WO2010067833A1 - Electrochemical device - Google Patents

Electrochemical device Download PDF

Info

Publication number
WO2010067833A1
WO2010067833A1 PCT/JP2009/070634 JP2009070634W WO2010067833A1 WO 2010067833 A1 WO2010067833 A1 WO 2010067833A1 JP 2009070634 W JP2009070634 W JP 2009070634W WO 2010067833 A1 WO2010067833 A1 WO 2010067833A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
gas
electrode
interconnector
conductive
Prior art date
Application number
PCT/JP2009/070634
Other languages
French (fr)
Japanese (ja)
Inventor
久野俊明
高瀬尚哉
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2010542123A priority Critical patent/JP5417344B2/en
Publication of WO2010067833A1 publication Critical patent/WO2010067833A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an electrochemical device such as a solid oxide fuel cell.
  • a fuel flow path is formed inside, for example, a fuel electrode of a ceramic electrochemical cell, and a solid electrolyte membrane and an air electrode membrane are formed on the fuel electrode.
  • a gas supply hole and a gas discharge hole are provided in the cell itself, and a plurality of cells are directly stacked to form a stack.
  • the gas supply passages are formed by connecting the gas supply holes of adjacent cells, and the gas discharge passages are formed by connecting the gas discharge holes of the cells.
  • a cell having a gas flow path is attached to a fixed member, and these are stacked.
  • the cell in this structure also has a role as a structural member, stress is easily applied.
  • a cell having a gas flow path has a lower structural strength than a cell having no gas flow path, a structure in which no stress is applied to the cell is desirable.
  • the present applicant discloses in WO 2008 / 123570A1 that a fuel gas flow path is formed inside an electrochemical cell and a plurality of electrochemical cells are supported by a gas supply member and a gas discharge member in a state of being separated from each other. did.
  • each flow path built-in cell is accommodated in an interconnector, and a plurality of interconnectors are stacked in this state to form a stack.
  • a conductive part is formed on the surface of each cell, and the conductive part of each cell is electrically connected in series to the adjacent interconnector.
  • the object of the present invention is to reduce the mechanical stress applied to the cell when stacking the electrochemical cell made of ceramic, to improve the gas utilization efficiency, and to reduce the deviation of the conduction distance between the two main surfaces of the cell.
  • the present invention is an electrochemical device comprising a plurality of ceramic electrochemical cells and an interconnector,
  • the electrochemical cell has a built-in gas flow path through which the first gas flows, and is in contact with the first gas, the solid electrolyte layer, and the second gas exposed on the main surface of the cell.
  • the interconnector includes an accommodating portion that accommodates a part of the cell, and a plurality of connecting portions protruding from the accommodating portion,
  • a second gas flow path is formed between the accommodating portion and the electrochemical cell, and the second gas contacts the second electrode while passing through the flow path, and each connection portion is adjacent to the second gas flow path. It is electrically connected to each conductive part of the cell.
  • the first gas flow path is formed in the electrochemical cell, and a part of the electrochemical cell is accommodated by the interconnector, and the second gas flow path is provided between the interconnector and the cell.
  • the second gas contacts the second electrode while passing through this flow path, and contributes to the electrochemical reaction. Accordingly, since the cells are accommodated in the interconnector to form the second gas flow path, the second gas flow path can be formed as a narrow flow path, and the utilization efficiency of the second gas is improved. be able to.
  • a connection portion is provided in the interconnector, and the connection portion of the interconnector that accommodates a certain cell is electrically connected to the conductive portion of the adjacent cell.
  • the adjacent cells are connected to the adjacent cells via the connection portions extending from the interconnector housing portions.
  • the compressive stress applied to the entire stack is received by each accommodating portion of each interconnector, and the stress is dispersed at each connecting portion. Therefore, damage due to excessive stress applied to the cell can be prevented.
  • a plurality of conductive portions that are electrically connected to the first electrode are provided, and are respectively positioned on the outer edge portions of the cell main surface. And each connection part is electrically connected with respect to each electroconductive part of an adjacent cell.
  • FIG. 1 is a perspective view of an electrochemical cell 10 according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the cell 10 of FIG.
  • FIG. 3 is a perspective view of the cell 1 of the comparative example.
  • FIG. 4A is a side view of the interconnector 11, and FIG. 4B is a front view of the interconnector 11 viewed from the IVb side.
  • FIG. 5A is a plan view of the interconnector 11 viewed from the Va side, and FIG. 5B is a bottom view of the interconnector 11 viewed from the Vb side.
  • FIG. 6 is a perspective view showing a state where the interconnector 11 is fitted in the cell 10.
  • FIG. 7 is a perspective view showing a state where the interconnector 11 is fitted in the cell 10.
  • FIG. 8 is a perspective view schematically showing a state in which the cells of FIG. 7 are stacked.
  • FIG. 9 is a perspective view showing a state where voltage and current lines are attached to the stack of FIG.
  • FIG. 10 is a cross-sectional view schematically showing a state after the stack of FIG. 9 is manufactured.
  • FIG. 11 is a perspective view schematically showing a stack of a comparative example.
  • FIG. 12 is a schematic diagram showing a current flow in the example of the present invention.
  • FIG. 13 is a schematic diagram showing the flow of current in the comparative example.
  • the electrochemical cell is preferably plate-shaped. However, it is not limited to a flat plate shape, and may be a curved plate or a circular arc plate.
  • the electrochemical cell includes a first electrode that contacts the first gas, a solid electrolyte membrane, a second electrode that contacts the second gas, and a conductive portion connected to the first electrode.
  • the first electrode and the second electrode are selected from an anode or a cathode. When one of these is an anode, the other is a cathode.
  • the first gas and the second gas are selected from oxidizing gas and reducing gas.
  • the oxidizing gas is not particularly limited as long as it is a gas that can supply oxygen ions to the solid electrolyte membrane, and examples thereof include air, diluted air, oxygen, and diluted oxygen.
  • Examples of the reducing gas include H 2 , CO, CH 4 and a mixed gas thereof.
  • the electrochemical cell targeted by the present invention means a general cell for causing an electrochemical reaction.
  • the electrochemical cell can be used as an oxygen pump or a high temperature steam electrolysis cell.
  • the high-temperature steam electrolysis cell can be used for a hydrogen production apparatus and a steam removal apparatus.
  • an electrochemical cell can be used as a decomposition cell for NOx and SOx. This decomposition cell can be used as a purification device for exhaust gas from automobiles and power generation devices.
  • the electrochemical cell is a solid oxide fuel cell.
  • the material of the solid electrolyte is not particularly limited, and any oxygen ion conductor can be used. For example, it may be yttria stabilized zirconia or yttria partially stabilized zirconia, and in the case of a NOx decomposition cell, cerium oxide is also preferable.
  • the material of the cathode is preferably a perovskite complex oxide containing lanthanum, more preferably lanthanum manganite or lanthanum cobaltite, and even more preferably lanthanum manganite.
  • Lanthanum cobaltite and lanthanum manganite may be doped with strontium, calcium, chromium, cobalt (in the case of lanthanum manganite), iron, nickel, aluminum or the like.
  • As a material for the anode nickel-magnesia spinel, nickel-nickel alumina spinel, nickel-zirconia, platinum-cerium oxide, ruthenium-zirconia and the like are preferable.
  • the form of each electrochemical cell is not particularly limited.
  • the electrochemical cell may consist of three layers: an anode, a cathode and a solid electrolyte layer.
  • the electrochemical cell may have, for example, a porous body layer in addition to the anode, the cathode, and the solid electrolyte layer.
  • a gas flow path for flowing the first gas is provided in the electrochemical cell.
  • the form, number and location of the gas flow path are not particularly limited.
  • the adjacent electrochemical cells are connected by a connecting member having a through hole.
  • the first through hole and the second through hole communicating with the first gas flow path can be formed in the cell.
  • the form, number and location of each through hole are not particularly limited.
  • the method for connecting the binding member and the electrochemical cell is not particularly limited.
  • an adhesive made of glass or ceramics, or a mechanical bonding method can be used.
  • the method for hermetically sealing the connecting member and the electrochemical cell is not particularly limited, but it is preferable to use a sealing material.
  • the material of such a seal member is not particularly limited, but it needs to have oxidation resistance and reduction resistance at the operating temperature of the electrochemical cell.
  • glass mainly composed of silica, crystallized glass, metal brazing and the like can be exemplified.
  • compression seals such as O-rings, C-rings, E-rings, metal jacket gaskets, and mica gaskets can be exemplified.
  • FIG. 1 is a perspective view showing an electrochemical cell 10 according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view showing the electrochemical cell 1 in an exploded manner
  • FIG. 3 is a perspective view showing a cell 1 of a comparative example.
  • a gas flow path 7 for flowing the first gas is formed inside the first electrode 16 of the electrochemical cell 10.
  • the first electrode 16 has a flat plate shape, and the solid electrolyte layer 6 is provided so as to cover the first electrode 16.
  • second electrodes 2A and 2B are formed, respectively, and the second electrodes 2A and 2B are exposed.
  • a first through hole 3 and a second through hole 4 are formed at predetermined positions.
  • the first gas that has flowed into the cell from the through hole 3 flows through the gas flow path 7 as indicated by arrows A, B, and C, and is discharged from the second through hole 4.
  • the first gas contributes to the electrochemical reaction while flowing through the flow path 7.
  • the conductive portion 5 that is electrically connected to the first electrode 16 inside the cell is exposed at the center of the cell 1.
  • FIG. 13 which will be described later, from the main surface on the side where the connecting portion of the interconnector 21 is present, current passes through a long conduction path as indicated by arrows E, F, and G, and is adjacent to it. Reaches the conductive portion 5 of the cell to be operated. At this time, on the main surface side where there is a connection portion, the conduction distance in the cell is short and the internal resistance is small, so the current density tends to be high.
  • the upper main surface without the connection portion has a long conduction distance and also passes through the side surface and the corner portion, so that the internal resistance is large and the current density tends to be low. As a result, the durability of the cell may decrease due to the deviation of the current density between the two main surfaces.
  • conductive portions 8A, 8B, 8C, and 8D are provided, for example, at four locations on the outer peripheral edge portion of the main surface of the cell 1.
  • through-holes 14 corresponding to the conductive portions are formed in the interconnector 11 (see FIG. 12), and through the through-holes, the conductive portions are connected to the corresponding connecting portions 12A, It is electrically connected to 12B.
  • the current reaches the conductive portion of the adjacent cell as indicated by the arrow D from the main surface on the side where the cell connection portions 12A and 12B are present.
  • the current reaches the conductive portion of the adjacent cell. Therefore, the deviation of the conduction distance on both main surfaces of the interconnector is small, the deviation of the current density is also small, and the durability of the cell is improved.
  • a plurality of conductive portions are provided on the outer edge portion of the cell main surface.
  • the cell main surface refers to a surface having a large area in the cell, and is usually two opposing surfaces.
  • the outer edge portion of the main surface refers to a region within 10 mm from the outer edge of the main surface.
  • the conductive portion of the present invention does not need to be entirely included in the outer edge portion, and only part of the conductive portion may be included in the outer edge portion.
  • the number of conductive parts per cell is 2 or more, preferably 3 or more, and more preferably 4 or more. There is no particular upper limit on the number of conductive parts, but eight or less are practical.
  • the interconnector of the present invention includes a housing portion that houses a part of the electrochemical cell and a connection portion that protrudes from the housing portion.
  • the accommodating part can be inserted from the outside of the cell, sandwiches the cell from both sides thereof, and forms a second gas flow path between the cell and the accommodating part.
  • the interconnector material must be conductive and must be durable to the second gas at the cell operating temperature. Specifically, it may be a pure metal or an alloy, but nickel-based alloys such as nickel, inconel and nichrome, iron-based alloys such as stainless steel, and cobalt-based alloys such as stellite are preferable.
  • the connecting portion is preferably elastically deformable, and is particularly preferably formed from a metal plate. Examples of the metal material include the above-described interconnector materials.
  • FIG.4 (a) is a side view of the interconnector 11 which concerns on one Embodiment
  • FIG.4 (b) is the front view which looked at Fig.4 (a) from the IVb side
  • 5A is a plan view of the interconnector of FIG. 4A viewed from the upper side (Va side)
  • FIG. 5B is the lower side of the interconnector of FIG. 4A (Vb side). It is the bottom view seen from.
  • the accommodating portion 25 includes an upper plate 11a and a lower plate 11b, and a space 13 is formed between the upper plate 11a and the lower plate 11b. Connection portions 12A and 12B protrude from the lower plate 11b.
  • connection parts 12A and 12B are a combination of a plurality of elongated flat plates. Such connection parts 12A and 12B are formed by processing a metal flat plate.
  • a through hole 14 is formed in the upper plate 11a at a position corresponding to the conductive portion.
  • Two through holes 14 are formed in one interconnector, and one cell is accommodated in the two interconnectors.
  • the four conductive portions of each cell can be aligned with each penetrator 14 respectively.
  • the connection parts 12A and 12B can be seen through the through hole 14 from above.
  • the interconnector 11 as described above is put on each cell 10 and fixed.
  • the accommodating portion of the interconnector 11 is fitted from the side as indicated by an arrow J and fixed so as to cover each electrode 2 ⁇ / b> A of each cell 10.
  • the accommodating portion of the interconnector 11 is fitted from the side as indicated by an arrow J so as to cover each electrode 2B of each cell 10 and fixed.
  • FIG. 7 the state shown in FIG. 7 is obtained.
  • a plurality of cells 10 are stacked (arrow B). And each through-hole 3 and 4 of an adjacent cell is connected by interposing the connection member 18 between the adjacent cells 10, respectively.
  • Each connecting member 18 is formed with a through hole 18a.
  • Each through hole 18a and each through hole 3 communicate with each other to form a gas supply path. Moreover, a gas exhaust path is formed when each through-hole 18a and each through-hole 4 are connected.
  • the material of the connecting member is not particularly limited as long as it has higher mechanical strength than the ceramics constituting the cell. However, the material having a difference in thermal expansion coefficient from the cell of 2 ⁇ 10 ⁇ 6 (/ K), for example, zirconia, magnesia, spinel Examples thereof include ceramics and a composite material of these. Further, it may be a metal as long as it has oxidation resistance and reduction resistance at the operating temperature of the electrochemical cell, and may be a pure metal or an alloy, such as nickel, inconel, nichrome, etc.
  • Nickel-based alloys, iron-based alloys such as stainless steel, and cobalt-based alloys such as stellite are preferred.
  • a second gas flow path is formed between each interconnector and the opposing electrode 2A (2B).
  • a predetermined conductive connecting member is accommodated in the gas flow path, and the electrode and the accommodating portion are electrically connected by bringing the conductive connecting member into contact with the electrode and the accommodating portion.
  • the material and form of the conductive connecting member are not particularly limited, and known materials can be used, but metal felts and meshes can be exemplified.
  • connection state of adjacent cells is schematically shown in FIG.
  • the accommodating portion of the interconnector 11 is fitted over the cell 10 from the side.
  • the conductive paste 20 is interposed between the connection portions 12A and 12B and the conductive portions 8A and 8B of the adjacent cells.
  • 30 is a second gas flow path.
  • a stack according to an example of the present invention was manufactured.
  • a solid oxide fuel cell (cell) having a fuel electrode as a substrate was produced (see FIGS. 1 and 2).
  • (Fabrication of fuel electrode substrate) Nickel oxide powder and yttria-stabilized zirconia (YSZ) were mixed to obtain a fuel electrode substrate powder. This powder was press-molded to produce two fuel electrode substrate compacts.
  • a slurry obtained by adding a binder to YSZ powder was used as the electrolyte. After coating and drying on the fuel electrode substrate compact, it was fired in air at 1400 ° C. for 2 hours to obtain a solid electrolyte / fuel electrode support substrate.
  • a paste was prepared by adding a binder and a solvent to LaMnO 3 powder. This paste was screen printed on the two main surfaces of the substrate, dried, and then fired in an electric furnace at 1200 ° C. for 1 hour to form an air electrode.
  • a part of the electrolyte is peeled off, the fuel electrode substrate is exposed on the surface, and a lanthanum chromite 0.3 mm thick conductive plate, which is separately manufactured, is attached to the exposed portion with a conductive paste.
  • the periphery was fixed with a sealing material.
  • Fuel supply holes and discharge holes were formed in the sintered body thus obtained by machining to obtain a power generation cell.
  • the shape of the produced cell was 110 mm long, 100 mm wide, and 3 mm thick. (Production of metal interconnector)
  • a plate made of material SUS430 was processed into the shapes of FIGS. 4 and 5 having a length of 60 mm, a width of 105 mm, and a thickness of 0.5 mm.
  • Stack production A 20-stage stack consisting of cells and metal interconnectors was made. (Installation of metal interconnector) An embossed current collecting mesh was placed in the metal interconnector described above, and a conductive paste was applied to the protrusions of the metal interconnector and fitted from the left and right of each cell (see FIGS. 6 and 7). (Bonding of cell and ceramic connecting parts) A ceramic connecting part 18 having an outer diameter of ⁇ 24 mm, an inner diameter of ⁇ 9 mm, and a thickness of 2 mm is attached to the fuel supply hole and discharge hole of the cell produced above using a glass paste that softens at 1000 ° C., stacked in 20 layers, and in the air in an electric furnace It joined by heating at 1000 ° C.
  • a stack was manufactured in the same manner as in the example. However, as the cell, as shown in FIG. 3, one conductive portion 5 was provided. Further, a plate made of material SUS430 was formed into the form shown in FIG. This dimension is 60 mm long, 105 mm wide, and 0.5 mm thick. A 20-stage stack was produced. (Power generation performance evaluation) To evaluate the performance, the stack is set in an electric furnace, and the voltage and current lines are connected as shown in FIGS. 10 and 11, and the temperature is raised to 800 ° C. while flowing N 2 on the fuel electrode side and Air on the air electrode side. When the temperature reached 800 ° C., reduction treatment was performed by flowing H 2 to the fuel electrode side.
  • Table 1 shows the power generation characteristics at 800 ° C.
  • the power generation output indicates the output per unit volume of the stack and the output per cell.
  • a reduction in ohmic resistance was observed in the present invention as compared with the comparative example, and the output per unit volume was greatly improved to 310 W / L or more. This is because in the comparative example, the electrical connection with the next cell is at the center, so that the current generated on the opposite side must pass through the outer periphery of the cell on the metal interconnector.
  • the influence of the material resistance on the interconnector is reduced because the electrical connections at the outer periphery of the cell are at the four corners of the cell, and the distance that the current generated on the opposite surface flows over the metal interconnector is reduced. It is done. Further, in the present invention, the power generation performance deterioration rate was reduced as compared with the comparative example, and the power generation performance deterioration in 100 hours was 0.005% or less, which was less than half of the comparative example. In the comparative example, in the comparative example, the distance in which the current flows on the metal interconnector is greatly different, so that the ohmic resistance is greatly different on the front and back, whereas in the present invention, the distance in which the current flows on the metal interconnector is substantially the same.
  • the present invention brings the electrical connection with the next cell to the outer periphery of the cell, thereby reducing the influence of the material resistance of the metal interconnector, reducing ohmic resistance, and reducing power generation performance deterioration. It is a shape that can be performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

An electrochemical device is provided with a plurality of ceramic electrochemical cells (10) and interconnectors (11).  Each cell is provided with; a first electrode which has a built-in gas channel wherein a first gas flows and is in contact with the first gas; a solid electrolyte layer; a second electrode which is exposed from the main surface of the cell and is in contact with the second gas; and a plurality of conductive sections (8A, 8B) which are exposed from the main surface of the cell and are electrically connected with the first electrode.  The conductive sections are arranged on the outer edge section of the cell main surface.  Each interconnector is provided with a storing section which stores a part of the cell, and a plurality of connecting sections which protrude from the storing section.  A second gas channel (30) is formed between the storing section and the cell.  The gas is brought into contact with the second electrode, while the gas is passing through the second gas channel.  Each connecting section is electrically connected to each conductive section of the adjacent cell.

Description

電気化学装置Electrochemical equipment
 本発明は、固体酸化物形燃料電池などの電気化学装置に関するものである。 The present invention relates to an electrochemical device such as a solid oxide fuel cell.
 燃料電池1枚当たりの電圧は1V程度であるので、大出力を得るには複数枚積層(スタック)しなければならない。そこで、いかに小型で積層数を増やし大出力を得ることができるかが問題となってくる。
 WO 2007/029860 A1の特に図14では、セラミック製電気化学セルの例えば燃料極の内部に燃料流路を形成し、燃料極の上に固体電解質膜、空気極膜を形成する。そしてセルそのものにガス供給孔とガス排出孔とを設け、セルを直接に複数枚積層してスタックを形成する。このスタック形成のさいに、隣接する各セルのガス供給孔を連続させてガス供給路を形成し、各セルのガス排出孔を連続させることでガス排出路を形成する。
Since the voltage per fuel cell is about 1 V, a plurality of sheets must be stacked in order to obtain a large output. Therefore, it becomes a problem how small the number of layers can be increased and a large output can be obtained.
In WO 2007/029860 A1, particularly in FIG. 14, a fuel flow path is formed inside, for example, a fuel electrode of a ceramic electrochemical cell, and a solid electrolyte membrane and an air electrode membrane are formed on the fuel electrode. A gas supply hole and a gas discharge hole are provided in the cell itself, and a plurality of cells are directly stacked to form a stack. In forming the stack, the gas supply passages are formed by connecting the gas supply holes of adjacent cells, and the gas discharge passages are formed by connecting the gas discharge holes of the cells.
 WO 2007/029860 A1記載のようなスタック(集合電池)では、ガス流路を内部に持つセルを固定部材に取り付け、これらをスタックする。しかし、この構造でのセルは構造部材としての役割も持つので、応力が加わりやすい。特にガス流路を内部に持つセルはガス流路を持たないセルよりも構造強度が弱いことから、セルに応力が加わらない構造が望ましい。
 本出願人は、WO 2008/123570A1において、電気化学セルの内部に燃料ガス流路を形成し、複数の電気化学セルを互いに離間された状態でガス供給部材およびガス排出部材によって支持することを開示した。
 しかし、この場合には、セル外を流れる空気の流量が多く、セルの表面で発電に利用できる空気量が少なく、利用効率が低い。また、隣接するセルを導電性のガス供給部材や排出部材で導通させるが、電流の流れる距離が長くなる傾向があり、この点から電流損失が大きくなる傾向があった。
 また、本出願人は、特開2009−146805において、インターコネクターの中に各流路内蔵セルを収容し、この状態で複数のインターコネクターを積層してスタックを作ることを開示した。各セルの表面に導電部を形成し、各セルの導電部を、隣接するインターコネクターに対して電気的に直列接続する。
 しかし、このスタックでは、インターコネクターのうち、接続部のある主面においては、各部分から接続部、そして隣接するセルの導電部への距離が短いが、接続部のない反対側の主面においては、接続部での距離が長い。このため、インターコネクターの材料抵抗の影響を受けやすく、セルにおける出力損失が大きい。そして、接続部のある主面と、反対側の主面との間では、出力密度が異なるので、セルの耐久性が低下する傾向が見られた。
 本発明の課題は、セラミック製の電気化学セルをスタックするときにセルに加わる機械的応力を低減し、またガスの利用効率を向上させるとともに、セルの両主面の間における導通距離の偏差を小さくし、両主面における出力密度の相違を小さくしてセルの耐久性を向上させることである。
 本発明は、複数のセラミックス製電気化学セル、およびインターコネクターを備えている電気化学装置であって、
 電気化学セルが、第一のガスを流すガス流路を内蔵しており、第一のガスと接触する第一の電極、固体電解質層、セルの主面に露出して第二のガスと接触する第二の電極、およびセルの主面に露出して第一の電極と電気的に導通する複数の導電部を備えており、導電部が主面の外縁部に設けられており、
 インターコネクターが、セルの一部を収容する収容部と、この収容部から突出する複数の接続部とを備えており、
 収容部と電気化学セルとの間に第二のガスの流路が形成されており、第二のガスが流路を通過する間に第二の電極と接触し、各接続部が、隣接するセルの各導電部に対して電気的に接続されていることを特徴とする。
 本発明では、電気化学セル内に第一のガスの流路を形成すると共に、インターコネクターによって、電気化学セルの一部を収容し、インターコネクターとセルとの間に第二のガスの流路を形成する。第二のガスは、この流路を通過する間に第二の電極と接触し、電気化学反応に寄与する。従って、インターコネクター内にセルを収容して第二のガス流路を形成しているので、第二のガス流路を幅の狭い流路として形成でき、第二のガスの利用効率を向上させることができる。
 これと共に、インターコネクターに接続部を設け、あるセルを収容するインターコネクターの接続部を、隣接するセルの導電部に対して電気的に接続する。これによって、隣接するセルは、インターコネクターの収容部から延びる接続部を介して、隣接するセルに対して接続される。この構造によって、スタック全体に加わる圧縮応力は、各インターコネクターの各収容部で受けられ、各接続部で応力分散される。従って、セルに過大な応力が加わることによる破損を防止できる。
 さらに、第一の電極と電気的に導通する導電部を複数設け、セル主面の外縁部にそれぞれ位置させる。そして、各接続部が、隣接するセルの各導電部に対して電気的に接続されるようにする。これによって、セルの接続部側の主面における導通距離と、接続部のない側のセル主面における導通距離との偏差が小さくなり、両主面における内部抵抗の偏差が小さくなる。この結果、出力密度が全体として向上するとともに、両主面における出力密度の偏差によるセル耐久性の低下を防止できる。
In a stack (collective battery) as described in WO 2007/029860 A1, a cell having a gas flow path is attached to a fixed member, and these are stacked. However, since the cell in this structure also has a role as a structural member, stress is easily applied. In particular, since a cell having a gas flow path has a lower structural strength than a cell having no gas flow path, a structure in which no stress is applied to the cell is desirable.
The present applicant discloses in WO 2008 / 123570A1 that a fuel gas flow path is formed inside an electrochemical cell and a plurality of electrochemical cells are supported by a gas supply member and a gas discharge member in a state of being separated from each other. did.
However, in this case, the flow rate of air flowing outside the cell is large, the amount of air available for power generation on the surface of the cell is small, and the utilization efficiency is low. Further, although the adjacent cells are made conductive by the conductive gas supply member or the discharge member, the current flowing distance tends to be long, and the current loss tends to increase from this point.
Further, the present applicant disclosed in JP-A-2009-146805 that each flow path built-in cell is accommodated in an interconnector, and a plurality of interconnectors are stacked in this state to form a stack. A conductive part is formed on the surface of each cell, and the conductive part of each cell is electrically connected in series to the adjacent interconnector.
However, in this stack, on the main surface with the connection part of the interconnector, the distance from each part to the connection part and the conductive part of the adjacent cell is short, but on the opposite main surface without the connection part. Has a long distance at the connection. For this reason, it is easily affected by the material resistance of the interconnector, and the output loss in the cell is large. And since the power density differed between the main surface with a connection part and the main surface of the other side, the tendency for the durability of a cell to fall was seen.
The object of the present invention is to reduce the mechanical stress applied to the cell when stacking the electrochemical cell made of ceramic, to improve the gas utilization efficiency, and to reduce the deviation of the conduction distance between the two main surfaces of the cell. This is to reduce the difference in power density between the two main surfaces and improve the durability of the cell.
The present invention is an electrochemical device comprising a plurality of ceramic electrochemical cells and an interconnector,
The electrochemical cell has a built-in gas flow path through which the first gas flows, and is in contact with the first gas, the solid electrolyte layer, and the second gas exposed on the main surface of the cell. The second electrode, and a plurality of conductive portions that are exposed on the main surface of the cell and are electrically connected to the first electrode, and the conductive portion is provided on the outer edge portion of the main surface,
The interconnector includes an accommodating portion that accommodates a part of the cell, and a plurality of connecting portions protruding from the accommodating portion,
A second gas flow path is formed between the accommodating portion and the electrochemical cell, and the second gas contacts the second electrode while passing through the flow path, and each connection portion is adjacent to the second gas flow path. It is electrically connected to each conductive part of the cell.
In the present invention, the first gas flow path is formed in the electrochemical cell, and a part of the electrochemical cell is accommodated by the interconnector, and the second gas flow path is provided between the interconnector and the cell. Form. The second gas contacts the second electrode while passing through this flow path, and contributes to the electrochemical reaction. Accordingly, since the cells are accommodated in the interconnector to form the second gas flow path, the second gas flow path can be formed as a narrow flow path, and the utilization efficiency of the second gas is improved. be able to.
At the same time, a connection portion is provided in the interconnector, and the connection portion of the interconnector that accommodates a certain cell is electrically connected to the conductive portion of the adjacent cell. As a result, the adjacent cells are connected to the adjacent cells via the connection portions extending from the interconnector housing portions. With this structure, the compressive stress applied to the entire stack is received by each accommodating portion of each interconnector, and the stress is dispersed at each connecting portion. Therefore, damage due to excessive stress applied to the cell can be prevented.
Furthermore, a plurality of conductive portions that are electrically connected to the first electrode are provided, and are respectively positioned on the outer edge portions of the cell main surface. And each connection part is electrically connected with respect to each electroconductive part of an adjacent cell. Thereby, the deviation between the conduction distance on the principal surface on the connection part side of the cell and the conduction distance on the cell principal surface on the side without the connection part becomes small, and the deviation of the internal resistance on both principal faces becomes small. As a result, the power density is improved as a whole, and a decrease in cell durability due to a deviation in power density between both main surfaces can be prevented.
 図1は、本発明の一実施形態に係る電気化学セル10の斜視図である。
 図2は、図1のセル10の分解斜視図である。
 図3は、比較例のセル1の斜視図である。
 図4(a)は、インターコネクター11の側面図であり、図4(b)は、インターコネクター11をIVb側から見た正面図である。
 図5(a)は、インターコネクター11をVa側から見た平面図であり、図5(b)は、インターコネクター11をVb側から見た底面図である。
 図6は、セル10にインターコネクター11をはめ込んでいる状態を示す斜視図である。
 図7は、セル10にインターコネクター11をはめ込んだ状態を示す斜視図である。
 図8は、図7のセルを積層している状態を模式的に示す斜視図である。
 図9は、図8のスタックに電圧、電流線を取り付けた状態を示す斜視図である。
 図10は、図9のスタックの作製後の状態を模式的に示す断面図である。
 図11は、比較例のスタックを模式的に示す斜視図である。
 図12は、本発明例における電流の流れを示す模式図である。
 図13は、比較例における電流の流れを示す模式図である。
FIG. 1 is a perspective view of an electrochemical cell 10 according to an embodiment of the present invention.
FIG. 2 is an exploded perspective view of the cell 10 of FIG.
FIG. 3 is a perspective view of the cell 1 of the comparative example.
FIG. 4A is a side view of the interconnector 11, and FIG. 4B is a front view of the interconnector 11 viewed from the IVb side.
FIG. 5A is a plan view of the interconnector 11 viewed from the Va side, and FIG. 5B is a bottom view of the interconnector 11 viewed from the Vb side.
FIG. 6 is a perspective view showing a state where the interconnector 11 is fitted in the cell 10.
FIG. 7 is a perspective view showing a state where the interconnector 11 is fitted in the cell 10.
FIG. 8 is a perspective view schematically showing a state in which the cells of FIG. 7 are stacked.
FIG. 9 is a perspective view showing a state where voltage and current lines are attached to the stack of FIG.
FIG. 10 is a cross-sectional view schematically showing a state after the stack of FIG. 9 is manufactured.
FIG. 11 is a perspective view schematically showing a stack of a comparative example.
FIG. 12 is a schematic diagram showing a current flow in the example of the present invention.
FIG. 13 is a schematic diagram showing the flow of current in the comparative example.
 本発明では、電気化学セルは板状であることが好ましい。ただし、平板状には限らず、湾曲した板や円弧状の板でもよい。電気化学セルは、第一のガスと接触する第一の電極、固体電解質膜、第二のガスと接触する第二の電極、および第一の電極と接続された導電部を備えている。
 ここで、第一の電極、第二の電極は、アノードまたはカソードから選択する。これらのうち一方がアノードである場合には、他方はカソードである。これと同様に、第一のガス、第二のガスは、酸化性ガス、還元性ガスから選択する。
 酸化性ガスは、酸素イオンを固体電解質膜へと供給可能なガスであれば特に限定されないが、空気、希釈空気、酸素、希釈酸素が挙げられる。還元性ガスとしては、H、CO、CHとこれらの混合ガスを例示できる。
 本発明が対象とする電気化学セルは、電気化学反応を生じさせるためのセル一般を意味している。例えば、電気化学セルは、酸素ポンプ、高温水蒸気電解セルとして使用できる。高温水蒸気電解セルは、水素の製造装置に使用でき、また水蒸気の除去装置に使用できる。また、電気化学セルを、NOx、SOxの分解セルとして使用できる。この分解セルは、自動車、発電装置からの排ガスの浄化装置として使用できる。この場合には、固体電解質膜を通して排ガス中の酸素を除去するのと共に、NOxを電解してNとO とに分解し、この分解によって生成した酸素をも除去できる。また、このプロセスと共に、排ガス中の水蒸気が電解されて水素と酸素とを生じ、この水素がNOxをNへと還元する。また、好適な実施形態では、電気化学セルが、固体酸化物形燃料電池である。
 固体電解質の材質は特に限定されず、あらゆる酸素イオン伝導体を利用できる。例えば、イットリア安定化ジルコニア又はイットリア部分安定化ジルコニアであってよく、NOx分解セルの場合には、酸化セリウムも好ましい。
 カソードの材質は、ランタンを含有するペロブスカイト型複合酸化物であることが好ましく、ランタンマンガナイト又はランタンコバルタイトであることが更に好ましく、ランタンマンガナイトが一層好ましい。ランタンコバルタイト及びランタンマンガナイトは、ストロンチウム、カルシウム、クロム、コバルト(ランタンマンガナイトの場合)、鉄、ニッケル、アルミニウム等をドープしたものであってよい。
 アノードの材質としては、ニッケル−マグネシアスピネル、ニッケル−ニッケルアルミナスピネル、ニッケル−ジルコニア、白金−酸化セリウム、ルテニウム−ジルコニア等が好ましい。
 各電気化学セルの形態は特に限定されない。電気化学セルは、アノード、カソードおよび固体電解質層の3層からなっていてよい。あるいは、電気化学セルは、アノード、カソードおよび固体電解質層以外に、例えば多孔質体層を有していて良い。
 本発明においては、第一のガスを流すガス流路が電気化学セルに設けられている。ガス流路の形態、個数および場所は特に限定されない。
 好適な実施形態においては、隣接する前記電気化学セルが、貫通孔を有する結合部材によって連結されている。
 この実施形態において、第一のガス流路と連通する第一の貫通孔、第二の貫通孔をセルに形成できる。各貫通孔の形態、個数および場所は特に限定されない。
 本発明では、結合部材と電気化学セルとを連結する方法は、特に限定されない。この連結には、例えば、ガラスやセラミックス製接着剤や、機械的結合法を利用できる。また、連結部材と電気化学セルとを気密にシールする方法は、特に限定されないが、シール材を用いることが好ましい。このようなシール部材の材質は特に限定されないが、電気化学セルの作動温度において耐酸化性と耐還元性を有する必要がある。具体的には、シリカを主成分とするガラス及び結晶化ガラス、金属ろうなどを例示できる。また、Oリング、Cリング、Eリングやメタルジャケットガスケット、マイカガスケットなどのコンプレッションシールも例示できる。
 連結部材が管状体または環状体である場合には、管状部の具体的形態は限定されない。管状部の横断面形状は、例えば、真円形、楕円形、三角形、四角形、六角形などの多角形であってよい。
 以下、適宜図面を参照しつつ、本発明をさらに詳細に説明する。
 図1は、本発明の一実施形態に係る電気化学セル10を示す斜視図であり、図2は、電気化学セル1を分解して示す分解斜視図である。図3は、比較例のセル1を示す斜視図である。
 電気化学セル10の第一の電極16の内部に、第一のガスを流すためのガス流路7が形成されている。第一の電極16は平板状をなしており、第一の電極16を覆うように固体電解質層6が設けられている。セル10の両側の主面10a、10b上には、それぞれ、第二の電極2A、2Bが形成されており、第二の電極2A、2Bが露出する。
 図1の電気化学セル10には、所定箇所に、第一の貫通孔3および第二の貫通孔4が形成されている。図2に示すように、貫通孔3からセル内に流入した第一のガスは、矢印A、B、Cのようにガス流路7内を流れ、第二の貫通孔4から排出される。第一のガスは、流路7を流れる間に電気化学反応に寄与する。
 ここで、図3では、セル1の中央部に、セル内側の第一の電極16に電気的に導通する導電部5が露出している。この場合には、後述する図13に示すように、インターコネクター21の接続部のある側の主面から、矢印E、F、Gのように、電流が、長い導通経路を通過して、隣接するセルの導電部5に到達する。このとき、接続部のある主面側では、セルにおける導通距離が短く、内部抵抗が少なくなるので、電流密度が高くなり易い。一方、接続部のない上側の主面では、導通距離が長く、かつ側面やコーナー部も通過するので、内部抵抗が大きく、電流密度が低くなりやすい。この結果、両主面間での電流密度の偏差から、セルの耐久性が低下する場合がある。
 一方、図1では、セル1の主面の外周縁部に、たとえば4箇所に、導電部8A、8B、8C、8Dが設けられている。そして、インターコネクター11には、後述のように、それぞれ導電部に対応する貫通孔14が形成されており(図12参照)、この貫通孔を通じて、各導電部が、対応する各接続部12A、12Bに対して電気的に接続されている。
 したがって、セルの接続部12A、12Bのある側の主面から、矢印Dのように、電流が、隣接するセルの導電部に到達する。接続部のない上側の主面では、矢印Hのように、電流が、隣接するセルの導電部に到達する。したがって、インターコネクターの両主面における導通距離の偏差が小さく、電流密度の偏差も小さくなり、セルの耐久性が向上する。
 本発明においては、複数の導電部が、セル主面の外縁部に設けられている。ここで、セル主面とは、セルのうち面積の大きい面を指し、通常は相対向する2面である。主面の外縁部とは、主面の外縁エッジから10mm以内の領域を指す。本発明の導電部は、この外縁部に、全体が包含されている必要はなく、導電部の一部が外縁部に包含されていればよい。
 セルごとの導電部の個数は2個以上であるが、3個以上が好ましく、4個以上がさらに好ましい。導電部の個数の上限は特にないが、8個以下が実用的である。
 本発明のインターコネクターは、電気化学セルの一部を収容する収容部と、収容部から突出する接続部とを備えている。収容部は、セルの外側から挿入することができ、セルをその両面側から挟み、セルと収容部との間に第二ガスの流路を形成するものである。また、収容部には、各導電部に対応する位置に貫通孔を形成する。
 インターコネクターの材質は導電性である必要があり、また第二のガスに対してセルの稼働温度で耐久性でなければならない。具体的には、純金属であっても合金であってもよいが、ニッケル、インコネル、ニクロムなどのニッケル基合金、ステンレスなどの鉄基合金、ステライトなどのコバルト基合金が好ましい。
 接続部は、弾性変形可能であることが好ましく、金属板から形成されていることが特に好ましい。金属の材質は、上記したインターコネクター用材料を例示できる。
 図4(a)は、一実施形態に係るインターコクネター11の側面図であり、図4(b)は、図4(a)をIVb側から見た正面図である。図5(a)は、図4(a)のインターコネクターを上側(Va側)から見た平面図であり、図5(b)は、図4(a)のインターコネクターを下側(Vb側)から見た底面図である。
 収容部25は、上側板11a、下側板11bを備えており、上側板11aと下側板11bとの間に空間13が形成されている。下側板11bから接続部12A、12Bが突出している。本例では、接続部12A、12Bは、複数の細長い平板を組み合わせたものである。このような接続部12A、12Bは、金属平板の加工によって形成されている。
 また、特に図5(a)に示すように、上側板11aには、導電部に対応する位置に貫通孔14が形成されている。1枚のインターコネクターに貫通孔14を2つ形成し、一つのセルを2枚のインターコネクター内に収容する。これによって、各セルの4つの導電部を、それぞれ、各貫通子14に位置合わせすることができる。図5(a)に示すように、貫通孔14は接続部12A、12Bよりも大きいので、貫通孔14を通して接続部12A、12Bを上から見ることができる。
 例えば上述したようなインターコネクター11を各セル10に被せ、固定する。図6に示すように、各セル10の各電極2Aを被覆するように、それぞれインターコネクター11の収容部を、矢印Jのように横からはめ込み、固定する。また、各セル10の各電極2Bを被覆するように、それぞれインターコネクター11の収容部を矢印Jのように横からはめ込み、固定する。この状態では図7に示す状態となる。
 また、図8に示すように、複数のセル10を積層する(矢印B)。そして、隣接するセル10間に連結部材18を介在させることで、隣接するセルの各貫通孔3、4をそれぞれ連結する。各連結部材18には貫通孔18aが形成されている。各貫通孔18aと各貫通孔3が連通することによって、ガス供給路が形成される。また、各貫通孔18aと各貫通孔4とが連通することによって、ガス排出路が形成される。
 連結部材の材質は、セルを構成するセラミックスよりも機械的強度が高ければ特に限定されないが、セルとの熱膨張係数差が2×10−6(/K)の材料、例えばジルコニア、マグネシア、スピネルセラミックス、さらにこれらを複合した材料などを例示できる。また、電気化学セルの作動温度において耐酸化性および耐還元性を有していれば金属であってもよく、純金属であっても合金であってもよいが、ニッケル、インコネル、ニクロムなどのニッケル基合金、ステンレスなどの鉄基合金、ステライトなどのコバルト基合金が好ましい。
 この際、各インターコネクターと、対向する電極2A(2B)との間には、第二のガスの流路が形成される。このガス流路内には、所定の導電性接続部材を収容し、導電性接続部材を電極および収容部に接触させることによって、電極と収容部とを電気的に接続する。導電性接続部材の材質や形態は特に限定されず、公知のものを使用できるが,金属フェルト、メッシュを例示できる。
 スタックを形成すると、図9に示すように、最上部のセル11の導電部と、最下部のセルのインターコネクターとを結線する。これによって、複数のセルが直列接続される。
 隣接するセルの接続状態を図10に模式的に示す。まず、インターコネクター11の収容部をセル10に横から被せてはめ込む。このとき、接続部12A、12Bと、隣接するセルの導電部8A、8Bとの間に、導電ペースト20を介在させる。30は、第二のガス流路である。
In the present invention, the electrochemical cell is preferably plate-shaped. However, it is not limited to a flat plate shape, and may be a curved plate or a circular arc plate. The electrochemical cell includes a first electrode that contacts the first gas, a solid electrolyte membrane, a second electrode that contacts the second gas, and a conductive portion connected to the first electrode.
Here, the first electrode and the second electrode are selected from an anode or a cathode. When one of these is an anode, the other is a cathode. Similarly, the first gas and the second gas are selected from oxidizing gas and reducing gas.
The oxidizing gas is not particularly limited as long as it is a gas that can supply oxygen ions to the solid electrolyte membrane, and examples thereof include air, diluted air, oxygen, and diluted oxygen. Examples of the reducing gas include H 2 , CO, CH 4 and a mixed gas thereof.
The electrochemical cell targeted by the present invention means a general cell for causing an electrochemical reaction. For example, the electrochemical cell can be used as an oxygen pump or a high temperature steam electrolysis cell. The high-temperature steam electrolysis cell can be used for a hydrogen production apparatus and a steam removal apparatus. Moreover, an electrochemical cell can be used as a decomposition cell for NOx and SOx. This decomposition cell can be used as a purification device for exhaust gas from automobiles and power generation devices. In this case, oxygen in the exhaust gas is removed through the solid electrolyte membrane, and NOx is electrolyzed and decomposed into N 2 and O 2 −, and oxygen generated by this decomposition can also be removed. Moreover, with this process, water vapor in the exhaust gas is electrolysis produced hydrogen and oxygen, the hydrogen reduces NOx into N 2. In a preferred embodiment, the electrochemical cell is a solid oxide fuel cell.
The material of the solid electrolyte is not particularly limited, and any oxygen ion conductor can be used. For example, it may be yttria stabilized zirconia or yttria partially stabilized zirconia, and in the case of a NOx decomposition cell, cerium oxide is also preferable.
The material of the cathode is preferably a perovskite complex oxide containing lanthanum, more preferably lanthanum manganite or lanthanum cobaltite, and even more preferably lanthanum manganite. Lanthanum cobaltite and lanthanum manganite may be doped with strontium, calcium, chromium, cobalt (in the case of lanthanum manganite), iron, nickel, aluminum or the like.
As a material for the anode, nickel-magnesia spinel, nickel-nickel alumina spinel, nickel-zirconia, platinum-cerium oxide, ruthenium-zirconia and the like are preferable.
The form of each electrochemical cell is not particularly limited. The electrochemical cell may consist of three layers: an anode, a cathode and a solid electrolyte layer. Alternatively, the electrochemical cell may have, for example, a porous body layer in addition to the anode, the cathode, and the solid electrolyte layer.
In the present invention, a gas flow path for flowing the first gas is provided in the electrochemical cell. The form, number and location of the gas flow path are not particularly limited.
In a preferred embodiment, the adjacent electrochemical cells are connected by a connecting member having a through hole.
In this embodiment, the first through hole and the second through hole communicating with the first gas flow path can be formed in the cell. The form, number and location of each through hole are not particularly limited.
In the present invention, the method for connecting the binding member and the electrochemical cell is not particularly limited. For this connection, for example, an adhesive made of glass or ceramics, or a mechanical bonding method can be used. Further, the method for hermetically sealing the connecting member and the electrochemical cell is not particularly limited, but it is preferable to use a sealing material. The material of such a seal member is not particularly limited, but it needs to have oxidation resistance and reduction resistance at the operating temperature of the electrochemical cell. Specifically, glass mainly composed of silica, crystallized glass, metal brazing and the like can be exemplified. Also, compression seals such as O-rings, C-rings, E-rings, metal jacket gaskets, and mica gaskets can be exemplified.
When the connecting member is a tubular body or an annular body, the specific form of the tubular portion is not limited. The cross-sectional shape of the tubular portion may be, for example, a polygon such as a perfect circle, an ellipse, a triangle, a quadrangle, or a hexagon.
Hereinafter, the present invention will be described in more detail with reference to the drawings as appropriate.
FIG. 1 is a perspective view showing an electrochemical cell 10 according to an embodiment of the present invention, and FIG. 2 is an exploded perspective view showing the electrochemical cell 1 in an exploded manner. FIG. 3 is a perspective view showing a cell 1 of a comparative example.
A gas flow path 7 for flowing the first gas is formed inside the first electrode 16 of the electrochemical cell 10. The first electrode 16 has a flat plate shape, and the solid electrolyte layer 6 is provided so as to cover the first electrode 16. On the main surfaces 10a and 10b on both sides of the cell 10, second electrodes 2A and 2B are formed, respectively, and the second electrodes 2A and 2B are exposed.
In the electrochemical cell 10 of FIG. 1, a first through hole 3 and a second through hole 4 are formed at predetermined positions. As shown in FIG. 2, the first gas that has flowed into the cell from the through hole 3 flows through the gas flow path 7 as indicated by arrows A, B, and C, and is discharged from the second through hole 4. The first gas contributes to the electrochemical reaction while flowing through the flow path 7.
Here, in FIG. 3, the conductive portion 5 that is electrically connected to the first electrode 16 inside the cell is exposed at the center of the cell 1. In this case, as shown in FIG. 13, which will be described later, from the main surface on the side where the connecting portion of the interconnector 21 is present, current passes through a long conduction path as indicated by arrows E, F, and G, and is adjacent to it. Reaches the conductive portion 5 of the cell to be operated. At this time, on the main surface side where there is a connection portion, the conduction distance in the cell is short and the internal resistance is small, so the current density tends to be high. On the other hand, the upper main surface without the connection portion has a long conduction distance and also passes through the side surface and the corner portion, so that the internal resistance is large and the current density tends to be low. As a result, the durability of the cell may decrease due to the deviation of the current density between the two main surfaces.
On the other hand, in FIG. 1, conductive portions 8A, 8B, 8C, and 8D are provided, for example, at four locations on the outer peripheral edge portion of the main surface of the cell 1. As will be described later, through-holes 14 corresponding to the conductive portions are formed in the interconnector 11 (see FIG. 12), and through the through-holes, the conductive portions are connected to the corresponding connecting portions 12A, It is electrically connected to 12B.
Therefore, the current reaches the conductive portion of the adjacent cell as indicated by the arrow D from the main surface on the side where the cell connection portions 12A and 12B are present. On the upper main surface where there is no connection portion, as indicated by an arrow H, the current reaches the conductive portion of the adjacent cell. Therefore, the deviation of the conduction distance on both main surfaces of the interconnector is small, the deviation of the current density is also small, and the durability of the cell is improved.
In the present invention, a plurality of conductive portions are provided on the outer edge portion of the cell main surface. Here, the cell main surface refers to a surface having a large area in the cell, and is usually two opposing surfaces. The outer edge portion of the main surface refers to a region within 10 mm from the outer edge of the main surface. The conductive portion of the present invention does not need to be entirely included in the outer edge portion, and only part of the conductive portion may be included in the outer edge portion.
The number of conductive parts per cell is 2 or more, preferably 3 or more, and more preferably 4 or more. There is no particular upper limit on the number of conductive parts, but eight or less are practical.
The interconnector of the present invention includes a housing portion that houses a part of the electrochemical cell and a connection portion that protrudes from the housing portion. The accommodating part can be inserted from the outside of the cell, sandwiches the cell from both sides thereof, and forms a second gas flow path between the cell and the accommodating part. Moreover, a through-hole is formed in the accommodating part at a position corresponding to each conductive part.
The interconnector material must be conductive and must be durable to the second gas at the cell operating temperature. Specifically, it may be a pure metal or an alloy, but nickel-based alloys such as nickel, inconel and nichrome, iron-based alloys such as stainless steel, and cobalt-based alloys such as stellite are preferable.
The connecting portion is preferably elastically deformable, and is particularly preferably formed from a metal plate. Examples of the metal material include the above-described interconnector materials.
Fig.4 (a) is a side view of the interconnector 11 which concerns on one Embodiment, FIG.4 (b) is the front view which looked at Fig.4 (a) from the IVb side. 5A is a plan view of the interconnector of FIG. 4A viewed from the upper side (Va side), and FIG. 5B is the lower side of the interconnector of FIG. 4A (Vb side). It is the bottom view seen from.
The accommodating portion 25 includes an upper plate 11a and a lower plate 11b, and a space 13 is formed between the upper plate 11a and the lower plate 11b. Connection portions 12A and 12B protrude from the lower plate 11b. In this example, the connection parts 12A and 12B are a combination of a plurality of elongated flat plates. Such connection parts 12A and 12B are formed by processing a metal flat plate.
In particular, as shown in FIG. 5A, a through hole 14 is formed in the upper plate 11a at a position corresponding to the conductive portion. Two through holes 14 are formed in one interconnector, and one cell is accommodated in the two interconnectors. Thus, the four conductive portions of each cell can be aligned with each penetrator 14 respectively. As shown in FIG. 5A, since the through hole 14 is larger than the connection parts 12A and 12B, the connection parts 12A and 12B can be seen through the through hole 14 from above.
For example, the interconnector 11 as described above is put on each cell 10 and fixed. As shown in FIG. 6, the accommodating portion of the interconnector 11 is fitted from the side as indicated by an arrow J and fixed so as to cover each electrode 2 </ b> A of each cell 10. In addition, the accommodating portion of the interconnector 11 is fitted from the side as indicated by an arrow J so as to cover each electrode 2B of each cell 10 and fixed. In this state, the state shown in FIG. 7 is obtained.
Also, as shown in FIG. 8, a plurality of cells 10 are stacked (arrow B). And each through- hole 3 and 4 of an adjacent cell is connected by interposing the connection member 18 between the adjacent cells 10, respectively. Each connecting member 18 is formed with a through hole 18a. Each through hole 18a and each through hole 3 communicate with each other to form a gas supply path. Moreover, a gas exhaust path is formed when each through-hole 18a and each through-hole 4 are connected.
The material of the connecting member is not particularly limited as long as it has higher mechanical strength than the ceramics constituting the cell. However, the material having a difference in thermal expansion coefficient from the cell of 2 × 10 −6 (/ K), for example, zirconia, magnesia, spinel Examples thereof include ceramics and a composite material of these. Further, it may be a metal as long as it has oxidation resistance and reduction resistance at the operating temperature of the electrochemical cell, and may be a pure metal or an alloy, such as nickel, inconel, nichrome, etc. Nickel-based alloys, iron-based alloys such as stainless steel, and cobalt-based alloys such as stellite are preferred.
At this time, a second gas flow path is formed between each interconnector and the opposing electrode 2A (2B). A predetermined conductive connecting member is accommodated in the gas flow path, and the electrode and the accommodating portion are electrically connected by bringing the conductive connecting member into contact with the electrode and the accommodating portion. The material and form of the conductive connecting member are not particularly limited, and known materials can be used, but metal felts and meshes can be exemplified.
When the stack is formed, as shown in FIG. 9, the conductive portion of the uppermost cell 11 and the interconnector of the lowermost cell are connected. Thereby, a plurality of cells are connected in series.
The connection state of adjacent cells is schematically shown in FIG. First, the accommodating portion of the interconnector 11 is fitted over the cell 10 from the side. At this time, the conductive paste 20 is interposed between the connection portions 12A and 12B and the conductive portions 8A and 8B of the adjacent cells. 30 is a second gas flow path.
[本発明例]
 図1~図10を参照しつつ説明した前記方法に従い、本発明例のスタックを作製した。
 (発電用セルの作製)
 燃料極を基板とする固体酸化物形燃料電池(セル)を作製した(図1、2参照)。
 (燃料極基板の作製)
 酸化ニッケル粉末とイットリア安定化ジルコニア(YSZ)を混合し、燃料極基板用粉末を得た。この粉末を金型プレス成形し、燃料極基板成形体を2枚製作した。
 (流路形成部材の設置と燃料極基板との一体化+電解質膜形成)
 流路形成部材を燃料極基板成形体の間に挟み、プレスによって一体化した。
 電解質にはYSZ粉末にバインダーを添加したスラリーを用い、燃料極基板成形体上に塗布、乾燥後、電気炉で空気中1400℃2時間焼成して、固体電解質/燃料極支持基板を得た。
 (空気極および導電板の形成)
 LaMnO粉末にバインダーと溶剤を加えペーストを作製した。このペーストを前記基板の2主面上にスクリーン印刷、乾燥後、電気炉で空気中1200℃1時間焼成して、空気極を形成した。また、電解質の一部を剥離し、燃料極基板が表面に露出させ、この露出部に別途製作しておいたランタンクロマイト厚み0.3mmの導電板を導電性ペーストにて貼り付け、導電板の周囲をシール材で固定した。
 こうして得られた焼結体に燃料供給孔、排出孔を加工によって形成し、発電用セルを得た。作製したセルの形状は、長さ110mm幅100mm厚さ3mmであった。
 (金属製インターコネクターの作製)
 材質SUS430の板を、長さ60mm幅105mm厚さ0.5mmの図4、図5の形状に加工した。
 (スタックの作製)
 セルと金属インターコネクターから成る20段スタックを作製した。
 (金属インターコネクターの取り付け)
 前記した金属インターコネクター内にエンボス加工した集電メッシュを入れ、また金属インターコネクターの突起部に導電性ペーストを塗布し、各セルの左右からはめ込んだ(図6、図7参照)。
 (セルとセラミック連結部品の接合)
 上で作製したセルの燃料供給孔、排出孔に外径φ24mm、内径φ9mm、厚み2mmのセラミック連結部品18を1000℃で軟化するガラスペーストを用いて取り付け、20段積層し、電気炉で空気中1000℃1時間加熱して接合した。
[比較例]
 実施例と同様にしてスタックを製造した。ただし、セルとしては、図3に示すように、一カ所の導電部5を設けた。また、材質SUS430の板を、図11に示す形態に成形し、インターコネクター21を作製した。この寸法は、長さ60mm幅105mm厚さ0.5mmである。20段のスタックを作製した。
 (発電性能評価)
 性能評価をするため電気炉に前記スタックをセットし,図10、図11のように電圧線・電流線を接続し、燃料極側にN,空気極側にAirを流しながら800℃まで昇温し、800℃に達した時点で燃料極側にHを流して還元処理を行った。 3時間の還元処理後、スタックの電流−電圧特性評価を実施した。
 800℃での発電特性を表1に示す。発電出力はスタックの単位体積当たりの出力と1セル当たりの出力を示している。
Figure JPOXMLDOC01-appb-T000001
 発電特性は、本発明では比較例よりオーミック抵抗の低減が見られ、単位体積当たりの出力は310W/L以上と大幅に向上した。これは比較例では次のセルとの電気的接続が中心部にあるため、反対側で発電した電流が金属インターコネクター上をセルの外周部を通ってこないといけないのに対して、本発明ではセルの外周部に電気的接続部がセルの4隅にあるため、反対面で発生した電流が金属インターコネクター上を流れる距離が減少したため、インターコネクター上の材料抵抗の影響が低減されたためと考えられる。
 また、本発明では比較例より発電性能劣化率の低減が見られ、100時間での発電性能劣化が0.005%以下と比較例の半分以下になった。これは比較例では比較例では金属インターコネクター上を電流が流れる距離が大きく異なるためオーミック抵抗が裏表で大きく異なるのに対して、本発明では金属インターコネクター上を電流が流れる距離がほぼ同じである為、オーミック抵抗に大きな差はない。そのため、比較例では裏表で電流密度が大きく異なり発電性能劣化率の大きい箇所が存在するのに対して、比較例では電流密度に大きな差がないため、発電性能劣化率の大きい箇所が存在しないため、発電性能の劣化が減少したと考えられる。
 このように、本発明は次のセルとの電気的接続部をセルの外周部に持ってくることにより、金属インターコネクターの材料抵抗の影響を少なくし、オーミック抵抗の低減と発電性能劣化の低減を行うことができる形状である。
 本発明の特定の実施形態を説明してきたけれども、本発明はこれら特定の実施形態に限定されるものではなく、請求の範囲の範囲から離れることなく、種々の変更や改変を行いながら実施できる。
[Example of the present invention]
According to the method described with reference to FIGS. 1 to 10, a stack according to an example of the present invention was manufactured.
(Production of power generation cell)
A solid oxide fuel cell (cell) having a fuel electrode as a substrate was produced (see FIGS. 1 and 2).
(Fabrication of fuel electrode substrate)
Nickel oxide powder and yttria-stabilized zirconia (YSZ) were mixed to obtain a fuel electrode substrate powder. This powder was press-molded to produce two fuel electrode substrate compacts.
(Installation of flow path forming member and integration with fuel electrode substrate + electrolyte membrane formation)
The flow path forming member was sandwiched between the fuel electrode substrate molded bodies and integrated by pressing.
A slurry obtained by adding a binder to YSZ powder was used as the electrolyte. After coating and drying on the fuel electrode substrate compact, it was fired in air at 1400 ° C. for 2 hours to obtain a solid electrolyte / fuel electrode support substrate.
(Formation of air electrode and conductive plate)
A paste was prepared by adding a binder and a solvent to LaMnO 3 powder. This paste was screen printed on the two main surfaces of the substrate, dried, and then fired in an electric furnace at 1200 ° C. for 1 hour to form an air electrode. Also, a part of the electrolyte is peeled off, the fuel electrode substrate is exposed on the surface, and a lanthanum chromite 0.3 mm thick conductive plate, which is separately manufactured, is attached to the exposed portion with a conductive paste. The periphery was fixed with a sealing material.
Fuel supply holes and discharge holes were formed in the sintered body thus obtained by machining to obtain a power generation cell. The shape of the produced cell was 110 mm long, 100 mm wide, and 3 mm thick.
(Production of metal interconnector)
A plate made of material SUS430 was processed into the shapes of FIGS. 4 and 5 having a length of 60 mm, a width of 105 mm, and a thickness of 0.5 mm.
(Stack production)
A 20-stage stack consisting of cells and metal interconnectors was made.
(Installation of metal interconnector)
An embossed current collecting mesh was placed in the metal interconnector described above, and a conductive paste was applied to the protrusions of the metal interconnector and fitted from the left and right of each cell (see FIGS. 6 and 7).
(Bonding of cell and ceramic connecting parts)
A ceramic connecting part 18 having an outer diameter of φ24 mm, an inner diameter of φ9 mm, and a thickness of 2 mm is attached to the fuel supply hole and discharge hole of the cell produced above using a glass paste that softens at 1000 ° C., stacked in 20 layers, and in the air in an electric furnace It joined by heating at 1000 ° C. for 1 hour.
[Comparative example]
A stack was manufactured in the same manner as in the example. However, as the cell, as shown in FIG. 3, one conductive portion 5 was provided. Further, a plate made of material SUS430 was formed into the form shown in FIG. This dimension is 60 mm long, 105 mm wide, and 0.5 mm thick. A 20-stage stack was produced.
(Power generation performance evaluation)
To evaluate the performance, the stack is set in an electric furnace, and the voltage and current lines are connected as shown in FIGS. 10 and 11, and the temperature is raised to 800 ° C. while flowing N 2 on the fuel electrode side and Air on the air electrode side. When the temperature reached 800 ° C., reduction treatment was performed by flowing H 2 to the fuel electrode side. After the reduction treatment for 3 hours, the current-voltage characteristics of the stack were evaluated.
Table 1 shows the power generation characteristics at 800 ° C. The power generation output indicates the output per unit volume of the stack and the output per cell.
Figure JPOXMLDOC01-appb-T000001
In the present invention, in the present invention, a reduction in ohmic resistance was observed in the present invention as compared with the comparative example, and the output per unit volume was greatly improved to 310 W / L or more. This is because in the comparative example, the electrical connection with the next cell is at the center, so that the current generated on the opposite side must pass through the outer periphery of the cell on the metal interconnector. This is because the influence of the material resistance on the interconnector is reduced because the electrical connections at the outer periphery of the cell are at the four corners of the cell, and the distance that the current generated on the opposite surface flows over the metal interconnector is reduced. It is done.
Further, in the present invention, the power generation performance deterioration rate was reduced as compared with the comparative example, and the power generation performance deterioration in 100 hours was 0.005% or less, which was less than half of the comparative example. In the comparative example, in the comparative example, the distance in which the current flows on the metal interconnector is greatly different, so that the ohmic resistance is greatly different on the front and back, whereas in the present invention, the distance in which the current flows on the metal interconnector is substantially the same. Therefore, there is no big difference in ohmic resistance. For this reason, in the comparative example, there are places where the current density is greatly different on the front and back sides and there is a large power generation performance deterioration rate, whereas in the comparative example there is no large difference in current density, so there is no place where the power generation performance deterioration rate is large It is considered that the deterioration of power generation performance has decreased.
Thus, the present invention brings the electrical connection with the next cell to the outer periphery of the cell, thereby reducing the influence of the material resistance of the metal interconnector, reducing ohmic resistance, and reducing power generation performance deterioration. It is a shape that can be performed.
Although specific embodiments of the present invention have been described, the present invention is not limited to these specific embodiments and can be implemented with various changes and modifications without departing from the scope of the claims.

Claims (5)

  1.  複数のセラミックス製電気化学セル、およびインターコネクターを備えている電気化学装置であって、
     前記電気化学セルが、第一のガスを流すガス流路を内蔵しており、前記第一のガスと接触する第一の電極、固体電解質層、前記電気化学セルの主面に露出して第二のガスと接触する第二の電極、および前記電気化学セルの前記主面に露出して前記第一の電極と電気的に導通する複数の導電部を備えており、前記導電部が、前記主面の外縁部に設けられており、
     前記インターコネクターが、前記電気化学セルの一部を収容する収容部と、この収容部から突出する複数の接続部とを備えており、
     前記収容部と前記電気化学セルとの間に前記第二のガスの流路が形成されており、前記第二のガスが前記流路を通過する間に前記第二の電極と接触し、前記各接続部が、隣接する前記電気化学セルの前記各導電部に対して電気的に接続されていることを特徴とする、電気化学装置。
    An electrochemical device comprising a plurality of ceramic electrochemical cells and an interconnector,
    The electrochemical cell incorporates a gas flow path for flowing a first gas, and is exposed to the first electrode in contact with the first gas, the solid electrolyte layer, and the main surface of the electrochemical cell. A second electrode that is in contact with a second gas, and a plurality of conductive portions that are exposed to the main surface of the electrochemical cell and are electrically connected to the first electrode, wherein the conductive portion is It is provided at the outer edge of the main surface,
    The interconnector includes a housing portion that houses a part of the electrochemical cell, and a plurality of connection portions that protrude from the housing portion,
    A flow path of the second gas is formed between the accommodating portion and the electrochemical cell, and the second gas is in contact with the second electrode while passing through the flow path; The electrochemical device characterized in that each connection portion is electrically connected to each conductive portion of the adjacent electrochemical cell.
  2.  前記収容部の前記各導電部に対応する位置にそれぞれ貫通孔が設けられており、前記導電部と前記接続部とが前記貫通孔を通して電気的に接続されていることを特徴とする、請求項1記載の電気化学装置。 The through hole is provided at a position corresponding to each conductive portion of the housing portion, and the conductive portion and the connection portion are electrically connected through the through hole. 1. The electrochemical device according to 1.
  3.  前記接続部が、隣接する前記電気化学セルへと向かって突出する突起であることを特徴とする、請求項1または2記載の電気化学装置。 The electrochemical device according to claim 1 or 2, wherein the connecting portion is a protrusion protruding toward the adjacent electrochemical cell.
  4.  前記接続部と前記導電部とが導電性ペーストによって接続されていることを特徴とする、請求項1~3のいずれか一つの請求項に記載の電気化学装置。 The electrochemical device according to any one of claims 1 to 3, wherein the connection portion and the conductive portion are connected by a conductive paste.
  5.  隣接する前記電気化学セルが、貫通孔を有する結合部材によって連結されていることを特徴とする、請求項1~4のいずれか一つの請求項に記載の電気化学装置。 The electrochemical device according to any one of claims 1 to 4, wherein the adjacent electrochemical cells are connected by a connecting member having a through hole.
PCT/JP2009/070634 2008-12-08 2009-12-03 Electrochemical device WO2010067833A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010542123A JP5417344B2 (en) 2008-12-08 2009-12-03 Electrochemical equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008312104 2008-12-08
JP2008-312104 2008-12-08

Publications (1)

Publication Number Publication Date
WO2010067833A1 true WO2010067833A1 (en) 2010-06-17

Family

ID=42242820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070634 WO2010067833A1 (en) 2008-12-08 2009-12-03 Electrochemical device

Country Status (2)

Country Link
JP (1) JP5417344B2 (en)
WO (1) WO2010067833A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066546A (en) * 2005-08-29 2007-03-15 Hitachi Ltd Cylindrical fuel cell
WO2007138984A1 (en) * 2006-05-29 2007-12-06 Ngk Spark Plug Co., Ltd. Solid electrolyte fuel cell stack
JP2008186665A (en) * 2007-01-29 2008-08-14 Kyocera Corp Unit cell of fuel cell, cell stack and fuel cell
JP2009146805A (en) * 2007-12-17 2009-07-02 Ngk Insulators Ltd Electrochemical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066546A (en) * 2005-08-29 2007-03-15 Hitachi Ltd Cylindrical fuel cell
WO2007138984A1 (en) * 2006-05-29 2007-12-06 Ngk Spark Plug Co., Ltd. Solid electrolyte fuel cell stack
JP2008186665A (en) * 2007-01-29 2008-08-14 Kyocera Corp Unit cell of fuel cell, cell stack and fuel cell
JP2009146805A (en) * 2007-12-17 2009-07-02 Ngk Insulators Ltd Electrochemical device

Also Published As

Publication number Publication date
JP5417344B2 (en) 2014-02-12
JPWO2010067833A1 (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5335655B2 (en) Stack structure of solid oxide fuel cell
TW201900898A (en) Electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and manufacturing method of electrochemical element
EP1889650B1 (en) Electrochemical devices
JP5116184B1 (en) Fuel cell structure
US7632593B2 (en) Bipolar plate supported solid oxide fuel cell with a sealed anode compartment
JP5631625B2 (en) Solid oxide fuel cell
US8252366B2 (en) Method for making toughened electrode-supported ceramic fuel cells
JP2008066296A (en) Electrochemical device
JP5026017B2 (en) Flat type solid oxide fuel cell separator
JP5294649B2 (en) Cell stack and fuel cell module
JP5177847B2 (en) Electrochemical equipment
JP2004172062A (en) Fuel cell system and multilayer cell for the same
JP2006221884A (en) Single chamber type solid oxide fuel cell
JP6748518B2 (en) Method for manufacturing electrochemical reaction cell
CN108701838B (en) Fuel cell power generation unit and fuel cell stack
JP5417344B2 (en) Electrochemical equipment
JP2010153212A (en) Electrochemical device
JP2008010255A (en) Electrochemical device
JP5502365B2 (en) Half cell for solid oxide fuel cell, solid oxide fuel cell, and method for producing half cell for solid oxide fuel cell
JP5114999B2 (en) Solid oxide fuel cell and stack structure thereof
JP5176362B2 (en) Solid oxide fuel cell structure and solid oxide fuel cell using the same
JP2013257973A (en) Solid oxide fuel cell stack
JP5062786B1 (en) Fuel cell structure
RU2502158C2 (en) Manufacturing method of electrochemical energy converter, and electrochemical energy converter
JP2007273424A (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542123

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831937

Country of ref document: EP

Kind code of ref document: A1