WO2010071441A1 - Electrical machine and method for the manufacturing of stator sections therefor - Google Patents
Electrical machine and method for the manufacturing of stator sections therefor Download PDFInfo
- Publication number
- WO2010071441A1 WO2010071441A1 PCT/NO2009/000382 NO2009000382W WO2010071441A1 WO 2010071441 A1 WO2010071441 A1 WO 2010071441A1 NO 2009000382 W NO2009000382 W NO 2009000382W WO 2010071441 A1 WO2010071441 A1 WO 2010071441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stator
- electrical machine
- rotor
- machine according
- sections
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/24—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2793—Rotors axially facing stators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2793—Rotors axially facing stators
- H02K1/2795—Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2798—Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the stator face a rotor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K15/00—Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
- H02K15/0056—Manufacturing winding connections
- H02K15/0068—Connecting winding sections; Forming leads; Connecting leads to terminals
- H02K15/0081—Connecting winding sections; Forming leads; Connecting leads to terminals for form-wound windings
- H02K15/0093—Manufacturing or repairing cooling fluid boxes, i.e. terminals of fluid cooled windings ensuring both electrical and fluid connection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/24—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/46—Fastening of windings on the stator or rotor structure
- H02K3/47—Air-gap windings, i.e. iron-free windings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the invention relates to an electrical machine as stated in the introductory prt of claim 1 and a method for the manufacturing of stator sections for such machines, as stated in the introductory part of claim 14.
- the electrical machine concerned has a rotor with magnets on an annular carrier for creating a magnetic field over an air gap wherein an ironless stator with windings is arranged.
- It may be electrical motors or electrical generators or combined machines which may be operated both as generator and as motor and which may have an axial or a radial field.
- the method relates to a process wherein a winding is embedded in an electric insulating casting material for creating a rigid element.
- stator of electrical machines traditionally had windings with an iron yoke, normally sheet metal. In most types of electrical machines, the windings are placed in a groove to create a magnetic field in the iron around the winding. This kind of stator is used both in radial flux and axial flux machines.
- the windings are arranged in the air gap, without any iron with a varying magnetic field creating hysterese losses and eddy current losses.
- Another advantage when the size of the machine increases is the almost complete elimination of the forces between the rotor and the stator.
- the force trying to pull the rotor against the stator is typically highly exceeding the torque created.
- a further machine with ironless stator is described in British patent speceification 1491026 of 1975.
- the rotor av this machine has six permanent magnets on the surface of each rotor section.
- the stator comprises multiple coils with a plurality of windings placed in an even circular series with overlapping coils at the inner and outer diameter.
- the stator dish is thin in the area between the magnets and thicker at the inner and outer part.
- the windings are joined by an epoxy based casting material or similar.
- a corresponding winding arrangement is described in EP Application 0058791 from 1981.
- the winding arrangement has an overlap at the inner and outer edge, where the stator is having a larger axial extent than in the active area between the magnets.
- the arrangement described is for a two phase machine, but a similar arrangement can be used for a three phase machine by a different connection as also state in the claim.
- the main object of the invention is providing a cooled electrical machine in sections, which can be manufactured and installed more easily than prior art machines.
- Still another object is providing an electrical machine, the stator sections being easy to mount and dismount.
- Anotheer object of the invention is to provide amethod for manufacturing stator elements, which can be carrried out effectively and with high and stabel quality.
- the invention is stated in claim 1. It comprises a stator which is assembled of sections with channels for circulation of coolant, and with windings with an annular, compact central part providing the active part of the stator.
- the rotor carries permanent magnets. But the rotor may also be assembled of magnets comprising super conductors.
- the invention may utilize different field directions, but the magnets are preferably providing an axial field.
- each stator section is embedded in a casting material introduced into a casting mould or a shell housing accommodating the windings, said casting material providing the enclosure of the stator and provide channels for coolant.
- Each stator section may comprise separate connections for inlet and outlet of coolant.
- At least one part of the rotor is provided for insertion and removal of stator sections.
- the winding comprises multiple identical trapezoid coils with an active part and an end winding, allowing the coils to be assembled with the active part in a common plane, with overlapping end windings in two or more planes.
- At least a half side of a coil is omitted at each end of a section.
- the void of the omitted half side of a coil may be used as inlet or outlet for coolant to/from tangential cooling channels.
- the magnets are preferably arranged on radially protruding jaws, said magnets being radially arranged dish segments in an annular assembly.
- the invention also comprises a method for manufacturing of stator sections for such electrical machines, wherein a winding is embedded in an electrically insulating casting material for providing a rigid element.
- the coils are arranged in one part of a bisected shell housing or a bisected casting mould, that the shell housing or mould is closed, and a casting material is introduced through an opening and the inner part of the housing or mould is subject to underpressure and possibly vibration.
- the channels for coolant may be provided by covering external grooves on the stator enclosure.
- Transport of such sections is substantially easier than transporting complete machine, particularly when the size exceeds maximum size for road transport.
- Another major advantage when building the machine in sections is less costs for maintenance. If an error occurs in one of the sections, this section may easily be replaced by a backup section to avoid long downtime.
- the winding structure has to be changed in relation to previous described concepts. This will be described further with reference to the following examples.
- Figure 1 is showing a perspective view of a section of an electrical machine according to the invention, e.g. a wind mill generator, without cover and assembly elements,
- Figure 2 is showing a partly sectioned perspective view of stator section for a three phase electrical machine corresponding to the example in Figure 1,
- Figure 3 is showing a side view of a coil section for the stator section in Figure 2
- Figure 4 is showing a sectioned end view of a stator section in Figure 2
- Figure 5 is showing a perspective view of an alternative winding unit for three phase connection
- Figure 6 is showing schematically the arrangement for mounting and removal of stator sections in an assembled electrical machine.
- FIG. 1 a machine section 11 with two main parts is shown: a stator section 12 and a rotor section 13 both shown partly.
- the rotor section 13 may also be sectioned.
- the stator section 12 is a part of an annular assembly of identical or corresponding sections being attached stationary to an engine base in a manner known per se.
- An example of a stator section 12 is shown with more details in Figure 2.
- the rotor 13 is correspondingly mounted in prior art manner to a shaft not shown, for driving or being driven by external equipment.
- a particularly interesting field of use is connected to wind turbines.
- the main purpose will be the generation of electric power, but the electrical generator can also be connected to act as a motor to create a braking torque.
- Another example is the use as steering machine for ships, demanding a motor with a high torque and with little space available.
- the rotor 13 has two annular rotor yokes 14, 15 of magnetic iron conducting the flux between the magnets.
- the magnets may be of solid material with rectangular cross section and are fixed side by side by a series of U-jaws 16 of sheet material being connected on the outer side of the rotor yokes 14, 15, e.g. by welding.
- On each rotor yoke 14, 15 a series of radially oriented sticks 17 of permanent magnetic material are attached.
- the PM-sticks 17 are arranged with interstices or gaps 18.
- a requirement for such multi dish machines is a rotor structure allowing access to install and remove the stator.
- stator sections for radial machined, to move the rotor with two concentric series of permanent magnets.
- Figure 2 is showing a stator section 12 with details in Figures 3 and 4.
- the arrangement has three main parts: a winding 19, an enclosure 20 and a cooling system with an inlet 21 and an outlet 22.
- the cooling system comprises a pair of channels 23, 24 provided by parallel grooves on the outside of the enclosure shells and covered by a sheet 25 being attached by gluing.
- the winding 19 is shown more detailed in Figure 3 and described in the following. By omitting a part of a coil at each end, an opening 26A, 26B is created at each end.
- the winding 19 may be prepared of a ribbon conductor, e.g. a cupper band, to provide a compact central part 27 suited for the gap between the rotor parts.
- the winding 19 is enclosed in the enclosure 20 defined by two shells 28, 29 of plastics.
- Said shells provide 40 degree of an annular structure, and are generally symmetrically to a radial central plane. Said shells are arranged for accommodating the winding 19 in recesses.
- a pipe socket 21, 22 is arranged as inlet and outlet.
- Figure 4 is showing a section of a stator before filling with casting material, with cover sheets providing the channels 23, 24.
- the heads 30, 31 of the windings are shown protruding out of the central plane.
- the winding 19 is placed in a two part casting mould being closed during filling with casting material.
- Figure 5 is showing an assembly of three coils 32, 33, 34 for a three phase winding.
- the stator may be symmetrical to the air gap of the rotor.
- the assembly to a complete stator may be as described above.
- Figure 6 is showing schematically how a stator section 12 may be removed or installed in an electrical machine according to the invention, corresponding to the embodiment shown in Figure 1, together with parts of the rotor 13.
- the distance between the parts of a jaw 16 is larger than the width of the stator sections.
- a part of the permanent magnets 17, unfastened from the annular yoke 14, is removed together with the corresponding part of the stator.
- the permanent magnets 17 may e.g. be attached to sheets mounted on the annular yoke. This allows for stabilizing the magnetic forces during transport.
- stator section is a part of the rotor, which extends over a larger part of the circumference than a stator section, being removed, to make opening for installing and removal of stator sections. This will allow maintenance and repair of electrical machines according to the invention, even at large dimensions and on locations difficult to access, e.g. at a wind mill generator.
- N s,eksjoner In a three phase machine complying to said equations, but having a different number of coils per phase in each section, the number of coils per phase will be uniform by connecting three and three sections serially. Said series of three sections may be connected serially or in parallel.
- the heat emission in the stator is controlling the torque of the machine. Good cooling therefore is needed for utilizing the machine fully.
- the cupper of the ironless stator may be cooled by using the cooling channels 23, 24 on both sides of the winding.
- the cooling channels 23, 24 are arranged in the enclosure as will be described.
- the channels are extending tangentially on each side of the stator.
- the distance between the cooling channels and the cupper should be short and the intervening material should have a high thermal conductance.
- two “tracks” will be available, one at each end of the section. This place can be used to introduce and extract coolant to and from each section. From this "track” the coolant can enter both sides of the stator through the tangential cooling channels. Additional parallel cooling channels may be arranged to cool the end windings.
- An alternative cooling arrangement is to arrange the tangential cooling channels in the center of the stator sections instead of on each side. In this way the cross section of each cooling channel may be increased without increasing the axial extension of the stator section.
- each coil should cover more or preferably less than a pole step, to make Q ⁇ 1.
- the number of coils per section should be a multiple of three in a three phase machine, to make the sections consist of an integer number of "coil units". When this requirement is fulfilled may the number of sections be chosen freely.
- the number of grooves per pole per phase (Q) should however be chosen to let each phase have an equal number of coils I each position. This is the case when the number of coils and the number of pair of poles is chosen according to the following equation:
- N spoler k 3 - k 4 - 2 - N f 2 aser , V e M, /C 4 - e N (3)
- N polpar k 3 - (2 - N f 2 aser - k 4 - l , k 3 - ⁇ N, k,- ⁇ N (4)
- the ironless stator elements of the present invention consist generally of cupper and casting material. Each stator element has the highest possible IP. Each section has an inlet and an outlet for a coolant, as well as electrical connection of each phase. As each stator section is embedded in casting material, there is no need for housing with complicated geometry and sealing to protect the windings and there are no voids with air. The invention thus eliminates a part of the problems of the sectioning described in US 6,781,276.
- the sections may have a fixture at the inner or outer circumference at an axial machine.
- the sections need the strength to transfer the forces created in the stator both as a result of the torque created and also of the weight of the section.
- thermal conductance This should be high to conduct heat from the cupper windings.
- the thermal conductance is particularly important for the winding arrangement and the cooling system described in alternative 1, where in layer of casting material is arranged between the cupper and the cooling channel.
- the finished sections should have least possible air bubbles. This is particularly important in applications for high voltage; to avoid small areas with different permittivity, which can give partial discharge. By using a casting material with the permittivity of air, the avoidance of air bubbles in the casting material will be less important.
- the thickness of the stator section lowest in the area between the magnets and thicker at the inner and outer diameter.
- the magnets are arranged close to the stator on each side.
- the air gap between the magnets and the stator is governed by mechanical tolerances, but it is typically less than the difference between the lowest thickness of the stator and the thickness of the end windings.
- the rotor should be partly removed.
- the rotor As the rotor can be placed in a desirable position, it is sufficient that one part of the rotor can be removed. This part should be some larger than a stator section, to be able to move the stator section axially. To simplify the manufacturing, the transport, and the mounting, may the rotor be sectioned similar to the stator, but either with fewer sections to make the rotor sections larger than the stator sections or by using two different rotor sections.
- a problem at such removal is the large forces acting between the rotor parts on different sides of the stator.
- substantial forces are needed to remove one side of a rotor. This may be avoided by removing a complete part of the machine, i.e. a stator section together with a rotor section on each side thereof. Said rotor sections may be fixed together to maintain the mutual distance during removal..
- the rotor section on one side should be larger than the stator section, while the rotor section on the other side should be slightly smaller than the stator section. This design may be used both when the complete rotor is in sections, and when only two rotor parts may be removed.
- FIG. 6 A further alternative for installing/removal of stator and rotor sections is illustrated in Figure 6, see the above description.
- the stator sections are removed radially together with a corresponding rotor section on each side of the yoke.
- the rest of the rotor yoke is annular and carries the rotor sections.
- Examples of use The invention is generally suitable for applications demanding high torque and large diameter.
- Examples are direct driven wind mills and steering machines, both having low velocity, but demand for high torque.
- Further examples are generators for hydro power plants, tidal power plants, wave power plants, ship propulsion, winches, actuators and rock crushing plants.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Motor Or Generator Cooling System (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Motor Or Generator Frames (AREA)
- Windings For Motors And Generators (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011536272A JP2012509055A (en) | 2008-11-12 | 2009-11-04 | Electric machine and method of manufacturing a stator section for an electric machine |
EP09833676.1A EP2356735A4 (en) | 2008-11-12 | 2009-11-04 | Electrical machine and method for the manufacturing of stator sections therefor |
AU2009327631A AU2009327631A1 (en) | 2008-11-12 | 2009-11-04 | Electrical machine and method for the manufacturing of stator sections therefor |
NZ592707A NZ592707A (en) | 2008-11-12 | 2009-11-04 | Electrical machine and method for the manufacturing of stator sections therefor |
CN2009801447804A CN102405584A (en) | 2008-11-12 | 2009-11-04 | Electrical machine and method for the manufacturing of stator sections therefor |
RU2011123913/07A RU2011123913A (en) | 2008-11-12 | 2009-11-04 | ELECTRIC MACHINE AND METHOD FOR PRODUCING ITS STATOR SECTIONS |
BRPI0921358A BRPI0921358A2 (en) | 2008-11-12 | 2009-11-04 | electrical machine and method for manufacturing stator sections for the same |
CA2742362A CA2742362A1 (en) | 2008-11-12 | 2009-11-04 | Electrical machine and method for the manufacturing of stator sections therefor |
US13/091,738 US20110241453A1 (en) | 2008-11-12 | 2011-04-21 | Electrical machine and method for the manufacture of stator sections therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20084775 | 2008-11-12 | ||
NO20084775A NO20084775A (en) | 2008-11-12 | 2008-11-12 | Device by an electric machine and a method for manufacturing stator sections for such machines |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/091,738 Continuation-In-Part US20110241453A1 (en) | 2008-11-12 | 2011-04-21 | Electrical machine and method for the manufacture of stator sections therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010071441A1 true WO2010071441A1 (en) | 2010-06-24 |
Family
ID=42268952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NO2009/000382 WO2010071441A1 (en) | 2008-11-12 | 2009-11-04 | Electrical machine and method for the manufacturing of stator sections therefor |
Country Status (12)
Country | Link |
---|---|
US (1) | US20110241453A1 (en) |
EP (1) | EP2356735A4 (en) |
JP (1) | JP2012509055A (en) |
KR (1) | KR20110103955A (en) |
CN (1) | CN102405584A (en) |
AU (1) | AU2009327631A1 (en) |
BR (1) | BRPI0921358A2 (en) |
CA (1) | CA2742362A1 (en) |
NO (1) | NO20084775A (en) |
NZ (1) | NZ592707A (en) |
RU (1) | RU2011123913A (en) |
WO (1) | WO2010071441A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013115653A1 (en) * | 2012-02-02 | 2013-08-08 | Smartmotor As | Molded segment for an energy conversion system and production of such a segment |
EP2689520A4 (en) * | 2011-03-24 | 2015-10-28 | Greenway Energy As | Coil assembly for three phased transverse axial flux multi disk machines |
EP3214735A4 (en) * | 2014-10-27 | 2018-06-06 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Outer rotor-type axial gap brushless motor |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20110377A1 (en) * | 2011-03-10 | 2012-09-11 | Wilic Sarl | ROTARY ELECTRIC MACHINE FOR AEROGENERATOR |
US9461523B2 (en) | 2013-12-12 | 2016-10-04 | Baldor Electric Company | Two phase gap cooling of an electrical machine |
AU2015246951A1 (en) * | 2014-04-18 | 2016-10-27 | Yutaka Nemoto | Power generation device utilizing renewable natural energy |
EP3001540B1 (en) * | 2014-09-26 | 2018-03-21 | ALSTOM Renewable Technologies | Direct-drive wind turbines |
DE102016004694B4 (en) * | 2016-04-19 | 2020-03-12 | eMoSys GmbH | Electronically controlled automatic seat belt system of a vehicle occupant restraint system |
CN109687617B (en) * | 2017-10-18 | 2024-05-14 | 上海鸣志电器股份有限公司 | Hollow cup winding with axially segmented structure |
EP3618246A1 (en) * | 2018-08-29 | 2020-03-04 | Siemens Gamesa Renewable Energy A/S | Coil layout for a generator having tape conductors |
CN112134375B (en) * | 2020-09-14 | 2021-09-21 | 广州市昊志机电股份有限公司 | Stator module and motor |
UA122998C2 (en) * | 2020-09-16 | 2021-01-27 | Товариство З Обмеженою Відповідальністю "Науково-Виробниче Об'Єднання "Оптимаг" | COIL FOR MANUFACTURE OF MULTIPHASE WINDING OF ELECTRIC MACHINE |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1947269A (en) | 1932-12-29 | 1934-02-13 | Gen Electric | Magneto-electric machine |
GB1491026A (en) | 1974-04-04 | 1977-11-09 | Gen Electric Canada | Synchronous dynamoelectric machine |
US4334160A (en) | 1979-04-27 | 1982-06-08 | The Garrett Corporation | Rotating electrical machine |
EP0058791A1 (en) | 1981-02-25 | 1982-09-01 | Harold Winterbotham | Electrical rotating machines |
EP0627805A2 (en) * | 1993-06-03 | 1994-12-07 | Secretary Of State For Trade And Industry In Her Britannic Majesty's Gov. Of The U.K. Of Great Britain And Northern Ireland | Electromagnetic machine |
EP0633563A2 (en) | 1988-05-04 | 1995-01-11 | M4 Data Limited | Tape drive machines |
US5744896A (en) | 1996-05-21 | 1998-04-28 | Visual Computing Systems Corp. | Interlocking segmented coil array |
WO2002099950A1 (en) * | 2001-06-06 | 2002-12-12 | Evolving Generation Limited | Rotor and electrical generator |
US6781276B1 (en) | 1998-12-15 | 2004-08-24 | Bonus Enegy A/S | Generator for a windmill, stator module for use in such a generator and use of such a generator |
US7183689B2 (en) * | 2002-03-08 | 2007-02-27 | Ina Drives & Mechatronics Gmbh & Co. Ohg | Torque motor having a segment design |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56124206A (en) * | 1980-03-03 | 1981-09-29 | Matsushita Electric Ind Co Ltd | Resin molded coil |
JP4009403B2 (en) * | 2000-03-29 | 2007-11-14 | 株式会社ソディック | Modular coil side linear motor |
JP3901104B2 (en) * | 2003-02-14 | 2007-04-04 | トヨタ自動車株式会社 | STATOR COIL MODULE, MANUFACTURING METHOD THEREOF, Rotating Electric Machine, Rotating Electric Machine Manufacturing Method |
JP4582448B2 (en) * | 2003-12-02 | 2010-11-17 | 日立金属株式会社 | θ-Y-X stage |
JP4558524B2 (en) * | 2005-01-27 | 2010-10-06 | 住友重機械工業株式会社 | LINEAR MOTOR, MANUFACTURING METHOD THEREOF, AND STAGE DEVICE USING THE LINEAR MOTOR |
JP2006340433A (en) * | 2005-05-31 | 2006-12-14 | Nikon Corp | Coil module, coil unit, linear motor, stage device, and exposer |
DE102006013590A1 (en) * | 2006-03-22 | 2007-09-27 | Siemens Ag | Electric machine, in particular a generator |
US7646132B2 (en) * | 2007-05-02 | 2010-01-12 | Empire Magnetics Inc. | Arcuate coil winding and assembly for axial gap electro-dynamo machines (EDM) |
-
2008
- 2008-11-12 NO NO20084775A patent/NO20084775A/en unknown
-
2009
- 2009-11-04 KR KR1020117013377A patent/KR20110103955A/en not_active Application Discontinuation
- 2009-11-04 RU RU2011123913/07A patent/RU2011123913A/en not_active Application Discontinuation
- 2009-11-04 CN CN2009801447804A patent/CN102405584A/en active Pending
- 2009-11-04 CA CA2742362A patent/CA2742362A1/en not_active Abandoned
- 2009-11-04 EP EP09833676.1A patent/EP2356735A4/en not_active Withdrawn
- 2009-11-04 NZ NZ592707A patent/NZ592707A/en not_active IP Right Cessation
- 2009-11-04 JP JP2011536272A patent/JP2012509055A/en active Pending
- 2009-11-04 BR BRPI0921358A patent/BRPI0921358A2/en not_active IP Right Cessation
- 2009-11-04 WO PCT/NO2009/000382 patent/WO2010071441A1/en active Application Filing
- 2009-11-04 AU AU2009327631A patent/AU2009327631A1/en not_active Abandoned
-
2011
- 2011-04-21 US US13/091,738 patent/US20110241453A1/en not_active Abandoned
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1947269A (en) | 1932-12-29 | 1934-02-13 | Gen Electric | Magneto-electric machine |
GB1491026A (en) | 1974-04-04 | 1977-11-09 | Gen Electric Canada | Synchronous dynamoelectric machine |
US4334160A (en) | 1979-04-27 | 1982-06-08 | The Garrett Corporation | Rotating electrical machine |
EP0058791A1 (en) | 1981-02-25 | 1982-09-01 | Harold Winterbotham | Electrical rotating machines |
EP0633563A2 (en) | 1988-05-04 | 1995-01-11 | M4 Data Limited | Tape drive machines |
EP0627805A2 (en) * | 1993-06-03 | 1994-12-07 | Secretary Of State For Trade And Industry In Her Britannic Majesty's Gov. Of The U.K. Of Great Britain And Northern Ireland | Electromagnetic machine |
US5744896A (en) | 1996-05-21 | 1998-04-28 | Visual Computing Systems Corp. | Interlocking segmented coil array |
US6781276B1 (en) | 1998-12-15 | 2004-08-24 | Bonus Enegy A/S | Generator for a windmill, stator module for use in such a generator and use of such a generator |
WO2002099950A1 (en) * | 2001-06-06 | 2002-12-12 | Evolving Generation Limited | Rotor and electrical generator |
US7183689B2 (en) * | 2002-03-08 | 2007-02-27 | Ina Drives & Mechatronics Gmbh & Co. Ohg | Torque motor having a segment design |
Non-Patent Citations (4)
Title |
---|
CARICCHI, CRESCIMBINI: "Prototype of an innovative wheel direct drive with water- cooled axial-flux PM motor for electric vehicle application", APEC '96 ELEVENTH ANNUAL APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION SAN JOSE, MAR. 3-7, 1996, 3 March 1996 (1996-03-03) |
See also references of EP2356735A4 |
SPOONER E ET AL.: "Lightweight irorless-stator PM generators for direct-drive wind turbines", IEE PROC-ELECTR. POWER APP., vol. 152, no. 1, January 2005 (2005-01-01), pages 17 - 26, XP006023346, DOI: doi:10.1049/ip-epa:20041084 |
SPOONER E. ET AL: "Lightweight ironless-stator PM generators for direct-drive wind turbines", IEE PROC.-ELECTR. POWER APPL., vol. 152, no. 1, January 2005 (2005-01-01), pages 17 - 26, XP006023346 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2689520A4 (en) * | 2011-03-24 | 2015-10-28 | Greenway Energy As | Coil assembly for three phased transverse axial flux multi disk machines |
WO2013115653A1 (en) * | 2012-02-02 | 2013-08-08 | Smartmotor As | Molded segment for an energy conversion system and production of such a segment |
JP2015505662A (en) * | 2012-02-02 | 2015-02-23 | スマートモーター アーエス | Molded segments of energy conversion systems and the manufacture of such segments |
EP3214735A4 (en) * | 2014-10-27 | 2018-06-06 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Outer rotor-type axial gap brushless motor |
US10355570B2 (en) | 2014-10-27 | 2019-07-16 | Kobe Steel, Ltd. | Outer rotor-type axial gap brushless motor |
Also Published As
Publication number | Publication date |
---|---|
EP2356735A4 (en) | 2016-11-02 |
CN102405584A (en) | 2012-04-04 |
BRPI0921358A2 (en) | 2018-06-19 |
JP2012509055A (en) | 2012-04-12 |
US20110241453A1 (en) | 2011-10-06 |
EP2356735A1 (en) | 2011-08-17 |
NO328765B1 (en) | 2010-05-10 |
CA2742362A1 (en) | 2010-06-24 |
KR20110103955A (en) | 2011-09-21 |
RU2011123913A (en) | 2012-12-20 |
AU2009327631A1 (en) | 2010-06-24 |
NO20084775A (en) | 2010-05-10 |
NZ592707A (en) | 2012-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010071441A1 (en) | Electrical machine and method for the manufacturing of stator sections therefor | |
US10700561B2 (en) | Double-rotor flux-switching machine | |
EP2066005B1 (en) | Stator and stator tooth modules for electrical machines | |
EP1641102B1 (en) | Electrical machine with double-sided lamination stack | |
US11190065B2 (en) | Flux machine | |
US7692357B2 (en) | Electrical machines and assemblies including a yokeless stator with modular lamination stacks | |
EP1641101B1 (en) | Electrical machine with double-sided stator | |
US7548008B2 (en) | Electrical machine with double-sided lamination stack | |
US7640648B1 (en) | Method of fabricating a magnetic flux channel for a transverse wound motor | |
US20190288571A1 (en) | Electric motors for aircraft propulsion and associated systems and methods | |
US7492074B1 (en) | High-efficiency wheel-motor utilizing molded magnetic flux channels with transverse-flux stator | |
WO2014117350A1 (en) | Electrical machines | |
WO2011055124A1 (en) | Electrical machines | |
EP4018536A1 (en) | Electric machine with integrated dam assembly | |
CN203261211U (en) | Stator self-excitation synchronous motor with dual cage barrier rotors | |
CN203339911U (en) | Stator double-winding alternating-current motor with double cage barrier rotors | |
WO2023106338A1 (en) | Motor | |
US20240204587A1 (en) | Electric machine having multi-function cooling channels | |
EP4387051A1 (en) | Magnetic wire infused components for electric machine | |
Spivey et al. | Internal design of permanent-magnet in-wheel motors for battery-powered traction applications | |
KR20240060219A (en) | Axial Flux Multi Stage Motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980144780.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09833676 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009327631 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2742362 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 592707 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1929/KOLNP/2011 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011536272 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2009327631 Country of ref document: AU Date of ref document: 20091104 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20117013377 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2009833676 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009833676 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011123913 Country of ref document: RU |
|
ENP | Entry into the national phase |
Ref document number: PI0921358 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110506 |