WO2010071077A1 - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
WO2010071077A1
WO2010071077A1 PCT/JP2009/070708 JP2009070708W WO2010071077A1 WO 2010071077 A1 WO2010071077 A1 WO 2010071077A1 JP 2009070708 W JP2009070708 W JP 2009070708W WO 2010071077 A1 WO2010071077 A1 WO 2010071077A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging lens
refractive power
object side
imaging
Prior art date
Application number
PCT/JP2009/070708
Other languages
French (fr)
Japanese (ja)
Inventor
隆広 三觜
来 未
Original Assignee
株式会社タムロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムロン filed Critical 株式会社タムロン
Publication of WO2010071077A1 publication Critical patent/WO2010071077A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/005Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having spherical lenses only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only
    • G02B9/58Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only arranged - + + -

Definitions

  • the present invention relates to a small and lightweight imaging lens suitable for an imaging apparatus provided with a solid-state imaging device such as a CCD (Charged Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • a solid-state imaging device such as a CCD (Charged Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • imaging devices on-vehicle cameras
  • in-vehicle cameras use a high dynamic range camera and incorporate a technique for recognizing people and objects in a captured image.
  • a vehicle-mounted camera is required to have a highly reliable lens capable of obtaining a bright image with a small size and a simple configuration.
  • In-vehicle cameras are required to have a bright lens that allows a lot of light to enter the periphery so that the person or object captured can be accurately recognized even when the image is recognized, even at the periphery of the screen. This requirement is particularly strong in order to be able to withstand night use.
  • Patent Document 1 since the imaging lens described in Patent Document 1 has an exit pupil position close to the image plane, the incident angle of light on the image plane increases, and when a solid-state imaging device such as a CCD or CMOS is used, the peripheral light amount decreases. There is a problem of inviting. Although there is a simple configuration, there is also a problem that correction of astigmatism is insufficient.
  • the present invention eliminates the problems caused by the prior art described above, and suppresses the generation of ghosts, prevents the decrease in the amount of peripheral light, and can satisfactorily correct various aberrations occurring in each lens.
  • An object is to provide a high-performance imaging lens.
  • an imaging lens according to the invention of claim 1 is arranged in order from the object side, and has a first lens having negative refractive power with a concave surface facing the object side.
  • an aperture stop is disposed between the first lens and the second lens, and the third lens and the fourth lens are joined.
  • the concave surface is formed on the most object side surface of the optical system, and the convex surface is formed on the most image side surface, thereby causing light reflected on the image side at the most object side surface.
  • the ghost generated between the most image side surface and the image sensor can be effectively suppressed.
  • an aperture stop is disposed between the first lens and the second lens, the amount of light at the periphery of the optical system increases, and a bright image can be obtained up to the periphery.
  • the third lens and the fourth lens it is possible to satisfactorily correct various aberrations generated in each lens.
  • An imaging lens according to a second aspect of the invention is characterized in that, in the first aspect of the invention, the following conditional expression is satisfied.
  • EXP is the distance from the exit pupil position to the image plane in the imaging lens
  • L is the distance from the first surface (most object side surface) to the image plane
  • f is the focal length of the imaging lens.
  • the second aspect of the present invention it is possible to define a good exit pupil position, and it is possible to prevent a decrease in the amount of peripheral light that occurs when the exit pupil position is too close to the image plane.
  • An imaging lens according to a third aspect of the invention is characterized in that, in the first or second aspect of the invention, the following conditional expression is satisfied. (2) -0.4 ⁇ (L / f) / R 1 ⁇ -0.2 Where L is the distance from the first surface (the most object side surface) to the image plane in the imaging lens, f is the focal length of the imaging lens, and R 1 is the radius of curvature of the first surface (the most object side surface) in the imaging lens. Indicates.
  • the third aspect of the present invention it is possible to more effectively suppress a ghost generated due to light reflected to the image side on the most object side surface of the optical system.
  • astigmatism can be effectively corrected.
  • the present invention it is possible to effectively suppress the ghost generated due to the light reflected to the image side on the most object side surface of the optical system and the ghost generated between the most image side surface and the image sensor.
  • FIG. 1 is a diagram for explaining the exit pupil position of the imaging lens according to the embodiment of the present invention.
  • FIG. 2 is a cross-sectional view along the optical axis showing the configuration of the imaging lens according to the first example.
  • FIG. 4 is a cross-sectional view along the optical axis showing the configuration of the imaging lens according to the second example.
  • FIG. 1 is a diagram for explaining the exit pupil position of the imaging lens according to the embodiment of the present invention.
  • FIG. 2 is a cross-sectional view along the optical axis showing the configuration of the imaging lens according to the first example.
  • FIG. 3 is a diagram of various aberrations at the d-line ( ⁇
  • FIG. 6 is a cross-sectional view along the optical axis showing the configuration of the imaging lens according to the third example.
  • An imaging lens includes, in order from the object side, a first lens having a negative refractive power with a concave surface facing the object side, a second lens having a positive refractive power, A third lens having a positive refractive power; a fourth lens having a negative refractive power; and a fifth lens having a positive refractive power with a convex surface facing the image side.
  • the imaging lens according to this embodiment is used for a digital video camera.
  • the light receiving surface of an image sensor mounted on a digital video camera has a high light reflectivity of about several tens of percent, so that the reflected light causes a ghost. Therefore, special consideration is required for the configuration of the imaging lens in order to suppress the occurrence of such a ghost.
  • the convex surface is formed on the image side surface of the fifth lens corresponding to the final surface of the imaging lens, so that the reflection on the imaging element is reflected again on the final surface.
  • Light originating from light can be directed away from the optical axis, and the luminance of ghost light can be reduced.
  • a concave surface on the object side surface of the first lens it is possible to reduce ghosts caused by light reflected from the outermost object side surface of the imaging lens toward the image side.
  • the aperture stop is disposed between the first lens and the second lens, the amount of light at the periphery of the optical system increases, and a bright image is obtained up to the periphery. It is done. Further, by joining the third lens and the fourth lens, it is possible to satisfactorily correct various aberrations generated in each lens.
  • digital video cameras especially in-vehicle cameras, may be used at night, so when recognizing images, even if you are at the periphery of the screen, A bright lens that can receive a lot of light is required. That is, a lens that does not cause a decrease in the amount of peripheral light is required. In order to suppress a decrease in the amount of peripheral light, it is necessary to optimize the exit pupil position.
  • FIG. 1 is a diagram for explaining an exit pupil position of an imaging lens according to an embodiment of the present invention.
  • the exit pupil is located at the intersection of the principal ray (the central ray of the oblique ray bundle) of the outermost luminous flux from the outermost image side surface (final surface) of the imaging lens and the optical axis.
  • the decrease in the amount of peripheral light occurs when the exit pupil position is too close to the image plane. In order to suppress the decrease in the peripheral light amount, it is necessary to appropriately set the distance from the image plane to the exit pupil position.
  • EXP is the distance from the exit pupil position of the imaging lens to the image plane
  • L is the distance from the first surface (most object side surface) to the image plane of the imaging lens
  • the focal length of the imaging lens is f, it is preferable that the following conditional expression is satisfied. (1) EXP / (L / f)> 6.0
  • Conditional expression (1) is an expression for defining an appropriate exit pupil position. By satisfying this conditional expression (1), it is possible to prevent a decrease in the amount of peripheral light.
  • the distance from the first surface (the most object side surface) to the image plane in the imaging lens is L
  • the focal length of the imaging lens is f
  • the first surface (when the radius of curvature of the most object side surface) and R 1 it is preferable to satisfy the following condition. (2) -0.4 ⁇ (L / f) / R 1 ⁇ -0.2
  • Conditional expression (2) is an expression that defines the curvature of the first surface (most object side surface) of the imaging lens.
  • conditional expression (2) when the upper limit is exceeded in the conditional expression (2), the curvature of the most object side surface of the imaging lens becomes large and becomes a shape close to a plane.
  • the light reflected by the light-receiving surface of the image sensor is re-reflected even on the most object side of the imaging lens, but when the re-reflected surface is close to a flat surface, the re-reflected light follows an optical path close to the incident light, thus forming an image.
  • a ghost image with high brightness is formed near the state.
  • the lower limit of conditional expression (1) if the lower limit of conditional expression (1) is not reached, it will be difficult to correct astigmatism, and image deterioration will be noticeable at the periphery.
  • the imaging lens according to this embodiment has the above-described characteristics, so that the optical system can be compacted between the most image side surface of the imaging lens and the imaging element without impairing the compactness of the optical system. It is possible to suppress the ghost generated and the ghost generated due to the light reflected to the image side on the most object side surface of the imaging lens. In addition, the peripheral light amount can be prevented from being reduced, and various aberrations generated in each lens can be corrected well.
  • FIG. 2 is a cross-sectional view along the optical axis showing the configuration of the imaging lens according to the first example.
  • This imaging lens is a single focus lens, and in order from an object side (not shown), a first lens L 11 having a negative refractive power with a concave surface directed toward the object side, and a second lens L 12 having a positive refractive power.
  • a third lens L 13 having a positive refractive power, a fourth lens L 14 having a negative refractive power, a fifth lens L 15 having a positive refractive power with a convex surface facing the image plane IMG, Are arranged and configured.
  • the object side surface of the second lens L 12, the aperture stop STOP is provided.
  • the third lens L 13 and the fourth lens L 14 are cemented.
  • a light receiving surface of an image sensor such as a CCD or a CMOS is disposed on the image plane IMG.
  • an optical element such as a cover glass or a filter can be disposed between the fifth lens L 15 and the image plane IMG.
  • Focal length (f) of entire imaging lens system 7.0
  • F number 2.0
  • Half angle of view ( ⁇ ) 24.2 °
  • Object distance (distance from the first surface of the imaging lens to the object)
  • Distance from the exit pupil position to the image plane in the imaging lens (EXP) 13.1
  • Distance from first surface (most object side surface) to image surface in imaging lens (L) 14.6
  • Radius of curvature (R 1 ) of the first surface of the imaging lens -7.000
  • Maximum image height 3.0
  • FIG. 4 is a cross-sectional view along the optical axis showing the configuration of the imaging lens according to the second example.
  • This imaging lens is a single focus lens, and in order from an object side (not shown), a first lens L 21 having a negative refractive power with a concave surface directed toward the object side, and a second lens L 22 having a positive refractive power.
  • a third lens L 23 having a positive refractive power, a fourth lens L 24 having a negative refractive power, a fifth lens L 25 having a positive refractive power with a convex surface facing the image plane IMG, Are arranged and configured.
  • the object side surface of the second lens L 22, the aperture stop STOP is provided.
  • the third lens L 23 and the fourth lens L 24 are cemented. Note that a light receiving surface of an image sensor such as a CCD or a CMOS is disposed on the image plane IMG. Further, if necessary, an optical element such as a cover glass or a filter can be disposed between the fifth lens L 25 and the image plane IMG.
  • Focal length (f) of entire imaging lens system 7.0
  • F number 2.0
  • Half angle of view ( ⁇ ) 24.2 °
  • Object distance (distance from the first surface of the imaging lens to the object)
  • Distance from the exit pupil position to the image plane in the imaging lens (EXP) 12.6
  • Distance from first surface (most object side surface) to image surface in imaging lens (L) 14.0
  • FIG. 6 is a cross-sectional view along the optical axis showing the configuration of the imaging lens according to the third example.
  • This imaging lens is a single focus lens, and in order from an object side (not shown), a first lens L 31 having a negative refractive power with a concave surface directed toward the object side, and a second lens L 32 having a positive refractive power.
  • a third lens L 33 having a positive refractive power, a fourth lens L 34 having a negative refractive power, a fifth lens L 35 having a positive refractive power with a convex surface facing the image plane IMG, Are arranged and configured.
  • An aperture stop STOP is provided on the side of the image plane IMG of the first lens L 31 .
  • the third lens L 33 and the fourth lens L 34 are cemented. Note that a light receiving surface of an image sensor such as a CCD or a CMOS is disposed on the image plane IMG. Further, if necessary, an optical element such as a cover glass or a filter can be disposed between the fifth lens L 35 and the image plane IMG.
  • Focal length (f) of entire imaging lens system 7.0
  • F number 2.0
  • Half angle of view ( ⁇ ) 24.2 °
  • Object distance (distance from the first surface of the imaging lens to the object)
  • Distance from the exit pupil position to the image plane in the imaging lens (EXP) 13.8
  • Distance from first surface (most object side surface) to image surface in imaging lens (L) 14.6
  • Curvature radius (R 1 ) of the first surface of the imaging lens -6.520
  • Maximum image height 3.0
  • r 1 , r 2 are the curvature radii of the lenses and the like
  • d 1 , d 2 are the thicknesses of the lenses or their surface spacings
  • the imaging lens of each of the above embodiments by satisfying the conditional expression, it occurs between the most image side surface of the imaging lens and the imaging element without impairing the compactness of the optical system. And the ghost generated due to the light reflected to the image side on the most object side surface of the imaging lens can be suppressed. In addition, the peripheral light amount can be prevented from being reduced, and various aberrations generated in each lens can be corrected well.
  • the imaging lens of the present invention is useful for a digital video camera equipped with a solid-state imaging device, and particularly, it is required to accurately recognize a person or an object captured even at the periphery of the screen. It is most suitable for in-vehicle cameras.

Abstract

Disclosed is an imaging lens which is configured with, disposed in order from the object side, a first lens (L11) having a negative refractive power and having a concave face facing the object, a second lens (L12) having a positive refractive power, a third lens (L13) having a positive refractive power, a fourth lens (L14) having a negative refractive power, and a fifth lens (L15) having a positive refractive power and having a convex face facing the image plane (IMG). An aperture diaphragm (STOP) is provided between the first lens (L11) and the second lens (L12). In addition, the third lens (L13) and the fourth lens (L14) are joined together. By fulfilling a prescribed condition, the various distortions generated by each lens can be corrected satisfactorily without losing the compactness of the optical system, while suppressing the generation of ghosts, and preventing a reduction in the amount of peripheral light.

Description

撮像レンズImaging lens
 この発明は、CCD(Charged Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)などの固体撮像素子が備えられた撮像装置に好適な小型軽量の撮像レンズに関する。 The present invention relates to a small and lightweight imaging lens suitable for an imaging apparatus provided with a solid-state imaging device such as a CCD (Charged Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
 近年、車両への搭載が可能な撮像装置(車載カメラ)が普及してきている。特に、車載カメラとして、高ダイナミックレンジカメラを用い、撮影した画像中の人や物を認識する手法を取り入れているものがある。このような車載カメラには、小型、簡易な構成で、明るい像が得られる信頼性の高いレンズが求められる。 In recent years, imaging devices (on-vehicle cameras) that can be mounted on vehicles have become widespread. In particular, some in-vehicle cameras use a high dynamic range camera and incorporate a technique for recognizing people and objects in a captured image. Such a vehicle-mounted camera is required to have a highly reliable lens capable of obtaining a bright image with a small size and a simple configuration.
 このような車載カメラに搭載することが可能な、小型、簡易な構成の撮像レンズがいくつか提案されている(たとえば、特許文献1を参照。)。 Several imaging lenses having a small and simple configuration that can be mounted on such an in-vehicle camera have been proposed (see, for example, Patent Document 1).
特開2007-127954号公報JP 2007-127954 A
 車載カメラには、画像を認識する際、たとえ画面の周辺部であっても撮像した人や物を正確に認識できるように、周辺部にまで多くの光が入る明るいレンズが要求される。特に夜間の使用にも耐えられるようにするために、かかる要求が強い。 In-vehicle cameras are required to have a bright lens that allows a lot of light to enter the periphery so that the person or object captured can be accurately recognized even when the image is recognized, even at the periphery of the screen. This requirement is particularly strong in order to be able to withstand night use.
 しかしながら、特許文献1に記載の撮像レンズは、射出瞳位置が像面に近いため、像面への光線入射角が大きくなり、CCDやCMOSなどの固体撮像素子を使用する場合、周辺光量の低下を招くという問題がある。また、簡易な構成ではあるものの、非点収差の補正が不十分であるという問題もある。 However, since the imaging lens described in Patent Document 1 has an exit pupil position close to the image plane, the incident angle of light on the image plane increases, and when a solid-state imaging device such as a CCD or CMOS is used, the peripheral light amount decreases. There is a problem of inviting. Although there is a simple configuration, there is also a problem that correction of astigmatism is insufficient.
 この発明は、上述した従来技術による問題点を解消するため、ゴーストの発生を抑制しつつ、周辺光量の低下を防止し、各レンズで発生する諸収差を良好に補正することができる、小型、高性能の撮像レンズを提供することを目的とする。 The present invention eliminates the problems caused by the prior art described above, and suppresses the generation of ghosts, prevents the decrease in the amount of peripheral light, and can satisfactorily correct various aberrations occurring in each lens. An object is to provide a high-performance imaging lens.
 上述した課題を解決し、目的を達成するため、請求項1の発明にかかる撮像レンズは、物体側から順に配置された、前記物体側に凹面を向けた負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、負の屈折力を有する第4レンズと、像側に凸面を向けた正の屈折力を有する第5レンズと、を備え、前記第1レンズと前記第2レンズとの間に開口絞りを配置し、前記第3レンズと前記第4レンズとを接合したことを特徴とする。 In order to solve the above-described problems and achieve the object, an imaging lens according to the invention of claim 1 is arranged in order from the object side, and has a first lens having negative refractive power with a concave surface facing the object side. A second lens having a positive refractive power, a third lens having a positive refractive power, a fourth lens having a negative refractive power, and a fifth lens having a positive refractive power with a convex surface facing the image side And an aperture stop is disposed between the first lens and the second lens, and the third lens and the fourth lens are joined.
 この請求項1に記載の発明によれば、光学系の最物体側面に凹面を形成し、最像側面に凸面を形成したことにより、前記最物体側面で像側へ反射される光が原因となって発生するゴースト、および前記最像側面と撮像素子との間で発生するゴーストを効果的に抑制することができる。また、前記第1レンズと前記第2レンズとの間に開口絞りを配置したことにより、光学系周辺部の光量が多くなり、周辺部まで明るい像が得られる。さらに、前記第3レンズと前記第4レンズとを接合したことにより、各レンズで発生する諸収差を良好に補正することができる。 According to the first aspect of the present invention, the concave surface is formed on the most object side surface of the optical system, and the convex surface is formed on the most image side surface, thereby causing light reflected on the image side at the most object side surface. And the ghost generated between the most image side surface and the image sensor can be effectively suppressed. In addition, since an aperture stop is disposed between the first lens and the second lens, the amount of light at the periphery of the optical system increases, and a bright image can be obtained up to the periphery. Further, by joining the third lens and the fourth lens, it is possible to satisfactorily correct various aberrations generated in each lens.
 また、請求項2の発明にかかる撮像レンズは、請求項1に記載の発明において、以下の条件式を満足することを特徴とする。
(1) EXP/(L/f)>6.0
 ただし、EXPは当該撮像レンズにおける射出瞳位置から像面までの距離、Lは当該撮像レンズにおける第1面(最物体側面)から像面までの距離、fは当該撮像レンズの焦点距離を示す。
An imaging lens according to a second aspect of the invention is characterized in that, in the first aspect of the invention, the following conditional expression is satisfied.
(1) EXP / (L / f)> 6.0
Here, EXP is the distance from the exit pupil position to the image plane in the imaging lens, L is the distance from the first surface (most object side surface) to the image plane, and f is the focal length of the imaging lens.
 この請求項2に記載の発明によれば、良好な射出瞳位置を規定することができ、射出瞳位置が像面に近づき過ぎることにより発生する周辺光量の低下を防止することができる。 According to the second aspect of the present invention, it is possible to define a good exit pupil position, and it is possible to prevent a decrease in the amount of peripheral light that occurs when the exit pupil position is too close to the image plane.
 また、請求項3の発明にかかる撮像レンズは、請求項1または2に記載の発明において、以下の条件式を満足することを特徴とする。
(2) -0.4<(L/f)/R1<-0.2
 ただし、Lは当該撮像レンズにおける第1面(最物体側面)から像面までの距離、fは当該撮像レンズの焦点距離、R1は当該撮像レンズにおける第1面(最物体側面)の曲率半径を示す。
An imaging lens according to a third aspect of the invention is characterized in that, in the first or second aspect of the invention, the following conditional expression is satisfied.
(2) -0.4 <(L / f) / R 1 <-0.2
Where L is the distance from the first surface (the most object side surface) to the image plane in the imaging lens, f is the focal length of the imaging lens, and R 1 is the radius of curvature of the first surface (the most object side surface) in the imaging lens. Indicates.
 この請求項3に記載の発明によれば、光学系の最物体側面で像側へ反射される光が原因となって発生するゴーストをより効果的に抑制することができる。また、非点収差を効果的に補正することができる。 According to the third aspect of the present invention, it is possible to more effectively suppress a ghost generated due to light reflected to the image side on the most object side surface of the optical system. In addition, astigmatism can be effectively corrected.
 この発明によれば、光学系の最物体側面で像側へ反射される光が原因となって発生するゴースト、および前記最像側面と撮像素子との間で発生するゴーストを効果的に抑制しつつ、周辺光量の低下を防止し、各レンズで発生する諸収差を良好に補正することが可能な、小型、高性能の撮像レンズを提供することができるという効果を奏する。 According to the present invention, it is possible to effectively suppress the ghost generated due to the light reflected to the image side on the most object side surface of the optical system and the ghost generated between the most image side surface and the image sensor. On the other hand, there is an effect that it is possible to provide a small-sized and high-performance imaging lens that can prevent a decrease in the amount of peripheral light and can satisfactorily correct various aberrations generated in each lens.
図1は、この発明の実施の形態にかかる撮像レンズの射出瞳位置を説明するための図である。FIG. 1 is a diagram for explaining the exit pupil position of the imaging lens according to the embodiment of the present invention. 図2は、実施例1にかかる撮像レンズの構成を示す光軸に沿う断面図である。FIG. 2 is a cross-sectional view along the optical axis showing the configuration of the imaging lens according to the first example. 図3は、実施例1にかかる撮像レンズのd線(λ=587.6nm)における諸収差図である。FIG. 3 is a diagram of various aberrations at the d-line (λ = 587.6 nm) of the imaging lens according to the first example. 図4は、実施例2にかかる撮像レンズの構成を示す光軸に沿う断面図である。FIG. 4 is a cross-sectional view along the optical axis showing the configuration of the imaging lens according to the second example. 図5は、実施例2にかかる撮像レンズのd線(λ=587.6nm)における諸収差図である。FIG. 5 is a diagram of various aberrations at the d-line (λ = 587.6 nm) of the imaging lens according to the second example. 図6は、実施例3にかかる撮像レンズの構成を示す光軸に沿う断面図である。FIG. 6 is a cross-sectional view along the optical axis showing the configuration of the imaging lens according to the third example. 図7は、実施例3にかかる撮像レンズのd線(λ=587.6nm)における諸収差図である。FIG. 7 is a diagram of various aberrations at the d-line (λ = 587.6 nm) of the imaging lens according to the third example.
 以下、この発明にかかる撮像レンズの好適な実施の形態を詳細に説明する。 Hereinafter, preferred embodiments of the imaging lens according to the present invention will be described in detail.
 この発明の実施の形態にかかる撮像レンズは、物体側から順に配置された、前記物体側に凹面を向けた負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、負の屈折力を有する第4レンズと、像側に凸面を向けた正の屈折力を有する第5レンズと、を備えている。 An imaging lens according to an embodiment of the present invention includes, in order from the object side, a first lens having a negative refractive power with a concave surface facing the object side, a second lens having a positive refractive power, A third lens having a positive refractive power; a fourth lens having a negative refractive power; and a fifth lens having a positive refractive power with a convex surface facing the image side.
 この実施の形態にかかる撮像レンズは、デジタルビデオカメラに用いることを想定している。一般に、デジタルビデオカメラに搭載されている撮像素子の受光面は数十パーセント程度の高い光の反射率を有しているため、そこで反射された光がゴーストを発生させる原因となる。そこで、このようなゴーストの発生を抑制するために撮像レンズの構成に特別の配慮が必要になる。 It is assumed that the imaging lens according to this embodiment is used for a digital video camera. Generally, the light receiving surface of an image sensor mounted on a digital video camera has a high light reflectivity of about several tens of percent, so that the reflected light causes a ghost. Therefore, special consideration is required for the configuration of the imaging lens in order to suppress the occurrence of such a ghost.
 この実施の形態にかかる撮像レンズは、前述のように、撮像レンズの最終面に該当する第5レンズの像側面に凸面を形成したことにより、前記最終面で再反射される撮像素子での反射光を起因とする光を光軸から離れた方向に向かわせ、ゴースト光の輝度を低下させることができる。また、前記第1レンズの物体側面に凹面を形成したことにより、撮像レンズの最物体側面が像側へ反射する光が原因となって発生するゴーストを低減することができる。 In the imaging lens according to this embodiment, as described above, the convex surface is formed on the image side surface of the fifth lens corresponding to the final surface of the imaging lens, so that the reflection on the imaging element is reflected again on the final surface. Light originating from light can be directed away from the optical axis, and the luminance of ghost light can be reduced. In addition, by forming a concave surface on the object side surface of the first lens, it is possible to reduce ghosts caused by light reflected from the outermost object side surface of the imaging lens toward the image side.
 また、この実施の形態にかかる撮像レンズでは、前記第1レンズと前記第2レンズとの間に開口絞りを配置したことにより、光学系周辺部の光量が多くなり、周辺部まで明るい像が得られる。さらに、前記第3レンズと前記第4レンズとを接合したことにより、各レンズで発生する諸収差を良好に補正することができる。 In the imaging lens according to this embodiment, since the aperture stop is disposed between the first lens and the second lens, the amount of light at the periphery of the optical system increases, and a bright image is obtained up to the periphery. It is done. Further, by joining the third lens and the fourth lens, it is possible to satisfactorily correct various aberrations generated in each lens.
 また、デジタルビデオカメラ、特に車載カメラでは、夜間に使用する場合もあるため、画像を認識する際、たとえ画面の周辺部であっても撮像した人や物を正確に認識できるように、周辺部にまで多くの光が入る明るいレンズが要求される。すなわち、周辺光量の低下が生じないレンズが要求される。周辺光量の低下を抑制するためには、射出瞳位置の最適化が必要になる。 In addition, digital video cameras, especially in-vehicle cameras, may be used at night, so when recognizing images, even if you are at the periphery of the screen, A bright lens that can receive a lot of light is required. That is, a lens that does not cause a decrease in the amount of peripheral light is required. In order to suppress a decrease in the amount of peripheral light, it is necessary to optimize the exit pupil position.
 図1は、この発明の実施の形態にかかる撮像レンズの射出瞳位置を説明するための図である。図1に示すように、射出瞳は撮像レンズの最像側面(最終面)からの最外光束の主光線(斜光線束の中心の光線)と光軸との交点に位置する。周辺光量の低下は、射出瞳位置が像面に近づきすぎることにより発生する。周辺光量の低下を抑制するためには、像面から射出瞳位置までの距離を適切に設定することが必要になる。 FIG. 1 is a diagram for explaining an exit pupil position of an imaging lens according to an embodiment of the present invention. As shown in FIG. 1, the exit pupil is located at the intersection of the principal ray (the central ray of the oblique ray bundle) of the outermost luminous flux from the outermost image side surface (final surface) of the imaging lens and the optical axis. The decrease in the amount of peripheral light occurs when the exit pupil position is too close to the image plane. In order to suppress the decrease in the peripheral light amount, it is necessary to appropriately set the distance from the image plane to the exit pupil position.
 そこで、この実施の形態にかかる撮像レンズでは、当該撮像レンズにおける射出瞳位置から像面までの距離をEXP、当該撮像レンズにおける第1面(最物体側面)から像面までの距離をL、当該撮像レンズの焦点距離をfとするとき、次の条件式を満足することが好ましい。
(1) EXP/(L/f)>6.0
Therefore, in the imaging lens according to this embodiment, EXP is the distance from the exit pupil position of the imaging lens to the image plane, L is the distance from the first surface (most object side surface) to the image plane of the imaging lens, When the focal length of the imaging lens is f, it is preferable that the following conditional expression is satisfied.
(1) EXP / (L / f)> 6.0
 条件式(1)は、適切な射出瞳位置を規定するための式である。この条件式(1)を満足することにより、周辺光量の低下を防止することができる。 Conditional expression (1) is an expression for defining an appropriate exit pupil position. By satisfying this conditional expression (1), it is possible to prevent a decrease in the amount of peripheral light.
 さらに、この実施の形態にかかる撮像レンズでは、当該撮像レンズにおける第1面(最物体側面)から像面までの距離をL、当該撮像レンズの焦点距離をf、当該撮像レンズにおける第1面(最物体側面)の曲率半径をR1とするとき、次の条件式を満足することが
好ましい。
(2) -0.4<(L/f)/R1<-0.2
Furthermore, in the imaging lens according to this embodiment, the distance from the first surface (the most object side surface) to the image plane in the imaging lens is L, the focal length of the imaging lens is f, and the first surface ( when the radius of curvature of the most object side surface) and R 1, it is preferable to satisfy the following condition.
(2) -0.4 <(L / f) / R 1 <-0.2
 条件式(2)は、撮像レンズの第1面(最物体側面)の曲率を規定する式である。この条件式(2)を満足することにより、撮像レンズの最物体側面で像側へ反射される光が原因となって発生するゴーストをより効果的に抑制することができる。また、非点収差を効果的に補正することができる。 Conditional expression (2) is an expression that defines the curvature of the first surface (most object side surface) of the imaging lens. By satisfying this conditional expression (2), it is possible to more effectively suppress a ghost generated due to light reflected to the image side on the most object side surface of the imaging lens. In addition, astigmatism can be effectively corrected.
 ところで、条件式(2)においてその上限を超えると、撮像レンズの最物体側面の曲率が大きくなり平面に近い形状になる。撮像素子の受光面で反射された光は撮像レンズの最物体側面でも再反射されるが、再反射される面が平面に近い場合、再反射光は入射光に近い光路を辿るため、結像状態に近くなり輝度の高いゴースト像が形成されることになる。一方、条件式(1)においてその下限を下回ると、非点収差の補正が困難になり、周辺部での画像劣化が顕著になる。 By the way, when the upper limit is exceeded in the conditional expression (2), the curvature of the most object side surface of the imaging lens becomes large and becomes a shape close to a plane. The light reflected by the light-receiving surface of the image sensor is re-reflected even on the most object side of the imaging lens, but when the re-reflected surface is close to a flat surface, the re-reflected light follows an optical path close to the incident light, thus forming an image. A ghost image with high brightness is formed near the state. On the other hand, if the lower limit of conditional expression (1) is not reached, it will be difficult to correct astigmatism, and image deterioration will be noticeable at the periphery.
 以上説明したように、この実施の形態にかかる撮像レンズは、上記のような特徴を備えているので、光学系のコンパクト性を損なうことなく、撮像レンズの最像側面と撮像素子との間で発生するゴースト、および撮像レンズの最物体側面で像側へ反射される光が原因となって発生するゴーストを抑制することができる。加えて、周辺光量の低下を防止し、各レンズで発生する諸収差を良好に補正することもできる。 As described above, the imaging lens according to this embodiment has the above-described characteristics, so that the optical system can be compacted between the most image side surface of the imaging lens and the imaging element without impairing the compactness of the optical system. It is possible to suppress the ghost generated and the ghost generated due to the light reflected to the image side on the most object side surface of the imaging lens. In addition, the peripheral light amount can be prevented from being reduced, and various aberrations generated in each lens can be corrected well.
 以下、この発明にかかる撮像レンズの実施例を示す。 Hereinafter, examples of the imaging lens according to the present invention will be described.
(実施例1)
 図2は、実施例1にかかる撮像レンズの構成を示す光軸に沿う断面図である。この撮像レンズは、単焦点レンズであり、図示しない物体側から順に、前記物体側へ凹面を向けた負の屈折力を有する第1レンズL11と、正の屈折力を有する第2レンズL12と、正の屈折力を有する第3レンズL13と、負の屈折力を有する第4レンズL14と、像面IMG側に凸面を向けた正の屈折力を有する第5レンズL15と、が配置されて構成される。第2レンズL12の物体側面には、開口絞りSTOPが設けられている。第3レンズL13と第4レンズL14とは接合されている。なお、像面IMGには、CCDやCMOSなどの撮像素子の受光面が配置される。また、必要に応じて、第5レンズL15と像面IMGとの間に、カバーガラスやフィルタなどの光学素子を配置することができる。
Example 1
FIG. 2 is a cross-sectional view along the optical axis showing the configuration of the imaging lens according to the first example. This imaging lens is a single focus lens, and in order from an object side (not shown), a first lens L 11 having a negative refractive power with a concave surface directed toward the object side, and a second lens L 12 having a positive refractive power. A third lens L 13 having a positive refractive power, a fourth lens L 14 having a negative refractive power, a fifth lens L 15 having a positive refractive power with a convex surface facing the image plane IMG, Are arranged and configured. The object side surface of the second lens L 12, the aperture stop STOP is provided. The third lens L 13 and the fourth lens L 14 are cemented. Note that a light receiving surface of an image sensor such as a CCD or a CMOS is disposed on the image plane IMG. Further, if necessary, an optical element such as a cover glass or a filter can be disposed between the fifth lens L 15 and the image plane IMG.
 以下、実施例1にかかる撮像レンズに関する各種数値データを示す。 Hereinafter, various numerical data regarding the imaging lens according to Example 1 are shown.
撮像レンズ全系の焦点距離(f)=7.0
Fナンバ=2.0
半画角(ω)=24.2°
物体距離(撮像レンズ第1面から物体までの距離)=∞
撮像レンズにおける射出瞳位置から像面までの距離(EXP)=13.1
撮像レンズにおける第1面(最物体側面)から像面までの距離(L)=14.6
撮像レンズにおける第1面の曲率半径(R1)=-7.000
最大像高=3.0
Focal length (f) of entire imaging lens system = 7.0
F number = 2.0
Half angle of view (ω) = 24.2 °
Object distance (distance from the first surface of the imaging lens to the object) = ∞
Distance from the exit pupil position to the image plane in the imaging lens (EXP) = 13.1
Distance from first surface (most object side surface) to image surface in imaging lens (L) = 14.6
Radius of curvature (R 1 ) of the first surface of the imaging lens = -7.000
Maximum image height = 3.0
(条件式(1)に関する数値)
EXP/(L/f)=6.25
(Numerical values related to conditional expression (1))
EXP / (L / f) = 6.25
(条件式(2)に関する数値)
(L/f)/R1=-0.29
(Numerical value related to conditional expression (2))
(L / f) / R 1 = -0.29
1=-7.000
 d1=1.00  nd1=1.58913 νd1=61.18
2=6.037
 d2=0.36
3=24.238
 d3=1.45  nd2=1.88300 νd2=40.78
4=-7.279
 d4=0.10
5=5.725
 d5=2.74  nd3=1.88300 νd3=40.78
6=-10.401
 d6=0.50  nd4=1.92286 νd4=20.88
7=5.368
 d7=0.80
8=-21.359
 d8=1.55  nd5=1.88300 νd5=40.78
9=-5.372
 d9=6.10
10=∞(像面)
r 1 = -7.000
d 1 = 1.00 nd 1 = 1.58913 νd 1 = 61.18
r 2 = 6.037
d 2 = 0.36
r 3 = 24.238
d 3 = 1.45 nd 2 = 1.88300 νd 2 = 40.78
r 4 = -7.279
d 4 = 0.10
r 5 = 5.725
d 5 = 2.74 nd 3 = 1.88300 νd 3 = 40.78
r 6 = -10.401
d 6 = 0.50 nd 4 = 1.92286 νd 4 = 20.88
r 7 = 5.368
d 7 = 0.80
r 8 = -21.359
d 8 = 1.55 nd 5 = 1.88300 νd 5 = 40.78
r 9 = -5.372
d 9 = 6.10
r 10 = ∞ (image plane)
 また、図3は、実施例1にかかる撮像レンズのd線(λ=587.6nm)における諸収差図である。なお、非点収差図における符号S,Tは、それぞれサジタル方向、タンジェンタル方向の収差を表す。 FIG. 3 is a diagram of various aberrations at the d-line (λ = 587.6 nm) of the imaging lens according to the first example. Note that symbols S and T in the astigmatism diagram represent sagittal and tangential aberrations, respectively.
(実施例2)
 図4は、実施例2にかかる撮像レンズの構成を示す光軸に沿う断面図である。この撮像レンズは、単焦点レンズであり、図示しない物体側から順に、前記物体側へ凹面を向けた負の屈折力を有する第1レンズL21と、正の屈折力を有する第2レンズL22と、正の屈折力を有する第3レンズL23と、負の屈折力を有する第4レンズL24と、像面IMG側に凸面を向けた正の屈折力を有する第5レンズL25と、が配置されて構成される。第2レンズL22の物体側面には、開口絞りSTOPが設けられている。第3レンズL23と第4レンズL24とは接合されている。なお、像面IMGには、CCDやCMOSなどの撮像素子の受光面が配置される。また、必要に応じて、第5レンズL25と像面IMGとの間に、カバーガラスやフィルタなどの光学素子を配置することができる。
(Example 2)
FIG. 4 is a cross-sectional view along the optical axis showing the configuration of the imaging lens according to the second example. This imaging lens is a single focus lens, and in order from an object side (not shown), a first lens L 21 having a negative refractive power with a concave surface directed toward the object side, and a second lens L 22 having a positive refractive power. A third lens L 23 having a positive refractive power, a fourth lens L 24 having a negative refractive power, a fifth lens L 25 having a positive refractive power with a convex surface facing the image plane IMG, Are arranged and configured. The object side surface of the second lens L 22, the aperture stop STOP is provided. The third lens L 23 and the fourth lens L 24 are cemented. Note that a light receiving surface of an image sensor such as a CCD or a CMOS is disposed on the image plane IMG. Further, if necessary, an optical element such as a cover glass or a filter can be disposed between the fifth lens L 25 and the image plane IMG.
 以下、実施例2にかかる撮像レンズに関する各種数値データを示す。 Hereinafter, various numerical data regarding the imaging lens according to Example 2 are shown.
撮像レンズ全系の焦点距離(f)=7.0
Fナンバ=2.0
半画角(ω)=24.2°
物体距離(撮像レンズ第1面から物体までの距離)=∞
撮像レンズにおける射出瞳位置から像面までの距離(EXP)=12.6
撮像レンズにおける第1面(最物体側面)から像面までの距離(L)=14.0
撮像レンズにおける第1面の曲率半径(R1)=-5.368
最大像高=3.0
Focal length (f) of entire imaging lens system = 7.0
F number = 2.0
Half angle of view (ω) = 24.2 °
Object distance (distance from the first surface of the imaging lens to the object) = ∞
Distance from the exit pupil position to the image plane in the imaging lens (EXP) = 12.6
Distance from first surface (most object side surface) to image surface in imaging lens (L) = 14.0
Radius of curvature (R 1 ) of the first surface of the imaging lens = -5.368
Maximum image height = 3.0
(条件式(1)に関する数値)
EXP/(L/f)=6.31
(Numerical values related to conditional expression (1))
EXP / (L / f) = 6.31
(条件式(2)に関する数値)
(L/f)/R1=-0.37
(Numerical value related to conditional expression (2))
(L / f) / R 1 = −0.37
1=-5.368
 d1=0.50  nd1=1.51633 νd1=64.15
2=6.014
 d2=0.48
3=24.279
 d3=1.45  nd2=1.88300 νd2=40.78
4=-6.442
 d4=0.10
5=6.106
 d5=2.74  nd3=1.88300 νd3=40.78
6=-7.552
 d6=0.50  nd4=1.92286 νd4=20.88
7=5.423
 d7=0.80
8=-17.199
 d8=1.55  nd5=1.88300 νd5=40.78
9=-5.346
 d9=5.90
10=∞(像面)
r 1 = -5.368
d 1 = 0.50 nd 1 = 1.51633 νd 1 = 64.15
r 2 = 6.014
d 2 = 0.48
r 3 = 24.279
d 3 = 1.45 nd 2 = 1.88300 νd 2 = 40.78
r 4 = -6.442
d 4 = 0.10
r 5 = 6.106
d 5 = 2.74 nd 3 = 1.88300 νd 3 = 40.78
r 6 = -7.552
d 6 = 0.50 nd 4 = 1.92286 νd 4 = 20.88
r 7 = 5.423
d 7 = 0.80
r 8 = -17.199
d 8 = 1.55 nd 5 = 1.88300 νd 5 = 40.78
r 9 = -5.346
d 9 = 5.90
r 10 = ∞ (image plane)
 また、図5は、実施例2にかかる撮像レンズのd線(λ=587.6nm)における諸収差図である。なお、非点収差図における符号S,Tは、それぞれサジタル方向、タンジェンタル方向の収差を表す。 FIG. 5 is a diagram of various aberrations at the d-line (λ = 587.6 nm) of the imaging lens according to the second example. Note that symbols S and T in the astigmatism diagram represent sagittal and tangential aberrations, respectively.
(実施例3)
 図6は、実施例3にかかる撮像レンズの構成を示す光軸に沿う断面図である。この撮像レンズは、単焦点レンズであり、図示しない物体側から順に、前記物体側へ凹面を向けた負の屈折力を有する第1レンズL31と、正の屈折力を有する第2レンズL32と、正の屈折力を有する第3レンズL33と、負の屈折力を有する第4レンズL34と、像面IMG側に凸面を向けた正の屈折力を有する第5レンズL35と、が配置されて構成される。第1レンズL31の像面IMG側面には、開口絞りSTOPが設けられている。第3レンズL33と第4レンズL34とは接合されている。なお、像面IMGには、CCDやCMOSなどの撮像素子の受光面が配置される。また、必要に応じて、第5レンズL35と像面IMGとの間に、カバーガラスやフィルタなどの光学素子を配置することができる。
(Example 3)
FIG. 6 is a cross-sectional view along the optical axis showing the configuration of the imaging lens according to the third example. This imaging lens is a single focus lens, and in order from an object side (not shown), a first lens L 31 having a negative refractive power with a concave surface directed toward the object side, and a second lens L 32 having a positive refractive power. A third lens L 33 having a positive refractive power, a fourth lens L 34 having a negative refractive power, a fifth lens L 35 having a positive refractive power with a convex surface facing the image plane IMG, Are arranged and configured. An aperture stop STOP is provided on the side of the image plane IMG of the first lens L 31 . The third lens L 33 and the fourth lens L 34 are cemented. Note that a light receiving surface of an image sensor such as a CCD or a CMOS is disposed on the image plane IMG. Further, if necessary, an optical element such as a cover glass or a filter can be disposed between the fifth lens L 35 and the image plane IMG.
 以下、実施例3にかかる撮像レンズに関する各種数値データを示す。 Hereinafter, various numerical data regarding the imaging lens according to Example 3 are shown.
撮像レンズ全系の焦点距離(f)=7.0
Fナンバ=2.0
半画角(ω)=24.2°
物体距離(撮像レンズ第1面から物体までの距離)=∞
撮像レンズにおける射出瞳位置から像面までの距離(EXP)=13.8
撮像レンズにおける第1面(最物体側面)から像面までの距離(L)=14.6
撮像レンズにおける第1面の曲率半径(R1)=-6.520
最大像高=3.0
Focal length (f) of entire imaging lens system = 7.0
F number = 2.0
Half angle of view (ω) = 24.2 °
Object distance (distance from the first surface of the imaging lens to the object) = ∞
Distance from the exit pupil position to the image plane in the imaging lens (EXP) = 13.8
Distance from first surface (most object side surface) to image surface in imaging lens (L) = 14.6
Curvature radius (R 1 ) of the first surface of the imaging lens = -6.520
Maximum image height = 3.0
(条件式(1)に関する数値)
EXP/(L/f)=6.65
(Numerical values related to conditional expression (1))
EXP / (L / f) = 6.65
(条件式(2)に関する数値)
(L/f)/R1=-0.31
(Numerical value related to conditional expression (2))
(L / f) / R 1 = -0.31
1=-6.520
 d1=1.00  nd1=1.58913 νd1=61.18
2=6.021
 d2=0.36
3=21.122
 d3=1.43  nd2=1.88300 νd2=40.78
4=-6.940
 d4=0.10
5=5.973
 d5=2.87  nd3=1.88300 νd3=40.78
6=-8.200
 d6=0.50  nd4=1.92286 νd4=20.88
7=5.548
 d7=0.70
8=-15.467
 d8=1.50  nd5=1.88300 νd5=40.78
9=-5.078
 d9=5.90
10=∞(像面)
r 1 = -6.520
d 1 = 1.00 nd 1 = 1.58913 νd 1 = 61.18
r 2 = 6.021
d 2 = 0.36
r 3 = 21.122
d 3 = 1.43 nd 2 = 1.88300 νd 2 = 40.78
r 4 = -6.940
d 4 = 0.10
r 5 = 5.973
d 5 = 2.87 nd 3 = 1.88300 νd 3 = 40.78
r 6 = -8.200
d 6 = 0.50 nd 4 = 1.92286 νd 4 = 20.88
r 7 = 5.548
d 7 = 0.70
r 8 = -15.467
d 8 = 1.50 nd 5 = 1.88300 νd 5 = 40.78
r 9 = -5.078
d 9 = 5.90
r 10 = ∞ (image plane)
 また、図7は、実施例3にかかる撮像レンズのd線(λ=587.6nm)における諸収差図である。なお、非点収差図における符号S,Tは、それぞれサジタル方向、タンジェンタル方向の収差を表す。 FIG. 7 is a diagram of various aberrations at the d-line (λ = 587.6 nm) of the imaging lens according to the third example. Note that symbols S and T in the astigmatism diagram represent sagittal and tangential aberrations, respectively.
 なお、上記数値データにおいて、r1,r2,・・・・はレンズなどの曲率半径、d1,d2,・・・・は各レンズの肉厚またはそれらの面間隔、nd1,nd2,・・・・は各レンズのd線(λ=587.6nm)における屈折率、νd1,νd2,・・・・は各レンズのd線(λ=587.6nm)におけるアッベ数を示している。 In the above numerical data, r 1 , r 2 ,... Are the curvature radii of the lenses and the like, d 1 , d 2 ,... Are the thicknesses of the lenses or their surface spacings, nd 1 , nd 2 ,... Is the refractive index of each lens at the d-line (λ = 587.6 nm), and νd 1 , νd 2 ,... Are the Abbe numbers of each lens at the d-line (λ = 587.6 nm). Show.
 以上説明したように、上記各実施例の撮像レンズによれば、上記条件式を満足することで、光学系のコンパクト性を損なうことなく、撮像レンズの最像側面と撮像素子との間で発生するゴースト、および撮像レンズの最物体側面で像側へ反射される光が原因となって発生するゴーストを抑制することができる。加えて、周辺光量の低下を防止し、各レンズで発生する諸収差を良好に補正することもできる。 As described above, according to the imaging lens of each of the above embodiments, by satisfying the conditional expression, it occurs between the most image side surface of the imaging lens and the imaging element without impairing the compactness of the optical system. And the ghost generated due to the light reflected to the image side on the most object side surface of the imaging lens can be suppressed. In addition, the peripheral light amount can be prevented from being reduced, and various aberrations generated in each lens can be corrected well.
 以上のように、この発明の撮像レンズは、固体撮像素子が搭載されたデジタルビデオカメラに有用であり、特に、画面の周辺部であっても撮像した人や物を正確に認識することが要求される車載カメラに最適である。 As described above, the imaging lens of the present invention is useful for a digital video camera equipped with a solid-state imaging device, and particularly, it is required to accurately recognize a person or an object captured even at the periphery of the screen. It is most suitable for in-vehicle cameras.
 L11,L21,L31 第1レンズ
 L12,L22,L32 第2レンズ
 L13,L23,L33 第3レンズ
 L14,L24,L34 第4レンズ
 L15,L25,L35 第5レンズ
 STOP 開口絞り
 IMG 像面
L 11 , L 21 , L 31 1st lens L 12 , L 22 , L 32 2nd lens L 13 , L 23 , L 33 3rd lens L 14 , L 24 , L 34 4th lens L 15 , L 25 , L 35 5th lens STOP Aperture IMG Image surface

Claims (3)

  1.  物体側から順に配置された、前記物体側に凹面を向けた負の屈折力を有する第1レンズと、正の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、負の屈折力を有する第4レンズと、像側に凸面を向けた正の屈折力を有する第5レンズと、を備え、
     前記第1レンズと前記第2レンズとの間に開口絞りを配置し、
     前記第3レンズと前記第4レンズとを接合したことを特徴とする撮像レンズ。
    A first lens having a negative refractive power and a second lens having a positive refractive power, a third lens having a positive refractive power, arranged in order from the object side, and negative A fourth lens having a refractive power of 5 and a fifth lens having a positive refractive power with a convex surface facing the image side,
    An aperture stop is disposed between the first lens and the second lens;
    An imaging lens, wherein the third lens and the fourth lens are cemented.
  2.  以下の条件式を満足することを特徴とする請求項1に記載の撮像レンズ。
    (1) EXP/(L/f)>6.0
     ただし、EXPは当該撮像レンズにおける射出瞳位置から像面までの距離、Lは当該撮像レンズにおける第1面(最物体側面)から像面までの距離、fは当該撮像レンズの焦点距離を示す。
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    (1) EXP / (L / f)> 6.0
    Here, EXP is the distance from the exit pupil position to the image plane in the imaging lens, L is the distance from the first surface (most object side surface) to the image plane, and f is the focal length of the imaging lens.
  3.  以下の条件式を満足することを特徴とする請求項1または2に記載の撮像レンズ。
    (2) -0.4<(L/f)/R1<-0.2
     ただし、Lは当該撮像レンズにおける第1面(最物体側面)から像面までの距離、fは当該撮像レンズの焦点距離、R1は当該撮像レンズにおける第1面(最物体側面)の曲率半径を示す。
    The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
    (2) -0.4 <(L / f) / R 1 <-0.2
    Where L is the distance from the first surface (the most object side surface) to the image plane in the imaging lens, f is the focal length of the imaging lens, and R 1 is the radius of curvature of the first surface (the most object side surface) in the imaging lens. Indicates.
PCT/JP2009/070708 2008-12-19 2009-12-10 Imaging lens WO2010071077A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008324158A JP2010145828A (en) 2008-12-19 2008-12-19 Imaging lens
JP2008-324158 2008-12-19

Publications (1)

Publication Number Publication Date
WO2010071077A1 true WO2010071077A1 (en) 2010-06-24

Family

ID=42268747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070708 WO2010071077A1 (en) 2008-12-19 2009-12-10 Imaging lens

Country Status (2)

Country Link
JP (1) JP2010145828A (en)
WO (1) WO2010071077A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104101987A (en) * 2013-04-08 2014-10-15 大立光电股份有限公司 Image capturing lens assembly
US8891182B2 (en) 2012-07-25 2014-11-18 Samsung Techwin Co., Ltd. Wide angle lens and photographing apparatus including the same
CN108693626A (en) * 2017-04-05 2018-10-23 深圳鼎界科技有限公司 The nearly eye of transmission-type large-numerical aperture achromatism shows optical lens and intelligent glasses
TWI663419B (en) * 2016-05-16 2019-06-21 大陸商信泰光學(深圳)有限公司 Lens assembly
TWI685690B (en) * 2018-03-14 2020-02-21 先進光電科技股份有限公司 Optical image capturing system
TWI685689B (en) * 2018-03-14 2020-02-21 先進光電科技股份有限公司 Optical image capturing system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016062230A1 (en) * 2014-10-20 2016-04-28 宁波舜宇车载光学技术有限公司 Optical lens
TWI622798B (en) * 2017-08-01 2018-05-01 大立光電股份有限公司 Optical image capturing system, imaging apparatus and electronic device
CN114051590A (en) 2019-06-26 2022-02-15 京瓷株式会社 Imaging lens and imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288113A (en) * 1990-04-05 1991-12-18 Olympus Optical Co Ltd Zoom lens
JP2000292692A (en) * 1999-02-01 2000-10-20 Olympus Optical Co Ltd Photographing optical system
JP2006113109A (en) * 2004-10-12 2006-04-27 Nidec Copal Corp Zoom lens
JP2006163338A (en) * 2004-12-08 2006-06-22 Ind Technol Res Inst Zoom lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288113A (en) * 1990-04-05 1991-12-18 Olympus Optical Co Ltd Zoom lens
JP2000292692A (en) * 1999-02-01 2000-10-20 Olympus Optical Co Ltd Photographing optical system
JP2006113109A (en) * 2004-10-12 2006-04-27 Nidec Copal Corp Zoom lens
JP2006163338A (en) * 2004-12-08 2006-06-22 Ind Technol Res Inst Zoom lens

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8891182B2 (en) 2012-07-25 2014-11-18 Samsung Techwin Co., Ltd. Wide angle lens and photographing apparatus including the same
CN104101987A (en) * 2013-04-08 2014-10-15 大立光电股份有限公司 Image capturing lens assembly
TWI663419B (en) * 2016-05-16 2019-06-21 大陸商信泰光學(深圳)有限公司 Lens assembly
CN108693626A (en) * 2017-04-05 2018-10-23 深圳鼎界科技有限公司 The nearly eye of transmission-type large-numerical aperture achromatism shows optical lens and intelligent glasses
TWI685690B (en) * 2018-03-14 2020-02-21 先進光電科技股份有限公司 Optical image capturing system
TWI685689B (en) * 2018-03-14 2020-02-21 先進光電科技股份有限公司 Optical image capturing system
US10816757B2 (en) 2018-03-14 2020-10-27 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system
US10877249B2 (en) 2018-03-14 2020-12-29 Ability Opto-Electronics Technology Co., Ltd. Optical image capturing system

Also Published As

Publication number Publication date
JP2010145828A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
WO2010071077A1 (en) Imaging lens
WO2017199633A1 (en) Imaging lens and imaging device
JP3564107B2 (en) Compact shooting lens
JP5463265B2 (en) Wide angle lens
JP4855042B2 (en) Photography optical system, photography lens unit and camera
US8159532B2 (en) Electronic image pickup apparatus
TWI503563B (en) Image pickup lens, image pickup apparatus, and portable terminal
JP5577531B2 (en) Imaging lens
JP2006119368A (en) Wide-angle optical system, imaging lens device, monitor camera and digital equipment
JP2009216858A (en) Imaging lens and imaging apparatus
WO2009125522A1 (en) Imaging lens
JP2016206223A (en) Image capturing lens, lens unit, image capturing device, digital still camera, and mobile terminal
JP3835398B2 (en) Imaging lens
JP2008158198A (en) Image formation optical system and imaging apparatus using the same
US7480106B2 (en) Imaging lens
JP3924546B2 (en) Imaging device
CN113741006A (en) Optical lens, camera module and electronic equipment
JPH1039207A (en) Image forming lens
JP5305831B2 (en) Imaging optics
JP2003329922A (en) Image pickup lens
JP6584142B2 (en) Imaging optical system and imaging apparatus having the same
JPWO2012114970A1 (en) Imaging lens, imaging device, and portable terminal
JP2011112719A (en) Image pickup lens and image pickup device using the same, and portable device equipped with the image pickup device
JP2006098429A (en) Imaging lens
JP2012230233A (en) Imaging lens, imaging apparatus and portable terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833380

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833380

Country of ref document: EP

Kind code of ref document: A1