WO2010069168A1 - 一种估计车辆自运动参数的方法和装置 - Google Patents

一种估计车辆自运动参数的方法和装置 Download PDF

Info

Publication number
WO2010069168A1
WO2010069168A1 PCT/CN2009/071578 CN2009071578W WO2010069168A1 WO 2010069168 A1 WO2010069168 A1 WO 2010069168A1 CN 2009071578 W CN2009071578 W CN 2009071578W WO 2010069168 A1 WO2010069168 A1 WO 2010069168A1
Authority
WO
WIPO (PCT)
Prior art keywords
image block
motion
camera
confidence
block area
Prior art date
Application number
PCT/CN2009/071578
Other languages
English (en)
French (fr)
Inventor
段勃勃
刘威
袁淮
Original Assignee
东软集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东软集团股份有限公司 filed Critical 东软集团股份有限公司
Publication of WO2010069168A1 publication Critical patent/WO2010069168A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • G06T7/248Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle

Definitions

  • the present invention relates to the field of image technology, and more particularly to a method and apparatus for estimating vehicle self-motion parameters.
  • the vision-based vehicle self-motion estimation technique is to mount the camera on the vehicle, and the camera forms an image on the ground in real time, and then obtains the vehicle's motion parameters (including angular velocity, linear velocity, etc.) by analyzing the image. Since the ground plane is immobile, the ground plane change in the image is due to camera motion. In other words, the change in the imaging position between the two frames of the same point of the ground plane is due to camera motion. According to the camera imaging formula, an equation for pixel position change and camera motion can be established. By finding the same pixel in the two frames of images, the motion of the camera between the two frames can be solved, that is, the field of the vehicle is obtained.
  • an embodiment of the present invention provides a method and apparatus for estimating a vehicle self-motion parameter by:
  • a method of estimating vehicle self-motion parameters including:
  • the motion parameter with the highest confidence is determined as the self-motion parameter of the vehicle.
  • a device for estimating vehicle self-motion parameters comprising:
  • An image block area determining unit configured to determine an image block area that meets a predetermined condition on an image rectangular image block area divided in the current frame
  • the adjacent frame coordinate calculation unit is configured to calculate, according to the pre-established pixel motion model, the corresponding coordinates of the pixels in the selected image block region in the adjacent frame under the condition of different motion parameters in the predetermined search space. ;
  • the confidence calculation unit calculates a confidence level of different motion parameters in the predetermined search space based on the feature of the pixel in the selected image block region of the current frame and the feature of the corresponding coordinate position pixel in the adjacent frame;
  • the self-motion parameter determining unit is configured to determine the motion parameter with the highest confidence as the self-motion parameter of the vehicle.
  • the technical solution provided by the embodiment of the present invention can be used to select an image block region that meets a predetermined condition in an image block region divided in a current frame, and calculate a current frame according to a pre-established pixel motion model under different motion parameters. Calculating different motion parameters of the pixels in the selected image block region in the adjacent frames, based on the characteristics of the pixels in the selected image block region of the current frame and the features of the corresponding coordinate position pixels in the adjacent frames Confidence, the highest confidence motion parameter is determined as the vehicle's self-motion parameter. In this way, the motion estimation is performed by selecting a road region with texture and obvious motion characteristics, and the image region is used to reduce the image region participating in the operation, thereby improving the motion parameter estimation accuracy and reducing the computational complexity.
  • FIG. 1 is a camera coordinate system established in an embodiment of a method for estimating a vehicle self-motion parameter, wherein FIG. 1a is a side view of a camera coordinate system, and FIG. 1b is a top view of a camera coordinate system; 2 is a flow chart of an embodiment of a method for estimating vehicle self-motion parameters according to the present invention;
  • FIG. 3 is a block diagram of an embodiment of an apparatus for estimating a vehicle self-motion parameter.
  • Embodiments of the present invention provide a method and apparatus for estimating vehicle self-motion parameters.
  • the motion model of a pixel is often an important factor.
  • Most of the current methods use the road plane hypothesis to establish a motion model.
  • the other is the three-parameter motion model, which adds vertical to the former model.
  • the translation of the optical axis direction improves the accuracy of the motion parameter estimation when the vehicle rotates while increasing the computational complexity, and is independent of the two translational motion parameters (ie, translation along the optical axis direction and translation perpendicular to the optical axis direction). Make an estimate.
  • a three-parameter motion model is used to estimate the vehicle self-motion parameters, since the two translational motion parameters (ie, the translation along the optical axis direction and the translation perpendicular to the optical axis direction) are independently estimated without considering the two.
  • the constraint relationship between the two so that the estimated motion parameters have a certain multi-solution, which affects its accuracy.
  • a new three-parameter pixel motion model based on vehicle motion law constraint is established. Based on this motion model, a self-motion parameter estimation method based on monocular vision is presented.
  • the vehicles mentioned in this article are also referred to as self-driving vehicles.
  • Fig. 1a is a side view of a camera coordinate system
  • Fig. 1b is a plan view of a camera coordinate system
  • the Z axis is the optical axis direction of the camera
  • the Y axis is an axis perpendicular to Z, that is, an axis perpendicular to the ground plane
  • the X axis is the axis perpendicular to the optical axis, visible
  • the X axis is Z
  • Y are vertical axes.
  • the camera motion can be described by a triple ( ⁇ ), where ⁇ is the translational velocity perpendicular to the camera's optical axis, ⁇ is the translational velocity along the camera's optical axis, and is the rotational angular velocity on the plane.
  • the motion of the vehicle can be represented by a binary group, where V represents the linear velocity of the vehicle, "representing the angular velocity of the vehicle. Since the camera is fixedly mounted on the vehicle, the camera's motion and vehicle motion have the following constraints within a short time interval ⁇ :
  • ⁇ ⁇ ⁇ where is the X-axis coordinate of the center of gravity of the vehicle in the camera coordinate system, and ⁇ is the axis coordinate of the center of gravity of the vehicle in the camera coordinate system.
  • p(,c) is the coordinates of a pixel in camera imaging
  • r is the row coordinate
  • c is the ⁇ l coordinate.
  • Ah calculates the coordinates of the pixel coordinates P i( r i, C i) in the camera image at time t in the camera-centered world coordinate system (hereinafter referred to as the camera coordinate system) ( X ⁇ , F wi, Z ).
  • the pixel P i ( r i, c can be calculated according to the following camera imaging formula (also known as the camera imaging formula) i) coordinates in the camera coordinate system ( X w, Y wi, Z ):
  • ⁇ [ ⁇ , 7 , 71 / is the translation vector
  • ⁇ ⁇ , ⁇ is the camera coordinate system origin in the world coordinate system
  • the position of a pixel in an F n frame image in an adjacent frame (e.g., I k frame) image can be calculated.
  • Fig. 2 shows the flow of the embodiment:
  • S201 Select an image block region that meets a predetermined condition in an image block region divided in the current frame.
  • the current frame in the image sequence is set to F «
  • the frame interval of the current frame ⁇ and the adjacent frame F " is set to ⁇ .
  • One frame of image may be divided into a plurality of rectangular block regions, for example, a frame image may be divided into mutually non-overlapping rectangular regions of ⁇ pixels. Then, there may be a rectangular image block area that does not overlap each other in the current frame image.
  • the image block area selected to meet a predetermined condition may be an area in which the necessary road plane (non-three-dimensional object) is selected in the divided image block area. Since only points on the ground plane can be used for motion estimation, the image block area of the ground plane can be selected first. Too many image block areas result in a large amount of calculation, so the embodiment of the present invention gives a way of selecting partial ground plane image block regions, which constitute a minimum set for motion estimation. Different image block areas have different proportions in motion estimation due to their different characteristics, and further determination is needed according to their characteristics.
  • the conventional method is to select an image block region of all the road planes in the image to perform motion parameter estimation.
  • only the image block region that meets the predetermined condition is selected.
  • the predetermined condition may be a textural condition. Of course, other values may also meet the requirements. Take the texture condition as an example, you can Use the following method to select:
  • the entropy is obtained for the image block region, and when the entropy is greater than the predetermined threshold, the image block region is determined to be an image block region conforming to the texture condition.
  • the entropy of the image block area can be calculated as follows:
  • Texture is an image feature that indicates whether there is an object that is not the same as the background in the image.
  • the lowermost image block area may also be selected.
  • the bottom line here refers to the bottom of the image, that is, only the image block areas that meet the conditions at the bottom of the image are selected.
  • the image motion characteristics of the lowermost image block area are more conspicuous, so that the accuracy of motion estimation is improved.
  • the image block area participating in the calculation can be further reduced, thereby reducing the computational complexity.
  • S202 Calculate corresponding coordinates of pixels in the selected image block region in the adjacent frame according to the pre-established pixel motion model under different motion parameters.
  • the confidence of different motion parameters set in a predetermined step size in a predetermined search space can be calculated. In this way, the confidence of the preferred discrete motion parameters in the predetermined search space can be selected.
  • the speed dispersion value for calculating the speed confidence is:
  • the unit is km/h.
  • the current frame F " and the time of the adjacent frame image F «-k may be the time t and the t+k time, respectively.
  • the camera motion parameters can be calculated from the vehicle's motion parameters [ V ',].
  • S203 Calculate the confidence of different motion parameters based on the characteristics of the pixels in the selected image block region of the current frame and the features of the corresponding coordinate position pixels in the adjacent frame.
  • the confidence of each set of motion parameters [ ⁇ ' ⁇ ] is calculated for each selected image block region. Specifically, for any set of motion parameters, for all pixels in each image block region of the image, the motion in the image block region is calculated according to the pixel values of the image and the corresponding position in the image ⁇ - The confidence level of the parameter. Among them, the confidence of the motion parameter 3 ⁇ 4[ ⁇ '' ⁇ in the image block area m is represented by >, which can be calculated by the following formula:
  • the size of the region m may be N*N
  • P(') is a pixel feature value of the pixel (i, j) in the image F ", such as a pixel gray value, or a color value
  • is selected for the image ⁇
  • the feature value of the pixel is, for example, a pixel gray value or a color value.
  • the method may further include:
  • the entropy of the image block region may be determined as the weight of the image block region, and the entropy may be as in the above formula
  • S202 confidence step for different motion parameters of the search space within a predetermined area of each of the determined image calculation image block, after obtaining motion parameters 3 ⁇ 4 [ ⁇ ' ⁇ '] Confidence J c in each image block region can also include:
  • the confidence of each set of motion parameters is calculated based on the confidence and weight of each image block region for each set of motion parameters. For example, it may be, but is not limited to, a weighted sum.
  • M is the number of all image block regions selected in the image F «, which is the weight of the image block region m, and is the weighted summation confidence value of the motion parameters [ ⁇ ' ⁇ ] in all image block regions in the image.
  • the motion parameter with the highest confidence can be determined as the self-motion parameter of the vehicle.
  • the final confidence of the motion parameters can be solved by combining the current confidence and historical confidence of each set of motion parameters.
  • the historical confidence is the confidence of the motion parameters calculated in the previous frame.
  • the weighted sum can be used to calculate the current confidence of each motion parameter using the previous K + 1 motion parameter confidence, and the motion parameter with the highest confidence is selected as the current motion parameter estimate.
  • the confidence is calculated as follows:
  • the calculation is not limited to the above formula (10), and may be a calculation using a Kalman filter or the like, and will not be described in detail herein.
  • an image block region that meets a predetermined condition is selected in an image block region divided in a current frame, and the selected image block in the current frame is calculated according to a pre-established pixel motion model under different motion parameters.
  • the highest motion parameter is determined as the self-motion parameter of the vehicle. In this way, the motion estimation is performed by selecting a road region with texture and obvious motion characteristics, and the image region is reduced by using the image feature, thereby improving the motion parameter estimation accuracy and reducing the computational complexity.
  • FIG. 3 is a block diagram showing an embodiment of the apparatus. As shown in FIG. 3, the apparatus embodiment includes:
  • the image block area determining unit 31 is configured to determine an image block area that meets a predetermined condition on the image rectangular image block area divided in the current frame;
  • the adjacent frame coordinate calculation unit 32 is configured to calculate, according to the pre-established pixel motion model, pixels corresponding to the pixels in the selected image block region in the adjacent frame under the condition of different motion parameters in the predetermined search space. Coordinate
  • the confidence calculation unit 33 calculates a confidence level of different motion parameters in the predetermined search space based on the feature of the pixel in the image block region selected by the current frame and the feature of the corresponding coordinate position pixel in the adjacent frame;
  • the self-motion parameter determining unit 34 is configured to determine the motion parameter with the highest confidence as the self-motion parameter of the vehicle.
  • the pixel motion model includes:
  • a camera-centered world coordinate system is established, wherein the Z axis is the optical axis direction of the camera, the Y axis is an axis perpendicular to the ground plane and perpendicular to the Z axis, and the X axis is an axis perpendicular to both Z and Y;
  • the motion constraint relationship between the translation along the optical axis direction and the translation perpendicular to the optical axis direction is established, and the motion constraint relationship is used to calculate:
  • the coordinates of the pixels P 2 ⁇ , C 2 ) in the imaging in the camera are calculated from the coordinates of the point W in the camera coordinate system at time t+k.
  • the predetermined condition includes conforming to a texture condition.
  • the image block area determining unit 31 is further configured to select a lowermost image block area in an image block area that meets a predetermined condition in the same column.
  • the device further includes a weight determining unit, configured to determine a weight of the selected image block region;
  • the confidence calculation unit 33 is further configured to introduce the weight to calculate the confidence.
  • the weight is an entropy of an image block area.
  • the method for estimating the self-motion parameter of the vehicle by using the device embodiment of the present invention is similar to the foregoing method embodiment, and details are not described herein again.
  • an image block region that meets a predetermined condition is selected in an image block region divided in a current frame, and the selected image block in the current frame is calculated according to a pre-established pixel motion model under different motion parameters.
  • the highest motion parameter is determined as the vehicle's self-motion parameter image feature reduces the image area involved in the operation, thereby improving the motion parameter estimation accuracy and reducing the computational complexity.
  • the rule of motion of the pixel is established by using the law of vehicle motion, so that these constraints are imposed in the pre-established pixel motion model.
  • the pixel motion equation reduces the possibility of multiple solutions to the equation and can also improve the accuracy of motion parameter estimation.
  • the present invention can be implemented by means of software plus a necessary general hardware platform. Based on such understanding, the technical solution of the present invention can be embodied in the form of a software product in essence or in the form of a software product, which can be stored in a storage medium such as a ROM/RAM or a disk. , an optical disk, etc., includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention or portions of the embodiments.
  • a computer device which may be a personal computer, server, or network device, etc.
  • the invention is applicable to a wide variety of general purpose or special purpose computing system environments or configurations.
  • personal computer server computer, handheld or portable device, tablet device, multiprocessor system, microprocessor based system, set-top box, programmable consumer electronics device, network PC, small computer, mainframe computer, including A distributed computing environment of any of the above systems or devices, and the like.
  • the invention may be described in the general context of computer-executable instructions executed by a computer, such as a program module.
  • program modules include routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types.
  • the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are connected through a communication network.
  • program modules can be located in both local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Description

一种估计车辆自运动参数的方法和装置 本申请要求于 2008 年 12 月 15 日提交中国专利局、 申请号为 200810185832.X,发明名称为"一种估计车辆自运动参数的方法和装置"的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域 本发明涉及图像技术领域,特别涉及一种估计车辆自运动参数的方法和装 置。
背景技术
基于视觉的车辆自运动估计的技术,是将相机固定安装于车辆上,相机实 时的对地面成像形成图像, 进而通过分析图像获得车辆的运动参数 (包括角速 度、 线速度等)。 由于地平面是不动的, 则图像中的地平面变化是由于相机运 动产生的, 筒言之, 地平面的同一点在两帧图像间的成像位置变化是由于相机 运动产生的。 根据相机成像公式, 可建立像素位置变化与相机运动的方程。 则 通过寻找两帧图像中相同的像素, 可求解出两帧图像间相机的运动, 即获得车 等领域。
基于视觉的车辆自运动估计的技术中,现有的方法大都利用所有道路区域 估计自车运动, 但并不是所有的道路区域都适用于估计自车运动, 如: 光滑的 道路区域, 现有的方法并没有很好解决道路区域选择这一问题。
发明内容 本发明实施例的目的是提供一种估计车辆自运动参数的方法和装置,以提 高运动参数估计精度并降低了计算复杂度。
为解决上述技术问题,本发明实施例提供一种估计车辆自运动参数的方法 和装置是这样实现的:
一种估计车辆自运动参数的方法, 包括:
在当前帧中划分的图像块区域中选择符合预定条件的图像块区域; 在不同运动参数的条件下,根据预先建立的像素运动模型,计算当前帧中 所选择的图像块区域中的像素在相邻帧中对应的坐标; 基于当前帧所选择图像块区域中像素的特征以及所述相邻帧中对应坐标 位置像素的特征, 计算不同运动参数的置信度;
将置信度最高的运动参数确定为车辆的自运动参数。
一种估计车辆自运动参数的装置, 包括:
图像块区域确定单元,用于在当前帧中划分的图像矩形图像块区域上确定 符合预定条件的图像块区域;
相邻帧坐标计算单元, 用于在预定搜索空间内不同运动参数的条件下,根 据预先建立的像素运动模型,计算当前帧中所选择的图像块区域中的像素在相 邻帧中对应的坐标;
置信度计算单元,基于当前帧所选择图像块区域中像素的特征以及所述相 邻帧中对应坐标位置像素的特征, 计算预定搜索空间内不同运动参数的置信 度;
自运动参数确定单元,用于将置信度最高的运动参数确定为车辆的自运动 参数。
由以上本发明实施例提供的技术方案可见,在当前帧中划分的图像块区域 中选择符合预定条件的图像块区域,在不同运动参数的条件下,根据预先建立 的像素运动模型,计算当前帧中所选择的图像块区域中的像素在相邻帧中对应 的坐标,基于当前帧所选择图像块区域中像素的特征以及所述相邻帧中对应坐 标位置像素的特征,计算不同运动参数的置信度, 将置信度最高的运动参数确 定为车辆的自运动参数。 这样,通过选择有纹理且运动特征明显的道路区域进 行运动估计, 并利用图像特征减少了参与运算的图像区域,从而提高了运动参 数估计精度并降低了计算复杂度。
附图说明 为了更清楚地说明本发明实施例中的技术方案,下面对实施例中所需要使 用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些 实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可 以根据这些附图获得其他的附图。
图 1为本发明估计车辆自运动参数的方法实施例中建立的相机坐标系,其 中, 图 la为相机坐标系的侧视图, 图 lb为相机坐标系的俯视图; 图 2为本发明估计车辆自运动参数方法实施例的流程图;
图 3为估计车辆自运动参数装置实施例的框图。
具体实施方式 本发明实施例提供一种估计车辆自运动参数的方法和装置。
基于视觉的车辆自运动估计的技术中,像素的运动模型通常是一个重要因 素。目前的方法大多采用道路平面假设来建立运动模型,主要有两种运动模型: 一种是两参数运动模型,将车辆的运动分解为沿光轴方向的平移和道路平面上 转动, 这种模型计算复杂度低, 但是由于忽略了垂直于光轴方向的平移, 从而 造成在车辆转弯或变线时误差加大; 另一种是三参数运动模型, 在前一种模型 的基础上增加了垂直于光轴方向的平移,在计算复杂度增加的同时提高了车辆 转动时运动参数估计的精度,是将两个平移运动参数(即沿光轴方向的平移和 垂直于光轴方向的平移)独立的进行估计。
目前采用三参数运动模型估计车辆自运动参数的方法,由于是将两个平移 运动参数(即沿光轴方向的平移和垂直于光轴方向的平移)独立的进行估计, 而没有考虑这两者间的约束关系, 从而使得估计的运动参数具有一定多解性, 从而影响了其精度。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施 例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所 描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。基于本发明 中的实施例 ,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有 其他实施例, 都应当属于本发明保护的范围。
本发明实施例中建立一种新的基于车辆运动规律约束的三参数像素运动 模型。在此运动模型的基础上,给出一种基于单目视觉的自运动参数估计方法。
本文中提到的车辆也被称为自车。
以下首先介绍像素运动模型。 如图 1的坐标系。 图 1中, 图 la为相机坐标系的侧视图, 图 lb为相机坐标系 的俯视图。 图 la中, Z轴为相机光轴方向, Y轴为与 Z垂直的轴, 也就是与 地平面垂直的轴。 图 lb中, X轴是与光轴垂直方向上的轴, 可见, X轴为与 Z、 Y均垂直的轴。
相机运动可以由一个三元组 ( ^ )描述, 其中 ^为垂直于相机光轴的平 移速度, ^为沿相机光轴方向的平移速度, 为平面上的旋转角速度。
假设车辆运动无平面滑动, 则车辆的运动可用如下的二元组 , 来表示, 其中, V代表车辆的线速度, 《代表车辆的角速度。 由于相机固定安装于车辆 上, 则在某个短的时间间隔 Δ 内, 相机的运动与车辆运动存在如下约束:
tz xAt = vxAtxcos0
ίχ χ Δί = v χ Δί χ sin 6*
Figure imgf000006_0001
ωγ
(1) 对于一种可能的情况, 当 ^较大, 可采用如下约束
tzxAt = vxAtxcos0 + 0xrT
txxAt = vxAtxsm0-0xrL
θ = ωγχ ί
ωγ =ω 其中 为自车重心在相机坐标系中的 X轴坐标, ^为自车重心在相机坐标 系中的 Ζ轴坐标。
p(,c)是相机成像中某一像素的坐标, r是行坐标, c是歹l坐标。
可见, 这里考虑了沿光轴方向的平移和垂直于光轴方向的平移的约束关 系。
设 t时刻地平面上一点 ^X^ 'Zj在相机中成像为 5 / ' ),则该点在 t+k 时刻在相机中成像点 A ^, )的坐标可由如下步骤获得:
Ah计算 t时刻相机成像中的像素坐标 Pi(ri,Ci)在以相机为中心的世界坐标 系 (以下筒称相机坐标系 ) 中对应点 R的坐标 (X ^, Fwi, Z )。
假设道路为平面、 且所拍摄图像中所有像素点均为道路平面上的点所成 像, 则可以根据如下相机成像公式(也被称为摄像机成像公式 )可以计算出像 素 Pi (ri, ci )在相机坐标系中的坐标 (X w, Ywi, Z ):
Figure imgf000007_0001
其中, 是 的在相机坐标系中 Z轴的坐标。
其中, ,《y,"。,v。是相机内部参数, 可从相机中获得。
其中, ^[^,771/为平移向量, ΤΆ,^为相机坐标系原点在世界坐标系下
Figure imgf000007_0002
Xw2 +Tx)-cos0-(Zwl+Tz)-sme
ZW2 ={Zwl+Tz)-cos0 + (Xwl+Tx)-sine
, = „ (3)
=-txx txk
Tz =-tzxAtxk
Figure imgf000007_0003
这样, 由于 ,r, =„ =0 , 贝 (^2,^2,^2)可解' A3: 根据 t+k 时刻点 W在相机坐标系中的坐标计算相机中成像中的像素 p 2 "2,cj的坐标;
由相机成像公式, 已知 ,^2,ZWJ ,求解方程可得 P , 和 Zc。具体的, 这里的相机成像公式与公式(2 )类似, 为:
Figure imgf000008_0001
这样, 通过建立上述像素运动模型, 可以计算出 Fn帧图像中的像素在相 邻帧 (如 I k帧) 图像中的位置。
以下介绍本发明基于上述像素运动模型的车辆自运动参数估计方法的实 施例, 图 2示出了该该实施例的流程:
S201 : 在当前帧中划分的图像块区域中选择符合预定条件的图像块区域。 图像序列中的当前帧设为 F« , 同时, 与当前帧相邻的帧为^- ( k>=l ), 当前帧 ^与相邻帧 F"的帧间隔设为 Δ 。
可以将一帧图像分成多个矩形块区域, 例如可以是将一帧图像划分为 ΝχΝ像素的互不重叠的矩形区域。 则当前帧图像中可以有互不重叠的矩形图 像块区域。
所述选择符合预定条件的图像块区域,可以是在所述划分的图像块区域中 选出必要的道路平面(非立体物)的区域。 由于只有地平面上的点才能被用于 运动估计, 所以可以首先选出地平面的图像块区域。 图像块区域太多会造成计 算量大, 所以本发明实施例给出选取部分地平面图像块区域的方式, 这些图像 块区域构成进行运动估计的最小集合。 不同的图像块区域由于特点差异,在进 行运动估计时所占的比重不同, 需要根据其特征进行进一步的确定。
传统的方法是选取图像中所有的道路平面的图像块区域进行运动参数估 计, 本发明实施例中, 仅选取符合预定条件的图像块区域。 所述预定条件, 可 以是纹理性条件。 当然, 也可以是其它值符合要求。 以纹理性条件为例, 可以 采用如下方式选取:
对图像块区域求熵, 当熵大于预定阈值时,确定该图像块区域为符合纹理 性条件的图像块区域。 具体的, 图像块区域的熵可按如下公式计算:
Figure imgf000009_0001
M N
∑∑f(i , k)
Figure imgf000009_0002
il, I(i, j) = k
f (i, j, k) = \
其中 L0,/( , )≠fc 其中, I为指定的图像块区域, 其长度 M, 宽度为 N, P(k)为图像中灰度 值 k出现的频率。
纹理性是表明图像中是否有与背景不相同物体的图像特征。利用存在与背 景不相同物体的图像, 而不是利用与背景没有区别的图像, 可以更好的进一步 识别特定像素点的在相邻图像中的位置,从而依据像素点在相邻两帧图像中的 位置变化进行运动参数估计。
可见, 该步骤中, 将参与运算的图像块区域的数目大大降低, 从而可以降 低计算复杂度。
进一步的, 在同一列中的符合预定条件的图像块区域中,还可以选取最下 方的图像块区域。
这里的最下是指图像的最下方,即只选取图像最下方的那些符合条件的图 像块区域。 一般地, 由于最下方图像块区域距相机越近, 因此, 最下方图像块 区域的图像运动特征更明显,使得运动估计的精度得到提高。通过这样的选择, 可以进一步减少参加运算的图像块区域, 从而降低计算法复杂度。
S202: 在不同运动参数的条件下, 根据预先建立的像素运动模型, 计算当 前帧中所选择的图像块区域中的像素在相邻帧中对应的坐标。
基于车辆的运动规律及计算精度要求,存在运动参数的预定搜索空间。较 佳的, 可以计算预定搜索空间内按照一定步长设定的不同运动参数的置信度。 这样, 可以选择预定搜索空间中较佳的离散运动参数的置信度。
例如, 速度范围为 0-10 km/h, 则速度的预定搜索空间为 0-10 km/h。搜索 时以 lkm/h 为步长, 则需要计算速度置信度的速度离散值为:
{0,1,2,3,4,5,6,7,8,9,10} , 单位为 km/h。
其它运动参数所需计算的预定搜索空间中的离散值的选取与此类似。
设车辆运动用二元组 (v, 来表示, 则车辆的运动规律确定 V的搜索空间 ]和《的搜索空间 [ 。 而根据精度需要可确定搜索的步长 Δν禾 基于此可以确定运动参数的搜索组合^,^] , 其中, vt = Vmin + i x Av; i = 0,1, ..., Ν; Ν =
Δν
ω — ω
ω , = ¾η + 7 x Δω; 7 = 0, 1, ..., ; = max mi .n
( 7 ) 针对每一组运动参数 LV'' 」,计算序列图像中当前帧 F "中所选择图像块区 域中的每一像素在相邻帧图像^- 中的对应位置, 与前述建立的像素运动模型 对应的, 当前帧 F "与相邻帧图像 F«-k的时刻可以分别为 t时刻和 t+k时刻。 才艮 据前述相机运动约束, 由车辆的运动参数 [V', ]可以计算得到相机运动参数
S203:基于当前帧所选择图像块区域中像素的特征以及所述相邻帧中对应 坐标位置像素的特征, 计算不同运动参数的置信度。
针对每一所选择的图像块区域, 计算每一组运动参数 [ν'Ά]的置信度。 具 体的, 对于任意一组运动参数, 对于图像中每一图像块区域中的所有像素, 根 据其在上述图像^的和在上述图像^- 中对应位置的像素值计算该图像块区 域中该运动参数的置信度。 其中, 运动参 ¾[ν''Ά]在图像块区域 m 中的置信 度用 >来表示, 其可以用如下公式计算:
N N
Figure imgf000010_0001
其中, 区域 m的大小可以为 N*N, P( ')为图像 F "中的像素 (i, j ) 的像 素特征值, 例如像素灰度值, 或者是彩色值; ^ 为图像^所选择的一图像 块区域中的像素(i, j )在运动参数为 [ν'·, ]的情况下在图像^ ^中的对应位置 的像素的特征值, 同样地, 例如像素灰度值或者是彩色值。
基于上述计算,从而得到运动参数 [ν'Ά·]在每一图像块区域的置信度 , S204: 将置信度最高的运动参数确定为车辆的自运动参数。
进一步地, 所述 S204之前, 还可以包括:
S1: 确定所选择的图像块区域的权重。
例如, 可以将图像块区域的熵确定该图像块区域的权重, 熵可按如上公式
( 6 )计算。
则相应地, S202针对每一确定的图像块区域图像计算预定搜索空间内不 同运动参数的置信度步骤中,在得到运动参 ¾[ν'Ά']在每一图像块区域的置信 J c 之后, 还可以包括:
S2: 引入所述权重计算所述置信度。
对于上述的图像 F« ,根据每个图像块区域对于每组运动参数的置信度和权 重, 计算每一组运动参数的置信度。 例如可采用但不限于加权和的方式。
以下给出一个加权和的例子:
Figure imgf000011_0001
其中, M 为图像 F«中选择的所有图像块区域的数量, 为图像块区 域 m的权重, 则 为运动参数 [ν'·Ά]在图像中所有图像块区域的加权求和置 信度值。
这样, 不同运动参数在图像中所有图像块区域的加权求和置信度值不同, 因此, 在 S204中, 可以将置信度最高的运动参数确定为车辆的自运动参数。
此外,还可以结合各组运动参数的当前置信度及历史置信度求解运动参数 的最终置信度。 历史置信度为之前的帧中计算得到的运动参数的置信度。
例如, 可采用加权和的形式, 利用之前 K + 1个运动参数置信度计算各运 动参数当前的置信度,选出置信度最高的运动参数为当前的运动参数估计, 置 信度计算如下:
C^n =∑C^n_k x Weightn 其中, c" 为 F 帧图像的运动参数 [νΆ·]的置信度, Weight"为 F 帧置 信度的权重, 帧^ "到帧^ ^的共 K + 1 个帧, ^ 为考虑了历史置信度的运动 参数 [ν'Ά]的最终置信度。
本计算不限于上述公式(10 )的方式, 还可以是利用卡尔曼滤波等方法进 行的计算, 在此不再细述。
由上述实施例可见,在当前帧中划分的图像块区域中选择符合预定条件的 图像块区域, 在不同运动参数的条件下, 根据预先建立的像素运动模型, 计算 当前帧中所选择的图像块区域中的像素在相邻帧中对应的坐标,基于当前帧所 选择图像块区域中像素的特征以及所述相邻帧中对应坐标位置像素的特征,计 算不同运动参数的置信度, 将置信度最高的运动参数确定为车辆的自运动参 数。 这样, 通过选择有纹理且运动特征明显的道路区域进行运动估计, 并利用 图像特征减少了参与运算的图像区域,从而提高了运动参数估计精度并降低了 计算复杂度。 而预先建立的像素运动模型中, 利用车辆运动的规律, 建立了带 有约束的像素运动方程, 这样, 由于预先建立的像素运动模型中这些带有约束 的像素运动方程减少了方程发生多解的可能性,也可以提高运动参数估计的精 度。 以下介绍本发明一种估计车辆自运动参数的装置实施例,图 3示出了该装 置实施例的框图, 如图 3, 该装置实施例包括:
图像块区域确定单元 31 , 用于在当前帧中划分的图像矩形图像块区域上 确定符合预定条件的图像块区域;
相邻帧坐标计算单元 32, 用于在预定搜索空间内不同运动参数的条件下, 根据预先建立的像素运动模型,计算当前帧中所选择的图像块区域中的像素在 相邻帧中对应的坐标;
置信度计算单元 33, 基于当前帧所选择图像块区域中像素的特征以及所 述相邻帧中对应坐标位置像素的特征,计算预定搜索空间内不同运动参数的置 信度;
自运动参数确定单元 34, 用于将置信度最高的运动参数确定为车辆的自 运动参数。 优选地, 所述装置中, 所述像素运动模型包括:
建立以相机为中心的世界坐标系, 其中, Z轴为相机光轴方向, Y轴为与 地平面垂直且与 Z轴垂直的轴, X轴为与 Z、 Y均垂直的轴;
在以相机为中心的世界坐标系中,建立沿光轴方向的平移和垂直于光轴方 向的平移的运动约束关系, 并利用该运动约束关系, 计算:
计算 t时刻相机成像中的像素坐标在以相机为中心的世界坐标系中对应点
R的坐标;
计算在 t+k时刻点 W在以相机为中心的世界坐标系中的坐标;
根据 t+k 时刻点 W在相机坐标系中的坐标计算相机中成像中的像素 P2 ^,C2 )的坐标。
优选地, 所述装置中, 所述预定条件包括符合纹理性条件。
优选地, 所述装置中, 所述图像块区域确定单元 31 , 还用于在同一列中 的符合预定条件的图像块区域中, 选取最下方的图像块区域。
优选地, 所述装置中还包括权重确定单元, 用于确定所选择的图像块区域 的权重;
相应地, 所述置信度计算单元 33 , 还用于引入所述权重计算所述对置信 度。
优选地, 所述装置中, 所述权重为图像块区域的熵。
利用上述本发明装置实施例估计车辆自运动参数的方法,与前述方法实施 例类似, 在此不再赘述。
由上述实施例可见,在当前帧中划分的图像块区域中选择符合预定条件的 图像块区域, 在不同运动参数的条件下, 根据预先建立的像素运动模型, 计算 当前帧中所选择的图像块区域中的像素在相邻帧中对应的坐标,基于当前帧所 选择图像块区域中像素的特征以及所述相邻帧中对应坐标位置像素的特征,计 算不同运动参数的置信度, 将置信度最高的运动参数确定为车辆的自运动参 图像特征减少了参与运算的图像区域,从而提高了运动参数估计精度并降低了 计算复杂度。 而预先建立的像素运动模型中, 利用车辆运动的规律, 建立了带 有约束的像素运动方程, 这样, 由于预先建立的像素运动模型中这些带有约束 的像素运动方程减少了方程发生多解的可能性,也可以提高运动参数估计的精 度。
通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本 发明可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解, 本发 明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形 式体现出来,该计算机软件产品可以存储在存储介质中,如 ROM/RAM、磁碟、 光盘等, 包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器, 或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相 似的部分互相参见即可, 每个实施例重点说明的都是与其他实施例的不同之 处。 尤其, 对于系统实施例而言, 由于其基本相似于方法实施例, 所以描述的 比较筒单, 相关之处参见方法实施例的部分说明即可。
本发明可用于众多通用或专用的计算系统环境或配置中。 例如: 个人计算 机、 服务器计算机、 手持设备或便携式设备、 平板型设备、 多处理器系统、 基 于微处理器的系统、 置顶盒、 可编程的消费电子设备、 网络 PC、 小型计算机、 大型计算机、 包括以上任何系统或设备的分布式计算环境等等。
本发明可以在由计算机执行的计算机可执行指令的一般上下文中描述,例 如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的 例程、 程序、 对象、 组件、 数据结构等等。 也可以在分布式计算环境中实践本 发明,在这些分布式计算环境中, 由通过通信网络而被连接的远程处理设备来 执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地 和远程计算机存储介质中。
虽然通过实施例描绘了本发明实施例, 本领域普通技术人员知道, 本发明 有许多变形和变化而不脱离本发明的精神,希望所附的权利要求包括这些变形 和变化而不脱离本发明的精神。

Claims

权 利 要 求
1、 一种估计车辆自运动参数的方法, 其特征在于, 包括:
在当前帧中划分的图像块区域中选择符合预定条件的图像块区域; 在不同运动参数的条件下,根据预先建立的像素运动模型,计算当前帧中 所选择的图像块区域中的像素在相邻帧中对应的坐标;
基于当前帧所选择图像块区域中像素的特征以及所述相邻帧中对应坐标 位置像素的特征, 计算不同运动参数的置信度;
将置信度最高的运动参数确定为车辆的自运动参数。
2、 如权利要求 1所述的方法, 其特征在于, 所述像素运动模型包括: 建立以相机为中心的世界坐标系, 其中, Z轴为相机光轴方向, Y轴为与 地平面垂直且与 Z轴垂直的轴, X轴为与 Z、 Y均垂直的轴;
在以相机为中心的世界坐标系中,建立沿光轴方向的平移和垂直于光轴方 向的平移的运动约束关系, 并利用该运动约束关系, 计算:
计算 t时刻相机成像中的像素坐标在以相机为中心的世界坐标系中对应点 R的坐标;
计算在 t+k时刻点 W在以相机为中心的世界坐标系中的坐标;
根据 t+k 时刻点 W在相机坐标系中的坐标计算相机中成像中的像素的坐 标。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述预定条件包括符合 纹理性条件。
4、 如权利要求 3所述的方法, 其特征在于, 所述确定符合纹理性条件的 图像块区域包括:
对图像块区域求熵, 当熵大于预定阈值时,确定该图像块区域为符合纹理 性条件的区域。
5、 如权利要求 3所述的方法, 其特征在于, 所述确定符合预定条件的图 像块区域, 还包括:
在同一列中的符合预定条件的图像块区域中, 选取最下方的图像块区域。
6、 如权利要求 1或 2所述的方法, 其特征在于, 所述将置信度最高的运 动参数确定为车辆的自运动参数步骤之前, 还包括: 确定所选择的图像块区域的权重;
引入所述权重计算所述置信度。
7、 如权利要求 6所述的方法, 其特征在于, 所述确定所选择的图像块区 域的权重, 包括:
将图像块区域的熵确定为该图像块区域的权重。
8、 如权利要求 1或 2所述的方法, 其特征在于, 所述将置信度最高的运 动参数确定为车辆的自运动参数之前, 还包括:
结合各组运动参数的当前置信度及历史置信度求解运动参数的最终置信 度; 所述历史置信度为之前的帧中计算得到的所述运动参数的置信度。
9、 一种估计车辆自运动参数的装置, 其特征在于, 包括:
图像块区域确定单元,用于在当前帧中划分的图像矩形图像块区域上确定 符合预定条件的图像块区域;
相邻帧坐标计算单元, 用于在预定搜索空间内不同运动参数的条件下,根 据预先建立的像素运动模型,计算当前帧中所选择的图像块区域中的像素在相 邻帧中对应的坐标;
置信度计算单元,基于当前帧所选择图像块区域中像素的特征以及所述相 邻帧中对应坐标位置像素的特征, 计算预定搜索空间内不同运动参数的置信 度;
自运动参数确定单元,用于将置信度最高的运动参数确定为车辆的自运动 参数。
10、 如权利要求 9所述的装置, 其特征在于, 所述像素运动模型包括: 建立以相机为中心的世界坐标系, 其中, Z轴为相机光轴方向, Y轴为与 地平面垂直且与 Z轴垂直的轴, X轴为与 Z、 Y均垂直的轴;
在以相机为中心的世界坐标系中,建立沿光轴方向的平移和垂直于光轴方 向的平移的运动约束关系, 并利用该运动约束关系, 计算:
计算 t时刻相机成像中的像素坐标在以相机为中心的世界坐标系中对应点 R的坐标;
计算在 t+k时刻点 W在以相机为中心的世界坐标系中的坐标; 根据 t+k 时刻点 W在相机坐标系中的坐标计算相机中成像中的像素 p 2 ,cJ的坐标。
11、 如权利要求 9所述的装置, 其特征在于, 所述预定条件包括符合纹理 性条件。
12、 如权利要求 9所述的装置, 其特征在于, 所述图像块区域确定单元, 还用于在同一列中的符合预定条件的图像块区域中, 选取最下方的图像块区 域。
13、 如权利要求 9所述的装置, 其特征在于, 所述装置还包括权重确定单 元, 用于确定所选择的图像块区域的权重;
相应地, 所述置信度计算单元, 还用于引入所述权重计算所述置信度。
14、 如权利要求 13所述的装置, 其特征在于, 所述权重为图像块区域的
PCT/CN2009/071578 2008-12-15 2009-04-30 一种估计车辆自运动参数的方法和装置 WO2010069168A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810185832.X 2008-12-15
CN200810185832XA CN101419711B (zh) 2008-12-15 2008-12-15 一种估计车辆自运动参数的方法和装置

Publications (1)

Publication Number Publication Date
WO2010069168A1 true WO2010069168A1 (zh) 2010-06-24

Family

ID=40630489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071578 WO2010069168A1 (zh) 2008-12-15 2009-04-30 一种估计车辆自运动参数的方法和装置

Country Status (2)

Country Link
CN (1) CN101419711B (zh)
WO (1) WO2010069168A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894278A (zh) * 2010-07-16 2010-11-24 西安电子科技大学 基于变结构多模型的人体运动跟踪方法
CN102074034A (zh) * 2011-01-06 2011-05-25 西安电子科技大学 多模型人体运动跟踪方法
CN106469456A (zh) * 2015-08-11 2017-03-01 株式会社理光 运动估计方法和运动估计装置
CN109416399A (zh) * 2016-04-26 2019-03-01 深瞳科技公司 三维成像系统
CN113470342A (zh) * 2020-03-30 2021-10-01 华为技术有限公司 一种自运动估计的方法及装置
US11567156B2 (en) * 2019-05-08 2023-01-31 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for magnetic resonance imaging
US11707235B2 (en) 2019-05-08 2023-07-25 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for controlling imaging

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101419711B (zh) * 2008-12-15 2012-05-30 东软集团股份有限公司 一种估计车辆自运动参数的方法和装置
CN102521979B (zh) * 2011-12-06 2013-10-23 北京万集科技股份有限公司 基于高清摄像机进行路面事件检测的方法及系统
CN102494699B (zh) * 2011-12-14 2014-08-13 中国人民解放军国防科学技术大学 捷联式航空重力仪测量参数置信度评估方法
CN106504265B (zh) * 2015-09-08 2019-08-16 株式会社理光 运动估计优化方法、设备和系统
CN106815861A (zh) * 2017-01-17 2017-06-09 湖南优象科技有限公司 一种紧凑型的光流计算方法与设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1838174A (zh) * 2005-03-22 2006-09-27 日产自动车株式会社 基于道路边界检测物体的检测装置和方法
JP2006318272A (ja) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd 車両用物体検出装置、および方法
CN101226691A (zh) * 2007-12-21 2008-07-23 北京中星微电子有限公司 基于视频图像的车辆计数方法
CN101419711A (zh) * 2008-12-15 2009-04-29 东软集团股份有限公司 一种估计车辆自运动参数的方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307959B1 (en) * 1999-07-14 2001-10-23 Sarnoff Corporation Method and apparatus for estimating scene structure and ego-motion from multiple images of a scene using correlation
EP1257971A4 (en) * 1999-11-26 2005-07-06 Mobileye Inc SYSTEM AND METHOD FOR ESTIMATING THE SELF-MOVING OF A VEHICLE IN MOTION USING SUCCESSIVE IMAGES RECORDED ALONG THE VEHICLE MOVEMENT TRACK
CN1922633A (zh) * 2004-02-19 2007-02-28 西门子共同研究公司 使用鲁棒的信息融合从动态背景中检测正经过的车辆的系统和方法
JP4626158B2 (ja) * 2004-03-01 2011-02-02 ソニー株式会社 動きベクトル検出装置、および動きベクトル検出方法、並びにコンピュータ・プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1838174A (zh) * 2005-03-22 2006-09-27 日产自动车株式会社 基于道路边界检测物体的检测装置和方法
JP2006318272A (ja) * 2005-05-13 2006-11-24 Nissan Motor Co Ltd 車両用物体検出装置、および方法
CN101226691A (zh) * 2007-12-21 2008-07-23 北京中星微电子有限公司 基于视频图像的车辆计数方法
CN101419711A (zh) * 2008-12-15 2009-04-29 东软集团股份有限公司 一种估计车辆自运动参数的方法和装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101894278A (zh) * 2010-07-16 2010-11-24 西安电子科技大学 基于变结构多模型的人体运动跟踪方法
CN102074034A (zh) * 2011-01-06 2011-05-25 西安电子科技大学 多模型人体运动跟踪方法
CN106469456A (zh) * 2015-08-11 2017-03-01 株式会社理光 运动估计方法和运动估计装置
CN106469456B (zh) * 2015-08-11 2019-04-19 株式会社理光 运动估计方法和运动估计装置
CN109416399A (zh) * 2016-04-26 2019-03-01 深瞳科技公司 三维成像系统
CN109416399B (zh) * 2016-04-26 2023-07-04 深瞳科技公司 三维成像系统
US11567156B2 (en) * 2019-05-08 2023-01-31 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for magnetic resonance imaging
US11707235B2 (en) 2019-05-08 2023-07-25 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for controlling imaging
CN113470342A (zh) * 2020-03-30 2021-10-01 华为技术有限公司 一种自运动估计的方法及装置

Also Published As

Publication number Publication date
CN101419711A (zh) 2009-04-29
CN101419711B (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
WO2010069168A1 (zh) 一种估计车辆自运动参数的方法和装置
US20200258249A1 (en) Unsupervised learning of image depth and ego-motion prediction neural networks
EP3627109B1 (en) Visual positioning method and apparatus, electronic device and system
Zhang et al. On the networking challenges of mobile augmented reality
CN107747941B (zh) 一种双目视觉定位方法、装置及系统
US20230316690A1 (en) 3-D Reconstruction Using Augmented Reality Frameworks
JP7174139B2 (ja) 深度ヒントを使用した深度推定モデルの自己教師ありトレーニング
US20120314040A1 (en) Navigation model to render centered objects using images
US20210144513A1 (en) Systems and methods for co-localization of multiple devices
US10481680B2 (en) Systems and methods to provide a shared augmented reality experience
CN112733820B (zh) 障碍物信息生成方法、装置、电子设备和计算机可读介质
CN104145294A (zh) 基于场景结构的自我姿势估计
US11761766B2 (en) Localisation of mobile device using image and non-image sensor data in server processing
US8509522B2 (en) Camera translation using rotation from device
EP2850454A1 (en) Motion detection through stereo rectification
EP4117284A1 (en) Heterogeneous vehicle camera stereo pair system and method for depth estimation
JP7324792B2 (ja) 位置情報を生成するための方法及び装置
EP4260290A1 (en) 3-d reconstruction using augmented reality frameworks
WO2023279868A1 (zh) 同步定位与建图初始化方法、装置及存储介质
CA3239769A1 (en) System and methods for validating imagery pipelines
JP2023027227A (ja) 画像処理方法、装置、電子機器、記憶媒体及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09832850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/11/11)

122 Ep: pct application non-entry in european phase

Ref document number: 09832850

Country of ref document: EP

Kind code of ref document: A1