WO2010067622A1 - Stereoisomeric cyclic compounds, manufacturing method therefor, compositions comprising the stereoisomeric cyclic compounds and manufacturing method therefor - Google Patents

Stereoisomeric cyclic compounds, manufacturing method therefor, compositions comprising the stereoisomeric cyclic compounds and manufacturing method therefor Download PDF

Info

Publication number
WO2010067622A1
WO2010067622A1 PCT/JP2009/006810 JP2009006810W WO2010067622A1 WO 2010067622 A1 WO2010067622 A1 WO 2010067622A1 JP 2009006810 W JP2009006810 W JP 2009006810W WO 2010067622 A1 WO2010067622 A1 WO 2010067622A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
substituted
carbon atoms
unsubstituted
Prior art date
Application number
PCT/JP2009/006810
Other languages
French (fr)
Japanese (ja)
Inventor
柏村孝
蓬田知行
大和田貴紀
塩谷英昭
石井宏寿
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008316143A external-priority patent/JP2010138114A/en
Priority claimed from JP2009069386A external-priority patent/JP2010159241A/en
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2010067622A1 publication Critical patent/WO2010067622A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/94Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of polycyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/92Systems containing at least three condensed rings with a condensed ring system consisting of at least two mutually uncondensed aromatic ring systems, linked by an annular structure formed by carbon chains on non-adjacent positions of the aromatic system, e.g. cyclophanes

Definitions

  • the present invention relates to a photoresist base material used in the electrical / electronic field such as a semiconductor, an optical field, etc., and particularly to a photoresist base material for ultrafine processing.
  • EUVL extreme ultraviolet light
  • electron beam is useful as a high-performance, high-resolution fine processing method in the manufacture of semiconductors and the like.
  • EUVL extreme ultraviolet light
  • photoresists with high sensitivity and high resolution It is indispensable to improve the sensitivity of the photoresist from the viewpoint of the productivity and resolution of the desired fine pattern.
  • a photoresist used in the ultrafine processing by EUVL for example, a method using a chemically amplified positive photoresist having a higher concentration of photoacid generator than other resist compounds has been proposed (for example, Patent Document 1).
  • the photoresists of the examples are considered to be limited in processing up to 100 nm exemplified in the case of using an electron beam from the viewpoint of line edge roughness. It is presumed that the main cause of this is that the aggregate of the polymer compounds used as the base material or the three-dimensional shape of each polymer compound molecule is large and affects the production line width and the surface roughness.
  • Patent Document 4 discloses a calix resorcinarene compound.
  • an object of the present invention is to provide a method for extracting only a single stereoisomer of a calixresorcinarene compound used in the above method. Furthermore, an object of the present invention is to provide a photoresist material with high sensitivity and high resolution.
  • R is a group represented by any of the following formulas (3) to (5).
  • R 1 represents a hydroxyl group, a substituted or unsubstituted linear alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, a substituted or unsubstituted cyclic group having 3 to 20 carbon atoms.
  • the divalent group includes a substituted or unsubstituted alkyleneoxy group, a substituted or unsubstituted aryleneoxy group, a substituted or unsubstituted silyleneoxy group, a group in which two or more of these groups are bonded, or a group thereof. It is a group to which an ester bond, a carbonate ester bond or an ether bond is bonded.
  • R 2 is hydrogen, a group represented by R 1 , a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, or a cyclic fatty acid having 3 to 20 carbon atoms.
  • a plurality of R, R 1 and R 2 in the formula (1) and the formula (2) may be the same or different.
  • Ar represents a substituted or unsubstituted arylene group having 6 to 10 carbon atoms, a group obtained by combining two or more substituted or unsubstituted arylene groups having 6 to 10 carbon atoms, or at least an alkylene group and an ether bond. A combination of one or more of them and a substituted or unsubstituted arylene group having 6 to 10 carbon atoms, In the case of having a substituent, the substituent is bromine, fluorine, a nitrile group, or an alkyl group having 1 to 10 carbon atoms.
  • R 3 represents a hydroxyl group, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted carbon, A cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, an alkoxy group, an alkoxyalkyl group, a carboxy group, a silyl group, or these groups and a divalent group.
  • the divalent group includes a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted silylene group, a group in which two or more of these groups are bonded, or one or more of these groups and an ester.
  • R 4 and R 5 are each a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, A substituted or unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms, or a combination of two or more of these groups.
  • a 1 is an alkylene group, an ether bond, a group in which two or more alkylene groups are combined, or a group in which one or more alkylene groups and one or more ether bonds are combined.
  • x is an integer of 1 to 5
  • y is 0 to 3
  • z is an integer of 0 to 4.
  • a plurality of R 3 , R 4 , R 5 , Ar, A 1 , x, y, and z may be the same or different. ]] 2. 2.
  • R 3 is an acid dissociable, dissolution inhibiting group of any one of the following formulas (I) to (IV):
  • is a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted carbon number 3 to 20 cyclic aliphatic hydrocarbon groups, or substituted or unsubstituted aromatic groups having 6 to 10 carbon atoms.
  • is an alkoxy group substituted with a group having a tertiary aliphatic structure, an aromatic structure, a monocyclic aliphatic structure or a bicyclic aliphatic structure.
  • represents an aromatic structure, an alkoxy group substituted by a group having a monocyclic aliphatic structure or a polycyclic aliphatic structure, or one or more structures of an aromatic structure, a monocyclic aliphatic structure, and a polycyclic aliphatic structure;
  • an alkoxy group substituted with a combination of linear aliphatic hydrocarbon groups having 1 to 10 carbon atoms are examples of linear aliphatic hydrocarbon groups having 1 to 10 carbon atoms.
  • is a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted carbon number 3 to 20 cyclic aliphatic hydrocarbon groups, or substituted or unsubstituted aromatic groups having 6 to 10 carbon atoms.
  • R is a group represented by the following formula (6), and in formula (6), R 4 is a group selected from the following formulas (7) to (38); R 2 is hydrogen; 3.
  • the compound according to 1 or 2 wherein one of two R 1 existing on the same aromatic ring is a hydroxyl group and the other is a solubility adjusting group.
  • r represents any of the substituents represented by the above formulas (7) to (35)
  • a process for producing the compound according to any one of 1 to 3 The difference between the solubility of the compound of the formula (1) at 0 ° C. and the solubility of the compound of the formula (2) at 0 ° C. is in the range of ⁇ 50 ° C. to 50 ° C. in a solvent of 1 gram / liter or more.
  • R is a group represented by any of the following formulas (3) to (5).
  • R 1 represents a hydroxyl group, a substituted or unsubstituted linear alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, a substituted or unsubstituted cyclic group having 3 to 20 carbon atoms.
  • the divalent group includes a substituted or unsubstituted alkyleneoxy group, a substituted or unsubstituted aryleneoxy group, a substituted or unsubstituted silyleneoxy group, a group in which two or more of these groups are bonded, or a group thereof. It is a group to which an ester bond, a carbonate ester bond or an ether bond is bonded.
  • R 2 is hydrogen, a group represented by R 1 , a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, or a cyclic fatty acid having 3 to 20 carbon atoms.
  • a plurality of R, R 1 and R 2 in the formula (1) and the formula (2) may be the same or different.
  • Ar represents a substituted or unsubstituted arylene group having 6 to 10 carbon atoms, a group obtained by combining two or more substituted or unsubstituted arylene groups having 6 to 10 carbon atoms, or at least an alkylene group and an ether bond. A combination of one or more of them and a substituted or unsubstituted arylene group having 6 to 10 carbon atoms, In the case of having a substituent, the substituent is bromine, fluorine, a nitrile group, or an alkyl group having 1 to 10 carbon atoms.
  • R 3 represents a hydroxyl group, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted carbon, A cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, an alkoxy group, an alkoxyalkyl group, a carboxy group, a silyl group, or these groups and a divalent group.
  • the divalent group includes a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted silylene group, a group in which two or more of these groups are bonded, or one or more of these groups and an ester.
  • R 4 and R 5 are each a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted Alternatively, it is an unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms, or a group obtained by combining two or more of these groups.
  • a 1 is an alkylene group, an ether bond, a group in which two or more alkylene groups are combined, or a group in which one or more alkylene groups and one or more ether bonds are combined.
  • x is an integer of 1 to 5
  • y is 0 to 3
  • z is an integer of 0 to 4.
  • a plurality of R 3 , R 4 , R 5 , Ar, A 1 , x, y, and z may be the same or different. ]] 9.
  • is a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted carbon number 3 to 20 cyclic aliphatic hydrocarbon groups, or substituted or unsubstituted aromatic groups having 6 to 10 carbon atoms.
  • is an alkoxy group substituted with a group having a tertiary aliphatic structure, an aromatic structure, a monocyclic aliphatic structure or a bicyclic aliphatic structure.
  • represents an aromatic structure, an alkoxy group substituted by a group having a monocyclic aliphatic structure or a polycyclic aliphatic structure, or one or more structures of an aromatic structure, a monocyclic aliphatic structure, and a polycyclic aliphatic structure; And an alkoxy group substituted with a combination of linear aliphatic hydrocarbon groups having 1 to 10 carbon atoms.
  • is a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted carbon number 3 to 20 cyclic aliphatic hydrocarbon groups, or substituted or unsubstituted aromatic groups having 6 to 10 carbon atoms.
  • R is a group represented by the following formula (6), and in formula (6), R 4 is a group selected from the following formulas (7) to (38); R 2 is hydrogen; 10.
  • composition according to 8 or 9 wherein one of two R 1 existing on the same aromatic ring is a hydroxyl group and the other is a solubility adjusting group.
  • r represents any of the substituents represented by the above formulas (7) to (35)
  • a method for producing a composition comprising: The difference between the solubility of compound (1) at 0 ° C. and the solubility of compound (2) at 0 ° C. is 1 gram / liter or more under the condition of ⁇ 50 ° C. or more and 50 ° C.
  • a crystallization isolation step of crystallizing and isolating compound (1) or compound (2) from the mixture The first mixture after the compound (1) or the compound (2) is isolated by the crystallization isolation step and the second mixture are mixed at a predetermined ratio, and the compound (1) and the compound ( A mixing ratio control step for controlling the molar ratio of 2); The manufacturing method of the composition containing this. 14 14. The production method according to any one of 11 to 13, wherein a temperature in the crystallization isolation step is ⁇ 20 ° C. or higher and 20 ° C. or lower. 15. 15.
  • the solvent is at least one solvent selected from a halogen-containing organic solvent and an oxygen-containing organic solvent.
  • a thin film comprising the composition according to any one of 17.8 to 10.
  • stereoisomers can be used as raw materials for high-sensitivity, high-resolution photoresist materials.
  • a photoresist material with high sensitivity and high resolution can be provided.
  • the composition of the present invention includes two types of stereoisomers that differ in a predetermined ratio. By including at a predetermined ratio, the performance is improved.
  • 1 is a 1 H-NMR spectrum of a compound (1b) synthesized in Example A-1 (Reference Example B-1).
  • 1 is a 1 H-NMR spectrum of a compound (2b) synthesized in Example A-1 (Reference Example B-1).
  • 1 is a 1 H-NMR spectrum of a compound (3b) synthesized in Example A-1 (Reference Example B-1).
  • 1 is a 1 H-NMR spectrum of a compound (1c) synthesized in Comparative Example A-1 (Comparative Example B-1).
  • 1 is a 1 H-NMR spectrum of a compound (2c) synthesized in Comparative Example A-1 (Comparative Example B-1).
  • 1 is a 1 H-NMR spectrum of a compound (3c) synthesized in Comparative Example A-1 (Comparative Example B-1).
  • 1 is a 1 H-NMR spectrum of a mixture of compounds (1a) and (1b) synthesized in Example B-1.
  • 1 is a 1 H-NMR spectrum of a mixture of compounds (2a) and (2b) synthesized in Example B-1.
  • 1 is a 1 H-NMR spectrum of a mixture of compounds (3a) and (3b) synthesized in Example B-1.
  • 1 is a 1 H-NMR spectrum of a mixture of compounds (4a) and (4b) synthesized in Example B-5.
  • 1 is a 1 H-NMR spectrum of a mixture of compounds (5a) and (5b) synthesized in Example B-6.
  • Example B-7 1 is a 1 H-NMR spectrum of a mixture of compounds (2a) and (2b) synthesized in Example B-7. 1 is a 1 H-NMR spectrum of a mixture of compounds (4a) and (4b) synthesized in Example B-7. 1 is a 1 H-NMR spectrum of a mixture of compounds (5a) and (5b) synthesized in Example B-8.
  • R is a group represented by any of the following formulas (3) to (5).
  • R 1 represents a hydroxyl group, a substituted or unsubstituted linear alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, a substituted or unsubstituted cyclic group having 3 to 20 carbon atoms.
  • the divalent group includes a substituted or unsubstituted alkyleneoxy group, a substituted or unsubstituted aryleneoxy group, a substituted or unsubstituted silyleneoxy group, a group in which two or more of these groups are bonded, or a group thereof.
  • R 2 is hydrogen, a group represented by R 1 , a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, or a cyclic fatty acid having 3 to 20 carbon atoms.
  • a plurality of R, R 1 and R 2 in the formula (1) and the formula (2) may be the same or different.
  • Ar represents a substituted or unsubstituted arylene group having 6 to 10 carbon atoms, a group obtained by combining two or more substituted or unsubstituted arylene groups having 6 to 10 carbon atoms, or at least one of an alkylene group and an ether bond. And a substituted or unsubstituted arylene group having 6 to 10 carbon atoms.
  • the substituent is bromine, fluorine, a nitrile group, or an alkyl group having 1 to 10 carbon atoms.
  • R 3 represents a hydroxyl group, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted carbon, A cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, an alkoxy group, an alkoxyalkyl group, a carboxy group, a silyl group, or these groups and a divalent group.
  • a divalent group is a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted silylene group, a group in which two or more of these groups are bonded, or a group thereof. It is a group in which one or more and one or more groups selected from an ester bond, a carbonate ester bond and an ether bond are bonded.
  • R 4 and R 5 are each a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted Alternatively, it is an unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms, or a group obtained by combining two or more of these groups.
  • a 1 is an alkylene group, an ether bond, a group in which two or more alkylene groups are combined, or a group in which one or more alkylene groups and one or more ether bonds are combined.
  • X is an integer from 1 to 5
  • y is from 0 to 3
  • z is an integer from 0 to 4.
  • a plurality of R 3 , R 4 , R 5 , Ar, A 1 , x, y, and z may be the same or different.
  • the compound of the present invention contains either stereoisomer of formula (1) or formula (2) at a purity of 90% or more. Preferably, it is a compound consisting essentially of a specific stereoisomer, and most preferably 100%.
  • R 3 is preferably an acid dissociable, dissolution inhibiting group.
  • An example of the acid dissociable, dissolution inhibiting group is a group having at least a carbon atom, a hydrogen atom, and an oxygen atom having a tertiary aliphatic structure, an aromatic structure, a monocyclic aliphatic structure, or a bicyclic aliphatic structure.
  • An example of the tertiary aliphatic structure is a tert-butyl group.
  • the aromatic structure include benzene and naphthalene.
  • Examples of the monocyclic aliphatic structure include cyclohexane and cyclopentane.
  • Examples of the bicyclic aliphatic structure include adamantane and norbornene.
  • R 3 is represented by any of the following formulas (I) to (IV).
  • is a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms or a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms.
  • is an alkoxy group substituted with a group having a tertiary aliphatic structure, an aromatic structure, a monocyclic aliphatic structure or a bicyclic aliphatic structure.
  • a tertiary carbon contained in a group having a tertiary aliphatic structure, an aromatic structure, a monocyclic aliphatic structure or a bicyclic aliphatic structure is bonded to an oxygen atom.
  • represents an aromatic structure, an alkoxy group substituted by a group having a monocyclic aliphatic structure or a polycyclic aliphatic structure, or one or more structures of an aromatic structure, a monocyclic aliphatic structure, and a polycyclic aliphatic structure; And an alkoxy group substituted with a combination of linear aliphatic hydrocarbon groups having 1 to 10 carbon atoms.
  • the alkoxy group substituted by a group having an aromatic structure, a monocyclic aliphatic structure or a polycyclic aliphatic structure is preferably a tertiary aliphatic structure, an aromatic structure, a monocyclic aliphatic structure or a polycyclic aliphatic structure.
  • is a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted carbon number 3 to 20 cyclic aliphatic hydrocarbon groups, or substituted or unsubstituted aromatic groups having 6 to 10 carbon atoms.
  • R 2 is preferably hydrogen.
  • one of two R 1 existing on the same aromatic ring is a hydroxyl group, and the other is a solubility adjusting group.
  • Suitable solubility adjusting groups include alkoxy groups having 1 to 6 carbon atoms.
  • R is preferably a group represented by the following formula (6).
  • R 4 is a group selected from the following formulas (7) to (38).
  • r represents any of the substituents represented by the above formulas (7) to (35).
  • the compound of the present invention can be produced as follows. First, a mixture of a compound having the structure of the above formula (1) (hereinafter also referred to as compound (1)) and a compound having the structure of the above formula (2) (hereinafter also referred to as compound (2)) is produced. As described in Japanese Patent Application Laid-Open No. 2009-269901 (Japanese Patent Application No. 2008-158769), for example, in the presence of an acid catalyst, the mixture is a condensed cyclization of an aldehyde compound having a corresponding structure and a phenol derivative having a corresponding structure.
  • a calix resorcinarene derivative (precursor) is synthesized by reaction, and a compound corresponding to a group such as R 3 can be synthesized by introducing it into the precursor by esterification reaction, etherification reaction, acetalization reaction, or the like.
  • a difference ⁇ d between the solubility of the compound (1) at 0 ° C. and the solubility of the compound (2) at 0 ° C. in a solvent having a concentration of 1 gram / liter or more is ⁇ 50 ° C. or more and 50 ° C. or less, Only compound (1) or compound (2) is crystallized and isolated from the mixture.
  • Examples of applicable solvents include halogen-containing organic solvents and oxygen-containing organic solvents.
  • Specific examples of the halogen-containing organic solvent include dichloromethane, chloroform, carbon tetrachloride, monochloroethane, dichloroethane, trichloroethane, tetrachloroethane, monochlorobenzene, dichlorobenzene, trichlorobenzene, trifluoroethanol, hexafluoroisopropanol, and the like.
  • oxygen-containing organic solvent examples include diethyl ether, tetrahydrofuran, 1,4-dioxane, propylene glycol methyl ether acetate, propylene glycol monomethyl ether, ethyl acetate, ethyl lactate, acetone, methyl ethyl ketone, and cyclohexanone.
  • the solvent used when producing the compound (1) and the compound (2) is preferably the same as the solvent used for separating the compound (1) and the compound (2). If the solvents are the same, it is not necessary to wash the mixture of the compound (1) and the compound (2), and the purification step can be eliminated.
  • the compound of the present invention is isolated at ⁇ 50 to 50 ° C., particularly preferably ⁇ 20 to 20 ° C.
  • the performance is inferior. For this reason, if it is isolated at less than ⁇ 50 ° C., it is considered that not only the compound (1) and the compound (2) cannot be separated, but also the deterioration of performance due to the presence of impurities.
  • the other compound with high solubility can be isolated from the remaining solution. For example, it is isolated by precipitation at a lower temperature or by adding a poor solvent that does not dissolve the compound dissolved in the solution.
  • the cyclic compound which is a specific stereoisomer of the present invention can be used as a material for a photoresist substrate.
  • a photoresist composition can be prepared from a photoresist substrate and a solvent.
  • the photoresist composition can further contain a known photoacid generator, acid diffusion control agent, and the like, if necessary.
  • a thin film can be formed from a compound of the present invention on a substrate such as a silicon wafer by a known molding method.
  • Formation methods include injection molding, injection compression molding, extrusion molding, blow molding, pressure molding, transfer molding, spin coating, spray coating, casting, vapor deposition, thermal CVD, plasma Examples thereof include a CVD method and a plasma polymerization method, and these molding methods can be appropriately selected according to the form and performance of a desired product.
  • the obtained thin film may be cured (cycloaddition reaction) with heat, ultraviolet light, deep ultraviolet light, vacuum ultraviolet light, extreme ultraviolet light, electron beam, plasma, X-ray or the like.
  • the compound of the present invention When the compound of the present invention is formed into a thin film by a spin coating method or the like, the compound of the present invention can be dissolved in an organic solvent and used as a paint.
  • Organic solvents include chloroform, dichloromethane, 1,1,2,2-tetrachloroethane, dichloroethane, dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dimethylformamide (DMF), N-methylpyrrolidone (NMP), dimethylacetamide, dimethyl sulfoxide (DMSO), anisole, acetophenone, benzonitrile, nitrobenzene, propylene glycol methyl ether acetate, propylene glycol monomethyl ether, tetrahydrofuran (THF), cyclohexanone, methyl ethyl ketone, acetone and the like.
  • DMF dimethylformamide
  • NMP N-methylpyrrolidone
  • DMSO dimethylacetamide
  • anisole anisole
  • acetophenone benzonitrile
  • nitrobenzene propylene glycol methyl ether acetate
  • the concentration of the compound of the present invention in the paint may be appropriately adjusted in consideration of the viscosity of the paint and the thin film forming method.
  • the thickness of the thin film is not particularly limited, but generally a thickness of about 10 nm to 10 ⁇ m is preferably used.
  • the film thickness of the thin film can be measured with an ellipsometer, a reflective optical film thickness meter, or the like, or with a stylus film thickness meter or AFM.
  • Thin films using the compounds of the present invention are used as photoresist thin films, optical thin films for various optical information processing devices such as optical lenses, optical fibers, optical waveguides, and photonic crystals, interlayer insulating films for semiconductors, and semiconductors. It is useful as a thin film for ULSI devices such as a protective film, a thin film for image display devices such as a liquid crystal display, a liquid crystal projector, a plasma display, an EL display, and an LED display, a thin film used for a CMOS image sensor, a CCD image sensor, and the like.
  • these thin films are provided for semiconductor devices such as CPUs, DRAMs, flash memories, etc., electronic circuit devices such as information processing small electronic circuit devices, high frequency communication electronic circuit devices, image display devices, optical information processing devices, and optical communication devices. It can also be used in a member such as a surface protective film and a heat-resistant film.
  • the composition of the present invention comprises the following compound (1) and the following compound (2).
  • the molar ratio of compound (1) to compound (2) is 15:85 to 70:30. If it is less than 15%, a part of the compound (2) does not dissolve but remains as an insoluble substance in a general solvent used for preparing a photoresist solution such as propylene glycol monomethyl ether, and a uniform photoresist solution When the amount exceeds 70%, a part of the compound (1) remains in an insoluble substance in a general solvent used in preparing a photoresist solution such as propylene glycol monomethyl ether, and remains homogeneous. A photoresist solution cannot be obtained. Further, it is preferably 15:85 to 67:33.
  • composition of the present invention consists essentially of only two types of stereoisomers. Preferably, 90% or more are two types of stereoisomers.
  • the composition of the present invention can be produced by mixing the compound (1) and the compound (2) of the present invention in a predetermined molar ratio or as follows. First, a mixture of a compound having the structure of the above formula (1) (hereinafter also referred to as compound (1)) and a compound having the structure of the above formula (2) (hereinafter also referred to as compound (2)) is produced. As described in Japanese Patent Application No. 2008-158769, the mixture is prepared by, for example, a calixresorcinarene derivative ( And a compound corresponding to a group such as R 3 can be synthesized by introducing it into the precursor by an esterification reaction, an etherification reaction, an acetalization reaction, or the like.
  • the ratio of the compound (1) and the compound (2) is adjusted.
  • the mixture of the compound (1) and the compound (2) may be a mixture after isolating the compound (1) or the compound (2), or may be a separately prepared mixture.
  • the mixture produced separately is mixed with the mixture except compound (1) or compound (2), and the ratio in a mixture is adjusted. -Isolate compound (1) and compound (2) from the mixture.
  • the isolated compound (1) and compound (2) are mixed in a desired ratio.
  • “mixing at a predetermined ratio” includes not only physical mixing but also mixing after dissolving the object to be mixed in a solvent.
  • the compound (1) and the compound (2) may be physically mixed, or the compound (1) and the compound (2) may be mixed in a solvent in which each of them is dissolved. Since the solvent that can be used differs depending on the compound, it cannot be generally described, but a halogen-containing organic solvent or an oxygen-containing organic solvent can be preferably used.
  • the mixture in which the above ratio is adjusted becomes uniform in the photoresist solution to be produced, it may not be mixed in advance.
  • the method for isolating the compound (1) or the compound (2) from the mixture is as described in the first embodiment, and is omitted here.
  • the photoresist composition of the present invention contains a composition and a solvent containing the cyclic compound of the above formula (1) or (2), or a composition of the cyclic compound of the above formulas (1) and (2) and a solvent. To do.
  • the composition is used as a substrate.
  • the compounding amount of the cyclic compound composition is preferably 50 to 99.9% by weight, more preferably 75 to 95% by weight in the total composition excluding the solvent.
  • Examples of the solvent used in the photoresist composition of the present invention include ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether and the like.
  • Ethylene glycol monoalkyl ethers propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate (PGMEA) and propylene glycol monoethyl ether acetate; propylene glycols such as propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether Monoalkyl ethers; methyl lactate, ethyl lactate ( L) Lactic acid esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate and ethyl propionate (PE); methyl 3-methoxypropionate, ethyl 3-methoxypropionate, 3 -Other esters such as methyl ethoxypropionate and ethyl 3-ethoxypropionate; aromatic hydrocarbons such as toluene and xylene; ketones such as 2-heptanone, 3-hept
  • the components other than the solvent in the composition that is, the amount of the photoresist solid content, is preferably set to an amount suitable for forming a desired thickness of the photoresist layer. Specifically, it is generally 0.1 to 50% by weight of the total weight of the photoresist composition, but it can be defined according to the type of base material and solvent used, or the desired film thickness of the photoresist layer. .
  • the solvent is preferably blended in an amount of 50 to 99.9% by weight in the total composition.
  • the photoresist composition of the present invention does not require an additive particularly when the substrate molecule contains a chromophore active against EUV and / or electron beam and exhibits the ability as a photoresist alone.
  • a photoacid generator (PAG) or the like is generally included as a chromophore as necessary.
  • the photoacid generator is not particularly limited, and those proposed as acid generators for chemically amplified resists can be used.
  • acid generators include onium salt acid generators such as iodonium salts and sulfonium salts, oxime sulfonate acid generators, bisalkyl or bisarylsulfonyldiazomethanes, and diazomethanes such as poly (bissulfonyl) diazomethanes.
  • onium salt acid generators such as iodonium salts and sulfonium salts
  • oxime sulfonate acid generators such as bisalkyl or bisarylsulfonyldiazomethanes
  • diazomethanes such as poly (bissulfonyl) diazomethanes.
  • acid generators nitrobenzyl sulfonate acid generators, imino sulfonate acid generators, disulfone acid generators, and the
  • Examples of the onium salt acid generator include acid generators represented by the following formula (a-0).
  • R 51 represents a linear, branched or cyclic alkyl group, or a linear, branched or cyclic fluorinated alkyl group
  • R 52 represents a hydrogen atom, a hydroxyl group, a halogen atom, linear or A branched alkyl group, a linear or branched halogenated alkyl group, or a linear or branched alkoxy group
  • R 53 is an optionally substituted aryl group
  • u '' Is an integer of 1 to 3.
  • R 51 represents a linear, branched or cyclic alkyl group, or a linear, branched or cyclic fluorinated alkyl group.
  • the linear or branched alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms.
  • the cyclic alkyl group preferably has 4 to 12 carbon atoms, more preferably 5 to 10 carbon atoms, and most preferably 6 to 10 carbon atoms.
  • the fluorinated alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms.
  • the fluorination rate of the fluorinated alkyl group (ratio of the number of substituted fluorine atoms to the total number of hydrogen atoms in the alkyl group) is preferably 10 to 100%, more preferably 50 to 100%, and particularly hydrogen. Those in which all atoms are substituted with fluorine atoms are preferred because the strength of the acid is increased.
  • R 51 is most preferably a linear alkyl group or a fluorinated alkyl group.
  • R 52 represents a hydrogen atom, a hydroxyl group, a halogen atom, a linear, branched or cyclic alkyl group, a linear or branched alkyl halide group, or a linear or branched alkoxy group.
  • examples of the halogen atom include a fluorine atom, a bromine atom, a chlorine atom, and an iodine atom, and a fluorine atom is preferable.
  • the alkyl group is linear or branched, and the carbon number thereof is preferably 1 to 5, more preferably 1 to 4, and most preferably 1 to 3.
  • the halogenated alkyl group is a group in which part or all of the hydrogen atoms in the alkyl group are substituted with halogen atoms.
  • the alkyl group herein are the same as the “alkyl group” in R 52 .
  • the halogen atom to be substituted include the same as those described above for the “halogen atom”.
  • the alkoxy group is linear or branched, and the carbon number thereof is preferably 1 to 5, more preferably 1 to 4, and most preferably 1 to 3. Of these, R 52 is preferably a hydrogen atom.
  • R 53 is an aryl group which may have a substituent, and examples of the structure of the basic ring (matrix ring) excluding the substituent include a naphthyl group, a phenyl group, an anthracenyl group, and the like. From the viewpoint of absorption of exposure light such as ArF excimer laser or the like, a phenyl group is desirable.
  • the substituent include a hydroxyl group and a lower alkyl group (straight or branched chain, preferably having 5 or less carbon atoms, particularly preferably a methyl group).
  • the aryl group for R 53 an aryl group having no substituent is more preferable.
  • U ′′ is an integer of 1 to 3, preferably 2 or 3, and particularly preferably 3.
  • Preferable examples of the acid generator represented by the formula (a-0) include those represented by the following chemical formula.
  • the acid generator represented by the formula (a-0) can be used alone or in combination.
  • Examples of other onium salt acid generators represented by the formula (a-0) include compounds represented by the following formula (a-1) or (a-2). [Wherein R 1 ′′ to R 3 ′′, R 5 ′′, R 6 ′′ each independently represents a substituted or unsubstituted aryl group or alkyl group; R 4 ′′ represents a linear, branched or cyclic group; Represents an alkyl group or a fluorinated alkyl group; at least one of R 1 ′′ to R 3 ′′ represents an aryl group, and at least one of R 5 ′′ and R 6 ′′ represents an aryl group.]
  • R 1 ′′ to R 3 ′′ each independently represents a substituted or unsubstituted aryl group or alkyl group. At least one of R 1 ′′ to R 3 ′′ represents a substituted or unsubstituted aryl group. Of R 1 ′′ to R 3 ′′, two or more are preferably substituted or unsubstituted aryl groups, and most preferably all of R 1 ′′ to R 3 ′′ are substituted or unsubstituted aryl groups.
  • the aryl group for R 1 ′′ to R 3 ′′ is not particularly limited, and is, for example, an aryl group having 6 to 20 carbon atoms, in which part or all of the hydrogen atoms are alkyl groups, alkoxy groups It may or may not be substituted with a group, a halogen atom or the like.
  • the aryl group is preferably an aryl group having 6 to 10 carbon atoms because it can be synthesized at a low cost. Specific examples include a phenyl group and a naphthyl group.
  • the alkyl group that is a substituent of the aryl group is preferably an alkyl group having 1 to 5 carbon atoms, and most preferably a methyl group, an ethyl group, a propyl group, an n-butyl group, or a tert-butyl group.
  • the alkoxy group which is a substituent of the aryl group is preferably an alkoxy group having 1 to 5 carbon atoms, and most preferably a methoxy group or an ethoxy group.
  • the halogen atom that is a substituent of the aryl group is preferably a fluorine atom.
  • the alkyl group for R 1 ′′ to R 3 ′′ is not particularly limited, and examples thereof include linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms. From the viewpoint of excellent resolution, the number of carbon atoms is preferably 1 to 5. Specific examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, cyclopentyl group, hexyl group, cyclohexyl group, nonyl group, decanyl group and the like. A methyl group is preferable because it is excellent in resolution and can be synthesized at low cost. Among these, it is most preferable that all of R 1 ′′ to R 3 ′′ are phenyl groups.
  • R 4 ′′ represents a linear, branched or cyclic alkyl group or a fluorinated alkyl group.
  • the linear or branched alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms.
  • the cyclic alkyl group is a cyclic group as represented by R 1 ′′, preferably having 4 to 15 carbon atoms, more preferably 4 to 10 carbon atoms, and more preferably 6 carbon atoms. Most preferably, it is ⁇ 10.
  • the fluorinated alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms. Also.
  • the fluorination rate of the fluorinated alkyl group (ratio of fluorine atoms in the alkyl group) is preferably 10 to 100%, more preferably 50 to 100%, and in particular, those in which all hydrogen atoms are substituted with fluorine atoms. Since the strength of the acid is increased, it is preferable.
  • R 4 ′′ is most preferably a linear or cyclic alkyl group or a fluorinated alkyl group.
  • R 5 ′′ and R 6 ′′ each independently represents a substituted or unsubstituted aryl group or alkyl group. At least one of R 5 ′′ and R 6 ′′ represents a substituted or unsubstituted aryl group. All of R 5 ′′ and R 6 ′′ are preferably substituted or unsubstituted aryl groups. Examples of the substituted or unsubstituted aryl group for R 5 ′′ to R 6 ′′ include those similar to the substituted or unsubstituted aryl group for R 1 ′′ to R 3 ′′. As the alkyl group for R 5 ′′ to R 6 ′′, the same as the alkyl groups for R 1 ′′ to R 3 ′′ can be used. Of these, it is most preferable that all of R 5 ′′ to R 6 ′′ are phenyl groups. "As R 4 in the formula (a-1)" R 4 in the formula (a-2) include the same as.
  • onium salt acid generators represented by the formulas (a-1) and (a-2) include diphenyliodonium trifluoromethanesulfonate or nonafluorobutanesulfonate, bis (4-tert-butylphenyl) iodonium.
  • Trifluoromethanesulfonate or nonafluorobutanesulfonate triphenylsulfonium trifluoromethanesulfonate, heptafluoropropanesulfonate or nonafluorobutanesulfonate, tri (4-methylphenyl) sulfonium trifluoromethanesulfonate, heptafluoropropanesulfonate or the same Nonafluorobutanesulfonate, dimethyl (4-hydroxynaphthyl) sulfonium trifluoromethanesulfonate, its heptafluoropropyl Pansulfonate or its nonafluorobutanesulfonate, trifluoromethanesulfonate of monophenyldimethylsulfonium, its heptafluoropropanesulfonate or its nonafluorobutanesulfonate, trifluoromethanes
  • onium salts in which the anion portion of these onium salts is replaced with methanesulfonate, n-propanesulfonate, n-butanesulfonate, or n-octanesulfonate can also be used.
  • an onium salt acid generator in which the anion moiety is replaced by the anion moiety represented by the following formula (a-3) or (a-4) in the formula (a-1) or (a-2) is also used.
  • the cation moiety is the same as (a-1) or (a-2)).
  • X ′′ is a linear or branched alkylene group in which at least one hydrogen atom is substituted with a fluorine atom, and the alkylene group has 2 to 6 carbon atoms, preferably 3 to 5 carbon atoms, Preferably it is C3.
  • Y ′′ and Z ′′ are each independently a linear or branched alkyl group in which at least one hydrogen atom is substituted with a fluorine atom, and the alkyl group has 1 to 10 carbon atoms, preferably It has 1 to 7 carbon atoms, more preferably 1 to 3 carbon atoms.
  • the number of carbon atoms of the alkylene group of X ′′ or the number of carbon atoms of the alkyl group of Y ′′ and Z ′′ is preferably as small as possible because the solubility in a resist solvent is good within the above-mentioned range of carbon numbers.
  • the strength of the acid increases as the number of hydrogen atoms substituted by fluorine atoms increases, and high-energy light or electron beam of 200 nm or less
  • the ratio of fluorine atoms in the alkylene group or alkyl group, that is, the fluorination rate is preferably 70 to 100%, more preferably 90 to 100%, and most preferably all.
  • compounds represented by the following formulas (40) to (45) can also be used as a photoacid generator.
  • Q is an alkylene group, an arylene group or an alkoxylene group
  • R 15 is an alkyl group, an aryl group, a halogen-substituted alkyl group or a halogen-substituted aryl group.
  • the compound represented by the formula (40) includes N- (trifluoromethylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N- (trifluoro Methylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) naphthylimide, N- (10-camphorsulfonyloxy) succinimide, N- (10-camphorsulfonyloxy) phthalimide, N- (10-camphorsulfonyloxy) diphenylmaleimide, N- (10-camphorsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3 -Dicarboximide, N- 10-camphorsulfonyloxy
  • R 16 may be the same or different and each independently represents an optionally substituted linear, branched or cyclic alkyl group, an optionally substituted aryl group, and optionally substituted. A heteroaryl group or an optionally substituted aralkyl group.
  • the compound represented by the formula (41) includes diphenyl disulfone, di (4-methylphenyl) disulfone, dinaphthyl disulfone, di (4-tert-butylphenyl) disulfone, di (4-hydroxyphenyl) disulfone, di It is at least one selected from the group consisting of (3-hydroxynaphthyl) disulfone, di (4-fluorophenyl) disulfone, di (2-fluorophenyl) disulfone and di (4-toluromethylphenyl) disulfone. preferable.
  • R 17 may be the same or different and each independently represents an optionally substituted linear, branched or cyclic alkyl group, an optionally substituted aryl group, and optionally substituted. A heteroaryl group or an optionally substituted aralkyl group.
  • the compound represented by the formula (42) is ⁇ - (methylsulfonyloxyimino) -phenylacetonitrile, ⁇ - (methylsulfonyloxyimino) -4-methoxyphenylacetonitrile, ⁇ - (trifluoromethylsulfonyloxyimino) -phenyl.
  • R 18 may be the same or different and each independently represents a halogenated alkyl group having one or more chlorine atoms and one or more bromine atoms.
  • the halogenated alkyl group preferably has 1 to 5 carbon atoms.
  • R 19 and R 20 are each independently an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopentyl group, or a cyclohexyl group.
  • a cycloalkyl group such as methoxy group, ethoxy group, propoxy group and the like, or an aryl group such as phenyl group, toluyl group and naphthyl group, preferably 6 to 6 carbon atoms. 10 aryl groups.
  • L 19 and L 20 are each independently an organic group having a 1,2-naphthoquinonediazide group.
  • organic group having a 1,2-naphthoquinonediazide group examples include a 1,2-naphthoquinonediazide-4-sulfonyl group, a 1,2-naphthoquinonediazide-5-sulfonyl group, and a 1,2-naphthoquinonediazide- Preferred examples include 1,2-quinonediazidosulfonyl groups such as a 6-sulfonyl group.
  • 1,2-naphthoquinonediazido-4-sulfonyl group and 1,2-naphthoquinonediazide-5-sulfonyl group are preferable.
  • J 19 is a group having a single bond, a polymethylene group having 1 to 4 carbon atoms, a cycloalkylene group, a phenylene group, a group represented by the following formula (44a), a carbonyl bond, an ester bond, an amide bond or an ether bond.
  • Y 19 is each independently a hydrogen atom, an alkyl group or an aryl group
  • X 20 is each independently a group represented by the following formula (45a).
  • Z 22 each independently represents an alkyl group, a cycloalkyl group or an aryl group
  • R 22 each independently represents an alkyl group, a cycloalkyl group or an alkoxy group
  • r is 0 to 3 It is an integer.
  • Other acid generators include bis (p-toluenesulfonyl) diazomethane, bis (2,4-dimethylphenylsulfonyl) diazomethane, bis (tert-butylsulfonyl) diazomethane, bis (n-butylsulfonyl) diazomethane, bis (isobutylsulfonyl) ) Diazomethane, bis (isopropylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, 1,3-bis (cyclohexylsulfonylazomethylsulfonyl) propane, 1,4 -Bis (phenylsulfonylazomethylsulfonyl) butane, 1,6
  • a compound that generates an organic sulfonic acid by the action of actinic rays or radiation is particularly preferable.
  • the blending amount of PAG is 0 to 40% by weight, preferably 5 to 30% by weight, and more preferably 5 to 20% by weight in the total composition excluding the solvent.
  • an acid diffusion control agent having an action of controlling an undesired chemical reaction in an unexposed region by controlling diffusion of an acid generated from an acid generator by irradiation in a resist film.
  • an acid diffusion controller By using such an acid diffusion controller, the storage stability of the photoresist composition is improved. Further, the resolution is improved, and a change in the line width of the resist pattern due to fluctuations in the holding time before electron beam irradiation and the holding time after electron beam irradiation can be suppressed, and the process stability is extremely excellent.
  • acid diffusion control agents include monoalkylamines such as n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine; diethylamine, di-n-propylamine, di- -Dialkylamines such as n-heptylamine, di-n-octylamine, dicyclohexylamine; trimethylamine, triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-hexylamine, tri-n-pentylamine Trialkylamines such as tri-n-heptylamine, tri-n-octylamine, tri-n-nonylamine, tri-n-decanylamine, tri-n-dodecylamine; diethanolamine, triethanolamine, diisopropanolamine, Isopropano Alkyl alcohol amine
  • the blending amount of the quencher is 0 to 40% by weight, preferably 0.01 to 15% by weight, based on the total composition excluding the solvent.
  • further miscible additives for example, additional resins for improving the performance of resist films, surfactants for improving coating properties, dissolution control agents, sensitizers, plasticizers. Stabilizers, colorants, antihalation agents, dyes, pigments, and the like can be appropriately added and contained.
  • the dissolution controlling agent is a component having an action of reducing the solubility of the cyclic compound in an alkaline developer so as to moderate the dissolution rate during development.
  • dissolution control agent examples include aromatic hydrocarbons such as naphthalene, phenanthrene, anthracene, and acenaphthene; ketones such as acetophenone, benzophenone, and phenylnaphthyl ketone; and sulfones such as methylphenylsulfone, diphenylsulfone, and dinaphthylsulfone.
  • aromatic hydrocarbons such as naphthalene, phenanthrene, anthracene, and acenaphthene
  • ketones such as acetophenone, benzophenone, and phenylnaphthyl ketone
  • sulfones such as methylphenylsulfone, diphenylsulfone, and dinaphthylsulfone.
  • bisphenols into which an acid dissociable functional group has been introduced tris (hydroxyphenyl) methane into
  • dissolution control agents can be used alone or in combination of two or more.
  • the blending amount of the dissolution control agent is appropriately adjusted according to the kind of the cyclic compound to be used, but is preferably 0 to 50% by weight, more preferably 0 to 40% by weight, and more preferably 0 to 30% by weight based on the total weight of the solid component. Is more preferable.
  • the sensitizer is a component that absorbs the energy of the irradiated radiation and transmits the energy to the acid generator, thereby increasing the amount of acid generated and improving the apparent sensitivity of the resist. is there.
  • Examples of such sensitizers include, but are not limited to, benzophenones, biacetyls, pyrenes, phenothiazines, and fluorenes. These sensitizers can be used alone or in combination of two or more.
  • the blending amount of the sensitizer is preferably 0 to 50% by weight, more preferably 0 to 20% by weight, and further preferably 0 to 10% by weight based on the total weight of the solid component.
  • the surfactant is a component having an action of improving the coating property and striation of the photoresist composition of the present invention, the developability as a resist, and the like.
  • a surfactant any of anionic, cationic, nonionic or amphoteric can be used. Of these, nonionic surfactants are preferred.
  • the nonionic surfactant has a good affinity with the solvent used in the photoresist composition and is more effective.
  • nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, polyethylene glycol higher fatty acid diesters, and the following trade names: Ftop (manufactured by Gemco) , MegaFac (Dainippon Ink & Chemicals), Florard (Sumitomo 3M), Asahi Guard, Surflon (Asahi Glass), Pepol (Toho Chemical), KP (Shin-Etsu Chemical)
  • the series products such as Polyflow (manufactured by Kyoeisha Yushi Chemical Co., Ltd.) and the like can be mentioned, but are not particularly limited.
  • the compounding amount of the surfactant is preferably 0 to 2% by weight, more preferably 0 to 1% by weight, and further preferably 0 to 0.1% by weight based on the total weight of the solid components.
  • the latent image in the exposed area can be visualized and the influence of halation during exposure can be mitigated. Furthermore, the adhesiveness with a board
  • An organic carboxylic acid or phosphorus oxo acid or a derivative thereof is added as an optional component for the purpose of preventing sensitivity deterioration when an acid diffusion control agent is added and improving the resist pattern shape, retention stability, etc. be able to. These compounds can be used in combination with an acid diffusion controller or may be used alone.
  • the organic carboxylic acid for example, malonic acid, citric acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are suitable.
  • Phosphorus oxoacids or derivatives thereof include phosphoric acid, phosphoric acid di-n-butyl ester, phosphoric acid diphenyl ester and other phosphoric acid or derivatives thereof, phosphonic acid, phosphonic acid dimethyl ester, phosphonic acid di- Examples include phosphonic acids such as n-butyl ester, phenylphosphonic acid, phosphonic acid diphenyl ester, and phosphonic acid dibenzyl ester or derivatives thereof, phosphinic acids such as phosphinic acid and phenylphosphinic acid, and derivatives such as esters thereof. Of these, phosphonic acid is particularly preferred.
  • the photoresist composition of the present invention is applied onto a substrate such as a silicon wafer, a gallium arsenide wafer, or a wafer coated with aluminum, by spin coating, cast coating, roll coating, or other coating means. Then, a resist film is formed by coating.
  • a surface treatment agent may be applied on the substrate in advance.
  • the surface treatment agent include silane coupling agents such as hexamethylene disilazane (hydrolyzable polymerizable silane coupling agent having a polymerizable group, etc.), anchor coating agents or base agents (polyvinyl acetal, acrylic resins, vinyl acetate). Based resins, epoxy resins, urethane resins, etc.), and coating agents obtained by mixing these base agents and inorganic fine particles.
  • a protective film may be formed on the resist film in order to prevent invasion of amines floating in the atmosphere.
  • the acid generated in the resist film due to radiation reacts with a compound that reacts with an acid such as amine floating as an impurity in the atmosphere and deactivates, and the resist image deteriorates and sensitivity. Can be prevented from decreasing.
  • a water-soluble and acidic polymer is preferable. Examples thereof include polyacrylic acid and polyvinyl sulfonic acid.
  • the heating temperature varies depending on the composition of the photoresist composition, but is preferably 20 to 250 ° C., more preferably 40 to 150 ° C.
  • the resist film is exposed to a desired pattern by radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray.
  • the exposure conditions and the like are appropriately selected according to the composition of the photoresist composition.
  • the post-exposure heating temperature (PEB) varies depending on the composition of the photoresist composition, but is preferably 20 to 250 ° C., more preferably 40 to 150 ° C.
  • a predetermined resist pattern can be formed by developing the exposed resist film with an alkaline developer.
  • the alkaline developer include alkaline such as mono-, di- or trialkylamines, mono-, di- or trialkanolamines, heterocyclic amines, tetramethylammonium hydroxide (TMAH), and choline.
  • An alkaline aqueous solution of preferably 1 to 10% by weight, more preferably 1 to 5% by weight, in which one or more compounds are dissolved, is used.
  • An appropriate amount of an alcohol such as methanol, ethanol, isopropyl alcohol, or the above-mentioned surfactant can be added to the alkaline developer. Of these, it is particularly preferable to add 10 to 30% by weight of isopropyl alcohol.
  • the resist film is exposed to a desired pattern with radiation such as KrF excimer laser, extreme ultraviolet light, electron beam, or X-ray, thereby generating an acid.
  • radiation such as KrF excimer laser, extreme ultraviolet light, electron beam, or X-ray
  • the dissociable dissolution inhibiting group is eliminated or the structure is changed, the dissociable dissolution inhibiting group is dissolved in the alkaline developer.
  • it is preferable that the unexposed portion of the pattern is not dissolved in the alkaline developer.
  • the non-solubility in the alkali developer cannot be generally defined because the preferred non-solubility differs depending on the development conditions such as the size of the pattern to be formed and the type of the alkali developer to be used.
  • the insolubility expressed by the developer dissolution rate of a thin film made of a photoresist substrate is preferably less than 1 nanometer / second, preferably 0.5 nanometer / second. Less than a second is particularly preferred.
  • post-baking treatment may be performed after the alkali development, and an organic or inorganic antireflection film may be provided between the resist film and the substrate.
  • the pattern wiring board is obtained by etching. Etching can be performed by a known method such as dry etching using plasma gas, wet etching using an alkali solution, a cupric chloride solution, a ferric chloride solution, or the like. After the resist pattern is formed, a plating process such as copper plating, solder plating, nickel plating, or gold plating can be performed.
  • the residual resist pattern after etching can be stripped with an aqueous solution stronger than an organic solvent or an alkaline developer.
  • organic solvent include PGMEA, PGME, EL, acetone, tetrahydrofuran, and the like.
  • strong alkaline aqueous solution include 1 to 20% by weight sodium hydroxide aqueous solution and 1 to 20% by weight potassium hydroxide aqueous solution. Is mentioned.
  • peeling method include a dipping method and a spray method.
  • the wiring board on which the resist pattern is formed may be a multilayer wiring board or may have a small diameter through hole.
  • a wiring board by a method of forming a resist pattern using the photoresist composition of the present invention, vacuum depositing a metal, and then eluting the resist pattern with a solution, that is, a lift-off method.
  • a semiconductor device can be produced by a microfabrication method using the photoresist composition of the present invention.
  • This semiconductor device can be provided in various devices such as an electric product (electronic device) such as a television receiver, a mobile phone, and a computer, a display, and a car controlled by a computer.
  • composition of the cyclic compound of the present invention can produce various molded products (thin films, films, thin plates, fibers, etc. formed on a substrate such as a silicon wafer) by a known molding method.
  • Molding methods include injection molding, injection compression molding, extrusion molding, blow molding, pressure molding, transfer molding, spin coating, spray coating, casting, vapor deposition, thermal CVD, plasma Examples thereof include a CVD method and a plasma polymerization method, and these molding methods can be appropriately selected according to the form and performance of a desired product.
  • a thin film is obtained by the above method using the composition of the cyclic compound of the present invention, and the obtained thin film is cured by heat, ultraviolet rays, deep ultraviolet rays, vacuum ultraviolet rays, extreme ultraviolet rays, electron beams, plasma, X-rays, etc. (Cycloaddition reaction) may be performed.
  • the cyclic compound composition of the present invention When the cyclic compound composition of the present invention is formed into a thin film by a spin coating method or the like, the cyclic compound composition of the present invention can be dissolved in an organic solvent and used as a coating material.
  • Organic solvents include chloroform, dichloromethane, 1,1,2,2-tetrachloroethane, dichloroethane, dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dimethylformamide (DMF), N-methylpyrrolidone (NMP), dimethylacetamide, dimethyl sulfoxide (DMSO), anisole, acetophenone, benzonitrile, nitrobenzene, propylene glycol methyl ether acetate, propylene glycol monomethyl ether, tetrahydrofuran (THF), cyclohexanone, methyl ethyl ketone, acetone and the like.
  • DMF dimethylformamide
  • NMP N-methylpyrrolidone
  • DMSO dimethylacetamide
  • anisole anisole
  • acetophenone benzonitrile
  • nitrobenzene propylene glycol methyl ether acetate
  • the concentration of the composition of the cyclic compound of the present invention in the paint may be appropriately adjusted in consideration of the viscosity of the paint, the thin film forming method, and the like.
  • the thickness of the thin film is not particularly limited, but generally a thickness of about 10 nm to 10 ⁇ m is preferably used.
  • the film thickness of the thin film can be measured with an ellipsometer, a reflective optical film thickness meter, or the like, or with a stylus film thickness meter or AFM.
  • the thin film of the present invention is used as a photoresist thin film, optical thin films for various optical information processing devices such as optical lenses, optical fibers, optical waveguides, photonic crystals, interlayer insulating films for semiconductors, protective films for semiconductors, etc. It is useful as a thin film for ULSI devices, a liquid crystal display, a liquid crystal projector, a plasma display, an EL display, an LED display and other thin film for image display devices, a CMOS image sensor, a CCD image sensor, and the like. Further, these thin films are provided for semiconductor devices such as CPUs, DRAMs, flash memories, etc., electronic circuit devices such as information processing small electronic circuit devices, high frequency communication electronic circuit devices, image display devices, optical information processing devices, and optical communication devices. It can also be used in a member such as a surface protective film and a heat-resistant film.
  • Example A-1 Under a nitrogen stream, 10.0 g (81 mmol) of 3-methoxyphenol, 13.2 g (80.6 mmol) of methyl 4-formylbenzoate, and 100 ml of dehydrated chloroform were added to a round bottom flask having a volume of 200 ml. Cooled to ° C. After 30.8 ml (250 mmol) of boron trifluoride ether adduct was added dropwise to the mixture, the mixture was warmed to room temperature and stirred for 20 hours, then heated to 50 ° C. and stirred for 14 hours. Continued. The reaction solution was cooled to 0 ° C.
  • a cyclic compound (2c) which is a mixture of the following cyclic compound (2a) and cyclic compound (2b), was obtained in the same manner as in Example A-1 except that the cyclic compound (1c) was used as a starting material. (Yield 90%). As a result of 1 H-NMR measurement (FIG. 5), the following structure was confirmed.
  • a cyclic compound (3c) which is a mixture of the following cyclic compound (3a) and cyclic compound (3b), was obtained in the same manner as in Example A-1, except that the cyclic compound (2c) was used as a starting material. (Yield 69%).
  • the cyclic compound (2c) was used as a starting material.
  • the stereoisomer mixture ratio of the benzoate structure bonded to the cyclic structure was determined by 1 H-NMR and liquid chromatography.
  • the molar ratio of the following cyclic compounds (3a) and (3b) was 2: 3.
  • Example A-1 in the first aspect was designated as Reference Example B-1 in the second aspect.
  • Example B-2 to B-4 A mixture of the cyclic compounds (3a) and (3b) obtained in Example B-1 (2: 1 (molar ratio)) and a pure product of the cyclic compound (3b) obtained in Reference Example B-1 were respectively obtained.
  • a ratio shown in Table 1 a mixture containing the cyclic compounds (3a) and (3b) at a ratio shown in Table 1 was created.
  • a mixture of the cyclic compounds (3a) and (3b) mixed at a desired ratio can be obtained accurately.
  • Comparative Example B-1 Comparative Example A-1 in the first aspect was designated as Comparative Example B-1 in the second aspect.
  • the stereoisomer mixture ratio of the benzoate structure bonded to the cyclic structure was determined by 1 H-NMR and liquid chromatography.
  • the molar ratio of the following cyclic compounds (3a) and (3b) was 2: 3.
  • the molar ratios of the cyclic compounds (3a) and (3b) are different each time, and further, by-products of unknown structure. Product formation could not be suppressed.
  • [Evaluation Example 1] A photoresist solution composed of a substrate, PAG, quencher, and solvent was prepared, and a pattern was formed on a silicon wafer using an electron beam.
  • As the substrate 77 parts by weight of the mixture obtained in Examples B-1 to B-4 and Comparative Example B-1 and the compound obtained in Reference Example B-1 were used, respectively, and triphenylsulfonium nonafluorobutane as PAG 20 parts by weight of sulfonate and 3 parts by weight of 1,4-diazabicyclo (2,2,2) octane were used as a quencher.
  • These solid components were dissolved in propylene glycol monomethyl ether so as to have a concentration of 2.5% by weight.
  • a photoresist solution containing a mixture of Examples B-1 to B-4 and Comparative Example B-1 was spin-coated on a silicon wafer subjected to hexamethyldisilazane (HMDS) treatment at 100 ° C.
  • HMDS hexamethyldisilazane
  • a thin film was formed by heating for 180 seconds.
  • the substrate having this thin film was drawn using an electron beam drawing apparatus (acceleration voltage 50 kV), baked at 100 ° C. for 60 seconds, and then added with an aqueous tetrabutylammonium hydroxide solution having a concentration of 2.38 wt%.
  • the film was developed for 2 seconds, washed with pure water for 60 seconds, and then dried with a nitrogen stream.
  • Table 2 shows the results of resolution (half pitch) and sensitivity (necessary electron beam dose) when a line / space pattern having a size of 1/1 was obtained from the observation results obtained with a scanning electron microscope.
  • the substrate having the photoresist thin film was irradiated with EUV light (wavelength: 13.5 nm) using an EUV exposure apparatus instead of the electron beam drawing apparatus. Then, it baked at 100 degreeC for 90 second, and formed the pattern by rinsing with 2.38 weight% tetramethylammonium hydroxide aqueous solution for 30 second and ion-exchange water for 30 second. When observed with a scanning electron microscope, it was observed that the resolution was the same as that of the electron beam drawing apparatus.
  • Example B-5 Under a nitrogen stream, 5.03 g (4.88 mmol) of a mixture of the cyclic compounds (2a) and (2b) obtained in Example B-1; 1.86 g (21.95 mmol) of sodium bicarbonate; N— To a mixture of 100 ml of methyl-2-pyrrolidone, 6.59 g (21.95 mmol) of ethyl adamantyl bromoacetate was added dropwise, followed by heating and stirring at 80 ° C. for 8 hours. The reaction mixture was allowed to cool and extracted with ethyl acetate / water.
  • Example B-6 Under a nitrogen stream, 5.03 g (4.88 mmol) of a mixture of the cyclic compounds (2a) and (2b) obtained in Example B-1; 1.86 g (21.95 mmol) of sodium bicarbonate; N— To a mixture of 100 ml of methyl-2-pyrrolidone, 6.14 g (21.95 mmol) of methyl adamantyl bromoacetate was added dropwise, followed by heating and stirring at 80 ° C. for 8 hours. The reaction mixture was allowed to cool and extracted with ethyl acetate / water.
  • Example B-7 Under a nitrogen stream, 50.0 g (402.8 mmol) of 3-methoxyphenol, 60.5 g (402.8 mmol) of 4-formylbenzoic acid, and 500 ml of dehydrated dichloromethane were added to a round bottom flask having a capacity of 200 ml. It was immersed in an ice water bath and cooled to 5 ° C. or lower. To this mixture, 60.8 ml (483.6 mmol) of boron trifluoride diethyl ether adduct was added dropwise so that the internal temperature did not exceed 15 ° C., then the mixture was warmed to room temperature and stirred for 8 hours.
  • Example B-8 Under a nitrogen stream, 5.03 g (4.88 mmol) of a mixture of the cyclic compounds (2a) and (2b) obtained in Example B-7, 1.86 g (21.95 mmol) of sodium bicarbonate, N— To a mixture of 100 ml of methyl-2-pyrrolidone, 6.14 g (21.95 mmol) of methyl adamantyl bromoacetate was added dropwise, followed by heating and stirring at 80 ° C. for 8 hours. The reaction mixture was allowed to cool and extracted with ethyl acetate / water.
  • a substrate 77 parts by weight of each of the mixtures obtained in Examples B-7 and B-8 were used, 20 parts by weight of triphenylsulfonium nonafluorobutanesulfonate as a PAG, and 1,4-diazabicyclo (2,2 as a quencher) 2,2) 3 parts by weight of octane was used. These solid components were dissolved in propylene glycol monomethyl ether so as to have a concentration of 2.5% by weight.
  • a photoresist solution containing the mixture of Examples B-7 and B-8 was spin-coated on a silicon wafer subjected to hexamethyldisilazane (HMDS) treatment and heated at 100 ° C. for 180 seconds to form a thin film. Formed. Next, the substrate having this thin film was drawn using an electron beam drawing apparatus (acceleration voltage 50 kV), baked at 100 ° C. for 60 seconds, and then added with an aqueous tetrabutylammonium hydroxide solution having a concentration of 2.38 wt%. The film was developed for 2 seconds, washed with pure water for 60 seconds, and then dried with a nitrogen stream.
  • HMDS hexamethyldisilazane
  • Table 3 shows the results of resolution (half pitch) and sensitivity (necessary electron beam dose) obtained when a line / space pattern having a size of 1/1 was obtained from the results of observation with a scanning electron microscope. The results were the same even when tri-n-octylamine was used in place of 1,4-diazabicyclo (2,2,2) octane as the quencher.
  • the substrate having the photoresist thin film was irradiated with EUV light (wavelength: 13.5 nm) using an EUV exposure apparatus instead of the electron beam drawing apparatus. Then, it was baked at 100 ° C. for 90 seconds and rinsed with 2.38 wt% tetramethylammonium hydroxide aqueous solution for 30 seconds and ion-exchanged water for 30 seconds to form a pattern. When observed with a scanning electron microscope, it was observed that the resolution was the same as that of the electron beam drawing apparatus.
  • the cyclic compound of the present invention can be used as a material for a photoresist substrate.
  • a photoresist composition containing a photoresist base material is suitably used in the electric / electronic field, optical field, and the like of semiconductor devices.
  • composition of the present invention can be suitably used for a photoresist substrate or composition, particularly for an extreme ultraviolet light and / or a photoresist substrate or composition for an electron beam.
  • the composition of the present invention is suitably used in the electrical / electronic field and the optical field of semiconductor devices and the like.

Abstract

Disclosed are compounds of 90% or higher purity and that are represented by only one or the other of formula (1) or formula (2), and compositions comprising compound (1) and compound (2) wherein the molar ratio of compound (1):compound (2) = 15:85‑70:30.

Description

立体異性体環状化合物、その製造方法、立体異性体環状化合物を含む組成物及びその製造方法Stereoisomeric cyclic compound, production method thereof, composition containing stereoisomeric cyclic compound, and production method thereof
 本発明は、半導体等の電気・電子分野や光学分野等で用いられるフォトレジスト基材、特に超微細加工用フォトレジスト基材に関する。 The present invention relates to a photoresist base material used in the electrical / electronic field such as a semiconductor, an optical field, etc., and particularly to a photoresist base material for ultrafine processing.
 極端紫外光(Extream Ultra Violet Light:以下、EUVLと表記する場合がある)又は電子線によるリソグラフィーは、半導体等の製造において、高生産性、高解像度の微細加工方法として有用であり、それに用いる高感度、高解像度のフォトレジストが求められている。フォトレジストは、所望する微細パターンの生産性、解像度等の観点から、その感度を向上させることが欠かせない。 Lithography using extreme ultraviolet light (Extreme Ultra Violet Light: hereinafter referred to as EUVL) or electron beam is useful as a high-performance, high-resolution fine processing method in the manufacture of semiconductors and the like. There is a need for photoresists with high sensitivity and high resolution. It is indispensable to improve the sensitivity of the photoresist from the viewpoint of the productivity and resolution of the desired fine pattern.
 EUVLによる超微細加工の際に用いられるフォトレジストとしては、例えば、他のレジスト化合物と比較して光酸発生剤の濃度が高い化学増幅ポジ型フォトレジストを用いる方法が提案されている(例えば、特許文献1参照)。しかし、実施例のフォトレジストは、ラインエッジラフネスの観点から、電子線を用いた場合で例示された100nmまでの加工が限界であると考えられる。これは基材として用いる高分子化合物の集合体又は各々の高分子化合物分子が示す立体的形状が大きく、該作製ライン幅及びその表面粗さに影響を及ぼすことがその主原因と推定される。 As a photoresist used in the ultrafine processing by EUVL, for example, a method using a chemically amplified positive photoresist having a higher concentration of photoacid generator than other resist compounds has been proposed (for example, Patent Document 1). However, the photoresists of the examples are considered to be limited in processing up to 100 nm exemplified in the case of using an electron beam from the viewpoint of line edge roughness. It is presumed that the main cause of this is that the aggregate of the polymer compounds used as the base material or the three-dimensional shape of each polymer compound molecule is large and affects the production line width and the surface roughness.
 本発明者は既に高感度、高解像度のフォトレジスト材料としてカリックスレゾルシナレン化合物を提案している(特許文献2及び3参照)。また、特許文献4には、カリックスレゾルシナレン化合物が開示されている。 The present inventor has already proposed a calix resorcinarene compound as a photoresist material with high sensitivity and high resolution (see Patent Documents 2 and 3). Patent Document 4 discloses a calix resorcinarene compound.
特開2002-055457号公報JP 2002-055457 A 特開2004-191913号公報JP 2004-191913 A 特開2005-075767号公報JP-A-2005-075767 米国特許6093517号US Pat. No. 6,093,517
 しかし、EUVLによる超微細加工技術として、さらなる高感度、高解像度が求められている。上記特許文献1~4に開示されたフォトレジスト材料では、この要求レベルである高感度、高解像度を十分発揮できていない。
 本発明者は、高感度及び高解像度を得るためには、立体異性体の割合を制御する必要があることを見出した(特願2008-315972)。
 しかし、特許文献1~4に記載の製造方法では、立体異性体の割合を制御することは容易ではない。
 そこで、本発明者は、立体異性体の割合を制御する方法として、立体異性体の単体と立体異性体の混合物等を混合することにより、立体異性体の割合を制御する方法を発明した。
 従って、本発明は、上記方法に用いるカリックスレゾルシナレン化合物の立体異性体の単体のみを取り出す方法を提供することを課題とする。
 さらに、本発明は、高感度、高解像度のフォトレジスト材料を提供することを課題とする。
However, higher sensitivity and higher resolution are required as an ultrafine processing technique using EUVL. The photoresist materials disclosed in the above-mentioned Patent Documents 1 to 4 cannot sufficiently exhibit the required high sensitivity and high resolution.
The present inventor has found that it is necessary to control the ratio of stereoisomers in order to obtain high sensitivity and high resolution (Japanese Patent Application No. 2008-315972).
However, in the production methods described in Patent Documents 1 to 4, it is not easy to control the ratio of stereoisomers.
Therefore, the present inventors have invented a method for controlling the ratio of stereoisomers by mixing a single stereoisomer and a mixture of stereoisomers as a method for controlling the ratio of stereoisomers.
Therefore, an object of the present invention is to provide a method for extracting only a single stereoisomer of a calixresorcinarene compound used in the above method.
Furthermore, an object of the present invention is to provide a photoresist material with high sensitivity and high resolution.
 本発明によれば、以下の化合物及びフォトレジスト組成物等が提供される。
1.純度が90%以上の下記式(1)又は式(2)のいずれか一方のみで表される化合物。
Figure JPOXMLDOC01-appb-C000001
[式中、Rは、下記式(3)~(5)のいずれかで表される基である。
 Rは、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状アルコキシ基、置換もしくは無置換の炭素数6~10のアリーロキシ基、アルコキシアルコキシ基、シロキシ基、又はこれらの基と二価の基とが結合した基であり、
 前記二価の基は、置換もしくは無置換のアルキレンオキシ基、置換もしくは無置換のアリーレンオキシ基、置換もしくは無置換のシリレンオキシ基、これらの基が2以上結合した基、又はこれらの基と、エステル結合、炭酸エステル結合又はエーテル結合が結合した基である。
 Rは、水素、Rで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基又は酸素原子を含む基である。
 式(1)内及び式(2)内に複数あるR、R及びRは、それぞれ同じであっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000002
(式中、Arは、置換もしくは無置換の炭素数6~10のアリーレン基、置換もしくは無置換の炭素数6~10のアリーレン基を2つ以上組み合わせた基、又はアルキレン基及びエーテル結合の少なくとも一方の1つ以上と置換もしくは無置換の炭素数6~10のアリーレン基を組み合わせた基であり、
 置換基を有する場合の置換基は、臭素、フッ素、ニトリル基、又は炭素数1~10のアルキル基である。
 Rは、水酸基、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~10の芳香族基、アルコキシ基、アルコキシアルキル基、カルボキシ基、シリル基、又はこれらの基と二価の基が結合した基であり、
 前記二価の基は、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換のシリレン基、これらの基が2以上結合した基、又はこれらの基1以上と、エステル結合、炭酸エステル結合及びエーテル結合から選択される1以上の基が結合した基である。
 R、及びRは、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、又はこれらの基のうち2以上を組み合わせた基である。
 Aは、アルキレン基、エーテル結合、アルキレン基を2以上組み合わせた基、又はアルキレン基1以上とエーテル結合1以上を組み合わせた基である。
 xは1~5、yは0~3、zは0~4の整数である。
 複数のR、R、R、Ar、A、x、y及びzは、それぞれ同じであっても異なっていてもよい。)]
2.Rが、下記式(I)~(IV)のいずれかの酸解離性溶解抑止基である1記載の化合物。
Figure JPOXMLDOC01-appb-C000003
(式(I)~(IV)において、
 αは、置換もしくは無置換の炭素数1~10の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~10の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、又は置換もしくは無置換の炭素数6~10の芳香族基である。
 βは、三級脂肪族構造、芳香族構造、単環状脂肪族構造又は複環状脂肪族構造を有する基が置換したアルコキシ基である。
 γは、芳香族構造、単環状脂肪族構造又は複環状脂肪族構造を有する基が置換したアルコキシ基、又は芳香族構造、単環状脂肪族構造、複環状脂肪族構造のうち1以上の構造と、炭素数1~10の直鎖状脂肪族炭化水素基を組み合わせた基が置換したアルコキシ基である。
 δは、置換もしくは無置換の炭素数1~10の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~10の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、又は置換もしくは無置換の炭素数6~10の芳香族基である。)
3.Rが下記式(6)で表される基であって、式(6)中、Rは下記式(7)~(38)から選択される基であり、
 Rが水素であり、
 同一の芳香環上に存在する2つのRのうち、一方が水酸基であり、他方が溶解性調整基である1又は2記載の化合物。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-I000001
(式中、rはそれぞれ上記式(7)~(35)で表される置換基のいずれかを表す。)
4.1~3のいずれか記載の化合物を製造する方法であって、
 前記式(1)の化合物の0℃における溶解度と前記式(2)の化合物の0℃における溶解度の差が、1グラム/リットル以上である溶媒中、-50℃以上50℃以下の条件の下で、前記式(1)の化合物と前記式(2)の化合物の混合物から、前記式(1)の化合物又は前記式(2)の化合物を晶析して単離して、前記式(1)の化合物又は前記式(2)の化合物を製造する方法。
5.前記晶析単離工程の温度が、-20℃以上20℃以下である4記載の製造方法。
6.前記溶媒が、含ハロゲン有機溶媒、含酸素有機溶媒から選択される少なくとも1種類の溶媒である4又は5記載の製造方法。
7.1~3のいずれかに記載の化合物を含む薄膜。
8.下記化合物(1)と、下記化合物(2)からなり、モル比率が化合物(1):化合物(2)=15:85~70:30である組成物。
Figure JPOXMLDOC01-appb-C000005
[式中、Rは、下記式(3)~(5)のいずれかで表される基である。
 Rは、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状アルコキシ基、置換もしくは無置換の炭素数6~10のアリーロキシ基、アルコキシアルコキシ基、シロキシ基、又はこれらの基と二価の基とが結合した基であり、
 前記二価の基は、置換もしくは無置換のアルキレンオキシ基、置換もしくは無置換のアリーレンオキシ基、置換もしくは無置換のシリレンオキシ基、これらの基が2以上結合した基、又はこれらの基と、エステル結合、炭酸エステル結合又はエーテル結合が結合した基である。
 Rは、水素、Rで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基又は酸素原子を含む基である。
 式(1)内及び式(2)内に複数あるR、R及びRは、それぞれ同じであっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000006
(式中、Arは、置換もしくは無置換の炭素数6~10のアリーレン基、置換もしくは無置換の炭素数6~10のアリーレン基を2つ以上組み合わせた基、又はアルキレン基及びエーテル結合の少なくとも一方の1つ以上と置換もしくは無置換の炭素数6~10のアリーレン基を組み合わせた基であり、
 置換基を有する場合の置換基は、臭素、フッ素、ニトリル基、又は炭素数1~10のアルキル基である。
 Rは、水酸基、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~10の芳香族基、アルコキシ基、アルコキシアルキル基、カルボキシ基、シリル基、又はこれらの基と二価の基が結合した基であり、
 前記二価の基は、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換のシリレン基、これらの基が2以上結合した基、又はこれらの基1以上と、エステル結合、炭酸エステル結合及びエーテル結合から選択される1以上の基が結合した基である。
 R及びRは、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、又はこれらの基のうち2以上を組み合わせた基である。
 Aは、アルキレン基、エーテル結合、アルキレン基を2以上組み合わせた基、又はアルキレン基1以上とエーテル結合1以上を組み合わせた基である。
 xは1~5、yは0~3、zは0~4の整数である。
 複数のR、R、R、Ar、A、x、y及びzは、それぞれ同じであっても異なっていてもよい。)]
9.Rが、下記式(I)~(IV)のいずれかである8記載の組成物。
Figure JPOXMLDOC01-appb-C000007
(式(I)~(IV)において、
 αは、置換もしくは無置換の炭素数1~10の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~10の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、又は置換もしくは無置換の炭素数6~10の芳香族基である。
 βは、三級脂肪族構造、芳香族構造、単環状脂肪族構造又は複環状脂肪族構造を有する基が置換したアルコキシ基である。
 γは、芳香族構造、単環状脂肪族構造又は複環状脂肪族構造を有する基が置換したアルコキシ基、又は芳香族構造、単環状脂肪族構造、複環状脂肪族構造のうち1以上の構造と、炭素数1~10の直鎖状脂肪族炭化水素基を組み合わせた基が置換したアルコキシ基である。
 δは、置換もしくは無置換の炭素数1~10の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~10の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、又は置換もしくは無置換の炭素数6~10の芳香族基である。)
10.Rが下記式(6)で表される基であって、式(6)中、Rは下記式(7)~(38)から選択される基であり、
 Rが水素であり、
 同一の芳香環上に存在する2つのRのうち、一方が水酸基であり、他方が溶解性調整基である8又は9記載の組成物。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-I000002
(式中、rはそれぞれ上記式(7)~(35)で表される置換基のいずれかを表す。)
11.8~10のいずれか記載の組成物を製造する方法であって、
 化合物(1)の0℃における溶解度と化合物(2)の0℃における溶解度の差が、1グラム/リットル以上である溶媒中、-50℃以上50℃以下の条件の下で、化合物(1)と化合物(2)の混合物から、所定量の化合物(1)又は化合物(2)を晶析して単離することにより、前記混合物中の化合物(1)と化合物(2)のモル比率を制御する組成物の製造方法。
12.8~10のいずれか記載の組成物を製造する方法であって、
 化合物(1)の0℃における溶解度と化合物(2)の0℃における溶解度の差が、1グラム/リットル以上である溶媒中、-50℃以上50℃以下の条件の下で、化合物(1)と化合物(2)の混合物から、化合物(1)又は化合物(2)を晶析して単離する晶析単離工程と、
 前記単離した化合物(1)又は化合物(2)と、化合物(1)と化合物(2)の混合物とを、所定の割合で混合して、化合物(1)と化合物(2)のモル比率を制御する混合比率制御工程と、
 を含む組成物の製造方法。
13.8~10のいずれか記載の組成物を製造する方法であって、
 化合物(1)と化合物(2)の第1の混合物と、化合物(1)と化合物(2)の第2の混合物を合成する混合物合成工程と、
 化合物(1)の0℃における溶解度と化合物(2)の0℃における溶解度の差が、1グラム/リットル以上である溶媒中、-50℃以上50℃以下の条件の下で、前記第1の混合物から、化合物(1)又は化合物(2)を晶析して単離する晶析単離工程と、
 晶析単離工程により化合物(1)又は化合物(2)を単離した後の第1の混合物と、前記第2の混合物とを、所定の割合で混合して、化合物(1)と化合物(2)のモル比率を制御する混合比率制御工程と、
 を含む組成物の製造方法。
14.前記晶析単離工程の温度が、-20℃以上20℃以下である11~13のいずれか記載の製造方法。
15.前記溶媒が、含ハロゲン有機溶媒、含酸素有機溶媒から選択される少なくとも1種類の溶媒である11~14のいずれか記載の製造方法。
16.1~3のいずれか記載の化合物を含む組成物と溶剤、又は8~10のいずれか記載の組成物と溶剤を含有するフォトレジスト組成物。
17.8~10のいずれか記載の組成物を含んで成る薄膜。
18.16に記載のフォトレジスト組成物を用いた微細加工方法。
19.18に記載の微細加工方法により作製した半導体装置。
According to the present invention, the following compounds and photoresist compositions are provided.
1. A compound represented by only one of the following formulas (1) and (2) having a purity of 90% or more.
Figure JPOXMLDOC01-appb-C000001
[Wherein, R is a group represented by any of the following formulas (3) to (5).
R 1 represents a hydroxyl group, a substituted or unsubstituted linear alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, a substituted or unsubstituted cyclic group having 3 to 20 carbon atoms. An alkoxy group, a substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, an alkoxyalkoxy group, a siloxy group, or a group in which these groups and a divalent group are bonded;
The divalent group includes a substituted or unsubstituted alkyleneoxy group, a substituted or unsubstituted aryleneoxy group, a substituted or unsubstituted silyleneoxy group, a group in which two or more of these groups are bonded, or a group thereof. It is a group to which an ester bond, a carbonate ester bond or an ether bond is bonded.
R 2 is hydrogen, a group represented by R 1 , a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, or a cyclic fatty acid having 3 to 20 carbon atoms. A hydrocarbon group, an aromatic group having 6 to 10 carbon atoms, or a group containing an oxygen atom.
A plurality of R, R 1 and R 2 in the formula (1) and the formula (2) may be the same or different.
Figure JPOXMLDOC01-appb-C000002
(In the formula, Ar represents a substituted or unsubstituted arylene group having 6 to 10 carbon atoms, a group obtained by combining two or more substituted or unsubstituted arylene groups having 6 to 10 carbon atoms, or at least an alkylene group and an ether bond. A combination of one or more of them and a substituted or unsubstituted arylene group having 6 to 10 carbon atoms,
In the case of having a substituent, the substituent is bromine, fluorine, a nitrile group, or an alkyl group having 1 to 10 carbon atoms.
R 3 represents a hydroxyl group, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted carbon, A cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, an alkoxy group, an alkoxyalkyl group, a carboxy group, a silyl group, or these groups and a divalent group. A bonded group,
The divalent group includes a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted silylene group, a group in which two or more of these groups are bonded, or one or more of these groups and an ester. A group in which one or more groups selected from a bond, a carbonate ester bond and an ether bond are bonded.
R 4 and R 5 are each a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, A substituted or unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms, or a combination of two or more of these groups.
A 1 is an alkylene group, an ether bond, a group in which two or more alkylene groups are combined, or a group in which one or more alkylene groups and one or more ether bonds are combined.
x is an integer of 1 to 5, y is 0 to 3, and z is an integer of 0 to 4.
A plurality of R 3 , R 4 , R 5 , Ar, A 1 , x, y, and z may be the same or different. ]]
2. 2. The compound according to 1, wherein R 3 is an acid dissociable, dissolution inhibiting group of any one of the following formulas (I) to (IV):
Figure JPOXMLDOC01-appb-C000003
(In the formulas (I) to (IV),
α is a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted carbon number 3 to 20 cyclic aliphatic hydrocarbon groups, or substituted or unsubstituted aromatic groups having 6 to 10 carbon atoms.
β is an alkoxy group substituted with a group having a tertiary aliphatic structure, an aromatic structure, a monocyclic aliphatic structure or a bicyclic aliphatic structure.
γ represents an aromatic structure, an alkoxy group substituted by a group having a monocyclic aliphatic structure or a polycyclic aliphatic structure, or one or more structures of an aromatic structure, a monocyclic aliphatic structure, and a polycyclic aliphatic structure; And an alkoxy group substituted with a combination of linear aliphatic hydrocarbon groups having 1 to 10 carbon atoms.
δ is a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted carbon number 3 to 20 cyclic aliphatic hydrocarbon groups, or substituted or unsubstituted aromatic groups having 6 to 10 carbon atoms. )
3. R is a group represented by the following formula (6), and in formula (6), R 4 is a group selected from the following formulas (7) to (38);
R 2 is hydrogen;
3. The compound according to 1 or 2, wherein one of two R 1 existing on the same aromatic ring is a hydroxyl group and the other is a solubility adjusting group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-I000001
(Wherein r represents any of the substituents represented by the above formulas (7) to (35))
4.1 A process for producing the compound according to any one of 1 to 3,
The difference between the solubility of the compound of the formula (1) at 0 ° C. and the solubility of the compound of the formula (2) at 0 ° C. is in the range of −50 ° C. to 50 ° C. in a solvent of 1 gram / liter or more. From the mixture of the compound of the formula (1) and the compound of the formula (2), the compound of the formula (1) or the compound of the formula (2) is crystallized and isolated, and the formula (1) Or a method for producing the compound of the formula (2).
5). 5. The production method according to 4, wherein the temperature of the crystallization isolation step is −20 ° C. or higher and 20 ° C. or lower.
6). 6. The production method according to 4 or 5, wherein the solvent is at least one solvent selected from a halogen-containing organic solvent and an oxygen-containing organic solvent.
7.1 A thin film comprising the compound according to any one of 1 to 3.
8). A composition comprising the following compound (1) and the following compound (2), wherein the molar ratio is compound (1): compound (2) = 15: 85 to 70:30.
Figure JPOXMLDOC01-appb-C000005
[Wherein, R is a group represented by any of the following formulas (3) to (5).
R 1 represents a hydroxyl group, a substituted or unsubstituted linear alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, a substituted or unsubstituted cyclic group having 3 to 20 carbon atoms. An alkoxy group, a substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, an alkoxyalkoxy group, a siloxy group, or a group in which these groups and a divalent group are bonded;
The divalent group includes a substituted or unsubstituted alkyleneoxy group, a substituted or unsubstituted aryleneoxy group, a substituted or unsubstituted silyleneoxy group, a group in which two or more of these groups are bonded, or a group thereof. It is a group to which an ester bond, a carbonate ester bond or an ether bond is bonded.
R 2 is hydrogen, a group represented by R 1 , a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, or a cyclic fatty acid having 3 to 20 carbon atoms. A hydrocarbon group, an aromatic group having 6 to 10 carbon atoms, or a group containing an oxygen atom.
A plurality of R, R 1 and R 2 in the formula (1) and the formula (2) may be the same or different.
Figure JPOXMLDOC01-appb-C000006
(In the formula, Ar represents a substituted or unsubstituted arylene group having 6 to 10 carbon atoms, a group obtained by combining two or more substituted or unsubstituted arylene groups having 6 to 10 carbon atoms, or at least an alkylene group and an ether bond. A combination of one or more of them and a substituted or unsubstituted arylene group having 6 to 10 carbon atoms,
In the case of having a substituent, the substituent is bromine, fluorine, a nitrile group, or an alkyl group having 1 to 10 carbon atoms.
R 3 represents a hydroxyl group, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted carbon, A cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, an alkoxy group, an alkoxyalkyl group, a carboxy group, a silyl group, or these groups and a divalent group. A bonded group,
The divalent group includes a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted silylene group, a group in which two or more of these groups are bonded, or one or more of these groups and an ester. A group in which one or more groups selected from a bond, a carbonate ester bond and an ether bond are bonded.
R 4 and R 5 are each a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted Alternatively, it is an unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms, or a group obtained by combining two or more of these groups.
A 1 is an alkylene group, an ether bond, a group in which two or more alkylene groups are combined, or a group in which one or more alkylene groups and one or more ether bonds are combined.
x is an integer of 1 to 5, y is 0 to 3, and z is an integer of 0 to 4.
A plurality of R 3 , R 4 , R 5 , Ar, A 1 , x, y, and z may be the same or different. ]]
9. 9. The composition according to 8, wherein R 3 is any one of the following formulas (I) to (IV).
Figure JPOXMLDOC01-appb-C000007
(In the formulas (I) to (IV),
α is a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted carbon number 3 to 20 cyclic aliphatic hydrocarbon groups, or substituted or unsubstituted aromatic groups having 6 to 10 carbon atoms.
β is an alkoxy group substituted with a group having a tertiary aliphatic structure, an aromatic structure, a monocyclic aliphatic structure or a bicyclic aliphatic structure.
γ represents an aromatic structure, an alkoxy group substituted by a group having a monocyclic aliphatic structure or a polycyclic aliphatic structure, or one or more structures of an aromatic structure, a monocyclic aliphatic structure, and a polycyclic aliphatic structure; And an alkoxy group substituted with a combination of linear aliphatic hydrocarbon groups having 1 to 10 carbon atoms.
δ is a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted carbon number 3 to 20 cyclic aliphatic hydrocarbon groups, or substituted or unsubstituted aromatic groups having 6 to 10 carbon atoms. )
10. R is a group represented by the following formula (6), and in formula (6), R 4 is a group selected from the following formulas (7) to (38);
R 2 is hydrogen;
10. The composition according to 8 or 9, wherein one of two R 1 existing on the same aromatic ring is a hydroxyl group and the other is a solubility adjusting group.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-I000002
(Wherein r represents any of the substituents represented by the above formulas (7) to (35))
A method for producing the composition according to any one of 11.8 to 10, comprising:
The difference between the solubility of compound (1) at 0 ° C. and the solubility of compound (2) at 0 ° C. is 1 gram / liter or more under the condition of −50 ° C. or more and 50 ° C. or less under the condition of compound (1) And controlling the molar ratio of the compound (1) and the compound (2) in the mixture by crystallizing and isolating a predetermined amount of the compound (1) or the compound (2) from the mixture of the compound (2) A method for producing a composition.
A method for producing the composition according to any one of 12.8 to 10, comprising:
The difference between the solubility of compound (1) at 0 ° C. and the solubility of compound (2) at 0 ° C. is 1 gram / liter or more under the condition of −50 ° C. or more and 50 ° C. or less under the condition of compound (1) And a crystallization isolation step of crystallizing and isolating the compound (1) or the compound (2) from a mixture of the compound (2) and
The isolated compound (1) or compound (2) and a mixture of the compound (1) and the compound (2) are mixed at a predetermined ratio, and the molar ratio of the compound (1) and the compound (2) is determined. A mixing ratio control step to control;
The manufacturing method of the composition containing this.
A method for producing the composition according to any one of 13.8 to 10, comprising:
A mixture synthesis step of synthesizing a first mixture of compound (1) and compound (2) and a second mixture of compound (1) and compound (2);
The difference between the solubility of compound (1) at 0 ° C. and the solubility of compound (2) at 0 ° C. is 1 gram / liter or more under the condition of −50 ° C. or more and 50 ° C. or less under the conditions of the first A crystallization isolation step of crystallizing and isolating compound (1) or compound (2) from the mixture;
The first mixture after the compound (1) or the compound (2) is isolated by the crystallization isolation step and the second mixture are mixed at a predetermined ratio, and the compound (1) and the compound ( A mixing ratio control step for controlling the molar ratio of 2);
The manufacturing method of the composition containing this.
14 14. The production method according to any one of 11 to 13, wherein a temperature in the crystallization isolation step is −20 ° C. or higher and 20 ° C. or lower.
15. 15. The production method according to any one of 11 to 14, wherein the solvent is at least one solvent selected from a halogen-containing organic solvent and an oxygen-containing organic solvent.
16. A composition containing a compound according to any one of 1 to 3 and a solvent, or a photoresist composition containing the composition and a solvent according to any one of 8 to 10.
A thin film comprising the composition according to any one of 17.8 to 10.
A fine processing method using the photoresist composition according to 18.16.
A semiconductor device manufactured by the microfabrication method described in 19.18.
 本発明によれば、カリックスレゾルシナレン化合物の立体異性体の単体のみを取り出すことができる。立体異性体の単体は、高感度、高解像度のフォトレジスト材料の原料として使用できる。 According to the present invention, only a single stereoisomer of the calix resorcinalene compound can be taken out. Stereoisomers can be used as raw materials for high-sensitivity, high-resolution photoresist materials.
 本発明によれば、高感度、高解像度のフォトレジスト材料が提供できる。
 本発明の組成物は、所定の比率で異なる立体異性体を2種類含む。所定の比率で含むことにより、性能が高くなる。
According to the present invention, a photoresist material with high sensitivity and high resolution can be provided.
The composition of the present invention includes two types of stereoisomers that differ in a predetermined ratio. By including at a predetermined ratio, the performance is improved.
実施例A-1(参考例B-1)で合成した化合物(1b)のH-NMRスペクトルである。1 is a 1 H-NMR spectrum of a compound (1b) synthesized in Example A-1 (Reference Example B-1). 実施例A-1(参考例B-1)で合成した化合物(2b)のH-NMRスペクトルである。1 is a 1 H-NMR spectrum of a compound (2b) synthesized in Example A-1 (Reference Example B-1). 実施例A-1(参考例B-1)で合成した化合物(3b)のH-NMRスペクトルである。1 is a 1 H-NMR spectrum of a compound (3b) synthesized in Example A-1 (Reference Example B-1). 比較例A-1(比較例B-1)で合成した化合物(1c)のH-NMRスペクトルである。1 is a 1 H-NMR spectrum of a compound (1c) synthesized in Comparative Example A-1 (Comparative Example B-1). 比較例A-1(比較例B-1)で合成した化合物(2c)のH-NMRスペクトルである。1 is a 1 H-NMR spectrum of a compound (2c) synthesized in Comparative Example A-1 (Comparative Example B-1). 比較例A-1(比較例B-1)で合成した化合物(3c)のH-NMRスペクトルである。1 is a 1 H-NMR spectrum of a compound (3c) synthesized in Comparative Example A-1 (Comparative Example B-1). 実施例B-1で合成した化合物(1a)、(1b)の混合物のH-NMRスペクトルである。 1 is a 1 H-NMR spectrum of a mixture of compounds (1a) and (1b) synthesized in Example B-1. 実施例B-1で合成した化合物(2a)、(2b)の混合物のH-NMRスペクトルである。 1 is a 1 H-NMR spectrum of a mixture of compounds (2a) and (2b) synthesized in Example B-1. 実施例B-1で合成した化合物(3a)、(3b)の混合物のH-NMRスペクトルである。 1 is a 1 H-NMR spectrum of a mixture of compounds (3a) and (3b) synthesized in Example B-1. 実施例B-5で合成した化合物(4a)、(4b)の混合物のH-NMRスペクトルである。 1 is a 1 H-NMR spectrum of a mixture of compounds (4a) and (4b) synthesized in Example B-5. 実施例B-6で合成した化合物(5a)、(5b)の混合物のH-NMRスペクトルである。 1 is a 1 H-NMR spectrum of a mixture of compounds (5a) and (5b) synthesized in Example B-6. 実施例B-7で合成した化合物(2a)、(2b)の混合物のH-NMRスペクトルである。 1 is a 1 H-NMR spectrum of a mixture of compounds (2a) and (2b) synthesized in Example B-7. 実施例B-7で合成した化合物(4a)、(4b)の混合物のH-NMRスペクトルである。 1 is a 1 H-NMR spectrum of a mixture of compounds (4a) and (4b) synthesized in Example B-7. 実施例B-8で合成した化合物(5a)、(5b)の混合物のH-NMRスペクトルである。 1 is a 1 H-NMR spectrum of a mixture of compounds (5a) and (5b) synthesized in Example B-8.
<第1の態様>
 本発明の化合物は、下記式(1)又は式(2)のいずれか一方のみで表される。
Figure JPOXMLDOC01-appb-C000009
<First aspect>
The compound of the present invention is represented by only one of the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-C000009
 式中、Rは、下記式(3)~(5)のいずれかで表される基である。 In the formula, R is a group represented by any of the following formulas (3) to (5).
 Rは、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状アルコキシ基、置換もしくは無置換の炭素数6~10のアリーロキシ基、アルコキシアルキロキシ基、シロキシ基、又はこれらの基と二価の基とが結合した基であり、
 前記二価の基は、置換もしくは無置換のアルキレンオキシ基、置換もしくは無置換のアリーレンオキシ基、置換もしくは無置換のシリレンオキシ基、これらの基が2以上結合した基、又はこれらの基と、エステル結合(-CO-)、炭酸エステル結合(-CO-)又はエーテル結合(-O-)が結合した基である。
R 1 represents a hydroxyl group, a substituted or unsubstituted linear alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, a substituted or unsubstituted cyclic group having 3 to 20 carbon atoms. An alkoxy group, a substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, an alkoxyalkyloxy group, a siloxy group, or a group in which these groups and a divalent group are bonded;
The divalent group includes a substituted or unsubstituted alkyleneoxy group, a substituted or unsubstituted aryleneoxy group, a substituted or unsubstituted silyleneoxy group, a group in which two or more of these groups are bonded, or a group thereof. A group in which an ester bond (—CO 2 —), a carbonate ester bond (—CO 3 —), or an ether bond (—O—) is bonded.
 Rは、水素、Rで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基又は酸素原子を含む基である。 R 2 is hydrogen, a group represented by R 1 , a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, or a cyclic fatty acid having 3 to 20 carbon atoms. A hydrocarbon group, an aromatic group having 6 to 10 carbon atoms, or a group containing an oxygen atom.
 式(1)内及び式(2)内に複数あるR、R及びRは、それぞれ同じであっても異なっていてもよい。 A plurality of R, R 1 and R 2 in the formula (1) and the formula (2) may be the same or different.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式中、Arは、置換もしくは無置換の炭素数6~10のアリーレン基、置換もしくは無置換の炭素数6~10のアリーレン基を2つ以上組み合わせた基、又はアルキレン基及びエーテル結合の少なくとも一方の1つ以上と置換もしくは無置換の炭素数6~10のアリーレン基を組み合わせた基である。置換基を有する場合の置換基は、臭素、フッ素、ニトリル基、又は炭素数1~10のアルキル基である。 In the formula, Ar represents a substituted or unsubstituted arylene group having 6 to 10 carbon atoms, a group obtained by combining two or more substituted or unsubstituted arylene groups having 6 to 10 carbon atoms, or at least one of an alkylene group and an ether bond. And a substituted or unsubstituted arylene group having 6 to 10 carbon atoms. In the case of having a substituent, the substituent is bromine, fluorine, a nitrile group, or an alkyl group having 1 to 10 carbon atoms.
 Rは、水酸基、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~10の芳香族基、アルコキシ基、アルコキシアルキル基、カルボキシ基、シリル基、又はこれらの基と二価の基が結合した基であり、二価の基は、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換のシリレン基、これらの基が2以上結合した基、又はこれらの基1以上と、エステル結合、炭酸エステル結合及びエーテル結合から選択される1以上の基が結合した基である。 R 3 represents a hydroxyl group, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted carbon, A cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, an alkoxy group, an alkoxyalkyl group, a carboxy group, a silyl group, or these groups and a divalent group. A divalent group is a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted silylene group, a group in which two or more of these groups are bonded, or a group thereof. It is a group in which one or more and one or more groups selected from an ester bond, a carbonate ester bond and an ether bond are bonded.
 R及びRは、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、又はこれらの基のうち2以上を組み合わせた基である。 R 4 and R 5 are each a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted Alternatively, it is an unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms, or a group obtained by combining two or more of these groups.
 Aは、アルキレン基、エーテル結合、アルキレン基を2以上組み合わせた基、又はアルキレン基1以上とエーテル結合1以上を組み合わせた基である。 A 1 is an alkylene group, an ether bond, a group in which two or more alkylene groups are combined, or a group in which one or more alkylene groups and one or more ether bonds are combined.
 xは1~5、yは0~3、zは0~4の整数である。 X is an integer from 1 to 5, y is from 0 to 3, and z is an integer from 0 to 4.
 複数のR、R、R、Ar、A、x、y及びzは、それぞれ同じであっても異なっていてもよい。 A plurality of R 3 , R 4 , R 5 , Ar, A 1 , x, y, and z may be the same or different.
 本発明の化合物は、上記式(1)又は式(2)のいずれか一方の立体異性体が、純度90%以上で含まれる。好ましくは、実質的に特定の立体異性体のみからなる化合物であり、最も好ましくは100%である。 The compound of the present invention contains either stereoisomer of formula (1) or formula (2) at a purity of 90% or more. Preferably, it is a compound consisting essentially of a specific stereoisomer, and most preferably 100%.
 式(1)及び(2)において、Rは、好ましくは酸解離性溶解抑止基である。
 酸解離性溶解抑止基を例示すると、三級脂肪族構造、芳香族構造、単環状脂肪族構造又は複環状脂肪族構造を有する、少なくとも炭素原子、水素原子及び酸素原子を含む基である。三級脂肪族構造として、tert-ブチル基を例示できる。芳香族構造として、ベンゼン、ナフタレンを例示できる。単環状脂肪族構造として、シクロヘキサン、シクロペンタンを例示できる。複環状脂肪族構造として、アダマンタンやノルボルネンを例示できる。
In the formulas (1) and (2), R 3 is preferably an acid dissociable, dissolution inhibiting group.
An example of the acid dissociable, dissolution inhibiting group is a group having at least a carbon atom, a hydrogen atom, and an oxygen atom having a tertiary aliphatic structure, an aromatic structure, a monocyclic aliphatic structure, or a bicyclic aliphatic structure. An example of the tertiary aliphatic structure is a tert-butyl group. Examples of the aromatic structure include benzene and naphthalene. Examples of the monocyclic aliphatic structure include cyclohexane and cyclopentane. Examples of the bicyclic aliphatic structure include adamantane and norbornene.
 好ましくは、Rは下記式(I)~(IV)のいずれかで表される。
Figure JPOXMLDOC01-appb-C000011
Preferably, R 3 is represented by any of the following formulas (I) to (IV).
Figure JPOXMLDOC01-appb-C000011
 式(I)~(IV)において、αは、置換もしくは無置換の炭素数1~10の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~10の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、又は置換もしくは無置換の炭素数6~10の芳香族基である。 In the formulas (I) to (IV), α is a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms or a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms. A substituted or unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, or a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms.
 βは、三級脂肪族構造、芳香族構造、単環状脂肪族構造又は複環状脂肪族構造を有する基が置換したアルコキシ基である。好ましくは、三級脂肪族構造、芳香族構造、単環状脂肪族構造又は複環状脂肪族構造を有する基に含まれる三級炭素が、酸素原子に結合する。 Β is an alkoxy group substituted with a group having a tertiary aliphatic structure, an aromatic structure, a monocyclic aliphatic structure or a bicyclic aliphatic structure. Preferably, a tertiary carbon contained in a group having a tertiary aliphatic structure, an aromatic structure, a monocyclic aliphatic structure or a bicyclic aliphatic structure is bonded to an oxygen atom.
 γは、芳香族構造、単環状脂肪族構造又は複環状脂肪族構造を有する基が置換したアルコキシ基、又は芳香族構造、単環状脂肪族構造、複環状脂肪族構造のうち1以上の構造と、炭素数1~10の直鎖状脂肪族炭化水素基を組み合わせた基が置換したアルコキシ基である。芳香族構造、単環状脂肪族構造又は複環状脂肪族構造を有する基が置換したアルコキシ基は、好ましくは、三級脂肪族構造、芳香族構造、単環状脂肪族構造又は複環状脂肪族構造を有する基に含まれる三級炭素が、酸素原子に結合する。 γ represents an aromatic structure, an alkoxy group substituted by a group having a monocyclic aliphatic structure or a polycyclic aliphatic structure, or one or more structures of an aromatic structure, a monocyclic aliphatic structure, and a polycyclic aliphatic structure; And an alkoxy group substituted with a combination of linear aliphatic hydrocarbon groups having 1 to 10 carbon atoms. The alkoxy group substituted by a group having an aromatic structure, a monocyclic aliphatic structure or a polycyclic aliphatic structure is preferably a tertiary aliphatic structure, an aromatic structure, a monocyclic aliphatic structure or a polycyclic aliphatic structure. The tertiary carbon contained in the group to be bonded to the oxygen atom.
 δは、置換もしくは無置換の炭素数1~10の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~10の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、又は置換もしくは無置換の炭素数6~10の芳香族基である。 δ is a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted carbon number 3 to 20 cyclic aliphatic hydrocarbon groups, or substituted or unsubstituted aromatic groups having 6 to 10 carbon atoms.
 式(1)及び(2)において、Rは、好ましくは、水素である。
 好ましくは、同一の芳香環上に存在する2つのRのうち、一方が水酸基であり、他方が溶解性調整基である。好適な溶解性調整基として、炭素数1~6のアルコキシ基が挙げられる。
In formulas (1) and (2), R 2 is preferably hydrogen.
Preferably, one of two R 1 existing on the same aromatic ring is a hydroxyl group, and the other is a solubility adjusting group. Suitable solubility adjusting groups include alkoxy groups having 1 to 6 carbon atoms.
 Rは、好ましくは、下記式(6)で表される基である。
 式(6)中、Rは下記式(7)~(38)から選択される基である。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-I000003
R is preferably a group represented by the following formula (6).
In the formula (6), R 4 is a group selected from the following formulas (7) to (38).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-I000003
 式中、rはそれぞれ上記式(7)~(35)で表される置換基のいずれかを表す。 In the formula, r represents any of the substituents represented by the above formulas (7) to (35).
 本発明の化合物は、以下のようにして製造できる。
 まず、上記式(1)の構造を有する化合物(以下、化合物(1)ともいう)と、上記式(2)の構造を有する化合物(以下、化合物(2)ともいう)の混合物を製造する。
 混合物は、特開2009-269901号公報(特願2008-158769)に記載されるように、例えば、酸触媒存在下、対応する構造のアルデヒド化合物と、対応する構造のフェノール誘導体との縮合環化反応により、カリックスレゾルシナレン誘導体(前駆体)を合成し、R等の基に対応する化合物を、エステル化反応、エーテル化反応、アセタール化反応等により前駆体に導入することで合成できる。
The compound of the present invention can be produced as follows.
First, a mixture of a compound having the structure of the above formula (1) (hereinafter also referred to as compound (1)) and a compound having the structure of the above formula (2) (hereinafter also referred to as compound (2)) is produced.
As described in Japanese Patent Application Laid-Open No. 2009-269901 (Japanese Patent Application No. 2008-158769), for example, in the presence of an acid catalyst, the mixture is a condensed cyclization of an aldehyde compound having a corresponding structure and a phenol derivative having a corresponding structure. A calix resorcinarene derivative (precursor) is synthesized by reaction, and a compound corresponding to a group such as R 3 can be synthesized by introducing it into the precursor by esterification reaction, etherification reaction, acetalization reaction, or the like.
 次に、化合物(1)の0℃における溶解度と化合物(2)の0℃における溶解度の差Δdが、1グラム/リットル以上である溶媒中、-50℃以上50℃以下の条件の下で、混合物から、化合物(1)又は化合物(2)のみを晶析して単離する。 Next, a difference Δd between the solubility of the compound (1) at 0 ° C. and the solubility of the compound (2) at 0 ° C. in a solvent having a concentration of 1 gram / liter or more is −50 ° C. or more and 50 ° C. or less, Only compound (1) or compound (2) is crystallized and isolated from the mixture.
 本発明を実現するためには、立体異性体である化合物(1)及び化合物(2)の0℃における溶解度の差Δdが、1グラム/リットル以上である溶媒を用いる必要があり、かつ-50℃以上50℃以下の条件、特に好ましくは-20℃以上20℃以下の条件において、化合物(1)及び化合物(2)のうちの、溶解度の低い方の化合物の単一物が固体として析出して得られる。 In order to realize the present invention, it is necessary to use a solvent having a difference in solubility Δd at 0 ° C. between the stereoisomers of the compound (1) and the compound (2) of 1 gram / liter or more, and −50 A single compound having a lower solubility of the compound (1) and the compound (2) is precipitated as a solid under the conditions of -50 ° C. to 50 ° C., particularly preferably -20 ° C. to 20 ° C. Obtained.
 該当する溶媒としては、含ハロゲン有機溶媒、含酸素有機溶媒が例示される。具体的には、含ハロゲン有機溶媒として、ジクロロメタン、クロロホルム、四塩化炭素、モノクロロエタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、モノクロロベンゼン、ジクロロベンゼン、トリクロロベンゼン、トリフルオロエタノール、ヘキサフルオロイソプロパノール等が挙げられる。含酸素有機溶媒として、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、プロピレングリコールメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、酢酸エチル、乳酸エチル、アセトン、メチルエチルケトン、シクロヘキサノン等が挙げられる。 Examples of applicable solvents include halogen-containing organic solvents and oxygen-containing organic solvents. Specific examples of the halogen-containing organic solvent include dichloromethane, chloroform, carbon tetrachloride, monochloroethane, dichloroethane, trichloroethane, tetrachloroethane, monochlorobenzene, dichlorobenzene, trichlorobenzene, trifluoroethanol, hexafluoroisopropanol, and the like. Examples of the oxygen-containing organic solvent include diethyl ether, tetrahydrofuran, 1,4-dioxane, propylene glycol methyl ether acetate, propylene glycol monomethyl ether, ethyl acetate, ethyl lactate, acetone, methyl ethyl ketone, and cyclohexanone.
 化合物(1)と化合物(2)を製造する際に使用する溶媒は、化合物(1)と化合物(2)の分離に使用する溶媒と同一であることが好ましい。
 溶媒が同一であれば、化合物(1)と化合物(2)の混合物の洗浄等が不要になり、精製工程をなくすことができるからである。
The solvent used when producing the compound (1) and the compound (2) is preferably the same as the solvent used for separating the compound (1) and the compound (2).
If the solvents are the same, it is not necessary to wash the mixture of the compound (1) and the compound (2), and the purification step can be eliminated.
 上述したように、本発明の化合物は、-50以上50℃以下、特に好ましくは-20℃以上20℃以下で単離する。
 -50℃未満であると得られる化合物をフォトレジスト基材に用いた場合に、性能が劣る。この理由として、-50℃未満で単離すると化合物(1)と化合物(2)を分離できないだけでなく不純物が混在することにより性能劣化の原因になると考えられる。
As described above, the compound of the present invention is isolated at −50 to 50 ° C., particularly preferably −20 to 20 ° C.
When the compound obtained at a temperature lower than −50 ° C. is used for a photoresist base material, the performance is inferior. For this reason, if it is isolated at less than −50 ° C., it is considered that not only the compound (1) and the compound (2) cannot be separated, but also the deterioration of performance due to the presence of impurities.
 また、50℃を超える温度においては、化合物(1)と化合物(2)の溶解度がともに上昇し、溶媒に溶けやすくなり、結果として、化合物(1)と化合物(2)が分離できなくなる。また、使用する溶媒の種類にもよるが、沸騰や溶媒蒸気の拡散により、濃度の制御が困難になり、発火、爆発等の危険性が生じる。 In addition, at a temperature exceeding 50 ° C., the solubility of both the compound (1) and the compound (2) increases, and the compound (1) and the compound (2) cannot be separated as a result. Moreover, although it depends on the type of solvent used, it becomes difficult to control the concentration due to boiling or diffusion of the solvent vapor, and there is a risk of ignition or explosion.
 溶解度が低い化合物を全て単離できれば、残りの溶液から他方の溶解度が高い化合物も単離できる。例えば、さらに低い温度で析出させたり、溶液中に溶解している化合物が溶解しない貧溶媒を加えて析出させたりして単離する。 If all compounds with low solubility can be isolated, the other compound with high solubility can be isolated from the remaining solution. For example, it is isolated by precipitation at a lower temperature or by adding a poor solvent that does not dissolve the compound dissolved in the solution.
 本発明の特定の立体異性体である環状化合物は、フォトレジスト基材の材料として使用できる。フォトレジスト基材と溶剤からフォトレジスト組成物を作製できる。フォトレジスト組成物は、必要に応じ、さらに公知の光酸発生剤や酸拡散制御剤等を含むことができる。 The cyclic compound which is a specific stereoisomer of the present invention can be used as a material for a photoresist substrate. A photoresist composition can be prepared from a photoresist substrate and a solvent. The photoresist composition can further contain a known photoacid generator, acid diffusion control agent, and the like, if necessary.
 本発明の化合物から、公知の成形方法によって、シリコンウェハ等の基板に薄膜を形成することができる。 A thin film can be formed from a compound of the present invention on a substrate such as a silicon wafer by a known molding method.
 形成方法としては、射出成型法、射出圧縮成型法、押出成型法、ブロー成型法、加圧成型法、トランスファー成型法、スピンコーティング法、スプレーコーティング法、キャスト法、蒸着法、熱CVD法、プラズマCVD法、プラズマ重合法等が挙げられ、これら成形方法を所望の製品の形態、性能に応じて適宜選択できる。 Formation methods include injection molding, injection compression molding, extrusion molding, blow molding, pressure molding, transfer molding, spin coating, spray coating, casting, vapor deposition, thermal CVD, plasma Examples thereof include a CVD method and a plasma polymerization method, and these molding methods can be appropriately selected according to the form and performance of a desired product.
 また、得られた薄膜を熱、紫外線、深紫外線、真空紫外線、極端紫外線、電子線、プラズマ、X線等により硬化(環化付加反応)させてもよい。 Further, the obtained thin film may be cured (cycloaddition reaction) with heat, ultraviolet light, deep ultraviolet light, vacuum ultraviolet light, extreme ultraviolet light, electron beam, plasma, X-ray or the like.
 スピンコーティング法等により本発明の化合物を薄膜に形成する場合、本発明の化合物を有機溶媒に溶解させて塗料として用いることができる。 When the compound of the present invention is formed into a thin film by a spin coating method or the like, the compound of the present invention can be dissolved in an organic solvent and used as a paint.
 有機溶媒としては、クロロホルム、ジクロロメタン、1,1,2,2-テトラクロロエタン、ジクロロエタン、ジクロロベンゼン、トリクロロベンゼン、テトラクロロベンゼン、ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)、ジメチルアセトアミド、ジメチルスルホキシド(DMSO)、アニソール、アセトフェノン、ベンゾニトリル、ニトロベンゼン、プロピレングリコールメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、テトラヒドロフラン(THF)、シクロヘキサノン、メチルエチルケトン、アセトン等が挙げられる。 Organic solvents include chloroform, dichloromethane, 1,1,2,2-tetrachloroethane, dichloroethane, dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dimethylformamide (DMF), N-methylpyrrolidone (NMP), dimethylacetamide, dimethyl sulfoxide (DMSO), anisole, acetophenone, benzonitrile, nitrobenzene, propylene glycol methyl ether acetate, propylene glycol monomethyl ether, tetrahydrofuran (THF), cyclohexanone, methyl ethyl ketone, acetone and the like.
 塗料中における本発明の化合物の濃度は、塗料の粘度や薄膜形成方法等を考慮して適宜調製すればよい。
 薄膜の厚さは特に限定されないが、一般に10nm~10μm程度のものが好適に使用される。薄膜の膜厚は、エリプソメータ、反射光学式膜厚計等による光学的膜厚測定、触針式膜厚測定器やAFM等による機械的膜厚測定が可能である。
The concentration of the compound of the present invention in the paint may be appropriately adjusted in consideration of the viscosity of the paint and the thin film forming method.
The thickness of the thin film is not particularly limited, but generally a thickness of about 10 nm to 10 μm is preferably used. The film thickness of the thin film can be measured with an ellipsometer, a reflective optical film thickness meter, or the like, or with a stylus film thickness meter or AFM.
 本発明の化合物を用いた薄膜は、フォトレジスト薄膜としての用途の他、光学レンズ、光ファイバー、光導波路、フォトニック結晶等の種々の光情報処理装置向け光学薄膜、半導体用層間絶縁膜、半導体用保護膜等のULSI装置向け薄膜、液晶ディスプレー、液晶プロジェクター、プラズマディスプレー、ELディスプレー、LEDディスプレー等の画像表示装置向け薄膜、CMOSイメージセンサ、CCDイメージセンサ等に使用される薄膜として有用である。さらにこれら薄膜は、CPU、DRAM、フラッシュメモリ等の半導体装置、情報処理用小型電子回路装置、高周波通信用電子回路装置等の電子回路装置、画像表示装置、光情報処理用装置、光通信用装置等の部材、表面保護膜、耐熱膜において利用することもできる。 Thin films using the compounds of the present invention are used as photoresist thin films, optical thin films for various optical information processing devices such as optical lenses, optical fibers, optical waveguides, and photonic crystals, interlayer insulating films for semiconductors, and semiconductors. It is useful as a thin film for ULSI devices such as a protective film, a thin film for image display devices such as a liquid crystal display, a liquid crystal projector, a plasma display, an EL display, and an LED display, a thin film used for a CMOS image sensor, a CCD image sensor, and the like. Further, these thin films are provided for semiconductor devices such as CPUs, DRAMs, flash memories, etc., electronic circuit devices such as information processing small electronic circuit devices, high frequency communication electronic circuit devices, image display devices, optical information processing devices, and optical communication devices. It can also be used in a member such as a surface protective film and a heat-resistant film.
<第2の態様>
 本発明の組成物は、下記化合物(1)と、下記化合物(2)からなる。
 化合物(1)と化合物(2)とのモル比率は、15:85~70:30である。
 15%未満であるとプロピレングリコールモノメチルエーテル等のフォトレジスト溶液を作製する際に用いる一般的な溶媒に、化合物(2)の一部が溶解せずに不溶物として残留し、均一なフォトレジスト溶液が得られない
 70%より多いとプロピレングリコールモノメチルエーテル等のフォトレジスト溶液を作製する際に用いる一般的な溶媒に、化合物(1)の一部が溶解せずに不溶物として残留し、均一なフォトレジスト溶液が得られない。
 また、15:85~67:33であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
<Second aspect>
The composition of the present invention comprises the following compound (1) and the following compound (2).
The molar ratio of compound (1) to compound (2) is 15:85 to 70:30.
If it is less than 15%, a part of the compound (2) does not dissolve but remains as an insoluble substance in a general solvent used for preparing a photoresist solution such as propylene glycol monomethyl ether, and a uniform photoresist solution When the amount exceeds 70%, a part of the compound (1) remains in an insoluble substance in a general solvent used in preparing a photoresist solution such as propylene glycol monomethyl ether, and remains homogeneous. A photoresist solution cannot be obtained.
Further, it is preferably 15:85 to 67:33.
Figure JPOXMLDOC01-appb-C000013
 式中の置換基の定義及び好ましい例は、第1の態様で説明した通りであるためここでは省略する。 The definition and preferred examples of substituents in the formula are the same as described in the first aspect, and are omitted here.
 本発明の組成物は、実質的に2種類の立体構造異性体のみからなる。好ましくは、90%以上が2種類の立体構造異性体である。 The composition of the present invention consists essentially of only two types of stereoisomers. Preferably, 90% or more are two types of stereoisomers.
 本発明の組成物は、上記本発明の化合物(1)及び化合物(2)を所定のモル比率で混合するか、或いは以下のようにして製造できる。
 まず、上記式(1)の構造を有する化合物(以下、化合物(1)ともいう)と、上記式(2)の構造を有する化合物(以下、化合物(2)ともいう)の混合物を製造する。
 混合物は、特願2008-158769に記載されるように、例えば、酸触媒存在下、対応する構造のアルデヒド化合物と、対応する構造のフェノール誘導体との縮合環化反応により、カリックスレゾルシナレン誘導体(前駆体)を合成し、R等の基に対応する化合物を、エステル化反応、エーテル化反応、アセタール化反応等により前駆体に導入することで合成できる。
The composition of the present invention can be produced by mixing the compound (1) and the compound (2) of the present invention in a predetermined molar ratio or as follows.
First, a mixture of a compound having the structure of the above formula (1) (hereinafter also referred to as compound (1)) and a compound having the structure of the above formula (2) (hereinafter also referred to as compound (2)) is produced.
As described in Japanese Patent Application No. 2008-158769, the mixture is prepared by, for example, a calixresorcinarene derivative ( And a compound corresponding to a group such as R 3 can be synthesized by introducing it into the precursor by an esterification reaction, an etherification reaction, an acetalization reaction, or the like.
 次に、化合物(1)と化合物(2)の比率を調整する。
 例えば、以下の方法がある。
・上記の混合物から、所定量の化合物(1)又は化合物(2)を除いて、混合物中の比率を調整する。
・上記の混合物から、化合物(1)又は化合物(2)を単離する。単離した化合物(1)又は化合物(2)と、化合物(1)と化合物(2)の混合物を混合して、混合物中の比率を調整する。このとき、化合物(1)と化合物(2)の混合物は、化合物(1)又は化合物(2)を単離した後の混合物でもよいし、別途作製した混合物でもよい。
・化合物(1)又は化合物(2)を除いた混合物に、別途作製した混合物を、混合して混合物中の比率を調整する。
・混合物から、化合物(1)及び化合物(2)を単離する。単離した化合物(1)と化合物(2)を、所望の比率で混合する。
 本発明で「所定の割合で混合」とは、物理的に混合する場合の他、混合対象物を溶媒に溶解してから、混合する場合も含まれる。
 例えば、化合物(1)及び化合物(2)を物理的に混合しても、化合物(1)及び化合物(2)をそれぞれが溶解する溶媒に単独で溶かしてから混合してもよい。溶媒は化合物により使用できるものが異なるので一概に記載できないが、含ハロゲン有機溶媒、含酸素有機溶媒が好適に使用できる。
Next, the ratio of the compound (1) and the compound (2) is adjusted.
For example, there are the following methods.
-A predetermined amount of compound (1) or compound (2) is removed from the above mixture, and the ratio in the mixture is adjusted.
-Isolate compound (1) or compound (2) from the above mixture. The isolated compound (1) or compound (2) and a mixture of the compound (1) and the compound (2) are mixed to adjust the ratio in the mixture. At this time, the mixture of the compound (1) and the compound (2) may be a mixture after isolating the compound (1) or the compound (2), or may be a separately prepared mixture.
-The mixture produced separately is mixed with the mixture except compound (1) or compound (2), and the ratio in a mixture is adjusted.
-Isolate compound (1) and compound (2) from the mixture. The isolated compound (1) and compound (2) are mixed in a desired ratio.
In the present invention, “mixing at a predetermined ratio” includes not only physical mixing but also mixing after dissolving the object to be mixed in a solvent.
For example, the compound (1) and the compound (2) may be physically mixed, or the compound (1) and the compound (2) may be mixed in a solvent in which each of them is dissolved. Since the solvent that can be used differs depending on the compound, it cannot be generally described, but a halogen-containing organic solvent or an oxygen-containing organic solvent can be preferably used.
 上記の比率が調整された混合物は、作製するフォトレジスト溶液中で均一となれば、事前に混合しなくてもよい。 If the mixture in which the above ratio is adjusted becomes uniform in the photoresist solution to be produced, it may not be mixed in advance.
 混合物から化合物(1)又は化合物(2)を単離する方法は、第1の態様で説明した通りであるため、ここでは省略する。 The method for isolating the compound (1) or the compound (2) from the mixture is as described in the first embodiment, and is omitted here.
 本発明のフォトレジスト組成物は、上記の式(1)若しくは(2)の環状化合物を含む組成物と溶剤、又は上記の式(1)及び(2)の環状化合物の組成物と溶剤を含有する。組成物は基材として用いられる。
 環状化合物の組成物の配合量は、溶剤を除く全組成物中好ましくは50~99.9重量%、より好ましくは75~95重量%である。
The photoresist composition of the present invention contains a composition and a solvent containing the cyclic compound of the above formula (1) or (2), or a composition of the cyclic compound of the above formulas (1) and (2) and a solvent. To do. The composition is used as a substrate.
The compounding amount of the cyclic compound composition is preferably 50 to 99.9% by weight, more preferably 75 to 95% by weight in the total composition excluding the solvent.
 本発明のフォトレジスト組成物に使用される溶剤としては、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のプロピレングリコールモノアルキルエーテル類;乳酸メチル、乳酸エチル(EL)等の乳酸エステル類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸エチル(PE)等の脂肪族カルボン酸エステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロヘキサノン等のケトン類;テトラヒドロフラン、ジオキサン等の環状エーテル類、γ-ブチロラクトン等のラクトン類等を挙げることができるが、特に限定はされない。これらの溶剤は、単独で又は2種以上を使用することができる。 Examples of the solvent used in the photoresist composition of the present invention include ethylene glycol monoalkyl ether acetates such as ethylene glycol monomethyl ether acetate and ethylene glycol monoethyl ether acetate; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether and the like. Ethylene glycol monoalkyl ethers; propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate (PGMEA) and propylene glycol monoethyl ether acetate; propylene glycols such as propylene glycol monomethyl ether (PGME) and propylene glycol monoethyl ether Monoalkyl ethers; methyl lactate, ethyl lactate ( L) Lactic acid esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate and ethyl propionate (PE); methyl 3-methoxypropionate, ethyl 3-methoxypropionate, 3 -Other esters such as methyl ethoxypropionate and ethyl 3-ethoxypropionate; aromatic hydrocarbons such as toluene and xylene; ketones such as 2-heptanone, 3-heptanone, 4-heptanone and cyclohexanone; tetrahydrofuran, Examples thereof include cyclic ethers such as dioxane and lactones such as γ-butyrolactone, but are not particularly limited. These solvents can be used alone or in combination of two or more.
 組成物中の溶剤以外の成分、即ちフォトレジスト固形分の量は所望のフォトレジスト層の膜厚を形成するために適する量とするのが好ましい。具体的にはフォトレジスト組成物の全重量の0.1~50重量%が一般的であるが、用いる基材や溶剤の種類、あるいは、所望のフォトレジスト層の膜厚等に合わせて規定できる。溶剤は全組成物中好ましくは50~99.9重量%配合する。 The components other than the solvent in the composition, that is, the amount of the photoresist solid content, is preferably set to an amount suitable for forming a desired thickness of the photoresist layer. Specifically, it is generally 0.1 to 50% by weight of the total weight of the photoresist composition, but it can be defined according to the type of base material and solvent used, or the desired film thickness of the photoresist layer. . The solvent is preferably blended in an amount of 50 to 99.9% by weight in the total composition.
 本発明のフォトレジスト組成物は、基材の分子が、EUV及び/又は電子線に対して活性なクロモフォアを含み単独でフォトレジストとしての能力を示す場合には特に添加剤は必要としないが、フォトレジストとしての性能(感度)を増強する必要がある場合は、必要に応じて、クロモフォアとして光酸発生剤(PAG)等を含むことが一般的である。 The photoresist composition of the present invention does not require an additive particularly when the substrate molecule contains a chromophore active against EUV and / or electron beam and exhibits the ability as a photoresist alone. When it is necessary to enhance the performance (sensitivity) as a photoresist, a photoacid generator (PAG) or the like is generally included as a chromophore as necessary.
 光酸発生剤としては、特に限定されず、化学増幅型レジスト用の酸発生剤として提案されているものを使用することができる。
 このような酸発生剤としては、ヨードニウム塩やスルホニウム塩等のオニウム塩系酸発生剤、オキシムスルホネート系酸発生剤、ビスアルキル又はビスアリールスルホニルジアゾメタン類、ポリ(ビススルホニル)ジアゾメタン類等のジアゾメタン系酸発生剤、ニトロベンジルスルホネート系酸発生剤、イミノスルホネート系酸発生剤、ジスルホン系酸発生剤等多種のものが知られている。
The photoacid generator is not particularly limited, and those proposed as acid generators for chemically amplified resists can be used.
Examples of such acid generators include onium salt acid generators such as iodonium salts and sulfonium salts, oxime sulfonate acid generators, bisalkyl or bisarylsulfonyldiazomethanes, and diazomethanes such as poly (bissulfonyl) diazomethanes. There are various known acid generators, nitrobenzyl sulfonate acid generators, imino sulfonate acid generators, disulfone acid generators, and the like.
 オニウム塩系酸発生剤としては、下記式(a-0)で表される酸発生剤が例示できる。
Figure JPOXMLDOC01-appb-C000014
[式中、R51は、直鎖、分岐鎖又は環状のアルキル基、又は直鎖、分岐鎖又は環状のフッ素化アルキル基を表し;R52は、水素原子、水酸基、ハロゲン原子、直鎖又は分岐鎖状のアルキル基、直鎖又は分岐鎖状のハロゲン化アルキル基、又は直鎖又は分岐鎖状のアルコキシ基であり;R53は置換基を有していてもよいアリール基であり;u’’は1~3の整数である。]
Examples of the onium salt acid generator include acid generators represented by the following formula (a-0).
Figure JPOXMLDOC01-appb-C000014
[Wherein, R 51 represents a linear, branched or cyclic alkyl group, or a linear, branched or cyclic fluorinated alkyl group; R 52 represents a hydrogen atom, a hydroxyl group, a halogen atom, linear or A branched alkyl group, a linear or branched halogenated alkyl group, or a linear or branched alkoxy group; R 53 is an optionally substituted aryl group; u '' Is an integer of 1 to 3. ]
 式(a-0)において、R51は、直鎖、分岐鎖又は環状のアルキル基、又は直鎖、分岐鎖又は環状のフッ素化アルキル基を表す。
 前記直鎖又は分岐鎖状のアルキル基としては、炭素数1~10であることが好ましく、炭素数1~8であることがさらに好ましく、炭素数1~4であることが最も好ましい。
 前記環状のアルキル基としては、炭素数4~12であることが好ましく、炭素数5~10であることがさらに好ましく、炭素数6~10であることが最も好ましい。
 前記フッ素化アルキル基としては、炭素数1~10であることが好ましく、炭素数1~8であることがさらに好ましく、炭素数1~4であることが最も好ましい。また、フッ化アルキル基のフッ素化率(アルキル基中全水素原子の個数に対する置換したフッ素原子の個数の割合)は、好ましくは10~100%、さらに好ましくは50~100%であり、特に水素原子を全てフッ素原子で置換したものが、酸の強度が強くなるので好ましい。
 R51は、直鎖状のアルキル基又はフッ素化アルキル基であることが最も好ましい。
In the formula (a-0), R 51 represents a linear, branched or cyclic alkyl group, or a linear, branched or cyclic fluorinated alkyl group.
The linear or branched alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms.
The cyclic alkyl group preferably has 4 to 12 carbon atoms, more preferably 5 to 10 carbon atoms, and most preferably 6 to 10 carbon atoms.
The fluorinated alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms. The fluorination rate of the fluorinated alkyl group (ratio of the number of substituted fluorine atoms to the total number of hydrogen atoms in the alkyl group) is preferably 10 to 100%, more preferably 50 to 100%, and particularly hydrogen. Those in which all atoms are substituted with fluorine atoms are preferred because the strength of the acid is increased.
R 51 is most preferably a linear alkyl group or a fluorinated alkyl group.
 R52は、水素原子、水酸基、ハロゲン原子、直鎖、分岐鎖又は環状のアルキル基、直鎖、又は分岐鎖状のハロゲン化アルキル基、又は直鎖又は分岐鎖状のアルコキシ基である。
 R52において、ハロゲン原子としては、フッ素原子、臭素原子、塩素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
 R52において、アルキル基は、直鎖又は分岐鎖状であり、その炭素数は好ましくは1~5、より好ましくは1~4、最も好ましくは1~3である。
 R52において、ハロゲン化アルキル基は、アルキル基中の水素原子の一部又は全部がハロゲン原子で置換された基である。ここでのアルキル基は、前記R52における「アルキル基」と同様のものが挙げられる。置換するハロゲン原子としては上記「ハロゲン原子」について説明したものと同様のものが挙げられる。ハロゲン化アルキル基において、水素原子の全個数の50~100%がハロゲン原子で置換されていることが望ましく、全て置換されていることがより好ましい。
 R52において、アルコキシ基としては、直鎖状又は分岐鎖状であり、その炭素数は好ましくは1~5、より好ましくは1~4、最も好ましくは1~3である。
 R52は、これらの中でも水素原子が好ましい。
R 52 represents a hydrogen atom, a hydroxyl group, a halogen atom, a linear, branched or cyclic alkyl group, a linear or branched alkyl halide group, or a linear or branched alkoxy group.
In R 52 , examples of the halogen atom include a fluorine atom, a bromine atom, a chlorine atom, and an iodine atom, and a fluorine atom is preferable.
In R 52 , the alkyl group is linear or branched, and the carbon number thereof is preferably 1 to 5, more preferably 1 to 4, and most preferably 1 to 3.
In R 52 , the halogenated alkyl group is a group in which part or all of the hydrogen atoms in the alkyl group are substituted with halogen atoms. Examples of the alkyl group herein are the same as the “alkyl group” in R 52 . Examples of the halogen atom to be substituted include the same as those described above for the “halogen atom”. In the halogenated alkyl group, it is desirable that 50 to 100% of the total number of hydrogen atoms are substituted with halogen atoms, and it is more preferable that all are substituted.
In R 52 , the alkoxy group is linear or branched, and the carbon number thereof is preferably 1 to 5, more preferably 1 to 4, and most preferably 1 to 3.
Of these, R 52 is preferably a hydrogen atom.
 R53は置換基を有していてもよいアリール基であり、置換基を除いた基本環(母体環)の構造としては、ナフチル基、フェニル基、アントラセニル基等が挙げられ、本発明の効果やArFエキシマレーザー等の露光光の吸収の観点から、フェニル基が望ましい。
 置換基としては、水酸基、低級アルキル基(直鎖又は分岐鎖状であり、その好ましい炭素数は5以下であり、特にメチル基が好ましい)等を挙げることができる。
 R53のアリール基としては、置換基を有しないものがより好ましい。
R 53 is an aryl group which may have a substituent, and examples of the structure of the basic ring (matrix ring) excluding the substituent include a naphthyl group, a phenyl group, an anthracenyl group, and the like. From the viewpoint of absorption of exposure light such as ArF excimer laser or the like, a phenyl group is desirable.
Examples of the substituent include a hydroxyl group and a lower alkyl group (straight or branched chain, preferably having 5 or less carbon atoms, particularly preferably a methyl group).
As the aryl group for R 53, an aryl group having no substituent is more preferable.
 u’’は1~3の整数であり、2又は3であることが好ましく、特に3であることが望ましい。 U ″ is an integer of 1 to 3, preferably 2 or 3, and particularly preferably 3.
 式(a-0)で表される酸発生剤の好ましいものとしては、以下の化学式で表されるものを挙げることができる。
Figure JPOXMLDOC01-appb-C000015
Preferable examples of the acid generator represented by the formula (a-0) include those represented by the following chemical formula.
Figure JPOXMLDOC01-appb-C000015
 式(a-0)で表される酸発生剤は1種又は2種以上混合して用いることができる。
 式(a-0)で表される酸発生剤の他のオニウム塩系酸発生剤としては、例えば下記式(a-1)又は(a-2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016
[式中、R”~R”,R”,R”は、それぞれ独立に、置換又は無置換のアリール基又はアルキル基を表し;R”は、直鎖、分岐又は環状のアルキル基又はフッ素化アルキル基を表し;R”~R”のうち少なくとも1つはアリール基を表し、R”及びR”のうち少なくとも1つはアリール基を表す。]
The acid generator represented by the formula (a-0) can be used alone or in combination.
Examples of other onium salt acid generators represented by the formula (a-0) include compounds represented by the following formula (a-1) or (a-2).
Figure JPOXMLDOC01-appb-C000016
[Wherein R 1 ″ to R 3 ″, R 5 ″, R 6 ″ each independently represents a substituted or unsubstituted aryl group or alkyl group; R 4 ″ represents a linear, branched or cyclic group; Represents an alkyl group or a fluorinated alkyl group; at least one of R 1 ″ to R 3 ″ represents an aryl group, and at least one of R 5 ″ and R 6 ″ represents an aryl group.]
 式(a-1)中、R”~R”はそれぞれ独立に置換又は無置換のアリール基又はアルキル基を表す。R”~R”のうち、少なくとも1つは置換又は無置換のアリール基を表す。R”~R”のうち、2以上が置換又は無置換のアリール基であることが好ましく、R”~R”の全てが置換又は無置換のアリール基であることが最も好ましい。 In formula (a-1), R 1 ″ to R 3 ″ each independently represents a substituted or unsubstituted aryl group or alkyl group. At least one of R 1 ″ to R 3 ″ represents a substituted or unsubstituted aryl group. Of R 1 ″ to R 3 ″, two or more are preferably substituted or unsubstituted aryl groups, and most preferably all of R 1 ″ to R 3 ″ are substituted or unsubstituted aryl groups.
 R”~R”のアリール基としては、特に制限はなく、例えば、炭素数6~20のアリール基であって、該アリール基は、その水素原子の一部又は全部がアルキル基、アルコキシ基、ハロゲン原子等で置換されていてもよく、されていなくてもよい。アリール基としては、安価に合成可能なことから、炭素数6~10のアリール基が好ましい。具体的には、たとえばフェニル基、ナフチル基が挙げられる。 The aryl group for R 1 ″ to R 3 ″ is not particularly limited, and is, for example, an aryl group having 6 to 20 carbon atoms, in which part or all of the hydrogen atoms are alkyl groups, alkoxy groups It may or may not be substituted with a group, a halogen atom or the like. The aryl group is preferably an aryl group having 6 to 10 carbon atoms because it can be synthesized at a low cost. Specific examples include a phenyl group and a naphthyl group.
 前記アリール基の置換基であるアルキル基としては、炭素数1~5のアルキル基が好ましく、メチル基、エチル基、プロピル基、n-ブチル基、tert-ブチル基が最も好ましい。
 前記アリール基の置換基であるアルコキシ基としては、炭素数1~5のアルコキシ基が好ましく、メトキシ基、エトキシ基が最も好ましい。
 前記アリール基の置換基であるハロゲン原子としては、フッ素原子が好ましい。
The alkyl group that is a substituent of the aryl group is preferably an alkyl group having 1 to 5 carbon atoms, and most preferably a methyl group, an ethyl group, a propyl group, an n-butyl group, or a tert-butyl group.
The alkoxy group which is a substituent of the aryl group is preferably an alkoxy group having 1 to 5 carbon atoms, and most preferably a methoxy group or an ethoxy group.
The halogen atom that is a substituent of the aryl group is preferably a fluorine atom.
 R”~R”のアルキル基としては、特に制限はなく、例えば炭素数1~10の直鎖状、分岐状又は環状のアルキル基等が挙げられる。解像性に優れる点から、炭素数1~5であることが好ましい。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、ノニル基、デカニル基等が挙げられ、解像性に優れ、また安価に合成可能なことから好ましいものとして、メチル基を挙げることができる。
 これらの中で、R”~R”は全てフェニル基であることが最も好ましい。
The alkyl group for R 1 ″ to R 3 ″ is not particularly limited, and examples thereof include linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms. From the viewpoint of excellent resolution, the number of carbon atoms is preferably 1 to 5. Specific examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-pentyl group, cyclopentyl group, hexyl group, cyclohexyl group, nonyl group, decanyl group and the like. A methyl group is preferable because it is excellent in resolution and can be synthesized at low cost.
Among these, it is most preferable that all of R 1 ″ to R 3 ″ are phenyl groups.
 R”は、直鎖、分岐又は環状のアルキル基又はフッ素化アルキル基を表す。
 前記直鎖又は分岐のアルキル基としては、炭素数1~10であることが好ましく、炭素数1~8であることがさらに好ましく、炭素数1~4であることが最も好ましい。
 前記環状のアルキル基としては、前記R”で示したような環式基であって、炭素数4~15であることが好ましく、炭素数4~10であることがさらに好ましく、炭素数6~10であることが最も好ましい。
 前記フッ素化アルキル基としては、炭素数1~10であることが好ましく、炭素数1~8であることがさらに好ましく、炭素数1~4であることが最も好ましい。また。該フッ化アルキル基のフッ素化率(アルキル基中のフッ素原子の割合)は、好ましくは10~100%、さらに好ましくは50~100%であり、特に水素原子を全てフッ素原子で置換したものが、酸の強度が強くなるので好ましい。
 R”としては、直鎖又は環状のアルキル基、又はフッ素化アルキル基であることが最も好ましい。
R 4 ″ represents a linear, branched or cyclic alkyl group or a fluorinated alkyl group.
The linear or branched alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms.
The cyclic alkyl group is a cyclic group as represented by R 1 ″, preferably having 4 to 15 carbon atoms, more preferably 4 to 10 carbon atoms, and more preferably 6 carbon atoms. Most preferably, it is ˜10.
The fluorinated alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and most preferably 1 to 4 carbon atoms. Also. The fluorination rate of the fluorinated alkyl group (ratio of fluorine atoms in the alkyl group) is preferably 10 to 100%, more preferably 50 to 100%, and in particular, those in which all hydrogen atoms are substituted with fluorine atoms. Since the strength of the acid is increased, it is preferable.
R 4 ″ is most preferably a linear or cyclic alkyl group or a fluorinated alkyl group.
 式(a-2)中、R”及びR”はそれぞれ独立に置換又は無置換のアリール基又はアルキル基を表す。R”及びR”のうち、少なくとも1つは置換又は無置換のアリール基を表す。R”及びR”の全てが置換又は無置換のアリール基であることが好ましい。
 R”~R”の置換又は無置換のアリール基としては、R”~R”の置換又は無置換のアリール基と同様のものが挙げられる。
 R”~R”のアルキル基としては、R”~R”のアルキル基と同様のものが挙げられる。
 これらの中で、R”~R”は全てフェニル基であることが最も好ましい。
 式(a-2)中のR”としては上記式(a-1)のR”と同様のものが挙げられる。
In formula (a-2), R 5 ″ and R 6 ″ each independently represents a substituted or unsubstituted aryl group or alkyl group. At least one of R 5 ″ and R 6 ″ represents a substituted or unsubstituted aryl group. All of R 5 ″ and R 6 ″ are preferably substituted or unsubstituted aryl groups.
Examples of the substituted or unsubstituted aryl group for R 5 ″ to R 6 ″ include those similar to the substituted or unsubstituted aryl group for R 1 ″ to R 3 ″.
As the alkyl group for R 5 ″ to R 6 ″, the same as the alkyl groups for R 1 ″ to R 3 ″ can be used.
Of these, it is most preferable that all of R 5 ″ to R 6 ″ are phenyl groups.
"As R 4 in the formula (a-1)" R 4 in the formula (a-2) include the same as.
 式(a-1)、(a-2)で表されるオニウム塩系酸発生剤の具体例としては、ジフェニルヨードニウムのトリフルオロメタンスルホネート又はノナフルオロブタンスルホネート、ビス(4-tert-ブチルフェニル)ヨードニウムのトリフルオロメタンスルホネート又はノナフルオロブタンスルホネート、トリフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、トリ(4-メチルフェニル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、ジメチル(4-ヒドロキシナフチル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、モノフェニルジメチルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、ジフェニルモノメチルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、(4-メチルフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、(4-メトキシフェニル)ジフェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、トリ(4-tert-ブチル)フェニルスルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート、ジフェニル(1-(4-メトキシ)ナフチル)スルホニウムのトリフルオロメタンスルホネート、そのヘプタフルオロプロパンスルホネート又はそのノナフルオロブタンスルホネート等が挙げられる。また、これらのオニウム塩のアニオン部がメタンスルホネート、n-プロパンスルホネート、n-ブタンスルホネート、n-オクタンスルホネートに置き換えたオニウム塩も用いることができる。 Specific examples of the onium salt acid generators represented by the formulas (a-1) and (a-2) include diphenyliodonium trifluoromethanesulfonate or nonafluorobutanesulfonate, bis (4-tert-butylphenyl) iodonium. Trifluoromethanesulfonate or nonafluorobutanesulfonate, triphenylsulfonium trifluoromethanesulfonate, heptafluoropropanesulfonate or nonafluorobutanesulfonate, tri (4-methylphenyl) sulfonium trifluoromethanesulfonate, heptafluoropropanesulfonate or the same Nonafluorobutanesulfonate, dimethyl (4-hydroxynaphthyl) sulfonium trifluoromethanesulfonate, its heptafluoropropyl Pansulfonate or its nonafluorobutanesulfonate, trifluoromethanesulfonate of monophenyldimethylsulfonium, its heptafluoropropanesulfonate or its nonafluorobutanesulfonate, trifluoromethanesulfonate of diphenylmonomethylsulfonium, its heptafluoropropanesulfonate or its nonafluorobutanesulfonate, (4-methylphenyl) diphenylsulfonium trifluoromethanesulfonate, its heptafluoropropane sulfonate or its nonafluorobutane sulfonate, (4-methoxyphenyl) diphenylsulfonium trifluoromethanesulfonate, its heptafluoropropane sulfonate or its nonafluorobutane sulfonate, bird( -Tert-butyl) phenylsulfonium trifluoromethanesulfonate, its heptafluoropropane sulfonate or its nonafluorobutane sulfonate, diphenyl (1- (4-methoxy) naphthyl) sulfonium trifluoromethanesulfonate, its heptafluoropropane sulfonate or its nonafluoro Examples include butane sulfonate. In addition, onium salts in which the anion portion of these onium salts is replaced with methanesulfonate, n-propanesulfonate, n-butanesulfonate, or n-octanesulfonate can also be used.
 また、前記式(a-1)又は(a-2)において、アニオン部を下記式(a-3)又は(a-4)で表されるアニオン部に置き換えたオニウム塩系酸発生剤も用いることができる(カチオン部は(a-1)又は(a-2)と同様)。
Figure JPOXMLDOC01-appb-C000017
[式中、X”は、少なくとも1つの水素原子がフッ素原子で置換された炭素数2~6のアルキレン基を表し;Y”,Z”は、それぞれ独立に、少なくとも1つの水素原子がフッ素原子で置換された炭素数1~10のアルキル基を表す。]
Further, an onium salt acid generator in which the anion moiety is replaced by the anion moiety represented by the following formula (a-3) or (a-4) in the formula (a-1) or (a-2) is also used. (The cation moiety is the same as (a-1) or (a-2)).
Figure JPOXMLDOC01-appb-C000017
[Wherein X ″ represents an alkylene group having 2 to 6 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom; Y ″ and Z ″ each independently represent at least one hydrogen atom as a fluorine atom; Represents an alkyl group having 1 to 10 carbon atoms and substituted with
 X”は、少なくとも1つの水素原子がフッ素原子で置換された直鎖状又は分岐状のアルキレン基であり、該アルキレン基の炭素数は2~6であり、好ましくは炭素数3~5、最も好ましくは炭素数3である。
 Y”,Z”は、それぞれ独立に、少なくとも1つの水素原子がフッ素原子で置換された直鎖状又は分岐状のアルキル基であり、該アルキル基の炭素数は1~10であり、好ましくは炭素数1~7、より好ましくは炭素数1~3である。
X ″ is a linear or branched alkylene group in which at least one hydrogen atom is substituted with a fluorine atom, and the alkylene group has 2 to 6 carbon atoms, preferably 3 to 5 carbon atoms, Preferably it is C3.
Y ″ and Z ″ are each independently a linear or branched alkyl group in which at least one hydrogen atom is substituted with a fluorine atom, and the alkyl group has 1 to 10 carbon atoms, preferably It has 1 to 7 carbon atoms, more preferably 1 to 3 carbon atoms.
 X”のアルキレン基の炭素数又はY”,Z”のアルキル基の炭素数は、上記炭素数の範囲内において、レジスト溶剤への溶解性も良好である等の理由により、小さいほど好ましい。 The number of carbon atoms of the alkylene group of X ″ or the number of carbon atoms of the alkyl group of Y ″ and Z ″ is preferably as small as possible because the solubility in a resist solvent is good within the above-mentioned range of carbon numbers.
 また、X”のアルキレン基又はY”,Z”のアルキル基において、フッ素原子で置換されている水素原子の数が多いほど、酸の強度が強くなり、また200nm以下の高エネルギー光や電子線に対する透明性が向上するので好ましい。該アルキレン基又はアルキル基中のフッ素原子の割合、すなわちフッ素化率は、好ましくは70~100%、さらに好ましくは90~100%であり、最も好ましくは、全ての水素原子がフッ素原子で置換されたパーフルオロアルキレン基又はパーフルオロアルキル基である。 In addition, in the alkylene group of X ″ or the alkyl group of Y ″ and Z ″, the strength of the acid increases as the number of hydrogen atoms substituted by fluorine atoms increases, and high-energy light or electron beam of 200 nm or less The ratio of fluorine atoms in the alkylene group or alkyl group, that is, the fluorination rate is preferably 70 to 100%, more preferably 90 to 100%, and most preferably all. Are a perfluoroalkylene group or a perfluoroalkyl group in which a hydrogen atom is substituted with a fluorine atom.
 本発明において、光酸発生剤として以下の式(40)~(45)で示される化合物も使用できる。
Figure JPOXMLDOC01-appb-C000018
In the present invention, compounds represented by the following formulas (40) to (45) can also be used as a photoacid generator.
Figure JPOXMLDOC01-appb-C000018
 式(40)中、Qはアルキレン基、アリーレン基又はアルコキシレン基であり、R15はアルキル基、アリール基、ハロゲン置換アルキル基又はハロゲン置換アリール基である。 In formula (40), Q is an alkylene group, an arylene group or an alkoxylene group, and R 15 is an alkyl group, an aryl group, a halogen-substituted alkyl group or a halogen-substituted aryl group.
 前記式(40)で示される化合物は、N-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(トリフルオロメチルスルホニルオキシ)ナフチルイミド、N-(10-カンファースルホニルオキシ)スクシンイミド、N-(10-カンファースルホニルオキシ)フタルイミド、N-(10-カンファースルホニルオキシ)ジフェニルマレイミド、N-(10-カンファースルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(10-カンファースルホニルオキシ)ナフチルイミド、N-(n-オクタンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(n-オクタンスルホニルオキシ)ナフチルイミド、N-(p-トルエンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(p-トルエンスルホニルオキシ)ナフチルイミド、N-(2-トリフルオロメチルベンゼンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(2-トリフルオロメチルベンゼンスルホニルオキシ)ナフチルイミド、N-(4-トリフルオロメチルベンゼンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エン-2,3-ジカルボキシイミド、N-(4-トリフルオロメチルベンゼンスルホニルオキシ)ナフチルイミド、N-(パーフルオロベンゼンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(パーフルオロベンゼンスルホニルオキシ)ナフチルイミド、N-(1-ナフタレンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-ナフタレンスルホニルオキシ)ナフチルイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ノナフルオロ-n-ブタンスルホニルオキシ)ナフチルイミド、N-(パーフルオロ-n-オクタンスルホニルオキシ)ビシクロ[2.2.1]へプト-5-エンー2,3-ジカルボキシイミド及びN-(パーフルオロ-n-オクタンスルホニルオキシ)ナフチルイミドからなる群から選択される少なくとも一種類であることが好ましい。 The compound represented by the formula (40) includes N- (trifluoromethylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N- (trifluoro Methylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) naphthylimide, N- (10-camphorsulfonyloxy) succinimide, N- (10-camphorsulfonyloxy) phthalimide, N- (10-camphorsulfonyloxy) diphenylmaleimide, N- (10-camphorsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3 -Dicarboximide, N- 10-camphorsulfonyloxy) naphthylimide, N- (n-octanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (n-octanesulfonyloxy) Naphthylimide, N- (p-toluenesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (p-toluenesulfonyloxy) naphthylimide, N- (2 -Trifluoromethylbenzenesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2-trifluoromethylbenzenesulfonyloxy) naphthylimide, N- (4 -Trifluoromethylbenzenesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarbo Siimide, N- (4-trifluoromethylbenzenesulfonyloxy) naphthylimide, N- (perfluorobenzenesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (Perfluorobenzenesulfonyloxy) naphthylimide, N- (1-naphthalenesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (1-naphthalenesulfonyloxy) Naphthylimide, N- (nonafluoro-n-butanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (nonafluoro-n-butanesulfonyloxy) naphthylimide, To N- (perfluoro-n-octanesulfonyloxy) bicyclo [2.2.1] It is preferably at least one selected from the group consisting of pto-5-ene-2,3-dicarboximide and N- (perfluoro-n-octanesulfonyloxy) naphthylimide.
Figure JPOXMLDOC01-appb-C000019
 式(41)中、R16は、同一でも異なっていてもよく、それぞれ独立に、任意に置換された直鎖、分枝又は環状アルキル基、任意に置換されたアリール基、任意に置換されたヘテロアリール基又は任意に置換されたアラルキル基である。
Figure JPOXMLDOC01-appb-C000019
In formula (41), R 16 may be the same or different and each independently represents an optionally substituted linear, branched or cyclic alkyl group, an optionally substituted aryl group, and optionally substituted. A heteroaryl group or an optionally substituted aralkyl group.
 前記式(41)で示される化合物は、ジフェニルジスルフォン、ジ(4-メチルフェニル)ジスルフォン、ジナフチルジスルフォン、ジ(4-tert-ブチルフェニル)ジスルフォン、ジ(4-ヒドロキシフェニル)ジスルフォン、ジ(3-ヒドロキシナフチル)ジスルフォン、ジ(4-フルオロフェニル)ジスルフォン、ジ(2-フルオロフェニル)ジスルフォン及びジ(4-トルフルオロメチルフェニル)ジスルフォンからなる群から選択される少なくとも一種類であることが好ましい。 The compound represented by the formula (41) includes diphenyl disulfone, di (4-methylphenyl) disulfone, dinaphthyl disulfone, di (4-tert-butylphenyl) disulfone, di (4-hydroxyphenyl) disulfone, di It is at least one selected from the group consisting of (3-hydroxynaphthyl) disulfone, di (4-fluorophenyl) disulfone, di (2-fluorophenyl) disulfone and di (4-toluromethylphenyl) disulfone. preferable.
Figure JPOXMLDOC01-appb-C000020
 式(42)中、R17は、同一でも異なっていてもよく、それぞれ独立に、任意に置換された直鎖、分枝又は環状アルキル基、任意に置換されたアリール基、任意に置換されたヘテロアリール基又は任意に置換されたアラルキル基である。
Figure JPOXMLDOC01-appb-C000020
In formula (42), R 17 may be the same or different and each independently represents an optionally substituted linear, branched or cyclic alkyl group, an optionally substituted aryl group, and optionally substituted. A heteroaryl group or an optionally substituted aralkyl group.
 前記式(42)で示される化合物は、α-(メチルスルホニルオキシイミノ)-フェニルアセトニトリル、α-(メチルスルホニルオキシイミノ)-4-メトキシフェニルアセトニトリル、α-(トリフルオロメチルスルホニルオキシイミノ)-フェニルアセトニトリル、α-(トリフルオロメチルスルホニルオキシイミノ)-4-メトキシフェニルアセトニトリル、α-(エチルスルホニルオキシイミノ)-4-メトキシフェニルアセトニトリル、α-(プロピルスルホニルオキシイミノ)-4-メチルフェニルアセトニトリル及びα-(メチルスルホニルオキシイミノ)-4-ブロモフェニルアセトニトリルからなる群から選択される少なくとも一種類であることが好ましい。 The compound represented by the formula (42) is α- (methylsulfonyloxyimino) -phenylacetonitrile, α- (methylsulfonyloxyimino) -4-methoxyphenylacetonitrile, α- (trifluoromethylsulfonyloxyimino) -phenyl. Acetonitrile, α- (trifluoromethylsulfonyloxyimino) -4-methoxyphenylacetonitrile, α- (ethylsulfonyloxyimino) -4-methoxyphenylacetonitrile, α- (propylsulfonyloxyimino) -4-methylphenylacetonitrile and α It is preferably at least one selected from the group consisting of-(methylsulfonyloxyimino) -4-bromophenylacetonitrile.
Figure JPOXMLDOC01-appb-C000021
 式(43)中、R18は、同一でも異なっていてもよく、それぞれ独立に、1以上の塩素原子及び1以上の臭素原子を有するハロゲン化アルキル基である。ハロゲン化アルキル基の炭素原子数は1~5が好ましい。
Figure JPOXMLDOC01-appb-C000021
In formula (43), R 18 may be the same or different and each independently represents a halogenated alkyl group having one or more chlorine atoms and one or more bromine atoms. The halogenated alkyl group preferably has 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(44)及び(45)中、R19及びR20はそれぞれ独立に、メチル基、エチル基、n-プロピル基、イソプロピル基等の炭素原子数1~3のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、メトキシ基、エトキシ基、プロポキシ基等の炭素原子数1~3のアルコキシ基、又はフェニル基、トルイル基、ナフチル基等のアリール基であり、好ましくは、炭素原子数6~10のアリール基である。
 L19及びL20はそれぞれ独立に1,2-ナフトキノンジアジド基を有する有機基である。1,2-ナフトキノンジアジド基を有する有機基としては、具体的には、1,2-ナフトキノンジアジド-4-スルホニル基、1,2-ナフトキノンジアジド-5-スルホニル基、1,2-ナフトキノンジアジド-6-スルホニル基等の1,2-キノンジアジドスルホニル基を好ましいものとして挙げることができる。特に、1,2-ナフトキノンジアジド-4-スルホニル基及び1,2-ナフトキノンジアジド-5-スルホニル基が好ましい。
 pは1~3の整数、qは0~4の整数、かつ1≦p+q≦5である。
 J19は単結合、炭素原子数1~4のポリメチレン基、シクロアルキレン基、フェニレン基、下記式(44a)で表わされる基、カルボニル結合、エステル結合、アミド結合又はエーテル結合を有する基である。
In the formulas (44) and (45), R 19 and R 20 are each independently an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopentyl group, or a cyclohexyl group. A cycloalkyl group such as methoxy group, ethoxy group, propoxy group and the like, or an aryl group such as phenyl group, toluyl group and naphthyl group, preferably 6 to 6 carbon atoms. 10 aryl groups.
L 19 and L 20 are each independently an organic group having a 1,2-naphthoquinonediazide group. Specific examples of the organic group having a 1,2-naphthoquinonediazide group include a 1,2-naphthoquinonediazide-4-sulfonyl group, a 1,2-naphthoquinonediazide-5-sulfonyl group, and a 1,2-naphthoquinonediazide- Preferred examples include 1,2-quinonediazidosulfonyl groups such as a 6-sulfonyl group. In particular, 1,2-naphthoquinonediazido-4-sulfonyl group and 1,2-naphthoquinonediazide-5-sulfonyl group are preferable.
p is an integer of 1 to 3, q is an integer of 0 to 4, and 1 ≦ p + q ≦ 5.
J 19 is a group having a single bond, a polymethylene group having 1 to 4 carbon atoms, a cycloalkylene group, a phenylene group, a group represented by the following formula (44a), a carbonyl bond, an ester bond, an amide bond or an ether bond.
 Y19はそれぞれ独立に水素原子、アルキル基又はアリール基であり、X20は、それぞれ独立に下記式(45a)で示される基である。
Figure JPOXMLDOC01-appb-C000023
 式(45a)中、Z22はそれぞれ独立に、アルキル基、シクロアルキル基又はアリール基であり、R22はそれぞれ独立に、アルキル基、シクロアルキル基又はアルコキシ基であり、rは0~3の整数である。
Y 19 is each independently a hydrogen atom, an alkyl group or an aryl group, and X 20 is each independently a group represented by the following formula (45a).
Figure JPOXMLDOC01-appb-C000023
In the formula (45a), Z 22 each independently represents an alkyl group, a cycloalkyl group or an aryl group, R 22 each independently represents an alkyl group, a cycloalkyl group or an alkoxy group, and r is 0 to 3 It is an integer.
 その他の酸発生剤として、ビス(p-トルエンスルホニル)ジアゾメタン、ビス(2,4-ジメチルフェニルスルホニル)ジアゾメタン、ビス(tert-ブチルスルホニル)ジアゾメタン、ビス(n-ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(n-プロピルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、1,3-ビス(シクロヘキシルスルホニルアゾメチルスルホニル)プロパン、1,4-ビス(フェニルスルホニルアゾメチルスルホニル)ブタン、1,6-ビス(フェニルスルホニルアゾメチルスルホニル)ヘキサン、1,10-ビス(シクロヘキシルスルホニルアゾメチルスルホニル)デカン等のビススルホニルジアゾメタン類、2-(4-メトキシフェニル)-4,6-(ビストリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシナフチル)-4,6-(ビストリクロロメチル)-1,3,5-トリアジン、トリス(2,3-ジブロモプロピル)-1,3,5-トリアジン、トリス(2,3-ジブロモプロピル)イソシアヌレート等のハロゲン含有トリアジン誘導体等が挙げられる。 Other acid generators include bis (p-toluenesulfonyl) diazomethane, bis (2,4-dimethylphenylsulfonyl) diazomethane, bis (tert-butylsulfonyl) diazomethane, bis (n-butylsulfonyl) diazomethane, bis (isobutylsulfonyl) ) Diazomethane, bis (isopropylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, 1,3-bis (cyclohexylsulfonylazomethylsulfonyl) propane, 1,4 -Bis (phenylsulfonylazomethylsulfonyl) butane, 1,6-bis (phenylsulfonylazomethylsulfonyl) hexane, 1,10-bis (cyclohexylsulfur) Bissulfonyldiazomethanes such as nylazomethylsulfonyl) decane, 2- (4-methoxyphenyl) -4,6- (bistrichloromethyl) -1,3,5-triazine, 2- (4-methoxynaphthyl) -4 , 6- (bistrichloromethyl) -1,3,5-triazine, tris (2,3-dibromopropyl) -1,3,5-triazine, tris (2,3-dibromopropyl) isocyanurate And triazine derivatives.
 これらの光酸発生剤の中で、特に好ましくは活性光線又は放射線の作用により有機スルホン酸を発生する化合物が好ましい。 Among these photoacid generators, a compound that generates an organic sulfonic acid by the action of actinic rays or radiation is particularly preferable.
 PAGの配合量は、溶剤を除く全組成物中0~40重量%、好ましくは5~30重量%、さらに好ましくは5~20重量%である。 The blending amount of PAG is 0 to 40% by weight, preferably 5 to 30% by weight, and more preferably 5 to 20% by weight in the total composition excluding the solvent.
 本発明においては、放射線照射により酸発生剤から生じた酸のレジスト膜中における拡散を制御して、未露光領域での好ましくない化学反応を阻止する作用等を有する酸拡散制御剤(クエンチャー)をフォトレジスト組成物に配合してもよい。この様な酸拡散制御剤を使用することにより、フォトレジスト組成物の貯蔵安定性が向上する。また解像度が向上するとともに、電子線照射前の引き置き時間、電子線照射後の引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。 In the present invention, an acid diffusion control agent (quencher) having an action of controlling an undesired chemical reaction in an unexposed region by controlling diffusion of an acid generated from an acid generator by irradiation in a resist film. May be blended in the photoresist composition. By using such an acid diffusion controller, the storage stability of the photoresist composition is improved. Further, the resolution is improved, and a change in the line width of the resist pattern due to fluctuations in the holding time before electron beam irradiation and the holding time after electron beam irradiation can be suppressed, and the process stability is extremely excellent.
 このような酸拡散制御剤としては、例えば、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン等のモノアルキルアミン;ジエチルアミン、ジ-n-プロピルアミン、ジ-n-ヘプチルアミン、ジ-n-オクチルアミン、ジシクロヘキシルアミン等のジアルキルアミン;トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ヘキシルアミン、トリ-n-ペンチルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、トリ-n-ノニルアミン、トリ-n-デカニルアミン、トリ-n-ドデシルアミン等のトリアルキルアミン;ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ジ-n-オクタノールアミン、トリ-n-オクタノールアミン等のアルキルアルコールアミン;1,4-ジアザビシクロ[2.2.2]オクタン、1,5-ジアザビシクロ[4.3.0]-5-ノネン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の環状アミン等の窒素原子含有塩基性化合物、塩基性スルホニウム化合物、塩基性ヨードニウム化合物等の電子線放射分解性塩基性化合物が挙げられる。酸拡散制御剤は、単独で又は2種以上を使用することができる。 Examples of such acid diffusion control agents include monoalkylamines such as n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine; diethylamine, di-n-propylamine, di- -Dialkylamines such as n-heptylamine, di-n-octylamine, dicyclohexylamine; trimethylamine, triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-hexylamine, tri-n-pentylamine Trialkylamines such as tri-n-heptylamine, tri-n-octylamine, tri-n-nonylamine, tri-n-decanylamine, tri-n-dodecylamine; diethanolamine, triethanolamine, diisopropanolamine, Isopropano Alkyl alcohol amines such as amine, di-n-octanolamine, tri-n-octanolamine; 1,4-diazabicyclo [2.2.2] octane, 1,5-diazabicyclo [4.3.0] -5 Electron beam decomposable basic compounds such as nitrogen atom-containing basic compounds such as cyclic amines such as nonene and 1,8-diazabicyclo [5.4.0] -7-undecene, basic sulfonium compounds, basic iodonium compounds, etc. Is mentioned. The acid diffusion controller can be used alone or in combination of two or more.
 クエンチャーの配合量は、溶剤を除く全組成物中0~40重量%、好ましくは0.01~15重量%である。
 本発明においては、さらに所望により混和性のある添加剤、例えばレジスト膜の性能を改良するための付加的樹脂、塗布性を向上させるための界面活性剤、溶解制御剤、増感剤、可塑剤、安定剤、着色剤、ハレーション防止剤、染料、顔料等を適宜、添加含有させることができる。
The blending amount of the quencher is 0 to 40% by weight, preferably 0.01 to 15% by weight, based on the total composition excluding the solvent.
In the present invention, if desired, further miscible additives, for example, additional resins for improving the performance of resist films, surfactants for improving coating properties, dissolution control agents, sensitizers, plasticizers. Stabilizers, colorants, antihalation agents, dyes, pigments, and the like can be appropriately added and contained.
 溶解制御剤は、環状化合物のアルカリ現像液に対する溶解性が高すぎる場合に、その溶解性を低下させて現像時の溶解速度を適度にする作用を有する成分である。 The dissolution controlling agent is a component having an action of reducing the solubility of the cyclic compound in an alkaline developer so as to moderate the dissolution rate during development.
 溶解制御剤としては、例えば、ナフタレン、フェナントレン、アントラセン、アセナフテン等の芳香族炭化水素類;アセトフェノン、ベンゾフェノン、フェニルナフチルケトン等のケトン類;メチルフェニルスルホン、ジフェニルスルホン、ジナフチルスルホン等のスルホン類等を挙げることができる。さらに、例えば、酸解離性官能基が導入されたビスフェノール類、t-ブチルカルボニル基が導入されたトリス(ヒドロキシフェニル)メタン等をも挙げることができる。これらの溶解制御剤は、単独で又は2種以上を使用することができる。溶解制御剤の配合量は、使用する環状化合物の種類に応じて適宜調節されるが、固形成分全重量の0~50重量%が好ましく、0~40重量%がより好ましく、0~30重量%がさらに好ましい。 Examples of the dissolution control agent include aromatic hydrocarbons such as naphthalene, phenanthrene, anthracene, and acenaphthene; ketones such as acetophenone, benzophenone, and phenylnaphthyl ketone; and sulfones such as methylphenylsulfone, diphenylsulfone, and dinaphthylsulfone. Can be mentioned. Furthermore, for example, bisphenols into which an acid dissociable functional group has been introduced, tris (hydroxyphenyl) methane into which a t-butylcarbonyl group has been introduced, and the like can also be mentioned. These dissolution control agents can be used alone or in combination of two or more. The blending amount of the dissolution control agent is appropriately adjusted according to the kind of the cyclic compound to be used, but is preferably 0 to 50% by weight, more preferably 0 to 40% by weight, and more preferably 0 to 30% by weight based on the total weight of the solid component. Is more preferable.
 増感剤は、照射された放射線のエネルギーを吸収して、そのエネルギーを酸発生剤に伝達し、それにより酸の生成量を増加する作用を有し、レジストの見掛けの感度を向上させる成分である。このような増感剤としては、例えば、ベンゾフェノン類、ビアセチル類、ピレン類、フェノチアジン類、フルオレン類等を挙げることができるが、特に限定はされない。これらの増感剤は、単独で又は2種以上を使用することができる。増感剤の配合量は、固形成分全重量の0~50重量%が好ましく、0~20重量%がより好ましく、0~10重量%がさらに好ましい。 The sensitizer is a component that absorbs the energy of the irradiated radiation and transmits the energy to the acid generator, thereby increasing the amount of acid generated and improving the apparent sensitivity of the resist. is there. Examples of such sensitizers include, but are not limited to, benzophenones, biacetyls, pyrenes, phenothiazines, and fluorenes. These sensitizers can be used alone or in combination of two or more. The blending amount of the sensitizer is preferably 0 to 50% by weight, more preferably 0 to 20% by weight, and further preferably 0 to 10% by weight based on the total weight of the solid component.
 界面活性剤は、本発明のフォトレジスト組成物の塗布性やストリエーション、レジストとしての現像性等を改良する作用を有する成分である。このような界面活性剤としては、アニオン系、カチオン系、ノニオン系あるいは両性のいずれでも使用することができる。これらのうち、ノニオン系界面活性剤が好ましい。ノニオン系界面活性剤は、フォトレジスト組成物に用いる溶剤との親和性がよく、より効果がある。ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリエチレングリコールの高級脂肪酸ジエステル類等の他、以下商品名で、エフトップ(ジェムコ社製)、メガファック(大日本インキ化学工業社製)、フロラード(住友スリーエム社製)、アサヒガード、サーフロン(以上、旭硝子社製)、ペポール(東邦化学工業社製)、KP(信越化学工業社製)、ポリフロー(共栄社油脂化学工業社製)等の各シリーズ製品を挙げることができるが、特に限定はされない。界面活性剤の配合量は、固形成分全重量の0~2重量%が好ましく、0~1重量%がより好ましく、0~0.1重量%がさらに好ましい。 The surfactant is a component having an action of improving the coating property and striation of the photoresist composition of the present invention, the developability as a resist, and the like. As such a surfactant, any of anionic, cationic, nonionic or amphoteric can be used. Of these, nonionic surfactants are preferred. The nonionic surfactant has a good affinity with the solvent used in the photoresist composition and is more effective. Examples of nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, polyethylene glycol higher fatty acid diesters, and the following trade names: Ftop (manufactured by Gemco) , MegaFac (Dainippon Ink & Chemicals), Florard (Sumitomo 3M), Asahi Guard, Surflon (Asahi Glass), Pepol (Toho Chemical), KP (Shin-Etsu Chemical) The series products such as Polyflow (manufactured by Kyoeisha Yushi Chemical Co., Ltd.) and the like can be mentioned, but are not particularly limited. The compounding amount of the surfactant is preferably 0 to 2% by weight, more preferably 0 to 1% by weight, and further preferably 0 to 0.1% by weight based on the total weight of the solid components.
 また、染料あるいは顔料を配合することにより、露光部の潜像を可視化させて、露光時のハレーションの影響を緩和できる。さらに、接着助剤を配合することにより、基板との接着性を改善することができる。 Also, by blending a dye or pigment, the latent image in the exposed area can be visualized and the influence of halation during exposure can be mitigated. Furthermore, the adhesiveness with a board | substrate can be improved by mix | blending an adhesion aid.
 酸拡散制御剤を配合した場合の感度劣化を防ぎ、またレジストパターン形状、引き置き安定性等の向上の目的で、さらに任意の成分として、有機カルボン酸又はリンのオキソ酸又はその誘導体を含有させることができる。なお、これらの化合物は、酸拡散制御剤と併用することもできるし、単独で用いてもよい。有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸等が好適である。リンのオキソ酸又はその誘導体としては、リン酸、リン酸ジ-n-ブチルエステル、リン酸ジフェニルエステル等のリン酸又はそれらのエステル等の誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸ジ-n-ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステル等のホスホン酸又はそれらのエステル等の誘導体、ホスフィン酸、フェニルホスフィン酸等のホスフィン酸及びそれらのエステル等の誘導体が挙げられ、これらの中で特にホスホン酸が好ましい。 An organic carboxylic acid or phosphorus oxo acid or a derivative thereof is added as an optional component for the purpose of preventing sensitivity deterioration when an acid diffusion control agent is added and improving the resist pattern shape, retention stability, etc. be able to. These compounds can be used in combination with an acid diffusion controller or may be used alone. As the organic carboxylic acid, for example, malonic acid, citric acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are suitable. Phosphorus oxoacids or derivatives thereof include phosphoric acid, phosphoric acid di-n-butyl ester, phosphoric acid diphenyl ester and other phosphoric acid or derivatives thereof, phosphonic acid, phosphonic acid dimethyl ester, phosphonic acid di- Examples include phosphonic acids such as n-butyl ester, phenylphosphonic acid, phosphonic acid diphenyl ester, and phosphonic acid dibenzyl ester or derivatives thereof, phosphinic acids such as phosphinic acid and phenylphosphinic acid, and derivatives such as esters thereof. Of these, phosphonic acid is particularly preferred.
 レジストパターンを形成するには、まず、シリコンウェハー、ガリウムヒ素ウェハー、アルミニウムで被覆されたウェハー等の基板上に本発明のフォトレジスト組成物を、回転塗布、流延塗布、ロール塗布等の塗布手段によって塗布することによりレジスト膜を形成する。 In order to form a resist pattern, first, the photoresist composition of the present invention is applied onto a substrate such as a silicon wafer, a gallium arsenide wafer, or a wafer coated with aluminum, by spin coating, cast coating, roll coating, or other coating means. Then, a resist film is formed by coating.
 必要に応じて、基板上に表面処理剤を予め塗布してもよい。表面処理剤としては、例えばヘキサメチレンジシラザン等のシランカップリング剤(重合性基を有する加水分解重合性シランカップリング剤等)、アンカーコート剤又は下地剤(ポリビニルアセタール、アクリル系樹脂、酢酸ビニル系樹脂、エポキシ樹脂、ウレタン樹脂等)、これらの下地剤と無機微粒子とを混合したコーティング剤が挙げられる。 If necessary, a surface treatment agent may be applied on the substrate in advance. Examples of the surface treatment agent include silane coupling agents such as hexamethylene disilazane (hydrolyzable polymerizable silane coupling agent having a polymerizable group, etc.), anchor coating agents or base agents (polyvinyl acetal, acrylic resins, vinyl acetate). Based resins, epoxy resins, urethane resins, etc.), and coating agents obtained by mixing these base agents and inorganic fine particles.
 必要に応じて、大気中に浮遊するアミン等が侵入するのを防ぐために、レジスト膜に保護膜を形成してもよい。保護膜を形成することにより、放射線によりレジスト膜中に発生した酸が、大気中に不純物として浮遊しているアミン等の酸と反応する化合物と反応して失活し、レジスト像が劣化し感度が低下することを防止できる。保護膜用の材料としては水溶性かつ酸性のポリマーが好ましい。例えば、ポリアクリル酸、ポリビニルスルホン酸等が挙げられる。 If necessary, a protective film may be formed on the resist film in order to prevent invasion of amines floating in the atmosphere. By forming a protective film, the acid generated in the resist film due to radiation reacts with a compound that reacts with an acid such as amine floating as an impurity in the atmosphere and deactivates, and the resist image deteriorates and sensitivity. Can be prevented from decreasing. As the material for the protective film, a water-soluble and acidic polymer is preferable. Examples thereof include polyacrylic acid and polyvinyl sulfonic acid.
 高精度の微細パターンを得るため、また露光中のアウトガスを低減するため、放射線照射前(露光前)に加熱するのが好ましい。その加熱温度は、フォトレジスト組成物の配合組成等により変わるが、20~250℃が好ましく、より好ましくは40~150℃である。 In order to obtain a fine pattern with high accuracy and to reduce outgas during exposure, it is preferable to heat before irradiation (before exposure). The heating temperature varies depending on the composition of the photoresist composition, but is preferably 20 to 250 ° C., more preferably 40 to 150 ° C.
 次いで、KrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により、レジスト膜を所望のパターンに露光する。露光条件等は、フォトレジスト組成物の配合組成等に応じて適宜選定される。本発明においては、高精度の微細パターンを安定して形成するために、放射線照射後(露光後)に加熱するのが好ましい。露光後加熱温度(PEB)は、フォトレジスト組成物の配合組成等により変わるが、20~250℃が好ましく、より好ましくは40~150℃である。 Next, the resist film is exposed to a desired pattern by radiation such as KrF excimer laser, extreme ultraviolet light, electron beam or X-ray. The exposure conditions and the like are appropriately selected according to the composition of the photoresist composition. In the present invention, in order to stably form a high-precision fine pattern, it is preferable to heat after irradiation (after exposure). The post-exposure heating temperature (PEB) varies depending on the composition of the photoresist composition, but is preferably 20 to 250 ° C., more preferably 40 to 150 ° C.
 次いで、露光されたレジスト膜をアルカリ現像液で現像することにより、所定のレジストパターンを形成できる。前記アルカリ現像液としては、例えば、モノ-、ジ-あるいはトリアルキルアミン類、モノ-、ジ-あるいはトリアルカノールアミン類、複素環式アミン類、テトラメチルアンモニウムヒドロキシド(TMAH)、コリン等のアルカリ性化合物の1種以上を溶解した、好ましくは1~10重量%、より好ましくは1~5重量%のアルカリ性水溶液を使用する。アルカリ現像液には、メタノール、エタノール、イソプロピルアルコール等のアルコール類や前記界面活性剤を適量添加することもできる。これらのうちイソプロピルアルコールを10~30重量%添加することが特に好ましい。なお、このようなアルカリ性水溶液からなる現像液を用いた場合は、一般に、現像後水で洗浄する。 Then, a predetermined resist pattern can be formed by developing the exposed resist film with an alkaline developer. Examples of the alkaline developer include alkaline such as mono-, di- or trialkylamines, mono-, di- or trialkanolamines, heterocyclic amines, tetramethylammonium hydroxide (TMAH), and choline. An alkaline aqueous solution of preferably 1 to 10% by weight, more preferably 1 to 5% by weight, in which one or more compounds are dissolved, is used. An appropriate amount of an alcohol such as methanol, ethanol, isopropyl alcohol, or the above-mentioned surfactant can be added to the alkaline developer. Of these, it is particularly preferable to add 10 to 30% by weight of isopropyl alcohol. When a developer composed of such an alkaline aqueous solution is used, it is generally washed with water after development.
 酸解離性溶解抑止基を有する環状化合物をフォトレジスト基材として用いる場合は、KrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により、レジスト膜を所望のパターンに露光することにより、酸解離性溶解抑止基が脱離ないし構造が変化することにより、アルカリ現像液に溶解するようになる。一方、パターンの露光されていない部分はアルカリ現像液に溶解しないことが好ましい。 When a cyclic compound having an acid dissociable, dissolution inhibiting group is used as a photoresist base material, the resist film is exposed to a desired pattern with radiation such as KrF excimer laser, extreme ultraviolet light, electron beam, or X-ray, thereby generating an acid. When the dissociable dissolution inhibiting group is eliminated or the structure is changed, the dissociable dissolution inhibiting group is dissolved in the alkaline developer. On the other hand, it is preferable that the unexposed portion of the pattern is not dissolved in the alkaline developer.
 アルカリ現像液に対する非溶解性については、形成するパターンのサイズ、使用するアルカリ現像液の種類等の現像条件により、好ましい非溶解性が異なるため一概に規定することはできないが、2.38%テトラメチルアンモニウムヒドロキシド水溶液をアルカリ現像液として用いる場合、フォトレジスト基材からなる薄膜の現像液溶解速度で表される非溶解性としては、1ナノメートル/秒未満が好ましく、0.5ナノメートル/秒未満が特に好ましい。 The non-solubility in the alkali developer cannot be generally defined because the preferred non-solubility differs depending on the development conditions such as the size of the pattern to be formed and the type of the alkali developer to be used. When an aqueous methylammonium hydroxide solution is used as an alkaline developer, the insolubility expressed by the developer dissolution rate of a thin film made of a photoresist substrate is preferably less than 1 nanometer / second, preferably 0.5 nanometer / second. Less than a second is particularly preferred.
 なお、場合によっては上記アルカリ現像後、ポストベーク処理を行ってもよいし、基板とのレジスト膜の間には有機系又は無機系の反射防止膜を設けてもよい。 In some cases, post-baking treatment may be performed after the alkali development, and an organic or inorganic antireflection film may be provided between the resist film and the substrate.
 レジストパターンを形成した後、エッチングすることによりパターン配線基板が得られる。エッチングは、プラズマガスを使用するドライエッチング、アルカリ溶液、塩化第二銅溶液、塩化第二鉄溶液等を用いるウェットエッチング等公知の方法で行うことができる。レジストパターンを形成した後、銅めっき、はんだめっき、ニッケルめっき、金めっき等のめっき処理を行うこともできる。 After forming the resist pattern, the pattern wiring board is obtained by etching. Etching can be performed by a known method such as dry etching using plasma gas, wet etching using an alkali solution, a cupric chloride solution, a ferric chloride solution, or the like. After the resist pattern is formed, a plating process such as copper plating, solder plating, nickel plating, or gold plating can be performed.
 エッチング後の残留レジストパターンは、有機溶剤やアルカリ現像液より強アルカリ性の水溶液で剥離することができる。上記有機溶剤としては、PGMEA、PGME、EL、アセトン、テトラヒドロフラン等が挙げられ、強アルカリ水溶液としては、例えば、1~20重量%の水酸化ナトリウム水溶液、及び1~20重量%の水酸化カリウム水溶液が挙げられる。剥離方法としては、例えば、浸漬方法、スプレイ方式等が挙げられる。またレジストパターンが形成された配線基板は、多層配線基板でもよく、小径スルーホールを有していてもよい。 The residual resist pattern after etching can be stripped with an aqueous solution stronger than an organic solvent or an alkaline developer. Examples of the organic solvent include PGMEA, PGME, EL, acetone, tetrahydrofuran, and the like. Examples of the strong alkaline aqueous solution include 1 to 20% by weight sodium hydroxide aqueous solution and 1 to 20% by weight potassium hydroxide aqueous solution. Is mentioned. Examples of the peeling method include a dipping method and a spray method. The wiring board on which the resist pattern is formed may be a multilayer wiring board or may have a small diameter through hole.
 本発明のフォトレジスト組成物を用いてレジストパターンを形成した後、金属を真空蒸着し、その後レジストパターンを溶液で溶離する方法、すなわちリフトオフ法により配線基板を形成することもできる。 It is also possible to form a wiring board by a method of forming a resist pattern using the photoresist composition of the present invention, vacuum depositing a metal, and then eluting the resist pattern with a solution, that is, a lift-off method.
 本発明のフォトレジスト組成物を用いて微細加工方法により、半導体装置を作製できる。この半導体装置は、テレビ受像機、携帯電話、コンピュータ等の電気製品(電子機器)、ディスプレイ、コンピュータ制御する自動車等の様々な装置に備えることができる。 A semiconductor device can be produced by a microfabrication method using the photoresist composition of the present invention. This semiconductor device can be provided in various devices such as an electric product (electronic device) such as a television receiver, a mobile phone, and a computer, a display, and a car controlled by a computer.
 本発明の環状化合物の組成物は公知の成形方法によって各種成形品(シリコンウェハ等の基板に形成した薄膜、フィルム、薄板、ファイバー等)を製造することができる。 The composition of the cyclic compound of the present invention can produce various molded products (thin films, films, thin plates, fibers, etc. formed on a substrate such as a silicon wafer) by a known molding method.
 成形方法としては、射出成型法、射出圧縮成型法、押出成型法、ブロー成型法、加圧成型法、トランスファー成型法、スピンコーティング法、スプレーコーティング法、キャスト法、蒸着法、熱CVD法、プラズマCVD法、プラズマ重合法等が挙げられ、これら成形方法を所望の製品の形態、性能に応じて適宜選択できる。 Molding methods include injection molding, injection compression molding, extrusion molding, blow molding, pressure molding, transfer molding, spin coating, spray coating, casting, vapor deposition, thermal CVD, plasma Examples thereof include a CVD method and a plasma polymerization method, and these molding methods can be appropriately selected according to the form and performance of a desired product.
 また、本発明の環状化合物の組成物を用いて上記の方法により薄膜を得て、得られた薄膜を熱、紫外線、深紫外線、真空紫外線、極端紫外線、電子線、プラズマ、X線等により硬化(環化付加反応)させてもよい。 Moreover, a thin film is obtained by the above method using the composition of the cyclic compound of the present invention, and the obtained thin film is cured by heat, ultraviolet rays, deep ultraviolet rays, vacuum ultraviolet rays, extreme ultraviolet rays, electron beams, plasma, X-rays, etc. (Cycloaddition reaction) may be performed.
 スピンコーティング法等により本発明の環状化合物の組成物を薄膜に形成する場合、本発明の環状化合物の組成物を有機溶媒に溶解させて塗料として用いることができる。 When the cyclic compound composition of the present invention is formed into a thin film by a spin coating method or the like, the cyclic compound composition of the present invention can be dissolved in an organic solvent and used as a coating material.
 有機溶媒としては、クロロホルム、ジクロロメタン、1,1,2,2-テトラクロロエタン、ジクロロエタン、ジクロロベンゼン、トリクロロベンゼン、テトラクロロベンゼン、ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)、ジメチルアセトアミド、ジメチルスルホキシド(DMSO)、アニソール、アセトフェノン、ベンゾニトリル、ニトロベンゼン、プロピレングリコールメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、テトラヒドロフラン(THF)、シクロヘキサノン、メチルエチルケトン、アセトン等が挙げられる。 Organic solvents include chloroform, dichloromethane, 1,1,2,2-tetrachloroethane, dichloroethane, dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dimethylformamide (DMF), N-methylpyrrolidone (NMP), dimethylacetamide, dimethyl sulfoxide (DMSO), anisole, acetophenone, benzonitrile, nitrobenzene, propylene glycol methyl ether acetate, propylene glycol monomethyl ether, tetrahydrofuran (THF), cyclohexanone, methyl ethyl ketone, acetone and the like.
 塗料中における本発明の環状化合物の組成物の濃度は、塗料の粘度や薄膜形成方法等を考慮して適宜調製すればよい。
 薄膜の厚さは特に限定されないが、一般に10nm~10μm程度のものが好適に使用される。薄膜の膜厚は、エリプソメータ、反射光学式膜厚計等による光学的膜厚測定、触針式膜厚測定器やAFM等による機械的膜厚測定が可能である。
The concentration of the composition of the cyclic compound of the present invention in the paint may be appropriately adjusted in consideration of the viscosity of the paint, the thin film forming method, and the like.
The thickness of the thin film is not particularly limited, but generally a thickness of about 10 nm to 10 μm is preferably used. The film thickness of the thin film can be measured with an ellipsometer, a reflective optical film thickness meter, or the like, or with a stylus film thickness meter or AFM.
 本発明の薄膜は、フォトレジスト薄膜としての用途の他、光学レンズ、光ファイバー、光導波路、フォトニック結晶等の種々の光情報処理装置向け光学薄膜、半導体用層間絶縁膜、半導体用保護膜等のULSI装置向け薄膜、液晶ディスプレー、液晶プロジェクター、プラズマディスプレー、ELディスプレー、LEDディスプレー等の画像表示装置向け薄膜、CMOSイメージセンサ、CCDイメージセンサ等に使用される薄膜として有用である。さらにこれら薄膜は、CPU、DRAM、フラッシュメモリ等の半導体装置、情報処理用小型電子回路装置、高周波通信用電子回路装置等の電子回路装置、画像表示装置、光情報処理用装置、光通信用装置等の部材、表面保護膜、耐熱膜において利用することもできる。 The thin film of the present invention is used as a photoresist thin film, optical thin films for various optical information processing devices such as optical lenses, optical fibers, optical waveguides, photonic crystals, interlayer insulating films for semiconductors, protective films for semiconductors, etc. It is useful as a thin film for ULSI devices, a liquid crystal display, a liquid crystal projector, a plasma display, an EL display, an LED display and other thin film for image display devices, a CMOS image sensor, a CCD image sensor, and the like. Further, these thin films are provided for semiconductor devices such as CPUs, DRAMs, flash memories, etc., electronic circuit devices such as information processing small electronic circuit devices, high frequency communication electronic circuit devices, image display devices, optical information processing devices, and optical communication devices. It can also be used in a member such as a surface protective film and a heat-resistant film.
<第1の態様>
[実施例A-1]
 窒素気流下、容量200ミリリットルの丸底フラスコに、3-メトキシフェノール10.0g(81ミリモル)、4-ホルミル安息香酸メチル13.2g(80.6ミリモル)、脱水クロロホルム100ミリリットルを加え、-78℃に冷却した。この混合物に対して、3フッ化ホウ素エーテル付加体30.8ミリリットル(250ミリモル)を滴下した後、室温まで昇温して20時間撹拌を継続した後、50℃に昇温し14時間撹拌を継続した。反応溶液を氷浴で0℃まで冷却し、析出した固体をエタノールで洗浄し、下記の構造の環状化合物(1b)を収率25%で得た。H-NMR測定の結果(図1)から、環状化合物(1b)の構造を確認し、液体クロマトグラフィーにより純品であることを確認した。
Figure JPOXMLDOC01-appb-C000024
<First aspect>
[Example A-1]
Under a nitrogen stream, 10.0 g (81 mmol) of 3-methoxyphenol, 13.2 g (80.6 mmol) of methyl 4-formylbenzoate, and 100 ml of dehydrated chloroform were added to a round bottom flask having a volume of 200 ml. Cooled to ° C. After 30.8 ml (250 mmol) of boron trifluoride ether adduct was added dropwise to the mixture, the mixture was warmed to room temperature and stirred for 20 hours, then heated to 50 ° C. and stirred for 14 hours. Continued. The reaction solution was cooled to 0 ° C. in an ice bath, and the precipitated solid was washed with ethanol to obtain a cyclic compound (1b) having the following structure in a yield of 25%. From the result of 1 H-NMR measurement (FIG. 1), the structure of the cyclic compound (1b) was confirmed and confirmed to be a pure product by liquid chromatography.
Figure JPOXMLDOC01-appb-C000024
 窒素気流下、得られた環状化合物(1b)0.8g(0.74ミリモル)、水酸化ナトリウム0.74g(18.5ミリモル)、水10ミリリットルを加え、90℃、5時間加熱撹拌を行った後、放冷した。希塩酸水溶液を加え反応溶液を酸性にし、析出した白色沈殿をろ別し水洗することにより、環状化合物(2b)を収率89%で得た。H-NMR測定の結果(図2)から、環状化合物(2b)の構造を確認し、液体クロマトグラフィーにより純品であることを確認した。
Figure JPOXMLDOC01-appb-C000025
Under a nitrogen stream, 0.8 g (0.74 mmol) of the obtained cyclic compound (1b), 0.74 g (18.5 mmol) of sodium hydroxide and 10 ml of water were added, and the mixture was heated and stirred at 90 ° C. for 5 hours. Then, it was allowed to cool. A dilute aqueous hydrochloric acid solution was added to acidify the reaction solution, and the precipitated white precipitate was collected by filtration and washed with water to obtain a cyclic compound (2b) with a yield of 89%. From the result of 1 H-NMR measurement (FIG. 2), the structure of the cyclic compound (2b) was confirmed and confirmed to be pure by liquid chromatography.
Figure JPOXMLDOC01-appb-C000025
 窒素気流下、得られた環状化合物(2b)5.03g(4.88ミリモル)、炭酸水素ナトリウム1.86g(21.95ミリモル)、N-メチル-2-ピロリドン100ミリリットルの混合物へ、2-ブロモ酢酸1-エチルシクロヘキシル6.23g(21.95ミリモル)を滴下した後80℃、8時間加熱撹拌を行った。反応混合物を放冷し、酢酸エチル/水で抽出した。有機層は濃縮をしてヘキサンで再沈し、析出した固体をろ別することにより、環状化合物(3b)を収率83%で得た。H-NMR測定の結果(図3)から、環状化合物(3b)の構造を確認し、液体クロマトグラフィーにより純品であることを確認した。
Figure JPOXMLDOC01-appb-C000026
Under a nitrogen stream, to a mixture of the obtained cyclic compound (2b) 5.03 g (4.88 mmol), sodium hydrogencarbonate 1.86 g (21.95 mmol), N-methyl-2-pyrrolidone 100 ml, After dropwise addition of 6.23 g (21.95 mmol) of 1-ethylcyclohexyl bromoacetate, the mixture was stirred with heating at 80 ° C. for 8 hours. The reaction mixture was allowed to cool and extracted with ethyl acetate / water. The organic layer was concentrated and reprecipitated with hexane, and the precipitated solid was filtered off to obtain a cyclic compound (3b) in a yield of 83%. From the result of 1 H-NMR measurement (FIG. 3), the structure of the cyclic compound (3b) was confirmed and confirmed to be a pure product by liquid chromatography.
Figure JPOXMLDOC01-appb-C000026
[比較例A-1]
 窒素気流下、容量200ミリリットルの丸底フラスコに、3-メトキシフェノール10.0g(81ミリモル)、4-ホルミル安息香酸メチル13.2g(80.6ミリモル)、脱水ジクロロメタン100ミリリットルを加え、-78℃に冷却した。この混合物に対して、3フッ化ホウ素エーテル付加体30.8ミリリットル(250ミリモル)を滴下した後、室温まで昇温して8時間撹拌を継続した。反応溶液を-78℃まで冷却し、析出した固体をジクロロメタン80ミリリットル、水200ミリリットル、エタノールで洗浄し、環状化合物(1a)と環状化合物(1b)の混合物である下記環状化合物(1c)を収量20.5g(収率94%)で得た。H-NMR測定の結果(図4)、下記の構造であることを確認した。
Figure JPOXMLDOC01-appb-C000027
[Comparative Example A-1]
Under a nitrogen stream, 10.0 g (81 mmol) of 3-methoxyphenol, 13.2 g (80.6 mmol) of methyl 4-formylbenzoate, and 100 ml of dehydrated dichloromethane were added to a round bottom flask having a capacity of 200 ml, and -78 Cooled to ° C. To this mixture, 30.8 ml (250 mmol) of boron trifluoride ether adduct was dropped, and then the temperature was raised to room temperature and stirring was continued for 8 hours. The reaction solution was cooled to −78 ° C., and the precipitated solid was washed with 80 ml of dichloromethane, 200 ml of water and ethanol to obtain the following cyclic compound (1c) which is a mixture of the cyclic compound (1a) and the cyclic compound (1b). Obtained in 20.5 g (94% yield). As a result of 1 H-NMR measurement (FIG. 4), the following structure was confirmed.
Figure JPOXMLDOC01-appb-C000027
 出発物質として上記環状化合物(1c)を用いた以外は実施例A-1と同様にして、下記環状化合物(2a)と環状化合物(2b)の混合物である環状化合物(2c)を収量0.68g(収率90%)で得た。H-NMR測定の結果(図5)、下記の構造であることを確認した。
Figure JPOXMLDOC01-appb-C000028
A cyclic compound (2c), which is a mixture of the following cyclic compound (2a) and cyclic compound (2b), was obtained in the same manner as in Example A-1 except that the cyclic compound (1c) was used as a starting material. (Yield 90%). As a result of 1 H-NMR measurement (FIG. 5), the following structure was confirmed.
Figure JPOXMLDOC01-appb-C000028
 出発物質として上記環状化合物(2c)を用いた以外は実施例A-1と同様にして、下記環状化合物(3a)と環状化合物(3b)の混合物である環状化合物(3c)を収量5.68g(収率69%)で得た。H-NMR測定の結果(図6)、下記の構造であることを確認した。
 本比較例で得られた環状化合物(3c)において、環状構造に結合する安息香酸エステル構造の立体異性体混合比をH-NMR、及び液体クロマトグラフィーにより決定した。下記環状化合物(3a)、(3b)のモル比は2:3であった。しかし、分離不能である構造不明の副生成物を含み、同様の製造法を繰り返し実施しても、その都度、環状化合物(3a)、(3b)のモル比が異なる上、さらに構造不明の副生成物の生成を抑制することができなかった。
A cyclic compound (3c), which is a mixture of the following cyclic compound (3a) and cyclic compound (3b), was obtained in the same manner as in Example A-1, except that the cyclic compound (2c) was used as a starting material. (Yield 69%). As a result of 1 H-NMR measurement (FIG. 6), the following structure was confirmed.
In the cyclic compound (3c) obtained in this comparative example, the stereoisomer mixture ratio of the benzoate structure bonded to the cyclic structure was determined by 1 H-NMR and liquid chromatography. The molar ratio of the following cyclic compounds (3a) and (3b) was 2: 3. However, even if the same production method is repeatedly carried out, including by-products of unknown structure that cannot be separated, the molar ratios of the cyclic compounds (3a) and (3b) are different each time, and further, by-products of unknown structure. Product formation could not be suppressed.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
<第2の態様>
[実施例B-1]
 窒素気流下、容量200ミリリットルの丸底フラスコに、3-メトキシフェノール10.0g(81ミリモル)、4-ホルミル安息香酸メチル13.2g(80.6ミリモル)、脱水ジクロロメタン100ミリリットルを加え、-78℃に冷却した。この混合物に対して、3フッ化ホウ素エーテル付加体30.8ミリリットル(250ミリモル)を滴下した後、室温まで昇温して8時間撹拌を継続した。反応溶液を氷浴で0℃まで冷却し、析出した固体(環状化合物(1b))をろ別除去し、得られた均一溶液をn-ヘキサンに投入することにより析出した固体をろ集して、環状化合物(1a)、(1b)の混合物〔(1a):(1b)=2:1(モル比)〕を収率60%で得た。H-NMR測定の結果(図7)、下記の構造、上記の組成であることを確認した。
<Second aspect>
[Example B-1]
Under a nitrogen stream, 10.0 g (81 mmol) of 3-methoxyphenol, 13.2 g (80.6 mmol) of methyl 4-formylbenzoate, and 100 ml of dehydrated dichloromethane were added to a round bottom flask having a capacity of 200 ml, and -78 Cooled to ° C. To this mixture, 30.8 ml (250 mmol) of boron trifluoride ether adduct was dropped, and then the temperature was raised to room temperature and stirring was continued for 8 hours. The reaction solution is cooled to 0 ° C. in an ice bath, the precipitated solid (cyclic compound (1b)) is removed by filtration, and the obtained solid solution is poured into n-hexane to collect the precipitated solid by filtration. , A mixture of cyclic compounds (1a) and (1b) [(1a) :( 1b) = 2: 1 (molar ratio)] was obtained in a yield of 60%. As a result of 1 H-NMR measurement (FIG. 7), the following structure and the above composition were confirmed.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 窒素気流下、得られた環状化合物(1a)、(1b)の混合物0.8g(0.74ミリモル)、水酸化ナトリウム0.74g(18.5ミリモル)、水10ミリリットルを加え、90℃、5時間加熱撹拌を行った後、放冷した。希塩酸水溶液を加え反応溶液を酸性にし、析出した白色沈殿をろ別し水洗することにより、環状化合物(2a)、(2b)の混合物〔(2a):(2b)=2:1(モル比)〕を収率85%で得た。H-NMR測定の結果(図8)、下記の構造、上記の組成であることを確認した。 Under a nitrogen stream, 0.8 g (0.74 mmol) of a mixture of the obtained cyclic compounds (1a) and (1b), 0.74 g (18.5 mmol) of sodium hydroxide and 10 ml of water were added, The mixture was heated and stirred for 5 hours and then allowed to cool. The reaction solution is acidified by adding a dilute hydrochloric acid solution, and the precipitated white precipitate is filtered and washed with water, whereby a mixture of cyclic compounds (2a) and (2b) [(2a) :( 2b) = 2: 1 (molar ratio)] In a yield of 85%. As a result of 1 H-NMR measurement (FIG. 8), it was confirmed that the following structure and the above composition were obtained.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 窒素気流下、得られた環状化合物(2a)、(2b)の混合物5.03g(4.88ミリモル)、炭酸水素ナトリウム1.86g(21.95ミリモル)、N-メチル-2-ピロリドン100ミリリットルの混合物へ、2-ブロモ酢酸1-エチルシクロヘキシル6.23g(21.95ミリモル)を滴下した後80℃、8時間加熱撹拌を行った。反応混合物を放冷し、酢酸エチル/水で抽出した。有機層は濃縮をしてヘキサンで再沈し、析出した固体をろ別することにより、最終生成物として、環状化合物(3a)、(3b)の混合物〔(3a):(3b)=2:1(モル比)〕を収率80%で得た。H-NMR測定の結果(図9)、下記の構造、上記の組成であることを確認した。 Under a nitrogen stream, 5.03 g (4.88 mmol) of a mixture of the obtained cyclic compounds (2a) and (2b), 1.86 g (21.95 mmol) of sodium bicarbonate, 100 ml of N-methyl-2-pyrrolidone To the mixture, 6.23 g (21.95 mmol) of 1-ethylcyclohexyl 2-bromoacetate was added dropwise, followed by stirring with heating at 80 ° C. for 8 hours. The reaction mixture was allowed to cool and extracted with ethyl acetate / water. The organic layer is concentrated and reprecipitated with hexane, and the precipitated solid is separated by filtration. As a final product, a mixture of cyclic compounds (3a) and (3b) [(3a) :( 3b) = 2: 1 (molar ratio)] was obtained in a yield of 80%. As a result of 1 H-NMR measurement (FIG. 9), the following structure and the above composition were confirmed.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
[参考例B-1]
 第1の態様における実施例A-1を、第2の態様における参考例B-1とした。
[Reference Example B-1]
Example A-1 in the first aspect was designated as Reference Example B-1 in the second aspect.
[実施例B-2~B-4]
 実施例B-1で得た環状化合物(3a)、(3b)の混合物(2:1(モル比))、及び参考例B-1で得られた環状化合物(3b)の純品を、それぞれ表1に記す割合で混合することにより、環状化合物(3a)、(3b)が表1に記す割合で含まれる混合物を作成した。このように、所望の割合で混合された環状化合物(3a)、(3b)の混合物が正確に得られる。
[Examples B-2 to B-4]
A mixture of the cyclic compounds (3a) and (3b) obtained in Example B-1 (2: 1 (molar ratio)) and a pure product of the cyclic compound (3b) obtained in Reference Example B-1 were respectively obtained. By mixing at a ratio shown in Table 1, a mixture containing the cyclic compounds (3a) and (3b) at a ratio shown in Table 1 was created. Thus, a mixture of the cyclic compounds (3a) and (3b) mixed at a desired ratio can be obtained accurately.
[比較例B-1]
 第1の態様における比較例A-1を、第2の態様における比較例B-1とした。
 比較例B-1で得られた環状化合物(3c)において、環状構造に結合する安息香酸エステル構造の立体異性体混合比をH-NMR、及び液体クロマトグラフィーにより決定した。下記環状化合物(3a)、(3b)のモル比は2:3であった。しかし、分離不能である構造不明の副生成物を含み、同様の製造法を繰り返し実施しても、その都度、環状化合物(3a)、(3b)のモル比が異なる上、さらに構造不明の副生成物の生成を抑制することができなかった。
[Comparative Example B-1]
Comparative Example A-1 in the first aspect was designated as Comparative Example B-1 in the second aspect.
In the cyclic compound (3c) obtained in Comparative Example B-1, the stereoisomer mixture ratio of the benzoate structure bonded to the cyclic structure was determined by 1 H-NMR and liquid chromatography. The molar ratio of the following cyclic compounds (3a) and (3b) was 2: 3. However, even if the same production method is repeatedly carried out, including by-products of unknown structure that cannot be separated, the molar ratios of the cyclic compounds (3a) and (3b) are different each time, and further, by-products of unknown structure. Product formation could not be suppressed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[評価例1]
 基材、PAG、クエンチャー、溶剤からなるフォトレジスト溶液を作製し、電子線を使用してシリコンウェハにパターンを形成した。
 基材として、実施例B-1~B-4、比較例B-1で得た混合物及び参考例B-1で得た化合物を、それぞれ77重量部使用し、PAGとしてトリフェニルスルホニウムノナフルオロブタンスルホネート20重量部、クエンチャーとして1,4-ジアザビシクロ(2,2,2)オクタン3重量部を使用した。これらの固体成分の濃度が2.5重量%となるようにプロピレングリコールモノメチルエーテルに溶解させた。
[Evaluation Example 1]
A photoresist solution composed of a substrate, PAG, quencher, and solvent was prepared, and a pattern was formed on a silicon wafer using an electron beam.
As the substrate, 77 parts by weight of the mixture obtained in Examples B-1 to B-4 and Comparative Example B-1 and the compound obtained in Reference Example B-1 were used, respectively, and triphenylsulfonium nonafluorobutane as PAG 20 parts by weight of sulfonate and 3 parts by weight of 1,4-diazabicyclo (2,2,2) octane were used as a quencher. These solid components were dissolved in propylene glycol monomethyl ether so as to have a concentration of 2.5% by weight.
 参考例B-1の環状化合物を用いた場合には、プロピレングリコールモノメチルエーテルに対して不溶物が残留したため、均一なフォトレジスト溶液を製造することができなかった。 When the cyclic compound of Reference Example B-1 was used, an insoluble substance remained in propylene glycol monomethyl ether, so that a uniform photoresist solution could not be produced.
 実施例B-1~B-4、及び比較例B-1のの混合物を含むフォトレジスト溶液を、それぞれ、ヘキサメチルジシラザン(HMDS)処理を施したシリコンウェハ上にスピンコートし、100℃で180秒加熱することにより薄膜を形成した。次いで、この薄膜を有する基板に対して電子線描画装置(加速電圧50kV)を用いて描画し、100℃で60秒ベークした後、濃度が2.38重量%のテトラブチルアンモニウムヒドロキシド水溶液で60秒間現像処理し、純水にて60秒洗浄、その後、窒素気流により乾燥した。走査型電子顕微鏡による観察結果から得られた、サイズが1/1のライン/スペースパターンを作製した際の解像度(ハーフピッチ)と感度(必要な電子線ドーズ量)の結果を表2に記す。 A photoresist solution containing a mixture of Examples B-1 to B-4 and Comparative Example B-1 was spin-coated on a silicon wafer subjected to hexamethyldisilazane (HMDS) treatment at 100 ° C. A thin film was formed by heating for 180 seconds. Next, the substrate having this thin film was drawn using an electron beam drawing apparatus (acceleration voltage 50 kV), baked at 100 ° C. for 60 seconds, and then added with an aqueous tetrabutylammonium hydroxide solution having a concentration of 2.38 wt%. The film was developed for 2 seconds, washed with pure water for 60 seconds, and then dried with a nitrogen stream. Table 2 shows the results of resolution (half pitch) and sensitivity (necessary electron beam dose) when a line / space pattern having a size of 1/1 was obtained from the observation results obtained with a scanning electron microscope.
 表2より、実施例B-1~B-4、即ち、(3a):(3b)が、15:85~67:33の範囲において、フォトレジストとしての性能が好ましいことを確認した。一方、表2より、参考例B-1、即ち化合物(3b)のみであり、(3a):(3b)が前記の好適な範囲外である場合は、前記の通り、本評価例の条件においては、均一なフォトレジスト溶液が得られず、比較例B-1、即ち、(3a):(3b)が前記の好適な範囲内であるが、本発明の精製を実施せず構造不明の副生成物を含む場合には、解像度の面で性能が低下することを確認した。なお、クエンチャーとして1,4-ジアザビシクロ(2,2,2)オクタンの代わりにトリn-オクチルアミンを用いても結果は同一であった。 From Table 2, it was confirmed that Examples B-1 to B-4, ie, (3a) :( 3b), had a preferable performance as a photoresist in the range of 15:85 to 67:33. On the other hand, from Table 2, when Reference Example B-1, that is, only compound (3b) and (3a) :( 3b) are outside the above preferred range, as described above, under the conditions of this evaluation example, No uniform photoresist solution was obtained, and Comparative Example B-1, that is, (3a) :( 3b) was within the above-mentioned preferred range, but the purification of the present invention was not carried out and the structure was unknown. When the product was included, it was confirmed that the performance decreased in terms of resolution. The results were the same even when tri-n-octylamine was used as the quencher instead of 1,4-diazabicyclo (2,2,2) octane.
 上記のフォトレジスト薄膜を有する基板に対して、電子線描画装置に替えてEUV露光装置を用いてEUV光(波長:13.5nm)を照射した。その後、100℃で90秒ベークし、2.38重量%の水酸化テトラメチルアンモニウム水溶液で30秒間、イオン交換水で30秒間リンスすることでパターンを形成した。走査型電子顕微鏡にて観察したところ、電子線描画装置の場合と同様の解像度であることが観察された。 The substrate having the photoresist thin film was irradiated with EUV light (wavelength: 13.5 nm) using an EUV exposure apparatus instead of the electron beam drawing apparatus. Then, it baked at 100 degreeC for 90 second, and formed the pattern by rinsing with 2.38 weight% tetramethylammonium hydroxide aqueous solution for 30 second and ion-exchange water for 30 second. When observed with a scanning electron microscope, it was observed that the resolution was the same as that of the electron beam drawing apparatus.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例B-5]
 窒素気流下、実施例B-1にて得られた環状化合物(2a)、(2b)の混合物5.03g(4.88ミリモル)、炭酸水素ナトリウム1.86g(21.95ミリモル)、N-メチル-2-ピロリドン100ミリリットルの混合物へ、ブロモ酢酸エチルアダマンチル6.59g(21.95ミリモル)を滴下した後80℃、8時間加熱撹拌を行った。反応混合物を放冷し、酢酸エチル/水で抽出した。有機層は濃縮をしてヘキサンで再沈し、析出した固体をろ別することにより、最終生成物として、環状化合物(4a)、(4b)の混合物〔(4a):(4b)=2:1(モル比)〕を収率82%で得た。H-NMR測定の結果(図10)、下記の構造、上記の組成であることを確認した。
[Example B-5]
Under a nitrogen stream, 5.03 g (4.88 mmol) of a mixture of the cyclic compounds (2a) and (2b) obtained in Example B-1; 1.86 g (21.95 mmol) of sodium bicarbonate; N— To a mixture of 100 ml of methyl-2-pyrrolidone, 6.59 g (21.95 mmol) of ethyl adamantyl bromoacetate was added dropwise, followed by heating and stirring at 80 ° C. for 8 hours. The reaction mixture was allowed to cool and extracted with ethyl acetate / water. The organic layer is concentrated and reprecipitated with hexane, and the precipitated solid is filtered off to obtain a mixture of cyclic compounds (4a) and (4b) [(4a) :( 4b) = 2: 1 (molar ratio)] was obtained in a yield of 82%. As a result of 1 H-NMR measurement (FIG. 10), the following structure and the above composition were confirmed.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
[実施例B-6]
 窒素気流下、実施例B-1にて得られた環状化合物(2a)、(2b)の混合物5.03g(4.88ミリモル)、炭酸水素ナトリウム1.86g(21.95ミリモル)、N-メチル-2-ピロリドン100ミリリットルの混合物へ、ブロモ酢酸メチルアダマンチル6.14g(21.95ミリモル)を滴下した後80℃、8時間加熱撹拌を行った。反応混合物を放冷し、酢酸エチル/水で抽出した。有機層は濃縮をしてヘキサンで再沈し、析出した固体をろ別することにより、最終生成物として、環状化合物(5a)、(5b)の混合物〔(5a):(5b)=2:1(モル比)〕を収率83%で得た。H-NMR測定の結果(図11)、下記の構造、上記の組成であることを確認した。
[Example B-6]
Under a nitrogen stream, 5.03 g (4.88 mmol) of a mixture of the cyclic compounds (2a) and (2b) obtained in Example B-1; 1.86 g (21.95 mmol) of sodium bicarbonate; N— To a mixture of 100 ml of methyl-2-pyrrolidone, 6.14 g (21.95 mmol) of methyl adamantyl bromoacetate was added dropwise, followed by heating and stirring at 80 ° C. for 8 hours. The reaction mixture was allowed to cool and extracted with ethyl acetate / water. The organic layer is concentrated and reprecipitated with hexane, and the precipitated solid is filtered off to obtain a mixture of cyclic compounds (5a) and (5b) [(5a) :( 5b) = 2: 1 (molar ratio)] was obtained in a yield of 83%. As a result of 1 H-NMR measurement (FIG. 11), the following structure and the above composition were confirmed.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[実施例B-7]
 窒素気流下、容量200ミリリットルの丸底フラスコに、3-メトキシフェノール50.0g(402.8ミリモル)、4-ホルミル安息香酸60.5g(402.8ミリモル)、及び脱水ジクロロメタン500ミリリットルを加えて氷水浴に浸漬させ、5℃以下に冷却した。この混合物に対して、三フッ化ホウ素ジエチルエーテル付加体60.8ミリリットル(483.6ミリモル)を内温が15℃を越えないように滴下した後、室温まで昇温して8時間撹拌した。反応溶液を氷水浴で冷却し、ゆっくり水を滴下してクエンチし、析出した固体をろ別した。ろ別した析出物を中性になるまで水洗した後、N-メチル-2-ピロリドンに溶解させ、酢酸エチルで再沈し、析出した固体をろ別することにより、環状化合物(2a)、(2b)の混合物〔(2a):(2b)=1:2(モル比)〕を収率93%で得た。H-NMR測定の結果(図12)、下記の構造、上記の組成であることを確認した。
Figure JPOXMLDOC01-appb-C000035
[Example B-7]
Under a nitrogen stream, 50.0 g (402.8 mmol) of 3-methoxyphenol, 60.5 g (402.8 mmol) of 4-formylbenzoic acid, and 500 ml of dehydrated dichloromethane were added to a round bottom flask having a capacity of 200 ml. It was immersed in an ice water bath and cooled to 5 ° C. or lower. To this mixture, 60.8 ml (483.6 mmol) of boron trifluoride diethyl ether adduct was added dropwise so that the internal temperature did not exceed 15 ° C., then the mixture was warmed to room temperature and stirred for 8 hours. The reaction solution was cooled in an ice water bath, quenched slowly by dropwise addition of water, and the precipitated solid was filtered off. The precipitate separated by filtration is washed with water until neutral, then dissolved in N-methyl-2-pyrrolidone, reprecipitated with ethyl acetate, and the precipitated solid is separated by filtration, whereby the cyclic compound (2a), ( A mixture of 2b) [(2a) :( 2b) = 1: 2 (molar ratio)] was obtained in a yield of 93%. As a result of 1 H-NMR measurement (FIG. 12), the following structure and the above composition were confirmed.
Figure JPOXMLDOC01-appb-C000035
 窒素気流下、上記で得られた環状化合物(2a)、(2b)の混合物5.03g(4.88ミリモル)、炭酸水素ナトリウム1.86g(21.95ミリモル)、N-メチル-2-ピロリドン100ミリリットルの混合物へ、ブロモ酢酸エチルアダマンチル6.59g(21.95ミリモル)を滴下した後80℃、8時間加熱撹拌を行った。反応混合物を放冷し、酢酸エチル/水で抽出した。有機層は濃縮をしてヘキサンで再沈し、析出した固体をろ別することにより、最終生成物として、環状化合物(4a)、(4b)の混合物〔(4a):(4b)=1:3(モル比)〕を収率75%で得た。H-NMR測定の結果(図13)、下記の構造、上記の組成であることを確認した。 Under a nitrogen stream, 5.03 g (4.88 mmol) of the mixture of the cyclic compounds (2a) and (2b) obtained above, 1.86 g (21.95 mmol) of sodium bicarbonate, N-methyl-2-pyrrolidone To 100 ml of the mixture, 6.59 g (21.95 mmol) of ethyl adamantyl bromoacetate was added dropwise, followed by heating and stirring at 80 ° C. for 8 hours. The reaction mixture was allowed to cool and extracted with ethyl acetate / water. The organic layer is concentrated and reprecipitated with hexane, and the precipitated solid is filtered off to obtain a mixture of cyclic compounds (4a) and (4b) [(4a) :( 4b) = 1: 3 (molar ratio)] was obtained in a yield of 75%. As a result of 1 H-NMR measurement (FIG. 13), the following structure and the above composition were confirmed.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
[実施例B-8]
 窒素気流下、実施例B-7にて得られた環状化合物(2a)、(2b)の混合物5.03g(4.88ミリモル)、炭酸水素ナトリウム1.86g(21.95ミリモル)、N-メチル-2-ピロリドン100ミリリットルの混合物へ、ブロモ酢酸メチルアダマンチル6.14g(21.95ミリモル)を滴下した後80℃、8時間加熱撹拌を行った。反応混合物を放冷し、酢酸エチル/水で抽出した。有機層は濃縮をしてヘキサンで再沈し、析出した固体をろ別することにより、最終生成物として、環状化合物(5a)、(5b)の混合物〔(5a):(5b)=1:3.5(モル比)〕を収率72%で得た。H-NMR測定の結果(図14)、下記の構造、上記の組成であることを確認した。
[Example B-8]
Under a nitrogen stream, 5.03 g (4.88 mmol) of a mixture of the cyclic compounds (2a) and (2b) obtained in Example B-7, 1.86 g (21.95 mmol) of sodium bicarbonate, N— To a mixture of 100 ml of methyl-2-pyrrolidone, 6.14 g (21.95 mmol) of methyl adamantyl bromoacetate was added dropwise, followed by heating and stirring at 80 ° C. for 8 hours. The reaction mixture was allowed to cool and extracted with ethyl acetate / water. The organic layer is concentrated and reprecipitated with hexane, and the precipitated solid is filtered off to obtain a mixture of cyclic compounds (5a) and (5b) [(5a) :( 5b) = 1: 3.5 (molar ratio)] was obtained in a yield of 72%. As a result of 1 H-NMR measurement (FIG. 14), it was confirmed that the following structure and the above composition were obtained.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
[評価例2]
 基材、PAG、クエンチャー、溶剤からなるフォトレジスト溶液を作製し、電子線を使用してシリコンウェハにパターンを形成した。
 基材として、実施例B-7及びB-8で得た混合物を、それぞれ77重量部使用し、PAGとしてトリフェニルスルホニウムノナフルオロブタンスルホネート20重量部、クエンチャーとして1,4-ジアザビシクロ(2,2,2)オクタン3重量部を使用した。これらの固体成分の濃度が2.5重量%となるようにプロピレングリコールモノメチルエーテルに溶解させた。
[Evaluation Example 2]
A photoresist solution composed of a substrate, PAG, quencher, and solvent was prepared, and a pattern was formed on a silicon wafer using an electron beam.
As a substrate, 77 parts by weight of each of the mixtures obtained in Examples B-7 and B-8 were used, 20 parts by weight of triphenylsulfonium nonafluorobutanesulfonate as a PAG, and 1,4-diazabicyclo (2,2 as a quencher) 2,2) 3 parts by weight of octane was used. These solid components were dissolved in propylene glycol monomethyl ether so as to have a concentration of 2.5% by weight.
 実施例B-7及びB-8の混合物を含むフォトレジスト溶液を、それぞれ、ヘキサメチルジシラザン(HMDS)処理を施したシリコンウェハ上にスピンコートし、100℃で180秒加熱することにより薄膜を形成した。次いで、この薄膜を有する基板に対して電子線描画装置(加速電圧50kV)を用いて描画し、100℃で60秒ベークした後、濃度が2.38重量%のテトラブチルアンモニウムヒドロキシド水溶液で60秒間現像処理し、純水にて60秒洗浄、その後、窒素気流により乾燥した。走査型電子顕微鏡による観察結果から得られた、サイズが1/1のライン/スペースパターンを作製した際の解像度(ハーフピッチ)と感度(必要な電子線ドーズ量)の結果を表3に記す。なお、クエンチャーとして1,4-ジアザビシクロ(2,2,2)オクタンの代わりにトリn-オクチルアミンを用いても結果は同一であった。 A photoresist solution containing the mixture of Examples B-7 and B-8 was spin-coated on a silicon wafer subjected to hexamethyldisilazane (HMDS) treatment and heated at 100 ° C. for 180 seconds to form a thin film. Formed. Next, the substrate having this thin film was drawn using an electron beam drawing apparatus (acceleration voltage 50 kV), baked at 100 ° C. for 60 seconds, and then added with an aqueous tetrabutylammonium hydroxide solution having a concentration of 2.38 wt%. The film was developed for 2 seconds, washed with pure water for 60 seconds, and then dried with a nitrogen stream. Table 3 shows the results of resolution (half pitch) and sensitivity (necessary electron beam dose) obtained when a line / space pattern having a size of 1/1 was obtained from the results of observation with a scanning electron microscope. The results were the same even when tri-n-octylamine was used in place of 1,4-diazabicyclo (2,2,2) octane as the quencher.
 上記のフォトレジスト薄膜を有する基板に対して、電子線描画装置に替えてEUV露光装置を用いてEUV光(波長:13.5nm)を照射した。その後、100℃で90秒ベークし、2.38重量%の水酸化テトラメチルアンモニウム水溶液で30秒間、イオン交換水で30秒間リンスすることでパターンを形成した。走査型電子顕微鏡にて観察したところ、電子線描画装置の場合と同様の解像度であることが観察された。 The substrate having the photoresist thin film was irradiated with EUV light (wavelength: 13.5 nm) using an EUV exposure apparatus instead of the electron beam drawing apparatus. Then, it was baked at 100 ° C. for 90 seconds and rinsed with 2.38 wt% tetramethylammonium hydroxide aqueous solution for 30 seconds and ion-exchanged water for 30 seconds to form a pattern. When observed with a scanning electron microscope, it was observed that the resolution was the same as that of the electron beam drawing apparatus.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の環状化合物は、フォトレジスト基材の材料として用いることができる。フォトレジスト基材を含むフォトレジスト組成物は、半導体装置等の電気・電子分野や光学分野等において好適に用いられる。 The cyclic compound of the present invention can be used as a material for a photoresist substrate. A photoresist composition containing a photoresist base material is suitably used in the electric / electronic field, optical field, and the like of semiconductor devices.
 本発明の組成物は、フォトレジスト基材又は組成物、特に極端紫外光用及び/又は電子線用フォトレジスト基材又は組成物に好適に使用できる。本発明の組成物は、半導体装置等の電気・電子分野や光学分野等において好適に用いられる。 The composition of the present invention can be suitably used for a photoresist substrate or composition, particularly for an extreme ultraviolet light and / or a photoresist substrate or composition for an electron beam. The composition of the present invention is suitably used in the electrical / electronic field and the optical field of semiconductor devices and the like.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
The entire contents of the documents described in this specification are incorporated herein by reference.

Claims (17)

  1.  純度が90%以上の下記式(1)又は式(2)のいずれか一方のみで表される化合物。
    Figure JPOXMLDOC01-appb-C000038
    [式中、Rは、下記式(3)~(5)のいずれかで表される基である。
     Rは、水酸基、置換もしくは無置換の炭素数1~20の直鎖状アルコキシ基、置換もしくは無置換の炭素数3~12の分岐アルコキシ基、置換もしくは無置換の炭素数3~20の環状アルコキシ基、置換もしくは無置換の炭素数6~10のアリーロキシ基、アルコキシアルコキシ基、シロキシ基、又はこれらの基と二価の基とが結合した基であり、
     前記二価の基は、置換もしくは無置換のアルキレンオキシ基、置換もしくは無置換のアリーレンオキシ基、置換もしくは無置換のシリレンオキシ基、これらの基が2以上結合した基、又はこれらの基と、エステル結合、炭酸エステル結合又はエーテル結合が結合した基である。
     Rは、水素、Rで表される基、炭素数1~20の直鎖状脂肪族炭化水素基、炭素数3~12の分岐脂肪族炭化水素基、炭素数3~20の環状脂肪族炭化水素基、炭素数6~10の芳香族基又は酸素原子を含む基である。
     式(1)内及び式(2)内に複数あるR、R及びRは、それぞれ同じであっても異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000039
    (式中、Arは、置換もしくは無置換の炭素数6~10のアリーレン基、置換もしくは無置換の炭素数6~10のアリーレン基を2つ以上組み合わせた基、又はアルキレン基及びエーテル結合の少なくとも一方の1つ以上と置換もしくは無置換の炭素数6~10のアリーレン基を組み合わせた基であり、
     置換基を有する場合の置換基は、臭素、フッ素、ニトリル基、又は炭素数1~10のアルキル基である。
     Rは、水酸基、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~10の芳香族基、アルコキシ基、アルコキシアルキル基、カルボキシ基、シリル基、又はこれらの基と二価の基が結合した基であり、
     前記二価の基は、置換もしくは無置換のアルキレン基、置換もしくは無置換のアリーレン基、置換もしくは無置換のシリレン基、これらの基が2以上結合した基、又はこれらの基1以上と、エステル結合、炭酸エステル結合及びエーテル結合から選択される1以上の基が結合した基である。
     R及びRは、それぞれ水素原子、置換もしくは無置換の炭素数1~20の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~12の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、置換もしくは無置換の炭素数6~12の芳香族基、又はこれらの基のうち2以上を組み合わせた基である。
     Aは、アルキレン基、エーテル結合、アルキレン基を2以上組み合わせた基、又はアルキレン基1以上とエーテル結合1以上を組み合わせた基である。
     xは1~5、yは0~3、zは0~4の整数である。
     複数のR、R、R、Ar、A、x、y及びzは、それぞれ同じであっても異なっていてもよい。)]
    A compound represented by only one of the following formulas (1) and (2) having a purity of 90% or more.
    Figure JPOXMLDOC01-appb-C000038
    [Wherein, R is a group represented by any of the following formulas (3) to (5).
    R 1 represents a hydroxyl group, a substituted or unsubstituted linear alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted branched alkoxy group having 3 to 12 carbon atoms, a substituted or unsubstituted cyclic group having 3 to 20 carbon atoms. An alkoxy group, a substituted or unsubstituted aryloxy group having 6 to 10 carbon atoms, an alkoxyalkoxy group, a siloxy group, or a group in which these groups and a divalent group are bonded;
    The divalent group includes a substituted or unsubstituted alkyleneoxy group, a substituted or unsubstituted aryleneoxy group, a substituted or unsubstituted silyleneoxy group, a group in which two or more of these groups are bonded, or a group thereof. It is a group to which an ester bond, a carbonate ester bond or an ether bond is bonded.
    R 2 is hydrogen, a group represented by R 1 , a linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, or a cyclic fatty acid having 3 to 20 carbon atoms. A hydrocarbon group, an aromatic group having 6 to 10 carbon atoms, or a group containing an oxygen atom.
    A plurality of R, R 1 and R 2 in the formula (1) and the formula (2) may be the same or different.
    Figure JPOXMLDOC01-appb-C000039
    (In the formula, Ar represents a substituted or unsubstituted arylene group having 6 to 10 carbon atoms, a group obtained by combining two or more substituted or unsubstituted arylene groups having 6 to 10 carbon atoms, or at least an alkylene group and an ether bond. A group in which one or more of them are combined with a substituted or unsubstituted arylene group having 6 to 10 carbon atoms,
    In the case of having a substituent, the substituent is bromine, fluorine, a nitrile group, or an alkyl group having 1 to 10 carbon atoms.
    R 3 represents a hydroxyl group, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted or unsubstituted carbon, A cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 10 carbon atoms, an alkoxy group, an alkoxyalkyl group, a carboxy group, a silyl group, or these groups and a divalent group. A bonded group,
    The divalent group includes a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group, a substituted or unsubstituted silylene group, a group in which two or more of these groups are bonded, or one or more of these groups and an ester. A group in which one or more groups selected from a bond, a carbonate ester bond and an ether bond are bonded.
    R 4 and R 5 are each a hydrogen atom, a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 12 carbon atoms, a substituted Alternatively, it is an unsubstituted cyclic aliphatic hydrocarbon group having 3 to 20 carbon atoms, a substituted or unsubstituted aromatic group having 6 to 12 carbon atoms, or a group obtained by combining two or more of these groups.
    A 1 is an alkylene group, an ether bond, a group in which two or more alkylene groups are combined, or a group in which one or more alkylene groups and one or more ether bonds are combined.
    x is an integer of 1 to 5, y is 0 to 3, and z is an integer of 0 to 4.
    The plurality of R 3 , R 4 , R 5 , Ar, A 1 , x, y, and z may be the same or different. ]]
  2.  Rが、下記式(I)~(IV)のいずれかの酸解離性溶解抑止基である請求項1記載の化合物。
    Figure JPOXMLDOC01-appb-C000040
    (式(I)~(IV)において、
     αは、置換もしくは無置換の炭素数1~10の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~10の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、又は置換もしくは無置換の炭素数6~10の芳香族基である。
     βは、三級脂肪族構造、芳香族構造、単環状脂肪族構造又は複環状脂肪族構造を有する基が置換したアルコキシ基である。
     γは、芳香族構造、単環状脂肪族構造又は複環状脂肪族構造を有する基が置換したアルコキシ基、又は芳香族構造、単環状脂肪族構造、複環状脂肪族構造のうち1以上の構造と、炭素数1~10の直鎖状脂肪族炭化水素基を組み合わせた基が置換したアルコキシ基である。
     δは、置換もしくは無置換の炭素数1~10の直鎖状脂肪族炭化水素基、置換もしくは無置換の炭素数3~10の分岐脂肪族炭化水素基、置換もしくは無置換の炭素数3~20の環状脂肪族炭化水素基、又は置換もしくは無置換の炭素数6~10の芳香族基である。)
    The compound according to claim 1, wherein R 3 is an acid dissociable, dissolution inhibiting group of any one of the following formulas (I) to (IV).
    Figure JPOXMLDOC01-appb-C000040
    (In the formulas (I) to (IV),
    α is a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted carbon number 3 to 20 cyclic aliphatic hydrocarbon groups, or substituted or unsubstituted aromatic groups having 6 to 10 carbon atoms.
    β is an alkoxy group substituted with a group having a tertiary aliphatic structure, an aromatic structure, a monocyclic aliphatic structure or a bicyclic aliphatic structure.
    γ represents an aromatic structure, an alkoxy group substituted by a group having a monocyclic aliphatic structure or a polycyclic aliphatic structure, or one or more structures of an aromatic structure, a monocyclic aliphatic structure, and a polycyclic aliphatic structure; And an alkoxy group substituted with a combination of linear aliphatic hydrocarbon groups having 1 to 10 carbon atoms.
    δ is a substituted or unsubstituted linear aliphatic hydrocarbon group having 1 to 10 carbon atoms, a substituted or unsubstituted branched aliphatic hydrocarbon group having 3 to 10 carbon atoms, a substituted or unsubstituted carbon number 3 to 20 cyclic aliphatic hydrocarbon groups, or substituted or unsubstituted aromatic groups having 6 to 10 carbon atoms. )
  3.  Rが下記式(6)で表される基であって、式(6)中、Rは下記式(7)~(38)から選択される基であり、
     Rが水素であり、
     同一の芳香環上に存在する2つのRのうち、一方が水酸基であり、他方が溶解性調整基である請求項1又は2記載の化合物。
    Figure JPOXMLDOC01-appb-C000041
    Figure JPOXMLDOC01-appb-I000004
    (式中、rはそれぞれ上記式(7)~(35)で表される置換基のいずれかを表す。)
    R is a group represented by the following formula (6), and in formula (6), R 4 is a group selected from the following formulas (7) to (38);
    R 2 is hydrogen;
    Of the two R 1 that are present on the same aromatic ring, one is a hydroxyl group, a compound of claim 1 or 2, wherein the other is soluble adjustment group.
    Figure JPOXMLDOC01-appb-C000041
    Figure JPOXMLDOC01-appb-I000004
    (Wherein r represents any of the substituents represented by the above formulas (7) to (35))
  4.  請求項1~3のいずれか記載の化合物を製造する方法であって、
     前記式(1)の化合物の0℃における溶解度と前記式(2)の化合物の0℃における溶解度の差が、1グラム/リットル以上である溶媒中、-50℃以上50℃以下の条件の下で、前記式(1)の化合物と前記式(2)の化合物の混合物から、前記式(1)の化合物又は前記式(2)の化合物を晶析して単離して、前記式(1)の化合物又は前記式(2)の化合物を製造する方法。
    A method for producing the compound according to any one of claims 1 to 3,
    The difference between the solubility of the compound of the formula (1) at 0 ° C. and the solubility of the compound of the formula (2) at 0 ° C. is in the range of −50 ° C. to 50 ° C. in a solvent of 1 gram / liter or more. From the mixture of the compound of the formula (1) and the compound of the formula (2), the compound of the formula (1) or the compound of the formula (2) is crystallized and isolated, and the formula (1) Or a method for producing the compound of the formula (2).
  5.  前記晶析単離工程の温度が、-20℃以上20℃以下である請求項4記載の製造方法。 The production method according to claim 4, wherein the temperature of the crystallization isolation step is -20 ° C or higher and 20 ° C or lower.
  6.  前記溶媒が、含ハロゲン有機溶媒、含酸素有機溶媒から選択される少なくとも1種類の溶媒である請求項4又は5記載の製造方法。 6. The method according to claim 4, wherein the solvent is at least one solvent selected from a halogen-containing organic solvent and an oxygen-containing organic solvent.
  7.  請求項1~3のいずれかに記載の化合物を含む薄膜。 A thin film comprising the compound according to any one of claims 1 to 3.
  8.  請求項1~3のいずれか記載の式(1)で表される化合物と請求項1~3のいずれか記載の式(2)で表される化合物とを含み、式(1)表される化合物と式(2)で表される化合物のモル比率が15:85~70:30である組成物。 A compound represented by the formula (1) according to any one of claims 1 to 3 and a compound represented by the formula (2) according to any one of claims 1 to 3, which are represented by the formula (1) A composition in which the molar ratio of the compound to the compound represented by formula (2) is 15:85 to 70:30.
  9.  請求項8に記載の組成物を製造する方法であって、
     化合物(1)の0℃における溶解度と化合物(2)の0℃における溶解度の差が、1グラム/リットル以上である溶媒中、-50℃以上50℃以下の条件の下で、化合物(1)と化合物(2)の混合物から、所定量の化合物(1)又は化合物(2)を晶析して単離することにより、前記混合物中の化合物(1)と化合物(2)のモル比率を制御する組成物の製造方法。
    A method for producing the composition of claim 8, comprising:
    The difference between the solubility of compound (1) at 0 ° C. and the solubility of compound (2) at 0 ° C. is 1 gram / liter or more under the condition of −50 ° C. or more and 50 ° C. or less under the condition of compound (1) And controlling the molar ratio of the compound (1) and the compound (2) in the mixture by crystallizing and isolating a predetermined amount of the compound (1) or the compound (2) from the mixture of the compound (2) A method for producing a composition.
  10.  請求項8に記載の組成物を製造する方法であって、
     化合物(1)の0℃における溶解度と化合物(2)の0℃における溶解度の差が、1グラム/リットル以上である溶媒中、-50℃以上50℃以下の条件の下で、化合物(1)と化合物(2)の混合物から、化合物(1)又は化合物(2)を晶析して単離する晶析単離工程と、
     前記単離した化合物(1)又は化合物(2)と、化合物(1)と化合物(2)の混合物とを、所定の割合で混合して、化合物(1)と化合物(2)のモル比率を制御する混合比率制御工程と、
     を含む組成物の製造方法。
    A method for producing the composition of claim 8, comprising:
    The difference between the solubility of compound (1) at 0 ° C. and the solubility of compound (2) at 0 ° C. is 1 gram / liter or more under the condition of −50 ° C. or more and 50 ° C. or less under the condition of compound (1) And a crystallization isolation step of crystallizing and isolating the compound (1) or the compound (2) from a mixture of the compound (2) and
    The isolated compound (1) or compound (2) and a mixture of the compound (1) and the compound (2) are mixed at a predetermined ratio, and the molar ratio of the compound (1) and the compound (2) is determined. A mixing ratio control step to control;
    The manufacturing method of the composition containing this.
  11.  請求項8に記載の組成物を製造する方法であって、
     化合物(1)と化合物(2)の第1の混合物と、化合物(1)と化合物(2)の第2の混合物を合成する混合物合成工程と、
     化合物(1)の0℃における溶解度と化合物(2)の0℃における溶解度の差が、1グラム/リットル以上である溶媒中、-50℃以上50℃以下の条件の下で、前記第1の混合物から、化合物(1)又は化合物(2)を晶析して単離する晶析単離工程と、
     晶析単離工程により化合物(1)又は化合物(2)を単離した後の第1の混合物と、前記第2の混合物とを、所定の割合で混合して、化合物(1)と化合物(2)のモル比率を制御する混合比率制御工程と、
     を含む組成物の製造方法。
    A method for producing the composition of claim 8, comprising:
    A mixture synthesis step of synthesizing a first mixture of compound (1) and compound (2) and a second mixture of compound (1) and compound (2);
    The difference between the solubility of compound (1) at 0 ° C. and the solubility of compound (2) at 0 ° C. is 1 gram / liter or more under the condition of −50 ° C. or more and 50 ° C. or less under the conditions of the first A crystallization isolation step of crystallizing and isolating compound (1) or compound (2) from the mixture;
    The first mixture after the compound (1) or the compound (2) is isolated by the crystallization isolation step and the second mixture are mixed at a predetermined ratio, and the compound (1) and the compound ( A mixing ratio control step for controlling the molar ratio of 2);
    The manufacturing method of the composition containing this.
  12.  前記晶析単離工程の温度が、-20℃以上20℃以下である請求項9~11のいずれか記載の製造方法。 The method according to any one of claims 9 to 11, wherein a temperature in the crystallization isolation step is -20 ° C or higher and 20 ° C or lower.
  13.  前記溶媒が、含ハロゲン有機溶媒、含酸素有機溶媒から選択される少なくとも1種類の溶媒である請求項9~12のいずれか記載の製造方法。 The production method according to any one of claims 9 to 12, wherein the solvent is at least one solvent selected from a halogen-containing organic solvent and an oxygen-containing organic solvent.
  14.  請求項1~3のいずれか記載の化合物を含む組成物と溶剤、又は請求項8に記載の組成物と溶剤を含有するフォトレジスト組成物。 A composition containing the compound according to any one of claims 1 to 3 and a solvent, or a photoresist composition containing the composition according to claim 8 and a solvent.
  15.  請求項8に記載の組成物を含んで成る薄膜。 A thin film comprising the composition according to claim 8.
  16.  請求項14に記載のフォトレジスト組成物を用いた微細加工方法。 A fine processing method using the photoresist composition according to claim 14.
  17.  請求項16に記載の微細加工方法により作製した半導体装置。 A semiconductor device manufactured by the microfabrication method according to claim 16.
PCT/JP2009/006810 2008-12-11 2009-12-11 Stereoisomeric cyclic compounds, manufacturing method therefor, compositions comprising the stereoisomeric cyclic compounds and manufacturing method therefor WO2010067622A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-316143 2008-12-11
JP2008316143A JP2010138114A (en) 2008-12-11 2008-12-11 Stereoisomer cyclic compound and its production method
JP2008-315972 2008-12-11
JP2008315972 2008-12-11
JP2009-069386 2009-03-23
JP2009069386A JP2010159241A (en) 2008-12-11 2009-03-23 Composition containing stereoisomeric cyclic compound and method for producing the same

Publications (1)

Publication Number Publication Date
WO2010067622A1 true WO2010067622A1 (en) 2010-06-17

Family

ID=42242614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006810 WO2010067622A1 (en) 2008-12-11 2009-12-11 Stereoisomeric cyclic compounds, manufacturing method therefor, compositions comprising the stereoisomeric cyclic compounds and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2010067622A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195758A (en) * 2009-01-30 2010-09-09 Idemitsu Kosan Co Ltd Method for preparing cyclic compound
JP2013001694A (en) * 2011-06-21 2013-01-07 Jsr Corp Calix resorcinarene trimer derivative, method for producing the same, and resist material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113575A2 (en) * 2006-04-05 2007-10-11 The University Of Bath Reagents and methods for cross-linking biological molecules
WO2008053974A1 (en) * 2006-11-02 2008-05-08 Mitsubishi Gas Chemical Company, Inc. Radiation-sensitive composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113575A2 (en) * 2006-04-05 2007-10-11 The University Of Bath Reagents and methods for cross-linking biological molecules
WO2008053974A1 (en) * 2006-11-02 2008-05-08 Mitsubishi Gas Chemical Company, Inc. Radiation-sensitive composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROSHI ITO ET AL.: "Characterization and Lithographic Application of Calix[4] resorcinarene Derivatives", CHEMISTRY OF MATERIALS, vol. 20, no. 1, 2008, pages 341 - 356 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010195758A (en) * 2009-01-30 2010-09-09 Idemitsu Kosan Co Ltd Method for preparing cyclic compound
JP2013001694A (en) * 2011-06-21 2013-01-07 Jsr Corp Calix resorcinarene trimer derivative, method for producing the same, and resist material

Similar Documents

Publication Publication Date Title
TWI403846B (en) Positive resist composition, method of forming resist pattern, and polymeric compound
JP5354420B2 (en) Cyclic compound, photoresist base material, photoresist composition, fine processing method and semiconductor device
JP5049935B2 (en) Positive resist composition and resist pattern forming method
TWI594073B (en) Negative tone-development resist composition and method of forming resist pattern
TWI534531B (en) Resist composition, method of forming resist pattern, and polymeric compound
TWI389922B (en) Polymer compound, positive resist composition and method of forming resist pattern
TWI394005B (en) Positive resist composition, method of forming resist pattern, and polymeric compound
JP2009229603A (en) Positive resist material and resist pattern forming method
JP2012083731A (en) Radiation-sensitive composition and photoresist composition
WO2009119784A1 (en) Cyclic compound, process for producing cyclic compound, photoresist base material comprising cyclic compound, photoresist composition, microprocessing method, semiconductor device, and apparatus
JP2010138109A (en) Cyclic compound and method for producing the same
TWI525391B (en) Resist composition, and method of forming resist pattern
TWI614230B (en) Compound, radical polymerization initiator, method of producing compound, polymer, resist composition, method of forming resist pattern
TWI537682B (en) Positive resist composition and method of forming resist pattern
WO2010067622A1 (en) Stereoisomeric cyclic compounds, manufacturing method therefor, compositions comprising the stereoisomeric cyclic compounds and manufacturing method therefor
JP5435995B2 (en) Method for producing cyclic compound
WO2010067621A1 (en) Cyclic compounds and photoresist compositions using same
TWI427416B (en) Positive resist composition, method of forming resist pattern, polymeric compound, and compound
JP2010285376A (en) Cyclic compound, photoresist base material and photoresist composition
WO2010143436A1 (en) Cyclic compound, photoresist base material, and photoresist composition
WO2010067627A1 (en) Precursor for acid-dissociable dissolution-inhibitive group and cyclic compound having acid-dissociable dissolution-inhibitive group
JP2011173868A (en) Cyclic compound and negative resist composition using the same
JP2010159241A (en) Composition containing stereoisomeric cyclic compound and method for producing the same
JP2009098448A (en) Photoresist composition for extreme ultraviolet light and/or electron beam and microfabrication method using the same
JP2011153087A (en) Precursor of acid-dissociative dissolution-inhibiting group, and cyclic compound having acid-dissociative dissolution-inhibiting group

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831728

Country of ref document: EP

Kind code of ref document: A1