WO2010067727A1 - Radio apparatus - Google Patents

Radio apparatus Download PDF

Info

Publication number
WO2010067727A1
WO2010067727A1 PCT/JP2009/070142 JP2009070142W WO2010067727A1 WO 2010067727 A1 WO2010067727 A1 WO 2010067727A1 JP 2009070142 W JP2009070142 W JP 2009070142W WO 2010067727 A1 WO2010067727 A1 WO 2010067727A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarriers
frequency band
band
modulation
interference
Prior art date
Application number
PCT/JP2009/070142
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 須山
利哉 岩▲崎▼
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2010067727A1 publication Critical patent/WO2010067727A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to a wireless device that transmits or transmits / receives a signal modulated by a multicarrier modulation method.
  • the ITS [Intelligent Transport Systems] inter-vehicle communication system scheduled to start in 2012, exchanges various information between the host vehicle and other vehicles for the purpose of danger avoidance and driving support. .
  • ITS inter-vehicle communication system to exchange position information between vehicles and alerting the driver of each vehicle to other vehicles, vehicles that meet at intersections with poor visibility It can contribute to the prevention of collision accidents.
  • the 720 MHz band is scheduled to be used as a wireless communication band between vehicles.
  • the use frequency band of the terrestrial digital television broadcasting system is adjacent to the low frequency side end of the use frequency band of the ITS inter-vehicle communication system with the guard band of 5 MHz interposed therebetween.
  • the use frequency band of the telecommunication system is adjacent to the high frequency side end of the use frequency of the inter-vehicle communication system with the guard band of 5 MHz interposed therebetween.
  • Patent Documents 1 to 3 can be cited as examples of the related art related to the above.
  • the frequency bands of other systems are adjacent to both ends of the frequency band of the ITS inter-vehicle communication system.
  • a frequency arrangement for example, when a vehicle equipped with an ITS inter-vehicle communication system is present in a hard-to-view area of a terrestrial digital television broadcasting system (distant from the transmission radio tower, mountainous area, etc.), Interference (interference) from the inter-vehicle communication system to the terrestrial digital television broadcasting system may become a problem. Further, for example, when a vehicle equipped with an ITS inter-vehicle communication system is present in the vicinity of a transmission tower of the terrestrial digital television broadcasting system, interference (covered) from the terrestrial digital television broadcasting system to the ITS inter-vehicle communication system is possible.
  • Interference may be a problem. Therefore, in the ITS inter-vehicle communication system, it is possible to reduce interference (interference) from the ITS inter-vehicle communication system to other systems adjacent to the use frequency band, and from the other systems adjacent to the use frequency band to the ITS inter-vehicle communication. Increasing resistance to interference (interference) with a communication system is an important issue.
  • Patent Document 1 in order to reduce adjacent interference (giving interference), there is a digital transmission device of a multicarrier modulation system in which a small level subcarrier exists at at least one end of a transmission channel band. Proposed.
  • the multicarrier modulation type digital transmission apparatus proposed in Patent Document 1 can reduce adjacent interference (interference), but it is caused by a decrease in the level of the subcarrier at at least one end of the transmission channel band. There was a problem that the communication performance of the own system deteriorated.
  • Patent Document 2 in order to optimize both transmission throughput and transmission power, based on the propagation path estimation result, a combination of subcarriers and modulation schemes or coding rates is used per unit bit.
  • a subcarrier adaptive control method has been proposed in which transmission power is allocated efficiently while maximizing the total number of transmittable bits by selecting in order from the combination with the smallest required transmission power.
  • the subcarrier adaptive control method proposed in Patent Document 2 can improve the transmission throughput of the entire system and reduce interference with other cells in a wireless service composed of a plurality of cells using the same frequency, for example.
  • it is a method of reducing power and reducing interference over the entire frequency being used, so the interference power to other systems adjacent to the frequency band used can be efficiently reduced. It cannot be reduced.
  • Patent Document 3 the interference power is measured within the transmission channel band of the own system, and the modulation scheme and the like are set so that the required SNR [Signal Noise ratio] for each subcarrier is optimized according to the measurement result.
  • the modulation scheme and the like are set so that the required SNR [Signal Noise ratio] for each subcarrier is optimized according to the measurement result.
  • a wireless system other than the ITS inter-vehicle communication system in which the use frequency band of another system is adjacent to both ends of the use frequency band, or the use frequency band Even in a wireless system in which the use frequency band of another system is adjacent to only one end, as in the case of the ITS inter-vehicle communication system, interference (giving interference) from the wireless system to another system in which the use frequency band is adjacent. It is an important issue in the radio system to reduce the noise and to improve the resistance against interference (interference) from the other system with the adjacent frequency band to the radio system.
  • the present invention takes appropriate interference countermeasures according to the situation, and effectively prevents interference (additional interference) to other systems with adjacent frequency bands while ensuring the communication quality of the own system.
  • An object of the present invention is to provide a wireless device that can be reduced.
  • a radio apparatus is a radio apparatus that transmits or transmits / receives a signal subjected to multicarrier modulation using a first frequency band, and is a second frequency adjacent to the first frequency band.
  • Level determination means for extracting a signal component belonging to a band and performing level determination thereof; based on a determination result of the level determination means, when the signal level of the signal component belonging to the second frequency band is greater than a predetermined value, the first When the transmission power of all subcarriers included in the frequency band is set to a default value and the signal level is lower than the predetermined value, the subcarrier included in the first frequency band is closer to the second frequency band.
  • a modulation unit that sets the transmission power of the subcarrier to a value smaller than the default value (first configuration).
  • the modulation unit is configured to variably control the number of subcarriers whose transmission power is reduced according to the magnitude of the signal level (second configuration). Good.
  • the modulation unit increases the number of subcarriers whose transmission power is reduced as the signal level is smaller (third configuration). ).
  • the modulation unit may have a configuration (fourth configuration) in which transmission power is reduced for subcarriers closer to the second frequency band.
  • the modulation unit applies a second modulation scheme that is more resistant to noise than the default first modulation scheme for subcarriers whose transmission power is reduced.
  • a configuration to be applied may be used.
  • the modulation unit selects a modulation scheme having a smaller number of multi-values as a second modulation scheme applied to a subcarrier closer to the second frequency band.
  • a configuration (sixth configuration) is preferable.
  • the second frequency band is sandwiched between the first frequency band used by the own system and the third frequency band used by the other system.
  • a configuration (seventh configuration) that is part or all of the guard band may be employed.
  • the guard band includes a low-frequency guard band adjacent to the low frequency side of the first frequency band and a high frequency frequency adjacent to the high frequency side of the first frequency band.
  • a configuration that is at least one of the side guard bands may be used.
  • the present invention since it is possible to implement an optimal interference countermeasure according to the situation, it is possible to reduce the interference with other systems adjacent to the used frequency band without unnecessarily reducing the total throughput in the own system. It can be effectively reduced.
  • FIG. 1 is a block diagram showing a first embodiment of an in-vehicle wireless communication device 100.
  • FIG. These are the figures which show the outline
  • FIG. These are the figures which show the outline
  • FIG. 5 is a diagram illustrating an example of data assignment in a signal field. These are figures which show the example of a combination pattern in the modulation system of this invention. These are figures which show the example of a combination pattern in the modulation system of this invention. These are block diagrams which show 2nd Embodiment of the vehicle-mounted radio
  • FIG. 5 is a diagram illustrating an example of data assignment in a signal field. These are figures which show the example of a combination pattern in the modulation system of this invention. These are figures which show the example of a combination pattern in the modulation system of this invention. These are block diagrams which show 2nd Embodiment of the vehicle-mounted radio
  • FIG. These are block diagrams which show 3rd Embodiment of the vehicle-mounted radio
  • FIG. These are figures which show an example of the pass band of the low-pass filter 43. These are the figures which show the outline
  • the IEEE 802.11p standard is being studied as a standard for inter-vehicle communication.
  • Japan although the frequency used in the United States is different (in Japan, 720 MHz band, 5.9 GHz band in the United States), there is a high possibility that a vehicle-to-vehicle communication standard based on the IEEE 802.11p standard will be adopted. Therefore, in describing an in-vehicle wireless communication device used in an ITS inter-vehicle communication system, first, a packet configuration conforming to IEEE 802.11p will be described.
  • the IEEE802.11p compliant packet structure seen from the physical layer is after the physical header composed of the short training field STF, the long training field LTF, and the signal field SIG. , Followinged by physical data DATA.
  • the short training field STF is a field in which information for performing AGC [Automatic Gain Control] control, packet detection, symbol synchronization, and coarse frequency adjustment is described.
  • the long training field LTF is a field in which information for performing fine frequency adjustment and channel estimation is described.
  • the signal field SIG is a field in which information on the transmission rate (modulation method) and packet length of physical data DATA is BPSK [Binary Phase Shift Keying] modulated.
  • IEEE802.11p an OFDM (Orthogonal Frequency Division Multiplexing) modulation scheme, which is one of multicarrier modulation schemes, is employed as a modulation scheme for physical data DATA.
  • the in-vehicle wireless communication device 100 that performs ITS inter-vehicle communication is installed in the vehicle 200 as shown in FIG.
  • FIG. 4 is a block diagram showing the first embodiment of the in-vehicle wireless communication device 100. As shown in FIG.
  • the in-vehicle wireless communication device 100 of this embodiment includes a serial / parallel converter 1 (hereinafter referred to as an S / P [Serial / Parallel] converter 1), a modulator 2, and an IFFT. [Inverse Fast Fourier Transform] section 3, guard interval addition section 4, addition processing section 5, digital / analog converter 6 (hereinafter referred to as D / A [Digital / Analog] converter 6), power A transmission unit including an amplifier 7 and a physical header processing unit 8 is provided.
  • the in-vehicle wireless communication device 100 of the present embodiment includes a switch 9 for switching between transmission and reception, and a transmission / reception antenna 10.
  • the in-vehicle wireless communication device 100 includes a variable gain amplifier 11, an analog / digital converter 12 (hereinafter referred to as an A / D [Analog / Digital] converter 12), a separation processing unit 13, Guard interval removing unit 14, FFT unit [Fast Fourier Transform] unit 15, demodulator 16, parallel / serial converter 17 (hereinafter referred to as P / S [Parallel / Serial] converter 17), physical header And a processing unit 18.
  • the in-vehicle wireless communication device 100 performs the following operation during transmission.
  • the S / P converter 1 parallelizes input transmission data (serial data) and outputs it to the same number of modulators 2 as the number of subcarriers.
  • the modulator 2 for each subcarrier performs primary modulation and level adjustment for each subcarrier on the transmission data (parallel data) output from the S / P converter 1.
  • the data output from the modulator 2 is secondarily modulated by inverse fast Fourier transform processing by the IFFT unit 3, and then a guard interval is added by the guard interval adding unit 4, and the addition processing unit 5 outputs the data from the physical header processing unit 8.
  • the output physical header is added, converted to an analog signal by the D / A converter 6, power amplified by the power amplifier 7, and transmitted from the transmission / reception antenna 10 via the switch 9.
  • the in-vehicle wireless communication device 100 performs the following operation upon reception.
  • Received data received by the transmission / reception antenna 10 is level-adjusted by the variable gain amplifier 11 via the switch 9, converted into a digital signal by the A / D conversion unit 12, and physical data and physical header by the separation processing unit 13.
  • the physical data is output to the guard interval removing unit 14, and the physical header is output to the physical header processing unit 18.
  • the physical data output from the separation processing unit 13 is first demodulated by fast Fourier transform processing by the FFT unit 15 after the guard interval is removed by the guard interval removing unit 14, and is demodulated by the demodulator 16 having the same number of subcarriers. Next demodulated.
  • the data secondarily demodulated for each subcarrier by the demodulator 16 for each subcarrier is converted into received data (serial data) by the P / S converter 17.
  • the in-vehicle wireless communication device 100 When taking measures against interference, the in-vehicle wireless communication device 100 performs, for example, the multicarrier modulation method shown in FIG.
  • primary modulation is performed with 16QAM [Quadrature Amplitude Modulation] on subcarriers other than a predetermined number of subcarriers at both ends of a channel band (band where subcarriers are arranged).
  • This is OFDM modulation in which primary modulation is performed by QPSK [Quadrature Phase Shift Keying], which is stronger in noise resistance than 16QAM, for a predetermined number of subcarriers at both ends of the channel band.
  • those corresponding to subcarriers other than the predetermined number of subcarriers at both ends of the channel band are modulators that perform 16QAM modulation, and predetermined modulators at both ends of the channel band are used.
  • the one corresponding to the number of subcarriers is a modulator that performs QPSK modulation.
  • those corresponding to subcarriers other than the predetermined number of subcarriers at both ends of the channel band are demodulators that perform 16QAM demodulation, and the channel The one corresponding to a predetermined number of subcarriers at both ends of the band is a demodulator that performs QPSK demodulation.
  • the multi-carrier modulation method as shown in FIG. 5B employs a modulation scheme (QPSK in this case) having high noise resistance at both ends of the channel band where the influence of interference is large.
  • QPSK modulation scheme
  • the used frequency band is more resistant to interference (interfered) from other adjacent systems.
  • the in-vehicle wireless communication device 100 When taking measures against interference, the in-vehicle wireless communication device 100 performs, for example, the multicarrier modulation method illustrated in FIG.
  • the multicarrier modulation shown in FIG. 6 (c) performs primary modulation with 16QAM on subcarriers other than a predetermined number of subcarriers at both ends of a channel band (band in which subcarriers are arranged), and Primary modulation is performed on a predetermined number of subcarriers at both ends by QPSK, which is stronger in noise resistance than 16QAM, and the level of the predetermined number of subcarriers at both ends of the channel band is set to a predetermined number of subcarriers at both ends of the channel band.
  • the OFDM modulation is set to 1 ⁇ 2 of the level of other subcarriers.
  • those corresponding to subcarriers other than the predetermined number of subcarriers at both ends of the channel band are modulators that perform 16QAM modulation, and predetermined modulators at both ends of the channel band are used.
  • the one corresponding to the number of subcarriers is a modulator that performs QPSK modulation, and the level adjustment for each subcarrier by the modulator 2 for each subcarrier causes the level of a predetermined number of subcarriers at both ends of the channel band to be The level is set to 1 ⁇ 2 of the level of subcarriers other than the predetermined number of subcarriers at both ends of the channel band.
  • those corresponding to subcarriers other than the predetermined number of subcarriers at both ends of the channel band are demodulators that perform 16QAM demodulation, and the channel The one corresponding to a predetermined number of subcarriers at both ends of the band is a demodulator that performs QPSK demodulation.
  • the level of subcarriers is reduced at both ends of the channel band, which is a major factor of interference, so that the conventional method as shown in FIG. 6 (a).
  • the multi-carrier modulation method it is possible to reduce interference with other systems that are adjacent to each other in the frequency band used (in addition to interference), and to provide a noise-resistant modulation scheme (in this case) that is more resistant to sub-carrier modulation where the level is reduced. Since QPSK) is employed, communication quality can be improved as compared with the conventional multicarrier modulation method (method proposed in Patent Document 1) as shown in FIG.
  • the number of subcarriers at both ends of the channel band is low. Although the number is the same at the end and the high-frequency side end, it may be a different number (including the case where one is zero).
  • multi-carrier modulation as shown in FIG. 7A or FIG. 7B may be used, and when taking countermeasures against interference, FIG. 8A or FIG. It is good also as multicarrier modulation like b).
  • FIG. 5 to FIG. 8 described above are diagrams showing the spectrum of the portion of the physical data DATA (see FIG. 2) when the packet is basically observed from the time axis.
  • the end of the channel band is only applied to the physical data DATA portion.
  • Adopt a modulation method that is resistant to noise. There is no way to extend to the physical header (signal field SIG, long training field LTF, short training field STF) as in the case of taking countermeasures against interference.
  • FIG. 9A is a diagram showing a packet configuration when an extended signal field SIG ′ including a conventional signal field SIG compliant with IEEE802.11p is set.
  • the extended signal field SIG ′ includes not only the conventional transmission rate and packet length, but also a predetermined number of subcarriers at both ends of the channel band with respect to subcarrier levels other than the predetermined number of subcarriers at both ends of the channel band. At least one of information on a degree of level reduction, information on a second modulation scheme used for modulation of a predetermined number of subcarriers at both ends of the channel band, and information on the predetermined number is described. .
  • FIG. 9B shows a packet configuration when the reserve bit of the conventional signal field SIG compliant with IEEE802.11p is used, and when the reserve bit is set, the information of the second signal field SIG2 is read.
  • the conventional signal field SIG conforming to IEEE802.11p is not changed at all, but the second signal field SIG2 includes the channel band corresponding to the subcarrier level other than the predetermined number of subcarriers at both ends of the channel band.
  • At least among the information about the degree of reduction of the level of the predetermined number of subcarriers at both ends of the channel, the information about the second modulation scheme used for the modulation of the predetermined number of subcarriers at both ends of the channel band, and the information about the predetermined number is described.
  • FIG. 9C shows the same configuration as a conventional packet (see FIG. 2) compliant with IEEE802.11p, but relates to the transmission rate (modulation method) of physical data DATA described in the signal field SIG. Ingenuity is added to how to handle information (hereinafter referred to as rate information).
  • the rate information described in the conventional signal field SIG has 4 bits and can express 16 types. However, since there are actually 8 types of allocation as shown in FIG. As shown in FIG. 10B, the degree of reduction in the level of a predetermined number of subcarriers at one or both ends of the channel band relative to the level of subcarriers other than the predetermined number of subcarriers at one or both ends of the channel band.
  • combination patterns A to H As the combination patterns, eight patterns that are considered to be effective are set in advance. An example of the setting is shown in FIGS. 11A and 11B.
  • the combination patterns A to H include information on a first modulation scheme used for modulation of subcarriers other than a predetermined number of subcarriers at both ends of the channel band, and the first Information on the number of subcarriers modulated by one modulation scheme is also included. It can be said that each of the combination patterns A to H indicates a transmission rate in a certain sense.
  • the in-vehicle wireless communication device 100 is configured as in the second embodiment shown in FIG. 12, and 10 of the number of modulators 2 are the same as the number of subcarriers.
  • the modulator performs QPSK modulation, the other modulators perform 16QAM modulation, and among the same number of demodulators 16 as the number of subcarriers, 10 demodulators perform QPSK demodulation and the other demodulator perform 16QAM modulation. You should do it.
  • FIG. 12 the same parts as those in FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the configuration of the second embodiment shown in FIG. 12 is a configuration in which a combination pattern selection unit 19 and a combination pattern determination unit 20 are added to the configuration of the first embodiment shown in FIG.
  • the combination pattern selection unit 19 selects one of the eight combination patterns A to H shown in FIGS. 11A and 11B, and controls the modulator 2 according to the selection result to determine the level for each subcarrier. In addition, it is determined which modulator is assigned to which subcarrier, and the modulation scheme for each subcarrier is also determined.
  • the combination pattern selection unit 19 also outputs the selection result to the physical header processing unit 8. Based on the output of the combination pattern selection unit 19, the physical header processing unit 8 describes information on the selected combination pattern in the signal field SIG.
  • the combination pattern determination unit 20 determines a combination pattern used for transmission of received data, and controls the demodulator 16 according to the determination result to determine which subcarrier. Which demodulator is assigned to each subcarrier is determined to determine a demodulation method for each subcarrier.
  • Various parameters of the signal modulation method according to the present invention may be adaptively changed according to the situation.
  • other systems terrestrial digital television broadcasting system and telecommunication system
  • the combination pattern selecting unit 19 receives the interference state from the interference state grasping unit that grasps the interference state (interference state and interference state), and the combination pattern selecting unit 19 selects the combination pattern according to the interference state. You may make it select.
  • the signal strength (reception power) of other systems adjacent to the used frequency band is sequentially detected and detected.
  • a configuration in which variable control of the various parameters is performed based on the result is conceivable.
  • the above configuration will be described in detail as a third embodiment according to the present invention.
  • FIG. 13 is a block diagram showing a third embodiment of the in-vehicle wireless communication device 100. As shown in FIG. 13
  • the in-vehicle wireless communication device 100 of this embodiment includes a transmission / reception antenna 31, a switch 32, a low noise amplifier 33 (hereinafter referred to as LNA [Low Noise Amplifier] 33), and a desired wave pass filter 34.
  • An analog / digital converter 35 (hereinafter referred to as an A / D converter 35), a synchronization processing unit 36, a demodulation unit 37, a modulation unit 38, a transmission processing unit 39, and a digital / analog converter 40.
  • D / A converter 40 (Hereinafter referred to as a D / A converter 40), a desired wave pass filter 41, and a high-power amplifier 42, and further, as a component specific to the present embodiment, a low-pass filter 43, , An analog / digital converter 44 (hereinafter referred to as an A / D converter 44) and a determination unit 45.
  • a / D converter 44 An analog / digital converter 44 (hereinafter referred to as an A / D converter 44) and a determination unit 45.
  • the transmission / reception antenna 31 in FIG. 13 corresponds to the transmission / reception antenna 10 in FIG. 4 or FIG. 12
  • the switch 32 in FIG. 13 corresponds to the switch 9 in FIG. 13 corresponds to the variable gain amplifier 11 of FIG. 4 or FIG. 12
  • the A / D converter 35 of FIG. 13 corresponds to the A / D converter 12 of FIG.
  • the D / A converter 40 in FIG. 13 corresponds to the D / A converter 6 in FIG. 4 or FIG. 12
  • the high-power amplifier 42 in FIG. 13 corresponds to the power amplifier 7 in FIG. .
  • the synchronization processing unit 36 and the demodulation unit 37 in FIG. 13 do not depict components directly associated with FIG. 4 or FIG. 12, but the separation processing unit 13 and the guard interval removal unit in FIG. 4 or FIG. 14, the FFT unit 15, the demodulator 16, the P / S converter 17, the physical header processing unit 18, and the combination pattern determination unit 20 are understood to correspond to this.
  • the modulation unit 38 and the transmission processing unit 39 in FIG. 13 do not depict components directly associated with FIG. 4 or FIG. 12, but the S / P converter 1 and the modulator in FIG. 2, IFFT unit 3, guard interval addition unit 4, addition processing unit 5, physical header processing unit 8, and combination pattern selection unit 19 are understood to correspond to this.
  • the switch 32 conducts between the transmission / reception antenna 31 and the LNA 33.
  • the LNA 33 amplifies the power of a reception signal input from the transmission / reception antenna 31 via the switch 32 with a predetermined gain.
  • the desired wave pass filter 34 converts a signal input from the LNA 33 to receive a desired signal (a signal exchanged in the ITS inter-vehicle communication system in the example of FIG. 1). Filtering processing is performed to pass only frequency components belonging to a desired channel band (715 MHz to 725 MHz in the example of FIG. 1).
  • the A / D converter 35 converts the analog signal input from the desired wave pass filter 34 into a digital signal.
  • the synchronization processing unit 36 performs synchronization processing of the signal input from the A / D converter 35.
  • the demodulation unit 37 demodulates desired received data by performing FFT processing and demapping processing on the signal input from the synchronization processing unit 36.
  • the switch 32 conducts between the transmission / reception antenna 31 and the high-power amplifier 42.
  • the modulation unit 38 performs an appropriate modulation process on the transmission data according to the situation.
  • the transmission processing unit 39 performs an IFFT process on the digital signal input from the modulation unit 38 to generate an OFDM signal.
  • the D / A converter 40 converts the digital signal (OFDM signal) input from the transmission processing unit 39 into an analog signal.
  • the desired wave pass filter 41 sends a desired signal (a signal exchanged in the ITS inter-vehicle communication system in the example of FIG. 1) from the D / A converter 40.
  • the input signal is subjected to filtering processing to pass only frequency components belonging to a desired channel band (715 MHz to 725 MHz in the example of FIG. 1).
  • the high-power amplifier 42 amplifies the signal input from the desired wave pass filter 41 with a predetermined gain.
  • the transmission signal amplified by the high-power amplifier 42 is transmitted to the transmission / reception antenna 31 via the switch 32 and transmitted from the transmission / reception antenna 31 to the outside of the in-vehicle wireless communication device 100.
  • the low-pass filter 43 is a means for performing a filtering process on the signal input from the LNA 33, and is a first frequency band used by the ITS inter-vehicle communication system (in the example of FIG. 14, A second frequency band (in the example of FIG. 14, including a 5 MHz wide guard band) on the lower side of the frequency band (715 MHz to 725 MHz) having a total frequency of 10 MHz with a center frequency of 720 MHz, Only signal components belonging to a frequency band (705 MHz to 715 MHz) having a total width of 10 MHz are selectively passed.
  • the pass band of the low-pass filter 43 is set so as to include a guard band adjacent to the low-frequency side of the ITS inter-vehicle communication system and a part of the use frequency band of the digital television broadcasting system.
  • the configuration of the present invention is not limited to this, and the pass band of the low-pass filter 43 is set so as to include all the frequency bands used in the digital television broadcasting system. Also good.
  • only the guard band may be set as the pass band of the low-pass filter 43, or a part or all of the frequency band used in the digital television broadcasting system except for the guard band may be set in the low-pass filter 43.
  • a pass band may be set. What is important is that the channel band of the ITS inter-vehicle communication system is not included in the pass band of the low pass filter 43 (that is, the pass band of the desired wave pass filter 3 and the pass band of the low pass filter 34). And are set exclusively).
  • the A / D converter 44 converts the analog signal input from the low-pass filter 43 into a digital signal.
  • the determination unit 45 performs level determination (received power measurement) of the digital signal input from the A / D converter 44 and notifies the modulation unit 38 of the determination result.
  • an RSSI [Received Signal Strength Indicator] circuit or the like generally used as a received signal strength measurement unit can be suitably applied.
  • the RSSI circuit may be incorporated in the determination unit 45 or may be inserted between the low-pass filter 43 and the A / D converter 44.
  • the modulation unit 38 appropriately sets various parameters of the signal modulation method based on the notification from the determination unit 45.
  • the modulation unit 38 when the interference from the digital television broadcasting system to the ITS inter-vehicle communication system becomes a problem, the modulation unit 38, if the signal level (reception power P) input to the determination unit 45 is larger than a predetermined value, It is determined that countermeasures against interference are necessary, and among the subcarriers included in the channel band of the ITS inter-vehicle communication system, the modulation scheme for the N subcarriers from the low frequency side is set to the default first modulation scheme ( For example, it may be configured to switch from 16 QAM) to the second modulation method (for example, QPSK) having a lower multi-value number and stronger noise resistance (see FIG. 15A).
  • the default first modulation scheme For example, it may be configured to switch from 16 QAM
  • the second modulation method for example, QPSK
  • the modulation unit 38 variably controls the number N of low-frequency subcarriers to which the second modulation scheme (QPSK) is applied according to the signal level (received power P) input to the determination unit 45. do it. More specifically, the modulation unit 38 increases the second modulation scheme (intensity) as the signal level (reception power P) input to the determination unit 45 increases as the level of interference countermeasures (intensity) increases. The number N of low frequency side subcarriers to which QPSK is applied may be increased.
  • the modulation unit 38 may determine the number N of low-frequency subcarriers to which the second modulation scheme (QPSK) is applied based on the table illustrated in FIG. The operation of determining the number N by the modulation unit 38 will be specifically described with reference to the example of FIG.
  • the second modulation method QPSK
  • QPSK the second modulation method
  • the number N of low frequency side subcarriers to be applied is set to “10”.
  • the modulation unit 38 sets the second countermeasure level (strength) to the middle level.
  • the number N of low-frequency subcarriers to which the modulation scheme (QPSK) is applied is set to “5”.
  • the modulation unit 38 when the modulation unit 38 receives a notification that P ⁇ ⁇ 70 dBm (low level) from the determination unit 45, the modulation unit 38 sets the second level of interference countermeasures (strength) to a weak level (off).
  • the number N of low-frequency subcarriers to which the modulation scheme (QPSK) is applied is set to “0”.
  • all subcarriers included in the channel band are modulated by the first modulation scheme (16QAM) (similar to the conventional example of FIG. 5A or FIG. 6A).
  • the signal strength (reception power) of the digital television broadcasting system in which the used frequency band is adjacent is sequentially detected, and based on the detection result, various parameters of the signal modulation method (in the above, the second modulation method ( If the configuration is such that the number N) of low-frequency subcarriers to which QPSK) is applied can be variably controlled, optimum countermeasures against interference can be implemented according to the situation, thus eliminating the need for total throughput in the own system. Without lowering, it is possible to effectively prevent performance degradation due to interference from the digital television broadcasting system.
  • the interference power from the digital television broadcasting system is higher than the conventional configuration (see Patent Document 3) that measures the interference power within the channel band of the ITS inter-vehicle communication system. Therefore, the necessity or degree (intensity) of countermeasures against interference can be appropriately controlled according to the situation.
  • the low frequency side subcarriers (N) of the ITS inter-vehicle communication system in order to take measures against interference from the digital television broadcasting system adjacent to the low frequency side of the ITS inter-vehicle communication system, the low frequency side subcarriers (N) of the ITS inter-vehicle communication system.
  • the configuration of the present invention is not limited to this, and the configuration adjacent to the high frequency side of the ITS inter-vehicle communication system is described.
  • the second modulation method is applied to the high frequency side subcarriers (M) of the ITS inter-vehicle communication system.
  • a configuration in which (QPSK) is applied may be employed.
  • the high-pass filter is a means for performing a filtering process on the signal input from the LNA 33, and is adjacent to the first frequency band used by the ITS inter-vehicle communication system, for example, on the high-frequency side. It is only necessary to selectively pass only signal components belonging to the second frequency band having a total width of 10 MHz in a form including a guard band having a width of 5 MHz.
  • N low-frequency subcarrier
  • M high-frequency subcarrier
  • the second modulation scheme QPSK
  • N low frequency side subcarriers
  • M high frequency side subcarriers
  • variable control table for the low frequency side subcarriers (N) illustrated in FIG. 16A it is also necessary to prepare a variable control table for the high frequency side subcarriers (M). .
  • the low frequency side subcarriers (N) of the ITS inter-vehicle communication system in order to take measures against interference from the digital television broadcasting system adjacent to the low frequency side of the ITS inter-vehicle communication system.
  • the configuration of the present invention is not limited to this.
  • ITS inter-vehicle communication is performed.
  • QPSK is applied to the higher L-side subcarriers, while the lower number K of the lower-frequency side subcarriers has more multivalued numbers than QPSK.
  • a modulation method with little noise resistance for example, BPSK [Binary Phase Shift Keying]
  • BPSK Binary Phase Shift Keying
  • the contents of the table referred to by the modulation unit 38 are, for example, as shown in FIG.
  • the object to which the modulation method shown in FIG. 15 (d) is applied is not limited to only the low frequency side subcarriers, and only the high frequency side subcarriers may be applied. Both the subcarrier and the high frequency side subcarrier may be applied.
  • the modulation unit 38 if the signal level (reception power P) input to the determination unit 45 is smaller than a predetermined value, A configuration that determines that countermeasures against interference are necessary and reduces the signal level (transmission power) of N subcarriers from the low frequency side among the subcarriers included in the channel band of the ITS inter-vehicle communication system; (See FIG. 17 (a)).
  • the modulation unit 38 may be configured to variably control the number N of low-frequency subcarriers whose signal level is reduced according to the signal level (reception power P) input to the determination unit 45. More specifically, the modulation unit 38 reduces the signal level so that the degree (intensity) of countermeasures against interference increases as the signal level (reception power P) input to the determination unit 45 decreases. It is sufficient to increase the number N of low frequency side subcarriers.
  • the modulation scheme is changed from the default first modulation scheme (for example, 16QAM) to the second modulation having a lower multi-level number and stronger noise resistance.
  • the system may be switched to a system (for example, QPSK) (see FIG. 17B).
  • the modulation unit 38 sets the signal level (transmission power) to 1 ⁇ 2 of the default value based on the table illustrated in FIG. 18A, and the second modulation method (QPSK) is set.
  • the number N of low frequency side subcarriers to be applied may be determined. The operation of determining the number N by the modulation unit 38 will be specifically described with reference to the example of FIG.
  • the modulation unit 38 When receiving a notification that P ⁇ ⁇ 30 dBm (high level) from the determination unit 45, the modulation unit 38 sets the signal level (transmission) in order to set the degree (strength) of interference countermeasures to a weak level (off). Power) is set to 1 ⁇ 2 of the default value, and the number N of low-frequency subcarriers to which the second modulation scheme (QPSK) is applied is set to “0”. As a result, all the subcarriers included in the channel band have the signal level (transmission power) set to the default value and are modulated by the first modulation scheme (16QAM) (FIG. 5A or FIG. The same as the conventional example of a)).
  • 16QAM first modulation scheme
  • the modulation unit 38 receives notification from the determination unit 45 that ⁇ 70 dBm ⁇ P ⁇ 30 dBm (medium level)
  • the signal level (intensity) is set to the signal level (intensity).
  • Transmission power) is set to 1 ⁇ 2 of the default value, and the number N of low-frequency subcarriers to which the second modulation scheme (QPSK) is applied is set to “5”.
  • the signal level (transmission power) of subcarriers for five from the low frequency side is set to 1/2 of the default value, and the second modulation scheme (QPSK) ) And the remaining subcarriers are modulated with the first modulation scheme (16QAM) with the signal level (transmission power) set to a default value.
  • the modulation unit 38 when the modulation unit 38 receives a notification that P ⁇ ⁇ 70 dBm (low level) from the determination unit 45, the modulation unit 38 sets the signal level (transmission power) so that the degree of interference countermeasure (strength) is set to a high level. ) Is set to 1 ⁇ 2 of the default value, and the number N of low-frequency subcarriers to which the second modulation scheme (QPSK) is applied is set to “10”.
  • the signal level (transmission power) of 10 subcarriers from the low frequency side is set to 1/2 of the default value, and the second modulation scheme (QPSK) ), And the remaining subcarriers are modulated with the first modulation scheme (16QAM) with the signal level (transmission power) set to a default value.
  • the signal strength (reception power) of the digital television broadcasting system in which the used frequency band is adjacent is sequentially detected, and based on the detection result, various parameters of the signal modulation method (in the above, the signal level (transmission level) Power) is set to 1 ⁇ 2 of the default value, and the number of low-frequency subcarriers N) to which the second modulation scheme (QPSK) is applied is variably controlled. Since measures can be taken, it is possible to effectively prevent interference with the digital television broadcasting system without unnecessarily reducing the total throughput in the own system.
  • the low frequency side subcarrier of the ITS inter-vehicle communication system is used to take measures against interference with the digital television broadcasting system adjacent to the low frequency side of the ITS inter-vehicle communication system.
  • N has been described by exemplifying a configuration for reducing the signal level (transmission power) and applying the second modulation scheme (QPSK), but the configuration of the present invention is not limited to this.
  • QPSK second modulation scheme
  • the high frequency side subcarriers (M) may be configured to reduce the signal level (transmission power) and apply the second modulation scheme (QPSK).
  • the high-pass filter is a means for performing a filtering process on the signal input from the LNA 33, and is adjacent to the first frequency band used by the ITS inter-vehicle communication system, for example, on the high-frequency side. It is only necessary to selectively pass only signal components belonging to the second frequency band having a total width of 10 MHz in a form including a guard band having a width of 5 MHz.
  • N low frequency side subcarrier
  • M high frequency side subcarrier
  • FIG. 1 In the case where both countermeasures for interference with the digital television broadcasting system adjacent to the low frequency side of the ITS inter-vehicle communication system and countermeasures for interference with the telecommunication system adjacent to the high frequency side are performed, FIG. As shown in d), the signal level (transmission power) is reduced and the second modulation scheme (N) for both the low frequency side subcarriers (N) and the high frequency side subcarriers (M) of the ITS inter-vehicle communication system.
  • N second modulation scheme for both the low frequency side subcarriers (N) and the high frequency side subcarriers (M) of the ITS inter-vehicle communication system.
  • QPSK QPSK
  • variable control table for the low frequency side subcarriers (N) illustrated in FIG. 18A it is also necessary to prepare a variable control table for the high frequency side subcarriers (M). .
  • the low frequency side subcarrier of the ITS inter-vehicle communication system is designed to take measures against interference with the digital television broadcasting system adjacent to the low frequency side of the ITS inter-vehicle communication system.
  • (N) has been described by exemplifying a configuration that uniformly reduces the signal level (transmission power), but the configuration of the present invention is not limited to this, and for example, FIG. As shown, among the low frequency side subcarriers ((K + L)) of the ITS inter-vehicle communication system, the signal level (transmission power) is reduced to 1 ⁇ 2 of the default value for L of the higher frequency side subcarriers.
  • the signal level (transmission power) may be reduced to 1/4 of the default value in order to further reduce the signal level (transmission power).
  • the contents of the table referred to by the modulation unit 38 are, for example, as shown in FIG. In this way, by reducing the signal level (transmission power) for subcarriers closer to the frequency band used in the adjacent digital television broadcasting system, the interference is further increased compared to the configurations of FIGS. 17 (a) and 17 (b). Can be reduced.
  • QPSK second modulation scheme
  • the configuration in which the second modulation scheme (QPSK) is applied has been described as an example.
  • the configuration of the present invention is not limited to this, and for example, as illustrated in FIG.
  • QPSK is applied to L of the higher frequency side, while K of the lower frequency side is more than QPSK.
  • a configuration in which a modulation scheme (eg, BPSK) having a small number of multi-values and strong noise resistance may be applied.
  • BPSK modulation scheme
  • the number “carrier number K that is reduced to 4 and modulated by QPSK” may be read as “number of carriers K that is modulated by BPSK by reducing transmission power to 1 ⁇ 4” (see FIG. 18C).
  • BPSK modulation scheme
  • the object to which the modulation method shown in FIG. 17 (e) or FIG. 17 (f) is applied is not limited to only the low frequency side subcarriers, and only the high frequency side subcarriers may be applied. Alternatively, both the low frequency side subcarrier and the high frequency side subcarrier may be applied.
  • the guard band is set as the pass band of the low-pass filter 43 used in the in-vehicle wireless communication device 100 of the third embodiment. Needless to say, even when the filter 43 is replaced with a high-pass filter (not shown), only the guard band can be set as the pass band.
  • FIG. 19 is a block diagram illustrating a fourth embodiment of the in-vehicle wireless communication device 100.
  • the in-vehicle wireless communication device 100 of the fourth embodiment has substantially the same configuration as that of the third embodiment described above, and instead of the low-pass filter 43, the guard band pass filter 46 is used. It has the feature in having. Therefore, the same components as those of the third embodiment are denoted by the same reference numerals as those in FIG. 13, and redundant description is omitted.
  • the guard band pass filter 46 which is a characteristic part of the fourth embodiment will be emphasized. Give an explanation.
  • the guard band pass filter 46 is provided on the low frequency side of the first frequency band used by the ITS inter-vehicle communication system (in FIG. 1 to FIG. 14, the frequency band (715 MHz to 725 MHz) having a total frequency of 10 MHz with 720 MHz as the central frequency). At least one of the adjacent low band guard band (710 MHz to 715 MHz in FIGS. 1 to 14) and the high band guard band (725 MHz to 730 MHz in FIG. 1) adjacent to the high band side of the ITS inter-vehicle communication system. A part or all of each frequency band (5 MHz width) is used as a pass band, and only signal components belonging to the pass band are selectively passed.
  • the intensity (reception power) of signal components belonging to part or all of each frequency band is sequentially detected, and based on the detection result Various parameters of the signal modulation method (for example, if countermeasures against interference are to be taken, for example, the number of low frequency side subcarriers to which the second modulation scheme (QPSK) is applied and if countermeasures against interference are to be taken.
  • QPSK second modulation scheme
  • the configuration is such that the signal level (transmission power) is variably controlled (the number of low-frequency subcarriers set to 1 ⁇ 2 of the default value), as in the third embodiment, depending on the situation Since it is possible to implement optimal interference countermeasures or interference countermeasures, it is possible to prevent interference or other interference from other systems without unnecessarily reducing the total throughput in the local system. It becomes possible to prevent the interference with the stem effectively.
  • the in-vehicle wireless communication device used in the ITS inter-vehicle communication system has been described as an example.
  • other systems use frequencies at both ends of the use frequency band.
  • the present invention is also applied to a radio apparatus used in a radio system other than the ITS inter-vehicle communication system in which the bands are adjacent or a radio system in which the use frequency band of another system is adjacent to only one end of the use frequency band. be able to.
  • the first and second embodiments of the present invention not only a wireless device (transmission / reception device) that performs transmission and reception, but also a wireless device (transmission device) that performs transmission only, and a wireless device (reception device) that performs reception only. It can also be applied to.
  • the third and fourth embodiments of the present invention can be applied not only to a wireless device (transmission / reception device) that performs transmission and reception, but also to a wireless device (transmission device) that performs transmission only.
  • the first to fourth embodiments of the present invention can be applied not only to OFDM modulation but also to other multicarrier modulation.
  • each vehicle by providing each vehicle with the wireless device according to the present invention, it is possible to suppress mutual interference between the digital television broadcasting system and the ITS inter-vehicle communication system, and effectively prevent communication performance deterioration of both systems. Therefore, the digital television broadcasting system and the ITS inter-vehicle communication system can coexist.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A radio apparatus (100), which is adapted to transmit or transmit/receive signals multicarrier-modulated by use of a first frequency band, comprises: a level determining means (43-45) that extracts signal components belonging to a second frequency band adjacent to the first frequency band and determines the levels of the extracted signal components; and a modulating unit (38) that, based on a result of the determination by the level determining means, sets the transmission power of all of the subcarriers included in the first frequency band to a default value when the signal levels of the signal components belonging to the second frequency band are higher than a predetermined value, while setting, to a value smaller than the default value, the transmission power of subcarriers that are included in the first frequency band but closer to the second frequency band when the above-mentioned signal levels are lower than the predetermined value.

Description

無線装置Wireless device
 本発明は、マルチキャリア変調方式で変調された信号を送信または送受信する無線装置に関するものである。 The present invention relates to a wireless device that transmits or transmits / receives a signal modulated by a multicarrier modulation method.
 2012年にサービス開始が予定されているITS[Intelligent Transport Systems]車車間通信システムは、危険回避や運転支援などを目的として、自車両と他車両との間で種々の情報をやり取りするものである。例えば、ITS車車間通信システムを利用して、車両相互間で位置情報を交換し合い、各車両の運転者に他車両への注意喚起を行うことにより、見通しの悪い交差点等での出会い頭の車両衝突事故防止に寄与することができる。 The ITS [Intelligent Transport Systems] inter-vehicle communication system, scheduled to start in 2012, exchanges various information between the host vehicle and other vehicles for the purpose of danger avoidance and driving support. . For example, by using an ITS inter-vehicle communication system to exchange position information between vehicles and alerting the driver of each vehicle to other vehicles, vehicles that meet at intersections with poor visibility It can contribute to the prevention of collision accidents.
 なお、ITS車車間通信システムでは、車両間の無線通信帯域として、720MHz帯を使用する予定である。図1に示すように、ITS車車間通信システムの使用周波数帯の低域側端部には、ガードバンド5MHzを挟んで、地上デジタルテレビジョン放送システムの使用周波数帯が隣接しており、ITS車車間通信システムの使用周波数の高域側端部には、ガードバンド5MHzを挟んで電気通信システムの使用周波数帯が隣接している。 In the ITS inter-vehicle communication system, the 720 MHz band is scheduled to be used as a wireless communication band between vehicles. As shown in FIG. 1, the use frequency band of the terrestrial digital television broadcasting system is adjacent to the low frequency side end of the use frequency band of the ITS inter-vehicle communication system with the guard band of 5 MHz interposed therebetween. The use frequency band of the telecommunication system is adjacent to the high frequency side end of the use frequency of the inter-vehicle communication system with the guard band of 5 MHz interposed therebetween.
 なお、上記に関連する従来技術の一例としては、特許文献1~特許文献3を挙げることができる。 Note that Patent Documents 1 to 3 can be cited as examples of the related art related to the above.
特開2002-247004号公報JP 2002-247004 A 特開2006-186630号公報JP 2006-186630 A 国際公開WO2006/070551号パンフレットInternational Publication WO2006 / 070551 Pamphlet
 このように、ITS車車間通信システムの使用周波数帯の両端には、他システムの使用周波数帯が隣接している。このような周波数配置下において、例えば、ITS車車間通信システムを搭載した車両が地上デジタルテレビジョン放送システムの難視聴エリア(送信電波塔の遠方や山間部など)に存在する場合には、ITS車車間通信システムから地上デジタルテレビジョン放送システムへの干渉(与干渉)が問題となるおそれがある。また、例えば、ITS車車間通信システムを搭載した車両が地上デジタルテレビジョン放送システムの送信電波塔の近傍に存在する場合には、地上デジタルテレビジョン放送システムからITS車車間通信システムへの干渉(被干渉)が問題となるおそれがある。そのため、ITS車車間通信システムにおいては、ITS車車間通信システムから使用周波数帯が隣接する他システムへの干渉(与干渉)を低減すること、並びに、使用周波数帯が隣接する他システムからITS車車間通信システムへの干渉(被干渉)に対する耐性を高めることが重要な課題となっている。 Thus, the frequency bands of other systems are adjacent to both ends of the frequency band of the ITS inter-vehicle communication system. Under such a frequency arrangement, for example, when a vehicle equipped with an ITS inter-vehicle communication system is present in a hard-to-view area of a terrestrial digital television broadcasting system (distant from the transmission radio tower, mountainous area, etc.), Interference (interference) from the inter-vehicle communication system to the terrestrial digital television broadcasting system may become a problem. Further, for example, when a vehicle equipped with an ITS inter-vehicle communication system is present in the vicinity of a transmission tower of the terrestrial digital television broadcasting system, interference (covered) from the terrestrial digital television broadcasting system to the ITS inter-vehicle communication system is possible. Interference) may be a problem. Therefore, in the ITS inter-vehicle communication system, it is possible to reduce interference (interference) from the ITS inter-vehicle communication system to other systems adjacent to the use frequency band, and from the other systems adjacent to the use frequency band to the ITS inter-vehicle communication. Increasing resistance to interference (interference) with a communication system is an important issue.
 ここで、特許文献1では、隣接干渉(与干渉)を低減するために、伝送チャネル帯域の少なくとも一方の端部で小さなレベルのサブキャリアが存在するようにしたマルチキャリア変調方式のデジタル伝送装置が提案されている。 Here, in Patent Document 1, in order to reduce adjacent interference (giving interference), there is a digital transmission device of a multicarrier modulation system in which a small level subcarrier exists at at least one end of a transmission channel band. Proposed.
 しかしながら、特許文献1で提案されているマルチキャリア変調方式のデジタル伝送装置は、隣接干渉(与干渉)を低減することはできるが、伝送チャネル帯域の少なくとも一方の端部におけるサブキャリアのレベル低下によって自システムの通信性能が劣化してしまうという問題があった。 However, the multicarrier modulation type digital transmission apparatus proposed in Patent Document 1 can reduce adjacent interference (interference), but it is caused by a decrease in the level of the subcarrier at at least one end of the transmission channel band. There was a problem that the communication performance of the own system deteriorated.
 なお、特許文献1では、どのような場合に隣接干渉対策が必要になるのかに関して特段言及されていなかった。例えば、自システムから使用周波数帯が隣接する他システムへの干渉(与干渉)が問題とならないような状況下であっても、伝送チャネル帯域の少なくとも一方の端部におけるサブキャリアのレベルを一律的に低下させていたため、自システム内におけるトータルスループットが不要に低下してしまうという問題があった。 In Patent Document 1, no particular mention was made as to when adjacent interference countermeasures are required. For example, even in a situation where interference from the own system to other systems with adjacent frequency bands (interference) does not become a problem, the level of the subcarrier at at least one end of the transmission channel band is uniform. As a result, the total throughput in the own system is unnecessarily reduced.
 また、特許文献2では、伝送スループットと送信電力の双方に対して最適化を図るために、伝搬路推定結果に基づき、サブキャリアと変調方式又は符号化率との組み合わせの中から、単位ビット当たりの所要送信電力が小さい組み合わせから順番に選択することにより、総送信可能ビット数を最大化しながら効率的に送信電力を割り当てていくサブキャリア適応制御方法が提案されている。 Further, in Patent Document 2, in order to optimize both transmission throughput and transmission power, based on the propagation path estimation result, a combination of subcarriers and modulation schemes or coding rates is used per unit bit. A subcarrier adaptive control method has been proposed in which transmission power is allocated efficiently while maximizing the total number of transmittable bits by selecting in order from the combination with the smallest required transmission power.
 しかしながら、特許文献2で提案されているサブキャリア適応制御方法は、例えば、同一周波数を用いる複数セルから構成される無線サービスにおいて、システム全体の伝送スループット向上と他セルへの与干渉が低減可能であるが、周波数軸上で考えた場合、その使用されている周波数全体で電力低減を図り、与干渉低減する方法であるため、使用周波数帯が隣接する他システムへの与干渉電力を効率的に低減することはできない。 However, the subcarrier adaptive control method proposed in Patent Document 2 can improve the transmission throughput of the entire system and reduce interference with other cells in a wireless service composed of a plurality of cells using the same frequency, for example. However, when considering on the frequency axis, it is a method of reducing power and reducing interference over the entire frequency being used, so the interference power to other systems adjacent to the frequency band used can be efficiently reduced. It cannot be reduced.
 また、特許文献3では、自システムの伝送チャネル帯域内で干渉電力を測定し、その測定結果に応じて、各サブキャリア毎の所要SNR[Signal Noise  atio]が最適となるように、変調方式や送信電力の調整を行い、システム全体としての干渉を軽減させる無線通信システムが提案されている。 Further, in Patent Document 3, the interference power is measured within the transmission channel band of the own system, and the modulation scheme and the like are set so that the required SNR [Signal Noise ratio] for each subcarrier is optimized according to the measurement result. There has been proposed a wireless communication system that adjusts transmission power to reduce interference as a whole system.
 しかしながら、特許文献3の従来技術では、自システムの伝送チャネル帯域内で干渉電力を測定しているため、その測定結果が隣接帯域からの漏れ成分による干渉を反映したものであるのか、自システム内での通信混雑に起因する干渉を反映したものであるのかについては、必ずしも区別がつかないという問題があった。 However, in the prior art of Patent Document 3, since the interference power is measured within the transmission channel band of the own system, whether the measurement result reflects interference due to leakage components from the adjacent band, There is a problem in that it is not always possible to distinguish whether or not it reflects interference caused by communication congestion.
 なお、上記においてはITS車車間通信システムにおける課題を述べたが、使用周波数帯の両端に他システムの使用周波数帯が隣接しているITS車車間通信システム以外の無線システム、或いは、使用周波数帯の片端のみに他システムの使用周波数帯が隣接している無線システムにおいても、ITS車車間通信システムの場合と同様に、当該無線システムから使用周波数帯が隣接する他システムへの干渉(与干渉)を低減すること、並びに、使用周波数帯が隣接する他システムから当該無線システムへの干渉(被干渉)に対する耐性を高めることは、当該無線システムにおいて重要な課題となっている。 In addition, although the problem in the ITS inter-vehicle communication system has been described above, a wireless system other than the ITS inter-vehicle communication system in which the use frequency band of another system is adjacent to both ends of the use frequency band, or the use frequency band Even in a wireless system in which the use frequency band of another system is adjacent to only one end, as in the case of the ITS inter-vehicle communication system, interference (giving interference) from the wireless system to another system in which the use frequency band is adjacent. It is an important issue in the radio system to reduce the noise and to improve the resistance against interference (interference) from the other system with the adjacent frequency band to the radio system.
 本発明は、上記状況に鑑み、状況に応じて適切な隣接干渉対策を施し、自システムの通信品質を確保しつつ、使用周波数帯が隣接する他システムへの干渉(与干渉)を効果的に低減することが可能な無線装置を提供することを目的とする。 In view of the above situation, the present invention takes appropriate interference countermeasures according to the situation, and effectively prevents interference (additional interference) to other systems with adjacent frequency bands while ensuring the communication quality of the own system. An object of the present invention is to provide a wireless device that can be reduced.
 上記目的を達成するために、本発明に係る無線装置は、第1周波数帯域を用いてマルチキャリア変調された信号を送信または送受信する無線装置であって、第1周波数帯域に隣接する第2周波数帯域に属する信号成分を抽出し、そのレベル判定を行うレベル判定手段と;前記レベル判定手段の判定結果に基づき、第2周波数帯域に属する信号成分の信号レベルが所定値よりも大きいときには、第1周波数帯域に含まれる全てのサブキャリアの送信電力をデフォルト値に設定し、前記信号レベルが前記所定値よりも小さいときには、第1周波数帯域に含まれるサブキャリアのうち、第2周波数帯域に近い側のサブキャリアの送信電力を前記デフォルト値よりも小さい値に設定する変調部と;を有して成る構成(第1の構成)とされている。 In order to achieve the above object, a radio apparatus according to the present invention is a radio apparatus that transmits or transmits / receives a signal subjected to multicarrier modulation using a first frequency band, and is a second frequency adjacent to the first frequency band. Level determination means for extracting a signal component belonging to a band and performing level determination thereof; based on a determination result of the level determination means, when the signal level of the signal component belonging to the second frequency band is greater than a predetermined value, the first When the transmission power of all subcarriers included in the frequency band is set to a default value and the signal level is lower than the predetermined value, the subcarrier included in the first frequency band is closer to the second frequency band. And a modulation unit that sets the transmission power of the subcarrier to a value smaller than the default value (first configuration).
 なお、上記第1の構成から成る無線装置において、前記変調部は、前記信号レベルの大きさに応じて、送信電力が低減されるサブキャリアの本数を可変制御する構成(第2の構成)にするとよい。 In the wireless device having the first configuration, the modulation unit is configured to variably control the number of subcarriers whose transmission power is reduced according to the magnitude of the signal level (second configuration). Good.
 より具体的に述べると、上記第2の構成から成る無線装置において、前記変調部は、前記信号レベルが小さいほど、送信電力が低減されるサブキャリアの本数を増やしていく構成(第3の構成)にするとよい。 More specifically, in the radio apparatus having the second configuration, the modulation unit increases the number of subcarriers whose transmission power is reduced as the signal level is smaller (third configuration). ).
 また、上記第1~第3いずれかの構成から成る無線装置において、前記変調部は第2周波数帯域に近いサブキャリアほど送信電力を低減する構成(第4の構成)にするとよい。 Further, in the radio apparatus having any one of the first to third configurations, the modulation unit may have a configuration (fourth configuration) in which transmission power is reduced for subcarriers closer to the second frequency band.
 また、上記第1~第4いずれかの構成から成る無線装置において、前記変調部は、送信電力が低減されるサブキャリアについて、デフォルトの第1変調方式よりもノイズ耐性の強い第2変調方式を適用する構成(第5の構成)にするとよい。 Also, in the radio apparatus having any one of the first to fourth configurations, the modulation unit applies a second modulation scheme that is more resistant to noise than the default first modulation scheme for subcarriers whose transmission power is reduced. A configuration to be applied (fifth configuration) may be used.
 なお、上記第5の構成から成る無線装置において、前記変調部は、第2周波数帯域に近いサブキャリアほど、これに適用される第2変調方式として、より多値数の少ない変調方式を選択する構成(第6の構成)にするとよい。 In the radio apparatus having the fifth configuration, the modulation unit selects a modulation scheme having a smaller number of multi-values as a second modulation scheme applied to a subcarrier closer to the second frequency band. A configuration (sixth configuration) is preferable.
 また、上記第1~第6いずれかの構成から成る無線装置において、第2周波数帯域は、自システムが使用する第1周波数帯域と、他システムが使用する第3周波数帯域との間に挟まれるガードバンドの一部または全部である構成(第7の構成)にするとよい。 In the wireless device having any one of the first to sixth configurations, the second frequency band is sandwiched between the first frequency band used by the own system and the third frequency band used by the other system. A configuration (seventh configuration) that is part or all of the guard band may be employed.
 また、上記第7の構成から成る無線装置において、前記ガードバンドは、第1周波数帯域の低域側に隣接する低域側ガードバンド、及び、第1周波数帯域の高域側に隣接する高域側ガードバンドの少なくとも一方である構成(第8の構成)にするとよい。 In the wireless device having the seventh configuration, the guard band includes a low-frequency guard band adjacent to the low frequency side of the first frequency band and a high frequency frequency adjacent to the high frequency side of the first frequency band. A configuration (eighth configuration) that is at least one of the side guard bands may be used.
 本発明によれば、状況に応じて最適な与干渉対策を実施することができるので、自システム内におけるトータルスループットを不要に低下させることなく、使用周波数帯が隣接する他システムへの与干渉を効果的に低減することが可能となる。 According to the present invention, since it is possible to implement an optimal interference countermeasure according to the situation, it is possible to reduce the interference with other systems adjacent to the used frequency band without unnecessarily reducing the total throughput in the own system. It can be effectively reduced.
は、日本での720MHz周辺の周波数割当を示す図である。These are figures which show the frequency allocation around 720 MHz in Japan. は、物理層から見たIEEE802.11p準拠のパケット構成(簡略版)を示す図である。These are the figures which show the packet structure (simplified version) based on IEEE802.11p seen from the physical layer. は、ITS車車間通信を行う車載無線通信装置が車両に搭載された状態を示す図である。These are figures which show the state by which the vehicle-mounted radio | wireless communication apparatus which performs ITS inter-vehicle communication was mounted in the vehicle. は、車載無線通信装置100の第1実施形態を示すブロック図である。1 is a block diagram showing a first embodiment of an in-vehicle wireless communication device 100. FIG. は、従来の変調方法及び被干渉対策の一例である本発明に係る変調方法の概要を示す図である。These are the figures which show the outline | summary of the modulation method based on this invention which is an example of the conventional modulation method and an interference countermeasure. は、従来の変調方法及び与干渉対策の一例である本発明に係る変調方法の概要を示す図である。These are the figures which show the outline | summary of the modulation method based on this invention which is an example of the conventional modulation method and an interference countermeasure. は、被干渉対策の他の例である本発明に係る変調方法の概要を示す図である。These are the figures which show the outline | summary of the modulation method which concerns on this invention which is another example of a countermeasure against interference. は、与干渉対策の他の例である本発明に係る変調方法の概要を示す図である。These are figures which show the outline | summary of the modulation method which concerns on this invention which is another example of an interference countermeasure. は、物理層から見たパケット構成(簡略版)の例を示す図である。These are figures which show the example of the packet structure (simplified version) seen from the physical layer. は、シグナル・フィールドのデータ割り当て例を示す図である。FIG. 5 is a diagram illustrating an example of data assignment in a signal field. は、本発明の変調方式における組み合わせパターン例を示す図である。These are figures which show the example of a combination pattern in the modulation system of this invention. は、本発明の変調方式における組み合わせパターン例を示す図である。These are figures which show the example of a combination pattern in the modulation system of this invention. は、車載無線通信装置100の第2実施形態を示すブロック図である。These are block diagrams which show 2nd Embodiment of the vehicle-mounted radio | wireless communication apparatus 100. FIG. は、車載無線通信装置100の第3実施形態を示すブロック図である。These are block diagrams which show 3rd Embodiment of the vehicle-mounted radio | wireless communication apparatus 100. FIG. は、低域側通過フィルタ43の通過帯域の一例を示す図である。These are figures which show an example of the pass band of the low-pass filter 43. は、被干渉対策の一例である本発明に係る変調方法の概要を示す図である。These are the figures which show the outline | summary of the modulation method which concerns on this invention which is an example of a countermeasure against interference. は、被干渉対策時に参照されるテーブルの一例を示す図である。These are figures which show an example of the table referred at the time of countermeasures against interference. は、与干渉対策の一例である本発明に係る変調方法の概要を示す図である。These are the figures which show the outline | summary of the modulation method which concerns on this invention which is an example of an interference countermeasure. は、与干渉対策時に参照されるテーブルの一例を示す図である。These are figures which show an example of the table referred at the time of countermeasures against interference. は、車載無線通信装置100の第4実施形態を示すブロック図である。These are block diagrams which show 4th Embodiment of the vehicle-mounted radio | wireless communication apparatus 100. FIG.
 本発明の実施形態について、図面を参照しながら以下に詳細な説明を行う。なお、本発明に係る無線装置として、ここでは、ITS車車間通信システムで用いられる車載無線通信装置を例に挙げて説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings. Here, as an example of the wireless device according to the present invention, an in-vehicle wireless communication device used in an ITS inter-vehicle communication system will be described as an example.
 ところで、米国では車車間通信の規格としてIEEE802.11pの規格が検討されている。日本においても米国と使用される周波数は異なるが(日本では720MHz帯、米国では5.9GHz帯)、IEEE802.11p規格をもとにした車車間通信の規格が採用される可能性が高い。そこで、ITS車車間通信システムで用いられる車載無線通信装置の説明を行うにあたり、先ず始めにIEEE802.11p準拠のパケット構成について説明する。 By the way, in the United States, the IEEE 802.11p standard is being studied as a standard for inter-vehicle communication. In Japan, although the frequency used in the United States is different (in Japan, 720 MHz band, 5.9 GHz band in the United States), there is a high possibility that a vehicle-to-vehicle communication standard based on the IEEE 802.11p standard will be adopted. Therefore, in describing an in-vehicle wireless communication device used in an ITS inter-vehicle communication system, first, a packet configuration conforming to IEEE 802.11p will be described.
 物理層から見たIEEE802.11p準拠のパケット構成(簡略版)は、図2に示す通り、ショート・トレーニング・フィールドSTF、ロング・トレーニング・フィールドLTF、及び、シグナル・フィールドSIGから成る物理ヘッダの後に、物理データDATAが続いている。ショート・トレーニング・フィールドSTFは、AGC[Automatic Gain Control]制御、パケット検出、シンボル同期、及び、周波数粗調整を行うための情報が記載されているフィールドである。ロング・トレーニング・フィールドLTFは、周波数微調整、及び、伝送路推定を行うための情報が記載されているフィールドである。シグナル・フィールドSIGは、物理データDATAの伝送レート(変調方式)やパケット長の情報がBPSK[Binary Phase Shift Keying]変調されて記載されているフィールドである。また、IEEE802.11pでは、物理データDATAに対する変調方式として、マルチキャリア変調方式の一つであるOFDM[Orthogonal Frequency Division Multiplexing]変調方式が採用されている。 As shown in FIG. 2, the IEEE802.11p compliant packet structure seen from the physical layer is after the physical header composed of the short training field STF, the long training field LTF, and the signal field SIG. , Followed by physical data DATA. The short training field STF is a field in which information for performing AGC [Automatic Gain Control] control, packet detection, symbol synchronization, and coarse frequency adjustment is described. The long training field LTF is a field in which information for performing fine frequency adjustment and channel estimation is described. The signal field SIG is a field in which information on the transmission rate (modulation method) and packet length of physical data DATA is BPSK [Binary Phase Shift Keying] modulated. In IEEE802.11p, an OFDM (Orthogonal Frequency Division Multiplexing) modulation scheme, which is one of multicarrier modulation schemes, is employed as a modulation scheme for physical data DATA.
 次に、ITS車車間通信を行う車載無線通信装置について説明する。ITS車車間通信を行う車載無線通信装置100は、図3に示すように車両200内に設置される。 Next, an in-vehicle wireless communication device that performs ITS inter-vehicle communication will be described. The in-vehicle wireless communication device 100 that performs ITS inter-vehicle communication is installed in the vehicle 200 as shown in FIG.
 図4は、車載無線通信装置100の第1実施形態を示すブロック図である。 FIG. 4 is a block diagram showing the first embodiment of the in-vehicle wireless communication device 100. As shown in FIG.
 図4に示すように、本実施形態の車載無線通信装置100は、シリアル/パラレル変換器1(以下では、S/P[Serial/Parallel]変換器1と呼ぶ)と、変調器2と、IFFT[Inverse Fast Fourier Transform]部3と、ガードインターバル付加部4と、付加処理部5と、デジタル/アナログ変換器6(以下では、D/A[Digital/Analog]変換器6と呼ぶ)と、パワーアンプ7と、物理ヘッダ処理部8と、から成る送信部を備えている。 As shown in FIG. 4, the in-vehicle wireless communication device 100 of this embodiment includes a serial / parallel converter 1 (hereinafter referred to as an S / P [Serial / Parallel] converter 1), a modulator 2, and an IFFT. [Inverse Fast Fourier Transform] section 3, guard interval addition section 4, addition processing section 5, digital / analog converter 6 (hereinafter referred to as D / A [Digital / Analog] converter 6), power A transmission unit including an amplifier 7 and a physical header processing unit 8 is provided.
 また、本実施形態の車載無線通信装置100は、送信と受信とを切り替えるためのスイッチ9と、送受信アンテナ10と、を備えている。 Further, the in-vehicle wireless communication device 100 of the present embodiment includes a switch 9 for switching between transmission and reception, and a transmission / reception antenna 10.
 また、本実施形態の車載無線通信装置100は、可変利得アンプ11と、アナログ/デジタル変換器12(以下、A/D[Analog/Digital]変換器12と呼ぶ)と、分離処理部13と、ガードインターバル除去部14と、FFT部[Fast Fourier Transform]部15と、復調器16と、パラレル/シリアル変換器17(以下、P/S[Parallel/Serial]変換器17と呼ぶ)と、物理ヘッダ処理部18と、から成る受信部を備えている。 The in-vehicle wireless communication device 100 according to the present embodiment includes a variable gain amplifier 11, an analog / digital converter 12 (hereinafter referred to as an A / D [Analog / Digital] converter 12), a separation processing unit 13, Guard interval removing unit 14, FFT unit [Fast Fourier Transform] unit 15, demodulator 16, parallel / serial converter 17 (hereinafter referred to as P / S [Parallel / Serial] converter 17), physical header And a processing unit 18.
 車載無線通信装置100は送信時に次のような動作を行う。S/P変換器1は、入力される送信データ(シリアルデータ)を並列化してサブキャリア本数と同数の変調器2に出力する。サブキャリア毎の変調器2は、S/P変換器1から出力される送信データ(パラレルデータ)に対してサブキャリア毎の一次変調及びレベル調整を行う。変調器2から出力されるデータは、IFFT部3による逆高速フーリエ変換処理で二次変調された後、ガードインターバル付加部4によってガードインターバルが付加され、付加処理部5によって物理ヘッダ処理部8から出力される物理ヘッダが付加され、D/A変換部6によってアナログ信号に変換され、パワーアンプ7によって電力増幅され、スイッチ9を経由して、送受信アンテナ10から送信される。 The in-vehicle wireless communication device 100 performs the following operation during transmission. The S / P converter 1 parallelizes input transmission data (serial data) and outputs it to the same number of modulators 2 as the number of subcarriers. The modulator 2 for each subcarrier performs primary modulation and level adjustment for each subcarrier on the transmission data (parallel data) output from the S / P converter 1. The data output from the modulator 2 is secondarily modulated by inverse fast Fourier transform processing by the IFFT unit 3, and then a guard interval is added by the guard interval adding unit 4, and the addition processing unit 5 outputs the data from the physical header processing unit 8. The output physical header is added, converted to an analog signal by the D / A converter 6, power amplified by the power amplifier 7, and transmitted from the transmission / reception antenna 10 via the switch 9.
 また、車載無線通信装置100は受信時に次のような動作を行う。送受信アンテナ10で受信された受信データは、スイッチ9を経由して、可変利得アンプ11によってレベル調整され、A/D変換部12によってデジタル信号に変換され、分離処理部13によって物理データと物理ヘッダとに分離され、物理データはガードインターバル除去部14に出力され、物理ヘッダは物理ヘッダ処理部18に出力される。分離処理部13から出力された物理データは、ガードインターバル除去部14によってガードインターバルが除去された後、FFT部15による高速フーリエ変換処理で一次復調され、サブキャリア本数と同数の復調器16によって二次復調される。サブキャリア毎の復調器16によってサブキャリア毎に二次復調されたデータは、P/S変換器17によって受信データ(シリアルデータ)に変換される。 In addition, the in-vehicle wireless communication device 100 performs the following operation upon reception. Received data received by the transmission / reception antenna 10 is level-adjusted by the variable gain amplifier 11 via the switch 9, converted into a digital signal by the A / D conversion unit 12, and physical data and physical header by the separation processing unit 13. The physical data is output to the guard interval removing unit 14, and the physical header is output to the physical header processing unit 18. The physical data output from the separation processing unit 13 is first demodulated by fast Fourier transform processing by the FFT unit 15 after the guard interval is removed by the guard interval removing unit 14, and is demodulated by the demodulator 16 having the same number of subcarriers. Next demodulated. The data secondarily demodulated for each subcarrier by the demodulator 16 for each subcarrier is converted into received data (serial data) by the P / S converter 17.
 続いて、車載無線通信装置100において実施するマルチキャリア変調方法について説明する。 Subsequently, a multicarrier modulation method performed in the in-vehicle wireless communication device 100 will be described.
 被干渉対策を行う場合、車載無線通信装置100は、例えば図5(b)に示すマルチキャリア変調方法を実施する。図5(b)に示すマルチキャリア変調は、チャネル帯域(サブキャリアが配置されている帯域)の両端の所定本数のサブキャリア以外のサブキャリアに対して16QAM[Quadrature Amplitude Modulation]で一次変調を行い、前記チャネル帯域の両端の所定本数のサブキャリアに対して16QAMよりもノイズ耐性の強いQPSK[Quadrature Phase Shift Keying]で一次変調を行うOFDM変調である。 When taking measures against interference, the in-vehicle wireless communication device 100 performs, for example, the multicarrier modulation method shown in FIG. In the multicarrier modulation shown in FIG. 5B, primary modulation is performed with 16QAM [Quadrature Amplitude Modulation] on subcarriers other than a predetermined number of subcarriers at both ends of a channel band (band where subcarriers are arranged). This is OFDM modulation in which primary modulation is performed by QPSK [Quadrature Phase Shift Keying], which is stronger in noise resistance than 16QAM, for a predetermined number of subcarriers at both ends of the channel band.
 この場合、サブキャリア本数と同数の変調器2のうち、前記チャネル帯域の両端の所定本数のサブキャリア以外のサブキャリアに対応するものは16QAM変調を行う変調器とし、前記チャネル帯域の両端の所定本数のサブキャリアに対応するものはQPSK変調を行う変調器としておく。また、これに対応して、サブキャリア本数と同数の復調器16のうち、前記チャネル帯域の両端の所定本数のサブキャリア以外のサブキャリアに対応するものは16QAM復調を行う復調器とし、前記チャネル帯域の両端の所定本数のサブキャリアに対応するものはQPSK復調を行う復調器とする。 In this case, among the same number of modulators 2 as the number of subcarriers, those corresponding to subcarriers other than the predetermined number of subcarriers at both ends of the channel band are modulators that perform 16QAM modulation, and predetermined modulators at both ends of the channel band are used. The one corresponding to the number of subcarriers is a modulator that performs QPSK modulation. Correspondingly, among the same number of demodulators 16 as the number of subcarriers, those corresponding to subcarriers other than the predetermined number of subcarriers at both ends of the channel band are demodulators that perform 16QAM demodulation, and the channel The one corresponding to a predetermined number of subcarriers at both ends of the band is a demodulator that performs QPSK demodulation.
 図5(b)に示すようなマルチキャリア変調方法は、被干渉の影響が大きいチャネル帯域の両端において、ノイズ耐性の強い変調方式(ここではQPSK)が採用されるので、図5(a)に示すような従来のマルチキャリア変調方法に比べて、使用周波数帯が隣接する他システムからの干渉(被干渉)に強くなる。 The multi-carrier modulation method as shown in FIG. 5B employs a modulation scheme (QPSK in this case) having high noise resistance at both ends of the channel band where the influence of interference is large. Compared with the conventional multi-carrier modulation method as shown, the used frequency band is more resistant to interference (interfered) from other adjacent systems.
 与干渉対策を行う場合、車載無線通信装置100は、例えば図6(c)に示すマルチキャリア変調方法を実施する。図6(c)に示すマルチキャリア変調は、チャネル帯域(サブキャリアが配置されている帯域)の両端の所定本数のサブキャリア以外のサブキャリアに対して16QAMで一次変調を行い、前記チャネル帯域の両端の所定本数のサブキャリアに対して16QAMよりもノイズ耐性の強いQPSKで一次変調を行い、前記チャネル帯域の両端の所定本数のサブキャリアのレベルを、前記チャネル帯域の両端の所定本数のサブキャリア以外のサブキャリアのレベルの1/2としているOFDM変調である。 When taking measures against interference, the in-vehicle wireless communication device 100 performs, for example, the multicarrier modulation method illustrated in FIG. The multicarrier modulation shown in FIG. 6 (c) performs primary modulation with 16QAM on subcarriers other than a predetermined number of subcarriers at both ends of a channel band (band in which subcarriers are arranged), and Primary modulation is performed on a predetermined number of subcarriers at both ends by QPSK, which is stronger in noise resistance than 16QAM, and the level of the predetermined number of subcarriers at both ends of the channel band is set to a predetermined number of subcarriers at both ends of the channel band. The OFDM modulation is set to ½ of the level of other subcarriers.
 この場合、サブキャリア本数と同数の変調器2のうち、前記チャネル帯域の両端の所定本数のサブキャリア以外のサブキャリアに対応するものは16QAM変調を行う変調器とし、前記チャネル帯域の両端の所定本数のサブキャリアに対応するものはQPSK変調を行う変調器とするとともに、サブキャリア毎の変調器2によるサブキャリア毎のレベル調整によって、前記チャネル帯域の両端の所定本数のサブキャリアのレベルが、前記チャネル帯域の両端の所定本数のサブキャリア以外のサブキャリアのレベルの1/2となるようにする。また、これに対応して、サブキャリア本数と同数の復調器16のうち、前記チャネル帯域の両端の所定本数のサブキャリア以外のサブキャリアに対応するものは16QAM復調を行う復調器とし、前記チャネル帯域の両端の所定本数のサブキャリアに対応するものはQPSK復調を行う復調器とする。 In this case, among the same number of modulators 2 as the number of subcarriers, those corresponding to subcarriers other than the predetermined number of subcarriers at both ends of the channel band are modulators that perform 16QAM modulation, and predetermined modulators at both ends of the channel band are used. The one corresponding to the number of subcarriers is a modulator that performs QPSK modulation, and the level adjustment for each subcarrier by the modulator 2 for each subcarrier causes the level of a predetermined number of subcarriers at both ends of the channel band to be The level is set to ½ of the level of subcarriers other than the predetermined number of subcarriers at both ends of the channel band. Correspondingly, among the same number of demodulators 16 as the number of subcarriers, those corresponding to subcarriers other than the predetermined number of subcarriers at both ends of the channel band are demodulators that perform 16QAM demodulation, and the channel The one corresponding to a predetermined number of subcarriers at both ends of the band is a demodulator that performs QPSK demodulation.
 図6(c)に示すようなマルチキャリア変調方法は、与干渉の主要な要因となるチャネル帯域の両端において、サブキャリアのレベルが低減されるので、図6(a)に示すような従来のマルチキャリア変調方法に比べて、使用周波数帯が隣接する他システムへの干渉(与干渉)を低減することができるとともに、レベルが低減されるサブキャリアの変調にノイズ耐性の強い変調方式(ここではQPSK)が採用されるので、図6(b)に示すような従来のマルチキャリア変調方法(特許文献1で提案されている方法)に比べて、通信品質を良くすることができる。 In the multicarrier modulation method as shown in FIG. 6 (c), the level of subcarriers is reduced at both ends of the channel band, which is a major factor of interference, so that the conventional method as shown in FIG. 6 (a). Compared with the multi-carrier modulation method, it is possible to reduce interference with other systems that are adjacent to each other in the frequency band used (in addition to interference), and to provide a noise-resistant modulation scheme (in this case) that is more resistant to sub-carrier modulation where the level is reduced. Since QPSK) is employed, communication quality can be improved as compared with the conventional multicarrier modulation method (method proposed in Patent Document 1) as shown in FIG.
 上述した図5(b)に示すマルチキャリア変調、及び、図6(c)に示すマルチキャリア変調では、チャネル帯域(サブキャリアが配置されている帯域)の両端のサブキャリアの本数が低域側端部と高域側端部で同数になっているが、異なる数(片方が零である場合を含む)であってもよい。例えば、被干渉対策を行う場合には、図7(a)や図7(b)のようなマルチキャリア変調としてもよく、与干渉対策を行う場合には、図8(a)や図8(b)のようなマルチキャリア変調としてもよい。 In the above-described multicarrier modulation shown in FIG. 5B and multicarrier modulation shown in FIG. 6C, the number of subcarriers at both ends of the channel band (band in which the subcarriers are arranged) is low. Although the number is the same at the end and the high-frequency side end, it may be a different number (including the case where one is zero). For example, when taking countermeasures against interference, multi-carrier modulation as shown in FIG. 7A or FIG. 7B may be used, and when taking countermeasures against interference, FIG. 8A or FIG. It is good also as multicarrier modulation like b).
 上述した図5~図8は、基本的にパケットを時間軸から観測した場合の物理データDATA(図2参照)の部分についてのスペクトラムを示した図である。 FIG. 5 to FIG. 8 described above are diagrams showing the spectrum of the portion of the physical data DATA (see FIG. 2) when the packet is basically observed from the time axis.
 与干渉対策を行う場合に実施される図6(c)並びに図8(a)及び(b)に示すマルチキャリア変調方法では、物理データDATAの部分に対して、チャネル帯域の端部におけるサブキャリアのレベル低減及びノイズに強い変調方式の採用を行うことは、必須である。さらに、与干渉対策を行う場合に実施するマルチキャリア変調の拡張版としては、チャネル帯域の端部におけるサブキャリアのレベル低減を物理データDATAの部分だけでなく、シグナル・フィールドSIG(図2参照)まで拡張する方法、ロング・トレーニング・フィールドLTF(図2参照)まで拡張する方法、又はショート・トレーニング・フィールドSTF(図2参照)まで拡張する方法などの様々な方法が考えられる。 In the multicarrier modulation method shown in FIG. 6 (c) and FIGS. 8 (a) and 8 (b), which are implemented when countermeasures against interference are performed, subcarriers at the end of the channel band are compared with the physical data DATA portion. It is indispensable to reduce the level of noise and adopt a modulation scheme that is resistant to noise. Further, as an extended version of multicarrier modulation performed when countermeasures against interference are taken, the subcarrier level reduction at the end of the channel band is performed not only in the physical data DATA part but also in the signal field SIG (see FIG. 2). Various methods such as a method of extending to a long training field LTF (see FIG. 2) or a method of extending to a short training field STF (see FIG. 2) are conceivable.
 一方、被干渉対策を行う場合に実施される図5(b)並びに図7(a)及び(b)に示すマルチキャリア変調方法では、物理データDATAの部分に対してのみ、チャネル帯域の端部におけるノイズに強い変調方式の採用を行う。与干渉対策を行う場合のように、物理ヘッダ(シグナル・フィールドSIG、ロング・トレーニング・フィールドLTF、ショート・トレーニング・フィールドSTF)まで拡張する方法は考えられない。 On the other hand, in the multicarrier modulation method shown in FIG. 5B and FIG. 7A and FIG. 7B implemented when countermeasures against interference are performed, the end of the channel band is only applied to the physical data DATA portion. Adopt a modulation method that is resistant to noise. There is no way to extend to the physical header (signal field SIG, long training field LTF, short training field STF) as in the case of taking countermeasures against interference.
 ところで、従来のシグナル・フィールドSIG(図2参照)には、上述したように、物理データDATAの伝送レート(変調方式)やパケット長の情報が記載されている。しかしながら、図6(c)並びに図8(a)及び(b)に示すマルチキャリア変調方法や図5(b)並びに図7(a)及び(b)に示すマルチキャリア変調方法を実施する場合に、チャネル帯域の両端の所定本数のサブキャリア以外のサブキャリアのレベルに対する前記チャネル帯域の両端の所定本数のサブキャリアのレベルの低減度合いに関する情報、前記チャネル帯域の両端の所定本数のサブキャリアの変調に用いられる第2の変調方式に関する情報、及び、前記所定本数に関する情報のうち、少なくとも1つの情報を物理ヘッダに記載して、チャネル帯域の両端の所定本数のサブキャリア以外のサブキャリアのレベルに対する前記チャネル帯域の両端の所定本数のサブキャリアのレベルの低減度合い、前記第2の変調方式、及び、前記所定本数の少なくとも一つを変更可能とするためには、従来のシグナル・フィールドSIGとは異なる領域に別途記載する必要がある。というのは、IEEE802.11p準拠の従来のシグナル・フィールドSIGでは、リザーブビットが1ビットしかないためである。なお、チャネル帯域の両端の所定本数のサブキャリア以外のサブキャリアのレベルに対する前記チャネル帯域の両端の所定本数のサブキャリアのレベルの低減度合いに関する情報、前記第2の変調方式に関する情報、及び、前記所定本数に関する情報のうち、少なくとも1つの情報に加えて、前記チャネル帯域の両端の所定本数のサブキャリア以外のサブキャリアの変調に用いられる第1の変調方式に関する情報、及び、前記第1の変調方式によって変調されるサブキャリアの本数に関する情報のうち、少なくとも1つの情報についても、従来のシグナル・フィールドSIGとは異なる領域に別途記載するようにしてもよい。 By the way, in the conventional signal field SIG (see FIG. 2), as described above, information on the transmission rate (modulation method) of physical data DATA and packet length is described. However, when the multicarrier modulation method shown in FIG. 6 (c) and FIGS. 8 (a) and (b) and the multicarrier modulation method shown in FIGS. 5 (b), 7 (a) and (b) are implemented. Information on the degree of reduction of the level of the predetermined number of subcarriers at both ends of the channel band relative to the level of subcarriers other than the predetermined number of subcarriers at both ends of the channel band, modulation of the predetermined number of subcarriers at both ends of the channel band In the physical header, at least one piece of information on the second modulation scheme used in the above and information on the predetermined number is described in the physical header, and the level of subcarriers other than the predetermined number of subcarriers at both ends of the channel band Degree of reduction of the level of a predetermined number of subcarriers at both ends of the channel band, the second modulation scheme, and the To enable changing at least one of the constant number, it is necessary to describe separately in a region different from the conventional signal field SIG. This is because in the conventional signal field SIG compliant with IEEE 802.11p, there is only one reserved bit. Note that the information about the degree of reduction of the level of the predetermined number of subcarriers at both ends of the channel band with respect to the level of subcarriers other than the predetermined number of subcarriers at both ends of the channel band, the information about the second modulation scheme, and In addition to at least one piece of information on the predetermined number, information on a first modulation scheme used for modulation of subcarriers other than the predetermined number of subcarriers at both ends of the channel band, and the first modulation Of the information on the number of subcarriers modulated by the method, at least one piece of information may be separately described in a region different from the conventional signal field SIG.
 上述した、従来のシグナル・フィールドSIGとは異なる領域への別途記載の具体例としては、図9(a)~図9(c)に示す3つの例が挙げられる。 Specific examples described separately in a region different from the conventional signal field SIG described above include the three examples shown in FIGS. 9 (a) to 9 (c).
 図9(a)は、IEEE802.11p準拠の従来のシグナル・フィールドSIGを含んだ拡張シグナル・フィールドSIG’を設定した場合のパケット構成を示す図である。この拡張シグナル・フィールドSIG’には、従来通りの伝送レート及びパケット長だけでなく、チャネル帯域の両端の所定本数のサブキャリア以外のサブキャリアのレベルに対する前記チャネル帯域の両端の所定本数のサブキャリアのレベルの低減度合いに関する情報、前記チャネル帯域の両端の所定本数のサブキャリアの変調に用いられる第2の変調方式に関する情報、及び、前記所定本数に関する情報のうち、少なくとも1つの情報が記載される。 FIG. 9A is a diagram showing a packet configuration when an extended signal field SIG ′ including a conventional signal field SIG compliant with IEEE802.11p is set. The extended signal field SIG ′ includes not only the conventional transmission rate and packet length, but also a predetermined number of subcarriers at both ends of the channel band with respect to subcarrier levels other than the predetermined number of subcarriers at both ends of the channel band. At least one of information on a degree of level reduction, information on a second modulation scheme used for modulation of a predetermined number of subcarriers at both ends of the channel band, and information on the predetermined number is described. .
 図9(b)は、IEEE802.11p準拠の従来のシグナル・フィールドSIGのリザーブビットを利用し、リザーブビットが立っている場合は第2のシグナル・フィールドSIG2の情報を読みに行く場合のパケット構成を示す図である。この場合、IEEE802.11p準拠の従来のシグナル・フィールドSIGについては何ら変わりないが、第2のシグナル・フィールドSIG2に、チャネル帯域の両端の所定本数のサブキャリア以外のサブキャリアのレベルに対する前記チャネル帯域の両端の所定本数のサブキャリアのレベルの低減度合いに関する情報、前記チャネル帯域の両端の所定本数のサブキャリアの変調に用いられる第2の変調方式に関する情報、及び、前記所定本数に関する情報のうち少なくとも1つの情報が記載される。 FIG. 9B shows a packet configuration when the reserve bit of the conventional signal field SIG compliant with IEEE802.11p is used, and when the reserve bit is set, the information of the second signal field SIG2 is read. FIG. In this case, the conventional signal field SIG conforming to IEEE802.11p is not changed at all, but the second signal field SIG2 includes the channel band corresponding to the subcarrier level other than the predetermined number of subcarriers at both ends of the channel band. At least among the information about the degree of reduction of the level of the predetermined number of subcarriers at both ends of the channel, the information about the second modulation scheme used for the modulation of the predetermined number of subcarriers at both ends of the channel band, and the information about the predetermined number One piece of information is described.
 図9(c)は、見た目はIEEE802.11p準拠の従来のパケット(図2を参照)と同じ構成であるが、シグナル・フィールドSIGに記載されている物理データDATAの伝送レート(変調方式)に関する情報(以下、レート情報という)の扱い方に工夫を加える。従来のシグナル・フィールドSIGに記載されているレート情報は4ビットあり、16種類を表現することができるが、実際、割り当てがあるのは図10(a)に示すように8種類なので、残り8種類を図10(b)に示すように、チャネル帯域の片端又は両端の所定本数のサブキャリア以外のサブキャリアのレベルに対する前記チャネル帯域の片端又は両端の所定本数のサブキャリアのレベルの低減度合いに関する情報、前記チャネル帯域の両端の所定本数のサブキャリアの変調に用いられる第2の変調方式に関する情報、及び、前記所定本数に関する情報の組み合わせパターンA~Hに割り当てる。前記組み合わせパターンは、効果的と思われるものを予め8通り設定しておく。その設定の一例を図11A及び図11Bに示す。図11A及び図11Bの設定例では、前記組み合わせパターンA~Hに、前記チャネル帯域の両端の所定本数のサブキャリア以外のサブキャリアの変調に用いられる第1の変調方式に関する情報、及び、前記第1の変調方式によって変調されるサブキャリアの本数に関する情報も含まれている。なお、前記組み合わせパターンA~Hの各々は、ある意味で伝送レートを示しているといえる。 FIG. 9C shows the same configuration as a conventional packet (see FIG. 2) compliant with IEEE802.11p, but relates to the transmission rate (modulation method) of physical data DATA described in the signal field SIG. Ingenuity is added to how to handle information (hereinafter referred to as rate information). The rate information described in the conventional signal field SIG has 4 bits and can express 16 types. However, since there are actually 8 types of allocation as shown in FIG. As shown in FIG. 10B, the degree of reduction in the level of a predetermined number of subcarriers at one or both ends of the channel band relative to the level of subcarriers other than the predetermined number of subcarriers at one or both ends of the channel band. Information, information on a second modulation scheme used for modulation of a predetermined number of subcarriers at both ends of the channel band, and information on the predetermined number of information are assigned to combination patterns A to H. As the combination patterns, eight patterns that are considered to be effective are set in advance. An example of the setting is shown in FIGS. 11A and 11B. In the setting examples of FIGS. 11A and 11B, the combination patterns A to H include information on a first modulation scheme used for modulation of subcarriers other than a predetermined number of subcarriers at both ends of the channel band, and the first Information on the number of subcarriers modulated by one modulation scheme is also included. It can be said that each of the combination patterns A to H indicates a transmission rate in a certain sense.
 例えば、図11A及び図11Bに示す組み合わせパターン設定を採用する場合、車載無線通信装置100を図12に示す第2実施形態の構成とし、サブキャリア本数と同数の変調器2のうち、10個の変調器がQPSK変調を行い、それ以外の変調器が16QAM変調を行い、サブキャリア本数と同数の復調器16のうち、10個の復調器がQPSK復調を行いそれ以外の復調器が16QAM変調を行うようにするとよい。なお、図12において、図4と同一の部分には同一の符号を付して詳細な説明を省略する。 For example, when the combination pattern setting shown in FIGS. 11A and 11B is adopted, the in-vehicle wireless communication device 100 is configured as in the second embodiment shown in FIG. 12, and 10 of the number of modulators 2 are the same as the number of subcarriers. The modulator performs QPSK modulation, the other modulators perform 16QAM modulation, and among the same number of demodulators 16 as the number of subcarriers, 10 demodulators perform QPSK demodulation and the other demodulator perform 16QAM modulation. You should do it. In FIG. 12, the same parts as those in FIG. 4 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図12に示す第2実施形態の構成は、図4に示す第1実施形態の構成に、組み合わせパターン選択部19及び組み合わせパターン判定部20を追加した構成である。 The configuration of the second embodiment shown in FIG. 12 is a configuration in which a combination pattern selection unit 19 and a combination pattern determination unit 20 are added to the configuration of the first embodiment shown in FIG.
 組み合わせパターン選択部19は、図11A及び図11Bに示す8通りの組み合わせパターンA~Hから一つを選択し、その選択結果に応じて変調器2を制御して、サブキャリア毎のレベルを決定するとともに、どのサブキャリアにどの変調器を割り当てるかを決定してサブキャリア毎の変調方式も決定する。また、組み合わせパターン選択部19は、その選択結果を物理ヘッダ処理部8にも出力する。物理ヘッダ処理部8は、組み合わせパターン選択部19の出力に基づいて、選択された組み合わせパターンの情報をシグナル・フィールドSIGに記載する。 The combination pattern selection unit 19 selects one of the eight combination patterns A to H shown in FIGS. 11A and 11B, and controls the modulator 2 according to the selection result to determine the level for each subcarrier. In addition, it is determined which modulator is assigned to which subcarrier, and the modulation scheme for each subcarrier is also determined. The combination pattern selection unit 19 also outputs the selection result to the physical header processing unit 8. Based on the output of the combination pattern selection unit 19, the physical header processing unit 8 describes information on the selected combination pattern in the signal field SIG.
 組み合わせパターン判定部20は、物理ヘッダ処理部18の出力に基づいて、受信データの伝送に用いられている組み合わせパターンを判定し、その判定結果に応じて復調器16を制御して、どのサブキャリアにどの復調器を割り当てるかを決定してサブキャリア毎の復調方式を決定する。 Based on the output of the physical header processing unit 18, the combination pattern determination unit 20 determines a combination pattern used for transmission of received data, and controls the demodulator 16 according to the determination result to determine which subcarrier. Which demodulator is assigned to each subcarrier is determined to determine a demodulation method for each subcarrier.
 また、チャネル帯域の両端の所定本数のサブキャリア以外のサブキャリアのレベルに対する前記チャネル帯域の両端の所定本数のサブキャリアのレベルの低減度合い、前記チャネル帯域の両端の所定本数のサブキャリアの変調に用いられる第2の変調方式、及び、前記所定本数等の本発明に係る信号変調方法の各種パラメータを状況に応じて適応的に変化させてもよい。例えば、図12に示す第2実施形態の車載無線通信装置100において、路車間通信等により、自車両200(図3参照)の現在位置での他システム(地上デジタルテレビジョン放送システム及び電気通信システム)との干渉状況(被干渉状況及び与干渉状況)を把握する干渉状況把握部から、組み合わせパターン選択部19が干渉状況を受け取るようにし、組み合わせパターン選択部19が干渉状況に応じて組み合わせパターンを選択するようにしてもよい。 Further, the degree of reduction of the level of the predetermined number of subcarriers at both ends of the channel band relative to the level of subcarriers other than the predetermined number of subcarriers at both ends of the channel band, and modulation of the predetermined number of subcarriers at both ends of the channel band. Various parameters of the signal modulation method according to the present invention, such as the second modulation method used and the predetermined number, may be adaptively changed according to the situation. For example, in the in-vehicle wireless communication device 100 of the second embodiment shown in FIG. 12, other systems (terrestrial digital television broadcasting system and telecommunication system) at the current position of the host vehicle 200 (see FIG. 3) by road-to-vehicle communication or the like. The combination pattern selecting unit 19 receives the interference state from the interference state grasping unit that grasps the interference state (interference state and interference state), and the combination pattern selecting unit 19 selects the combination pattern according to the interference state. You may make it select.
 また、本発明に係る信号変調方法の各種パラメータを状況に応じて適応的に変化させる手法としては、使用周波数帯が隣接している他システムの信号強度(受信電力)を逐次検出し、その検出結果に基づいて上記各種パラメータの可変制御を行う構成が考えられる。以下では、上記の構成を本発明に係る第3実施形態として詳細に説明する。 In addition, as a technique for adaptively changing various parameters of the signal modulation method according to the present invention according to the situation, the signal strength (reception power) of other systems adjacent to the used frequency band is sequentially detected and detected. A configuration in which variable control of the various parameters is performed based on the result is conceivable. Hereinafter, the above configuration will be described in detail as a third embodiment according to the present invention.
 図13は、車載無線通信装置100の第3実施形態を示すブロック図である。 FIG. 13 is a block diagram showing a third embodiment of the in-vehicle wireless communication device 100. As shown in FIG.
 図13に示す通り、本実施形態の車載無線通信装置100は、送受信アンテナ31と、スイッチ32と、低雑音増幅器33(以下ではLNA[Low Noise Amplifier]33と呼ぶ)と、所望波通過フィルタ34と、アナログ/デジタル変換器35(以下ではA/D変換器35と呼ぶ)と、同期処理部36と、復調部37と、変調部38と、送信処理部39と、デジタル/アナログ変換器40(以下ではD/A変換器40と呼ぶ)と、所望波通過フィルタ41と、高出力増幅器42と、を有するほか、さらに、本実施形態に特有の構成要素として、低域側通過フィルタ43と、アナログ/デジタル変換器44(以下ではA/D変換器44と呼ぶ)と、判定部45と、を有して成る。 As shown in FIG. 13, the in-vehicle wireless communication device 100 of this embodiment includes a transmission / reception antenna 31, a switch 32, a low noise amplifier 33 (hereinafter referred to as LNA [Low Noise Amplifier] 33), and a desired wave pass filter 34. An analog / digital converter 35 (hereinafter referred to as an A / D converter 35), a synchronization processing unit 36, a demodulation unit 37, a modulation unit 38, a transmission processing unit 39, and a digital / analog converter 40. (Hereinafter referred to as a D / A converter 40), a desired wave pass filter 41, and a high-power amplifier 42, and further, as a component specific to the present embodiment, a low-pass filter 43, , An analog / digital converter 44 (hereinafter referred to as an A / D converter 44) and a determination unit 45.
 上記に挙げた構成要素のうち、図13の送受信アンテナ31は、図4または図12の送受信アンテナ10に相当し、図13のスイッチ32は、図4または図12のスイッチ9に相当する。また、図13のLNA33は、図4または図12の可変利得アンプ11に相当し、図13のA/D変換器35は、図4または図12のA/D変換器12に相当する。また、図13のD/A変換器40は、図4または図12のD/A変換器6に相当し、図13の高出力増幅器42は、図4または図12のパワーアンプ7に相当する。 Among the components listed above, the transmission / reception antenna 31 in FIG. 13 corresponds to the transmission / reception antenna 10 in FIG. 4 or FIG. 12, and the switch 32 in FIG. 13 corresponds to the switch 9 in FIG. 13 corresponds to the variable gain amplifier 11 of FIG. 4 or FIG. 12, and the A / D converter 35 of FIG. 13 corresponds to the A / D converter 12 of FIG. Further, the D / A converter 40 in FIG. 13 corresponds to the D / A converter 6 in FIG. 4 or FIG. 12, and the high-power amplifier 42 in FIG. 13 corresponds to the power amplifier 7 in FIG. .
 なお、図13の同期処理部36及び復調部37については、図4または図12に直接対応付けられる構成要素が描写されていないが、図4または図12の分離処理部13、ガードインターバル除去部14、FFT部15、復調器16、P/S変換器17、物理ヘッダ処理部18、及び、組み合わせパターン判定部20がこれに相当すると解される。また、図13の変調部38及び送信処理部39についても、図4または図12に直接対応付けられる構成要素が描写されていないが、図4または図12のS/P変換器1、変調器2、IFFT部3、ガードインターバル付加部4、付加処理部5、物理ヘッダ処理部8、及び、組み合わせパターン選択部19がこれに相当すると解される。 The synchronization processing unit 36 and the demodulation unit 37 in FIG. 13 do not depict components directly associated with FIG. 4 or FIG. 12, but the separation processing unit 13 and the guard interval removal unit in FIG. 4 or FIG. 14, the FFT unit 15, the demodulator 16, the P / S converter 17, the physical header processing unit 18, and the combination pattern determination unit 20 are understood to correspond to this. Also, the modulation unit 38 and the transmission processing unit 39 in FIG. 13 do not depict components directly associated with FIG. 4 or FIG. 12, but the S / P converter 1 and the modulator in FIG. 2, IFFT unit 3, guard interval addition unit 4, addition processing unit 5, physical header processing unit 8, and combination pattern selection unit 19 are understood to correspond to this.
 車載無線通信装置100の受信動作時において、スイッチ32は、送受信アンテナ31とLNA33との間を導通する。LNA33は、送受信アンテナ31からスイッチ32を介して入力される受信信号を所定のゲインで電力増幅する。所望波通過フィルタ34は、例えば、図1に示した周波数配置において、所望の信号(図1の例ではITS車車間通信システムでやり取りされる信号)を受信すべく、LNA33から入力される信号にフィルタリング処理を施して所望のチャネル帯域(図1の例では715MHz~725MHz)に属する周波数成分のみを通過させる。A/D変換器35は、所望波通過フィルタ34から入力されるアナログ信号をデジタル信号に変換する。同期処理部36は、A/D変換器35から入力される信号の同期処理を行う。復調部37は、同期処理部36から入力される信号にFFT処理やデマッピング処理を施して所望の受信データを復調する。 During the reception operation of the in-vehicle wireless communication device 100, the switch 32 conducts between the transmission / reception antenna 31 and the LNA 33. The LNA 33 amplifies the power of a reception signal input from the transmission / reception antenna 31 via the switch 32 with a predetermined gain. For example, in the frequency arrangement shown in FIG. 1, the desired wave pass filter 34 converts a signal input from the LNA 33 to receive a desired signal (a signal exchanged in the ITS inter-vehicle communication system in the example of FIG. 1). Filtering processing is performed to pass only frequency components belonging to a desired channel band (715 MHz to 725 MHz in the example of FIG. 1). The A / D converter 35 converts the analog signal input from the desired wave pass filter 34 into a digital signal. The synchronization processing unit 36 performs synchronization processing of the signal input from the A / D converter 35. The demodulation unit 37 demodulates desired received data by performing FFT processing and demapping processing on the signal input from the synchronization processing unit 36.
 一方、車載無線通信装置100の送信動作時において、スイッチ32は、送受信アンテナ31と高出力増幅器42との間を導通する。変調部38は、判定部45からの指示に基づき、送信データに対して状況に応じた適切な変調処理を施す。送信処理部39は、変調部38から入力されるデジタル信号にIFFT処理を施してOFDM信号を生成する。D/A変換器40は、送信処理部39から入力されるデジタル信号(OFDM信号)をアナログ信号に変換する。所望波通過フィルタ41は、例えば、図1に示した周波数配置において、所望の信号(図1の例ではITS車車間通信システムでやり取りされる信号)を送信すべく、D/A変換部40から入力される信号にフィルタリング処理を施して所望のチャネル帯域(図1の例では715MHz~725MHz)に属する周波数成分のみを通過させる。高出力増幅器42は、所望波通過フィルタ41から入力される信号を所定のゲインで電力増幅する。高出力増幅器42で電力増幅された送信信号は、スイッチ32を介して送受信アンテナ31に送られ、送受信アンテナ31から車載無線通信装置100の外部に向けて送信される。 On the other hand, during the transmission operation of the in-vehicle wireless communication device 100, the switch 32 conducts between the transmission / reception antenna 31 and the high-power amplifier 42. Based on an instruction from the determination unit 45, the modulation unit 38 performs an appropriate modulation process on the transmission data according to the situation. The transmission processing unit 39 performs an IFFT process on the digital signal input from the modulation unit 38 to generate an OFDM signal. The D / A converter 40 converts the digital signal (OFDM signal) input from the transmission processing unit 39 into an analog signal. For example, in the frequency arrangement shown in FIG. 1, the desired wave pass filter 41 sends a desired signal (a signal exchanged in the ITS inter-vehicle communication system in the example of FIG. 1) from the D / A converter 40. The input signal is subjected to filtering processing to pass only frequency components belonging to a desired channel band (715 MHz to 725 MHz in the example of FIG. 1). The high-power amplifier 42 amplifies the signal input from the desired wave pass filter 41 with a predetermined gain. The transmission signal amplified by the high-power amplifier 42 is transmitted to the transmission / reception antenna 31 via the switch 32 and transmitted from the transmission / reception antenna 31 to the outside of the in-vehicle wireless communication device 100.
 次に、車載無線通信装置100の送信動作時における隣接干渉対策の要否ないし度合い(強度)を制御する手法について、詳細な説明を行う。 Next, a detailed description will be given of a method for controlling the necessity or degree (intensity) of measures against adjacent interference during the transmission operation of the in-vehicle wireless communication device 100.
 低域側通過フィルタ43は、図14に示すように、LNA33から入力される信号にフィルタリング処理を施す手段であって、ITS車車間通信システムが使用する第1周波数帯域(図14の例では、720MHzを中心周波数として、合計10MHz幅の周波数帯域(715MHz~725MHz))よりも低域側において、これに隣接する第2周波数帯域(図14の例では、5MHz幅のガードバンドを含む形で、合計10MHz幅の周波数帯域(705MHz~715MHz))に属する信号成分のみを選択的に通過させる。 As shown in FIG. 14, the low-pass filter 43 is a means for performing a filtering process on the signal input from the LNA 33, and is a first frequency band used by the ITS inter-vehicle communication system (in the example of FIG. 14, A second frequency band (in the example of FIG. 14, including a 5 MHz wide guard band) on the lower side of the frequency band (715 MHz to 725 MHz) having a total frequency of 10 MHz with a center frequency of 720 MHz, Only signal components belonging to a frequency band (705 MHz to 715 MHz) having a total width of 10 MHz are selectively passed.
 なお、図14では、ITS車車間通信システムの低域側に隣接するガードバンドと、デジタルテレビジョン放送システムの使用周波数帯域の一部を含む形で、低域側通過フィルタ43の通過帯域を設定した構成を例示したが、本発明の構成はこれに限定されるものではなく、デジタルテレビジョン放送システムの使用周波数帯域の全部を含む形で、低域側通過フィルタ43の通過帯域を設定してもよい。また、ガードバンドのみを低域側通過フィルタ43の通過帯域に設定してもよいし、ガードバンドを除いてデジタルテレビジョン放送システムの使用周波数帯域の一部または全部を低域側通過フィルタ43の通過帯域に設定してもよい。重要なことは、低域側通過フィルタ43の通過帯域にITS車車間通信システムのチャネル帯域が含まれていないこと(すなわち、所望波通過フィルタ3の通過帯域と低域側通過フィルタ34の通過帯域とが排他的に設定されていること)である。 In FIG. 14, the pass band of the low-pass filter 43 is set so as to include a guard band adjacent to the low-frequency side of the ITS inter-vehicle communication system and a part of the use frequency band of the digital television broadcasting system. Although the configuration of the present invention is illustrated, the configuration of the present invention is not limited to this, and the pass band of the low-pass filter 43 is set so as to include all the frequency bands used in the digital television broadcasting system. Also good. In addition, only the guard band may be set as the pass band of the low-pass filter 43, or a part or all of the frequency band used in the digital television broadcasting system except for the guard band may be set in the low-pass filter 43. A pass band may be set. What is important is that the channel band of the ITS inter-vehicle communication system is not included in the pass band of the low pass filter 43 (that is, the pass band of the desired wave pass filter 3 and the pass band of the low pass filter 34). And are set exclusively).
 A/D変換器44は、低域側通過フィルタ43から入力されるアナログ信号をデジタル信号に変換する。 The A / D converter 44 converts the analog signal input from the low-pass filter 43 into a digital signal.
 判定部45は、A/D変換器44から入力されるデジタル信号のレベル判定(受信電力測定)を行い、その判定結果を変調部38に対して通知する。なお、判定部45については、受信信号の強度測定手段として一般的に用いられているRSSI[Received Signal Strength Indicator]回路などを好適に適用することが可能である。このRSSI回路については、判定部45に内蔵してもよいし、低域側通過フィルタ43とA/D変換器44との間に挿入してもよい。 The determination unit 45 performs level determination (received power measurement) of the digital signal input from the A / D converter 44 and notifies the modulation unit 38 of the determination result. As the determination unit 45, an RSSI [Received Signal Strength Indicator] circuit or the like generally used as a received signal strength measurement unit can be suitably applied. The RSSI circuit may be incorporated in the determination unit 45 or may be inserted between the low-pass filter 43 and the A / D converter 44.
 変調部38は、判定部45からの通知に基づいて、信号変調方法の各種パラメータを適切に設定する。 The modulation unit 38 appropriately sets various parameters of the signal modulation method based on the notification from the determination unit 45.
 例えば、デジタルテレビジョン放送システムからITS車車間通信システムへの被干渉が問題となる場合、変調部38は、判定部45に入力される信号レベル(受信電力P)が所定値よりも大きければ、被干渉対策が必要であると判断し、ITS車車間通信システムのチャネル帯域に含まれるサブキャリアのうち、低域側からN本分のサブキャリアについて、その変調方式をデフォルトの第1変調方式(例えば16QAM)から、より多値数が少なくノイズ耐性の強い第2変調方式(例えばQPSK)に切り替える構成とすればよい(図15(a)を参照)。 For example, when the interference from the digital television broadcasting system to the ITS inter-vehicle communication system becomes a problem, the modulation unit 38, if the signal level (reception power P) input to the determination unit 45 is larger than a predetermined value, It is determined that countermeasures against interference are necessary, and among the subcarriers included in the channel band of the ITS inter-vehicle communication system, the modulation scheme for the N subcarriers from the low frequency side is set to the default first modulation scheme ( For example, it may be configured to switch from 16 QAM) to the second modulation method (for example, QPSK) having a lower multi-value number and stronger noise resistance (see FIG. 15A).
 また、変調部38は、判定部45に入力される信号レベル(受信電力P)に応じて、第2変調方式(QPSK)が適用される低域側サブキャリアの本数Nを可変制御する構成とすればよい。より具体的に述べると、変調部38は、判定部45に入力される信号レベル(受信電力P)が大きいほど、被干渉対策の度合い(強度)を強めていくように、第2変調方式(QPSK)が適用される低域側サブキャリアの本数Nを増やしていけばよい。 The modulation unit 38 variably controls the number N of low-frequency subcarriers to which the second modulation scheme (QPSK) is applied according to the signal level (received power P) input to the determination unit 45. do it. More specifically, the modulation unit 38 increases the second modulation scheme (intensity) as the signal level (reception power P) input to the determination unit 45 increases as the level of interference countermeasures (intensity) increases. The number N of low frequency side subcarriers to which QPSK is applied may be increased.
 このとき、変調部38は、図16(a)に例示するようなテーブルに基づいて、第2変調方式(QPSK)が適用される低域側サブキャリアの本数Nを決定すればよい。変調部38による本数Nの決定動作について、図16(a)の例示に即して具体的に説明する。 At this time, the modulation unit 38 may determine the number N of low-frequency subcarriers to which the second modulation scheme (QPSK) is applied based on the table illustrated in FIG. The operation of determining the number N by the modulation unit 38 will be specifically described with reference to the example of FIG.
 変調部38は、判定部45からP≧-30dBm(レベル大)である旨の通知を受けたとき、被干渉対策の度合い(強度)を強レベルとすべく、第2変調方式(QPSK)が適用される低域側サブキャリアの本数Nを「10」に設定する。その結果、チャネル帯域に含まれるサブキャリアのうち、低域側から10本分のサブキャリアは第2変調方式(QPSK)で変調され、その余のサブキャリアは第1変調方式(16QAM)で変調される。 When the modulation unit 38 receives a notification from the determination unit 45 that P ≧ −30 dBm (high level), the second modulation method (QPSK) is set so that the degree (strength) of countermeasures against interference is a strong level. The number N of low frequency side subcarriers to be applied is set to “10”. As a result, among the subcarriers included in the channel band, 10 subcarriers from the low frequency side are modulated by the second modulation scheme (QPSK), and the remaining subcarriers are modulated by the first modulation scheme (16QAM). Is done.
 また、変調部38は、判定部45から-70dBm<P<-30dBm(レベル中)である旨の通知を受けたときに、被干渉対策の度合い(強度)を中レベルとすべく、第2変調方式(QPSK)が適用される低域側サブキャリアの本数Nを「5」に設定する。その結果、チャネル帯域に含まれるサブキャリアのうち、低域側から5本分のサブキャリアは第2変調方式(QPSK)で変調され、その余のサブキャリアは第1変調方式(16QAM)で変調される。 Further, when receiving a notification from the determination unit 45 that −70 dBm <P <−30 dBm (medium level), the modulation unit 38 sets the second countermeasure level (strength) to the middle level. The number N of low-frequency subcarriers to which the modulation scheme (QPSK) is applied is set to “5”. As a result, among the subcarriers included in the channel band, five subcarriers from the low frequency side are modulated by the second modulation scheme (QPSK), and the remaining subcarriers are modulated by the first modulation scheme (16QAM). Is done.
 また、変調部38は、判定部45からP≦-70dBm(レベル小)である旨の通知を受けたときに、被干渉対策の度合い(強度)を弱レベル(オフ)とすべく、第2変調方式(QPSK)が適用される低域側サブキャリアの本数Nを「0」に設定する。その結果、チャネル帯域に含まれる全てのサブキャリアは第1変調方式(16QAM)で変調される(図5(a)または図6(a)の従来例と同様)。 Further, when the modulation unit 38 receives a notification that P ≦ −70 dBm (low level) from the determination unit 45, the modulation unit 38 sets the second level of interference countermeasures (strength) to a weak level (off). The number N of low-frequency subcarriers to which the modulation scheme (QPSK) is applied is set to “0”. As a result, all subcarriers included in the channel band are modulated by the first modulation scheme (16QAM) (similar to the conventional example of FIG. 5A or FIG. 6A).
 このように、使用周波数帯が隣接しているデジタルテレビジョン放送システムの信号強度(受信電力)を逐次検出し、その検出結果に基づいて、信号変調方法の各種パラメータ(上記では第2変調方式(QPSK)が適用される低域側サブキャリアの本数N)を可変制御する構成であれば、状況に応じて最適な被干渉対策を実施することができるので、自システム内におけるトータルスループットを不要に低下させることなく、デジタルテレビジョン放送システムからの被干渉による性能劣化を効果的に防止することが可能となる。 In this way, the signal strength (reception power) of the digital television broadcasting system in which the used frequency band is adjacent is sequentially detected, and based on the detection result, various parameters of the signal modulation method (in the above, the second modulation method ( If the configuration is such that the number N) of low-frequency subcarriers to which QPSK) is applied can be variably controlled, optimum countermeasures against interference can be implemented according to the situation, thus eliminating the need for total throughput in the own system. Without lowering, it is possible to effectively prevent performance degradation due to interference from the digital television broadcasting system.
 また、本実施形態の無線通信装置100であれば、ITS車車間通信システムのチャネル帯域内で干渉電力を測定する従来構成(特許文献3を参照)よりも、デジタルテレビジョン放送システムからの干渉電力を正確に測定することができるようになるので、被干渉対策の要否ないし度合い(強度)を状況に応じて適切に制御することが可能となる。 Further, in the wireless communication device 100 of the present embodiment, the interference power from the digital television broadcasting system is higher than the conventional configuration (see Patent Document 3) that measures the interference power within the channel band of the ITS inter-vehicle communication system. Therefore, the necessity or degree (intensity) of countermeasures against interference can be appropriately controlled according to the situation.
 なお、図15(a)では、ITS車車間通信システムの低域側に隣接するデジタルテレビジョン放送システムからの被干渉対策を行うべく、ITS車車間通信システムの低域側サブキャリア(N本)に第2変調方式(QPSK)を適用する構成を例に挙げて説明を行ったが、本発明の構成はこれに限定されるものではなく、ITS車車間通信システムの高域側に隣接する電気通信システム(例えば携帯電話通信サービス)からの被干渉対策を行う場合には、図15(b)に示すように、ITS車車間通信システムの高域側サブキャリア(M本)に第2変調方式(QPSK)を適用する構成とすればよい。 In FIG. 15A, in order to take measures against interference from the digital television broadcasting system adjacent to the low frequency side of the ITS inter-vehicle communication system, the low frequency side subcarriers (N) of the ITS inter-vehicle communication system. However, the configuration of the present invention is not limited to this, and the configuration adjacent to the high frequency side of the ITS inter-vehicle communication system is described. When taking measures against interference from a communication system (for example, a mobile phone communication service), as shown in FIG. 15B, the second modulation method is applied to the high frequency side subcarriers (M) of the ITS inter-vehicle communication system. A configuration in which (QPSK) is applied may be employed.
 このとき、無線通信装置100の構成要素としては、低域側通過フィルタ43を高域側通過フィルタ(不図示)に置き換えることが必要となる。なお、高域側通過フィルタは、LNA33から入力される信号にフィルタリング処理を施す手段であって、例えば、ITS車車間通信システムが使用する第1周波数帯域よりも高域側において、これに隣接する5MHz幅のガードバンドを含む形で、合計10MHz幅の第2周波数帯域に属する信号成分のみを選択的に通過させるものとすればよい。また、図16(a)に例示されている低域側サブキャリア(N本)の可変制御用テーブルを高域側サブキャリア(M本)の可変制御用テーブルに置き換える作業も必要となるが、これについては、図16(a)に例示した内容のうち、「QPSKで変調するキャリア数N」という箇所を「QPSKで変調するキャリア数M」に読み替えれば足りる。 At this time, as a component of the wireless communication device 100, it is necessary to replace the low-pass filter 43 with a high-pass filter (not shown). The high-pass filter is a means for performing a filtering process on the signal input from the LNA 33, and is adjacent to the first frequency band used by the ITS inter-vehicle communication system, for example, on the high-frequency side. It is only necessary to selectively pass only signal components belonging to the second frequency band having a total width of 10 MHz in a form including a guard band having a width of 5 MHz. In addition, it is necessary to replace the low-frequency subcarrier (N) variable control table illustrated in FIG. 16A with the high-frequency subcarrier (M) variable control table. In this regard, it is sufficient to replace “the number N of carriers modulated by QPSK” with “the number M of carriers modulated by QPSK” in the content illustrated in FIG.
 また、ITS車車間通信システムの低域側に隣接するデジタルテレビジョン放送システムからの被干渉対策と、高域側に隣接する電気通信システムからの被干渉対策を両方行う場合には、図15(c)に示すように、ITS車車間通信システムの低域側サブキャリア(N本)と高域側サブキャリア(M本)の双方に第2変調方式(QPSK)を適用する構成とすればよい。 Further, when both countermeasures against interference from the digital television broadcasting system adjacent to the low frequency side of the ITS inter-vehicle communication system and interference countermeasures from the telecommunication system adjacent to the high frequency side are performed, FIG. As shown in c), the second modulation scheme (QPSK) may be applied to both the low frequency side subcarriers (N) and the high frequency side subcarriers (M) of the ITS inter-vehicle communication system. .
 このとき、無線通信装置100の構成要素としては、低域側通過フィルタ43と並列に高域側通過フィルタ(不図示)を設けることが必要となる。また、図16(a)に例示した低域側サブキャリア(N本)の可変制御用テーブルに加えて、高域側サブキャリア(M本)の可変制御用テーブルを用意することも必要となる。 At this time, as a component of the wireless communication device 100, it is necessary to provide a high-pass filter (not shown) in parallel with the low-pass filter 43. In addition to the variable control table for the low frequency side subcarriers (N) illustrated in FIG. 16A, it is also necessary to prepare a variable control table for the high frequency side subcarriers (M). .
 また、図15(a)では、ITS車車間通信システムの低域側に隣接するデジタルテレビジョン放送システムからの被干渉対策を行うべく、ITS車車間通信システムの低域側サブキャリア(N本)にQPSKを一律的に適用する構成を例に挙げて説明を行ったが、本発明の構成はこれに限定されるものではなく、例えば、図15(d)に示すように、ITS車車間通信システムの低域側サブキャリア((K+L)本)のうち、より高域側のL本については、QPSKを適用する一方、より低域側のK本については、QPSKよりもさらに多値数が少なくノイズ耐性の強い変調方式(例えばBPSK[Binary Phase Shift Keying])を適用する構成としても構わない。このように、隣接するデジタルテレビジョン放送システムの使用周波数帯に近いサブキャリアほど、これに適用される第2変調方式として、より多値数の少ない変調方式を選択することにより、図15(a)の構成に比べて、さらに被干渉に対する耐性を高めることが可能となる。 Further, in FIG. 15A, in order to take measures against interference from the digital television broadcasting system adjacent to the low frequency side of the ITS inter-vehicle communication system, the low frequency side subcarriers (N) of the ITS inter-vehicle communication system. However, the configuration of the present invention is not limited to this. For example, as shown in FIG. 15 (d), ITS inter-vehicle communication is performed. Of the low-frequency side subcarriers ((K + L)) of the system, QPSK is applied to the higher L-side subcarriers, while the lower number K of the lower-frequency side subcarriers has more multivalued numbers than QPSK. There may be a configuration in which a modulation method with little noise resistance (for example, BPSK [Binary Phase Shift Keying]) is applied. In this way, by selecting a modulation scheme having a smaller multi-value number as a second modulation scheme applied to a subcarrier closer to the use frequency band of the adjacent digital television broadcasting system, FIG. ), It is possible to further increase the tolerance against interference.
 このとき、変調部38で参照されるテーブルの内容は、例えば図16(b)のようになる。なお、図15(d)で示した変調手法を適用する対象については、低域側サブキャリアのみに限定されるものではなく、高域側サブキャリアのみを適用対象としてもよいし、低域側サブキャリアと高域側サブキャリアの双方を適用対象としてもよい。 At this time, the contents of the table referred to by the modulation unit 38 are, for example, as shown in FIG. Note that the object to which the modulation method shown in FIG. 15 (d) is applied is not limited to only the low frequency side subcarriers, and only the high frequency side subcarriers may be applied. Both the subcarrier and the high frequency side subcarrier may be applied.
 一方、ITS車車間通信システムからデジタルテレビジョン放送システムへの与干渉が問題となる場合、変調部38は、判定部45に入力される信号レベル(受信電力P)が所定値よりも小さければ、与干渉対策が必要であると判断し、ITS車車間通信システムのチャネル帯域に含まれるサブキャリアのうち、低域側からN本分のサブキャリアについてその信号レベル(送信電力)を低減する構成とすればよい(図17(a)を参照)。 On the other hand, when the interference from the ITS inter-vehicle communication system to the digital television broadcasting system becomes a problem, the modulation unit 38, if the signal level (reception power P) input to the determination unit 45 is smaller than a predetermined value, A configuration that determines that countermeasures against interference are necessary and reduces the signal level (transmission power) of N subcarriers from the low frequency side among the subcarriers included in the channel band of the ITS inter-vehicle communication system; (See FIG. 17 (a)).
 また、変調部38は、判定部45に入力される信号レベル(受信電力P)に応じて、信号レベルが低減される低域側サブキャリアの本数Nを可変制御する構成とすればよい。より具体的に述べると、変調部38は、判定部45に入力される信号レベル(受信電力P)が小さいほど、与干渉対策の度合い(強度)を強めていくように、信号レベルが低減される低域側サブキャリアの本数Nを増やしていけばよい。 Further, the modulation unit 38 may be configured to variably control the number N of low-frequency subcarriers whose signal level is reduced according to the signal level (reception power P) input to the determination unit 45. More specifically, the modulation unit 38 reduces the signal level so that the degree (intensity) of countermeasures against interference increases as the signal level (reception power P) input to the determination unit 45 decreases. It is sufficient to increase the number N of low frequency side subcarriers.
 また、与干渉対策に際して、信号レベルが低減された低域側サブキャリアについては、その変調方式をデフォルトの第1変調方式(例えば16QAM)から、より多値数が少なくノイズ耐性の強い第2変調方式(例えばQPSK)に切り替える構成とすればよい(図17(b)を参照)。このような構成とすることにより、図6(b)に示すような従来のマルチキャリア変調方法(特許文献1で提案されている方法)に比べて、通信品質を良好に維持することができる。 In addition, as a countermeasure against interference, for the low-frequency side subcarrier with a reduced signal level, the modulation scheme is changed from the default first modulation scheme (for example, 16QAM) to the second modulation having a lower multi-level number and stronger noise resistance. The system may be switched to a system (for example, QPSK) (see FIG. 17B). By adopting such a configuration, it is possible to maintain better communication quality as compared with the conventional multicarrier modulation method (method proposed in Patent Document 1) as shown in FIG.
 このとき、変調部38は、図18(a)に例示するようなテーブルに基づいて、信号レベル(送信電力)がデフォルト値の1/2に設定され、かつ、第2変調方式(QPSK)が適用される低域側サブキャリアの本数Nを決定すればよい。変調部38による本数Nの決定動作について、図18(a)の例示に即して具体的に説明する。 At this time, the modulation unit 38 sets the signal level (transmission power) to ½ of the default value based on the table illustrated in FIG. 18A, and the second modulation method (QPSK) is set. The number N of low frequency side subcarriers to be applied may be determined. The operation of determining the number N by the modulation unit 38 will be specifically described with reference to the example of FIG.
 変調部38は、判定部45からP≧-30dBm(レベル大)である旨の通知を受けたとき、与干渉対策の度合い(強度)を弱レベル(オフ)とするために、信号レベル(送信電力)がデフォルト値の1/2に設定され、かつ、第2変調方式(QPSK)が適用される低域側サブキャリアの本数Nを「0」に設定する。その結果、チャネル帯域に含まれる全てのサブキャリアは、信号レベル(送信電力)がデフォルト値に設定され、かつ、第1変調方式(16QAM)で変調される(図5(a)または図6(a)の従来例と同様)。 When receiving a notification that P ≧ −30 dBm (high level) from the determination unit 45, the modulation unit 38 sets the signal level (transmission) in order to set the degree (strength) of interference countermeasures to a weak level (off). Power) is set to ½ of the default value, and the number N of low-frequency subcarriers to which the second modulation scheme (QPSK) is applied is set to “0”. As a result, all the subcarriers included in the channel band have the signal level (transmission power) set to the default value and are modulated by the first modulation scheme (16QAM) (FIG. 5A or FIG. The same as the conventional example of a)).
 また、変調部38は、判定部45から-70dBm<P<-30dBm(レベル中)である旨の通知を受けたとき、与干渉対策の度合い(強度)を中レベルとすべく、信号レベル(送信電力)がデフォルト値の1/2に設定され、かつ、第2変調方式(QPSK)が適用される低域側サブキャリアの本数Nを「5」に設定する。その結果、チャネル帯域に含まれるサブキャリアのうち、低域側から5本分のサブキャリアは、信号レベル(送信電力)がデフォルト値の1/2に設定され、かつ、第2変調方式(QPSK)で変調され、その余のサブキャリアは、信号レベル(送信電力)がデフォルト値に設定され、かつ、第1変調方式(16QAM)で変調される。 Further, when the modulation unit 38 receives notification from the determination unit 45 that −70 dBm <P <−30 dBm (medium level), the signal level (intensity) is set to the signal level (intensity). Transmission power) is set to ½ of the default value, and the number N of low-frequency subcarriers to which the second modulation scheme (QPSK) is applied is set to “5”. As a result, among the subcarriers included in the channel band, the signal level (transmission power) of subcarriers for five from the low frequency side is set to 1/2 of the default value, and the second modulation scheme (QPSK) ) And the remaining subcarriers are modulated with the first modulation scheme (16QAM) with the signal level (transmission power) set to a default value.
 また、変調部38は、判定部45からP≦-70dBm(レベル小)である旨の通知を受けたとき、与干渉対策の度合い(強度)を強レベルとすべく、その信号レベル(送信電力)がデフォルト値の1/2に設定され、第2変調方式(QPSK)が適用される低域側サブキャリアの本数Nを「10」に設定する。その結果、チャネル帯域に含まれるサブキャリアのうち、低域側から10本分のサブキャリアは、信号レベル(送信電力)がデフォルト値の1/2に設定され、かつ、第2変調方式(QPSK)で変調され、その余のサブキャリアは、信号レベル(送信電力)がデフォルト値に設定され、第1変調方式(16QAM)で変調される。 Further, when the modulation unit 38 receives a notification that P ≦ −70 dBm (low level) from the determination unit 45, the modulation unit 38 sets the signal level (transmission power) so that the degree of interference countermeasure (strength) is set to a high level. ) Is set to ½ of the default value, and the number N of low-frequency subcarriers to which the second modulation scheme (QPSK) is applied is set to “10”. As a result, among the subcarriers included in the channel band, the signal level (transmission power) of 10 subcarriers from the low frequency side is set to 1/2 of the default value, and the second modulation scheme (QPSK) ), And the remaining subcarriers are modulated with the first modulation scheme (16QAM) with the signal level (transmission power) set to a default value.
 このように、使用周波数帯が隣接しているデジタルテレビジョン放送システムの信号強度(受信電力)を逐次検出し、その検出結果に基づいて、信号変調方法の各種パラメータ(上記では、信号レベル(送信電力)がデフォルト値の1/2に設定され、第2変調方式(QPSK)が適用される低域側サブキャリアの本数N)を可変制御する構成であれば、状況に応じて最適な与干渉対策を実施することができるので、自システム内におけるトータルスループットを不要に低下させることなく、デジタルテレビジョン放送システムへの与干渉を効果的に防止することが可能となる。 In this way, the signal strength (reception power) of the digital television broadcasting system in which the used frequency band is adjacent is sequentially detected, and based on the detection result, various parameters of the signal modulation method (in the above, the signal level (transmission level) Power) is set to ½ of the default value, and the number of low-frequency subcarriers N) to which the second modulation scheme (QPSK) is applied is variably controlled. Since measures can be taken, it is possible to effectively prevent interference with the digital television broadcasting system without unnecessarily reducing the total throughput in the own system.
 なお、図17(a)、(b)では、ITS車車間通信システムの低域側に隣接するデジタルテレビジョン放送システムへの与干渉対策を行うべく、ITS車車間通信システムの低域側サブキャリア(N本)について、信号レベル(送信電力)の低減や、第2変調方式(QPSK)の適用を行う構成を例示して説明を行ったが、本発明の構成はこれに限定されるものではなく、ITS車車間通信システムの高域側に隣接する電気通信システム(例えば携帯電話通信サービス)への与干渉対策を行う場合には、図17(c)に示す通り、ITS車車間通信システムの高域側サブキャリア(M本)について、信号レベル(送信電力)の低減や第2変調方式(QPSK)の適用を行う構成とすればよい。 In FIGS. 17A and 17B, the low frequency side subcarrier of the ITS inter-vehicle communication system is used to take measures against interference with the digital television broadcasting system adjacent to the low frequency side of the ITS inter-vehicle communication system. (N) has been described by exemplifying a configuration for reducing the signal level (transmission power) and applying the second modulation scheme (QPSK), but the configuration of the present invention is not limited to this. However, when taking measures against interference with an telecommunications system (for example, a mobile phone communication service) adjacent to the high frequency side of the ITS inter-vehicle communication system, as shown in FIG. The high frequency side subcarriers (M) may be configured to reduce the signal level (transmission power) and apply the second modulation scheme (QPSK).
 このとき、無線通信装置100の構成要素としては、低域側通過フィルタ43を高域側通過フィルタ(不図示)に置き換えることが必要となる。なお、高域側通過フィルタは、LNA33から入力される信号にフィルタリング処理を施す手段であって、例えば、ITS車車間通信システムが使用する第1周波数帯域よりも高域側において、これに隣接する5MHz幅のガードバンドを含む形で、合計10MHz幅の第2周波数帯域に属する信号成分のみを選択的に通過させるものとすればよい。また、図18(a)に例示されている低域側サブキャリア(N本)の可変制御用テーブルを高域側サブキャリア(M本)の可変制御用テーブルに置き換える作業も必要となるが、これについては、図18(a)に例示した内容のうち、「送信電力を1/2に低減し、QPSKで変調するキャリア数N」という箇所を「送信電力を1/2に低減し、QPSKで変調するキャリア数M」に読み替えれば足りる。 At this time, as a component of the wireless communication device 100, it is necessary to replace the low-pass filter 43 with a high-pass filter (not shown). The high-pass filter is a means for performing a filtering process on the signal input from the LNA 33, and is adjacent to the first frequency band used by the ITS inter-vehicle communication system, for example, on the high-frequency side. It is only necessary to selectively pass only signal components belonging to the second frequency band having a total width of 10 MHz in a form including a guard band having a width of 5 MHz. In addition, it is necessary to replace the low frequency side subcarrier (N) variable control table illustrated in FIG. 18A with the high frequency side subcarrier (M) variable control table. In this regard, in the content illustrated in FIG. 18A, the place “the number of carriers N to reduce transmission power to ½ and QPSK modulation” is changed to “transmission power to ½ and QPSK. It is sufficient to read as “the number of carriers M to be modulated by”.
 また、ITS車車間通信システムの低域側に隣接するデジタルテレビジョン放送システムへの与干渉対策と、高域側に隣接する電気通信システムへの与干渉対策を両方行う場合には、図17(d)に示すように、ITS車車間通信システムの低域側サブキャリア(N本)と高域側サブキャリア(M本)の双方について、信号レベル(送信電力)の低減や第2変調方式(QPSK)の適用を行う構成とすればよい。 In the case where both countermeasures for interference with the digital television broadcasting system adjacent to the low frequency side of the ITS inter-vehicle communication system and countermeasures for interference with the telecommunication system adjacent to the high frequency side are performed, FIG. As shown in d), the signal level (transmission power) is reduced and the second modulation scheme (N) for both the low frequency side subcarriers (N) and the high frequency side subcarriers (M) of the ITS inter-vehicle communication system. A configuration in which QPSK) is applied may be employed.
 このとき、無線通信装置100の構成要素としては、低域側通過フィルタ43と並列に高域側通過フィルタ(不図示)を設けることが必要となる。また、図18(a)に例示した低域側サブキャリア(N本)の可変制御用テーブルに加えて、高域側サブキャリア(M本)の可変制御用テーブルを用意することも必要となる。 At this time, as a component of the wireless communication device 100, it is necessary to provide a high-pass filter (not shown) in parallel with the low-pass filter 43. In addition to the variable control table for the low frequency side subcarriers (N) illustrated in FIG. 18A, it is also necessary to prepare a variable control table for the high frequency side subcarriers (M). .
 また、図17(a)、(b)では、ITS車車間通信システムの低域側に隣接するデジタルテレビジョン放送システムへの与干渉対策を行うべく、ITS車車間通信システムの低域側サブキャリア(N本)について、信号レベル(送信電力)を一律的に低減する構成を例示して説明を行ったが、本発明の構成はこれに限定されるものではなく、例えば図17(e)に示す通り、ITS車車間通信システムの低域側サブキャリア((K+L)本)のうち、より高域側のL本については、信号レベル(送信電力)をデフォルト値の1/2に低減する一方、より低域側のK本については、信号レベル(送信電力)をさらに引き下げるべく、その信号レベルをデフォルト値の1/4に低減する構成としても構わない。このとき、変調部38で参照されるテーブルの内容は、例えば図18(b)のようになる。このように、隣接するデジタルテレビジョン放送システムの使用周波数帯に近いサブキャリアほど、信号レベル(送信電力)を引き下げることにより、図17(a)、(b)の構成に比べて、さらに与干渉を低減することが可能となる。 17 (a) and 17 (b), the low frequency side subcarrier of the ITS inter-vehicle communication system is designed to take measures against interference with the digital television broadcasting system adjacent to the low frequency side of the ITS inter-vehicle communication system. (N) has been described by exemplifying a configuration that uniformly reduces the signal level (transmission power), but the configuration of the present invention is not limited to this, and for example, FIG. As shown, among the low frequency side subcarriers ((K + L)) of the ITS inter-vehicle communication system, the signal level (transmission power) is reduced to ½ of the default value for L of the higher frequency side subcarriers. For the lower K, the signal level (transmission power) may be reduced to 1/4 of the default value in order to further reduce the signal level (transmission power). At this time, the contents of the table referred to by the modulation unit 38 are, for example, as shown in FIG. In this way, by reducing the signal level (transmission power) for subcarriers closer to the frequency band used in the adjacent digital television broadcasting system, the interference is further increased compared to the configurations of FIGS. 17 (a) and 17 (b). Can be reduced.
 また、図17(e)では、信号レベルがデフォルト値の1/4に低減されるサブキャリア(K本)と、信号レベルがデフォルト値の1/2に低減されるサブキャリア(L本)のいずれについても、第2変調方式(QPSK)を適用する構成を例に挙げて説明を行ったが、本発明の構成はこれに限定されるものではなく、例えば、図17(f)に示す通り、ITS車車間通信システムの低域側サブキャリア((K+L)本)のうち、より高域側のL本については、QPSKを適用する一方、より低域側のK本については、QPSKよりもさらに多値数が少なくノイズ耐性の強い変調方式(例えばBPSK)を適用する構成としても構わない。このとき、図18(b)に例示されているテーブルの内容を一部変更する作業が必要となるが、これについては、図18(b)に例示した内容のうち、「送信電力を1/4に低減し、QPSKで変調するキャリア数K」という箇所を「送信電力を1/4に低減し、BPSKで変調するキャリア数K」に読み替えればよい(図18(c)を参照)。このように、信号レベル(送信電力)がデフォルト値の1/4まで低減されているサブキャリアについて、よりノイズ耐性の強い変調方式(BPSK)を適用することにより、通信品質を良好に維持することができる。 In FIG. 17E, subcarriers (K lines) whose signal level is reduced to ¼ of the default value and subcarriers (L lines) whose signal level is reduced to ½ of the default value. In any case, the configuration in which the second modulation scheme (QPSK) is applied has been described as an example. However, the configuration of the present invention is not limited to this, and for example, as illustrated in FIG. Of the low frequency side subcarriers ((K + L)) of the ITS inter-vehicle communication system, QPSK is applied to L of the higher frequency side, while K of the lower frequency side is more than QPSK. Furthermore, a configuration in which a modulation scheme (eg, BPSK) having a small number of multi-values and strong noise resistance may be applied. At this time, the work of partially changing the contents of the table illustrated in FIG. 18B is necessary. This is because, among the contents illustrated in FIG. The number “carrier number K that is reduced to 4 and modulated by QPSK” may be read as “number of carriers K that is modulated by BPSK by reducing transmission power to ¼” (see FIG. 18C). As described above, by applying a modulation scheme (BPSK) having a higher noise resistance to subcarriers whose signal level (transmission power) is reduced to ¼ of the default value, good communication quality is maintained. Can do.
 なお、図17(e)や図17(f)で示した変調手法を適用する対象については、低域側サブキャリアのみに限定されるものではなく、高域側サブキャリアのみを適用対象としてもよいし、低域側サブキャリアと高域側サブキャリアの双方を適用対象としてもよい。 Note that the object to which the modulation method shown in FIG. 17 (e) or FIG. 17 (f) is applied is not limited to only the low frequency side subcarriers, and only the high frequency side subcarriers may be applied. Alternatively, both the low frequency side subcarrier and the high frequency side subcarrier may be applied.
 また、第3実施形態の車載無線通信装置100で用いられている低域側通過フィルタ43の通過帯域として、ガードバンドのみを設定してもよいことは既に述べた通りであり、低域側通過フィルタ43を高域側通過フィルタ(不図示)に置き換えた場合についても、その通過帯域として、ガードバンドのみを設定し得ることは言うまでもない。 Further, as already described, it is possible to set only the guard band as the pass band of the low-pass filter 43 used in the in-vehicle wireless communication device 100 of the third embodiment. Needless to say, even when the filter 43 is replaced with a high-pass filter (not shown), only the guard band can be set as the pass band.
 そこで、上記の変形が可能であることを明示するために、第4実施形態を例に挙げて詳述する。図19は、車載無線通信装置100の第4実施形態を示すブロック図である。 Therefore, in order to clarify that the above-described modification is possible, the fourth embodiment will be described in detail as an example. FIG. 19 is a block diagram illustrating a fourth embodiment of the in-vehicle wireless communication device 100.
 図19に示したように、第4実施形態の車載無線通信装置100は、先出の第3実施形態とほぼ同様の構成から成り、低域側通過フィルタ43に代えて、ガードバンド通過フィルタ46を有する点に特徴を有している。そこで、第3実施形態と同様の構成要素については、図13と同一の符号を付すことで重複した説明を省略し、以下では、第4実施形態の特徴部分であるガードバンド通過フィルタ46について重点的な説明を行う。 As shown in FIG. 19, the in-vehicle wireless communication device 100 of the fourth embodiment has substantially the same configuration as that of the third embodiment described above, and instead of the low-pass filter 43, the guard band pass filter 46 is used. It has the feature in having. Therefore, the same components as those of the third embodiment are denoted by the same reference numerals as those in FIG. 13, and redundant description is omitted. Hereinafter, the guard band pass filter 46 which is a characteristic part of the fourth embodiment will be emphasized. Give an explanation.
 ガードバンド通過フィルタ46は、ITS車車間通信システムが使用する第1周波数帯域(図1ないし図14では、720MHzを中心周波数として、合計10MHz幅の周波数帯域(715MHz~725MHz))の低域側に隣接する低域側ガードバンド(図1ないし図14では710MHz~715MHz)、及び、ITS車車間通信システムの高域側に隣接する高域側ガードバンド(図1では725MHz~730MHz)の少なくとも一方について、各々の周波数帯域(5MHz幅)の一部または全部を通過帯域とし、当該通過帯域に属する信号成分のみを選択的に通過させる。 The guard band pass filter 46 is provided on the low frequency side of the first frequency band used by the ITS inter-vehicle communication system (in FIG. 1 to FIG. 14, the frequency band (715 MHz to 725 MHz) having a total frequency of 10 MHz with 720 MHz as the central frequency). At least one of the adjacent low band guard band (710 MHz to 715 MHz in FIGS. 1 to 14) and the high band guard band (725 MHz to 730 MHz in FIG. 1) adjacent to the high band side of the ITS inter-vehicle communication system. A part or all of each frequency band (5 MHz width) is used as a pass band, and only signal components belonging to the pass band are selectively passed.
 このように、高域側ガードバンド及び低域側ガードバンドの少なくとも一方について、各々の周波数帯域の一部または全部に属する信号成分の強度(受信電力)を逐次検出し、その検出結果に基づいて、信号変調方法の各種パラメータ(被干渉対策を行う場合であれば、例えば、第2変調方式(QPSK)が適用される低域側サブキャリアの本数であり、与干渉対策を行う場合であれば、例えば、信号レベル(送信電力)がデフォルト値の1/2に設定される低域側サブキャリアの本数)を可変制御する構成であれば、先述の第3実施形態と同様、状況に応じて最適な被干渉対策ないしは与干渉対策を実施することができるので、自システム内におけるトータルスループットを不要に低下させることなく、他システムからの被干渉ないし他システムへの与干渉を効果的に防止することが可能となる。 In this way, for at least one of the high band side guard band and the low band side guard band, the intensity (reception power) of signal components belonging to part or all of each frequency band is sequentially detected, and based on the detection result Various parameters of the signal modulation method (for example, if countermeasures against interference are to be taken, for example, the number of low frequency side subcarriers to which the second modulation scheme (QPSK) is applied and if countermeasures against interference are to be taken. For example, if the configuration is such that the signal level (transmission power) is variably controlled (the number of low-frequency subcarriers set to ½ of the default value), as in the third embodiment, depending on the situation Since it is possible to implement optimal interference countermeasures or interference countermeasures, it is possible to prevent interference or other interference from other systems without unnecessarily reducing the total throughput in the local system. It becomes possible to prevent the interference with the stem effectively.
 なお、上述した第1~第4実施形態では、いずれもITS車車間通信システムで用いられる車載無線通信装置を例に挙げて説明を行ったが、使用周波数帯の両端に他のシステムの使用周波数帯が隣接しているITS車車間通信システム以外の無線システム或いは使用周波数帯の片端のみに他のシステムの使用周波数帯が隣接している無線システムにおいて用いられる無線装置についても、本発明を適用することができる。 In each of the first to fourth embodiments described above, the in-vehicle wireless communication device used in the ITS inter-vehicle communication system has been described as an example. However, other systems use frequencies at both ends of the use frequency band. The present invention is also applied to a radio apparatus used in a radio system other than the ITS inter-vehicle communication system in which the bands are adjacent or a radio system in which the use frequency band of another system is adjacent to only one end of the use frequency band. be able to.
 また、本発明の第1、第2実施形態は、送信及び受信を行う無線装置(送受信装置)のみならず、送信のみを行う無線装置(送信装置)、受信のみを行う無線装置(受信装置)にも適用することができる。また、本発明の第3、第4実施形態は、送信及び受信を行う無線装置(送受信装置)のみならず、送信のみを行う無線装置(送信装置)にも適用することができる。また、本発明の第1~第4実施形態は、OFDM変調のみならず、他のマルチキャリア変調にも適用することができる。 In the first and second embodiments of the present invention, not only a wireless device (transmission / reception device) that performs transmission and reception, but also a wireless device (transmission device) that performs transmission only, and a wireless device (reception device) that performs reception only. It can also be applied to. The third and fourth embodiments of the present invention can be applied not only to a wireless device (transmission / reception device) that performs transmission and reception, but also to a wireless device (transmission device) that performs transmission only. The first to fourth embodiments of the present invention can be applied not only to OFDM modulation but also to other multicarrier modulation.
 例えば、本発明に係る無線装置を各車両が備えることにより、デジタルテレビジョン放送システムとITS車車間通信システムとの相互干渉を抑制し、両システムの通信性能劣化を効果的に防止することができるので、デジタルテレビジョン放送システムとITS車車間通信システムとを共存させることが可能となる。 For example, by providing each vehicle with the wireless device according to the present invention, it is possible to suppress mutual interference between the digital television broadcasting system and the ITS inter-vehicle communication system, and effectively prevent communication performance deterioration of both systems. Therefore, the digital television broadcasting system and the ITS inter-vehicle communication system can coexist.
   1 シリアル/パラレル変換器(S/P変換器)
   2 変調器
   3 IFFT部
   4 ガードインターバル付加部
   5 付加処理部
   6 デジタル/アナログ変換器(D/A変換器)
   7 パワーアンプ
   8 物理ヘッダ処理部
   9 スイッチ
   10  送受信アンテナ
   11  可変利得アンプ
   12  アナログ/デジタル変換器(A/D変換器)
   13  分離処理部
   14  ガードインターバル除去部
   15  FFT部
   16  復調器
   17  パラレル/シリアル変換器(P/S変換器)
   18  物理ヘッダ処理部
   19  組み合わせパターン選択部
   20  組み合わせパターン判定部
   31  送受信アンテナ
   32  スイッチ
   33  低雑音増幅器(LNA)
   34  所望波通過フィルタ
   35  アナログ/デジタル変換器(A/D変換器)
   36  同期処理部
   37  復調部
   38  変調部
   39  送信処理部
   40  デジタル/アナログ変換器(D/A変換器)
   41  所望波通過フィルタ
   42  高出力増幅器
   43  低域側通過フィルタ
   44  アナログ/デジタル変換器(A/D変換器)
   45  判定部
   46  ガードバンド通過フィルタ
   100  ITS車車間通信を行う車載無線通信装置
   200  車両
1 Serial / parallel converter (S / P converter)
2 Modulator 3 IFFT unit 4 Guard interval addition unit 5 Additional processing unit 6 Digital / analog converter (D / A converter)
7 Power Amplifier 8 Physical Header Processing Unit 9 Switch 10 Transmit / Receive Antenna 11 Variable Gain Amplifier 12 Analog / Digital Converter (A / D Converter)
13 Separation Processing Unit 14 Guard Interval Removal Unit 15 FFT Unit 16 Demodulator 17 Parallel / Serial Converter (P / S Converter)
18 Physical Header Processing Unit 19 Combination Pattern Selection Unit 20 Combination Pattern Determination Unit 31 Transmit / Receive Antenna 32 Switch 33 Low Noise Amplifier (LNA)
34 Desired wave pass filter 35 Analog / digital converter (A / D converter)
36 synchronization processing unit 37 demodulation unit 38 modulation unit 39 transmission processing unit 40 digital / analog converter (D / A converter)
41 Desired wave pass filter 42 High-power amplifier 43 Low-pass filter 44 Analog / digital converter (A / D converter)
45 Judgment Unit 46 Guard Band Pass Filter 100 In-vehicle Wireless Communication Device that Performs ITS Vehicle-to-Vehicle Communication 200 Vehicle

Claims (8)

  1.  第1周波数帯域を用いてマルチキャリア変調された信号を送信または送受信する無線装置であって、
     第1周波数帯域に隣接する第2周波数帯域に属する信号成分を抽出し、そのレベル判定を行うレベル判定手段と;
     前記レベル判定手段の判定結果に基づき、第2周波数帯域に属する信号成分の信号レベルが所定値よりも大きいときには、第1周波数帯域に含まれる全てのサブキャリアの送信電力をデフォルト値に設定し、前記信号レベルが前記所定値よりも小さいときには、第1周波数帯域に含まれるサブキャリアのうち、第2周波数帯域に近い側のサブキャリアの送信電力を前記デフォルト値よりも小さい値に設定する変調部と;
     を有して成ることを特徴とする無線装置。
    A wireless device that transmits or transmits / receives a multi-carrier modulated signal using a first frequency band,
    Level determination means for extracting a signal component belonging to a second frequency band adjacent to the first frequency band and performing level determination thereof;
    Based on the determination result of the level determination means, when the signal level of the signal component belonging to the second frequency band is greater than a predetermined value, the transmission power of all subcarriers included in the first frequency band is set to a default value, When the signal level is smaller than the predetermined value, a modulation unit that sets transmission power of a subcarrier closer to the second frequency band among subcarriers included in the first frequency band to a value smaller than the default value When;
    A wireless device comprising:
  2.  前記変調部は、前記信号レベルの大きさに応じて、送信電力が低減されるサブキャリアの本数を可変制御することを特徴とする請求項1に記載の無線装置。 The radio apparatus according to claim 1, wherein the modulation unit variably controls the number of subcarriers whose transmission power is reduced according to the magnitude of the signal level.
  3.  前記変調部は、前記信号レベルが小さいほど、送信電力が低減されるサブキャリアの本数を増やしていくことを特徴とする請求項2に記載の無線装置。 The radio apparatus according to claim 2, wherein the modulation unit increases the number of subcarriers in which transmission power is reduced as the signal level decreases.
  4.  前記変調部は、第2周波数帯域に近いサブキャリアほど、その送信電力を低減することを特徴とする請求項1~請求項3のいずれかに記載の無線装置。 The radio apparatus according to any one of claims 1 to 3, wherein the modulation unit reduces transmission power of a subcarrier closer to the second frequency band.
  5.  前記変調部は、送信電力が低減されるサブキャリアについて、デフォルトの第1変調方式よりもノイズ耐性の強い第2変調方式を適用することを特徴とする請求項1~請求項4のいずれかに記載の無線装置。 5. The modulation unit according to claim 1, wherein the second modulation scheme having higher noise resistance than the default first modulation scheme is applied to subcarriers whose transmission power is reduced. The wireless device described.
  6.  前記変調部は、第2周波数帯域に近いサブキャリアほど、これに適用される第2変調方式として、より多値数の少ない変調方式を選択することを特徴とする請求項5に記載の無線装置。 The radio apparatus according to claim 5, wherein the modulation unit selects a modulation scheme having a smaller multi-level number as a second modulation scheme applied to a subcarrier closer to the second frequency band. .
  7.  第2周波数帯域は、自システムが使用する第1周波数帯域と、他システムが使用する第3周波数帯域との間に挟まれるガードバンドの一部または全部であることを特徴とする請求項1~請求項6のいずれかの記載の無線装置。 The second frequency band is a part or all of a guard band sandwiched between a first frequency band used by the own system and a third frequency band used by another system. The wireless device according to claim 6.
  8.  前記ガードバンドは、第1周波数帯域の低域側に隣接する低域側ガードバンド、及び、第1周波数帯域の高域側に隣接する高域側ガードバンドの少なくとも一方であることを特徴とする請求項7に記載の無線装置。 The guard band is at least one of a low band guard band adjacent to the low frequency side of the first frequency band and a high band guard band adjacent to the high frequency side of the first frequency band. The wireless device according to claim 7.
PCT/JP2009/070142 2008-12-08 2009-12-01 Radio apparatus WO2010067727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-311748 2008-12-08
JP2008311748 2008-12-08

Publications (1)

Publication Number Publication Date
WO2010067727A1 true WO2010067727A1 (en) 2010-06-17

Family

ID=42242716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070142 WO2010067727A1 (en) 2008-12-08 2009-12-01 Radio apparatus

Country Status (1)

Country Link
WO (1) WO2010067727A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085550A (en) * 2016-11-21 2018-05-31 日本電信電話株式会社 Transmission station device, communication system, and transmission method
JPWO2019008916A1 (en) * 2017-07-07 2020-05-07 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Wireless transmission device and transmission method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145928A (en) * 1997-11-04 1999-05-28 Nippon Hoso Kyokai <Nhk> Ofdm transmission method, transmission equipment and reception equipment
JPH11340847A (en) * 1998-04-22 1999-12-10 Lucent Technol Inc Device for supplying plural digital modulation signals and method for receiving plural signals
JP2006287357A (en) * 2005-03-31 2006-10-19 Toshiba Corp Radio communication system and terminal
JP2008199209A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Radio receiving apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145928A (en) * 1997-11-04 1999-05-28 Nippon Hoso Kyokai <Nhk> Ofdm transmission method, transmission equipment and reception equipment
JPH11340847A (en) * 1998-04-22 1999-12-10 Lucent Technol Inc Device for supplying plural digital modulation signals and method for receiving plural signals
JP2006287357A (en) * 2005-03-31 2006-10-19 Toshiba Corp Radio communication system and terminal
JP2008199209A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Radio receiving apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATSUSHI SUYAMA ET AL.: "OFDM Hoshiki no Rinsetsu System-kan Kansho ni Kansuru Kanwa Hoshiki no Ichi Kento", IEICE TECHNICAL REPORT, ITS2009-14, vol. 109, no. 688, 2 September 2009 (2009-09-02), pages 17 - 22 *
SONGPING WU ET AL.: "A phase noise suppression algorithm for OFDM-based WLANs", IEEE COMMUNICATIONS LETTERS, vol. 6, no. IS.12, December 2002 (2002-12-01), pages 535 - 537 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085550A (en) * 2016-11-21 2018-05-31 日本電信電話株式会社 Transmission station device, communication system, and transmission method
JPWO2019008916A1 (en) * 2017-07-07 2020-05-07 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Wireless transmission device and transmission method
JP7328892B2 (en) 2017-07-07 2023-08-17 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Communication device, communication method and integrated circuit

Similar Documents

Publication Publication Date Title
KR101480531B1 (en) Apparatus and method for controling subcarrier spacing in wireless communication system
JP4867918B2 (en) Adaptive radio / modulation apparatus, reception apparatus, radio communication system, and radio communication method
US9036569B2 (en) Low peak-to-average power ratio transmission in frequency-division multiple access systems
KR101766189B1 (en) Adaptive packet based modulation and coding rate selection based for wide bandwidth data transmissions
EP2388939B1 (en) Radio transmitting apparatus, radio receiving apparatus, and method therefor
EP2504940B1 (en) Wireless data communications
JP4620130B2 (en) Constrained hopping in wireless communication systems
KR101139170B1 (en) Method and apparatus for transmitting/receiving packet data control channel in wireless communication system using ofdma
US20070213014A1 (en) Increasing OFDM transmit power via reduction in pilot tone
JP2003060609A (en) Communication method and apparatus thereof
WO2006011524A1 (en) Radio transmission device and radio reception device
EP1298876A1 (en) OFDM transmitting and receiving apparatus
KR20080113361A (en) Radio communication device and radio communication method
US8649463B2 (en) Radio communication apparatus
JP2010041446A (en) Radio device and method of modulating signal
JP2003158499A (en) Method and equipment for communication
WO2010067727A1 (en) Radio apparatus
WO2010067726A1 (en) Radio apparatus
US20100069009A1 (en) Adaptively Selecting Channel Filters for Multi-Carrier Edge
JP2009118388A (en) Receiver
WO2010131525A1 (en) Radio device
JP2010041719A (en) Radio device
JP3851551B2 (en) Transmitting apparatus and receiving apparatus
WO2010131513A1 (en) Wireless communication method
US8369236B2 (en) Frequency division multiplex transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP