一个地理区 域之内, 用于为该区域提供信号覆盖, 该区域被称作小区。 基站的覆盖范围 受到很多因素的限制, 例如高大的建筑物可以阻挡来自基站的信号, 从而产 生一个不希望的阴影区域。 另外在小区的边缘部分, 信号强度较弱, 从而提 高了数据的错误率。
为了解决上述问题, 可以在基站和终端之间放置一个或多个中继站, 用 来中继传输基站和终端之间的信号, 从而达到覆盖范围的扩展以及系统容量 的增力口。
如图 1所示, 在多跳中继系统中, 一个或数个中继站(Relay Station, 简 称 RS )被设置在支持多跳中继的基站(Multi-hop Relay Base Station, 简称 MR-BS )和移动终端 (Mobile Stations, 简称 MS )之间。 其中, 中继站可为 固定的或者移动的站点。 后文中将支持多跳中继的基站简称为基站。
IEEE802.16j (简称 16j )标准在 IEEE802.16e标准的基础上定义了多跳中 继系统来得到覆盖区域的扩展以及系统容量的增加。 由于 16j 标准需要严格 后向兼容 IEEE802.16e的终端, 因此在帧结构的设计上存在很多限制。 在 16j 标准中, 多跳中继帧结构被划分为下行子帧和上行子帧。 下行子帧和上行子 帧中包含接入区域和中继区域。 接入区域用于基站或中继站与终端之间的数 据交互, 中继区域用于基站或中继站与中继站之间的数据交互。 基站或中继 站与终端之间的链路称为接入链路, 而基站或中继站与中继站之间的链路称 为中继链路。
在 WiMAX的演进系统 IEEE802.16m工作组中 , 中继站作为扩展小区覆 盖和提高系统容量的一个有效手段,同样被明确放入系统需求之中。由于 16m 系统中可以改变终端的设计, 因此能够对帧结构进行相应的优化。
在多跳中继系统中, 基站和中继站可以在相同的频率上传输数据, 也可 以在不同的频率上进行传输。 对拥有多个较小频宽的运营商来说, 基站和中 继站在相同频率的较小带宽上时分进行数据发送会导致系统容量较小, 因此 异频中继传输作为另外一种解决方案被业界提出。
在异频中继传输中, 基站在载频一上与和自己相连的 MS及奇数跳 RS 站点进行数据交互;而奇数跳 RS站点在载频二上与和自己相连的 MS及偶数 跳 RS站点进行数据交互。
发明内容
本发明要解决的技术问题是提供一种异频多跳中继网络中的帧结构、 中 继站及数据传输方法。
为了解决上述问题,本发明提供了一种异频多跳中继网络数据传输方法, 应用于包含基站、 中继站和终端的通信系统, 其中: 跳中继站在下行子帧上同时接收来自基站的下行数据及来自相连终端或下层 偶数跳中继站的上行数据;
基站在上行子帧上接收来自相连终端或下层奇数跳中继站的上行数据, 奇数跳中继站在上行子帧上同时发送上行数据给基站及发送下行数据给相连 终端或下层偶数跳中继站。
进一步地, 上述方法还可具有以下特点, 所述基站在载频一上与和自己 相连的终端或奇数跳中继站进行数据传输, 奇数跳中继站在载频二上与和自 己相连的终端或偶数跳中继站进行数据传输。
进一步地, 上述方法还可具有以下特点, 使用时分、 频分或时频两维方 法对所述基站或中继站与终端间的接入链路和基站或中继站与中继站间的中 继链路进行资源调度。
本发明提出一种异频多跳中继网络帧结构, 包含上行子帧和下行子帧, 其中:
所述下行子帧, 用于传输基站发送给相连终端或奇数跳中继站的下行数 据, 还用于同时传输终端或偶数跳中继站发送给相连奇数跳中继站的上行数 据;
所述上行子帧, 用于传输终端或奇数跳中继站发送给相连基站的上行数 据, 还用于同时传输奇数跳中继站发送给终端或下层偶数跳中继站的下行数 据。
进一步地, 上述帧结构还可具有以下特点, 所述下行子帧和上行子帧均 包含载频一和载频二, 所述载频一用于传输基站与相连的终端或奇数跳中继 站之间的数据, 所述载频二用于传输奇数跳中继站与相连的终端或偶数跳中 继站之间的数据。
进一步地, 上述帧结构还可具有以下特点, 所述下行子帧和上行子帧占 用不同的时间资源。
本发明提出一种异频多跳中继网络数据传输方法, 应用于包含基站、 中 继站和终端的通信系统, 基站或中继站与终端在下行子帧和上行子帧的接入 区域进行数据传输, 基站或中继站与中继站在下行子帧和上行子帧的中继区 域进行数据传输, 其中:
基站在下行子帧的中继区域发送下行数据给奇数跳中继站, 奇数跳中继 站在下行子帧的中继区域同时接收来自下层偶数跳中继站的上行数据和来自 基站的下行数据;
基站在上行子帧的中继区域接收来自奇数跳中继站的上行数据; 奇数跳 数据给基站。
进一步地, 上述方法还可具有以下特点, 基站或中继站在下行子帧的接 入区域发送下行数据给终端, 在上行子帧的接入区域接收来自终端的上行数 据。
进一步地, 上述方法还可具有以下特点, 中继站在下行子帧的接入区域 的载频一和载频二上同时发送下行数据给相连终端; 中继站在上行子帧的接 入区域的载频一和载频二上同时接收来自相连终端的上行数据。
本发明提出一种异频多跳中继网络帧结构, 包含上行子帧和下行子帧, 上行子帧和下行子帧分别划分为接入区域和中继区域, 所述接入区域用于传 输基站或中继站与终端之间交互的数据, 所述中继区域用于传输基站或中继 站与中继站之间交互的数据, 其中:
所述下行子帧的中继区域用于同时传输基站发送给奇数跳中继站的下行 数据和下层偶数跳中继站发送给奇数跳中继站的上行数据;
所述上行子帧的中继区域用于同时传输奇数跳中继站发送给基站的上行 数据和发送给偶数跳中继站的下行数据。
进一步地, 上述帧结构还可具有以下特点, 所述下行子帧和上行子帧占 用不同的时间资源; 所述接入区域和中继区域占用下行子帧和上行子帧上的 不同时间资源。
进一步地, 上述帧结构还可具有以下特点, 所述下行子帧的接入区域用 于传输基站或中继站发送给终端的下行数据, 所述上行子帧的接入区域用于 传输终端发送给基站或中继站的上行数据。
进一步地, 上述帧结构还可具有以下特点, 所述下行子帧的接入区域包 含载频一和载频二, 用于同时传输中继站发送给终端的下行数据; 所述上行 子帧的接入区域包含载频一和载频二, 用于同时传输终端发送给中继站的上 行数据。
本发明提出一种异频多跳中继网络数据传输方法, 应用于包含基站、 中 继站和终端的通信系统, 其中:
基站在下行子帧的载频一上发送下行数据给相连的终端或奇数跳中继 站, 奇数跳中继站在下行子帧的载频二上发送下行数据给相连终端或下层偶 数跳中继站;
终端或奇数跳中继站在上行子帧的载频一上发送上行数据给相连基站, 终端或偶数跳中继站在上行子帧的载频二上发送上行数据给上层奇数跳中继 站。
进一步地, 上述方法还可具有以下特点, 使用时分、 频分或时频两维方 法对所述基站或中继站与终端间的接入链路和基站或中继站与中继站间的中 继链路进行资源调度。
本发明提出一种异频多跳中继网络帧结构, 包含上行子帧和下行子帧, 其中:
所述下行子帧的载频一用于传输基站发送给相连终端或奇数跳中继站的 下行数据, 所述下行子帧的载频二用于传输奇数跳中继站发送给相连终端或 下层偶数跳中继站的下行数据;
所述上行子帧的载频一用于传输终端或奇数跳中继站发送给相连基站的 上行数据, 所述上行子帧的载频二用于传输终端或偶数跳中继站发送给上层 奇数跳中继站的上行数据。
进一步地, 上述帧结构还可具有以下特点, 所述下行子帧和上行子帧占 用不同的时间资源。
本发明提出一种工作在两个载频上的中继站, 其中, 中继站具有两套收 发设备, 所述两套收发设备工作在不同的载频上, 所述中继站使用不同的载 频同时与上层站点和下层站点进行通信。
本发明提供的一种帧结构及数据传输方法, 不需要在下行子帧和上行子 帧中进一步划分接入区域和中继区域, 节省了时间间隔的开销。 本发明提供 的另一种帧结构及数据传输方法, 可以兼容现有终端。 本发明提供的中继站, 可以同时与上下层站点通信。
附图概述 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中:
图 1是根据本发明实施例的无线多跳中继网络的示意图;
图 2是本发明所述的异频双向传输中继帧结构;
图 3是本发明所述的异频中继区域双向传输中继帧结构;
图 4是本发明所述的异频单向传输中继帧结构。
本发明的较佳实施方式
本发明提出的三个帧结构方案适用于异频多跳中继网络, 异频网络是指 基站与终端和奇数跳中继站之间工作的载频以及奇数跳中继站与终端和下层 偶数跳中继站之间工作的载频不同。 基站在载频一上与和自己相连的 MS及 奇数跳 RS站点进行数据交互; 而奇数跳 RS站点在载频二上与和自己相连的 MS及偶数跳 RS站点进行数据交互。
下面参考附图, 详细说明本发明的具体实施方式。
参考图 1 , 说明根据本发明实施例的无线多跳中继网络。 在多跳中继网 络中, 基站和终端之间的信号传递经由一跳或多跳中继完成。 如图 1所示, 基站 BS与移动终端 MS7之间的传输路径上有 1个中继站 RS3 , 基站 BS与 移动终端 MS5之间的传输路径上有 2个中继站 RS1和 RS2。
在异频中继通信系统中, BS与 MS1、 MS2、 RSI , RS3之间使用载频一 进行数据交互。 而 RS1和 RS3与 MS3、 MS4、 RS2和 MS7、 MS8之间使用 载频二进行数据交互。
参考图 1 , 说明奇数跳 RS和偶数跳 RS, 与 BS直接相连的 RS1和 RS3 为第 1跳 RS, 即为奇数跳 RS; 与 RS1相连的 RS2为第 2跳 RS, 即为偶数 跳 RS。 方案一: 异频双向传输中继帧结构 (out ofband+bidirectional ) : 在该方案中, 中继站具有两套收发设备, 两套收发设备工作在不同的载 频上, 中继站可以同时接收来自上层站点 (基站或中继站)和下层站点 (中 继站或终端) 的数据, 也可以同时发送数据给上层站点和下层站点。
该方案下帧结构按照基站的传输状态将一个无线帧分为下行子帧和上行 子帧。 上行子帧和下行子帧占用不同的时间资源。
在下行子帧中, 基站发送下行数据给相连终端和奇数跳中继站; 奇数跳 中继站同时接收来自基站的下行数据以及来自相连终端和下层偶数跳中继站 的上行数据, 偶数跳中继站发送下行数据给终端;
在上行子帧中, 基站接收来自相连终端和奇数跳中继站的上行数据; 奇 数跳中继站同时发送下行数据给相连终端和下层偶数跳中继站和发送上行数 据给基站, 终端发送上行数据给偶数跳中继站。
参考图 2, 说明本发明所述的异频双向中继帧结构。 该帧结构按照 BS 的传输状态将帧分为下行子帧和上行子帧。
在下行子帧中, BS发送下行数据给相连 MS和奇数跳 RS; 奇数跳 RS同 时接收来自 BS的下行数据以及来自相连 MS和下层偶数跳 RS的上行数据。
在上行子帧中, BS接收来自相连 MS和奇数跳 RS的上行数据; 奇数跳 RS同时发送数据给相连 MS和偶数跳 RS和 BS。
进一步的, 在异频双向中继帧结构中, 可以灵活地对接入链路和中继链 路进行资源调度, 例如可以使用时分、 频分和时频两维中的一种或多种进行 区分等。
该方案的优点是不需要在下行子帧和上行子帧中进一步划分接入区域和 中继区域, 从而减少了帧结构中所划分区域的个数以及各个区域之间时间间 隙带来的开销; 另外, 由于中继站可以在一帧内收发数据, 在两跳中继结构 中基站经由中继站和终端之间的数据交互能够在一帧之内完成, 减少了多跳 中继数据传输的时延。 另外, 相对于工作在同频下的双向中继传输系统而言, 方案二: 异频中继区域中双向传输帧结构 ( out of band+relay zone bidirectional )
在该方案中, 中继站具有两套收发设备, 两套收发设备工作在不同的载 频上, 中继站可以同时接收来自上层站点 (基站或中继站)和下层站点 (终 端或中继站) 的数据, 也可以同时发送数据给上层站点和下层站点。 与方案 一不同的是, 接入链路和中继链路之间以时分复用的方式进行传输, 中继站 仅在中继链路上进行双向数据传输, 也就是说, 双向数据传输发生在帧结构 的中继区域中。
如图 3所示, 该帧结构按照基站的传输状态分为下行子帧和上行子帧。 下行子帧和上行子帧又分别划分为接入区域和中继区域。 下行子帧和上行子 帧占用不同的时间资源; 接入区域和中继区域占用下行子帧和上行子帧上的 不同时间资源。 在接入区域中, 进行基站或中继站与终端之间的数据传输; 在中继区域中, 进行基站或中继站与中继站之间的数据传输。
在下行子帧的接入区域中, 基站和中继站发送下行数据给终端; 在下行 子帧的中继区域中, 基站发送下行数据给奇数跳中继站, 奇数跳中继站同时 接收来自基站的下行数据和来自下层偶数跳中继站的上行数据。
在下行子帧的接入区域中, 中继站能够在两个载频(载频一和载频二) 上同时发送下行数据给相连终端。
在上行子帧的接入区域中, 基站和中继站接收来自终端的上行数据; 在 上行子帧的中继区域中, 奇数跳中继站同时发送上行数据给基站和下行数据 给下层偶数跳中继站。
在上行子帧的接入区域中, 中继站能够在两个载频(载频一和载频二) 上同时接收来自相连终端的上行数据。
该方案的优点是不改变终端的接入区域, 因此能够兼容 IEEE802.16e下 的传统 MS。
方案三: 异频单向传输中继帧结构 ( out ofband+Intel scheme ) 在该方案中, 中继站具有一套收发设备, 在相同时刻只能单向接收或者 发送数据。
如图 4所示, 该帧结构分为下行子帧和上行子帧, 下行子帧和上行子帧 占用不同的时间资源, 其中:
在下行子帧中, 基站在载频一上发送下行数据给相连的终端和奇数跳中 继站;奇数跳中继站在载频二上发送下行数据给相连的终端和偶数跳中继站; 在上行子帧中, 终端和奇数跳中继站在载频一上发送上行数据给相连的 基站;终端和偶数跳中继站在载频二上发送上行数据给相连的奇数跳中继站。
进一步的, 在异频单向传输中继帧中, 可以灵活地对接入链路和中继链 路的数据传输进行资源调度, 例如可以使用时分、 频分或时频两维进行区分 等。
该方案的优点是上下行子帧中不再划分接入区域和中继区域, 从而减少 了区域之间间隙带来的开销。
以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。
工业实用性
本发明提出的一种帧结构及数据传输方法, 不用划分区域, 减少了时间 间隙带来的开销。 本发明提出的另一种帧结构及数据传输方法, 可以兼容传 统终端。 本发明还提出一种可以同时与上层站点和下层站点通信的中继站。

Claims

权 利 要 求 书
1、 一种异频多跳中继网络数据传输方法,应用于包含基站、 中继站和终 端的通信系统, 其特征在于, 跳中继站在下行子帧上同时接收来自基站的下行数据及来自相连终端或下层 偶数跳中继站的上行数据;
基站在上行子帧上接收来自相连终端或下层奇数跳中继站的上行数据, 奇数跳中继站在上行子帧上同时发送上行数据给基站及发送下行数据给相连 终端或下层偶数跳中继站。
2、 如权利要求 1所述的方法,其特征在于, 所述基站在载频一上与和 自己相连的终端或奇数跳中继站进行数据传输, 奇数跳中继站在载频二上与 和自己相连的终端或偶数跳中继站进行数据传输。
3、 如权利要求 1或 2所述的方法, 其特征在于, 使用时分、 频分或时 频两维方法对所述基站或中继站与终端间的接入链路和基站或中继站与中继 站间的中继链路进行资源调度。
4、 一种异频多跳中继网络帧结构, 包含上行子帧和下行子帧,其特征 在于,
所述下行子帧, 用于传输基站发送给相连终端或奇数跳中继站的下行数 据, 还用于同时传输终端或偶数跳中继站发送给相连奇数跳中继站的上行数 据;
所述上行子帧, 用于传输终端或奇数跳中继站发送给相连基站的上行数 据, 还用于同时传输奇数跳中继站发送给终端或下层偶数跳中继站的下行数 据。
5、 如权利要求 4所述的帧结构,其特征在于, 所述下行子帧和上行子 帧均包含载频一和载频二, 所述载频一用于传输基站与相连的终端或奇数跳 中继站之间的数据, 所述载频二用于传输奇数跳中继站与相连的终端或偶数 跳中继站之间的数据。
6、 如权利要求 4或 5所述的帧结构,其特征在于, 所述下行子帧和上 行子帧占用不同的时间资源。
7、 一种异频多跳中继网络数据传输方法,应用于包含基站、 中继站和 终端的通信系统, 基站或中继站与终端在下行子帧和上行子帧的接入区域进 行数据传输, 基站或中继站与中继站在下行子帧和上行子帧的中继区域进行 数据传输, 其特征在于,
基站在下行子帧的中继区域发送下行数据给奇数跳中继站, 奇数跳中继 站在下行子帧的中继区域同时接收来自下层偶数跳中继站的上行数据和来自 基站的下行数据;
基站在上行子帧的中继区域接收来自奇数跳中继站的上行数据; 奇数跳 数据给基站。
8、 如权利要求 7所述的方法,其特征在于,基站或中继站在下行子帧 的接入区域发送下行数据给终端, 在上行子帧的接入区域接收来自终端的上 行数据。
9、 如权利要求 7或 8所述的方法,其特征在于, 中继站在下行子帧的 接入区域的载频一和载频二上同时发送下行数据给相连终端; 中继站在上行 子帧的接入区域的载频一和载频二上同时接收来自相连终端的上行数据。
10、 一种异频多跳中继网络帧结构, 包含上行子帧和下行子帧,上行子 帧和下行子帧分别划分为接入区域和中继区域, 所述接入区域用于传输基站 或中继站与终端之间交互的数据, 所述中继区域用于传输基站或中继站与中 继站之间交互的数据, 其特征在于,
所述下行子帧的中继区域用于同时传输基站发送给奇数跳中继站的下行 数据和下层偶数跳中继站发送给奇数跳中继站的上行数据;
所述上行子帧的中继区域用于同时传输奇数跳中继站发送给基站的上行 数据和发送给偶数跳中继站的下行数据。
11、 如权利要求 10所述的帧结构, 其特征在于, 所述下行子帧和上行 子帧占用不同的时间资源; 所述接入区域和中继区域占用下行子帧和上行子 帧上的不同时间资源。
12、 如权利要求 10所述的帧结构, 其特征在于, 所述下行子帧的接入 区域用于传输基站或中继站发送给终端的下行数据, 所述上行子帧的接入区 域用于传输终端发送给基站或中继站的上行数据。
13、 如权利要求 10至 12任一所述的帧结构,其特征在于, 所述下行子 帧的接入区域包含载频一和载频二, 用于同时传输中继站发送给终端的下行 数据; 所述上行子帧的接入区域包含载频一和载频二, 用于同时传输终端发 送给中继站的上行数据。
14、 一种异频多跳中继网络数据传输方法,应用于包含基站、 中继站和 终端的通信系统, 其特征在于,
基站在下行子帧的载频一上发送下行数据给相连的终端或奇数跳中继 站, 奇数跳中继站在下行子帧的载频二上发送下行数据给相连终端或下层偶 数跳中继站;
终端或奇数跳中继站在上行子帧的载频一上发送上行数据给相连基站, 终端或偶数跳中继站在上行子帧的载频二上发送上行数据给上层奇数跳中继 站。
15、 如权利要求 14所述的方法, 其特征在于, 使用时分、 频分或时频 两维方法对所述基站或中继站与终端间的接入链路和基站或中继站与中继站 间的中继链路进行资源调度。
16、 一种异频多跳中继网络帧结构,其特征在于, 包含上行子帧和下行 子帧, 其中:
所述下行子帧的载频一用于传输基站发送给相连终端或奇数跳中继站的 下行数据, 所述下行子帧的载频二用于传输奇数跳中继站发送给相连终端或 下层偶数跳中继站的下行数据;
所述上行子帧的载频一用于传输终端或奇数跳中继站发送给相连基站的 上行数据, 所述上行子帧的载频二用于传输终端或偶数跳中继站发送给上层 奇数跳中继站的上行数据。
17、 如权利要求 16所述的帧结构, 其特征在于, 所述下行子帧和上行 子帧占用不同的时间资源。
18、 一种工作在两个载频上的中继站,其特征在于, 中继站具有两套收 发设备, 所述两套收发设备工作在不同的载频上, 所述中继站使用不同的载 频同时与上层站点和下层站点进行通信。
PCT/CN2008/073633 2008-12-22 2008-12-22 一种异频多跳中继网络中的帧结构、中继站及数据传输方法 WO2010072022A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/073633 WO2010072022A1 (zh) 2008-12-22 2008-12-22 一种异频多跳中继网络中的帧结构、中继站及数据传输方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/073633 WO2010072022A1 (zh) 2008-12-22 2008-12-22 一种异频多跳中继网络中的帧结构、中继站及数据传输方法

Publications (1)

Publication Number Publication Date
WO2010072022A1 true WO2010072022A1 (zh) 2010-07-01

Family

ID=42286844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073633 WO2010072022A1 (zh) 2008-12-22 2008-12-22 一种异频多跳中继网络中的帧结构、中继站及数据传输方法

Country Status (1)

Country Link
WO (1) WO2010072022A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1984494A (zh) * 2005-10-18 2007-06-20 三星电子株式会社 在使用多个频带的网络中支持多个链路的装置和方法
CN101064555A (zh) * 2006-04-29 2007-10-31 上海贝尔阿尔卡特股份有限公司 多跳接入网络的帧构造、帧处理方法及设备和系统
CN101119377A (zh) * 2006-08-03 2008-02-06 财团法人资讯工业策进会 基于IEEE 802.16j标准来分配框架结构以传输数据的无线通讯装置、方法及其计算机可读取记录媒体
CN101166055A (zh) * 2006-10-18 2008-04-23 华为技术有限公司 多跳中继方法和多跳中继系统
US20080113616A1 (en) * 2006-11-10 2008-05-15 Ki Seok Kim Method of forming frame in multi-hop relay system and system for implementing the method
CN101282170A (zh) * 2007-04-05 2008-10-08 中兴通讯股份有限公司 一种共享中继系统中主从基站间负载均衡的方法
CN101282155A (zh) * 2007-04-05 2008-10-08 中兴通讯股份有限公司 一种实现主、从基站共享中继的传输方法
CN101282156A (zh) * 2007-04-05 2008-10-08 中兴通讯股份有限公司 一种支持多跳中继网络中变化的链路间传输负载的方法
CN101282167A (zh) * 2007-04-05 2008-10-08 中兴通讯股份有限公司 一种mmr系统中透明中继和非透明中继共存的信号传输方法
CN101304377A (zh) * 2007-04-23 2008-11-12 财团法人资讯工业策进会 用于多跳式网络的中继站、基站、中继方法及传送方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1984494A (zh) * 2005-10-18 2007-06-20 三星电子株式会社 在使用多个频带的网络中支持多个链路的装置和方法
CN101064555A (zh) * 2006-04-29 2007-10-31 上海贝尔阿尔卡特股份有限公司 多跳接入网络的帧构造、帧处理方法及设备和系统
CN101119377A (zh) * 2006-08-03 2008-02-06 财团法人资讯工业策进会 基于IEEE 802.16j标准来分配框架结构以传输数据的无线通讯装置、方法及其计算机可读取记录媒体
CN101166055A (zh) * 2006-10-18 2008-04-23 华为技术有限公司 多跳中继方法和多跳中继系统
US20080113616A1 (en) * 2006-11-10 2008-05-15 Ki Seok Kim Method of forming frame in multi-hop relay system and system for implementing the method
CN101282170A (zh) * 2007-04-05 2008-10-08 中兴通讯股份有限公司 一种共享中继系统中主从基站间负载均衡的方法
CN101282155A (zh) * 2007-04-05 2008-10-08 中兴通讯股份有限公司 一种实现主、从基站共享中继的传输方法
CN101282156A (zh) * 2007-04-05 2008-10-08 中兴通讯股份有限公司 一种支持多跳中继网络中变化的链路间传输负载的方法
CN101282167A (zh) * 2007-04-05 2008-10-08 中兴通讯股份有限公司 一种mmr系统中透明中继和非透明中继共存的信号传输方法
CN101304377A (zh) * 2007-04-23 2008-11-12 财团法人资讯工业策进会 用于多跳式网络的中继站、基站、中继方法及传送方法

Similar Documents

Publication Publication Date Title
CN104486055B (zh) 在中继通信系统中的信号发送方法和装置
CN102026209B (zh) 一种传输信息和配置子帧的方法、系统及设备
KR101511786B1 (ko) 주파수 분할 이중 중계국을 포함하는 무선통신 시스템 및 이 무선통신 시스템에서의 무선자원의 이용 방법
KR100893832B1 (ko) 두 개의 주파수 대역을 사용하는 다중 홉 릴레이 방식의셀룰러 네트워크에서 다중 링크를 지원하기 위한 장치 및방법
EP1931155B1 (en) Wireless relay communication system and method
US7965985B2 (en) Wireless communication systems, methods, and data structure
KR101588172B1 (ko) 통신 시스템
KR100952653B1 (ko) 무선 통신 시스템, 방법 및 데이터 구조
CN101262268B (zh) 支持中继的蜂窝系统实现无线链路正交的方法及中继设备
WO2009006840A1 (fr) Procédé, système et station de base utilisant une configuration de trame supportant un relais destinés aux transmissions sans fil
JP5709884B2 (ja) 基地局、端末、送信方法、及び受信方法
CN105580404A (zh) 用户终端、基站以及无线通信方法
WO2012165067A1 (ja) 無線リソース割当方法及び無線リソース割当装置、並びに通信システム
CN105900508A (zh) 用户终端、无线基站、无线通信系统以及无线通信方法
CN102271352B (zh) 一种中继节点与ue间的下行数据传输方法
WO2009103377A1 (en) Fdd inband backhauling and method thereof
CN101908955A (zh) 一种回程链路下行信息传输方法及设备
CN101814944B (zh) 一种数据传输方法、系统及装置
US20110103269A1 (en) Wireless communication system and relay station and wireless communication device thereof
CN101908954B (zh) 一种解决中继节点上行传输冲突的方法及装置
WO2011051921A2 (en) Optimized backhaul communications for a relay-enhanced packet-based wireless communication system
CN105580471A (zh) 用户终端、基站以及无线通信方法
US20080084892A1 (en) Wireless communication systems, methods, and data structure
KR100975726B1 (ko) 릴레이 방식을 사용하는 통신 시스템에서 신호 송수신 시스템 및 방법
WO2010072022A1 (zh) 一种异频多跳中继网络中的帧结构、中继站及数据传输方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08879064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08879064

Country of ref document: EP

Kind code of ref document: A1