WO2010071393A1 - Proceso no destructivo para eliminar silicio de materiales a base de alúmina - Google Patents

Proceso no destructivo para eliminar silicio de materiales a base de alúmina Download PDF

Info

Publication number
WO2010071393A1
WO2010071393A1 PCT/MX2009/000133 MX2009000133W WO2010071393A1 WO 2010071393 A1 WO2010071393 A1 WO 2010071393A1 MX 2009000133 W MX2009000133 W MX 2009000133W WO 2010071393 A1 WO2010071393 A1 WO 2010071393A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
alumina
destructive process
solid
accordance
Prior art date
Application number
PCT/MX2009/000133
Other languages
English (en)
French (fr)
Inventor
Patricia PÉREZ ROMO
José Marie Maurice JULIEN FRIPIAT
Luis Miguel RODRÍGUEZ OTAL
Pedro Martín VEGA MERINO
María de Lourdes Alejandra GUZMÁN CASTILLO
Candido Aguilar Barrera
Héctor ARMENDÁRIZ HERRERA
Francisco Javier HERNÁNDEZ BELTRÁN
Original Assignee
Instituto Mexicano Del Petróleo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Mexicano Del Petróleo filed Critical Instituto Mexicano Del Petróleo
Priority to US13/140,310 priority Critical patent/US8716159B2/en
Priority to CA2747630A priority patent/CA2747630C/en
Publication of WO2010071393A1 publication Critical patent/WO2010071393A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/50Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids
    • B01J38/52Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids oxygen-containing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/20Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/46Purification of aluminium oxide, aluminium hydroxide or aluminates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/703Activation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects
    • C10G2300/708Coking aspect, coke content and composition of deposits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a process for the elimination of silicon and / or silicon compounds contained in alumina-based materials without destroying it, allowing its reuse, so that its main application is in the regeneration of catalysts based on alumina contaminated with silicon, which are used in the hydrotreatment processes of the oil industry to remove sulfur and remove silicon from process streams.
  • US Patent Application 4,560,541 refers to a method for removing soluble and insoluble impurities, mainly soda and silica by means of a reaction with stoichiometric amounts of concentrated hydrochloric acid to form a reaction product such as aluminum chloride and aluminum chloride hexahydrate.
  • the solution after having been adjusted by adding water is separated to remove insoluble impurities such as silica;
  • US Patent Application 4,973,462 describes a process for producing high purity silica by directly adding an aqueous solution of an alkaline silicate (water glass) to a solution of a mineral acid, such as hydrochloric acid, nitric acid and the sulfuric acid, to dissolve the impurities in the solution of the mineral acid and form a silica precipitate;
  • a mineral acid such as hydrochloric acid, nitric acid and the sulfuric acid
  • US Patent Application 5,242,670 details a process for the digestion of an inorganic silica / alumina matrix for the production of silicon tetrafluoride and aluminum fluoride, in which the tetrafluoride in gaseous form and in solution contains aluminum fluoride and some undigested oxides.
  • Another object of the present invention is to provide a non-destructive process for the decomposition and elimination of silicon and / or silicon compounds contained in alumina-based materials, which is mainly used in the regeneration of alumina-based catalysts, used as silicon traps in the hydrotreatment processes of the oil industry, preferably in the Hydrodesulfurization (HDS) processes of coking naphtha (coquer).
  • HDS Hydrodesulfurization
  • Another additional object of the present invention is to provide a non-destructive process for the decomposition and elimination of silicon and / or silicon compounds contained in alumina-based materials, which uses an extraction agent that selectively depolymerizes the silica present in the materials based on alumina, without substantially modifying the content of other materials or metals present in the alumina-based material.
  • Figure No. 1 shows the nuclear magnetic resonance spectrum of solids of 29 Si contained in the catalyst contaminated with silicon compounds of Table No. 1 (containing 10% weight), as well as the content in the regenerated catalyst of Example No. 8 (containing 3.6% total silicon weight).
  • the present invention relates to a process for the elimination of silicon and / or silicon compounds contained in alumina-based materials without destroying it, allowing its reuse, so that its main application is in the regeneration of catalysts based on alumina. It is important to mention that said catalysts are used to eliminate sulfur and silicon contained in the process comments in the hydrotreatment processes of the oil industry, preferably in the Hydrodesulfurization (HDS) processes of gasoline streams produced in the delayed coking process of waste (coquer).
  • HDS Hydrodesulfurization
  • the non-destructive process of the present invention consists in: a) mixing the solid material or mixture of solid materials that contain silicon and that can be in the form of powder and / or ground and / or in its original form (extruded) with an agent extraction, preferably an alcohol, at a temperature between 1O 0 C and 300 1 for a time of 10 minutes to 96 hours; b) separating by centrifugation, decantation or filtration the mixture containing the solid, the extraction agent and the dissolved silica; c) wash the solid with water and / or with an alcohol and / or with an ammonium hydroxide solution; and d) drying the solid with low silicon content.
  • an agent extraction preferably an alcohol
  • the non-destructive process of the present invention is applied to alumina-based materials that may contain among others the following chemical elements and / or their mixtures: Si, V, Cr, Mn 1 Fe, Co 1 Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, W, Re, Os, Ir, Pt and Au.
  • the extraction agent used to mix the solid material containing silicon preferably is an alcohol such as a polyol, and more preferably the glycerin, which has excellent properties to selectively extract the silicon by means of the decomposition of the silicon compounds present in the alumina-based materials, without modifying the properties of the alumina-based material and without substantially modifying the content of other materials or metals present in the alumina-based material.
  • the above is achieved because the glycerin depolymerizes the silicon compounds deposited in the alumina-based material producing a silicon gel that separates from the solid.
  • step a) mixed, non - destructive process of the present invention the reaction is preferably performed at a temperature between 160 and 280 0 C, for a time preferably from 1 to 18 hrs.
  • the washing step is preferably carried out with distilled water and / or with methanol and / or with a solution of ammonium hydroxide of 1 to 35% by weight, more preferably with a solution of ammonium hydroxide at 35% by weight.
  • the described process can be carried out in a batch reactor (in batches), with or without stirring, or in a continuous flow reactor, and can be subjected to pressure or not, from 0.5 to 60 kg / cm 2 .
  • the non-destructive process of the present invention preferably consists of: a) compacting the solid material or mixture of solid materials containing silicon and preferably in the form of powder and / or ground and / or in its original form (extruded), in a continuous flow reactor, with or without pressure, from 0.5 to 60 kg / cm 2 ; increase the temperature and feed an extraction agent, preferably glycerin, at a flow of 1 to 500 ml / h per gram of solid; maintain the same pressure and temperature preferably from 1 to 36 hours; b) Suspend the extraction agent feed and lower the temperature to cool the reaction system, c) wash the solid material preferably by feeding an alcohol such as methanol at a flow of 1 to 500 ml / h per gram of solid, preferably of 1 to 160 ml / h, for 30 minutes to 24 hours, subsequently suspend the flow of alcohol and bring the system to a temperature of 10 to 25 0 C and pressure of 0.5 to 1 Kg / cm
  • the pressurization and cooling of the system in a continuous flow reactor is preferably carried out with nitrogen.
  • a catalyst depleted and contaminated with silicon obtained from an industrial hydrotreatment plant that processes coking naphtha was subjected to an analysis of elemental composition of Silicon and Carbon and the atomic ratio of Molybdenum-Nickel metals, obtaining the results shown in Table No . one.
  • Table No. 1 Elemental analysis of depleted catalyst of a hydrotreatment plant ue rocesa coolant naphtha.
  • the mixture was cooled again to 80 0 C, the solid was separated from the glycerol by centrifugation and washed with 300 ml of a solution of ammonium hydroxide 35% weight. Finally the solid was allowed to dry in an oven at 60 0 C for 8 hrs. This solid was analyzed by nuclear magnetic resonance and atomic absorption, determining that 53% weight of the silicon initially contained in the spent catalyst (10% weight) had been removed.
  • the glycerin feed was suspended and nitrogen was fed by lowering the temperature from 260 0 C to 100 0 C, at a speed of 180 0 CVh, adjusting the system pressure to 5 kg / cm 2 and the solid was washed by feeding methanol a flow of 140 ml / h for 2 hrs, then the flow of methanol was suspended and the system temperature of 20 0 C and pressure of 0.8 kg / cm 2 was.
  • the recovered solid was dried in an oven at 100 0 C for 5 hrs. This solid was analyzed by nuclear magnetic resonance and atomic absorption, determining that 35.5% weight of the silicon initially contained in the spent catalyst (10% weight) had been removed.
  • Table No. 2 Summary of the results of the removal of silicon (Si) contained in an exhausted catalyst of a hydrotreatment plant that processes coking naphtha.
  • This catalyst was ground to 60 mesh and presulfhydro in a fixed bed packed tubular reactor with naphtha contaminated with CS 2 at a concentration of 0.5% sulfur weight, under the following conditions:
  • the catalyst was evaluated in the same fixed bed packed tubular reactor using a gasoline, whose characteristics are detailed in Table No. 3, to determine its catalytic activity, under the following conditions:
  • the results of the evaluation of the new catalyst were analyzed comparatively in the removal of Sulfur (% sulfur weight) and Nitrogen (total N, ppm) of the naphtha as well as in the saturation of Mono (No. of Bromine) and Diolefins (% conjugated dienes) and particularly in the total Silicon content (Si, ppm) present in the product.
  • the reaction train of the Hydrodesulfurization (HDS) plants of coking naphtha in Mexico is made up of several sections, including the silicon trap, in which the catalyst retains the silicon that is contained in the comments of process.
  • the HDS catalysts used in this section in addition to presenting activity in hydrodesulfurization, denitrogenation and saturating monolefins and diolefins, promote the decomposition of the silicon compounds contained in the charge, retaining on its surface the silicon thus generated, causing in turn a loss of relatively accelerated activity thereof. That is why it is important that these catalysts in addition to retaining silicon are capable of reducing the levels of nitrogen, sulfur and olefin content. Hydrodesulfurization and hydrocarbon denitrogenation reactions are favored at temperatures of 300 to 340 0 C, while the silicon trap reactor operates around 280 0 C and the mono and diolefin saturator around 180 0 C.
  • Example Nos. 6 and 7 were milled to 60 mesh and the Regenerated Catalyst by Example No. 8 was left in its extruded form, then presulfhydrated to the same conditions referred to in Example No. 13.
  • the catalysts were evaluated in a fixed bed packed tubular reactor using a rod, whose characteristics were detailed in Table No. 3, to determine their catalytic activity, under the same conditions referred to in Example No. 13. The results of the evaluation of the catalyst are shown in Table No. 5.
  • non-destructive process of the present invention does not substantially affect the content of other metals present in alumina, which can be verified by the activity in hydrotreatment and saturation of olefins that have the regenerated catalysts, which implies that the ratio of metals did not change significantly.
  • Example No. 13 The Catalysts Regenerated by Examples Nos. 9, 10 and 11 were packed and presulfhydrated under the same conditions referred to in Example No. 13.
  • the catalysts were evaluated in a fixed bed packed tubular reactor using a gasoline, whose characteristics are detailed in Table No. 6, to determine their catalytic activity at the following conditions:
  • Table No. 7 Summary of Results of the Catalytic Activity of New, Exhausted and Regenerated Catalysts by Examples of the present invention, evaluated in micro reaction using a gasoline from the Madero Cd Refinery.
  • Table No. 7 clearly shows that while the new catalyst has a catalytic activity to reduce the silicon content of the feed load of up to 98%, the catalysts regenerated, through the non-destructive process of the present invention, have a catalytic activity that reduces the silicon content of the feed load up to 96%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

La presente invención se refiere a un proceso para la eliminación del silicio y/o de compuestos de silicio contenidos en materiales a base de alúmina sin destruirla, permitiendo su reutilización, por lo que su principal aplicación se encuentra en la regeneración de catalizadores a base de alúmina contaminados con silicio, los cuales son utilizados en los procesos de hidrotratamiento de la industria petrolera para eliminar azufre y remover silicio de las corrientes de proceso. Al respecto, es importante hacer notar que los procedimientos y/o métodos convencionales conocidos para eliminar o remover el silicio contenido en materiales a base de alúmina, utilizan algún ácido inorgánico o sus mezclas haciendo una digestión, lo cual modifica las propiedades de la alúmina y de cualquier otro elemento contenido en el material, destruyendo la alúmina e impidiendo su reutilización. El proceso no destructivo de la presente invención se caracteriza porque emplea un agente de extracción que depolimeriza los compuestos de silicio depositados en materiales a base de alúmina, sin modificar las propiedades del material a base de alúmina y sin modificar de manera sustancial el contenido de otros materiales o metales presentes en el material a base de alúmina. El agente de extracción empleado es un alcohol, preferentemente un poliol, y más preferentemente el glicerol, el cual es un material accesible comercialmente y que no requiere un grado de pureza elevado para su aplicación.El silicio contenido en el material a base de alúmina al que se aplica el proceso no destructivo de la presente invención, preferentemente se encuentra en forma inorgánica, de óxido y silanol: Si-(OX)4 (X = Al, H, Si) y/o en forma orgánica, organosilanos: (0X)3-Si-CH3 y/o (CH3)2-Si-(0X)2 (X = H, Si), ambas estructuras se depolimerizan al emplear este proceso de remoción.

Description

PROCESO NO DESTRUCTIVO PARA ELIMINAR SILICIO DE MATERIALES A BASE DE ALÚMINA
DESCRIPCIÓN
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se refiere a un proceso para Ia eliminación del silicio y/o de compuestos de silicio contenidos en materiales a base de alúmina sin destruirla, permitiendo su reutilización, por Io que su principal aplicación se encuentra en Ia regeneración de catalizadores a base de alúmina contaminados con silicio, los cuales son utilizados en los procesos de hidrotratamiento de Ia industria petrolera para eliminar azufre y remover silicio de las corrientes de proceso.
ANTECEDENTES DE LA INVENCIÓN
Existen diferentes procedimientos y/o métodos para eliminar o remover el silicio contenido en materiales a base de alúmina, tales como los referidos en:
a) La Solicitud de Patente US 4,239,735 para remover impurezas de las alúminas solubilizando sus contaminantes y dejando a Ia alúmina en forma insoluble. Esto se logra mezclando una kaolinita con al menos 36 %peso de ácido hidroclorhídrico para disolver las impurezas y convertir el aluminio en cloruro de aluminio insoluble;
b) La Solicitud de Patente US 4,304,575 describe cómo las partículas de sílice pueden ser disueltas por calentamiento con una solución alcalina para de esta manera redepositarlas y formar partículas de mayor tamaño produciendo un sol de sílice donde Ia mayoría de las partículas tienen un tamaño significativamente mayor de las que tenían las partículas de partida;
c) La Solicitud de Patente US 4,560,541 se refiere a un método para eliminar impurezas solubles e insolubles, principalmente sosa y sílice por medio de una reacción con cantidades estequiométricas de ácido clorhídrico concentrado para formar un producto de reacción como cloruro de aluminio y cloruro de aluminio hexahidratado. La solución después de haber sido ajustada mediante Ia adición de agua es separada para eliminar las impurezas insolubles como Ia sílice;
d) La Solicitud de Patente US 4,973,462 describe un proceso para producir sílice de alta pureza mediante Ia adición directa de una solución acuosa de un silicato alcalino (water glass) a una solución de un ácido mineral, tal como el ácido hidroclorhídrico, el ácido nítrico y el ácido sulfúrico, para disolver las impurezas en Ia solución del ácido mineral y formar un precipitado de sílice; y
e) La Solicitud de Patente US 5,242,670 detalla un proceso para Ia digestión de una matriz de sílice/alúmina inorgánica para Ia producción de tetrafluoruro de silicio y fluoruro de aluminio, en Ia cual el tetrafluoruro en forma gaseosa y en solución contiene fluoruro de aluminio y algunos óxidos no digestados.
Al respecto, es importante hacer notar que los procedimientos y/o métodos convencionales conocidos para eliminar o remover el silicio contenido en materiales a base de alúmina, tales como los referidos, utilizan algún ácido inorgánico o sus mezclas haciendo una digestión, Io cual modifica las propiedades de Ia alúmina y de cualquier otro elemento contenido en el material, destruyendo Ia alúmina e impidiendo su reutilización.
Las tecnologías anteriores conocidas por el solicitante, se superaron mediante el proceso de Ia presente invención, porque elimina el silicio y/o los compuestos de silicio contenidos en materiales a base de alúmina sin destruirla, permitiendo su reutilización, por Io que su principal aplicación se encuentra en Ia regeneración de catalizadores a base de alúmina contaminados con silicio, los cuales son utilizados en los procesos de hidrotratamiento de Ia industria petrolera para eliminar azufre y remover silicio de las corrientes de proceso. Es por lo tanto un objeto de Ia presente invención, proporcionar un proceso no destructivo para Ia eliminación del silicio y/o de compuestos de silicio contenidos en materiales a base de alúmina sin destruirla, permitiendo su reutilización.
Otro objeto de Ia presente invención es proporcionar un proceso no destructivo para Ia descomposición y eliminación de silicio y/o de compuestos de silicio contenidos en materiales a base de alúmina, que se emplea principalmente en Ia regeneración de catalizadores a base de alúmina, utilizados como trampas de silicio en los procesos de hidrotratamiento de Ia industria petrolera, preferentemente en los procesos de Hidrodesulfuración (HDS) de naftas de coquización (coquer).
Un objeto más de Ia presente invención es proporcionar un proceso no destructivo para Ia descomposición y eliminación de silicio y/o de compuestos de silicio contenidos en materiales a base de alúmina, que depolimeriza el silicio que se encuentra preferentemente en forma inorgánica (de óxido y silanol): Si-(OX)4 (X=AI, H, Si) y/o en forma orgánica (organosilanos): (0X)3-Si-CH3 y/o (CH3)2-Si-(0X)2 (X=H, Si), sin modificar las propiedades del material a base de alúmina.
Otro objeto adicional de Ia presente invención es proporcionar un proceso no destructivo para Ia descomposición y eliminación de silicio y/o de compuestos de silicio contenidos en materiales a base de alúmina, que utiliza un agente de extracción que depolimeriza selectivamente Ia sílice presente en los materiales a base de alúmina, sin modificar de manera sustancial el contenido de otros materiales o metales presentes en el material a base de alúmina.
Los anteriores y otros objetos más de Ia presente invención se establecerán con mayor claridad y detalle en los siguientes capítulos. BREVE DESCRIPCIÓN DE LOS DIBUJOS DE LA INVENCIÓN
Figura No. 1. En Ia Figura No. 1 se muestra el espectro de resonancia magnética nuclear de sólidos del 29Si contenido en el catalizador contaminado con compuestos de silicio de Ia Tabla No. 1 (conteniendo 10 %peso), así como el contenido en el catalizador regenerado del Ejemplo No. 8 (conteniendo 3.6 %peso de silicio total).
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente invención se refiere a un proceso para Ia eliminación del silicio y/o de compuestos de silicio contenidos en materiales a base de alúmina sin destruirla, permitiendo su reutilízación, por Io que su principal aplicación se encuentra en Ia regeneración de catalizadores a base de alúmina. Es importante mencionar que dichos catalizadores son utilizados para eliminar azufre y silicio contenidos en las comentes de proceso en los procesos de hidrotratamiento de Ia industria petrolera, preferentemente en los procesos de Hidrodesulfuración (HDS) de corrientes de naftas producidas en el proceso de coquizacíón retardada de residuos (coquer).
El proceso no destructivo de Ia presente invención consiste en: a) mezclar el material sólido o mezcla de materiales sólidos que contienen silicio y que pueden estar en forma de polvo y/o molidos y/o en su forma original (extruido) con un agente de extracción, preferentemente un alcohol, a una temperatura comprendida entre 1O y 300 0C1 durante un tiempo de 10 minutos a 96 horas; b) separar por centrifugación, decantación o filtración Ia mezcla conteniendo el sólido, el agente de extracción y Ia sílice disuelta; c) lavar el sólido con agua y/o con un alcohol y/o con una solución de hidróxido de amonio; y d) secar el sólido con bajo contenido de silicio.
El proceso no destructivo de Ia presente invención se aplica a materiales a base de alúmina que puede contener entre otros los siguientes elementos químicos y/o sus mezclas: Si, V, Cr, Mn1 Fe, Co1 Ni, Cu, Zn, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, W, Re, Os, Ir, Pt y Au.
El silicio contenido en el material a base de alúmina al que se aplica el proceso no destructivo de Ia presente invención, preferentemente se encuentra en forma inorgánica, de óxido y silanol: Si-(0X)4 (X=AI, H, Si) y/o en forma orgánica, organosilanos: (0X)3-Si-CH3 y/o (CH3)2-S¡-(0X)2 (X=H, Si), ambas estructuras se depolimerizan al emplear este proceso de remoción.
El agente de extracción empleado para mezclar el material sólido que contiene silicio, preferentemente es un alcohol tal como un poliol, y más preferentemente Ia glicerina, Ia cual presenta excelentes propiedades para extraer selectivamente el silicio mediante Ia descomposición de los compuestos de silicio presentes en los materiales a base de alúmina, sin modificar las propiedades del material a base de alúmina y sin modificar de manera sustancial el contenido de otros materiales o metales presentes en el material a base de alúmina. Lo anterior se logra debido a que Ia glicerina depolimeriza los compuestos de silicio depositados en el material a base de alúmina produciendo un gel de silicio que se separa del sólido.
En Ia etapa a) mezclado, del proceso no destructivo de Ia presente invención, Ia reacción preferentemente se realiza a una temperatura de entre 160 y 280 0C, durante un tiempo preferentemente de 1 a 18 hrs.
La etapa de lavado preferentemente se realiza con agua destilada y/o con metanol y/o con una solución de hidróxido de amonio del 1 al 35 %peso, más preferentemente con una solución de hidróxido de amonio al 35 %peso.
El proceso descrito se puede realizar en un reactor batch (por lotes), con o sin agitación, o en un reactor de flujo continuo, y se puede someter o no a presión, desde 0.5 hasta 60 kg/cm2.
En un reactor de flujo continuo el proceso no destructivo de Ia presente invención preferentemente consiste en: a) compactar el material sólido o mezcla de materiales sólidos que contienen silicio y que preferentemente se encuentran en forma de polvo y/o molidos y/o en su forma original (extruido), en un reactor de flujo continuo, con o sin presión, desde 0.5 hasta 60 Kg/cm2; incrementar Ia temperatura y alimentar un agente de extracción, preferentemente glicerina, a un flujo de 1 a 500 ml/h por gramo de sólido; mantener Ia misma presión y temperatura preferentemente de 1 a 36 hrs; b) Suspender Ia alimentación del agente de extracción y bajar Ia temperatura para enfriar el sistema de reacción, c) lavar el material sólido preferentemente alimentando un alcohol como el metanol a un flujo de 1 a 500 ml/h por gramo de sólido, preferentemente de 1 a 160 ml/h, durante 30 minutos a 24 horas, posteriormente suspender el flujo de alcohol y llevar el sistema a una temperatura de 10 a 25 0C y presión de 0.5 a 1 Kg/cm2; y d) secar el sólido recuperado con bajo contenido de silicio.
En el proceso no destructivo de Ia presente invención, Ia presurización y enfriamiento del sistema en un reactor de flujo continuo se realiza preferentemente con nitrógeno.
EJEMPLOS
A continuación se describen algunos ejemplos prácticos para tener un mejor entendimiento de Ia presente invención, sin que esto limite su alcance.
Ejemplo No. 1
Un catalizador agotado y contaminado con silicio obtenido de una planta industrial de hidrotratamiento que procesa naftas de coquizadora fue sometido a un análisis de composición elemental de Silicio y Carbón y Ia relación atómica de metales Molibdeno-Níquel obteniéndose los resultados que se muestran en Ia Tabla No. 1.
Tabla No. 1. Análisis elemental de catalizador agotado de una planta de hidrotratamiento ue rocesa naftas de co uizadora.
Figure imgf000008_0001
Una cantidad de 4 g del catalizador agotado de Ia Tabla No. 1 se molió a 60 mesh y se mezcló con 200 mi de glicerina en un reactor batch. La mezcla fue calentada desde 15 0C hasta 260 0C, y se agitó a 100 rpm durante 6 hrs. Posteriormente Ia mezcla se dejó enfriar hasta 100 0C1 el sólido se separó de Ia glicerina por centrifugación y se lavó con 200 mi de una solución acuosa de hidróxido de amonio al 35% peso. Finalmente el sólido se dejó secar en una estufa a 60 0C por 8 hrs. Este sólido fue analizado por resonancia magnética nuclear y por absorción atómica, determinándose que se había eliminado el 48 %peso del silicio contenido inicialmente en el catalizador agotado, el cual era de 10 %peso.
Ejemplo No. 2
Una cantidad de 4 g del catalizador agotado de Ia Tabla No. 1 , mismo que fue utilizado en el Ejemplo No. 1 , se molió a 200 mesh y se mezcló con 80 mi de glicerina en un reactor batch. La mezcla fue calentada desde 15 0C hasta 220 0C1 y se agitó a 100 rpm por 2 hrs. Posteriormente Ia mezcla se dejó enfriar hasta 130 0C, el sólido se separó de Ia glicerina por centrifugación y se lavó con 120 mi de una solución de hidróxido de amonio al 35 %peso. Finalmente el sólido se dejó secar en una estufa a 60 0C por 7 hrs. Este sólido fue analizado por resonancia magnética nuclear y por absorción atómica, determinándose que se había eliminado el 31 %peso del silicio contenido inicialmente en el catalizador agotado (10 %peso). Se determinó por absorción atómica una relación Mo/Ni de 5.5 para este catalizador, Io cual indica que no se modifico sustancialmente el contenido de metales en el catalizador.
Ejemplo No. 3
Una cantidad de 4 g del catalizador agotado de Ia Tabla No. 1 , mismo que fue utilizado en los Ejemplos Nos. 1 y 2, se molió a 60 mesh y se mezcló con 200 mi de glicerina en un reactor batch. La mezcla fue calentada desde 15 0C hasta 220 0C, y se agitó a 100 rpm por 6 hrs. Posteriormente Ia mezcla se dejó enfriar hasta 130 0C, el sólido se separó de Ia glicerina por centrifugación y se lavó con 200 mi de una solución de hidróxido de amonio al 35 %peso. Finalmente el sólido se dejó secar en una estufa a 60 0C por 7 hrs. Este sólido fue analizado por resonancia magnética nuclear y por absorción atómica, determinándose que se había eliminado el 39 %peso del silicio contenido inicialmente en el catalizador agotado (10 %peso).
Ejemplo No. 4
Una cantidad de 1 g del catalizador agotado de Ia Tabla No. 1 , mismo que fue utilizado en los Ejemplos Nos. 1 a 3, se molió a 100 mesh y se mezcló con 50 mi de glicerina en un reactor batch. La mezcla fue calentada desde 15 0C hasta 250 0C1 y se agitó a 100 rpm por 4 hrs. Posteriormente Ia mezcla se dejó enfriar hasta 160 0C, el sólido se separó de Ia glicerina por centrifugación y se lavó con 100 mi de agua destilada. Finalmente el sólido se dejó secar en una estufa a 60 0C por 10 hrs. Este sólido fue analizado por resonancia magnética nuclear y por absorción atómica, determinándose que se había eliminado el 27 %peso del silicio contenido inicialmente en el catalizador agotado (10 %peso).
Ejemplo No. 5
Una cantidad de 1 g del catalizador agotado de Ia Tabla No. 1 , mismo que fue utilizado en los Ejemplos Nos. 1 a 4, se molió a 60 mesh y se mezcló con 50 mi de glicerina en un reactor batch. La mezcla fue calentada desde 15 0C hasta 250 0C, y se agitó a 100 rpm por 4 hrs. Posteriormente Ia mezcla se dejó enfriar hasta 160 0C, el sólido se separó de Ia glicerina por centrifugación y se lavó con 100 mi de una solución de hidróxido de amonio al 35 %peso. Finalmente el sólido se dejó secar en una estufa a 80 0C por 6 hrs. Este sólido fue analizado por resonancia magnética nuclear y por absorción atómica, determinándose que se había eliminado el 35 %peso del silicio contenido inicialmente en el catalizador agotado (10 %peso). Ejemplo No. 6
Una cantidad de 4 g del catalizador agotado de Ia Tabla No. 1 , mismo que fue utilizado en los Ejemplos Nos. 1 a 5, se mezcló en su forma original de extrudado con 200 mi de glicerina en un reactor batch. La mezcla fue calentada desde 15 0C hasta 260 0C, y se agitó a 100 rpm durante 6 hrs. Posteriormente Ia mezcla se dejó enfriar hasta 100 0C, el sólido se separó de Ia glicerina por decantación y se añadieron 200 mi más de glicerina, Ia mezcla se volvió a calentar hasta 260 0C agitándose a 100 rpm, durante 4 hrs. La mezcla se dejó enfriar nuevamente hasta 80 0C, el sólido se separó de Ia glicerina por centrifugación y se lavó con 300 mi de una solución de hidróxido de amonio al 35 %peso. Finalmente el sólido se dejó secar en una estufa a 60 0C por 8 hrs. Este sólido fue analizado por resonancia magnética nuclear y por absorción atómica, determinándose que se había eliminado el 53 %peso del silicio contenido inicialmente en el catalizador agotado (10 %peso).
Ejemplo No. 7
Una cantidad de 4 g del catalizador agotado de Ia Tabla No. 1 , mismo que fue utilizado en los Ejemplos Nos. 1 a 6, se mezcló en su forma original de extruido con 200 mi de glicerina en un reactor batch. La mezcla fue calentada desde 15 0C hasta 250 0C, y se agitó a 100 rpm durante 5 hrs. Posteriormente Ia mezcla se dejó enfriar hasta 120 0C, el sólido se. separó de Ia glicerina por decantación y se añadieron 200 mi más de glicerina, Ia mezcla se volvió a calentar hasta 250 0C agitándose a 100 rpm durante 5 hrs. La mezcla se dejó enfriar nuevamente hasta 90 0C, el sólido se separó de Ia glicerina por centrifugación y se lavó con 300 mi de agua. Finalmente el sólido se dejó secar en una estufa a 60 0C por 10 hrs. Este sólido fue analizado por resonancia magnética nuclear y por absorción atómica, determinándose que se había eliminado el 47 %peso del silicio contenido inicialmente en el catalizador agotado (10 %peso). Ejemplo No. 8
Una cantidad de 4 g del catalizador agotado de Ia Tabla No. 1 , mismo que fue utilizado en los Ejemplos Nos. 1 a 7, se mezcló en su forma original de extruido con 200 mi de glicerina en un reactor batch. La mezcla fue calentada desde 15 0C hasta 260 0C, y se agitó a 100 rpm durante 6 hrs. Posteriormente Ia mezcla se dejó enfriar hasta 130 0C, el sólido se separó de Ia glicerina por decantación y se añadieron 200 mi más de glicerina, Ia mezcla se volvió a calentar hasta 260 0C agitándose a 100 rpm durante 6 hrs. La mezcla se dejó enfriar nuevamente hasta 80 0C, el sólido se separó de Ia glicerina por centrifugación y se lavó con 300 mi de agua destilada. Finalmente el sólido se dejó secar en una estufa a 60 0C por 8 hrs. Este sólido fue analizado por resonancia magnética nuclear (Figura No. 1 ) y por absorción atómica, determinándose que se había eliminado el 64 %peso del silicio contenido inicialmente en el catalizador agotado (10 %peso).
La Figura No. 1 muestra que las bandas de resonancia del 29Si en el catalizador agotado de Ia Tabla No. 1 (conteniendo 10 %peso de silicio total) son más intensas que las del catalizador regenerado del Ejemplo No. 8 (conteniendo 3.6 %peso de silicio total), Io cual significa que Ia cantidad de silicio presente en ambos materiales es proporcional al área bajo Ia curva de cada espectro; por otra parte, Ia posición (desplazamiento químico) de Ia banda de resonancia principal más hacia Ia izquierda que se observa en el catalizador regenerado del Ejemplo No. 8 indica que Ia sílice, cuya contribución a Ia señal debida a las cadenas Si-(OSi)4 está siendo eliminada quedando principalmente las contribuciones debidas a enlaces del tipo X-O-Si-(OSi)3 en donde X=AI ó H. Así mismo, Ia Figura No. 1 muestra además que Ia banda centrada en -67.2 ppm debida al silicio orgánico CH3-Si-(0X)3 (X=H, Si) presente en el catalizador desaparece con el tratamiento.
Ejemplo No. 9
Una cantidad de 7 g del catalizador agotado de Ia Tabla No. 1 , mismo que fue utilizado en los Ejemplos Nos. 1 a 8, se molió a 40 mesh y se compactó en un reactor tubular de flujo continuo, presurizándose a 0.8 kg/cm2 utilizando nitrógeno, posteriormente se incremento Ia temperatura de 25 0C a 180 0C, a una velocidad de 60 °C/min, después se inicio Ia alimentación de Ia glicerina con un flujo de 210 ml/h y se incrementó Ia temperatura hasta 26O 0C, a una velocidad de 60 °C/h, manteniéndose Ia misma presión (0.8 kg/cm2) y temperatura de 260 0C por 6 hrs. Finalmente se suspendió Ia alimentación de Ia glicerina y se alimento nitrógeno bajando Ia temperatura de 260 0C a 100 0C, a una velocidad de 180 0CVh, ajustando Ia presión del sistema a 5 kg/cm2 y se lavó el sólido alimentando metanol a un flujo de 140 ml/h durante 2 hrs, posteriormente se suspendió el flujo de metanol y se llevo el sistema a temperatura de 20 0C y presión de 0.8 kg/cm2. El sólido recuperado se seco en un horno a 100 0C durante 5 hrs. Este sólido fue analizado por resonancia magnética nuclear y por absorción atómica, determinándose que se había eliminado el 35.5 %peso del silicio contenido inicialmente en el catalizador agotado (10 %peso).
Ejemplo No. 10
Una cantidad de 7 g del catalizador agotado de Ia Tabla No. 1 , mismo que fue utilizado en los Ejemplos Nos. 1 a 9, se molió a 60 mesh y se compactó en un reactor tubular de flujo continuo, presurizándose a 25 kg/cm2 utilizando nitrógeno, y siguiendo el mismo procedimiento del Ejemplo No. 9, Ia alimentación de Ia glicerina se realizó a 70 ml/h, manteniéndose Ia misma presión y temperatura por 10 hrs. El sólido obtenido fue analizado por resonancia magnética nuclear y por absorción atómica, determinándose que se había eliminado el 51.3 %peso del silicio contenido inicialmente en el catalizador agotado (10 %peso).
Ejemplo No. 11
Una cantidad de 7 g del catalizador agotado de Ia Tabla No. 1 , mismo que fue utilizado en los Ejemplos Nos. 1 a 10, se molió a 60 mesh y se compactó en un reactor tubular de flujo continuo, presurizándose a 50 kg/cm2 utilizando nitrógeno, y siguiendo el mismo procedimiento del Ejemplo No. 9, Ia alimentación de Ia glicerina se realizó a 70 ml/h, y se incrementó Ia temperatura hasta 200 0C, a una velocidad de 60 0CVh, manteniéndose Ia misma presión y temperatura por 30 hrs. El sólido obtenido fue analizado por resonancia magnética nuclear y por absorción atómica, determinándose que se había eliminado el 24.3 %peso del silicio contenido inicialmente en el catalizador agotado (10 %peso).
Para visualizar mejor las ventajas del proceso no destructivo de Ia presente invención, en Ia Tabla No. 2 se resumen los principales datos de los Ejemplos Nos. 1 a 11 , que se presentaron con fines ilustrativos más no limitativos.
Los resultados de Ia Tabla No. 2 nos muestran que el proceso no destructivo de Ia presente invención presenta una mayor remoción de silicio (Si) cuando se emplea un reactor batch y tratamientos sucesivos (remoción hasta del 64 % de Si), que cuando se emplea un reactor de flujo continuo (remoción hasta del 51.3 % de Si) o un reactor batch y tratamiento simple (remoción hasta del 48 % de Si).
Tabla No. 2. Resumen de resultados de Ia remoción de silicio (Si) contenido en un catalizador agotado de una planta de hidrotratamiento que procesa naftas de coquizadora.
Figure imgf000014_0001
Para demostrar aún más las bondades del proceso no destructivo de Ia presente invención se presenta el siguiente ejemplo: Ejemplo No. 12
Se tomo una cantidad de 0.5 g del catalizador agotado de Ia Tabla No. 1 , mismo que fue utilizado en los Ejemplos Nos. 1 a 11 , se molió a 60 mesh y se mezcló con 25 mi de agua y se dejó a reflujo por 90 minutos. Después Ia mezcla se filtró y se añadieron 25 mi de etanol dejándose nuevamente a reflujo por 20 minutos. El sólido se filtró y se secó a 60 0C. Este sólido fue analizado por resonancia magnética nuclear y por absorción atómica y se determinó que se había eliminado el 8.3 %peso del silicio contenido inicialmente en el catalizador agotado (10 %peso).
Los resultados de este Ejemplo, en comparación con los resultados obtenidos en los Ejemplos Nos. 1 a 11 , muestran principalmente los siguientes aspectos relevantes del proceso no destructivo de Ia presente invención:
a) Las ventajas de su realización en un reactor batch con o sin agitación o en flujo continuo, sometido o no a presión, ya que elimina hasta el 64 %peso del silicio (Si) contenido inicialmente cuando emplea un reactor batch y tratamientos sucesivos, hasta el 51.3 % de Si empleando un reactor de flujo continuo y hasta el 48 % de Si cuando emplea un reactor batch y tratamiento simple, b) La importancia tanto de cada una de las diferentes etapas que integran el proceso de Ia presente invención, así como de las condiciones de operación a las que se realizan, c) Las cualidades del agente de extracción empleado, preferentemente un alcohol tal como un poliol, más preferentemente Ia glicerina, para depolimerizar selectivamente el silicio y los compuestos de silicio presentes en los materiales a base de alúmina, sin modificar las propiedades del material a base de alúmina y sin modificar de manera sustancial el contenido de otros materiales o metales presentes en el material a base de alúmina. Ahora bien, para mostrar Ia Actividad Catalítica de los Catalizadores regenerados mediante el proceso no destructivo de Ia presente invención, se realizaron las siguientes pruebas:
Ejemplo No 13
Una muestra de catalizador nuevo de hidrotratamiento de hidrocarburos fue sometido a un análisis elemental obteniéndose una relación Mo/Ni = 5.2, un contenido de silicio del 0 %peso, carbón de 0%peso y un área superficial=307 m2. Este catalizador se molió a 60 mesh y se presulfhidro en un reactor tubular empacado de lecho fijo con nafta contaminada con CS2 en una concentración de 0.5 %peso de azufre, a las condiciones siguientes:
Tiempo de estabilización: 16 h Presión: 55 kg/cm2
Temperatura: 150 0C hasta 315 0C, subiendo a 20 °C/h
Flujo de nafta + CS2: 21 ml/h
Flujo de hidrógeno: 121 ml/min (7.26 l/h) @ STD
Posteriormente el catalizador se evaluó en el mismo reactor tubular empacado de lecho fijo utilizando una nafta, cuyas características se detallan en Ia Tabla No. 3, para determinar su actividad catalítica, bajo las siguientes condiciones:
Cantidad de catalizador: 9.87 g Temperatura: 180 y 260 0C
Flujo de carga líquida: 21 ml/h
Flujo de hidrógeno: 121 ml/min @ STD
Carga: nafta
Los resultados de Ia evaluación del catalizador nuevo fueron analizados comparativamente en Ia remoción de Azufre (%peso de Azufre) y Nitrógeno (N total, ppm) de Ia nafta así como en Ia saturación de Mono (No. de Bromo) y Diolefinas (%Dienos conjugados) y particularmente en el contenido total de Silicio (Si, ppm) presente en el producto.
Es importante mencionar que el tren de reacción de las plantas de Hidrodesulfuración (HDS) de nafta de coquizadora en México está conformado por diversas secciones, entre ellas Ia de trampa de silicio, en Ia cual el catalizador retiene el silicio que está contenido en las comentes de proceso. Los catalizadores HDS empleados en esta sección, además de presentar actividad en hidrodesulfuración, desnitrogenación y de saturar monolefinas y diolefinas promueven Ia descomposición de los compuestos de silicio contenidos en Ia carga, reteniendo en su superficie el silicio así generado, provocando a su vez una pérdida de actividad relativamente acelerada del mismo. Es por ello que es importante que estos catalizadores además de retener silicio sean capaces de reducir los niveles de nitrógeno, azufre y contenido de olefinas. Las reacciones de hidrodesulfuración y desnitrogenación de hidrocarburos se favorecen a temperaturas de 300 a 340 0C, en tanto que el reactor de trampas de silicio opera alrededor de los 280 0C y el saturador de mono y diolefinas alrededor de 180 0C.
Tabla No. 3. Resultados de Ia Actividad Catalítica del Catalizador Nuevo evaluado en micro reacción utilizando una nafta proveniente de Ia Refinería de Cd. Madero.
%peso de N total No. de %Dienos Si
Muestra Azufre (ppm) Bromo conjugados (ppm)
Nafta Carga 0.329 25 26.78 0.35 336
Temperatura de Reacción 180 0C
Nafta
Producto 0.301 21.35 0.26 8.08
(Catalizador
Nuevo)
Temperatura de Reacción 260 0C
Nafta
Producto
0.008 <0.3
(Catalizador 1.82 <0.1 8.11
Nuevo) Los resultados de Ia Tabla No. 3 muestran que el Catalizador Nuevo tiene una mejor actividad a 260 0C en las reacciones de hidrodesulfuración y desnitrogenación de hidrocarburos, así como en las reacciones de saturación de monolefinas y diolefinas, y que en Ia retención de silicio prácticamente es Ia misma a 180 que a 260 0C.
Ejemplo No. 14
Una muestra de catalizador agotado obtenido de una planta de hidrotratamiento que procesa naftas de coquizadora y que se refiere en Ia Tabla No. 1 , mismo que fue utilizado en los Ejemplos Nos. 1 a 12, se molió a 60 mesh y se evaluó en un reactor tubular empacado de lecho fijo utilizando una nafta, cuyas características se detallaron en Ia Tabla No. 3, para determinar su actividad catalítica, bajo las mismas condiciones referidas en el Ejemplo No. 13. Los resultados de Ia evaluación del catalizador se muestran en Ia Tabla No. 4.
Tabla No. 4. Resultados de Ia Actividad Catalítica del Catalizador Agotado evaluado en micro reacción utilizando una nafta proveniente de Ia Refinería de Cd. Madero.
%peso de N total No. de %Dienos Si
Muestra Azufre (PPm) Bromo conjugados (PPm)
Nafta Carga 0.329 25 26.78 0.35 336
Temperatura de Reacción 180 0C
Nafta
Producto
0.303 8 23.44 0.29
(Catalizador 165.4
Agotado)
Temperatura de Reacción 260 0C
Nafta
Producto
0.089 7.98 <0.1
(Catalizador 175.04
Agotado)
Los resultados de Ia Tabla No. 4 muestran que el Catalizador Agotado presenta una actividad moderada con respecto al Catalizador Nuevo (Tabla No. 3) en las reacciones de hidrodesulfuración y desnitrogenación de hidrocarburos, así como en las reacciones de saturación de monolefinas y diolefinas, y en Ia retención de silicio.
Ejemplo No. 15
Los Catalizadores Regenerados mediante los Ejemplo Nos. 6 y 7 se molieron a 60 mesh y el Catalizador Regenerado mediante el Ejemplo No. 8 se dejó en su forma de extrudido, posteriormente se presulfhidraron a las mismas condiciones referidas en el Ejemplo No. 13.
Los catalizadores fueron evaluados en un reactor tubular empacado de lecho fijo utilizando una ñaña, cuyas características se detallaron en Ia Tabla No. 3, para determinar su actividad catalítica, bajo las mismas condiciones referidas en el Ejemplo No. 13. Los resultados de Ia evaluación del catalizador se muestran en Ia Tabla No. 5.
Tabla No. 5. Resultados de Ia Actividad Catalítica de Catalizadores Regenerados, mediante los Ejemplos Nos. 6 a 8, evaluados en micro reacción utilizando una nafta proveniente de Ia Refinería de Cd. Madero.
Nafta
Producto %peso M ) , . , > No. de %D¡enos Si (Catalizador Azufre N ∞tai φpmj Bromo conjugados (ppm)
Regenerado)
Temperatura de Reacción 180 0C
Ejemplo No. 6 0.325 12 11.73 <0.01 23.69
Ejemplo No. 7 0.288 13 20.02 0.48 32.45
Ejemplo No. 8 0.265 1 23.8 0.41 60.10
Temperatura de Reacción 260 0C
Ejemplo No. 6 0.061 5 4.96 <0.01 17.94
Ejemplo No. 7 0.062 10 10.51 <0.01 29.15
Ejemplo No. 8 0.080 5 7.72 <0.01 76.03
Los resultados de Ia Tabla No. 5 muestran que los catalizadores regenerados mediante reactores batch recuperan considerablemente su actividad catalítica para hidrodesulfurar y desnitrogenar hidrocarburos, así como para saturar monolefinas y diolefinas, además de retener silicio tanto a 180 como a 260 0C.
Las reacciones de hidrodesulfuración, desnitrogenación de hidrocarburos y saturación de monolefinas y diolefinas en general se ven favorecidas a 260 0C.
Comparando el desempeño de los catalizadores regenerados (Tabla No. 5) con el catalizador nuevo (Tabla No. 3) y con el catalizador agotado (Tabla No. 4) se observa que los catalizadores regenerados recuperan su actividad catalítica en forma considerable tanto a 180 como a 260 0C, reteniendo un buen porcentaje de silicio con respecto al catalizador agotado.
Es importante mencionar que el proceso no destructivo de Ia presente invención no afecta de manera sustancial el contenido de otros metales presentes en Ia alúmina, Io cual se puede constatar por Ia actividad en hidrotratamiento y saturación de olefinas que presentan los catalizadores regenerados, Io que implica que Ia relación de metales no cambió significativamente.
Ejemplo No. 16
Los Catalizadores Regenerados mediante los Ejemplo Nos. 9, 10 y 11 se empacaron y se presulfhidraron a las mismas condiciones referidas en el Ejemplo No. 13.
Los catalizadores fueron evaluados en un reactor tubular empacado de lecho fijo utilizando una nafta, cuyas características se detallan en Ia Tabla No. 6, para determinar su actividad catalítica a las siguientes condiciones:
Cantidad de catalizador: 7 g
Temperatura: 26O 0C
Flujo de carga líquida: 21 ml/h
Flujo de hidrógeno: 121 ml/min ( g STD
Carga: nafta Los resultados de Ia evaluación de los catalizadores regenerados fueron analizados comparativamente en Ia remoción de Azufre (%peso de Azufre) y Nitrógeno (N total, ppm) de Ia nafta así como en Ia saturación de Mono (No. de Bromo) y Diolefinas (%Dienos conjugados) y particularmente en el contenido total de Silicio (Si, ppm) presente en el producto.
Tabla No. 6. Resultados de Ia Actividad Catalítica de los Catalizadores
Regenerados, mediante los Ejemplos Nos. 13 a 15, evaluados en micro reacción a 260 0C utilizando una nafta proveniente de Ia Refinería de Cd. Madero.
Nafta Producto
Figure imgf000021_0001
Figure imgf000021_0002
Nafta 0.398 Ntota 1l5(ppm> 31.74 0.04 9.46
Ejemplo No. 13 0.091 2 12.87 <0.01 0.73
Ejemplo No. 14 0.072 2 10.7 <0.01 0.59
Ejemplo No. 15 0.077 2 11.04 <0.01 0.4
Los resultados de Ia Tabla No. 6 muestran que los catalizadores regenerados mediante reactores de flujo continuo presentan actividad en hidrodesulfuración e hidrodesnitrogenación de hidrocarburos, así como de saturación de mono y diolefinas, y capacidad para retener el silicio.
Para tener una mejor visualización de Ia actividad catalítica que presentan los catalizadores regenerados mediante el proceso de Ia presente invención, en comparación con Ia actividad catalítica que presentan los catalizadores nuevos y los catalizadores agotados, en Ia Tabla No. 7 se resumen los principales resultados obtenidos.
Tabla No. 7. Resumen de Resultados de Ia Actividad Catalítica de Catalizadores Nuevo, Agotado y Regenerados mediante Ejemplos de Ia presente invención, evaluados en micro reacción utilizando una nafta proveniente de Ia Refinería de Cd. Madero.
Figure imgf000022_0001
La Tabla No. 7 muestra con toda claridad que mientras el catalizador nuevo presenta una actividad catalítica para reducir el contenido de silicio de Ia carga de alimentación de hasta el 98 %, los catalizadores regenerados, mediante el proceso no destructivo de Ia presente invención, presentan una actividad catalítica que reduce hasta el 96 % el contenido de silicio de Ia carga de alimentación.

Claims

NOVEDAD DE LA INVENCIÓNLo que se reclama es:
1. Un proceso no destructivo para Ia eliminación del silicio contenido en materiales a base de alúmina sin destruirla, que consiste en: a) mezclar el material sólido o mezcla de materiales sólidos que contienen silicio y que pueden estar en forma de polvo y/o molidos y/o en su forma original (extruido) con un agente de extracción, preferentemente un alcohol, a una temperatura comprendida entre 10 y 300 0C, durante un tiempo de 10 minutos a 96 horas; b) separar por centrifugación, decantación o filtración Ia mezcla conteniendo el sólido, el agente de extracción y Ia sílice disuelta; c) lavar el sólido con agua y/o con un alcohol y/o con una solución de hidróxido de amonio; y d) secar el sólido con bajo contenido de silicio.
2. Un proceso no destructivo, de conformidad con Ia cláusula 1 , caracterizado porque emplea como materia prima materiales a base de alúmina que puede contener entre otros los siguientes elementos químicos y/o sus mezclas: Si, V, Cr, Mn, Fe, Co, Ni, Cu, Zn1 Zr, Nb, Mo1 Ru, Rh, Pd1 Ag, Cd, W, Re, Os, Ir, Pt y Au.
3. Un proceso no destructivo, de conformidad con las cláusulas 1 y 2, caracterizado porque disuelve y elimina el silicio contenido en materiales a base de alúmina que preferentemente se encuentra en forma inorgánica, de óxido y silanol: Si-(0X)4 (X=AI, H, Si) y/o en forma orgánica, organosilanos:
(OX)3-Si-CH3 y/0 (CHa)2-Si-(OX)2 (X=H, Si).
4. Un proceso no destructivo, de conformidad con las cláusulas 1 a 3, caracterizado porque el agente de extracción empleado para depolimerizar el material sólido que contiene silicio, preferentemente es un alcohol, tal como un poliol, y más preferentemente Ia glicerina.
5. Un proceso no destructivo, de conformidad con las cláusulas 1 a 4, caracterizado porque depolimeriza selectivamente el silicio y los compuestos de silicio presentes en los materiales a base de alúmina, sin modificar las propiedades del material a base de alúmina y sin modificar de manera sustancial el contenido de otros materiales o metales presentes en el material a base de alúmina.
6. Un proceso no destructivo, de conformidad con las cláusulas 1 a 5, caracterizado porque en Ia etapa a) mezclado, Ia reacción preferentemente se realiza a una temperatura de entre 160 y 280 0C, durante un tiempo preferentemente de 1 a 18 hrs.
7. Un proceso no destructivo, de conformidad con las cláusulas 1 a 6, caracterizado porque Ia etapa de lavado preferentemente se realiza con agua destilada y/o con metanol y/o con una solución de hidróxido de amonio del 1 al 35 %peso, más preferentemente con una solución de hidróxido de amonio al 35 %peso.
8. Un proceso no destructivo, de conformidad con las cláusulas 1 a 7, caracterizado porque se puede realizar en un reactor batch (por lotes), con o sin agitación, o en un reactor de flujo continuo, y se puede someter o no a presión, desde 0.5 hasta 60 kg/cm2.
9. Un proceso no destructivo, de conformidad con las cláusulas 1 a 8, caracterizado porque cuando se emplea en un reactor batch y tratamientos sucesivos logra una remoción de hasta el 64 % de silicio (Si).
10. Un proceso no destructivo, de conformidad con las cláusulas 1 a 8, caracterizado porque cuando se emplea en un reactor batch y tratamiento simple logra una remoción de hasta el 48 % de silicio (Si).
1 1. Un proceso no destructivo, de conformidad con las cláusulas 1 a 8, caracterizado porque cuando se realiza en un reactor de flujo continuo preferentemente consiste en: a) compactar el material sólido o mezcla de materiales sólidos que contienen silicio y que preferentemente se encuentran en forma de polvo y/o molidos y/o en su forma original (extruido), en un reactor de flujo continuo, con o sin presión, desde 0.5 hasta 60 Kg/cm2; incrementar Ia temperatura y alimentar un agente de extracción, preferentemente glicerina, a un flujo de 1 a 500 ml/h por gramo de sólido; mantener Ia misma presión y temperatura preferentemente de 1 a 36 hrs; b) Suspender Ia alimentación del agente de extracción y bajar Ia temperatura para enfriar el sistema de reacción, c) lavar el material sólido preferentemente alimentando un alcohol como el metanol a un flujo de 1 a 500 ml/h por gramo de sólido, preferentemente de 1 a 160 ml/h, durante 30 minutos a 24 horas, posteriormente suspender el flujo de alcohol y llevar el sistema a una temperatura de 10 a 25 0C y presión de 0.5 a 1 Kg/cm2; y d) secar el sólido recuperado con bajo contenido de silicio.
12. Un proceso no destructivo, de conformidad con Ia cláusula 1 1 , caracterizado porque Ia presurización y enfriamiento del sistema se realiza preferentemente con nitrógeno.
13. Un proceso no destructivo, de conformidad con las cláusulas 1 1 y 12, caracterizado porque cuando se emplea en un reactor de flujo continuo logra una remoción de hasta el 51.3 % de silicio (Si).
14. Un proceso no destructivo, de conformidad con las cláusulas 1 a 13, caracterizado porque se aplica principalmente en Ia regeneración de catalizadores a base de alúmina, utilizados como trampas de silicio en los procesos de hidrotratamiento de Ia industria petrolera, preferentemente en los procesos de Hidrodesulfuración (HDS) de naftas de coquización (coquer).
15. Un proceso no destructivo, de conformidad con las cláusulas 1 a 14, caracterizado porque los catalizadores regenerados mediante el proceso no destructivo de Ia presente invención presentan una actividad catalítica que reduce hasta el 96 % el contenido de silicio de Ia carga de alimentación.
16. Un proceso no destructivo, de conformidad con las cláusulas 1 a 15, caracterizado porque no afecta las propiedades catalíticas de los materiales tratados.
PCT/MX2009/000133 2008-12-17 2009-12-09 Proceso no destructivo para eliminar silicio de materiales a base de alúmina WO2010071393A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/140,310 US8716159B2 (en) 2008-12-17 2009-12-09 Non-destructive process for the elimination of silicon from alumina based materials
CA2747630A CA2747630C (en) 2008-12-17 2009-12-09 Non destructive process for the elimination of silicon from alumina based materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MX2008016198A MX2008016198A (es) 2008-12-17 2008-12-17 Proceso no destructivo para eliminar silicio de materiales a base de alumina.
MXMX/A/2008/016198 2008-12-17

Publications (1)

Publication Number Publication Date
WO2010071393A1 true WO2010071393A1 (es) 2010-06-24

Family

ID=42268945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2009/000133 WO2010071393A1 (es) 2008-12-17 2009-12-09 Proceso no destructivo para eliminar silicio de materiales a base de alúmina

Country Status (4)

Country Link
US (1) US8716159B2 (es)
CA (1) CA2747630C (es)
MX (1) MX2008016198A (es)
WO (1) WO2010071393A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11498847B2 (en) * 2017-08-23 2022-11-15 Instituto Mexicano Del Petroleo Non-destructive process for removing metals, metal ions and metal oxides from alumina-based materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8475757B2 (en) * 2009-04-07 2013-07-02 Pro-Con International, Llc Agents for carbon dioxide capture, agents for amine stabilization and methods of making agents for carbon dioxide capture and amine stabilization
WO2014123548A1 (en) * 2013-02-11 2014-08-14 Pro-Con International, Llc Agents for carbon dioxide capture, agents for amine stabilization and methods of making agents for carbon dioxide capture and amine stabilization

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2020340A1 (fr) * 1968-10-10 1970-07-10 Kaiser Aluminium Chem Corp Perfectionnements apportes aux procedes de recuperation de l'alumine des bauxites

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4239735A (en) 1979-09-06 1980-12-16 The United States Of America, As Represented By The Secretary Of The Interior Removal of impurites from clay
US4304575A (en) 1980-03-20 1981-12-08 Nalco Chemical Company Preparation of large particle silica sols
US4560541A (en) 1984-03-15 1985-12-24 Atlantic Richfield Company Production of low silica content, high purity alumina
US4973462A (en) 1987-05-25 1990-11-27 Kawatetsu Mining Company, Ltd. Process for producing high purity silica
US5242670A (en) 1992-07-02 1993-09-07 Gehringer Ronald C Method for hydrofluoric acid digestion of silica/alumina matrix material for the production of silicon tetrafluoride, aluminum fluoride and other residual metal fluorides and oxides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2020340A1 (fr) * 1968-10-10 1970-07-10 Kaiser Aluminium Chem Corp Perfectionnements apportes aux procedes de recuperation de l'alumine des bauxites

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PACHECO-MALAGON, G. ET AL.: "Local order in depolymerized silicate lattices", INORGANIC CHEMISTRY., vol. 44, no. 23, 2005, pages 8486 - 8494 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11498847B2 (en) * 2017-08-23 2022-11-15 Instituto Mexicano Del Petroleo Non-destructive process for removing metals, metal ions and metal oxides from alumina-based materials

Also Published As

Publication number Publication date
US8716159B2 (en) 2014-05-06
MX2008016198A (es) 2010-06-17
CA2747630C (en) 2017-11-28
US20120040822A1 (en) 2012-02-16
CA2747630A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
Wang et al. One-pot extraction and aerobic oxidative desulfurization with highly dispersed V 2 O 5/SBA-15 catalyst in ionic liquids
Abdul-Kadhim et al. Efficient and reusable iron-zinc oxide catalyst for oxidative desulfurization of model fuel
CA3072438C (en) Non-destructive process for removing metals, metal ions and metal oxides from alumina-based materials
US10815549B2 (en) Method for the purification of alumina
US4985074A (en) Process for producing a desulfurization agent
Dong et al. Co nanoparticles anchoring three dimensional graphene lattice as bifunctional catalyst for low-temperature CO oxidation
CN103100427A (zh) 一种含β分子筛的加氢裂化催化剂载体及其制备方法
Jiang et al. Dust removal and purification of calcium carbide furnace off-gas
SA516371067B1 (ar) طريقــــة لتحضير مادة ماصة
Yang et al. Synthesis of ceria nanorods as adsorbent for the adsorption desulfurization of gasoline fuel
WO2010071393A1 (es) Proceso no destructivo para eliminar silicio de materiales a base de alúmina
CN114272892A (zh) 一种co2捕集吸附剂及其制备方法和应用
KR101040966B1 (ko) 고산도 원유 중의 산성분 제거를 위한 촉매 및 그 제법
EP3174631B1 (fr) Adsorbant a base d&#39;alumine contenant du sodium et dopee par un element alcalin pour la captation de molecules acides
NL2010946C2 (en) An alumina-based sulfur recovery catalyst and preperation method for the same.
CN103100416A (zh) 一种柴油加氢改质催化剂及其制备方法
JP5755677B2 (ja) Zsm−5の製造方法
JP5837467B2 (ja) 芳香族炭化水素処理用活性白土
Adam et al. Amino benzoic acid modified silica—An improved catalyst for the mono-substituted product in the benzylation of toluene with benzyl chloride
Souza et al. Amphiphilic catalysts based on onion-like carbon over magnetic iron oxide for petrochemical industry use
JP2019025472A (ja) テアニン吸着剤
Wang et al. Trash to treasure: Converting red mud into efficient catalysts for the hydrogenation of p-nitrobenzene compounds
Wu et al. The Nature of Cu/ZrO2 catalyst: experimental and theoretical studies
CN107638889A (zh) 一种废加氢催化剂再生的方法
CN110387471B (zh) 废催化裂化催化剂的深度脱镍方法和所得硅铝材料及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2747630

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13140310

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.10.2011)

122 Ep: pct application non-entry in european phase

Ref document number: 09833669

Country of ref document: EP

Kind code of ref document: A1