WO2010071144A1 - Glass - Google Patents

Glass Download PDF

Info

Publication number
WO2010071144A1
WO2010071144A1 PCT/JP2009/070959 JP2009070959W WO2010071144A1 WO 2010071144 A1 WO2010071144 A1 WO 2010071144A1 JP 2009070959 W JP2009070959 W JP 2009070959W WO 2010071144 A1 WO2010071144 A1 WO 2010071144A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
composition
optical
refractive index
bao
Prior art date
Application number
PCT/JP2009/070959
Other languages
French (fr)
Japanese (ja)
Inventor
米澤茂樹
橘高重雄
坂口浩一
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2010542984A priority Critical patent/JPWO2010071144A1/en
Publication of WO2010071144A1 publication Critical patent/WO2010071144A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers

Definitions

  • the present invention relates to glass, particularly glass that is suitably used as an optical material.
  • Optical systems used in cameras, microscopes, telescopes, endoscopes, etc. correct aberrations by combining lenses made of materials with different optical properties (mainly refractive index and Abbe number representing wavelength dispersion). ing.
  • the wider the combination of the refractive index and the Abbe number the greater the degree of freedom in optical design, which is advantageous.
  • a high refractive index material and a low dispersion material material having a large Abbe number
  • optical glass which is a typical lens material, a new composition has been developed in the direction of higher refractive index and lower dispersion, and it continues today.
  • FIG. 5 shows the refractive index and Abbe number of about 100 types of optical glass commercially available from a certain optical glass manufacturer (Sumita Optical Glass).
  • the area where the points are plotted is a realizable range as the optical glass. This region is almost the same even in the case of products from other optical glass manufacturers.
  • Crystallization may occur as a result of the growth of small crystals in the glass, but when the glass is in contact with a solid (such as clay or platinum as a crucible material), the interface is It is known that crystallization is very likely to occur as a nucleation point.
  • a solid such as clay or platinum as a crucible material
  • the crystallization of the glass proceeds in the intermediate temperature range between the molten state and the solid state.
  • the atoms In the molten state, the atoms can move freely to some extent, so the crystal does not precipitate. In the solid state, the atoms do not move, so the crystal does not grow. Therefore, it can be said that crystallization can be prevented if it passes through a temperature range where crystallization occurs due to rapid cooling in a short time.
  • rapid cooling a method of “placing a molten raw material between metal rollers” or “injecting it into water” is used.
  • the glass obtained by such a quenching method has a problem of being difficult to use as an optical element such as a lens because it is in the form of a fine powder or flake.
  • glass is produced by a containerless solidification method in which the raw material is suspended in the air with an upward gas nozzle and irradiated with a laser in that state to vitrify it.
  • a method is disclosed (for example, see Patent Document 1). According to this method, since the glass can be melted and solidified without being in contact with a container such as a crucible, crystallization with the interface as a nucleation point can be prevented. As a result, a glass sphere having a weight of 20 mg composed of barium titanate, which is a ferroelectric substance that is very easily crystallized, is obtained.
  • Patent Document 2 lists many glass compositions produced by the containerless solidification method. For example, a plurality of examples of glass having a La 2 O 3 —TiO 2 —ZrO 2 -based composition (which may not contain ZrO 2 ) produced using a containerless solidification method are illustrated.
  • the refractive index of this ternary glass is 2.2 or more, which is much higher than general optical glass. Therefore, this ternary glass is very useful as an optical material such as a lens.
  • the present invention has been made to solve the above-described problems, and can be an optical material having a high refractive index and low dispersion, which could not be realized by a general optical glass or a conventional oxide glass based on TiO 2. It is an object to provide glass.
  • the present invention includes WO 3 and at least one selected from the group consisting of La 2 O 3 , SrO and BaO, and the composition expressed in mol% is 25% ⁇ WO 3 ⁇ 85% is satisfied, and (I) 15% ⁇ La 2 O 3 ⁇ 25%, (Ii) 15% ⁇ SrO ⁇ 25%, and (Iii) 15% ⁇ BaO ⁇ 25%, A glass that satisfies at least one of the three conditions is provided.
  • the glass of the present invention can realize a high refractive index and low dispersion, which has been difficult to realize with general optical glass or oxide glass having a conventional composition based on TiO 2 . For this reason, the area
  • the glass of the present invention has a composition that is easy to crystallize compared to the composition of general optical glass, but can be vitrified at low cost by using a manufacturing method such as a rapid cooling method or a containerless solidification method. It becomes.
  • the glass of the present invention contains WO 3 and at least one selected from the group consisting of La 2 O 3 , SrO and BaO.
  • the composition of the glass of the present invention expressed in mol%, satisfies 25% ⁇ WO 3 ⁇ 85%, and (I) 15% ⁇ La 2 O 3 ⁇ 25%, (Ii) 15% ⁇ SrO ⁇ 25%, and (Iii) 15% ⁇ BaO ⁇ 25%, At least one of the three conditions is satisfied.
  • the glass of this invention may contain oxide components other than the said component. In that case, an oxide component other than the above components may be added to improve the optical properties, easiness of vitrification, chemical durability and the like of the glass of the present invention.
  • the glass of the present invention may be substantially composed of the above components (consisting of WO 3 and at least one selected from the group consisting of La 2 O 3 , SrO and BaO). Satisfies the above composition range.
  • substantially composed of the above components means that other components than the above components are not included except for components inevitably mixed as impurities.
  • the component mixed as an impurity is 5 mol% or less, for example, Preferably it is 2 mol% or less.
  • the glass of the present invention contains WO 3 as an essential component. Combining WO 3 with other oxides can greatly reduce its melting point. Therefore, by combining WO 3 with a component that can realize low dispersion at a high refractive index, such as La 2 O 3 , it is possible to easily melt the raw material and vitrify it. Furthermore, according to the composition of the glass of the present invention, a high refractive index and low dispersion can be realized, so that it is possible to further widen the optical property area of the optical glass.
  • the glass of the present invention can be a glass satisfying a refractive index n d of 1.90 ⁇ n d ⁇ 2.30 and an Abbe number ⁇ d of 25 ⁇ ⁇ d ⁇ 45 as preferable optical characteristics.
  • This region of preferred optical properties is illustrated in FIGS.
  • This preferred optical property region is on the left side (low dispersion side) in FIG. 1 and FIG. 5 than the Abbe number region of optical glass having a refractive index of more than 1.90 among general optical glass.
  • Optical design that was not possible with optical glass can be realized.
  • a first composition example of the glass of the present invention there may be mentioned one having a mixture of WO 3 and SrO as an essential component. Since SrO is a component that lowers the melting point of glass, there is an advantage that it is easily vitrified. Therefore, for example, as shown in Example 1 to be described later, when the composition of WO 3 is 80 mol% and SrO is 20 mol%, a glass of a certain size can be obtained by a rapid cooling method. From this, a suitable composition range that is easy to vitrify is shown in mol%, and is in the vicinity of the composition 1-1 of Example 1. 75% ⁇ WO 3 ⁇ 85% 15% ⁇ SrO ⁇ 25% It is.
  • a second composition example of the glass of the present invention there may be mentioned one having a mixture of WO 3 and La 2 O 3 as an essential component. Examples 2 and 3 described later correspond to this second composition example. Since La 2 O 3 is a component having a high refractive index and a low dispersion, according to the second composition example, a glass having a high refractive index and a low dispersion can be obtained more effectively.
  • the second composition example or higher refractive index by adding a certain amount of TiO 2, it may be or added SiO 2.
  • SiO 2 has an effect of facilitating vitrification, and it becomes easy to make glass of a certain size by a rapid cooling method.
  • composition system containing all of WO 3 La 2 O 3, TiO 2, from the results of Example 3, shown in mol%, 25% ⁇ WO 3 ⁇ 55% 15% ⁇ La 2 O 3 ⁇ 25% 25% ⁇ TiO 2 ⁇ 55% 0% ⁇ SiO 2 ⁇ 10%
  • a glass having a mixture of WO 3 and BaO as an essential component can be mentioned.
  • Example 4 described later corresponds to the third composition example.
  • BaO is not as high as La 2 O 3, it is a component having a high refractive index and a low dispersion. Therefore, according to the third composition example, a glass having a high refractive index and a low dispersion can be obtained more effectively.
  • BaO also has the effect of facilitating vitrification.
  • the composition of WO 3 is 80 mol% and BaO is 20 mol%, it becomes easy to form a glass of a certain size by a rapid cooling method. From this, the preferred range that is easy to vitrify is shown in mol%, and in the vicinity of the composition 4-1 of Example 4, 75% ⁇ WO 3 ⁇ 85% 15% ⁇ BaO ⁇ 25% It is.
  • the glass of the present invention may be composed of only the respective components shown in the first to third composition examples, or may contain other components.
  • B 2 O 3 , Na 2 O, MgO, P 2 O 5 , K 2 O, ZrO 2 , ZnO, Nb 3 O 5 , MoO 3 , AgO, SnO 2 , Ta 2 O 5 , Nd 2 O 5 , PbO or the like may be added in the range of 10 mol% or less to improve the optical properties, easiness of vitrification, chemical durability, etc. for the glass of the present invention.
  • the glass of the present invention can be applied as a material for an optical element such as a lens because the minimum portion can have a relatively large size of 0.5 mm or more.
  • composition of the glass of the present invention is smaller in dispersion than general optical glass, it is easier to crystallize than general optical glass, so vitrification may be difficult by melting and cooling (solidification) with a normal crucible. . Even in that case, for example, as shown in the examples described later, by using a rapid cooling method such as "dropping on a metal plate", “dropping into boiling water", or a containerless solidification method, A transparent and homogeneous glass having a certain size can also be obtained.
  • Example 1 In Example 1, an attempt was made to vitrify the first composition example (composition 1-1 shown in Table 1) by a rapid cooling method. That is, powders of strontium oxide and tungsten oxide (special grade reagent) were mixed so that the composition of the obtained glass was SrO: 20% and WO 3 : 80% to obtain a batch of 25 g. This batch was put in an alumina crucible and melted at 1300 ° C. for 30 minutes in an electric furnace. Separately, about 1 liter of pure water was placed in a stainless steel container and boiled with a gas burner. The alumina crucible was taken out from the electric furnace, and the molten glass was sequentially poured into boiling pure water in a stainless steel container. After pouring, the gas burner was stopped and the glass body in pure water was collected. This was dried to obtain a total of 3.5 g of a plurality of transparent and crack-free spherical glasses having a diameter of about 0.7 to 1.9 mm.
  • the composition 1-1 has a small dispersion (in other words, a large Abbe number) and falls within the range of preferable optical characteristics.
  • the refractive index was calculated from the focal position of the spherical glass.
  • a glass plate 3 having a pattern 3a formed on one side is placed on a stage 2 of a microscope 1, and a spherical glass 4 to be measured is placed thereon.
  • the surface 5 on which the pattern 3a of the glass plate 3 is formed is irradiated with light 5 from which illumination light 8 is made substantially monochromatic by a narrow-band interference filter 9 from below.
  • Example 2 In Example 2, an attempt was made to vitrify the second composition example (composition 2-1 shown in Table 1) containing WO 3 and La 2 O 3 as essential components by a rapid cooling method. That is, lanthanum oxide and tungsten oxide powder (special grade reagent) were mixed so that the composition of the obtained glass was La 2 O 3 : 20% and WO 3 : 80% to obtain a 25 g batch. This batch was put in an alumina crucible and melted at 1300 ° C. for 30 minutes in an electric furnace. Separately, about 1 liter of pure water was placed in a stainless steel container and boiled with a gas burner.
  • composition 2-1 shown in Table 1 containing WO 3 and La 2 O 3 as essential components by a rapid cooling method. That is, lanthanum oxide and tungsten oxide powder (special grade reagent) were mixed so that the composition of the obtained glass was La 2 O 3 : 20% and WO 3 : 80% to obtain a 25 g batch. This batch was put in an alumina
  • the alumina crucible was taken out from the electric furnace, and the molten glass was sequentially poured into boiling pure water in a stainless steel container. After pouring, the gas burner was stopped and the glass body in pure water was collected. This was dried to obtain a total of 0.25 g of a plurality of transparent and crack-free spherical glasses having a diameter of about 0.2 to 1.7 mm.
  • the refractive index n d and Abbe number ⁇ d were measured in the same manner as in Example 1. The results are shown in Table 1 and FIG. From FIG. 1, it can be seen that the composition 2-1 is in the range of preferable optical characteristics with small dispersion.
  • Example 3 In Example 3, among the second composition examples, WO 3 and La 2 O 3 are essential components, and further TiO 2 and / or SiO 2 are contained as other components (compositions 3-1 to 3 shown in Table 1). 3-4) was melted by a containerless solidification method.
  • FIG. 4 is a schematic diagram showing the entire apparatus used in this example in order to melt a glass raw material by a containerless solidification method.
  • This apparatus is provided with an ejection nozzle 41 that allows gas to flow out in order to float the glass raw material (melt).
  • the ejection nozzle 41 is fixed to a column 42 and is connected to a tube 43 for supplying gas.
  • the tube 43 is connected to a high-pressure gas cylinder (not shown) through a regulator 44 and a flow meter 45 for adjusting the flow rate.
  • This apparatus further includes a laser oscillator 46 for irradiating the glass material with laser light.
  • the laser oscillator 46 is fixed to the lateral branch 47 of the support column 42 to which the ejection nozzle 41 is fixed.
  • the traveling direction of the laser beam 48 emitted from the laser oscillator 46 is changed by the mirror 49 fixed to the lateral branch 47, and is focused on the floating body 51 (glass raw material) by the convex lens 50.
  • a CCD camera 52 for observing the state of the floating body 51 is installed on the side opposite to the fixed side of the laser oscillator 46.
  • a raw material pellet was separately prepared.
  • the raw material pellets are made of glass material (metal oxide, etc.) powder (special grade chemicals) each having a predetermined molarity so that the resulting glass has the compositions 3-1 to 3-4 shown in Table 1.
  • a glass raw material is prepared by mixing at a ratio. The prepared glass material was ground in a mortar, ethanol was added and mixed well, then placed in a ceramic crucible, and fired at 1000 ° C. for 12 hours (first time) in an electric furnace. The glass raw material after firing is ground again in a mortar, and the viscosity is adjusted by adding ethanol.
  • the pellet produced in this manner is placed on the ejection nozzle 41 in FIG. 4 and suspended with a regulator 44 and a flow meter 45 at an appropriate gas flow rate, and then the laser oscillator 46 is activated to irradiate the pellet with laser light.
  • the pellet was heated.
  • the pellet melted in a few seconds and floated in the nozzle 41 in a spherical state due to its surface tension.
  • the melt was quenched and turned into a spherical glass. Since the temperature of the spherical glass dropped to room temperature in a few seconds, it could be taken out from the ejection nozzle 41 with tweezers.
  • the laser oscillator 46 includes a Universal Laser System Inc., USA. A carbon dioxide laser device “ULC-100-OEM” manufactured by the company was used. The oscillation wavelength was 10.6 ⁇ m, and the maximum output was nominally 100 W.
  • the raw material pellets were placed in the ejection nozzle 41 of the apparatus shown in FIG. 4, and dry air was flowed at a flow rate of 0.3 to 0.6 L / min to suspend the raw material pellets.
  • the laser beam was irradiated to melt the raw material pellets, and then cooled by stopping the laser beam irradiation.
  • a colorless and transparent spherical glass having a diameter of about 1.2 mm was obtained, and devitrification and striae were not observed.
  • the refractive index n d and Abbe number ⁇ d were measured in the same manner as in Example 1. The results are shown in Table 1 and FIG. As can be seen from FIG. 1, the compositions 3-1 to 3-4 are in the range of preferable optical characteristics with small dispersion.
  • Example 4 In Example 4, for the third composition example (composition 4-1 shown in Table 1) containing WO 3 and BaO as essential components, vitrification was attempted using the same containerless solidification method as in Example 3. As a result, a colorless and transparent spherical glass having a diameter of about 1.2 mm was obtained, and devitrification and striae were not observed. With respect to the obtained spherical glass, the refractive index n d and Abbe number ⁇ d were measured in the same manner as in Example 1. The results are shown in Table 1 and FIG. From FIG. 1, it can be seen that the composition 4-1 is in the range of preferable optical characteristics with small dispersion. With composition 4-1, a transparent spherical glass could be produced by the same rapid cooling method as in Example 1.
  • the glass obtained by the present invention is excellent in optical properties, and can be realized even if it is a certain size. Therefore, it can be suitably used for an optical element such as a lens.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)

Abstract

Disclosed is a glass which comprises WO3 and at least one component selected from a group consisting of La2O3, SrO and BaO, wherein the content (by mol%) of WO3 meets the requirement represented by the following formula: 25% ≤ WO3 ≤ 85%, and which meets at least one of the three requirements represented by the following formulae (i) to (iii): (i) 15% ≤ La2O3 ≤ 25%; (ii) 15% ≤ SrO ≤ 25%; and (iii) 15% ≤ BaO ≤ 25%.  For example, when the glass meets the requirement represented by formula (i), the glass may additionally comprise at least one component selected from a group consisting of TiO2 and SiO2.  In this case, the glass has following contents (by mol%): 25% ≤ WO3 ≤ 85%, 15% ≤La2O3 ≤ 25%, 0% ≤ TiO2 ≤ 55%, and 0% ≤ SiO2 ≤ 10%.  It becomes possible to provide a glass having, a refractive index (nd) and an Abbe’s number (νd) respectively represented by the following formulae: 1.90 ≤ nd ≤ 2.30 and 25 ≤νd ≤ 45.

Description

ガラスGlass
 本発明は、ガラス、特に光学材料として好適に用いられるガラスに関する。 The present invention relates to glass, particularly glass that is suitably used as an optical material.
 カメラ、顕微鏡、望遠鏡及び内視鏡等に用いられる光学系は、光学特性(主に屈折率と、その波長分散を表すアッベ数)の異なる材料で形成されたレンズを組み合わせて、収差を補正している。屈折率とアッベ数との組み合わせの幅が広いほど光学設計の自由度が増すので有利であり、特に高屈折率材料、低分散材料(アッベ数の大きい材料)は有用である。代表的なレンズ材料である光学ガラスについても、歴史的に、より高屈折率、より低分散の方向に新しい組成が開発され、それは現在も続いている。 Optical systems used in cameras, microscopes, telescopes, endoscopes, etc., correct aberrations by combining lenses made of materials with different optical properties (mainly refractive index and Abbe number representing wavelength dispersion). ing. The wider the combination of the refractive index and the Abbe number, the greater the degree of freedom in optical design, which is advantageous. Particularly, a high refractive index material and a low dispersion material (material having a large Abbe number) are useful. Regarding optical glass, which is a typical lens material, a new composition has been developed in the direction of higher refractive index and lower dispersion, and it continues today.
 図5は、ある光学ガラスメーカー(住田光学ガラス)から市販されている約100種類の光学ガラスについて、屈折率とアッベ数とを図示したものである。点がプロットされている領域が、光学ガラスとして実現可能な範囲である。なお、この領域は、他の光学ガラスメーカーの製品の場合でもほとんど一致している。 FIG. 5 shows the refractive index and Abbe number of about 100 types of optical glass commercially available from a certain optical glass manufacturer (Sumita Optical Glass). The area where the points are plotted is a realizable range as the optical glass. This region is almost the same even in the case of products from other optical glass manufacturers.
 光学ガラスの光学特性の領域を広げるにあたって、最も大きな障害となるのはガラスの結晶化である。光学ガラスは、ルツボで熔融した原料を冷却、固化させることによって作られるが、結晶ができやすいガラス組成の場合は冷却中に結晶が析出するため、透明で均一なガラス塊とすることができない。このような現象は、「結晶化」あるいは「失透」と呼ばれる。図5に示す領域外のガラスが実用化できていない最大の理由は、結晶化である。 When expanding the optical properties of optical glass, the biggest obstacle is glass crystallization. Optical glass is produced by cooling and solidifying a raw material melted with a crucible. However, in the case of a glass composition in which crystals are easily formed, crystals are precipitated during cooling, so that a transparent and uniform glass mass cannot be obtained. Such a phenomenon is called “crystallization” or “devitrification”. The biggest reason why the glass outside the region shown in FIG. 5 has not been put into practical use is crystallization.
 結晶化は、ガラス中に生じた微小な結晶を起点として、これが成長することによって起こることもあるが、ガラスが固体(例えばルツボ材料としての粘土や白金)と接触していると、その界面を核生成点として結晶化が非常に起こりやすいことが知られている。 Crystallization may occur as a result of the growth of small crystals in the glass, but when the glass is in contact with a solid (such as clay or platinum as a crucible material), the interface is It is known that crystallization is very likely to occur as a nucleation point.
 ガラスの結晶化が進行するのは、熔融状態と固体状態との中間の温度域である。熔融状態では原子がある程度自由に動けるので結晶は析出せず、また、固体状態では原子が動かないので結晶は成長しない。したがって、急冷により結晶化の起こる温度領域を短時間で通過してしまえば、結晶化を防ぐことができるといえる。急冷の具体的な方法としては、熔融状態の原料を、「金属ローラーの間に挟む」、「水中に投入する」、といった方法が用いられている。しかしながら、このような急冷法によって得られるガラスは、微細な粉状あるいはフレーク状といった形態となるので、例えばレンズのような光学素子として用いることが難しい、という問題点があった。レンズの材料とするためには、ある程度の大きさ(少なくとも最小径(最小部分の長さ)が0.5mm以上、好ましくは1mm以上の大きさ)を有する、均質なガラス体を用意する必要がある。 The crystallization of the glass proceeds in the intermediate temperature range between the molten state and the solid state. In the molten state, the atoms can move freely to some extent, so the crystal does not precipitate. In the solid state, the atoms do not move, so the crystal does not grow. Therefore, it can be said that crystallization can be prevented if it passes through a temperature range where crystallization occurs due to rapid cooling in a short time. As a specific method of rapid cooling, a method of “placing a molten raw material between metal rollers” or “injecting it into water” is used. However, the glass obtained by such a quenching method has a problem of being difficult to use as an optical element such as a lens because it is in the form of a fine powder or flake. In order to use the lens material, it is necessary to prepare a homogeneous glass body having a certain size (at least the minimum diameter (minimum portion length) is 0.5 mm or more, preferably 1 mm or more). is there.
 結晶化しやすい組成でありながら、ある程度の大きさのガラスを製造する方法として、原料を上向きのガスノズルにより空中に浮遊させ、その状態でレーザを照射してガラス化する、無容器凝固法によるガラス製造方法が開示されている(例えば、特許文献1参照)。この方法によれば、ガラスをルツボ等の容器と接触しないまま熔融及び凝固させることができるため、界面を核生成点とする結晶化を防ぐことができる。その結果、非常に結晶化しやすい強誘電体であるチタン酸バリウムを組成とする重量20mgのガラス球が得られている。 As a method of producing a glass of a certain size while having a composition that is easy to crystallize, glass is produced by a containerless solidification method in which the raw material is suspended in the air with an upward gas nozzle and irradiated with a laser in that state to vitrify it. A method is disclosed (for example, see Patent Document 1). According to this method, since the glass can be melted and solidified without being in contact with a container such as a crucible, crystallization with the interface as a nucleation point can be prevented. As a result, a glass sphere having a weight of 20 mg composed of barium titanate, which is a ferroelectric substance that is very easily crystallized, is obtained.
 また、特許文献2には、上記無容器凝固法により作製されたガラスの組成が多数列挙されている。例えば、無容器凝固法を用いて作製されたLa23-TiO2-ZrO2系組成を有するガラス(ZrO2を含まない場合もある)の例が、複数例示されている。 Patent Document 2 lists many glass compositions produced by the containerless solidification method. For example, a plurality of examples of glass having a La 2 O 3 —TiO 2 —ZrO 2 -based composition (which may not contain ZrO 2 ) produced using a containerless solidification method are illustrated.
 La23-TiO2-ZrO2系組成(以下、便宜上、ZrO2が含まれない場合も含めて3成分系と記載する。)に含まれる成分はいずれも高屈折率成分である。そのため、この3成分系ガラスの屈折率は2.2以上となり、一般の光学ガラスよりも非常に高いものとなる。したがって、この3成分系ガラスは、レンズ等の光学材料として非常に有用である。 All of the components contained in the La 2 O 3 —TiO 2 —ZrO 2 composition (hereinafter referred to as a three-component system including the case where ZrO 2 is not contained for convenience) are high refractive index components. Therefore, the refractive index of this ternary glass is 2.2 or more, which is much higher than general optical glass. Therefore, this ternary glass is very useful as an optical material such as a lens.
特開2006-248801号公報JP 2006-248801 A 国際公開第2008/032789号パンフレットInternational Publication No. 2008/032789 Pamphlet
 しかしながら、上記特許文献に具体的な実施例として記載されている3成分系のガラス組成は、すべて非常に多量のTiO2を含んでいる。具体的には、TiO2のモル比率は最も少ない例(特許文献2の実施例サンプル9-1)でも57%であり、他の例ではすべて80%を超えている。このことから、TiO2をガラス形成の基幹としていることは明らかである。TiO2は屈折率を非常に高くする成分であるが、その反面、波長による分散を大きくする働きも大きい。したがって、TiO2を多く含むガラスとして従来提案されているガラス組成では、アッベ数25未満の高分散材料となってしまう。 However, all of the three-component glass compositions described as specific examples in the above-mentioned patent documents contain a very large amount of TiO 2 . Specifically, the molar ratio of TiO 2 is 57% even in the smallest example (Example sample 9-1 of Patent Document 2), and in all other examples it exceeds 80%. From this, it is clear that TiO 2 is the basis for glass formation. TiO 2 is a component that makes the refractive index very high, but on the other hand, it also has a great effect of increasing dispersion due to wavelength. Therefore, the glass composition conventionally proposed as a glass containing a large amount of TiO 2 results in a highly dispersed material having an Abbe number of less than 25.
 本発明は上記問題点を解決するためになされたものであり、一般の光学ガラスや従来のTiO2を基幹とする酸化物ガラスでは実現できなかった、高屈折率及び低分散の光学材料となり得るガラスを提供することを課題とする。 The present invention has been made to solve the above-described problems, and can be an optical material having a high refractive index and low dispersion, which could not be realized by a general optical glass or a conventional oxide glass based on TiO 2. It is an object to provide glass.
 上記の課題を解決するために、本発明は、WO3と、La23、SrO及びBaOからなる群から選ばれる少なくとも1種と、を含み、モル%で示す組成が、25%≦WO3≦85%を満たし、且つ、
(i)15%≦La23≦25%、
(ii)15%≦SrO≦25%、及び、
(iii)15%≦BaO≦25%、
の3つの条件のうち少なくとも何れか1つの条件を満たすガラスを提供する。
In order to solve the above problems, the present invention includes WO 3 and at least one selected from the group consisting of La 2 O 3 , SrO and BaO, and the composition expressed in mol% is 25% ≦ WO 3 ≦ 85% is satisfied, and
(I) 15% ≦ La 2 O 3 ≦ 25%,
(Ii) 15% ≦ SrO ≦ 25%, and
(Iii) 15% ≦ BaO ≦ 25%,
A glass that satisfies at least one of the three conditions is provided.
 本発明のガラスは、一般の光学ガラスやTiO2を基幹とする従来の組成の酸化物ガラスでは実現することが困難であった、高屈折率且つ低分散を実現できる。このため、本発明のガラスを光学ガラスとして用いることにより、光学ガラスの光学特性の領域を従来よりも広げることができる。また、本発明のガラスは、一般の光学ガラスの組成と比較して結晶化しやすい組成を有するものの、急冷法や無容器凝固法といった製造方法を用いることにより、低コストでガラス化することが可能となる。 The glass of the present invention can realize a high refractive index and low dispersion, which has been difficult to realize with general optical glass or oxide glass having a conventional composition based on TiO 2 . For this reason, the area | region of the optical characteristic of optical glass can be expanded rather than before by using the glass of this invention as optical glass. In addition, the glass of the present invention has a composition that is easy to crystallize compared to the composition of general optical glass, but can be vitrified at low cost by using a manufacturing method such as a rapid cooling method or a containerless solidification method. It becomes.
本発明の実施例によって得られたガラスの光学特性と、好ましい光学特性の範囲とを示す図である。It is a figure which shows the optical characteristic of the glass obtained by the Example of this invention, and the range of a preferable optical characteristic. 実施例において、球状ガラスの屈折率を測定する様子を示す図である。In an Example, it is a figure which shows a mode that the refractive index of spherical glass is measured. 実施例において、球状ガラスの屈折率を測定する際の、パターンと球状ガラスとの光学的間隔と、球状ガラスの上側表面からパターンの実像までの距離とを説明する図である。In an Example, it is a figure explaining the optical space | interval of a pattern and spherical glass at the time of measuring the refractive index of spherical glass, and the distance from the upper surface of spherical glass to the real image of a pattern. 実施例において、無容器凝固法によってガラス原料を熔融する際に用いた装置を示す模式図である。In an Example, it is a schematic diagram which shows the apparatus used when melting a glass raw material by the containerless solidification method. 市販されている光学ガラスの光学特性の範囲と、好ましい光学特性の範囲とを示す図である。It is a figure which shows the range of the optical characteristic of the optical glass marketed, and the range of a preferable optical characteristic.
 本発明のガラスは、WO3と、La23、SrO及びBaOからなる群から選ばれる少なくとも1種と、を含んでいる。本発明のガラスの組成は、モル%で示して、25%≦WO3≦85%を満たし、且つ、
(i)15%≦La23≦25%、
(ii)15%≦SrO≦25%、及び、
(iii)15%≦BaO≦25%、
の3つの条件のうち少なくとも何れか1つの条件を満たす。なお、本発明のガラスは、上記成分以外の他の酸化物成分を含んでいてもよい。その場合は、上記成分以外の酸化物成分を添加して、本発明のガラスについて、光学特性、ガラス化しやすさ及び化学的耐久性等を改良してもよい。また、本発明のガラスは、実質的に上記成分からなる(WO3と、La23、SrO及びBaOからなる群から選ばれる少なくとも1種とからなる)ものであってもよく、その場合も上記組成範囲を満たす。なお、「実質的に上記成分からなる」とは、不純物として不可避に混入する成分を除き、上記成分以外の他の成分が含まれないということを意味する。なお、不純物として混入する成分は、例えば5mol%以下、好ましくは2mol%以下である。
The glass of the present invention contains WO 3 and at least one selected from the group consisting of La 2 O 3 , SrO and BaO. The composition of the glass of the present invention, expressed in mol%, satisfies 25% ≦ WO 3 ≦ 85%, and
(I) 15% ≦ La 2 O 3 ≦ 25%,
(Ii) 15% ≦ SrO ≦ 25%, and
(Iii) 15% ≦ BaO ≦ 25%,
At least one of the three conditions is satisfied. In addition, the glass of this invention may contain oxide components other than the said component. In that case, an oxide component other than the above components may be added to improve the optical properties, easiness of vitrification, chemical durability and the like of the glass of the present invention. The glass of the present invention may be substantially composed of the above components (consisting of WO 3 and at least one selected from the group consisting of La 2 O 3 , SrO and BaO). Satisfies the above composition range. Note that “substantially composed of the above components” means that other components than the above components are not included except for components inevitably mixed as impurities. In addition, the component mixed as an impurity is 5 mol% or less, for example, Preferably it is 2 mol% or less.
 本発明のガラスは、WO3を必須成分とする。WO3を他の酸化物と組み合わせると、その融点を大幅に下げることが可能となる。したがって、WO3を、例えばLa23のような高屈折率で低分散を実現できる成分と組み合わせることによって、原料を容易に溶かしてガラス化することが可能となる。さらに、本発明のガラスの組成によれば、高屈折率且つ低分散を実現できるので、光学ガラスの光学特性の領域をより広げることが可能となる。 The glass of the present invention contains WO 3 as an essential component. Combining WO 3 with other oxides can greatly reduce its melting point. Therefore, by combining WO 3 with a component that can realize low dispersion at a high refractive index, such as La 2 O 3 , it is possible to easily melt the raw material and vitrify it. Furthermore, according to the composition of the glass of the present invention, a high refractive index and low dispersion can be realized, so that it is possible to further widen the optical property area of the optical glass.
 例えば、本発明のガラスは、好ましい光学特性として、屈折率ndが1.90≦nd≦2.30で、アッベ数νdが25≦νd≦45を満たすガラスとできる。この好ましい光学特性の領域は、図1及び図5に図示されている。この好ましい光学特性の領域は、一般の光学ガラスうち屈折率が1.90を超える光学ガラスが有するアッベ数の領域よりも、図1及び図5中で左側(低分散側)にあり、一般の光学ガラスでは不可能であった光学設計を実現できる。また、屈折率ndの下限1.90は、通常の光学ガラスと比較しても最高クラスであり、光学設計上非常に有用である。また、より好ましい屈折率ndの下限値は2.00である。 For example, the glass of the present invention can be a glass satisfying a refractive index n d of 1.90 ≦ n d ≦ 2.30 and an Abbe number ν d of 25 ≦ ν d ≦ 45 as preferable optical characteristics. This region of preferred optical properties is illustrated in FIGS. This preferred optical property region is on the left side (low dispersion side) in FIG. 1 and FIG. 5 than the Abbe number region of optical glass having a refractive index of more than 1.90 among general optical glass. Optical design that was not possible with optical glass can be realized. The lower limit 1.90 of the refractive index n d, even compared to conventional optical glasses is the highest class, is very useful in the optical design. Further, the lower limit of the preferable refractive index n d is 2.00.
 本発明のガラスの第1の組成例として、WO3とSrOとの混合物を必須成分とするものが挙げられる。SrOはガラスの融点を下げる成分なので、ガラス化がしやすくなるという利点がある。そのため、例えば後述の実施例1に示すように、WO3が80mol%、SrOが20mol%の組成にすると、急冷法によってある程度の大きさのガラスとすることができる。このことから、ガラス化しやすい好適な組成範囲は、モル%で示して、実施例1の組成1-1の近傍の、
   75%≦WO3≦85%
   15%≦SrO≦25%
である。
As a first composition example of the glass of the present invention, there may be mentioned one having a mixture of WO 3 and SrO as an essential component. Since SrO is a component that lowers the melting point of glass, there is an advantage that it is easily vitrified. Therefore, for example, as shown in Example 1 to be described later, when the composition of WO 3 is 80 mol% and SrO is 20 mol%, a glass of a certain size can be obtained by a rapid cooling method. From this, a suitable composition range that is easy to vitrify is shown in mol%, and is in the vicinity of the composition 1-1 of Example 1.
75% ≦ WO 3 ≦ 85%
15% ≦ SrO ≦ 25%
It is.
 本発明のガラスの第2の組成例として、WO3とLa23との混合物を必須成分とするものが挙げられる。後述の実施例2及び3が、この第2の組成例に相当する。La23は高屈折率で低分散の成分なので、第2の組成例によれば、より効果的に高屈折率且つ低分散のガラスを得ることができる。また、この第2の組成例について、ある程度のTiO2を加えて屈折率をより高くしたり、SiO2を加えたりしてもよい。SiO2はガラス化を容易とする効果があり、急冷法によってある程度の大きさのガラスとすることが容易となる。この第2の組成例では、後述する実施例2と実施例3の結果から、モル%で示して、
   25%≦WO3≦85%
   15%≦La23≦25%
   0%≦TiO2≦55%
   0%≦SiO2≦10%
がガラス化しやすい好適な組成範囲である。
As a second composition example of the glass of the present invention, there may be mentioned one having a mixture of WO 3 and La 2 O 3 as an essential component. Examples 2 and 3 described later correspond to this second composition example. Since La 2 O 3 is a component having a high refractive index and a low dispersion, according to the second composition example, a glass having a high refractive index and a low dispersion can be obtained more effectively. As for the second composition example, or higher refractive index by adding a certain amount of TiO 2, it may be or added SiO 2. SiO 2 has an effect of facilitating vitrification, and it becomes easy to make glass of a certain size by a rapid cooling method. In this second composition example, from the results of Example 2 and Example 3 to be described later,
25% ≦ WO 3 ≦ 85%
15% ≦ La 2 O 3 ≦ 25%
0% ≦ TiO 2 ≦ 55%
0% ≦ SiO 2 ≦ 10%
Is a suitable composition range that is easy to vitrify.
 また、WO3、La23、TiO2のすべてを含む組成系については、実施例3の結果より、モル%で示して、
   25%≦WO3≦55%
   15%≦La23≦25%
   25%≦TiO2≦55%
   0%≦SiO2≦10%
が、ガラス化しやすい好適な組成範囲である。
As for the composition system containing all of WO 3, La 2 O 3, TiO 2, from the results of Example 3, shown in mol%,
25% ≦ WO 3 ≦ 55%
15% ≦ La 2 O 3 ≦ 25%
25% ≦ TiO 2 ≦ 55%
0% ≦ SiO 2 ≦ 10%
However, it is a suitable composition range which is easy to vitrify.
 本発明のガラスの第3の組成例として、WO3とBaOとの混合物を必須成分とするものが挙げられる。後述の実施例4が、この第3の組成例に相当する。BaOは、La23ほどではないが、高屈折率で低分散の成分なので、第3の組成例によれば、より効果的に高屈折率且つ低分散のガラスを得ることができる。また、BaOはガラス化を容易にする効果もある。第3の組成例の場合、例えば実施例4に示すように、WO3が80mol%、BaOが20mol%の組成にすると、急冷法によってある程度の大きさのガラスとすることが容易となる。このことから、ガラス化しやすい好適な範囲は、モル%で示して、実施例4の組成4-1の近傍の、
   75%≦WO3≦85%
   15%≦BaO≦25%
である。
As a third composition example of the glass of the present invention, a glass having a mixture of WO 3 and BaO as an essential component can be mentioned. Example 4 described later corresponds to the third composition example. Although BaO is not as high as La 2 O 3, it is a component having a high refractive index and a low dispersion. Therefore, according to the third composition example, a glass having a high refractive index and a low dispersion can be obtained more effectively. BaO also has the effect of facilitating vitrification. In the case of the third composition example, as shown in Example 4, for example, when the composition of WO 3 is 80 mol% and BaO is 20 mol%, it becomes easy to form a glass of a certain size by a rapid cooling method. From this, the preferred range that is easy to vitrify is shown in mol%, and in the vicinity of the composition 4-1 of Example 4,
75% ≦ WO 3 ≦ 85%
15% ≦ BaO ≦ 25%
It is.
 本発明のガラスは、第1~第3の組成例で示した上記各成分のみから構成されていてもよいし、他の成分を含んでいてもよい。例えば、B23、Na2O、MgO、P25、K2O、ZrO2、ZnO、Nb35、MoO3、AgO、SnO2、Ta25、Nd25、PbO等を10mol%以下の範囲で添加して、本発明のガラスについて、光学特性、ガラス化しやすさ、化学的耐久性等を改良してもよい。 The glass of the present invention may be composed of only the respective components shown in the first to third composition examples, or may contain other components. For example, B 2 O 3 , Na 2 O, MgO, P 2 O 5 , K 2 O, ZrO 2 , ZnO, Nb 3 O 5 , MoO 3 , AgO, SnO 2 , Ta 2 O 5 , Nd 2 O 5 , PbO or the like may be added in the range of 10 mol% or less to improve the optical properties, easiness of vitrification, chemical durability, etc. for the glass of the present invention.
 本発明のガラスは、例えば最小部分の長さが0.5mm以上の比較的大きなサイズとすることも可能であるため、レンズ等の光学素子の材料として適用可能である。 The glass of the present invention can be applied as a material for an optical element such as a lens because the minimum portion can have a relatively large size of 0.5 mm or more.
 次に、本発明のガラスの製造方法、特に冷却方法について説明する。 Next, a method for producing the glass of the present invention, particularly a cooling method will be described.
 本発明のガラスの組成は、一般の光学ガラスよりも分散が小さくなる反面、一般の光学ガラスよりも結晶化しやすいので、通常のルツボによる熔融及び冷却(凝固)ではガラス化が困難な場合がある。その場合でも、例えば、後述する実施例に示すように、熔融状態の原料を「金属板上に落とす」、「沸騰水中に投下する」といった急冷法、あるいは無容器凝固法を利用することにより、ある程度の大きさを有する透明で均質なガラスを得ることもできる。 Although the composition of the glass of the present invention is smaller in dispersion than general optical glass, it is easier to crystallize than general optical glass, so vitrification may be difficult by melting and cooling (solidification) with a normal crucible. . Even in that case, for example, as shown in the examples described later, by using a rapid cooling method such as "dropping on a metal plate", "dropping into boiling water", or a containerless solidification method, A transparent and homogeneous glass having a certain size can also be obtained.
 「沸騰水中に投下する」方法では、熔融体を沸騰水に投入することにより、熔融体近傍の水が直ちに気化し、気化熱による熔融体の冷却と、水蒸気による熔融体の水からの断熱が同時に行われる。したがって、迅速な冷却による熔融体のガラス化と、過度な冷却によるクラック発生の抑制との両方を実現できる。熔融体を水中に投入した直後は、水蒸気による断熱作用により短時間は高温が保たれるので粘性が低い状態である。このとき水蒸気発生により熔融体の一部は分断され、表面張力により球状となる。その後、水蒸気により熔融体は冷却され、結晶化温度域を速やかに通過してガラス化する。このようにして、熔融体から球状ガラスが得られる。なお、この方法では、沸騰水の代わりに、沸点ないし沸点付近の温度に保持した他の液体を使うことも、もちろん可能である。 In the method of “dropping into boiling water”, water in the vicinity of the melt is immediately vaporized by pouring the melt into boiling water. Done at the same time. Accordingly, both vitrification of the melt by rapid cooling and suppression of crack generation by excessive cooling can be realized. Immediately after throwing the melt into the water, the viscosity is low because the high temperature is maintained for a short time due to the heat insulating action of water vapor. At this time, a part of the melt is divided by the generation of water vapor and becomes spherical due to the surface tension. Thereafter, the melt is cooled by water vapor, and quickly passes through the crystallization temperature range to be vitrified. In this way, spherical glass is obtained from the melt. In this method, it is of course possible to use another liquid maintained at a boiling point or a temperature near the boiling point, instead of boiling water.
 以下、本発明について実施例を用いてさらに詳細に説明するが、本発明は、本発明の要旨を超えない限り、以下の実施例に限定されるものではない。また、以下の実施例において、各成分の含有量は全てモル%で示される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention. In the following examples, the contents of the respective components are all shown in mol%.
 (実施例1)
 実施例1では、第1の組成例(表1に示す組成1-1)について、急冷法によるガラス化を試みた。すなわち、得られるガラスの組成がSrO:20%、WO3:80%となるように酸化ストロンチウム及び酸化タングステンの粉末(試薬特級品)を混合し、25gのバッチを得た。このバッチをアルミナルツボに入れ、電気炉にて1300℃で30分間熔融した。別途、純水をステンレス製容器に約1リットル入れ、ガスバーナーにて沸騰させておいた。電気炉よりアルミナルツボを取り出し、熔融したガラスをステンレス容器中の沸騰している純水中に順次流し込んだ。流し込み終了後、ガスバーナーを止め、純水中のガラス体を回収した。これを乾燥させて、直径約0.7~1.9mmの透明でクラックのない複数個の球状ガラスを合計3.5g得た。
Example 1
In Example 1, an attempt was made to vitrify the first composition example (composition 1-1 shown in Table 1) by a rapid cooling method. That is, powders of strontium oxide and tungsten oxide (special grade reagent) were mixed so that the composition of the obtained glass was SrO: 20% and WO 3 : 80% to obtain a batch of 25 g. This batch was put in an alumina crucible and melted at 1300 ° C. for 30 minutes in an electric furnace. Separately, about 1 liter of pure water was placed in a stainless steel container and boiled with a gas burner. The alumina crucible was taken out from the electric furnace, and the molten glass was sequentially poured into boiling pure water in a stainless steel container. After pouring, the gas burner was stopped and the glass body in pure water was collected. This was dried to obtain a total of 3.5 g of a plurality of transparent and crack-free spherical glasses having a diameter of about 0.7 to 1.9 mm.
 得られた球状ガラスについて、屈折率nd及びアッベ数νdを下記の方法により測定した。なお、屈折率及びアッベ数の測定は、得られた球状ガラスの中から任意に1個を選択し、その球状ガラスについて行った。その結果を、表1と図1に示す。図1より、組成1-1は、分散の小さい(換言するとアッベ数の大きい)、好ましい光学特性の範囲に入っていることがわかる。 About the obtained spherical glass, refractive index nd and Abbe number (nu) d were measured by the following method. Note that the refractive index and Abbe number were measured by arbitrarily selecting one from the obtained spherical glasses. The results are shown in Table 1 and FIG. As can be seen from FIG. 1, the composition 1-1 has a small dispersion (in other words, a large Abbe number) and falls within the range of preferable optical characteristics.
 <屈折率の測定方法>
 屈折率は、球状ガラスの焦点位置を測定し、そこから算出した。図2に示すように、顕微鏡1のステージ2上に、片面にパターン3aが形成されたガラス板3を設置し、その上に測定対象の球状ガラス4を置く。ガラス板3のパターン3aが形成された面に、照明光8を狭帯域干渉フィルター9によりほぼ単色とした光5を下から照射する。波長はF線(486nm)、d線(588nm、C線(656nm)に相当する3種類とした。球状ガラス4のレンズ作用により、球状ガラス4の上側表面の近くにパターンの実像6ができるので、その位置(上側表面から実像6までの距離z’(図3参照))を、顕微鏡1とリニアーゲージ7とを用いて測定した。パターン3aとしては、40本/mmのラインアンドスペース格子のものを使用した。また、パターン3aと球状ガラス4との光学的間隔(-z(zはマイナスの数値をとる))は、上記3波長について顕微鏡1によるピント位置の差を測定することによって別途求めた。球状ガラス4の直径(2r)、球状ガラス4の上側表面から実像6までの距離(z’)、パターン3aと球状ガラス4との光学的間隔(-z)の値から、球状ガラス4の屈折率nを以下の式(1)によって波長ごとに計算して、nC,nd,nFの値を求めた。なお、この式(1)は、近軸光線の結像関係式から導き出したものである。
 (rz’-rz-2zz’)n=2r2+2rz’-2rz-2zz’ ・・・(1)
<Measurement method of refractive index>
The refractive index was calculated from the focal position of the spherical glass. As shown in FIG. 2, a glass plate 3 having a pattern 3a formed on one side is placed on a stage 2 of a microscope 1, and a spherical glass 4 to be measured is placed thereon. The surface 5 on which the pattern 3a of the glass plate 3 is formed is irradiated with light 5 from which illumination light 8 is made substantially monochromatic by a narrow-band interference filter 9 from below. There are three types of wavelengths corresponding to F-line (486 nm), d-line (588 nm, and C-line (656 nm), because a real image 6 of the pattern is formed near the upper surface of the spherical glass 4 by the lens action of the spherical glass 4. The position (distance z ′ from the upper surface to the real image 6 (see FIG. 3)) was measured using the microscope 1 and the linear gauge 7. As the pattern 3a, a line-and-space lattice of 40 lines / mm was used. The optical distance between the pattern 3a and the spherical glass 4 (−z (z takes a negative value)) is separately determined by measuring the difference in focus position with the microscope 1 for the above three wavelengths. From the values of the diameter (2r) of the spherical glass 4, the distance (z ′) from the upper surface of the spherical glass 4 to the real image 6, and the optical distance (−z) between the pattern 3a and the spherical glass 4, The refractive index n of the glass 4, calculated for each wavelength by the following equation (1) to determine the value of n C, n d, n F. Note that this equation (1), the imaging of paraxial ray It is derived from the relational expression.
(Rz′−rz−2zz ′) n = 2r 2 + 2rz′−2rz−2zz ′ (1)
 <アッベ数の測定方法>
 アッベ数νdは、以下の式(2)によって計算した。
   νd=(nd-1)/(nF-nC) ・・・(2)
<Abbe number measurement method>
The Abbe number ν d was calculated by the following equation (2).
ν d = (n d −1) / (n F −n C ) (2)
 (実施例2)
 実施例2では、WO3及びLa23を必須成分として含む第2の組成例(表1に示す組成2-1)について、急冷法によるガラス化を試みた。すなわち、得られるガラスの組成がLa23:20%、WO3:80%となるように酸化ランタン及び酸化タングステンの粉末(試薬特級品)を混合し、25gのバッチを得た。このバッチをアルミナルツボに入れ、電気炉にて1300℃で30分間熔融した。別途、純水をステンレス製容器に約1リットル入れ、ガスバーナーにて沸騰させておいた。電気炉よりアルミナルツボを取り出し、熔融したガラスをステンレス容器中の沸騰している純水中に順次流し込んだ。流し込み終了後、ガスバーナーを止め、純水中のガラス体を回収した。これを乾燥させて、直径約0.2~1.7mmの透明でクラックのない複数個の球状ガラスを合計0.25g得た。
(Example 2)
In Example 2, an attempt was made to vitrify the second composition example (composition 2-1 shown in Table 1) containing WO 3 and La 2 O 3 as essential components by a rapid cooling method. That is, lanthanum oxide and tungsten oxide powder (special grade reagent) were mixed so that the composition of the obtained glass was La 2 O 3 : 20% and WO 3 : 80% to obtain a 25 g batch. This batch was put in an alumina crucible and melted at 1300 ° C. for 30 minutes in an electric furnace. Separately, about 1 liter of pure water was placed in a stainless steel container and boiled with a gas burner. The alumina crucible was taken out from the electric furnace, and the molten glass was sequentially poured into boiling pure water in a stainless steel container. After pouring, the gas burner was stopped and the glass body in pure water was collected. This was dried to obtain a total of 0.25 g of a plurality of transparent and crack-free spherical glasses having a diameter of about 0.2 to 1.7 mm.
 得られた球状ガラスについて、屈折率nd及びアッベ数νdを実施例1と同様の方法により測定した。その結果を、表1と図1に示す。図1より、組成2-1は、分散の小さい、好ましい光学特性の範囲に入っていることがわかる。 With respect to the obtained spherical glass, the refractive index n d and Abbe number ν d were measured in the same manner as in Example 1. The results are shown in Table 1 and FIG. From FIG. 1, it can be seen that the composition 2-1 is in the range of preferable optical characteristics with small dispersion.
 (実施例3)
 実施例3では、第2の組成例のうち、WO3及びLa23を必須成分とし、さらに他の成分としてTiO2及び/又はSiO2を含む組成(表1に示す組成3-1~3-4)について、無容器凝固法による熔融を行った。
(Example 3)
In Example 3, among the second composition examples, WO 3 and La 2 O 3 are essential components, and further TiO 2 and / or SiO 2 are contained as other components (compositions 3-1 to 3 shown in Table 1). 3-4) was melted by a containerless solidification method.
 まず、本実施例で用いた無容器凝固法について説明する。図4は、無容器凝固法によってガラス原料を熔融するために本実施例で用いた装置の全体を示す模式図である。この装置は、ガラス原料(熔融物)を浮遊させるために気体を流出させる噴出ノズル41を備えている。噴出ノズル41は支柱42に固定されており、気体を供給するためのチューブ43と接続されている。チューブ43は、流量を調整するためのレギュレータ44及び流量計45を介して、高圧ガスボンベ(図示せず)に接続されている。この装置は、さらに、ガラス原料にレーザ光を照射するためのレーザ発振器46を備えている。レーザ発振器46は、噴出ノズル41が固定されている支柱42の横枝47に固定されている。レーザ発振器46から出射したレーザ光48は、横枝47に固定されたミラー49によって進行方向が変えられて、凸レンズ50によって浮遊体51(ガラス原料)に焦点を結ぶ。また、横枝47において、レーザ発振器46固定側と反対側には、浮遊体51の状態を観察するためのCCDカメラ52が設置されている。 First, the containerless coagulation method used in this example will be described. FIG. 4 is a schematic diagram showing the entire apparatus used in this example in order to melt a glass raw material by a containerless solidification method. This apparatus is provided with an ejection nozzle 41 that allows gas to flow out in order to float the glass raw material (melt). The ejection nozzle 41 is fixed to a column 42 and is connected to a tube 43 for supplying gas. The tube 43 is connected to a high-pressure gas cylinder (not shown) through a regulator 44 and a flow meter 45 for adjusting the flow rate. This apparatus further includes a laser oscillator 46 for irradiating the glass material with laser light. The laser oscillator 46 is fixed to the lateral branch 47 of the support column 42 to which the ejection nozzle 41 is fixed. The traveling direction of the laser beam 48 emitted from the laser oscillator 46 is changed by the mirror 49 fixed to the lateral branch 47, and is focused on the floating body 51 (glass raw material) by the convex lens 50. In the horizontal branch 47, a CCD camera 52 for observing the state of the floating body 51 is installed on the side opposite to the fixed side of the laser oscillator 46.
 以下、図4に示す装置による本実施例のガラス製造の手順を説明する。最初に、別途原料ペレットを作製した。原料ペレットは、ガラスの材料(金属酸化物等)の粉体(試薬特級品)を、得られるガラスの組成が表1に示す組成3-1~3-4となるように、それぞれ所定のモル比率で調合してガラス原料としたものである。調合したガラス原料を乳鉢ですりつぶし、エタノールを加えて充分に混合してからセラミックス製ルツボに入れて、電気炉中で1000℃、12時間の焼成(第1回)を行なった。焼成後のガラス原料を再び乳鉢ですりつぶし、エタノールを加えて粘度を調整してから、プレス加工用ダイスを用いて、約1.6×108Paの圧力をかけて直径2mm、厚さ約1mmの円盤状に成型した。円盤状に成型したものを、電気炉中にて1100℃、12時間の焼成(第2回)を行ない、充分冷めたものを原料ペレットとした。 Hereinafter, the glass manufacturing procedure of the present embodiment using the apparatus shown in FIG. 4 will be described. First, a raw material pellet was separately prepared. The raw material pellets are made of glass material (metal oxide, etc.) powder (special grade chemicals) each having a predetermined molarity so that the resulting glass has the compositions 3-1 to 3-4 shown in Table 1. A glass raw material is prepared by mixing at a ratio. The prepared glass material was ground in a mortar, ethanol was added and mixed well, then placed in a ceramic crucible, and fired at 1000 ° C. for 12 hours (first time) in an electric furnace. The glass raw material after firing is ground again in a mortar, and the viscosity is adjusted by adding ethanol. Then, using a pressing die, a pressure of about 1.6 × 10 8 Pa is applied and the diameter is 2 mm and the thickness is about 1 mm. It was molded into a disk shape. The material molded into a disk shape was baked (second time) at 1100 ° C. for 12 hours in an electric furnace, and sufficiently cooled to obtain raw material pellets.
 このように作製したペレットを、図4の噴出ノズル41に置き、レギュレータ44と流量計45とにより気体の流量を適量として浮遊させてから、レーザ発振器46を起動してペレットにレーザ光を照射して、ペレットを加熱した。ペレットは数秒で熔融し、自らの表面張力により球状となった状態でノズル41内に浮遊した。均一な熔融体となったところでレーザ光照射を止めると、熔融体は急冷されて球状ガラスとなった。球状ガラスの温度は数秒で室温まで低下したので、ピンセットで噴出ノズル41から取り出すことができた。 The pellet produced in this manner is placed on the ejection nozzle 41 in FIG. 4 and suspended with a regulator 44 and a flow meter 45 at an appropriate gas flow rate, and then the laser oscillator 46 is activated to irradiate the pellet with laser light. The pellet was heated. The pellet melted in a few seconds and floated in the nozzle 41 in a spherical state due to its surface tension. When the laser beam irradiation was stopped when the melt became uniform, the melt was quenched and turned into a spherical glass. Since the temperature of the spherical glass dropped to room temperature in a few seconds, it could be taken out from the ejection nozzle 41 with tweezers.
 レーザ発振器46には、米国 Universal Laser Systems Inc.社の製造した炭酸ガスレーザー装置「ULC-100-OEM」型を用いた。発振波長は10.6μm、最大出力は公称100Wであった。 The laser oscillator 46 includes a Universal Laser System Inc., USA. A carbon dioxide laser device “ULC-100-OEM” manufactured by the company was used. The oscillation wavelength was 10.6 μm, and the maximum output was nominally 100 W.
 本実施例では、原料ペレットを図4の装置の噴出ノズル41内に置き、乾燥空気を0.3~0.6L/分の流量で流して、原料ペレットを浮遊させた。この状態でレーザ光を照射して原料ペレットを熔融した後、レーザ光照射を止めることによって冷却した。その結果、直径約1.2mmの無色透明な球状ガラスが得られ、失透や脈理は認められなかった。 In this example, the raw material pellets were placed in the ejection nozzle 41 of the apparatus shown in FIG. 4, and dry air was flowed at a flow rate of 0.3 to 0.6 L / min to suspend the raw material pellets. In this state, the laser beam was irradiated to melt the raw material pellets, and then cooled by stopping the laser beam irradiation. As a result, a colorless and transparent spherical glass having a diameter of about 1.2 mm was obtained, and devitrification and striae were not observed.
 得られた球状ガラスについて、屈折率nd及びアッベ数νdを実施例1と同様の方法により測定した。その結果を、表1と図1に示す。図1より、組成3-1~3-4は、分散の小さい、好ましい光学特性の範囲に入っていることがわかる。 With respect to the obtained spherical glass, the refractive index n d and Abbe number ν d were measured in the same manner as in Example 1. The results are shown in Table 1 and FIG. As can be seen from FIG. 1, the compositions 3-1 to 3-4 are in the range of preferable optical characteristics with small dispersion.
 (実施例4)
 実施例4では、WO3及びBaOを必須成分とする第3の組成例(表1に示す組成4-1)について、実施例3と同様の無容器凝固法を用いてガラス化を試みた。これによって、直径約1.2mmの無色透明な球状ガラスが得られ、失透や脈理は認められなかった。得られた球状ガラスについて、屈折率nd及びアッベ数νdを実施例1と同様の方法により測定した。その結果を、表1と図1に示す。図1より、組成4-1は、分散の小さい、好ましい光学特性の範囲に入っていることがわかる。なお、組成4-1では、実施例1と同様の急冷法によっても、透明な球状ガラスを作製できた。
Example 4
In Example 4, for the third composition example (composition 4-1 shown in Table 1) containing WO 3 and BaO as essential components, vitrification was attempted using the same containerless solidification method as in Example 3. As a result, a colorless and transparent spherical glass having a diameter of about 1.2 mm was obtained, and devitrification and striae were not observed. With respect to the obtained spherical glass, the refractive index n d and Abbe number ν d were measured in the same manner as in Example 1. The results are shown in Table 1 and FIG. From FIG. 1, it can be seen that the composition 4-1 is in the range of preferable optical characteristics with small dispersion. With composition 4-1, a transparent spherical glass could be produced by the same rapid cooling method as in Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明によって得られるガラスは、光学特性に優れており、さらにある程度大きなサイズであっても実現可能である。したがって、レンズ等の光学素子等に好適に利用できる。 The glass obtained by the present invention is excellent in optical properties, and can be realized even if it is a certain size. Therefore, it can be suitably used for an optical element such as a lens.

Claims (6)

  1.  WO3と、La23、SrO及びBaOからなる群から選ばれる少なくとも1種と、を含み、モル%で示す組成が、25%≦WO3≦85%を満たし、且つ、
    (i)15%≦La23≦25%
    (ii)15%≦SrO≦25%
    (iii)15%≦BaO≦25%
    の3つの条件のうち少なくとも何れか1つの条件を満たす、ガラス。
    WO 3 and at least one selected from the group consisting of La 2 O 3 , SrO and BaO, the composition represented by mol% satisfies 25% ≦ WO 3 ≦ 85%, and
    (I) 15% ≦ La 2 O 3 ≦ 25%
    (Ii) 15% ≦ SrO ≦ 25%
    (Iii) 15% ≦ BaO ≦ 25%
    Glass satisfying at least one of the three conditions.
  2.  屈折率ndとアッベ数νdの値が、
       1.90≦nd≦2.30
       25≦νd≦45
    を満たす、請求項1に記載のガラス。
    The values of the refractive index n d and the Abbe number ν d are
    1.90 ≦ n d ≦ 2.30
    25 ≦ ν d ≦ 45
    The glass of Claim 1 satisfy | filling.
  3.  最小部分の長さが0.5mm以上である、請求項1に記載のガラス。 The glass according to claim 1, wherein the length of the minimum portion is 0.5 mm or more.
  4.  La23、SrO及びBaOからなる群から選ばれる少なくとも1種としてLa23を含み、さらにTiO2及びSiO2からなる群から選ばれる少なくとも1種を含んでおり、モル%で示す組成が、
       25%≦WO3≦85%
       15%≦La23≦25%
       0%≦TiO2≦55%
       0%≦SiO2≦10%
    を満たす、請求項1に記載のガラス。
    A composition comprising La 2 O 3 as at least one selected from the group consisting of La 2 O 3 , SrO and BaO, and further including at least one selected from the group consisting of TiO 2 and SiO 2, and expressed in mol% But,
    25% ≦ WO 3 ≦ 85%
    15% ≦ La 2 O 3 ≦ 25%
    0% ≦ TiO 2 ≦ 55%
    0% ≦ SiO 2 ≦ 10%
    The glass of Claim 1 satisfy | filling.
  5.  La23、SrO及びBaOからなる群から選ばれる少なくとも1種としてSrOを含み、モル%で示す組成が、
       75%≦WO3≦85%
       15%≦SrO≦25%
    を満たす、請求項1に記載のガラス。
    A composition containing SrO as at least one selected from the group consisting of La 2 O 3 , SrO and BaO, and represented by mol%,
    75% ≦ WO 3 ≦ 85%
    15% ≦ SrO ≦ 25%
    The glass of Claim 1 satisfy | filling.
  6.  La23、SrO及びBaOからなる群から選ばれる少なくとも1種としてBaOを含み、モル%で示す組成が、
       75%≦WO3≦85%
       15%≦BaO≦25%
    を満たす、請求項1に記載のガラス。
    The composition represented by mol% containing BaO as at least one selected from the group consisting of La 2 O 3 , SrO and BaO,
    75% ≦ WO 3 ≦ 85%
    15% ≦ BaO ≦ 25%
    The glass of Claim 1 satisfy | filling.
PCT/JP2009/070959 2008-12-16 2009-12-16 Glass WO2010071144A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010542984A JPWO2010071144A1 (en) 2008-12-16 2009-12-16 Glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008320264 2008-12-16
JP2008-320264 2008-12-16

Publications (1)

Publication Number Publication Date
WO2010071144A1 true WO2010071144A1 (en) 2010-06-24

Family

ID=42268815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070959 WO2010071144A1 (en) 2008-12-16 2009-12-16 Glass

Country Status (2)

Country Link
JP (1) JPWO2010071144A1 (en)
WO (1) WO2010071144A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008150A (en) * 2014-06-24 2016-01-18 日本電気硝子株式会社 Method for manufacturing glass material and glass material
JP2021046354A (en) * 2020-12-03 2021-03-25 日本電気硝子株式会社 Production method of glass material, and glass material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560039A (en) * 1978-10-24 1980-05-06 Nippon Kogaku Kk <Nikon> Optical glass
JPS5738342A (en) * 1980-08-21 1982-03-03 Hoya Corp Optical glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560039A (en) * 1978-10-24 1980-05-06 Nippon Kogaku Kk <Nikon> Optical glass
JPS5738342A (en) * 1980-08-21 1982-03-03 Hoya Corp Optical glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008150A (en) * 2014-06-24 2016-01-18 日本電気硝子株式会社 Method for manufacturing glass material and glass material
JP2021046354A (en) * 2020-12-03 2021-03-25 日本電気硝子株式会社 Production method of glass material, and glass material

Also Published As

Publication number Publication date
JPWO2010071144A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
WO2010137276A1 (en) Glass
JP4953234B2 (en) Titanium-based oxide glass and method for producing the same
US9040439B2 (en) Optical glass, optical element, and method for manufacturing optical glass
WO2010071202A1 (en) Glass, and glass processing method
WO2010071143A1 (en) Glass
KR101251975B1 (en) Fluorophosphate optical glass
TWI580656B (en) Optical Glass
JP2022106744A (en) Optical glass, optical element made of optical glass, objective lens, lens mirror tube, and optical device
JP2017105703A (en) Optical glass, preform and optical element
JP2012017254A (en) Optical glass
JP6462244B2 (en) Optical glass
WO2019058617A1 (en) Optical glass, optical element composed of optical glass, optical system, interchangeable lens and optical device
JP2014237564A (en) Optical glass
WO2010071144A1 (en) Glass
JP6516084B2 (en) Method of manufacturing glass material and glass material
JP2022502333A (en) Fluorophosphate optical glass, as well as optical preforms, devices, and equipment
JP7491310B2 (en) Optical glass, optical elements, optical systems, interchangeable lenses and optical devices
WO2019216176A1 (en) Optical glass, optical element, optical device, production method for optical glass, and production method for optical lens
JP6617801B2 (en) Manufacturing method of glass material and glass material
JP2017043498A (en) Optical glass, optical element, and optical device
JP2013139346A (en) Optical glass, preform, and optical element
US11254602B2 (en) Optical glass, optical element, optical instrument, and method for manufacturing optical glass
JP7043175B2 (en) Manufacturing method of optical glass, optical element, optical equipment and optical glass
JP2019214509A (en) Production method of glass material, and glass material
CN114455831A (en) Optical glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833447

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010542984

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833447

Country of ref document: EP

Kind code of ref document: A1