WO2010071379A2 - Method and apparatus for controlling screw compressor - Google Patents

Method and apparatus for controlling screw compressor Download PDF

Info

Publication number
WO2010071379A2
WO2010071379A2 PCT/KR2009/007585 KR2009007585W WO2010071379A2 WO 2010071379 A2 WO2010071379 A2 WO 2010071379A2 KR 2009007585 W KR2009007585 W KR 2009007585W WO 2010071379 A2 WO2010071379 A2 WO 2010071379A2
Authority
WO
WIPO (PCT)
Prior art keywords
motor
air
pressure
inverter
compressor
Prior art date
Application number
PCT/KR2009/007585
Other languages
French (fr)
Korean (ko)
Other versions
WO2010071379A4 (en
WO2010071379A3 (en
Inventor
이재윤
Original Assignee
주식회사 건영기계
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 건영기계 filed Critical 주식회사 건영기계
Publication of WO2010071379A2 publication Critical patent/WO2010071379A2/en
Publication of WO2010071379A3 publication Critical patent/WO2010071379A3/en
Publication of WO2010071379A4 publication Critical patent/WO2010071379A4/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/808Electronic circuits (e.g. inverters) installed inside the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/81Sensor, e.g. electronic sensor for control or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/86Detection

Definitions

  • the present invention relates to a method and a control device for controlling the driving of a screw compressor, and more particularly, to a method and apparatus for automatically or manually controlling the load operation and no-load operation of the screw compressor according to the air demand.
  • a compressor is a mechanical device that increases pressure and speed by compressing gas or liquid.
  • Compressors are classified into air compressors for compressing air to operate an air cylinder driving an automatic device or to operate all pneumatic devices, and compressors for refrigeration, refrigerating and air conditioners used to compress and liquefy a refrigerant. And it is divided into the compression method using the reciprocating motion of the cylinder and the piston, and the compression method using the rotational motion of the screw.
  • Compressor using screw method adopts Y- ⁇ starting method, pressure control method and multi-step control method.
  • the intake valve is opened at the same time as driving the motor to inhale air to generate compressed air, and the load operation is performed to supply the generated compressed air to the receive tank.
  • the intake valve is closed by the electrical control signal, the generation of the compressed air is stopped, and the no-load operation is performed in which the motor is idle.
  • no-load operation without generating compressed air consumes about 40% of the power compared to load operation. Therefore, a considerable amount of electrical energy is consumed even when the motor is idle. Moreover, load operation and no-load operation involve a considerable amount of power consumption for starting the motor. In addition, idling the motor by no-load operation maintains idling in consideration of the consumption of about 6 to 7 times the starting current of the full load current to restart the motor in a stationary state.
  • the operating method of the screw compressor operated by Y- ⁇ start method is advantageous when operating the workplace or equipment with air demand of more than about 85%, but the power according to no-load operation when the air demand of 85% or less is expected. Consumption was a big disadvantage.
  • the other one of the operation method of the screw compressor to compensate for the disadvantages of the Y- ⁇ start method there is a PID (proportional, integral, differential) pressure control method.
  • the pressure control method is to control the motor at the optimum rotation speed to generate the compressed air by the PID controller to calculate the demand of the compressed air. Therefore, it is possible to minimize the loss of the electric energy due to the low speed control of the motor and to prevent significant loss of starting power accompanying the motor restart by reducing the no-load operation time as much as possible.
  • the PID pressure control method has a problem that it is difficult to control the motor in consideration of the pressure value of the compressed air set according to the air demand, especially in the case of a compressor in which a large motor is applied. Usability was ensured only in the 50-80% range, and in the other cases, there was a problem that caused significant energy losses and even mechanical failures. In addition, if the large size of the motor installed in the screw compressor is controlled at an excessively low speed, vibration and resonance occur due to the characteristics of the large motor, causing fatal defects not only to the motor but also to adjacent parts. Because of this, there was a problem that the limit due to the low speed control of the motor was exposed.
  • this multi-step control method is a method to prevent the power loss by stopping the motor idle itself during the no-load operation is excluded the generation of compressed air.
  • the multi-step control method stops the driving of the motor itself during no-load operation, restarting the motor in load operation requires considerable starting power for restart. Therefore, usefulness is ensured even when power consumption for restart is only considered when the ratio of no-load operation to load operation is high, but when the no-load operation time is short compared to the load operation, the restart ratio is high and the power consumption is large. Therefore, there is a drawback that the practical utility is low, the air demand can be applied only to the workplace or facilities of less than about 50%.
  • the present invention is to solve all the disadvantages and problems of the control method, the object of the present invention in consideration of the air demand according to the working environment or the characteristics of the workplace and equipment to provide an optimal operating method of the compressor through real time It is possible to provide a screw compressor control method and apparatus capable of switching operation manually or automatically, and maximizing the reduction of electric energy required for driving the compressor.
  • the screw compressor control method a) when the air demand is input through the control box for controlling the drive of the screw compressor, the control box according to the air demand Y- ⁇ starting method, pressure Setting a control method of any one of a control method and a multi-step control method; b) when the control method is set, the control box assigns the control method to the inverter for driving the motor and sets the upper limit air pressure and the lower limit air pressure of the receiver tank; c) the control box selecting a driving mode selection switch connected to the inverter to start the compressor in a corresponding control method; And d) determining whether there is an input of another operation mode selection switch during startup of the compressor.
  • control box sets the Y- ⁇ starting method when the air demand exceeds 85%, sets the pressure control method when the air demand is in the range of 50 to 85%, and when the air demand is less than 50%. It is characterized by setting the multi-speed control method.
  • the Y- ⁇ start method the step of starting the inverter by turning on the start button provided in the control box; Driving the motor by applying power to the motor by starting the inverter; Concurrently driving the motor to turn on the solenoid valve and open the suction valve to suck air; Performing a load operation of supplying air to the receive tank through an air supply line after the compressor is operated by the motor to compress the sucked air; Transmitting a stop signal to the inverter by operating a pressure switch when a sensor detects a pressure of an air supply line and detects an upper limit set value during the load operation; Closing the intake valve by turning off the solenoid valve at the same time as the inverter idles the motor by the stop signal; Performing a no-load operation by idling the motor and releasing compressed air of the receive tank to the site; And driving a motor by operating a pressure switch when a sensor senses a pressure of an air supply line and detects a lower set value while the no-load operation is performed.
  • the pressure control method the step of setting a reference pressure value in the control box in consideration of the air demand; Starting the inverter by turning on a start button provided in the control box and recognizing a reference pressure value; Adjusting a rotational speed of the motor corresponding to the reference pressure value; At the same time as driving the motor at the regulated rotational speed, turning on the solenoid valve to open the suction valve to suck air; Performing a load operation of supplying air to the receive tank through an air supply line after the compressor is operated by the motor to compress the sucked air; Transmitting a stop signal to the inverter by operating a pressure switch when a sensor detects a pressure of an air supply line and detects an upper limit set value during the load operation; Closing the intake valve by turning off the solenoid valve at the same time as the inverter idles the motor by the stop signal; Performing a no-load operation by idling the motor and releasing compressed air of the receive tank to the site; And driving a motor by operating a
  • the multi-step speed control method may include: starting an inverter by turning on a start button provided in a control box; Driving the motor by applying power to the motor by starting the inverter; Concurrently driving the motor to turn on the solenoid valve and open the suction valve to suck air; Performing a load operation of supplying air to the receive tank through an air supply line after the compressor is operated by the motor to compress the sucked air; Transmitting a stop signal to the inverter by operating a pressure switch when a sensor detects a pressure of an air supply line and detects an upper limit set value during the load operation; The inverter stops the motor by the stop signal and closes the intake valve by turning off the solenoid valve; Performing a no-load operation by idling the motor and releasing compressed air of the receive tank to the site; And driving a motor by operating a pressure switch when a sensor senses a pressure of an air supply line and detects a lower set value while the no-load operation is performed.
  • the screw compressor control apparatus which is opened and closed by the operation of the solenoid valve and sucks or blocks the outside air, and the rotational force at a constant rotational speed with an applied power source
  • a motor generated a compressor for compressing and discharging air sucked through the suction valve by the rotational force of the motor, an oil separator for separating and discharging oil contained in the compressed air from the compressor, and the suction valve and the motor.
  • Screw compressor including an air supply line for transferring the air piped to the compressor and the oil separator;
  • a control box including a pressure switch switched according to a pressure of a pressure sensor installed in at least one air supply line piped to the screw compressor, and an inverter controlling the driving of the motor by switching of the pressure switch;
  • a receive tank for storing the compressed air introduced through the air supply line and supplying the compressed air to the site.
  • a plurality of contacts are connected to the motor to control the driving of the motor by any one of a Y- ⁇ starting method, a pressure control method or a multi-speed control method through the inverter.
  • the present invention can selectively drive control by any one of the Y- ⁇ start method, pressure control method or multi-speed control method to supply the optimum air demand from the screw compressor in the field by the above solution means. It can cope with on-site working environment, work characteristics and other conditions, maximize the electric energy saving effect, and improve the function of screw compressor.
  • FIG. 1 is a block diagram showing the overall configuration for controlling the drive of the screw compressor according to the present invention.
  • FIG. 2 is an electric wiring diagram showing a part of the control box according to the present invention.
  • FIG. 3 is a block diagram illustrating a switch connected to an inverter according to the present invention.
  • FIG. 4 is a flowchart illustrating a method of controlling a screw compressor according to the present invention.
  • FIG. 5 is a flowchart illustrating a method of controlling a screw compressor in a Y- ⁇ starting manner according to the present invention.
  • FIG. 6 is a flowchart illustrating a method of controlling a screw compressor in a pressure control manner according to the present invention.
  • FIG. 7 is a flowchart illustrating a method of controlling the screw compressor according to the present invention in a multi-step control method.
  • FIG. 1 is a block diagram showing the overall configuration for controlling the drive of the screw compressor according to the present invention.
  • the apparatus for controlling the screw compressor of the present invention is different from the conventional way to operate in any one of the Y- ⁇ start method, pressure control method or multi-stage control method by combining only the advantages of the various operating methods To control the screw compressor. Moreover, it is possible to selectively apply the operation method according to the air demand required in the field.
  • the screw compressor 10 sucks air from the outside and then discharges the compressed air using a built-in screw compressor connected to the motor 13, and the control box 20 is a screw compressor 10. ),
  • the receive tank 30 stores compressed air and discharges it to the facility in the field.
  • the suction valve 11 configured in the screw compressor 10 sucks or blocks external air by the operation of the solenoid valve opened and closed by an electrical signal.
  • the suction valve 11 is provided at the front end of the air supply line 15.
  • the motor 13 generates a rotating force at a constant rotational speed with an applied three-phase RST power supply.
  • the motor 13 to be applied will vary depending on the capacity or size of the screw compressor 10 or the method of operation or rotational speed.
  • the compressor 12 compresses and discharges the air sucked through the suction valve 11 by the rotation of the screw by the rotational force of the motor 13.
  • the oil separator 14 separates and discharges the oil contained in the compressed air in the compressor 12.
  • the air supply line 15 is piped to the suction valve 11, the motor 13, the compressor 12, and the oil separator 14 to suck, transport, and discharge air.
  • the air supply line 15 will vary in diameter, material or shape depending on the pressure between the corresponding components of the screw compressor 10.
  • the control box 20 is provided with one or more pressure sensors in the air supply line 15 piped to the screw compressor 10 in order to control the driving of the screw compressor 10.
  • a plurality of pressure sensors are mounted for each of the necessary sections including the oil separator 14 in the compressor 12.
  • the pressure sensor 21 is connected to the pressure sensor so that the pressure switch 21 is switched according to the pressure detected by the pressure sensor.
  • the inverter 22 which controls the drive of the motor 13 by the switching of the pressure switch 21 is comprised. The inverter 22 starts, stops or adjusts the speed of the motor 13 by the switching signal of the pressure switch 21.
  • the receiving tank 30 stores compressed air introduced through the air supply line 15 and supplies the compressed air to various devices or facilities installed in the field.
  • the receiving tank 30 may have a different capacity depending on the screw compressor 10 or a different working capacity.
  • the 2 is an electrical wiring diagram showing a part of the configuration of the control box.
  • the control box 20 is supplied with power on the RST 3 via a circuit breaker (MCCB).
  • MCCB circuit breaker
  • the inverters MI and MB for operating the motor 13 are connected in series and parallel to the inverter 22 mounted in the control box 20 via the circuit breaker MCCB.
  • a plurality of contacts (M, M- ⁇ , MY) to the motor 13 to control the driving of the motor 13 in any one of the Y- ⁇ start method, pressure control method or multi-step control method through the inverter 22 ) Is connected.
  • FIG. 3 is a diagram illustrating a switch connected to an inverter.
  • Inverter 22 is provided with a UVW that is supplied with the power of the RST three-phase is input for driving the motor 13.
  • the inverter 22 includes a reset switch, an operation command (PID), and a switch for multi-stage speed input, and is provided with wirings for inputting DC power and analog output.
  • An alarm line and an output line are provided for the alarm.
  • the apparatus for controlling the screw compressor of the present invention stores the compressed air generated by the motor 13 in the receive tank 30 via the oil separator 14.
  • the receiving tank 30 or the air supply line 15 for supplying the compressed air is equipped with a plurality of pressure sensors having a set value for various compressed air, and each pressure sensor is connected to the corresponding pressure switch 21.
  • an inverter 22 for controlling the driving of the motor 13 according to the detection signals transmitted from the plurality of pressure switches 21 is provided.
  • the inverter 22 is connected to the control box 20, the control box 20 includes a variety of operation switches required for the operator's operation.
  • the control box 20 when the air demand is input through the control box 20 that controls the driving of the screw compressor 10 (S1), the control box 20 is Y- ⁇ start method, pressure control method or multi-step depending on the air demand One of the control methods is set (S2).
  • the control box 20 assigns the control method to the inverter 22 for driving the motor 13 (S3), and the upper and lower air pressures of the receiver tank 30 are controlled.
  • Set (S4) The control box 20 selects an operation method selection switch connected to the inverter 22 (S5), and activates the screw compressor 10 in a corresponding control method (S6).
  • S7 another operation method selection switch
  • the control box 20 sets the Y- ⁇ start method when the air demand exceeds 85%, sets the pressure control method when the air demand is in the range of 50 to 85%, and when the air demand is less than 50%.
  • the air demand from the screw compressor 10 exceeds 85%, it is operated by the Y- ⁇ starting method, which is the flow chart of FIG. That is, by turning on the start button provided in the control box 20 (S10) to start the inverter 22 (S11). The power is applied to the motor 13 by starting the inverter 22 (S12) to drive the motor 13 (S13). At the same time as driving of the motor 13, the solenoid valve is turned on to open the suction valve 11 to suck in air (S14). The compressor 12 is operated by the driving of the motor 13 to compress the sucked air and then perform a load operation for supplying air to the receive tank 30 through the air supply line 15 (15).
  • the pressure switch 21 When the sensor senses the pressure of the air supply line 15 during the load operation and detects the upper limit set value, the pressure switch 21 is operated to send a stop signal to the inverter 22 (S17). In response to the stop signal, the inverter 22 idles the motor 13 (S18), turns off the solenoid valve, and closes the intake valve 11 (S19). Therefore, no-load operation is performed by idling the motor 13 (S20), and releases the compressed air of the receive tank 30 to the site (S21). When the sensor detects the pressure of the air supply line 15 and detects the lower limit while the no load operation is performed, the pressure switch 21 is operated to re-drive the motor 13 (S22).
  • the Y- ⁇ start method is a load operation in which the compressed air is generated by driving the motor 13 while the inverter 22 operates as an input of the start button of the control box 20, opening the suction valve 11, If the air pressure measured from the pressure switch 21 during the generation of compressed air is the upper limit set value, the motor 13 is idling according to the command of the inverter 22, the intake valve 11 is closed, and the receiver tank 30 is Compressed air is released with no load operation. After that, if the air pressure measured from the pressure switch 21 is a lower limit set value, the motor 13 is normally driven again to perform a repeating operation. In the Y- ⁇ start method, the motor is idle at no load operation without generating compressed air, and a considerable amount of power consumption is expected.
  • the air demand from the screw compressor 10 is in the range of 50 to 85%, it is operated in a pressure control method, which is the flowchart of FIG. 6. That is, the reference pressure value is set in the control box 20 in consideration of the air demand (S30).
  • the start button provided in the control box 20 is turned on (S31), the inverter 22 is started, and the reference pressure value is recognized (S32). And it adjusts the rotational speed of the motor 13 corresponding to the recognized reference pressure value (S33).
  • the motor 13 is driven at the adjusted rotation speed (S34), and the solenoid valve is turned on to open the suction valve 11 to suck air (S35).
  • a load operation for supplying air to the receive tank 30 through the air supply line 15 is performed (S36).
  • the pressure switch 21 is operated to send a stop signal to the inverter 22 (S38).
  • the inverter 22 idles the motor 13 (S39), turns off the solenoid valve, and closes the suction valve 11 (S40). Therefore, no-load operation is performed by idling of the motor 13 (S41), and the compressed air of the receiving tank 30 is discharged to the site (S42).
  • the pressure switch 21 is operated to restart the motor 13 (S43).
  • the screw compressor operating method using the pressure control method sets a reference pressure value having a constant value in consideration of the air demand and then controls the rotation speed of the motor corresponding to the reference pressure.
  • the motor 13 is driven.
  • the inverter 22 recognizes the preset pressure setting value and then drives the motor at a rotation speed corresponding to the pressure setting value.
  • the intake valve 11 is opened to perform a load operation in which compressed air is generated. If the air pressure measured from the pressure switch 21 during the generation of the compressed air by the load operation is the upper limit set value, the motor 13 is idling according to the command of the inverter 22, the intake valve 11 is closed, and the receive tank ( 30) A no load operation is performed to release the compressed air inside.
  • the pressure control method can reduce the no-load operation time by setting the air pressure to be generated in advance and then drive the motor 13 at a rotational speed corresponding to the pressure set value, but it is difficult to apply a high rotational deceleration ratio. There is a limit to the effect of reducing the electrical energy.
  • the pressure switch 21 When the sensor senses the pressure of the air supply line 15 during the load operation and detects the upper limit set value (S56), the pressure switch 21 is operated to send a stop signal to the inverter 22 (S57). In response to the stop signal, the inverter 22 stops the motor 13 (S58), turns off the solenoid valve, and closes the intake valve 11 (S59). Therefore, no-load operation is performed by idling of the motor 13 (S60), and the compressed air of the receiving tank 30 is discharged to the field equipment (S61). When the sensor detects the pressure of the air supply line 15 and detects the lower limit while the no load operation is performed, the pressure switch 21 is operated to restart the motor 13 (S62).
  • the inverter 22 is operated as an input to the start button to drive the motor 13, and load operation is performed to generate compressed air by opening the intake valve 11.
  • the motor 13 is stopped according to the instruction of the inverter 22, and the intake valve 11 is closed.
  • the compressed air in the receiving tank 30 is carried out a no-load operation is discharged to the on-site equipment. After that, when the air pressure measured from the pressure switch 21 is a lower limit set value, it is restarted again and repeated operation is performed.
  • the multi-step control method stops the operation of the motor 13 during no load operation without generating compressed air, there is no loss of electrical energy due to the stop of the motor. However, if the measured air pressure is a lower limit value, the motor 13 There is some loss of electrical energy due to the need to restart).
  • the Y- ⁇ starting method, the pressure control method, or the multi-step control method in which the electric and electronic circuits for controlling the single compressor, can be selectively set.
  • the driving method for example, when the air demand exceeds 85%, in the range of 50 to 85%, or less than 50%, an operation method suitable for each air demand may be automatically or manually selected. Therefore, instant and optimal operation can be applied in one screw compressor system even in the field characteristics or environment, which can change from time to time, thereby maximizing the electric energy saving effect according to the operation of the screw compressor.
  • the air demand of the screw compressor can be changed in various ways depending on the characteristics of the field workplace, the environment, and the type of air use by the operator.
  • control method of the screw compressor of the present invention proposes a variety of operation methods that can be selected to solve the disadvantage that does not meet the predictable demand by using a predetermined screw compressor in one operation method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

Disclosed are a method and apparatus for controlling and enabling a screw compressor to adapt to work environment, work characteristics or other conditions in a field, maximize electric energy savings and improve the performance of the screw compressor. The apparatus for controlling a screw compressor of the present invention comprises: a screw compressor that includes a suction valve being opened or closed by operations of a solenoid valve to suck in or block outside air, a motor run on an applied power to generate a torque of a predetermined rotational speed, a compressor compressing and then discharging the air having been sucked in through the suction valve under the influence of the motor torque, an oil separator separating and then discharging oil contained in the compressed air from the compressor, and an air feed line used for delivering air to the suction valve, motor, compressor and oil separator to which the line is piped, respectively; a control box that includes a pressure switch being switched according to a pressure detected by one or more pressure sensors installed in the air feed line piped into the screw compressor, and an inverter for controlling an operation of the motor by switching the pressure switch; and a receive tank for storing the compressed air flown in via the air feed line and then supplying the air to a field, wherein a drive control process is selectively performed by one of a Y-∆ start method, a pressure control method and a sequential control method so as to supply an optimum air demand required of the screw compressor at a field.

Description

스크류 컴프레서 제어방법 및 그 장치 Screw compressor control method and device
본 발명은 스크류 컴프레서의 구동을 제어하는 방법과 그 제어장치에 관한 것으로서, 보다 상세하게는 에어수요량에 따라 스크류 컴프레서의 부하운전과 무부하 운전을 자동 또는 수동으로 제어하는 방법과 장치에 관한 것이다.The present invention relates to a method and a control device for controlling the driving of a screw compressor, and more particularly, to a method and apparatus for automatically or manually controlling the load operation and no-load operation of the screw compressor according to the air demand.
일반적으로 컴프레서(Compressor: 압축기)는 기체나 액체를 압축시켜 압력과 속도를 높이는 기계적 장치이다. 컴프레서는 자동화기기를 구동시키는 에어실린더를 작동시키거나 모든 공압장치를 운영하기 위하여 공기를 압축하는 공기압축기와, 냉매를 압축하여 응축 액화시키는데 사용하는 냉동, 냉장, 냉방기용 압축기로 구분된다. 그리고 실린더와 피스톤의 왕복운동을 이용한 압축방식과, 스크류의 회전운동을 이용한 압축방식 등으로 나누어진다.Generally, a compressor is a mechanical device that increases pressure and speed by compressing gas or liquid. Compressors are classified into air compressors for compressing air to operate an air cylinder driving an automatic device or to operate all pneumatic devices, and compressors for refrigeration, refrigerating and air conditioners used to compress and liquefy a refrigerant. And it is divided into the compression method using the reciprocating motion of the cylinder and the piston, and the compression method using the rotational motion of the screw.
스크류 방식을 이용하는 컴프레서는 Y-Δ기동 방식, 압력제어 방식 및 다단속제어 방식에 의한 운전방법을 채택하고 있다.Compressor using screw method adopts Y-Δ starting method, pressure control method and multi-step control method.
Y-Δ기동 방식으로 운전하는 스크류 컴프레서의 운전방법은 모터의 구동과 동시에 흡입밸브를 열어 공기를 흡입하여 압축공기를 생성하고, 생성된 압축공기는 리시브탱크에 공급하는 부하운전이 수행된다. 그리고 부하 운전으로 리시브탱크에 압력이 설정된 상한치를 초과하면 전기적인 제어신호로 흡입밸브가 닫히고 압축공기의 생성이 중지되며 모터의 공회전이 수행되는 무부하운전이 이루어진다.In the driving method of the screw compressor operating in the Y-Δ start method, the intake valve is opened at the same time as driving the motor to inhale air to generate compressed air, and the load operation is performed to supply the generated compressed air to the receive tank. When the pressure in the receive tank exceeds the set upper limit by the load operation, the intake valve is closed by the electrical control signal, the generation of the compressed air is stopped, and the no-load operation is performed in which the motor is idle.
그러나 압축공기를 생성하지 않는 무부하 운전은 부하운전에 비하여 약 40% 정도의 전력이 소비된다. 따라서 모터의 공회전 상태에서도 상당한 전기에너지의 소비가 발생된다. 더욱이 부하운전과 무부하 운전은 모터의 기동을 위한 상당량의 전력소비가 수반된다. 또한, 무부하 운전으로 모터를 공회전시키는 것은 정지상태의 모터를 재구동시키기 위하여 전부하 전류의 약 6~7배 이상의 기동전류가 소비되는 것을 감안하여 공회전을 유지하는 것이다.However, no-load operation without generating compressed air consumes about 40% of the power compared to load operation. Therefore, a considerable amount of electrical energy is consumed even when the motor is idle. Moreover, load operation and no-load operation involve a considerable amount of power consumption for starting the motor. In addition, idling the motor by no-load operation maintains idling in consideration of the consumption of about 6 to 7 times the starting current of the full load current to restart the motor in a stationary state.
그러므로 Y-Δ기동 방식으로 운전하는 스크류 컴프레서의 운전방법은 에어수요량이 대략 85% 초과의 작업장이나 설비를 운영하는 경우에는 유리하지만, 85% 이하의 에어수요량이 예상되는 경우에는 무부하 운전에 따른 전력소비가 큰 단점이 있었다.Therefore, the operating method of the screw compressor operated by Y-Δ start method is advantageous when operating the workplace or equipment with air demand of more than about 85%, but the power according to no-load operation when the air demand of 85% or less is expected. Consumption was a big disadvantage.
또한, 스크류 컴프레서의 운전방법 중 다른 하나는 Y-Δ기동방식의 단점을 보완하기 위한 것으로, PID(비례, 적분, 미분) 압력제어 방식이 있다. 압력제어 방식은 현재 압축공기의 수요량을 PID 컨트롤러가 연산하여 압축공기를 생성하는 최적의 회전수로 모터를 제어하는 것이다. 따라서 무부하 운전 시간을 최대한 감소시켜 모터의 재기동에 수반되는 상당한 기동전력의 손실을 방지함과 동시에 모터의 저속제어에 따른 전기에너지의 손실을 최소화할 수 있는 등의 장점이 있다.In addition, the other one of the operation method of the screw compressor to compensate for the disadvantages of the Y-Δ start method, there is a PID (proportional, integral, differential) pressure control method. The pressure control method is to control the motor at the optimum rotation speed to generate the compressed air by the PID controller to calculate the demand of the compressed air. Therefore, it is possible to minimize the loss of the electric energy due to the low speed control of the motor and to prevent significant loss of starting power accompanying the motor restart by reducing the no-load operation time as much as possible.
그러나 PID 압력제어 방식은 에어수요량에 따라 설정된 압축공기의 압력값을 감안하여 모터를 제어할 때, 특히 대형 모터가 적용된 컴프레서인 경우에는 특성상 상당한 비율의 저속으로 제어하기 어려운 문제가 있어 에어수요량이 대략 50~80% 범위에서만 유용성이 확보되고, 나머지의 경우에는 상당한 에너지 손실과 더불어 기계적인 결함까지 유발하는 문제가 있었다. 더욱이 스크류 컴프레서에 설치되는 대형의 모터를 과도한 비율로 저속제어하면 대형 모터의 특성상 진동 및 공명현상이 발생하면서 모터뿐만 아니라 인접한 부품들에게 치명적인 결함을 유발하고, 이 상황이 심해지면 완전 파손이나 망실에 이를 수 있기 때문에 모터의 저속제어에 따른 한계가 노출된 문제가 있었다.However, the PID pressure control method has a problem that it is difficult to control the motor in consideration of the pressure value of the compressed air set according to the air demand, especially in the case of a compressor in which a large motor is applied. Usability was ensured only in the 50-80% range, and in the other cases, there was a problem that caused significant energy losses and even mechanical failures. In addition, if the large size of the motor installed in the screw compressor is controlled at an excessively low speed, vibration and resonance occur due to the characteristics of the large motor, causing fatal defects not only to the motor but also to adjacent parts. Because of this, there was a problem that the limit due to the low speed control of the motor was exposed.
이와 같은 압력제어 방식과 달리 스크류 컴프레서의 운전방법 중 또 다른 하나는 다단속제어 방식이다. 이러한 다단속제어 방식은 압축공기의 생성이 배제된 무부하 운전 때의 모터 공회전 자체를 정지시켜 전력손실을 방지할 수 있도록 하는 방식이다.Unlike the pressure control method, another operation method of the screw compressor is a multi-step control method. This multi-step control method is a method to prevent the power loss by stopping the motor idle itself during the no-load operation is excluded the generation of compressed air.
그러나 다단속제어 방식은 무부하 운전 때에 모터의 구동 자체를 정지시키기 때문에 부하운전으로 모터를 재기동시키면 재기동을 위한 상당한 기동전력의 소요된다. 따라서 부하운전 대비 무부하 운전 비율이 높은 경우에만 재기동을 위한 전력소모를 감안하더라도 유용성이 확보되지만, 부하운전 대비 무부하운전시간이 짧은 경우에는 재기동 비율이 높고 전력소모량이 많다. 그러므로 실질적인 효용성이 낮아 에어 수요량이 대략 50% 미만의 사업장이나 설비에만 적용이 가능한 단점이 있었다.However, since the multi-step control method stops the driving of the motor itself during no-load operation, restarting the motor in load operation requires considerable starting power for restart. Therefore, usefulness is ensured even when power consumption for restart is only considered when the ratio of no-load operation to load operation is high, but when the no-load operation time is short compared to the load operation, the restart ratio is high and the power consumption is large. Therefore, there is a drawback that the practical utility is low, the air demand can be applied only to the workplace or facilities of less than about 50%.
본 발명은 상기 제어방식들이 갖는 제반 단점과 문제점을 해소하기 위한 것으로, 본 발명의 목적은 작업환경이나 작업장 및 설비의 특성에 따른 에어수요량을 감안하여 최적의 운전방법을 제시하여 실시간을 통해 컴프레서의 수동 또는 자동으로의 전환운전이 가능하고, 컴프레서 구동에 소요되는 전기에너지의 절감을 극대화할 수 있는 스크류 컴프레서 제어방법 및 그 장치를 제공하기 위한 것이다.The present invention is to solve all the disadvantages and problems of the control method, the object of the present invention in consideration of the air demand according to the working environment or the characteristics of the workplace and equipment to provide an optimal operating method of the compressor through real time It is possible to provide a screw compressor control method and apparatus capable of switching operation manually or automatically, and maximizing the reduction of electric energy required for driving the compressor.
상기 목적을 달성하기 위하여, 본 발명에 따른 스크류 컴프레서 제어방법은, a) 상기 스크류 컴프레서의 구동을 제어하는 컨트롤박스를 통해 에어수요량이 입력되면 컨트롤박스는 에어수요량에 따라 Y-Δ 기동방식, 압력제어 방식 또는 다단속제어 방식 중 어느 하나의 제어방식을 설정하는 단계; b) 상기 제어방식이 설정되면 컨트롤박스는 모터를 구동시키는 인버터에 해당 제어방식을 할당하고 리시버탱크의 상한 공기압 및 하한 공기압을 설정하는 단계; c) 상기 컨트롤박스는 인버터에 연결된 운전방식선택스위치를 선택하여 해당하는 제어방식으로 컴프레서를 기동시키는 단계; 및 d) 상기 컴프레서의 기동 중에 다른 운전방식 선택스위치의 입력이 있는지 판단하는 단계를 포함하여 이루어진다.In order to achieve the above object, the screw compressor control method according to the present invention, a) when the air demand is input through the control box for controlling the drive of the screw compressor, the control box according to the air demand Y-Δ starting method, pressure Setting a control method of any one of a control method and a multi-step control method; b) when the control method is set, the control box assigns the control method to the inverter for driving the motor and sets the upper limit air pressure and the lower limit air pressure of the receiver tank; c) the control box selecting a driving mode selection switch connected to the inverter to start the compressor in a corresponding control method; And d) determining whether there is an input of another operation mode selection switch during startup of the compressor.
여기서, 상기 컨트롤박스는 에어수요량이 85% 초과할 경우에 Y-Δ 기동방식을 설정하고, 에어수요량이 50~85% 범위일 경우에 압력제어 방식을 설정하며, 에어수요량이 50% 미만일 경우에 다단속제어 방식을 설정하는 것을 특징으로 한다.Herein, the control box sets the Y-Δ starting method when the air demand exceeds 85%, sets the pressure control method when the air demand is in the range of 50 to 85%, and when the air demand is less than 50%. It is characterized by setting the multi-speed control method.
여기서, 상기 Y-Δ기동 방식은, 컨트롤박스에 구비된 시작버튼을 온시켜 인버터를 기동하는 단계; 상기 인버터의 기동으로 모터에 전원이 인가되어 모터를 구동하는 단계; 상기 모터의 구동과 동시에 솔레노이드밸브를 온시키고 흡입밸브를 개방시켜 에어를 흡입하는 단계; 상기 모터의 구동으로 압축기가 작동되어 흡입된 공기를 압축한 후에 에어공급라인을 통해 리시브탱크에 에어를 공급하는 부하운전을 수행하는 단계; 상기 부하운전 중에 에어공급라인의 압력을 센서가 감지하여 상한 설정치를 검출하면 압력스위치를 작동시켜 인버터에 정지신호를 송출하는 단계; 상기 정지신호에 의해 인버터가 모터를 공회전시킴과 동시에 솔레노이드밸브를 오프시켜 흡입밸브를 닫는 단계; 상기 모터의 공회전으로 무부하운전이 수행되고 리시브탱크의 압축공기를 현장으로 방출하는 단계; 및 상기 무부하운전이 수행되는 동안 에어공급라인의 압력을 센서가 감지하여 하한 설정치를 검출하면 압력스위치를 작동시켜 모터를 구동시키는 단계를 포함할 수 있다.Here, the Y-Δ start method, the step of starting the inverter by turning on the start button provided in the control box; Driving the motor by applying power to the motor by starting the inverter; Concurrently driving the motor to turn on the solenoid valve and open the suction valve to suck air; Performing a load operation of supplying air to the receive tank through an air supply line after the compressor is operated by the motor to compress the sucked air; Transmitting a stop signal to the inverter by operating a pressure switch when a sensor detects a pressure of an air supply line and detects an upper limit set value during the load operation; Closing the intake valve by turning off the solenoid valve at the same time as the inverter idles the motor by the stop signal; Performing a no-load operation by idling the motor and releasing compressed air of the receive tank to the site; And driving a motor by operating a pressure switch when a sensor senses a pressure of an air supply line and detects a lower set value while the no-load operation is performed.
여기서, 상기 압력제어 방식은, 에어수요량을 감안하여 컨트롤박스에 기준 압력치를 설정하는 단계; 컨트롤박스에 구비된 시작버튼을 온시켜 인버터를 기동하고 기준 압력치를 인식하는 단계; 상기 기준 압력치에 부합하는 모터의 회전속도를 조절하는 단계; 상기 조절된 회전속도로 모터의 구동과 동시에 솔레노이드밸브를 온시켜 흡입밸브를 개방시켜 에어를 흡입하는 단계; 상기 모터의 구동으로 압축기가 작동되어 흡입된 공기를 압축한 후에 에어공급라인을 통해 리시브탱크에 에어를 공급하는 부하운전을 수행하는 단계; 상기 부하운전 중에 에어공급라인의 압력을 센서가 감지하여 상한 설정치를 검출하면 압력스위치를 작동시켜 인버터에 정지신호를 송출하는 단계; 상기 정지신호에 의해 인버터가 모터를 공회전시킴과 동시에 솔레노이드밸브를 오프시켜 흡입밸브를 닫는 단계; 상기 모터의 공회전으로 무부하운전이 수행되고 리시브탱크의 압축공기를 현장으로 방출하는 단계; 및 상기 무부하운전이 수행되는 동안 에어공급라인의 압력을 센서가 감지하여 하한 설정치를 검출하면 압력스위치를 작동시켜 모터를 구동시키는 단계를 포함할 수 있다.Here, the pressure control method, the step of setting a reference pressure value in the control box in consideration of the air demand; Starting the inverter by turning on a start button provided in the control box and recognizing a reference pressure value; Adjusting a rotational speed of the motor corresponding to the reference pressure value; At the same time as driving the motor at the regulated rotational speed, turning on the solenoid valve to open the suction valve to suck air; Performing a load operation of supplying air to the receive tank through an air supply line after the compressor is operated by the motor to compress the sucked air; Transmitting a stop signal to the inverter by operating a pressure switch when a sensor detects a pressure of an air supply line and detects an upper limit set value during the load operation; Closing the intake valve by turning off the solenoid valve at the same time as the inverter idles the motor by the stop signal; Performing a no-load operation by idling the motor and releasing compressed air of the receive tank to the site; And driving a motor by operating a pressure switch when a sensor senses a pressure of an air supply line and detects a lower set value while the no-load operation is performed.
여기서, 상기 다단속제어 방식은, 컨트롤박스에 구비된 시작버튼을 온시켜 인버터를 기동하는 단계; 상기 인버터의 기동으로 모터에 전원이 인가되어 모터를 구동하는 단계; 상기 모터의 구동과 동시에 솔레노이드밸브를 온시키고 흡입밸브를 개방시켜 에어를 흡입하는 단계; 상기 모터의 구동으로 압축기가 작동되어 흡입된 공기를 압축한 후에 에어공급라인을 통해 리시브탱크에 에어를 공급하는 부하운전을 수행하는 단계; 상기 부하운전 중에 에어공급라인의 압력을 센서가 감지하여 상한 설정치를 검출하면 압력스위치를 작동시켜 인버터에 정지신호를 송출하는 단계; 상기 정지신호에 의해 인버터가 모터를 정지시킴과 동시에 솔레노이드밸브를 오프시켜 흡입밸브를 닫는 단계; 상기 모터의 공회전으로 무부하운전이 수행되고 리시브탱크의 압축공기를 현장으로 방출하는 단계; 및 상기 무부하운전이 수행되는 동안 에어공급라인의 압력을 센서가 감지하여 하한 설정치를 검출하면 압력스위치를 작동시켜 모터를 구동시키는 단계를 포함할 수 있다.Here, the multi-step speed control method may include: starting an inverter by turning on a start button provided in a control box; Driving the motor by applying power to the motor by starting the inverter; Concurrently driving the motor to turn on the solenoid valve and open the suction valve to suck air; Performing a load operation of supplying air to the receive tank through an air supply line after the compressor is operated by the motor to compress the sucked air; Transmitting a stop signal to the inverter by operating a pressure switch when a sensor detects a pressure of an air supply line and detects an upper limit set value during the load operation; The inverter stops the motor by the stop signal and closes the intake valve by turning off the solenoid valve; Performing a no-load operation by idling the motor and releasing compressed air of the receive tank to the site; And driving a motor by operating a pressure switch when a sensor senses a pressure of an air supply line and detects a lower set value while the no-load operation is performed.
또한, 상기 목적을 달성하기 위하여, 본 발명에 따른 스크류 컴프레서 제어장치는, 솔레노이드밸브의 작동에 의하여 개폐되어 외부의 에어를 흡입 또는 차단하는 흡입밸브와, 인가된 전원으로 일정의 회전속도로 회전력을 발생하는 모터와, 상기 모터의 회전력으로 흡입밸브를 통해 흡입된 에어를 압축하여 배출하는 압축기와, 상기 압축기에서 압축된 에어에 포함된 유분을 분리한 후에 배출하는 유분분리기와, 상기 흡입밸브, 모터, 압축기 및 유분분리기에 배관되어 에어를 이송하는 에어공급라인이 포함된 스크류 컴프레서; 상기 스크류 컴프레서에 배관된 에어공급라인에 하나 이상으로 설치된 압력센서의 압력에 따라 스위칭되는 압력스위치와, 상기 압력스위치의 스위칭으로 모터의 구동을 제어하는 인버터가 포함된 컨트롤박스; 및 상기 에어공급라인을 통해 유입된 압축된 에어를 저장하였다가 현장으로 공급하는 리시브탱크를 포함하여 구성된다.In addition, in order to achieve the above object, the screw compressor control apparatus according to the present invention, the suction valve which is opened and closed by the operation of the solenoid valve and sucks or blocks the outside air, and the rotational force at a constant rotational speed with an applied power source A motor generated, a compressor for compressing and discharging air sucked through the suction valve by the rotational force of the motor, an oil separator for separating and discharging oil contained in the compressed air from the compressor, and the suction valve and the motor. Screw compressor including an air supply line for transferring the air piped to the compressor and the oil separator; A control box including a pressure switch switched according to a pressure of a pressure sensor installed in at least one air supply line piped to the screw compressor, and an inverter controlling the driving of the motor by switching of the pressure switch; And a receive tank for storing the compressed air introduced through the air supply line and supplying the compressed air to the site.
여기서, 상기 인버터를 통해 Y-Δ기동 방식, 압력제어 방식 또는 다단속제어 방식 중 어느 하나로 모터의 구동을 제어하기 위하여 모터에 복수의 접점이 연결된 것을 특징으로 한다.Here, a plurality of contacts are connected to the motor to control the driving of the motor by any one of a Y-Δ starting method, a pressure control method or a multi-speed control method through the inverter.
본 발명은 상기 해결수단에 의하여, 스크류 컴프레서로부터 현장에서 요구하는 최적의 에어수요량을 공급할 수 있도록 Y-Δ기동 방식, 압력제어 방식 또는 다단속제어 방식 중에서 어느 하나의 방식으로 선택적으로 구동제어를 할 수 있으므로 현장의 작업환경이나 작업특성 및 여타 조건에 대처할 수 있고, 전기에너지의 절감효과를 극대화시키며, 스크류 컴프레서의 기능을 향상시킬 수 있다The present invention can selectively drive control by any one of the Y-Δ start method, pressure control method or multi-speed control method to supply the optimum air demand from the screw compressor in the field by the above solution means. It can cope with on-site working environment, work characteristics and other conditions, maximize the electric energy saving effect, and improve the function of screw compressor.
도 1은 본 발명에 따른 스크류 컴프레서의 구동을 제어하는 전체 구성을 나타낸 블록도이다.1 is a block diagram showing the overall configuration for controlling the drive of the screw compressor according to the present invention.
도 2는 본 발명에 따른 컨트롤박스의 일부 구성을 나타낸 전기배선도이다.2 is an electric wiring diagram showing a part of the control box according to the present invention.
도 3은 본 발명에 따른 인버터에 연결된 스위치를 나타낸 구성도이다.3 is a block diagram illustrating a switch connected to an inverter according to the present invention.
도 4는 본 발명에 따른 스크류 컴프레서를 제어하는 방법을 나타낸 흐름도이다.4 is a flowchart illustrating a method of controlling a screw compressor according to the present invention.
도 5는 본 발명에 따른 스크류 컴프레서를 Y-Δ 기동방식으로 제어하는 방법을 나타낸 흐름도이다.5 is a flowchart illustrating a method of controlling a screw compressor in a Y-Δ starting manner according to the present invention.
도 6은 본 발명에 따른 스크류 컴프레서를 압력제어 방식으로 제어하는 방법을 나타낸 흐름도이다.6 is a flowchart illustrating a method of controlling a screw compressor in a pressure control manner according to the present invention.
도 7은 본 발명에 따른 스크류 컴프레서를 다단속제어 방식으로 제어하는 방법을 나타낸 흐름도이다.7 is a flowchart illustrating a method of controlling the screw compressor according to the present invention in a multi-step control method.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise.
도 1은 본 발명에 따른 스크류 컴프레서의 구동을 제어하는 전체적인 구성을 나타낸 블록도이다.1 is a block diagram showing the overall configuration for controlling the drive of the screw compressor according to the present invention.
먼저, 본 발명의 스크류 컴프레서를 제어하는 장치는 통상적으로 Y-Δ 기동방식, 압력제어 방식 또는 다단속제어 방식 중에서 어느 하나의 방식으로 운전되도록 하는 방식과는 달리 다양한 운전방식 중에서 장점들만을 결합하여 스크류 컴프레서를 제어할 수 있도록 하는 것이다. 더욱이 현장에서 요구하는 에어수요량에 따라 운전방식을 선택적으로 적용할 수 있도록 한 것이다.First, the apparatus for controlling the screw compressor of the present invention is different from the conventional way to operate in any one of the Y-Δ start method, pressure control method or multi-stage control method by combining only the advantages of the various operating methods To control the screw compressor. Moreover, it is possible to selectively apply the operation method according to the air demand required in the field.
스크류 컴프레서(10)는 외부로부터 에어(air: 공기)를 흡입한 후에 모터(13)에 연결된 스크류가 내장된 압축기를 이용하여 압축된 공기를 배출하는 것이고, 컨트롤박스(20)는 스크류 컴프레서(10)의 운전을 제어하는 것이며, 리시브탱크(30)는 압축된 공기를 저장하였다가 현장의 설비로 배출하는 것이다.The screw compressor 10 sucks air from the outside and then discharges the compressed air using a built-in screw compressor connected to the motor 13, and the control box 20 is a screw compressor 10. ), The receive tank 30 stores compressed air and discharges it to the facility in the field.
스크류 컴프레서(10)에 구성된 흡입밸브(11)는 전기적인 신호에 의하여 개폐되는 솔레노이드밸브의 작동에 의하여 외부의 에어를 흡입 또는 차단하는 것이다. 흡입밸브(11)는 에어공급라인(15)의 전단에 구비되어 있다. 모터(13)는 인가된 3상의 RST 전원으로 일정의 회전속도로 회전력을 발생하는 것이다. 스크류 컴프레서(10)의 용량이나 크기 또는 작동방식이나 회전속도 등에 따라 적용되는 모터(13)는 달라질 것이다.The suction valve 11 configured in the screw compressor 10 sucks or blocks external air by the operation of the solenoid valve opened and closed by an electrical signal. The suction valve 11 is provided at the front end of the air supply line 15. The motor 13 generates a rotating force at a constant rotational speed with an applied three-phase RST power supply. The motor 13 to be applied will vary depending on the capacity or size of the screw compressor 10 or the method of operation or rotational speed.
압축기(12)는 모터(13)의 회전력으로 흡입밸브(11)를 통해 흡입된 에어를 스크류의 회전으로 압축하여 배출하는 것이다. 유분분리기(14)는 압축기(12)에서 압축된 에어에 포함된 유분을 분리한 후에 배출하는 것이다. 에어공급라인(15)은 흡입밸브(11), 모터(13), 압축기(12) 및 유분분리기(14) 등에 배관되어 에어를 흡입, 이송 및 배출하는 것이다. 에어공급라인(15)은 스크류 컴프레서(10)의 해당하는 구성요소 사이의 압력에 따라 직경이나 재질 또는 형상이 달라질 것이다.The compressor 12 compresses and discharges the air sucked through the suction valve 11 by the rotation of the screw by the rotational force of the motor 13. The oil separator 14 separates and discharges the oil contained in the compressed air in the compressor 12. The air supply line 15 is piped to the suction valve 11, the motor 13, the compressor 12, and the oil separator 14 to suck, transport, and discharge air. The air supply line 15 will vary in diameter, material or shape depending on the pressure between the corresponding components of the screw compressor 10.
컨트롤박스(20)는 스크류 컴프레서(10)의 구동을 제어하기 위하여 스크류 컴프레서(10)에 배관된 에어공급라인(15)에 하나 이상의 압력센서 등이 설치된다. 특히 압축기(12)에 유분분리기(14) 사이를 포함하여 필요 구간별로 복수의 압력센서가 장착된다. 그리고 압력센서에는 압력스위치(21)가 연결되어 있어 압력센서에서 감지한 압력에 따라 압력스위치(21)가 스위칭된다. 또한, 압력스위치(21)의 스위칭으로 모터(13)의 구동을 제어하는 인버터(22)가 구성되어 있다. 인버터(22)는 압력스위치(21)의 스위칭신호로 모터(13)를 기동시키거나 정지 또는 속도조절을 하는 것이다.The control box 20 is provided with one or more pressure sensors in the air supply line 15 piped to the screw compressor 10 in order to control the driving of the screw compressor 10. In particular, a plurality of pressure sensors are mounted for each of the necessary sections including the oil separator 14 in the compressor 12. In addition, the pressure sensor 21 is connected to the pressure sensor so that the pressure switch 21 is switched according to the pressure detected by the pressure sensor. Moreover, the inverter 22 which controls the drive of the motor 13 by the switching of the pressure switch 21 is comprised. The inverter 22 starts, stops or adjusts the speed of the motor 13 by the switching signal of the pressure switch 21.
리시브탱크(30)는 에어공급라인(15)을 통해 유입된 압축된 에어를 저장하였다가 현장에 설치된 각종 장치나 설비 등으로 공급하는 것이다. 리시브탱크(30)는 스크류 컴프레서(10)에 따라 용량이 달라지거나 작업환경 등에 따라 용량이 달라질 것이다.The receiving tank 30 stores compressed air introduced through the air supply line 15 and supplies the compressed air to various devices or facilities installed in the field. The receiving tank 30 may have a different capacity depending on the screw compressor 10 or a different working capacity.
도 2는 컨트롤박스의 일부 구성을 나타낸 전기배선도이다. 컨트롤박스(20)에는 배선용 차단기(MCCB)를 거쳐 RST 3상의 전원이 인가된다. 배선용 차단기(MCCB)를 거쳐 컨트롤박스(20) 내에 장착된 인버터(22)에는 모터(13)의 작동을 위한 접점(MI, MB)이 직병렬로 연결되어 있다. 그리고 인버터(22)를 통해 Y-Δ 기동방식, 압력제어 방식 또는 다단속제어 방식 중 어느 하나로 모터(13)의 구동을 제어하기 위하여 모터(13)에 복수의 접점(M, M-Δ, M-Y)이 연결되어 있다.2 is an electrical wiring diagram showing a part of the configuration of the control box. The control box 20 is supplied with power on the RST 3 via a circuit breaker (MCCB). The inverters MI and MB for operating the motor 13 are connected in series and parallel to the inverter 22 mounted in the control box 20 via the circuit breaker MCCB. And a plurality of contacts (M, M-Δ, MY) to the motor 13 to control the driving of the motor 13 in any one of the Y-Δ start method, pressure control method or multi-step control method through the inverter 22 ) Is connected.
도 3은 인버터에 연결된 스위치를 나타낸 구성도이다. 인버터(22)에는 RST 3상의 전원이 입력되어 모터(13)의 구동을 위하여 출력되는 UVW가 구비되어 있다. 인버터(22)에는 리셋용 스위치, 운전지령(PID) 및 다단속도 입력을 위한 스위치가 포함되고, 직류전원의 입력과 아날로그 출력을 위한 배선이 구비되어 있다. 그리고 경보를 위한 알람선과 출력선이 구비되어 있다.3 is a diagram illustrating a switch connected to an inverter. Inverter 22 is provided with a UVW that is supplied with the power of the RST three-phase is input for driving the motor 13. The inverter 22 includes a reset switch, an operation command (PID), and a switch for multi-stage speed input, and is provided with wirings for inputting DC power and analog output. An alarm line and an output line are provided for the alarm.
본 발명의 스크류 컴프레서를 제어하는 장치는 모터(13)에 의하여 생성된 압축공기를 유분분리기(14)를 거쳐 리시브탱크(30)에 저장한다. 리시브탱크(30) 또는 압축공기를 공급하는 에어공급라인(15)에는 다양한 압축공기에 대한 설정치를 가진 복수의 압력센서가 장착되고, 각각의 압력센서는 해당하는 압력스위치(21)와 연결되어 있다. 그리고 복수의 압력스위치(21)로부터 전달된 감지신호에 따라 모터(13)의 구동을 제어하는 인버터(22)가 구비된다. 인버터(22)는 컨트롤박스(20)에 연결되고, 컨트롤박스(20)는 작업자의 운전조작에 필요한 각종의 조작스위치가 포함되어 있다.The apparatus for controlling the screw compressor of the present invention stores the compressed air generated by the motor 13 in the receive tank 30 via the oil separator 14. The receiving tank 30 or the air supply line 15 for supplying the compressed air is equipped with a plurality of pressure sensors having a set value for various compressed air, and each pressure sensor is connected to the corresponding pressure switch 21. . In addition, an inverter 22 for controlling the driving of the motor 13 according to the detection signals transmitted from the plurality of pressure switches 21 is provided. The inverter 22 is connected to the control box 20, the control box 20 includes a variety of operation switches required for the operator's operation.
이와 같이 구성된 본 발명의 스크류 컴프레서 제어장치에 관한 제어방법을 도 4의 흐름도와, 도 5 내지 도 7의 흐름도를 참조하여 설명한다.The control method according to the screw compressor control apparatus of the present invention configured as described above will be described with reference to the flowchart of FIG. 4 and the flowcharts of FIGS. 5 to 7.
우선, 스크류 컴프레서(10)의 구동을 제어하는 컨트롤박스(20)를 통해 에어수요량이 입력되면(S1), 컨트롤박스(20)는 에어수요량에 따라 Y-Δ 기동방식, 압력제어 방식 또는 다단속제어 방식 중 어느 하나의 제어방식을 설정한다(S2). 상기 단계(S2)에서 제어방식이 설정되면 컨트롤박스(20)는 모터(13)를 구동시키는 인버터(22)에 해당 제어방식을 할당하고(S3), 리시버탱크(30)의 상한 공기압 및 하한 공기압을 설정한다(S4). 컨트롤박스(20)는 인버터(22)에 연결된 운전방식선택스위치를 선택하고(S5), 해당하는 제어방식으로 스크류 컴프레서(10)를 기동시킨다(S6). 스크류 컴프레서(10)의 기동 중에 다른 운전방식선택스위치의 입력이 있는지 판단한다(S7).First, when the air demand is input through the control box 20 that controls the driving of the screw compressor 10 (S1), the control box 20 is Y-Δ start method, pressure control method or multi-step depending on the air demand One of the control methods is set (S2). When the control method is set in step S2, the control box 20 assigns the control method to the inverter 22 for driving the motor 13 (S3), and the upper and lower air pressures of the receiver tank 30 are controlled. Set (S4). The control box 20 selects an operation method selection switch connected to the inverter 22 (S5), and activates the screw compressor 10 in a corresponding control method (S6). During startup of the screw compressor 10, it is determined whether there is an input of another operation method selection switch (S7).
스크류 컴프레서(10)의 운전을 위한 운전방식에 대한 세부적인 작동을 다음에서 설명한다.The detailed operation of the operation method for the operation of the screw compressor 10 will be described below.
컨트롤박스(20)는 에어수요량이 85%를 초과할 경우에 Y-Δ기동 방식을 설정하고, 에어수요량이 50~85% 범위일 경우에 압력제어 방식을 설정하며, 에어수요량이 50% 미만일 경우에 다단속제어 방식을 설정하여 스크류 컴프레서(10)의 운전을 제어한다.The control box 20 sets the Y-Δ start method when the air demand exceeds 85%, sets the pressure control method when the air demand is in the range of 50 to 85%, and when the air demand is less than 50%. By setting a multi-step control method to control the operation of the screw compressor (10).
상기 스크류 컴프레서(10)로부터 에어수요량이 85%를 초과한 경우에는 Y-Δ 기동방식으로 운전되는데 이는 도 5의 흐름도와 같다. 즉 컨트롤박스(20)에 구비된 시작버튼을 온시켜(S10) 인버터(22)를 기동시킨다(S11). 인버터(22)의 기동으로 모터(13)에 전원이 인가되어(S12) 모터(13)를 구동시킨다(S13). 그리고 모터(13)의 구동과 동시에 솔레노이드밸브를 온시켜 흡입밸브(11)를 개방시켜 에어를 흡입한다(S14). 모터(13)의 구동으로 압축기(12)가 작동되어 흡입된 공기를 압축한 후에 에어공급라인(15)을 통해 리시브탱크(30)에 에어를 공급하는 부하운전을 수행한다(15). 부하운전 중에 에어공급라인(15)의 압력을 센서가 감지하여 상한 설정치를 검출하면 압력스위치(21)를 작동시켜 인버터(22)에 정지신호를 송출한다(S17). 정지신호에 의해 인버터(22)가 모터(13)를 공회전시키고(S18), 솔레노이드밸브를 오프시켜 흡입밸브(11)를 닫는다(S19). 따라서 모터(13)의 공회전으로 무부하운전이 수행되고(S20), 리시브탱크(30)의 압축공기를 현장으로 방출시킨다(S21). 무부하운전이 수행되는 동안 에어공급라인(15)의 압력을 센서가 감지하여 하한 설정치를 검출하면 압력스위치(21)를 작동시켜 모터(13)를 재구동시킨다(S22).When the air demand from the screw compressor 10 exceeds 85%, it is operated by the Y-Δ starting method, which is the flow chart of FIG. That is, by turning on the start button provided in the control box 20 (S10) to start the inverter 22 (S11). The power is applied to the motor 13 by starting the inverter 22 (S12) to drive the motor 13 (S13). At the same time as driving of the motor 13, the solenoid valve is turned on to open the suction valve 11 to suck in air (S14). The compressor 12 is operated by the driving of the motor 13 to compress the sucked air and then perform a load operation for supplying air to the receive tank 30 through the air supply line 15 (15). When the sensor senses the pressure of the air supply line 15 during the load operation and detects the upper limit set value, the pressure switch 21 is operated to send a stop signal to the inverter 22 (S17). In response to the stop signal, the inverter 22 idles the motor 13 (S18), turns off the solenoid valve, and closes the intake valve 11 (S19). Therefore, no-load operation is performed by idling the motor 13 (S20), and releases the compressed air of the receive tank 30 to the site (S21). When the sensor detects the pressure of the air supply line 15 and detects the lower limit while the no load operation is performed, the pressure switch 21 is operated to re-drive the motor 13 (S22).
이와 같이 Y-Δ기동 방식에 의한 스크류 컴프레서의 운전방법은 압력스위치(21)로부터 측정된 공기압이 상한 설정치에 도달하면 압축공기를 생성하지 않는 무부하운전이 수행되어 모터(13)와 압축기(12) 사이에는 공회전이 이루어진다. 압력스위치(21)로부터 측정된 공기압이 하한 설정치에 도달하면 압축공기를 생성하는 부하운전이 수행되어 모터(13)와 압축기(12) 사이에는 실질적인 구동이 이루어진다.As described above, in the method of operating the screw compressor by the Y-Δ starting method, when the air pressure measured from the pressure switch 21 reaches the upper limit set value, no load operation is performed in which no compressed air is generated, and thus the motor 13 and the compressor 12 are operated. In between, idling occurs. When the air pressure measured from the pressure switch 21 reaches the lower limit set value, a load operation for generating compressed air is performed to substantially drive the motor 13 and the compressor 12.
따라서 Y-Δ기동 방식은 컨트롤박스(20)의 시작버튼의 입력으로 인버터(22)가 동작하면서 모터(13)를 구동시키고, 흡입밸브(11)를 개방하여 압축공기가 생성되는 부하운전과, 압축공기의 생성 도중에 압력스위치(21)로부터 측정된 공기압이 상한 설정치이면 인버터(22)의 지령에 따라 모터(13)는 공회전되고, 흡입밸브(11)는 닫히며, 리시버탱크(30) 내부에 압축된 에어는 방출되는 무부하운전이 이루어진다. 이후 압력스위치(21)로부터 측정된 공기압력이 하한 설정치이면 다시 모터(13)를 정상 구동시켜 반복 동작이 수행된다. Y-Δ기동 방식은 압축공기를 생성하지 않는 무부하운전 때에 모터의 공회전이 이루어져 상당량의 전력소비가 예상된다.Therefore, the Y-Δ start method is a load operation in which the compressed air is generated by driving the motor 13 while the inverter 22 operates as an input of the start button of the control box 20, opening the suction valve 11, If the air pressure measured from the pressure switch 21 during the generation of compressed air is the upper limit set value, the motor 13 is idling according to the command of the inverter 22, the intake valve 11 is closed, and the receiver tank 30 is Compressed air is released with no load operation. After that, if the air pressure measured from the pressure switch 21 is a lower limit set value, the motor 13 is normally driven again to perform a repeating operation. In the Y-Δ start method, the motor is idle at no load operation without generating compressed air, and a considerable amount of power consumption is expected.
다음으로, 상기 스크류 컴프레서(10)로부터 에어수요량이 50~85% 범위인 경우에는 압력제어 방식으로 운전되는데 이는 도 6의 흐름도와 같다. 즉 에어수요량을 감안하여 컨트롤박스(20)에 기준 압력치를 설정한다(S30). 컨트롤박스(20)에 구비된 시작버튼을 온시키고(S31), 인버터(22)를 기동하고 기준 압력치를 인식한다(S32). 그리고 인식된 기준 압력치에 부합하는 모터(13)의 회전속도를 조절한다(S33). 상기 조절된 회전속도로 모터(13)를 구동시키고(S34), 솔레노이드밸브를 온시켜 흡입밸브(11)를 개방시켜 에어를 흡입한다(S35). 모터(13)의 구동으로 압축기(12)가 작동되어 흡입된 공기를 압축한 후에 에어공급라인(15)을 통해 리시브탱크(30)에 에어를 공급하는 부하운전을 수행한다(S36). 부하운전 중에 에어공급라인(15)의 압력을 센서가 감지하여 상한 설정치를 검출하면(S37), 압력스위치(21)를 작동시켜 인버터(22)에 정지신호를 송출한다(S38). 상기 정지신호에 의해 인버터(22)가 모터(13)를 공회전시키고(S39), 솔레노이드밸브를 오프시켜 흡입밸브(11)를 닫는다(S40). 따라서 모터(13)의 공회전으로 무부하운전이 수행되고(S41), 리시브탱크(30)의 압축공기를 현장으로 방출한다(S42). 상기 무부하운전이 수행되는 동안 에어공급라인(15)의 압력을 센서가 감지하여 하한 설정치를 검출하면 압력스위치(21)를 작동시켜 모터(13)를 재구동시킨다(S43).Next, when the air demand from the screw compressor 10 is in the range of 50 to 85%, it is operated in a pressure control method, which is the flowchart of FIG. 6. That is, the reference pressure value is set in the control box 20 in consideration of the air demand (S30). The start button provided in the control box 20 is turned on (S31), the inverter 22 is started, and the reference pressure value is recognized (S32). And it adjusts the rotational speed of the motor 13 corresponding to the recognized reference pressure value (S33). The motor 13 is driven at the adjusted rotation speed (S34), and the solenoid valve is turned on to open the suction valve 11 to suck air (S35). After the compressor 12 is operated by the driving of the motor 13 to compress the sucked air, a load operation for supplying air to the receive tank 30 through the air supply line 15 is performed (S36). When the sensor senses the pressure of the air supply line 15 during the load operation and detects the upper limit set value (S37), the pressure switch 21 is operated to send a stop signal to the inverter 22 (S38). In response to the stop signal, the inverter 22 idles the motor 13 (S39), turns off the solenoid valve, and closes the suction valve 11 (S40). Therefore, no-load operation is performed by idling of the motor 13 (S41), and the compressed air of the receiving tank 30 is discharged to the site (S42). When the sensor detects the pressure of the air supply line 15 and detects the lower limit while the no load operation is performed, the pressure switch 21 is operated to restart the motor 13 (S43).
이와 같이 압력제어 방식에 의한 스크류 컴프레서의 운전방법은 에어수요량을 감안하여 일정한 값의 기준 압력치를 설정한 다음에 그 기준압력에 부합되는 모터의 회전수를 제어한다.As described above, the screw compressor operating method using the pressure control method sets a reference pressure value having a constant value in consideration of the air demand and then controls the rotation speed of the motor corresponding to the reference pressure.
따라서 압력제어 방식은 시작버튼이 조작되어 인버터(22)가 동작하면 모터(13)의 구동이 이루어진다. 이때 인버터(22)는 미리 설정된 압력설정치를 인식한 다음에 그 압력설정치에 부합되는 회전수로 모터를 구동시킨다. 그리고 흡입밸브(11)가 개방되어 압축공기의 생성이 이루어지는 부하운전이 수행된다. 부하운전으로 압축공기의 생성 중에 압력스위치(21)로부터 측정된 공기압력이 상한 설정치이면 인버터(22)의 지령에 따라 모터(13)는 공회전되고, 흡입밸브(11)는 닫히며, 리시브탱크(30) 내부에 압축된 공기를 방출하는 무부하운전이 수행된다. 이후 압력스위치(21)로부터 측정된 공기압력이 하한 설정치이면 다시 모터(13)를 정상 구동시켜 반복 동작이 수행된다. 압력제어 방식은 생성하려는 공기압력을 사전에 설정한 다음에 그 압력설정치에 부합되는 회전속도로 모터(13)가 구동되도록 하여 무부하 운전 시간을 줄일 수 있지만, 높은 회전감속비를 인가하기 어려운 모터의 특성에 의하여 전기에너지의 절감하는 효과의 한계를 지닌다.Therefore, in the pressure control method, when the start button is operated and the inverter 22 operates, the motor 13 is driven. At this time, the inverter 22 recognizes the preset pressure setting value and then drives the motor at a rotation speed corresponding to the pressure setting value. Then, the intake valve 11 is opened to perform a load operation in which compressed air is generated. If the air pressure measured from the pressure switch 21 during the generation of the compressed air by the load operation is the upper limit set value, the motor 13 is idling according to the command of the inverter 22, the intake valve 11 is closed, and the receive tank ( 30) A no load operation is performed to release the compressed air inside. After that, if the air pressure measured from the pressure switch 21 is a lower limit set value, the motor 13 is normally driven again to perform a repeating operation. The pressure control method can reduce the no-load operation time by setting the air pressure to be generated in advance and then drive the motor 13 at a rotational speed corresponding to the pressure set value, but it is difficult to apply a high rotational deceleration ratio. There is a limit to the effect of reducing the electrical energy.
또한, 상기 스크류 컴프레서(10)로부터 에어수요량이 50% 미만인 경우에는 다단속제어 방식으로 운전되는데 이는 도 7의 흐름도와 같다. 즉 컨트롤박스(20)에 구비된 시작버튼을 온시켜(S50) 인버터(22)를 기동시킨다(S51). 인버터(22)의 기동으로 모터(13)에 전원이 인가되면(S52), 모터(13)가 구동된다(S53). 모터(13)의 구동과 동시에 솔레노이드밸브를 온시키고 흡입밸브를 개방시켜 에어를 흡입한다(S54). 모터(13)의 구동으로 압축기(12)가 작동되어 흡입된 공기를 압축한 후에 에어공급라인(15)을 통해 리시브탱크(30)에 에어를 공급하는 부하운전을 수행한다(S55). 부하운전 중에 에어공급라인(15)의 압력을 센서가 감지하여 상한 설정치를 검출하면(S56), 압력스위치(21)를 작동시켜 인버터(22)에 정지신호를 송출한다(S57). 정지신호에 의해 인버터(22)가 모터(13)를 정지시키고(S58), 솔레노이드밸브를 오프시켜 흡입밸브(11)를 닫는다(S59). 따라서 모터(13)의 공회전으로 무부하운전이 수행되고(S60), 리시브탱크(30)의 압축공기를 현장의 설비로 방출시킨다(S61). 그리고 상기 무부하운전이 수행되는 동안 에어공급라인(15)의 압력을 센서가 감지하여 하한 설정치를 검출하면 압력스위치(21)를 작동시켜 모터(13)를 재구동시킨다(S62).In addition, when the air demand from the screw compressor 10 is less than 50% is operated in a multi-speed control method, which is the same as the flow chart of FIG. That is, by turning on the start button provided in the control box 20 (S50) to start the inverter 22 (S51). When power is applied to the motor 13 by starting the inverter 22 (S52), the motor 13 is driven (S53). At the same time as driving of the motor 13, the solenoid valve is turned on and the suction valve is opened to suck air (S54). After the compressor 12 is operated by the driving of the motor 13 to compress the sucked air, a load operation for supplying air to the receive tank 30 through the air supply line 15 is performed (S55). When the sensor senses the pressure of the air supply line 15 during the load operation and detects the upper limit set value (S56), the pressure switch 21 is operated to send a stop signal to the inverter 22 (S57). In response to the stop signal, the inverter 22 stops the motor 13 (S58), turns off the solenoid valve, and closes the intake valve 11 (S59). Therefore, no-load operation is performed by idling of the motor 13 (S60), and the compressed air of the receiving tank 30 is discharged to the field equipment (S61). When the sensor detects the pressure of the air supply line 15 and detects the lower limit while the no load operation is performed, the pressure switch 21 is operated to restart the motor 13 (S62).
이와 같이 다단속제어 방식에 의한 스크류 컴프레서의 운전방법은 압력스위치(21)로부터 측정된 공기압력이 상한 설정치에 도달하면 압축공기를 생성하지 않는 무부하운전이 수행되어 모터(13)의 동작을 정지시키고, 압력스위치(21)로부터 측정된 공기압력이 하한 설정치에 도달하면 압축공기를 생성하지 않는 부하운전이 수행되어 모터(13)를 재구동시켜 반복 동작이 수행된다.As described above, in the screw compressor operating method using the multi-stage control method, when the air pressure measured from the pressure switch 21 reaches the upper limit value, no load operation is performed without generating compressed air to stop the operation of the motor 13. When the air pressure measured from the pressure switch 21 reaches the lower limit set value, a load operation without generating compressed air is performed to re-drive the motor 13 to repeat the operation.
따라서 다단속제어 방식은 시작버튼에 입력으로 인버터(22)가 동작되어 모터(13)가 구동되고, 흡입밸브(11)의 개방으로 압축공기를 생성하는 부하운전이 수행된다. 그리고 부하운전으로 압축공기가 생성되는 도중에 압력스위치(21)로부터 측정된 공기압력이 상한 설정치인 경우에 인버터(22)의 지령에 따라 모터(13)는 정지되고, 흡입밸브(11)는 닫히며, 리시브탱크(30) 내부의 압축공기는 현장의 설비로 배출되는 무부하운전이 수행된다. 이후 압력스위치(21)로부터 측정된 공기압력이 하한 설정치인 경우에 다시 재기동되어 반복적인 동작이 이루어진다. 이러한 다단속제어 방식은 압축공기를 생성하지 않는 무부하 운전 때에는 모터(13)의 작동을 정지시키므로, 모터의 정지로 인하여 전기에너지의 손실은 없지만, 측정된 공기압력이 하한 설정치인 경우에 모터(13)를 재기동시켜야 하므로 다소 전기에너지의 손실이 존재한다.Therefore, in the multi-stage control method, the inverter 22 is operated as an input to the start button to drive the motor 13, and load operation is performed to generate compressed air by opening the intake valve 11. When the air pressure measured from the pressure switch 21 is the upper limit set value while the compressed air is generated by the load operation, the motor 13 is stopped according to the instruction of the inverter 22, and the intake valve 11 is closed. , The compressed air in the receiving tank 30 is carried out a no-load operation is discharged to the on-site equipment. After that, when the air pressure measured from the pressure switch 21 is a lower limit set value, it is restarted again and repeated operation is performed. Since the multi-step control method stops the operation of the motor 13 during no load operation without generating compressed air, there is no loss of electrical energy due to the stop of the motor. However, if the measured air pressure is a lower limit value, the motor 13 There is some loss of electrical energy due to the need to restart).
이와 같이 본 발명의 스크류 컴프레서를 제어하기 위하여 하나의 스크류 컴프레서로 제어를 위한 전기 및 전자회로가 개별적으로 구성된 Y-Δ 기동방식, 압력제어 방식 또는 다단속제어 방식을 선택적으로 설정할 수 있다. 상기 운전방식에 의하여 에어수요량이 예를 들어, 85%를 초과하거나, 50~85% 범위이거나 또는 50% 미만인 경우에 각각의 에어수요량에 적합한 운전방식을 자동 또는 수동으로 선택하여 운전이 가능할 것이다. 그러므로 수시로 변할 수 있는 현장의 작업특성이나 환경 등에도 하나의 스크류 컴프레서 시스템에서 즉각적이고 최적의 운전방식이 적용될 수 있어 스크류 컴프레서의 운전에 따라 전기에너지의 절감효과를 극대화시킬 수 있다.As such, in order to control the screw compressor of the present invention, the Y-Δ starting method, the pressure control method, or the multi-step control method, in which the electric and electronic circuits for controlling the single compressor, can be selectively set. According to the driving method, for example, when the air demand exceeds 85%, in the range of 50 to 85%, or less than 50%, an operation method suitable for each air demand may be automatically or manually selected. Therefore, instant and optimal operation can be applied in one screw compressor system even in the field characteristics or environment, which can change from time to time, thereby maximizing the electric energy saving effect according to the operation of the screw compressor.
더욱이 스크류 컴프레서의 에어수요량은 현장 작업장의 특성과 환경 및 작업자의 에어 사용형태 등에 따라 다양하게 변화될 수 있다.Moreover, the air demand of the screw compressor can be changed in various ways depending on the characteristics of the field workplace, the environment, and the type of air use by the operator.
따라서 본 발명의 스크류 컴프레서의 제어방법은 하나의 운전방식으로는 정해진 스크류 컴프레서를 사용하여 예측 가능한 수요를 충족시키지 못하는 단점을 해소할 수 있도록 선택이 가능한 다양한 운전방식을 제시한 것이다.Therefore, the control method of the screw compressor of the present invention proposes a variety of operation methods that can be selected to solve the disadvantage that does not meet the predictable demand by using a predetermined screw compressor in one operation method.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.

Claims (7)

  1. a) 스크류 컴프레서의 구동을 제어하는 컨트롤박스를 통해 에어수요량이 입력되면 컨트롤박스는 에어수요량에 따라 Y-Δ 기동방식, 압력제어 방식 또는 다단속제어 방식 중 어느 하나의 제어방식을 설정하는 단계;a) when the air demand is input through the control box for controlling the operation of the screw compressor, the control box sets a control method of any one of a Y-Δ starting method, a pressure control method or a multi-step control method according to the air demand;
    b) 상기 제어방식이 설정되면 컨트롤박스는 모터를 구동시키는 인버터에 해당 제어방식을 할당하고 리시버탱크의 상한 공기압 및 하한 공기압을 설정하는 단계;b) when the control method is set, the control box assigns the control method to the inverter for driving the motor and sets the upper limit air pressure and the lower limit air pressure of the receiver tank;
    c) 상기 컨트롤박스는 인버터에 연결된 운전방식선택스위치를 선택하여 해당하는 제어방식으로 컴프레서를 기동시키는 단계; 및c) the control box selecting a driving mode selection switch connected to the inverter to start the compressor in a corresponding control method; And
    d) 상기 컴프레서의 기동 중에 다른 운전방식선택스위치의 입력이 있는지 판단하는 단계d) determining whether there is an input of another operation mode selection switch during startup of the compressor;
    를 포함하는 스크류 컴프레서 제어방법.Screw compressor control method comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 컨트롤박스는 에어수요량이 85% 초과일 경우에 Y-Δ 기동방식을 설정하고, 에어수요량이 50~85% 범위일 경우에 압력제어 방식을 설정하며, 에어수요량이 50% 미만일 경우에 다단속제어 방식을 설정하는 스크류 컴프레서 제어방법.The control box sets the Y-Δ starting method when the air demand exceeds 85%, sets the pressure control method when the air demand is in the range of 50 to 85%, and multi-steps when the air demand is less than 50%. Screw compressor control method to set the control method.
  3. 제1항에 있어서, 상기 Y-Δ 기동방식은,The method of claim 1, wherein the Y-Δ start method,
    컨트롤박스에 구비된 시작버튼을 온시켜 인버터를 기동하는 단계;Starting the inverter by turning on a start button provided in the control box;
    상기 인버터의 기동으로 모터에 전원이 인가되어 모터를 구동하는 단계;Driving the motor by applying power to the motor by starting the inverter;
    상기 모터의 구동과 동시에 솔레노이드밸브를 온시키고 흡입밸브를 개방시켜 에어를 흡입하는 단계;Concurrently driving the motor to turn on the solenoid valve and open the suction valve to suck air;
    상기 모터의 구동으로 압축기가 작동되어 흡입된 공기를 압축한 후에 에어공급라인을 통해 리시브탱크에 에어를 공급하는 부하운전을 수행하는 단계;Performing a load operation of supplying air to the receive tank through an air supply line after the compressor is operated by the motor to compress the sucked air;
    상기 부하운전 중에 에어공급라인의 압력을 센서가 감지하여 상한 설정치를 검출하면 압력스위치를 작동시켜 인버터에 정지신호를 송출하는 단계;Transmitting a stop signal to the inverter by operating a pressure switch when a sensor detects a pressure of an air supply line and detects an upper limit set value during the load operation;
    상기 정지신호에 의해 인버터가 모터를 공회전시킴과 동시에 솔레노이드밸브를 오프시켜 흡입밸브를 닫는 단계;Closing the intake valve by turning off the solenoid valve at the same time as the inverter idles the motor by the stop signal;
    상기 모터의 공회전으로 무부하운전이 수행되고 리시브탱크의 압축공기를 현장으로 방출하는 단계; 및Performing a no-load operation by idling the motor and releasing compressed air of the receive tank to the site; And
    상기 무부하운전이 수행되는 동안 에어공급라인의 압력을 센서가 감지하여 하한 설정치를 검출하면 압력스위치를 작동시켜 모터를 구동시키는 단계When the sensor detects the pressure of the air supply line during the no load operation and detects the lower limit set value, driving the motor by operating the pressure switch.
    를 포함하는 스크류 컴프레서 제어방법.Screw compressor control method comprising a.
  4. 제1항에 있어서, 상기 압력제어 방식은,The method of claim 1, wherein the pressure control method,
    에어수요량을 감안하여 컨트롤박스에 기준 압력치를 설정하는 단계;Setting a reference pressure value in the control box in consideration of the air demand;
    컨트롤박스에 구비된 시작버튼을 온시켜 인버터를 기동하고 기준 압력치를 인식하는 단계;Starting the inverter by turning on a start button provided in the control box and recognizing a reference pressure value;
    상기 기준 압력치에 부합하는 모터의 회전속도를 조절하는 단계;Adjusting a rotational speed of the motor corresponding to the reference pressure value;
    상기 조절된 회전속도로 모터의 구동과 동시에 솔레노이드밸브를 온시켜 흡입밸브를 개방시켜 에어를 흡입하는 단계;At the same time as driving the motor at the regulated rotational speed, turning on the solenoid valve to open the suction valve to suck air;
    상기 모터의 구동으로 압축기가 작동되어 흡입된 공기를 압축한 후에 에어공급라인을 통해 리시브탱크에 에어를 공급하는 부하운전을 수행하는 단계;Performing a load operation of supplying air to the receive tank through an air supply line after the compressor is operated by the motor to compress the sucked air;
    상기 부하운전 중에 에어공급라인의 압력을 센서가 감지하여 상한 설정치를 검출하면 압력스위치를 작동시켜 인버터에 정지신호를 송출하는 단계;Transmitting a stop signal to the inverter by operating a pressure switch when a sensor detects a pressure of an air supply line and detects an upper limit set value during the load operation;
    상기 정지신호에 의해 인버터가 모터를 공회전시킴과 동시에 솔레노이드밸브를 오프시켜 흡입밸브를 닫는 단계;Closing the intake valve by turning off the solenoid valve at the same time as the inverter idles the motor by the stop signal;
    상기 모터의 공회전으로 무부하운전이 수행되고 리시브탱크의 압축공기를 현장으로 방출하는 단계; 및Performing a no-load operation by idling the motor and releasing compressed air of the receive tank to the site; And
    상기 무부하운전이 수행되는 동안 에어공급라인의 압력을 센서가 감지하여 하한 설정치를 검출하면 압력스위치를 작동시켜 모터를 구동시키는 단계When the sensor detects the pressure of the air supply line during the no load operation and detects the lower limit set value, driving the motor by operating the pressure switch.
    를 포함하는 스크류 컴프레서 제어방법.Screw compressor control method comprising a.
  5. 제1항에 있어서, 상기 다단속제어 방식은,According to claim 1, The multi-step speed control method,
    컨트롤박스에 구비된 시작버튼을 온시켜 인버터를 기동하는 단계;Starting the inverter by turning on a start button provided in the control box;
    상기 인버터의 기동으로 모터에 전원이 인가되어 모터를 구동하는 단계;Driving the motor by applying power to the motor by starting the inverter;
    상기 모터의 구동과 동시에 솔레노이드밸브를 온시키고 흡입밸브를 개방시켜 에어를 흡입하는 단계;Concurrently driving the motor to turn on the solenoid valve and open the suction valve to suck air;
    상기 모터의 구동으로 압축기가 작동되어 흡입된 공기를 압축한 후에 에어공급라인을 통해 리시브탱크에 에어를 공급하는 부하운전을 수행하는 단계;Performing a load operation of supplying air to the receive tank through an air supply line after the compressor is operated by the motor to compress the sucked air;
    상기 부하운전 중에 에어공급라인의 압력을 센서가 감지하여 상한 설정치를 검출하면 압력스위치를 작동시켜 인버터에 정지신호를 송출하는 단계;Transmitting a stop signal to the inverter by operating a pressure switch when a sensor detects a pressure of an air supply line and detects an upper limit set value during the load operation;
    상기 정지신호에 의해 인버터가 모터를 정지시킴과 동시에 솔레노이드밸브를 오프시켜 흡입밸브를 닫는 단계;The inverter stops the motor by the stop signal and closes the intake valve by turning off the solenoid valve;
    상기 모터의 공회전으로 무부하운전이 수행되고 리시브탱크의 압축공기를 현장으로 방출하는 단계; 및Performing a no-load operation by idling the motor and releasing compressed air of the receive tank to the site; And
    상기 무부하운전이 수행되는 동안 에어공급라인의 압력을 센서가 감지하여 하한 설정치를 검출하면 압력스위치를 작동시켜 모터를 구동시키는 단계When the sensor detects the pressure of the air supply line during the no load operation and detects the lower limit set value, driving the motor by operating the pressure switch.
    를 포함하는 스크류 컴프레서 제어방법.Screw compressor control method comprising a.
  6. 솔레노이드밸브의 작동에 의하여 개폐되어 외부의 에어를 흡입 또는 차단하는 흡입밸브와, 인가된 전원으로 일정의 회전속도로 회전력을 발생하는 모터와, 상기 모터의 회전력으로 흡입밸브를 통해 흡입된 에어를 압축하여 배출하는 압축기와, 상기 압축기에서 압축된 에어에 포함된 유분을 분리한 후에 배출하는 유분분리기와, 상기 흡입밸브, 모터, 압축기 및 유분분리기에 배관되어 에어를 이송하는 에어공급라인이 포함된 스크류 컴프레서;A suction valve which is opened and closed by the operation of the solenoid valve to suck or block external air, a motor which generates rotational force at a predetermined rotational speed with an applied power source, and compresses the air sucked through the suction valve by the rotational force of the motor And a compressor including a compressor, an oil separator for separating and discharging oil contained in the compressed air from the compressor, and an air supply line piped to the suction valve, the motor, the compressor, and the oil separator for transferring air. Compressor;
    상기 스크류 컴프레서에 배관된 에어공급라인에 하나 이상으로 설치된 압력센서의 압력에 따라 스위칭되는 압력스위치와, 상기 압력스위치의 스위칭으로 모터의 구동을 제어하는 인버터가 포함된 컨트롤박스; 및A control box including a pressure switch switched according to a pressure of a pressure sensor installed in at least one air supply line piped to the screw compressor, and an inverter controlling the driving of the motor by switching of the pressure switch; And
    상기 에어공급라인을 통해 유입된 압축된 에어를 저장하였다가 현장으로 공급하는 리시브탱크Receive tank that stores the compressed air introduced through the air supply line and supplies to the site
    를 포함하는 스크류 컴프레서 제어장치.Screw compressor control device comprising a.
  7. 제6항에 있어서,The method of claim 6,
    상기 인버터를 통해 Y-Δ 기동방식, 압력제어 방식 또는 다단속제어 방식 중 어느 하나로 모터의 구동을 제어하기 위하여 모터에 복수의 접점이 연결된 것을 특징으로 하는 스크류 컴프레서 제어장치.Screw compressor control device characterized in that a plurality of contacts are connected to the motor to control the driving of the motor by any one of the Y-Δ start method, pressure control method or multi-speed control method through the inverter.
PCT/KR2009/007585 2008-12-18 2009-12-18 Method and apparatus for controlling screw compressor WO2010071379A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0128943 2008-12-18
KR1020080128943A KR100908022B1 (en) 2008-12-18 2008-12-18 Method for controlling screw compressor and apparatus thereof

Publications (3)

Publication Number Publication Date
WO2010071379A2 true WO2010071379A2 (en) 2010-06-24
WO2010071379A3 WO2010071379A3 (en) 2010-08-26
WO2010071379A4 WO2010071379A4 (en) 2010-11-11

Family

ID=41337669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/007585 WO2010071379A2 (en) 2008-12-18 2009-12-18 Method and apparatus for controlling screw compressor

Country Status (2)

Country Link
KR (1) KR100908022B1 (en)
WO (1) WO2010071379A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192574A (en) * 2011-05-25 2011-09-21 宁波奥克斯电气有限公司 Cooling mode start-up control method for screw-compression multi-connected central air conditioner
CN102261719A (en) * 2011-05-25 2011-11-30 宁波奥克斯电气有限公司 Control method for starting heating mode of screw-type compressed multi-connected central air conditioner
CN102331123A (en) * 2011-05-30 2012-01-25 宁波奥克斯电气有限公司 Safety control method for lubricating oil of multi-unit air conditioner of screw compressor
CN102331124A (en) * 2011-05-30 2012-01-25 宁波奥克斯电气有限公司 Control method for preventing multi-unit air conditioner screw compressor from liquid impact
CN102401513A (en) * 2011-09-16 2012-04-04 宁波奥克斯电气有限公司 Ice storage and cold release control method of combined-type screw ice storage air-conditioner

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101064538B1 (en) * 2011-05-25 2011-09-14 주식회사 건영기계 Smart air compressor system
KR101174430B1 (en) 2012-01-20 2012-08-16 김금균 An air compressor auxiliary control apparatus and an auxiliary control process thereby
KR101460036B1 (en) * 2013-05-03 2014-11-11 경원기계공업(주) Inverter Compressor System and Method for Controlling thereof
KR101468623B1 (en) * 2014-07-15 2014-12-04 주식회사 건영기계 Multi-Function Air Compressor Energy Saving System
KR101544037B1 (en) * 2014-12-19 2015-08-13 주식회사 건영기계 System and method for controlling driving of an air compressor for saving energy
KR20180077701A (en) * 2016-12-29 2018-07-09 주식회사 에스피앤알 External Inverter connected to air compressor and operating method of the same
KR101892714B1 (en) * 2017-11-24 2018-08-28 주식회사 반석테크 Auger control system with reactor start and inverter control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010044668A (en) * 2001-03-15 2001-06-05 성갑제 Sung gabje control system
JP2001342982A (en) * 2000-06-02 2001-12-14 Hitachi Ltd Screw compressor device and operating and controlling method
KR200374633Y1 (en) * 2004-11-10 2005-02-02 주식회사 건영기계 Screw compressor controller

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100290124B1 (en) 1999-03-18 2001-05-15 김정자 A control apparatus of screw comprssor for an railcar
KR200319447Y1 (en) 2002-12-24 2003-07-12 김만수 Suction and Compression AIR PUMP

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342982A (en) * 2000-06-02 2001-12-14 Hitachi Ltd Screw compressor device and operating and controlling method
KR20010044668A (en) * 2001-03-15 2001-06-05 성갑제 Sung gabje control system
KR200374633Y1 (en) * 2004-11-10 2005-02-02 주식회사 건영기계 Screw compressor controller

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192574A (en) * 2011-05-25 2011-09-21 宁波奥克斯电气有限公司 Cooling mode start-up control method for screw-compression multi-connected central air conditioner
CN102261719A (en) * 2011-05-25 2011-11-30 宁波奥克斯电气有限公司 Control method for starting heating mode of screw-type compressed multi-connected central air conditioner
CN102192574B (en) * 2011-05-25 2013-03-06 宁波奥克斯电气有限公司 Cooling mode start-up control method for screw-compression multi-connected central air conditioner
CN102261719B (en) * 2011-05-25 2013-06-05 宁波奥克斯电气有限公司 Control method for starting heating mode of screw-type compressed multi-connected central air conditioner
CN102331123A (en) * 2011-05-30 2012-01-25 宁波奥克斯电气有限公司 Safety control method for lubricating oil of multi-unit air conditioner of screw compressor
CN102331124A (en) * 2011-05-30 2012-01-25 宁波奥克斯电气有限公司 Control method for preventing multi-unit air conditioner screw compressor from liquid impact
CN102401513A (en) * 2011-09-16 2012-04-04 宁波奥克斯电气有限公司 Ice storage and cold release control method of combined-type screw ice storage air-conditioner

Also Published As

Publication number Publication date
WO2010071379A4 (en) 2010-11-11
KR100908022B1 (en) 2009-07-15
WO2010071379A3 (en) 2010-08-26

Similar Documents

Publication Publication Date Title
WO2010071379A2 (en) Method and apparatus for controlling screw compressor
JP2004187493A (en) Speed-change controller of motor
JP5715183B2 (en) Multi-stage high pressure compressor
CN101395430B (en) Outdoor equipment for load driving apparatus and air conditioner, and load driving method
WO2013109022A1 (en) Auxiliary control device for compressor and auxiliary control method for compressor thereof
CN104141604A (en) Frequency converter special for air compressor and air compressor variable-frequency drive control system
WO2009088203A2 (en) Apparatus and method for controlling operation of compressor
CN106864203A (en) A kind of control method for frequency conversion air conditioner and system
CN201321422Y (en) Control system of pure oxygen combustion float glass process glass melting furnace fan
WO2015147424A1 (en) Air conditioner and method for controlling the same
CN202056040U (en) Control system for multiple air compressors
WO2012005497A2 (en) Device and method for controlling compressor, and refrigerator including same
CN100403472C (en) Electronic digital pressure switch
WO2011132904A2 (en) Apparatus and method for controlling power of vehicle for carrying frozen, refrigerated and heated food
JP2012031789A (en) Method for controlling compact compressor
CN208888617U (en) Plant control unit and the equipment for using the control device
CN1449113A (en) Microprocessor controlled AC switch circuit
CN109944785A (en) A kind of vacuum method for controlling pump and system
KR200374633Y1 (en) Screw compressor controller
WO2013122331A1 (en) Real-time power saving device for hydraulic systems
CN1888678A (en) Stand-by energy-saving air conditioner
KR20070013553A (en) Muti- motor start/stop system and control method
JP2005042562A (en) Control device and gas supply device
KR200367758Y1 (en) Compressor
JP2001033138A (en) Refrigeration system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833657

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833657

Country of ref document: EP

Kind code of ref document: A2