WO2010070227A2 - Compresseur frigorifique à spirales - Google Patents

Compresseur frigorifique à spirales Download PDF

Info

Publication number
WO2010070227A2
WO2010070227A2 PCT/FR2009/052515 FR2009052515W WO2010070227A2 WO 2010070227 A2 WO2010070227 A2 WO 2010070227A2 FR 2009052515 W FR2009052515 W FR 2009052515W WO 2010070227 A2 WO2010070227 A2 WO 2010070227A2
Authority
WO
WIPO (PCT)
Prior art keywords
housing
compressor
refrigerant
compressor according
return device
Prior art date
Application number
PCT/FR2009/052515
Other languages
English (en)
Other versions
WO2010070227A3 (fr
Inventor
Christophe Ancel
Pierre Ginies
Pierre Emilien Clement
Original Assignee
Danfoss Commercial Compressors
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss Commercial Compressors filed Critical Danfoss Commercial Compressors
Priority to CN200980156918.2A priority Critical patent/CN102317630B/zh
Priority to US13/128,775 priority patent/US8794940B2/en
Priority to DE112009003662T priority patent/DE112009003662T5/de
Publication of WO2010070227A2 publication Critical patent/WO2010070227A2/fr
Publication of WO2010070227A3 publication Critical patent/WO2010070227A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/063Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents with coaxially-mounted members having continuously-changing circumferential spacing between them
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • a scroll compressor comprises first and second volutes describing relative orbital movement, each volute having a plateau from which extends a spiral, the two spirals being engaged one inside the other and delimiting pairs of compression chambers of variable volume, the compression chambers having a volume which decreases progressively from the outside, where the intake of refrigerant gas, inwards.
  • the refrigerant gas is compressed due to the reduction of the volume of the compression chambers and conveyed to the center of the first and second volutes.
  • the compressed refrigerant gas exits centrally toward a recovery chamber through a discharge port in one of the first and second volutes.
  • the injection and bypass valves are both disposed outside the compressor.
  • the injection valve is disposed outside the compressor and the bypass valve is disposed in the suction stage.
  • the surface of the plate of the fixed volute turned on the opposite side of the spirals comprises a housing in which is mounted a non-return device.
  • the non-return device is movable between an open position allowing an injection of refrigerant gas into the compression chamber in which the passage opening opens, and a closed position preventing a refrigerant gas discharge from said compression chamber to the means. refrigerant gas injection.
  • the present invention aims to remedy these disadvantages.
  • the technical problem underlying the invention is therefore to provide a scroll compressor with a simple and economical structure, while allowing a simple and easy installation of a non-return device on one of the volutes of the compressor.
  • the invention relates to a scroll compressor comprising a first and a second volute describing a relative orbital movement, each volute having a plate from which extends a spiral, the two spirals being engaged one in the other and delimiting at least two compression chambers of variable volume, characterized in that the compressor comprises:
  • At least one housing formed in the surface of the plate of one of the first and second volutes facing the spirals, the housing opening into one of the compression chambers, - discharge means and / or fluid injection refrigerant coming into the housing,
  • a non-return device mounted in the housing the non-return device being arranged to prevent the communication of the discharge means and / or refrigerant injection with the compression chamber in which the housing opens in a first closed position, and being arranged to allow the communication of the discharge means and / or refrigerant injection with the compression chamber in which the housing opens in a second open position.
  • the machining of a housing arranged to receive a non-return device in the surface of the plate of one of the scrolls facing the spirals can be easily achieved, and is in no way hampered by the presence of a bell covering the fixed scroll or sealing elements at the discharge port.
  • the compressor according to the invention allows simple and easy mounting of a non-return device on one of the volutes of the compressor.
  • the non-return device comprises a valve seat member and a non-return valve movable between a closure position of the non-return device in which the check valve bears against the valve seat member and a open position of the non-return device in which the check valve is remote from the valve seat member.
  • the non-return valve is an elastically deformable strip integral with the valve seat member.
  • the housing defines a valve seat
  • the non-return device comprises a non-return valve movable between a closed position of the non-return device in which the check valve bears against the valve seat and a open position of the non-return device in which the check valve is moved away from the valve seat.
  • the compressor comprises a partial closure device mounted in the housing and arranged to partially close the latter, the closure device delimiting at least partly a refrigerant passage opening opening in one of the compression chambers , the orifice being arranged to put said compression chamber in communication with the discharge means and / or refrigerant injection when the non-return device is in its open position.
  • the closure device delimiting at least partly a refrigerant passage opening opening in one of the compression chambers , the orifice being arranged to put said compression chamber in communication with the discharge means and / or refrigerant injection when the non-return device is in its open position.
  • the closure device is mounted in the housing so that its surface facing the spirals is substantially aligned with the surface of the tray in which the housing is formed.
  • the passage opening is dimensioned so that the spiral of the other of the first and second volutes prevents the communication of two compression chambers through the passage opening during the relative orbital movement of the two volutes.
  • the passage opening has a section of elongate shape and a width substantially less than or equal to the thickness of the spiral of the other of the first and second volutes.
  • the passage opening is partially delimited by the closure device and partially by the wall of the housing.
  • the passage opening is entirely delimited by the closure device.
  • the passage orifice has a circular shape and the opening of the latter opening into the compression chamber is achieved by removal of material from the surface of the insert facing the spirals and the circumference of the passage opening such that said opening has dimensions greater than those of the passage opening.
  • the valve seat member is made of material with the closure device.
  • the compressor comprises control means of the non-return device arranged to move the latter between its closed and open positions.
  • control means are arranged to place the refrigerant discharge means in communication alternately with a high-pressure fluid supply circuit and a low-pressure fluid supply circuit, the anti-return device being moved to its position of closing when the refrigerant delivery means are put in communication with the high pressure fluid supply circuit, and in its open position when the refrigerant delivery means are put in communication with the supply circuit. low pressure fluid.
  • control means are arranged to place the refrigerant injection means in communication with a refrigerant injection circuit, the non-return device being moved into its open position. when the means refrigerant injection are put into communication with the refrigerant injection circuit.
  • the refrigerant discharge means comprise a discharge pipe whose one end opens into the housing and the other end opens into a refrigerant suction volume defined by the compressor.
  • the refrigerant discharge means comprise a discharge pipe whose one end opens into the housing and the other end opens into a discharge opening in the tray. one of the first and second volutes.
  • Figure 1 is a longitudinal sectional view of a first compressor.
  • Figure 2 is a longitudinal sectional view, on an enlarged scale, of the fixed scroll of the compressor of Figure 1.
  • Figures 3 and 4 are partial views in longitudinal section, on an enlarged scale, of a detail of the fixed scroll of the compressor of figure 1.
  • Figure 5 is a view showing the passage opening in the tray of the fixed scroll.
  • Figure 7 is a longitudinal sectional view, on an enlarged scale, of the fixed scroll of the compressor of Figure 6.
  • Figures 8 and 9 are partial views in longitudinal section, on an enlarged scale, of a detail of the fixed scroll of the compressor of Figure 6.
  • Figure 10 is a longitudinal sectional view, on an enlarged scale, of the fixed volute of a third compressor.
  • Figures 11 and 12 are partial views in longitudinal section, on an enlarged scale, of a detail of the fixed scroll of the compressor of Figure 10.
  • Figure 1 depicts a variable speed scroll compressor operating in a vertical position.
  • the compressor according to the invention could occupy an inclined position, or a horizontal position, without its structure being significantly modified.
  • the compressor shown in FIG. 1 comprises a sealed enclosure delimited by a shell 2 whose upper and lower ends are respectively closed by a cover 3 and a base 4.
  • the assembly of this enclosure can be made in particular by means of weld seams.
  • the shell 2 comprises a refrigerant gas inlet (not shown in Figure 1) opening into a suction volume to achieve the supply of refrigerant gas to the compressor.
  • the intermediate portion of the compressor is occupied by a body 5 for mounting a compression stage 7 of the refrigerant gas.
  • This compression stage 7 comprises a fixed volute 8 comprising a plate 9 from which extends a fixed spiral 10 facing downwards, and a mobile volute 11 having a plate 12 bearing against the body 5 and from which extends a spiral 13 turned upwards.
  • the two spirals 10 and 13 of the two scrolls interpenetrate to provide compression chambers 14 of variable volume.
  • the admission of the gas into the compression stage is made from the outside, the compression chambers 14 having a variable volume which decreases from the outside towards the inside, during the movement of the mobile volute 11 with respect to the fixed scroll 8, the compressed gas escaping in the center of the scrolls through a discharge opening 15 formed in the fixed scroll 8 towards a chamber 16 at high pressure from which it is discharged by a fitting (not shown on the figure).
  • the compressor comprises a separator plate 40 covering the fixed scroll 8 and sealingly mounted thereon.
  • the separating plate 40 defines two volumes, a low pressure suction volume located below it, and a high pressure discharge volume disposed above it.
  • the compressor comprises an electric motor disposed in the suction volume.
  • the electric motor comprises a stator 17 at the center of which is disposed a rotor 18.
  • the rotor 18 is secured to a drive shaft 20 whose upper end is offset in the manner of a crankshaft. This upper part is engaged in a portion 21 in the form of a sleeve, which comprises the movable scroll 11.
  • the drive shaft 20 drives the mobile scroll 11 in an orbital motion.
  • the lower end of the drive shaft 20 drives an oil pump 22 feeding, from oil contained in a housing 23 delimited by the base 4, an oil supply conduit 24 formed in the central portion of the drive shaft, the supply duct 24 being off-axis and extends over a portion of the length of the drive shaft 20.
  • the compressor also comprises a substantially cylindrical housing 25 formed in the lower surface of the plate 9 of the fixed scroll 8, that is to say the surface of the plate 9 facing the spirals 10, 13.
  • the housing 25 opens into one of the compression chambers 14.
  • the housing 25 has a maximum diameter substantially corresponding to the radial distance between two adjacent portions of the spiral 10 of the fixed scroll 8.
  • the compressor further comprises a non-return device 26 mounted in the housing 25.
  • the non-return device 26 comprises on the one hand a valve seat member 27 inserted in the housing 25 and delimiting a through opening 28, and on the other hand a check valve 29 movable between a closed position (shown in Figure 3) in which the check valve 29 bears against the valve seat member 27 and closes the passage opening 28, and an open position (shown in Figure 4) in which the check valve 29 is remote from the valve seat member 27 and releases the passage opening 28.
  • the check valve 29 has a substantially circular shape.
  • the closure member 31 delimits in part a refrigerant gas orifice 32 opening into one of the compression chambers 14 and communicating with the passage opening 28 delimited by the valve seat member 27.
  • the passage opening 32 is dimensioned such that the spiral 13 of the mobile volute 11 prevents the communication of two compression chambers 14 through the passage opening 32 during the orbital movement of the moving volute. 11.
  • the through-hole 32 has a section of elongate shape and a width that is substantially less than or equal to the thickness of the spiral 13 of the mobile volute 11.
  • the through-hole 32 is partially delimited by the closure member 31 and partially by the wall of the housing 25.
  • the passage opening 32 opens substantially along the wall of the spiral 10 of the fixed scroll 8.
  • the compressor comprises a refrigerant gas discharge conduit 33 having a first end 34 opening into the housing 25 downstream of the check valve 29 with respect to the valve seat member 27, and a second end 35 opening into the volume of the valve seat 27. suction defined by the ferrule 2.
  • the compressor comprises control means 37 of the non-return device arranged to move the non-return valve 29 between its closed and open positions according to whether or not the maximum capacity of the compressor is desired.
  • the control means connect the discharge pipe 33 to the high-pressure fluid supply circuit 38.
  • the check valve 29 is subjected, on its face opposite to the organ forming a valve seat 27, at the pressure of a high-pressure fluid such that the check valve 29 is held pressed against the valve seat member 27 and isolates the compression chamber 14 into which the passage opening 32 of the suction volume.
  • the control means connect the discharge pipe 33 to the low-pressure fluid supply circuit 39.
  • the check valve 29 is subjected, on its face opposite to the organ forming a valve seat 27, at the pressure of a low-pressure fluid so that the check valve 29 is raised and communicates the compression chamber 14 into which the passage opening 32 opens with the suction volume.
  • a spring acting in a direction of opening or closing the valve can be associated with the latter.
  • Figures 6 to 9 show a second embodiment of the invention.
  • the compressor comprises two substantially cylindrical housings 25 formed in the lower surface of the platen 9 of the fixed volute 8.
  • the compressor further comprises a non-return device 26 and a closure device 30 mounted in each housing 25.
  • the valve seat member 27 of each non-return device 26 comes of material with the shutter member 31 of the shutter device 30 corresponding.
  • the non-return valve 29 of each non-return device 26 consists of a leaf integral with the valve seat member 27 corresponding and elastically deformable between a closed position (shown in Figure 8) in which the valve 29 bears against the corresponding valve seat member 27 and closes the passage opening 28 delimited by the latter and an open position (shown in Figure 9) in which the valve bears against a retaining plate 45 integral with the corresponding valve seat member 27 and releases the passage opening 28 delimited by the latter.
  • the abutment plate 45 of each non-return device 26 is screwed onto the corresponding valve seat member 27.
  • the compressor comprises two refrigerant gas discharge conduits 33, each discharge pipe
  • the compressor does not include control means of the non-return valve 29 of each non-return device 26.
  • each non-return valve 29 is arranged to deform towards its open position only when the pressure in the compression chamber 14 into which the corresponding through orifice 32 opens is greater than the pressure in the discharge orifice. 15.
  • valve 29 is held pressed against the valve seat member (as is shown in FIG. 8) and isolates the compression chamber 14 in which opens the corresponding through hole 32 of the discharge port 15 formed in the fixed volute 8. As a result, the compression ratio of the compressor is maintained at its maximum value.
  • each non-return device 26 When the non-return valve 29 of each non-return device 26 is subjected, on its face facing the valve seat member, to a pressure greater than the pressure in the delivery port 15, the valve 29 deforms elastically towards its position. opening (as shown in Figure 9) and communicates the compression chamber 14 in which opens the corresponding through hole 32 with the discharge port 15 formed in the fixed volute 8. This results in a discharge to the discharge port 15 of a portion of the refrigerant gas compressed in the compression chambers 14 in which the through openings 32 open before this portion of the refrigerant gas reaches the center of the spirals 10, 13.
  • 33 could include a first end opening into one of the housings 25 and a second end opening into the high pressure chamber 16.
  • the compressor could comprise a single cartridge or two identical cartridges.
  • FIGS. 10 to 12 show a third embodiment of the invention which differs from the first embodiment essentially in that the valve seat is delimited by the housing 25, and in that the compressor comprises an injection conduit of refrigerant gas 41 comprising a first end 42 opening into the housing 25 downstream of the non-return valve 29 relative to the closure member 31, and a second end 43 connected to a refrigerant gas injection circuit (not shown in FIG. figure).
  • control means 137 of the non-return device are arranged on the one hand to put in communication the injection conduit 41 with the refrigerant gas injection circuit, and secondly to isolate the injection conduit 41 of the refrigerant gas injection circuit.
  • the control means 137 isolate the injection conduit 41 to the refrigerant gas injection circuit.
  • the non-return valve 29 is subjected, on its face facing the closure member 31, to the pressure of the refrigerant gas compressed in the compression chamber 14 into which the passage opening 32 opens so that the valve
  • the non-return valve 29 is kept pressed onto its valve seat and isolates said compression chamber 14 from the injection conduit 41.
  • a spring acting in a closing direction of the valve can be inserted between this valve. last and shutter member 31.
  • control means 137 connect the injection duct 41 to the refrigerant gas injection circuit.
  • the non-return valve 29 is subjected to the pressure of a high-pressure fluid on its face opposite to the closure member 31 so that the non-return valve 29 comes to press against the closure member 31 and communicates the compression chamber 14 in which the passage opening 32 opens with the injection conduit 41, which allows an injection of refrigerant gas into said compression chamber 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

Ce compresseur comprend des première et seconde volutes (8, 11 ) décrivant un mouvement relatif orbital et comportant chacune un plateau (9, 12) à partir duquel s'étend une spirale (10, 13), les deux spirales étant engagées l 'u ne dans l 'autre et délimitant des paires de chambres de compression (14) de volume variable. Le compresseur comporte un logement (25) ménagé dans la surface du plateau (9) de la première volute tournée vers les spirales (10, 13), le logement (25) débouchant dans l'une des chambres de compression (14), des moyens de refoulement (33) de fluide frigorigène débouchant dans le logement (25), et un dispositif antiretour (26) monté dans le logement (25), le dispositif antiretour empêchant la mise en communication des moyens de refoulement avec la chambre de compression dans laquelle débouche le logement (25) dans une première position de fermeture, et permettant la mise en communication des moyens de refoulement avec ladite chambre de compression dans une seconde position d'ouverture.

Description

Compresseur frigorifique à spirales
La présente invention concerne un compresseur frigorifique à spirales.
De façon connue, un compresseur frigorifique à spirales comprend une première et une seconde volutes décrivant un mouvement relatif orbital, chaque volute comportant un plateau à partir duquel s'étend une spirale, les deux spirales étant engagées l'une dans l'autre et délimitant des paires de chambres de compression de volume variable, les chambres de compression ayant un volume qui diminue progressivement de l'extérieur, où se fait l'admission de gaz frigorigène, vers l'intérieur.
Ainsi, lors du mouvement relatif orbital des première et seconde volutes, le gaz frigorigène est comprimé du fait de la diminution du volume des chambres de compression et véhiculé jusqu'au centre des première et seconde volutes. Le gaz frigorigène comprimé sort en partie centrale en direction d'une chambre de récupération par l'intermédiaire d'un orifice de refoulement ménagé dans l'une des première et seconde volutes.
Afin d'améliorer les performances d'un tel compresseur en fonction des saisons, et plus particulièrement en fonction de la demande en froid, il est connu de réaliser des compresseurs à capacité variable et/ou à taux de compression variable.
Le document US 7 100 386 décrit un compresseur frigorifique à spirales à capacité variable comprenant un orifice de passage de gaz frigorigène ménagé dans le plateau de l'une des volutes et débouchant dans l'une des chambres de compression. Ce compresseur comprend en outre un circuit de dérivation communiquant avec l'orifice de passage et une soupape de dérivation agencés pour dévier une partie du gaz frigorigène contenu dans les chambres de compression vers le côté basse pression du compresseur. Ces dispositions permettent de réduire la capacité ou cylindrée du compresseur. Ce compresseur comprend également un circuit d'injection de gaz frigorigène communiquant avec l'orifice de passage et une soupape d'injection agencés pour injecter du gaz frigorigène dans les chambres de compression vers le côté basse pression du compresseur. Ces dispositions permettent d'augmenter la capacité du compresseur. Ainsi, en pilotant de manière appropriée l'ouverture et la fermeture des soupapes d'injection et de dérivation, il est possible d'adapter la capacité du compresseur en fonction de la demande en froid.
Selon un premier mode de réalisation décrit dans le document US 7 100 386, les soupapes d'injection et de dérivation sont toutes les deux disposées à l'extérieur du compresseur. Selon un second mode de réalisation décrit dans le document US 7 100 386, la soupape d'injection est disposée à l'extérieur du compresseur et la soupape de dérivation est disposée dans l'étage d'aspiration. De ce fait, les distances entre l'orifice de passage et les soupapes d'injection et de dérivation sont importantes, ce qui génère un volume mort important.
Ainsi, lorsque l'une des soupapes ou lorsque les deux soupapes sont en position fermée, une quantité importante de gaz frigorigène est susceptible de s'écouler à travers l'orifice de passage des chambres de compression vers les volumes morts des circuits d'injection et/ou de dérivation.
Or, puisque la pression dans chaque chambre de compression varie d'une valeur minimale à une valeur maximale durant le mouvement relatif orbital des première et seconde volutes, il en résulte l'apparition de pulsations de pression dans les circuits d'injection et/ou de dérivation. Ces pulsations de pression provoquent des surpressions ou des dépressions dans les chambres de compression, ce qui peut nuire aux performances du compresseur.
Pour pal l ier ces inconvén ients, il est connu du document US 4 475 360 de positionner un dispositif antiretour à proximité de l'orifice de passage de gaz frigorigène ménagé dans le plateau de la volute fixe.
A cet effet, la surface du plateau de la volute fixe tournée du côté opposé aux spirales comprend un logement dans lequel est monté un dispositif antiretour. Le dispositif antiretour est mobile entre une position d'ouverture permettant une injection de gaz frigorigène dans la chambre de compression dans laquelle débouche l'orifice de passage, et une position de fermeture empêchant un refoulement de gaz frigorigène de ladite chambre de compression vers les moyens d'injection de gaz frigorigène.
Ces dispositions permettent d'éviter la création d'un volume mort important et donc l'apparition de fluctuations de pression susceptibles de diminuer les performances du compresseur. Cependant, l'installation d'un dispositif antiretour sur la surface supérieure de la volute fixe d'un compresseur peut s'avérer difficile, voire impossible, notamment lorsque l'accès à la partie supérieure de la volute fixe est entravé par l'existence d'une cloche recouvrant la volute fixe ou par la présence d'éléments d'étanchéité au niveau de l'orifice de refoulement.
La présente invention vise à remédier à ces inconvénients.
Le problème technique à la base de l'invention consiste donc à fournir un compresseur frigorifique à spirales qui soit dé structure simple et économique, tout en permettant un montage simple et aisé d'un dispositif antiretour sur l'une des volutes du compresseur.
A cet effet, l'invention concerne u n compresseur frigorifique à spirales, comprenant une première et une seconde volutes décrivant un mouvement relatif orbital, chaque volute comportant un plateau à partir duquel s'étend une spirale, les deux spirales étant engagées l'une dans l'autre et délimitant au moins deux chambres de compression de volume variable, caractérisé en ce que le compresseur comporte :
- au moins un logement ménagé dans la surface du plateau de l'une des première et seconde volutes tournée vers les spirales, le logement débouchant dans l'une des chambres de compression, - des moyens de refoulement et/ou d'injection de fluide frigorigène débouchant dans le logement,
- un dispositif antiretour monté dans le logement, le dispositif antiretour étant agencé pour empêcher la mise en communication des moyens de refoulement et/ou d'injection de fluide frigorigène avec la chambre de compression dans laquelle débouche le logement dans une première position de fermeture, et étant agencé pour permettre la mise en communication des moyens de refoulement et/ou d'injection de fluide frigorigène avec la chambre de compression dans laquelle débouche le logement dans une seconde position d'ouverture. L'usinage d'un logement agencé pour recevoir un dispositif antiretour dans la surface du plateau de l'une des volutes tournée vers les spirales peut être aisément réalisé, et n'est en aucun cas entravé par la présence d'une cloche recouvrant la volute fixe ou d'éléments d'étanchéité au niveau de l'orifice de refoulement. Ainsi, le compresseur selon l'invention permet un montage simple et aisé d'un dispositif antiretour sur l'une des volutes du compresseur. Selon un mode de réalisation de l'invention, le dispositif antiretour comprend un organe formant siège de clapet et un clapet antiretour mobile entre une position de fermeture du dispositif antiretour dans laquelle le clapet antiretour prend appui contre l'organe formant siège de clapet et une position d'ouverture du dispositif antiretour dans laquelle le clapet antiretour est éloigné de l'organe formant siège de clapet. Ces dispositions permettent de choisir le matériau constitutif du siège de clapet, ce qui peut être très avantageux dans le cadre d'application spécifique.
De préférence, le clapet antiretour est une lamelle élastiquement déformable solidaire de l'organe formant siège de clapet.
Selon un autre mode de réalisation de l'invention, le logement délimite un siège de clapet, et le dispositif antiretour comprend un clapet antiretour mobile entre une position de fermeture du dispositif antiretour dans laquelle le clapet antiretour prend appui contre le siège de clapet et une position d'ouverture du dispositif antiretour dans laquelle le clapet antiretour est éloigné du siège de clapet.
De préférence, le compresseur comporte un dispositif d'obturation partielle monté dans le logement et agencé pour obturer partiellement ce dernier, le dispositif d'obturation délimitant au moins en partie un orifice de passage de fluide frigorigène débouchant dans l'une des chambres de compression, l'orifice de passage étant agencé pour mettre en communication ladite chambre de compression avec les moyens de refoulement et/ou d'injection de fluide frigorigène lorsque le dispositif antiretour est dans sa position d'ouverture. Ces dispositions permettent d'obtenir aisément des orifices de passage présentant des formes difficiles, voire impossibles à réaliser par usinage du plateau des volutes. Ces dispositions assurent également une grande liberté de choix quant à la forme, la taille et le positionnement de l'orifice de passage.
De façon avantageuse, le dispositif d'obturation est monté dans le logement de telle sorte que sa surface tournée vers les spirales soit sensiblement alignée avec la surface du plateau dans laquelle est ménagé le logement.
Avantageusement, l'orifice de passage est dimensionné de telle sorte que la spirale de l'autre des première et seconde volutes empêche la mise en communication de deux chambres de compression à travers l'orifice de passage au cours du mouvement orbital relatif des deux volutes. Ces dispositions permettent d'éviter des fuites de fluide entre deux chambres de compression et donc une diminution des performances du compresseur.
Préférentiellement, l'orifice de passage présente une section de forme allongée et une largeur sensiblement inférieure ou égale à l'épaisseur de la spirale de l'autre des première et seconde volutes. Ces dispositions permettent d'augmenter la quantité de fluide frigorigène déviée vers les moyens de refoulement et/ou d'injection de fluide frigorigène, et donc d'augmenter le rendement du compresseur.
De façon avantageuse, l'orifice de passage est délimité partiellement par le dispositif d'obturation et partiellement par la paroi du logement. Alternativement, l'orifice de passage est entièrement délimité par le dispositif d'obturation.
Selon une variante de réalisation, l'orifice de passage présente une forme circulaire et l'ouverture de ce dernier débouchant dans la chambre de compression est réalisée par enlèvement de matière à partir de la surface de l'insert tournée vers les spirales et de la circonférence de l'orifice de passage de telle sorte que ladite ouverture présente des dimensions supérieurs à celles de l'orifice de passage.
De préférence, l'organe formant siège de clapet vient de matière avec le dispositif d'obturation.
Avantageusement, le compresseur comprend des moyens de commande du dispositif antiretour agencés pour déplacer ce dernier entre ses positions de fermeture et d'ouverture.
Préférentiellement, les moyens de commande sont agencés pour mettre en communication les moyens de refoulement de fluide frigorigène alternativement avec un circuit d'alimentation en fluide haute pression et un circuit d'alimentation en fluide basse pression, le dispositif antiretour étant déplacé dans sa position de fermeture lorsque les moyens de refoulement de fluide frigorigène sont mis en communication avec le circuit d'alimentation en fluide haute pression, et dans sa position d'ouverture lorsque les moyens de refoulement de fluide frigorigène sont mis en communication avec le circuit d'alimentation en fluide basse pression.
Selon un autre mode de réalisation de l'invention, les moyens de commande sont agencés pour mettre en communication les moyens d'injection de fluide frigorigène avec un circuit d'injection de fluide frigorigène, le dispositif antiretour étant déplacé dans sa position d'ouverture lorsque les moyens d'injection de fluide frigorigène sont mis en communication avec le circuit d'injection de fluide frigorigène.
Avantageusement, les moyens de refoulement de fluide frigorigène comportent un conduit de refoulement dont l'une des extrémités débouche dans le logement et dont l'autre extrémité débouche dans un volume d'aspiration de gaz frigorigène délimité par le compresseur.
Selon un autre mode de réalisation de l'invention, les moyens de refoulement de fluide frigorigène comportent un conduit de refoulement dont l'une des extrémités débouche dans le logement et dont l'autre extrémité débouche dans une ouverture de refoulement ménagée dans le plateau de l'une des première et seconde volutes.
De toute façon l'invention sera bien comprise à l'aide de la description qui suit en référence au dessin schématique annexé représentant, à titre d'exemples non limitatifs, plusieurs formes d'exécution de ce compresseur frigorifique à spirales.
Figure 1 est une vue en coupe longitudinale d'un premier compresseur.
Figure 2 est une vue en coupe longitudinale, à échelle agrandie, de la volute fixe du compresseur de figure 1. Figures 3 et 4 sont des vues partielles en coupe longitudinale, à échelle agrandie, d'un détail de la volute fixe du compresseur de figure 1.
Figure 5 est une vue montrant l'orifice de passage ménagé dans le plateau de la volute fixe.
Figure 6 est une vue en coupe longitudinale d'un deuxième compresseur.
Figure 7 est une vue en coupe longitudinale, à échelle agrandie, de la volute fixe du compresseur de figure 6.
Figures 8 et 9 sont des vues partielles en coupe longitudinale, à échelle agrandie, d'un détail de la volute fixe du compresseur de figure 6. Figure 10 est une vue en coupe longitudinale, à échelle agrandie, de la volute fixe d'un troisième compresseur.
Figures 11 et 12 sont des vues partielles en coupe longitudinale, à échelle agrandie, d'un détail de la volute fixe du compresseur de figure 10.
Dans la description qui suit, les mêmes éléments sont désignés par les mêmes références dans les différentes formes d'exécution. La figure 1 décrit un compresseur frigorifique à spirales à vitesse variable occupant une position verticale. Toutefois, le compresseur selon l'invention, pourrait occuper une position inclinée, ou une position horizontale, sans que sa structure soit modifiée d'une manière significative. Le compresseur représenté à la figure 1 comprend une enceinte étanche délimitée par une virole 2 dont les extrémités supérieure et inférieure sont fermées respectivement par un couvercle 3 et une embase 4. L'assemblage de cette enceinte peut être réalisé notamment au moyen de cordons de soudure. La virole 2 comprend une entrée de gaz frigorigène (non représentée sur la figure 1 ) débouchant dans un volume d'aspiration pour réaliser l'amenée de gaz frigorigène au compresseur.
La partie intermédiaire du compresseur est occupée par un corps 5 servant au montage d'un étage de compression 7 du gaz frigorigène. Cet étage de compression 7 comprend une volute fixe 8 comportant un plateau 9 à partir duquel s'étend une spirale fixe 10 tournée vers le bas, et une volute mobile 11 comportant un plateau 12 prenant appui contre le corps 5 et à partir duquel s'étend une spirale 13 tournée vers le haut. Les deux spirales 10 et 13 des deux volutes s'interpénétrent pour ménager des chambres de compression 14 à volume variable.
L'admission du gaz dans l'étage de compression se fait depuis l'extérieur, les chambres de compression 14 ayant un volume variable qui diminue de l'extérieur vers l'intérieur, lors du mouvement de la volute mobile 11 par rapport à la volute fixe 8, le gaz comprimé s'échappant au centre des volutes par une ouverture de refoulement 15 ménagée dans la volute fixe 8 en direction d'une chambre 16 à haute pression à partir de laquelle il est évacué par un raccord (non représenté sur la figure).
Le compresseur comprend une plaque de séparation 40 recouvrant la volute fixe 8 et montée de manière étanche sur cette dernière. La plaque de séparation 40 délimite deux volumes, un volume d'aspiration à basse pression situé en dessous de celle-ci, et un volume de refoulement à haute pression disposé au-dessus de celle-ci.
Le compresseur comprend un moteur électrique disposé dans le volume d'aspiration. Le moteur électrique comprend un stator 17 au centre duquel est disposé un rotor 18. Le rotor 18 est solidaire d'un arbre d'entraînement 20 dont l'extrémité supérieure est désaxée à la façon d'un vilebrequin. Cette partie supérieure est engagée dans une partie 21 en forme de manchon, que comporte la volute mobile 11. Lors de son entraînement en rotation par le moteur, l'arbre d'entraînement 20 entraîne la volute mobile 11 suivant un mouvement orbital.
L'extrémité inférieure de l'arbre d'entraînement 20 entraîne une pompe à huile 22 alimentant, à partir d'huile contenue dans un carter 23 délimité par l'embase 4, un conduit d'alimentation en huile 24 ménagé dans la partie centrale de l'arbre d'entraînement, le conduit d'alimentation 24 étant désaxé et s'étend sur une partie de la longueur de l'arbre d'entraînement 20.
Comme montré plus particulièrement sur les figures 2 à 4, le compresseur comprend également un logement 25 sensiblement cylindrique ménagé dans la surface inférieure du plateau 9 de la volute fixe 8, c'est-à-dire la surface du plateau 9 tournée vers les spirales 10, 13. Le logement 25 débouche dans l'une des chambres de compression 14. Le logement 25 présente un diamètre maximal correspondant sensiblement à la distance radiale entre deux portions adjacentes de la spirale 10 de la volute fixe 8.
Le compresseur comprend en outre un dispositif antiretour 26 monté dans le logement 25. Le dispositif antiretour 26 comprend d'une part un organe 27 formant siège de clapet inséré dans le logement 25 et délimitant une ouverture de passage 28, et d'autre part un clapet antiretour 29 mobile entre une position de fermeture (montrée sur la figure 3) dans laquelle le clapet antiretour 29 prend appui contre l'organe formant siège de clapet 27 et obture l'ouverture de passage 28, et une position d'ouverture (montrée sur la figure 4) dans laquelle le clapet antiretour 29 est éloigné de l'organe formant siège de clapet 27 et libère l'ouverture de passage 28. Le clapet antiretour 29 présente une forme sensiblement circulaire.
Le compresseur comprend de plus un dispositif d'obturation 30 monté dans le logement 25 et agencé pour obturer ce dernier. Le dispositif d'obturation 30 est également agencé pour maintenir en position l'organe formant siège de clapet 27, et plus particulièrement pour plaquer l'organe formant siège de clapet 27 contre une paroi de fond du logement 25. Avantageusement, le dispositif d'obturation 30 comprend un organe d'obturation 31 sensiblement cylindrique fixé dans le logement 25. De préférence, l'organe d'obturation 31 est fixé dans le logement 25 par collage, vissage ou emmanchement à force. L'organe d'obturation 31 est fixé dans le logement 25 de telle sorte que sa surface tournée vers les spirales 10, 13 affleure la surface inférieure du plateau 9 de la volute fixe 8.
L'organe d'obturation 31 délimite en partie un orifice de passage de gaz frigorigène 32 débouchant dans l'une des chambres de compression 14 et communiquant avec l'ouverture de passage 28 délimitée par l'organe formant siège de clapet 27.
Avantageusement, l'orifice de passage 32 est dimensionné de telle sorte que la spirale 13 de la volute mobile 11 empêche la mise en communication de deux chambres de compression 14 à travers l'orifice de passage 32 au cours du mouvement orbital de la volute mobile 11.
Comme montré plus particulièrement sur la figure 5, l'orifice de passage 32 présente une section de forme allongée et une largeur sensiblement inférieure ou égale à l'épaisseur de la spirale 13 de la volute mobile 11. Préférentiellement, l'orifice de passage 32 est délimité partiellement par l'organe d'obturation 31 et partiellement par la paroi du logement 25. De ce fait, l'orifice de passage 32 débouche sensiblement le long de la paroi de la spirale 10 de la volute fixe 8.
Selon une variante de réalisation, l'orifice de passage 32 pourrait être entièrement délimité par l'organe d'obturation 31.
Le compresseur comprend un conduit de refoulement de gaz frigorigène 33 comprenant une première extrémité 34 débouchant dans le logement 25 en aval du clapet antiretour 29 par rapport à l'organe formant siège de clapet 27, et une seconde extrémité 35 débouchant dans le volume d'aspiration délimité par la virole 2.
Comme montré sur la figure 4, lors du mouvement orbital de la volute mobile 1 1 et lorsque le clapet antiretour 29 est dans sa position d'ouverture, une partie du gaz frigorigène comprimé dans la chambre de compression 14 dans laquelle débouche l'orifice de passage 32 est refoulée dans le volume d'aspiration en s'écoulant successivement à travers l'orifice de passage 32, l'ouverture de passage 28 délimitée par l'organe formant siège de clapet 27, et le conduit de refoulement 33.
Ces dispositions permettent de diminuer la quantité de gaz frigorigène comprimé à durant le cycle de fonctionnement de compresseur, et donc de diminuer la capacité de ce dernier. Bien entendu, une telle diminution de la capacité du compresseur n'est pas constamment souhaitée.
Ainsi, le compresseur comprend des moyens de commande 37 du dispositif antiretour agencés pour déplacer le clapet antiretour 29 entre ses positions de fermeture et d'ouverture selon que l'on souhaite ou non utiliser la capacité maximale du compresseur.
Le s m oye n s d e co m m a n d e so n t ag e n cé s po u r relier alternativement le conduit de refoulement 33 à un circuit d'alimentation en fluide haute pression 38 et à un circuit d'alimentation en fluide basse pression 39.
Lorsque l'on souhaite utiliser la capacité maximale du compresseur, les moyens de commande relient le conduit de refoulement 33 au circuit d'alimentation en fluide haute pression 38. Ainsi, le clapet antiretour 29 est soumis, sur sa face opposée à l'organe formant siège de clapet 27, à la pression d'un fluide haute pression de telle sorte que le clapet antiretour 29 est maintenu plaqué sur l'organe formant siège de clapet 27 et isole la chambre de compression 14 dans laquelle débouche l'orifice de passage 32 du volume d'aspiration.
Lorsque l'on souhaite réduire la capacité utile du compresseur, les moyens de commande relient le conduit de refoulement 33 au circuit d'alimentation en fluide basse pression 39. Ainsi, le clapet antiretour 29 est soumis, sur sa face opposée à l'organe formant siège de clapet 27, à la pression d'un fluide basse pression de telle sorte que le clapet antiretour 29 se soulève et met en communication la chambre de compression 14 dans laquelle débouche l'orifice de passage 32 avec le volume d'aspiration. Pour favoriser le déplacement du clapet antiretour 29 vers sa position d'ouverture ou de fermeture, un ressort agissant dans un sens d'ouverture ou de fermeture du clapet peut être associé à ce dernier.
Selon une variante de réalisation, les moyens de commande pourraient être agencés pour relier alternativement le conduit de refoulement 33 à un circuit d'alimentation en fluide haute pression 38 et au volume d'aspiration délimité par la virole du compresseur.
Les figures 6 à 9 représentent un deuxième mode de réalisation de l'invention. Selon ce mode de réalisation, le compresseur comprend deux logements 25 sensiblement cylindrique ménagés dans la surface inférieure du plateau 9 de la volute fixe 8. Le compresseur comprend en outre un dispositif antiretour 26 et un dispositif d'obturation 30 montés dans chaque logement 25. Selon ce mode de réalisation, l'organe formant siège de clapet 27 de chaque dispositif antiretour 26 vient de matière avec l'organe d'obturation 31 du dispositif d'obturation 30 correspondant.
En outre, selon ce mode de réalisation, le clapet antiretour 29 de chaque dispositif antiretour 26 est constitué d'une lamelle solidaire de l'organe formant siège de clapet 27 correspondant et élastiquement déformable entre une position de fermeture (montrée sur la figure 8) dans laquelle le clapet 29 prend appui contre l'organe formant siège de clapet 27 correspondant et obture l'ouverture de passage 28 délimitée par ce dernier et une position d'ouverture (montrée sur la figure 9) dans laquelle le clapet prend appui contre une plaque de retenue 45 solidaire de l'organe formant siège de clapet 27 correspondant et libère l'ouverture de passage 28 délimitée par ce dernier. Avantageusement, la plaque de butée 45 de chaque dispositif antiretour 26 est fixée par vissage sur l'organe formant siège de clapet 27 correspondant.
Ainsi, chaque dispositif antiretour 26 et chaque dispositif d'obturation 30 correspondant forment une cartouche unitaire, ce qui facilite le montage des dispositifs antiretour et d'obturation dans les logements respectifs.
Selon ce mode de réalisation, le compresseur comprend deux conduits de refoulement de gaz frigorigène 33, chaque conduit de refoulement
33 comportant une première extrémité débouchant dans l'un des logements 25 et une seconde extrémité débouchant dans l'ouverture de refoulement 15 ménagée dans la volute fixe 8.
Avantageusement, le compresseur ne comporte pas de moyens de commande du clapet antiretour 29 de chaque dispositif antiretour 26.
Dans ce cas, chaque clapet antiretour 29 est agencé pour se déformer vers sa position d'ouverture uniquement lorsque la pression dans la chambre de compression 14 dans laquelle débouche l'orifice de passage 32 correspondant est supérieure à la pression dans l'orifice de refoulement 15.
Ainsi, lorsque le clapet antiretour 29 de chaque dispositif antiretour
26 est soumis, sur sa face tournée vers l'organe formant siège de clapet, à une pression inférieure à la pression dans l'orifice de refoulement 15, le clapet 29 est maintenu plaqué sur l'organe formant siège de clapet (comme cela est montré sur les figure 8) et isole la chambre de compression 14 dans laquelle débouche l'orifice de passage correspondant 32 de l'orifice de refoulement 15 ménagée dans la volute fixe 8. Il en résulte que le taux de compression du compresseur est maintenu à sa valeur maximale.
Lorsque le clapet antiretour 29 de chaque dispositif antiretour 26 est soumis, sur sa face tournée vers l'organe formant siège de clapet, à une pression supérieure à la pression dans l'orifice de refoulement 15, le clapet 29 se déforme élastiquement vers sa position d'ouverture (comme cela est montré sur les figure 9) et met en communication la chambre de compression 14 dans laquelle débouche l'orifice de passage correspondant 32 avec l'orifice de refoulement 15 ménagée dans la volute fixe 8. Il en résulte ainsi un refoulement vers l'orifice de refoulement 15 d'une partie du gaz frigorigène comprimé dans les chambres de compression 14 dans lesquelles débouchent les orifices de passage 32 avant que cette partie du gaz frigorigène ne parvienne jusqu'au centre des spirales 10, 13. Ces dispositions permettent de diminuer le taux de compression de chaque chambre de compression, et donc du compresseur, et de ce fait améliorer le rendement du compresseur.
Ces dispositions permettent également d'éviter l'obtention de pressions trop élevées dans le volume de compression. Selon une variante de réalisation, chaque conduit de refoulement
33 pourrait comporter une première extrémité débouchant dans l'un des logements 25 et une seconde extrémité débouchant dans la chambre à haute pression 16.
Selon une variante de réalisation, le compresseur pourrait comporter qu'une seule cartouche ou deux cartouches identiques.
Les figures 10 à 12 représentent un troisième mode de réalisation de l'invention qui diffère du premier mode de réalisation essentiellement en ce que le siège de clapet est délimité par le logement 25, et en ce que le compresseur comprend un conduit d'injection de gaz frigorigène 41 comprenant une première extrémité 42 débouchant dans le logement 25 en aval du clapet antiretour 29 par rapport à l'organe d'obturation 31 , et une seconde extrémité 43 reliée à un circuit d'injection de gaz frigorigène (non représenté sur la figure).
Selon ce mode de réalisation, les moyens de commande 137 du dispositif antiretour sont agencés d'une part pour mettre en communication le conduit d'injection 41 avec le circuit d'injection de gaz frigohgène, et d'autre part pour isoler le conduit d'injection 41 du circuit d'injection de gaz frigohgène.
Lorsque l'on souhaite utiliser la capacité utile du compresseur, les moyens de commande 137 isolent le conduit d'injection 41 au circuit d'injection de gaz frigorigène. Ainsi, le clapet antiretour 29 est soumis, sur sa face tournée vers l'organe d'obturation 31 , à la pression du gaz frigorigène comprimé dans la chambre de compression 14 dans laquelle débouche l'orifice de passage 32 de telle sorte que le clapet antiretour 29 est maintenu plaqué sur son siège de clapet et isole ladite chambre de compression 14 du conduit d'injection 41. Pour favoriser ce plaquage du clapet antiretour contre son siège, un ressort agissant dans un sens de fermeture du clapet peut être intercalé entre ce dernier et l'organe d'obturation 31.
Lorsque l'on souhaite augmenter la capacité utile du compresseur, les moyens de commande 137 relient le conduit d'injection 41 au circuit d'injection de gaz frigorigène. Ainsi, le clapet antiretour 29 est soumis, sur sa face opposée à l'organe d'obturation 31 , à la pression d'un fluide haute pression de telle sorte que le clapet antiretour 29 vient se plaquer contre l'organe d'obturation 31 et met en communication la chambre de compression 14 dans laquelle débouche l'orifice de passage 32 avec le conduit d'injection 41 , ce qui permet une injection de gaz frigorigène dans ladite chambre de compression 14.
Ces dispositions permettent d'augmenter la quantité de gaz frigorigène comprimé dans les chambres de compression durant le cycle de fonctionnement du compresseur, et donc d'augmenter la capacité de ce dernier.
Comme il va de soi, l'invention ne se limite pas aux seules formes d'exécution de ce compresseur frigorifique à spirales, décrites ci-dessus à titre d'exemples, elle en embrasse au contraire toutes les variantes de réalisation.

Claims

REVENDICATIONS
1 . Compresseur frigorifique à spirales, comprenant une première et une seconde volutes (8, 1 1 ) décrivant un mouvement relatif orbital, chaque volute (8, 1 1 ) comportant un plateau (9, 12) à partir duquel s'étend une spirale (10, 13), les deux spirales étant engagées l'une dans l'autre et délimitant au moins deux chambres de compression (14) de volume variable, caractérisé en ce que le compresseur comporte : - au moins un logement (25) ménagé dans la surface du plateau (9) de l'une des première et seconde volutes tournée vers les spirales (10, 13), le logement (25) débouchant dans l'une des chambres de compression (14),
- des moyens de refoulement et/ou d'injection (33, 41 ) de fluide frigorigène débouchant dans le logement (25), - un dispositif antiretour (26) monté dans le logement (25), le dispositif antiretour (26) étant agencé pou r empêcher la mise en commu n ication des moyens de refoulement et/ou d'injection de fluide frigorigène avec la chambre de compression dans laquelle débouche le logement (25) dans une première position de fermeture, et étant agencé pour permettre la mise en communication des moyens de refoulement et/ou d'injection de fluide frigorigène avec la chambre de compression dans laquelle débouche le logement (25) dans une seconde position d'ouverture.
2. Compresseur selon la revendication 1 , caractérisé en ce que le dispositif antiretour (26) comprend un organe formant siège de clapet (27) et un clapet antiretour (29) mobile entre une position de fermeture du dispositif antiretour dans laquelle le clapet antiretour prend appui contre l'organe formant siège de clapet et une position d'ouverture du dispositif antiretour dans laquelle le clapet antiretour est éloigné de l'organe formant siège de clapet.
3. Compresseur selon la revendication 2, caractérisé en ce que le clapet antiretour (29) est une lamelle élastiquement déformable solidaire de l'organe formant siège de clapet (27).
4. Compresseur selon la revendication 1 , caractérisé en ce que le logement (25) délimite un siège de clapet, et en ce que le dispositif antiretour (26) comprend un clapet antiretour (29) mobile entre une position de fermeture du dispositif antiretour dans laquelle le clapet antiretour (29) prend appui contre le siège de clapet et une position d'ouverture du dispositif antiretour dans laquelle le clapet antiretour (29) est éloigné du siège de clapet.
5. Compresseur selon l'une des revendications 1 à 4, caractérisé en ce que le compresseur comporte un dispositif d'obturation partielle (30) monté dans le logement (25) et agencé pour obturer partiellement ce dernier, le dispositif d'obturation délimitant au moins en partie un orifice de passage (32) de fluide frigorigène débouchant dans l'une des chambres de compression (14), l'orifice de passage (32) étant agencé pour mettre en communication ladite chambre de compression avec les moyens de refoulement et/ou d'injection de fluide frigorigène lorsque le dispositif antiretour est dans sa position d'ouverture.
6. Compresseur selon la revendication 5, caractérisé en ce que l'orifice de passage (32) est dimensionné de telle sorte que la spirale (13) de l'autre des première et seconde volutes empêche la mise en communication de deux chambres de compression (14) à travers l'orifice de passage (32) au cours du mouvement orbital relatif des deux volutes.
7. Compresseur selon la revendication 5 ou 6, caractérisé en ce que l'orifice de passage (32) présente une section de forme allongée et une largeur sensiblement inférieure ou égale à l'épaisseur de la spirale (13) de l'autre des première et seconde volutes.
8. Compresseur selon l'une des revendications 5 à 7, caractérisé en ce que l'orifice de passage (32) est délimité partiellement par le dispositif d'obturation (30) et partiellement par la paroi du logement (25).
9. Compresseur selon la revendication 2 ou 3 et l 'une des revendications 5 à 8, caractérisé en ce que l'organe formant siège de clapet
(27) vient de matière avec le dispositif d'obturation(30).
10. Compresseur selon l'une des revendications 1 à 9, caractérisé en ce que le compresseur comprend des moyens de commande (37, 137) du dispositif antiretour (26) agencés pour déplacer ce dernier entre ses positions de fermeture et d'ouverture.
11. Compresseur selon la revendication 10, caractérisé en ce que les moyens de commande (37) sont agencés pour mettre en communication les moyens de refoulement de fluide frigorigène (33) alternativement avec un circuit d'alimentation en fluide haute pression (38) et un circuit d'alimentation en fluide basse pression (39), le dispositif antiretour (26) étant déplacé dans sa position de fermeture lorsque les moyens de refoulement de fluide frigorigène (33) sont mis en communication avec le circuit d'alimentation en fluide haute pression, et dans sa position d'ouverture lorsque les moyens de refoulement de fluide frigorigène (33) sont mis en communication avec le circuit d'alimentation en fluide basse pression.
12. Compresseur selon la revendication 10, caractérisé en ce que les moyens de commande (137) sont agencés pour mettre en communication les moyens d'injection de fluide frigorigène (41 ) avec un circuit d'injection de fluide frigorigène, le dispositif antiretour (26) étant déplacé dans sa position d'ouverture lorsque les moyens d'injection de fluide frigorigène (41 ) sont mis en communication avec le circuit d'injection de fluide frigorigène.
13. Compresseur selon l'une des revendications 1 à 11 , caractérisé en ce que les moyens de refoulement de fluide frigorigène comportent un conduit de refoulement (33) dont l'une des extrémités débouche dans le logement (25) et dont l'autre extrémité débouche dans un volume d'aspiration de gaz frigorigène délimité par le compresseur.
14. Compresseur selon l'une des revendications 1 à 11 , caractérisé en ce que les moyens de refoulement de fluide frigorigène comportent un conduit de refoulement (33) dont l'une des extrémités débouche dans le logement (25) et dont l'autre extrémité débouche dans une ouverture de refoulement (15) ménagée dans le plateau (9) de l'une des première et seconde volutes (8, 11 ).
PCT/FR2009/052515 2008-12-19 2009-12-14 Compresseur frigorifique à spirales WO2010070227A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980156918.2A CN102317630B (zh) 2008-12-19 2009-12-14 涡旋型制冷器压缩机
US13/128,775 US8794940B2 (en) 2008-12-19 2009-12-14 Scroll-type refrigerator compressor
DE112009003662T DE112009003662T5 (de) 2008-12-19 2009-12-14 Kühlschrank-Kompressor in Spiralbauart

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR08/58815 2008-12-19
FR0858815A FR2940373B1 (fr) 2008-12-19 2008-12-19 Compresseur frigorifique a spirales

Publications (2)

Publication Number Publication Date
WO2010070227A2 true WO2010070227A2 (fr) 2010-06-24
WO2010070227A3 WO2010070227A3 (fr) 2010-09-30

Family

ID=40887879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/052515 WO2010070227A2 (fr) 2008-12-19 2009-12-14 Compresseur frigorifique à spirales

Country Status (6)

Country Link
US (1) US8794940B2 (fr)
KR (1) KR20110105383A (fr)
CN (1) CN102317630B (fr)
DE (1) DE112009003662T5 (fr)
FR (1) FR2940373B1 (fr)
WO (1) WO2010070227A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150004039A1 (en) * 2013-06-28 2015-01-01 Emerson Climate Technologies, Inc. Capacity-modulated scroll compressor
JP6186973B2 (ja) * 2013-07-18 2017-08-30 アイシン精機株式会社 冷媒圧縮機
TWM472176U (zh) * 2013-11-07 2014-02-11 Jia Huei Microsystem Refrigeration Co Ltd 迴轉式壓縮機改良
CN114688031A (zh) * 2020-12-29 2022-07-01 丹佛斯(天津)有限公司 压缩机和控制该压缩机的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475360A (en) 1982-02-26 1984-10-09 Hitachi, Ltd. Refrigeration system incorporating scroll type compressor
US7100386B2 (en) 2003-03-17 2006-09-05 Scroll Technologies Economizer/by-pass port inserts to control port size

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776287A (en) * 1980-10-31 1982-05-13 Hitachi Ltd Scroll compressor
JPS6248979A (ja) * 1985-08-27 1987-03-03 Hitachi Ltd スクロ−ル圧縮機
JPS6270681A (ja) * 1985-09-24 1987-04-01 Hitachi Ltd スクロ−ル流体機械
JPH02230995A (ja) * 1989-03-02 1990-09-13 Mitsubishi Heavy Ind Ltd ヒートポンプ用圧縮機及びその運転方法
JPH05180182A (ja) * 1992-01-07 1993-07-20 Mitsubishi Electric Corp 冷凍装置
JPH0566291U (ja) * 1992-02-14 1993-09-03 株式会社東芝 圧縮機
JPH08144971A (ja) * 1994-11-15 1996-06-04 Nippon Soken Inc スクロール型圧縮機および冷凍サイクル
US5722257A (en) * 1995-10-11 1998-03-03 Denso Corporation Compressor having refrigerant injection ports
JPH10311286A (ja) * 1997-05-12 1998-11-24 Matsushita Electric Ind Co Ltd 容量制御スクロール圧縮機
JP4033259B2 (ja) * 2001-11-13 2008-01-16 三菱電機株式会社 スクロール圧縮機
KR100547322B1 (ko) * 2003-07-26 2006-01-26 엘지전자 주식회사 용량 조절식 스크롤 압축기
KR100664058B1 (ko) * 2004-11-04 2007-01-03 엘지전자 주식회사 스크롤 압축기의 용량 가변장치
WO2007114531A1 (fr) * 2006-03-31 2007-10-11 Lg Electronics Inc. Dispositif empêchant un vide de se former dans un compresseur à spirale
US7674098B2 (en) * 2006-11-07 2010-03-09 Scroll Technologies Scroll compressor with vapor injection and unloader port

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475360A (en) 1982-02-26 1984-10-09 Hitachi, Ltd. Refrigeration system incorporating scroll type compressor
US7100386B2 (en) 2003-03-17 2006-09-05 Scroll Technologies Economizer/by-pass port inserts to control port size

Also Published As

Publication number Publication date
CN102317630A (zh) 2012-01-11
FR2940373A1 (fr) 2010-06-25
WO2010070227A3 (fr) 2010-09-30
US20110318212A1 (en) 2011-12-29
DE112009003662T5 (de) 2012-08-02
KR20110105383A (ko) 2011-09-26
FR2940373B1 (fr) 2014-07-04
US8794940B2 (en) 2014-08-05
CN102317630B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2011151554A2 (fr) Compresseur frigorifique à spirales
FR2969226A1 (fr) Compresseur frigorifique a spirales
FR2969227A1 (fr) Compresseur frigorifique a spirales
EP2174012B1 (fr) Compresseur frigorifique à spirales à vitesse variable
FR2969228A1 (fr) Compresseur frigorifique a spirales
BE1001192A5 (fr) Machine du type a volutes.
FR2830291A1 (fr) Compresseur a spirales, de capacite variable
WO2008152280A2 (fr) Compresseur frigorifique à spirales à vitesse variable
FR2808308A1 (fr) Compresseur a spirale equipe d'un deflecteur en regard de l'orifice d'aspiration menage dans son enveloppe
FR2981739A1 (fr) Compresseur frigorifique
FR2991733A1 (fr) Dispositif de compression et systeme thermodynamique comprenant un tel dispositif de compression
WO2010070227A2 (fr) Compresseur frigorifique à spirales
EP1436509B1 (fr) Pompe a palettes a cylindree variable
FR2755477A1 (fr) Soupape a bille pour compresseur
FR2736399A1 (fr) Compresseur a volutes, muni d'un clapet de retenue d'aspiration
FR2984425A1 (fr) Dispositif d'injection d'huile pour compresseur frigorifique a spirales a vitesse variable
FR2687434A1 (fr) Compresseur a haut rendement et a volume de reexpansion reduit.
FR2702010A1 (fr) Soupape de décharge pour compresseur à volutes.
FR2947308A1 (fr) Machine a volutes a etages multiples
FR2833046A1 (fr) Dispositif pour comprimer un fluide
FR2984424A1 (fr) Compresseur frigorifique a spirales a vitesse variable
FR2927672A1 (fr) Compresseur frigorifique a spirales
FR3032493A1 (fr)
FR2968732A1 (fr) Compresseur frigorifique a spirales
WO2011151553A2 (fr) Agencement de clapet pour compresseur frigorifique à spirales

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156918.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802167

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 3917/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 112009003662

Country of ref document: DE

Ref document number: 1120090036627

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20117016490

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13128775

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09802167

Country of ref document: EP

Kind code of ref document: A2