WO2010067312A2 - Extracting and cooling system for large flows of heavy ashes with efficiency increase - Google Patents
Extracting and cooling system for large flows of heavy ashes with efficiency increase Download PDFInfo
- Publication number
- WO2010067312A2 WO2010067312A2 PCT/IB2009/055604 IB2009055604W WO2010067312A2 WO 2010067312 A2 WO2010067312 A2 WO 2010067312A2 IB 2009055604 W IB2009055604 W IB 2009055604W WO 2010067312 A2 WO2010067312 A2 WO 2010067312A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- cooling
- plant
- anyone
- apt
- Prior art date
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 117
- 239000002956 ash Substances 0.000 title claims abstract description 112
- 235000002918 Fraxinus excelsior Nutrition 0.000 title claims abstract description 47
- 238000002485 combustion reaction Methods 0.000 claims abstract description 47
- 239000003517 fume Substances 0.000 claims abstract description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 28
- 238000000926 separation method Methods 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims description 34
- 238000000605 extraction Methods 0.000 claims description 23
- 230000001105 regulatory effect Effects 0.000 claims description 17
- 238000009413 insulation Methods 0.000 claims description 15
- 238000011084 recovery Methods 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 7
- 238000001514 detection method Methods 0.000 claims description 6
- 238000003860 storage Methods 0.000 claims description 6
- 230000004913 activation Effects 0.000 claims description 5
- 239000002803 fossil fuel Substances 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims description 2
- 230000033228 biological regulation Effects 0.000 claims description 2
- 230000010259 detection of temperature stimulus Effects 0.000 claims 2
- 239000004449 solid propellant Substances 0.000 abstract description 3
- 230000007704 transition Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000012717 electrostatic precipitator Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- ZXKXJHAOUFHNAS-UHFFFAOYSA-N fenfluramine hydrochloride Chemical compound [Cl-].CC[NH2+]C(C)CC1=CC=CC(C(F)(F)F)=C1 ZXKXJHAOUFHNAS-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J1/00—Removing ash, clinker, or slag from combustion chambers
- F23J1/02—Apparatus for removing ash, clinker, or slag from ash-pits, e.g. by employing trucks or conveyors, by employing suction devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2700/00—Ash removal, handling and treatment means; Ash and slag handling in pulverulent fuel furnaces; Ash removal means for incinerators
- F23J2700/001—Ash removal, handling and treatment means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2900/00—Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
- F23J2900/01002—Cooling of ashes from the combustion chamber by indirect heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2900/00—Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
- F23J2900/01003—Ash crushing means associated with ash removal means
Definitions
- the present invention relates to a plant and to a method for extracting, cooling and recovering thermal energy for large flows of heavy ashes produced by solid fuel boilers.
- WO2008/023393 the content thereof is incorporated herein by means of this reference - provides that, when the air flow needed for cooling the extracted heavy ash exceeds the maximum flow admissible in the combustion chamber, the exceeding air can be sent to the fume duct and this thanks to a pressure separation of the cooling environments made by the ash itself. Still in WO2008/023393, a possible site for introducing said exceeding air is placed on the mentioned duct in a position upstream or downstream of air/fume exchanger.
- a potential system limit of WO2008/023393 consists in the loss of the thermal content associated to the cooling air used downstream of the pressure separation system and in the increase in the whole flow of the fumes which has to be processed by the apparatuses downstream of the air introduction site.
- the above-mentioned cooling air can reach a temperature of about 200 0 C, and therefore, as just said, the inletting of the same in the fumes the temperature thereof is about 400 0 C can result to be antieconomic on balance on the air/fume exchanger, in fact based upon the operating principle of the air/fume exchanger, even if the thermal content of the flow entering on the fumes' side increases, this does not succeed in being transferred to the air unless for a negligible portion.
- the hot air inletting into the fume duct makes that the electrostatic precipitators arranged downstream of the air/fume exchanger receive a higher whole flow than the design data, apart from an overall increase in the temperature of the fume flow to be processed.
- Such circumstance determines a worsening in the efficiency of the electrostatic separators caused by an increase in the inletting velocity and above all by an increase in the ash resistivity.
- the technical problem placed and solved by the present invention is to provide an apparatus and a method allowing to obviate the drawbacks mentioned above with reference to the known art.
- the main advantage lies in the fact that the invention allows to maximize the recovery of the sensible heat contained in the exceeding cooling air used in the second plant portion downstream of the pressure insulation.
- the configuration proposed in the present invention provides the inletting of the cooling air into the environment air flow sent to the air/fume exchanger before inletting the combustion chamber.
- the environment air mixed with the hot cooling air before entering the exchanger undergoes an increase in temperature and it implements an efficient pre-heating of the same.
- This configuration leaves almost unchanged the efficiency of the air/fume heater and it allows the recovery of the sensible heat of the cooling air thereof.
- the invention allows the total recovery of the sensible heat acquired by the cooling air in the plant portion downstream of the pressure separation and at the same time it leaves unchanged the fume flow and the temperature thereof crossed by the electrostatic precipitators, so as not to lower the separation efficiency of the same.
- the invention also allows to keep the advantages already present in the system of WO2008/023393, that is to obtain an efficient dry or mainly dry cooling of the ashes without exceeding the above-mentioned limit of 1.5% for the cooling air introduced into the combustion chamber from the bottom.
- the invention practically allows an optimization of the system described in EP 0 471 055 B1 and in WO2008/023393, by widening the potentiality of the thermal recovery thereof in case of application to large quantities of heavy ashes coming from coals or lignites with high ash content.
- the present invention relates to an air or twofold, air/water, extracting and cooling system for large flows of heavy ashes produced by solid fuel boilers, able to decrease the final temperature of the extracted ash without increasing the air flow inletting the boiler flue, usually fixed by the boiler designers at a value around 1.5% of the total combustion air.
- the system allows the exceeding air to be sent to the combustion air sucking duct and preferably to the secondary air duct, thanks to a separation of the cooling environments made preferably by the ash itself.
- the separation of the environments of the cooling system is handled automatically based upon a signal of temperature and/or ash flow at the discharge from the system.
- the cooling efficiency can be increased by the addition of nebulised water.
- the usually added water quantity is dosed based upon the flow and the ash temperature so as to guarantee the complete evaporation of the water injected to obtain if necessary dry ash at the discharge, suitable to be milled and transported pneumatically.
- the proposed, used system is mainly constituted by:
- a transition storage reservoir between the mill and a conveyor-cooler such storage reservoir being for example under the form of a hopper
- the above-mentioned conveyor-cooler in case equipped with suitable shares, which are entrusted with the function of re-mixing the ash onto the conveyor itself, and with nozzles for injecting water;
- a possible fan in line with the above-mentioned pipe in case the line concentrated and distributed load losses are higher in absolute value than the depression value existing in the cooling air inletting site;
- a discharge end apparatus able to allow the ash discharge by preventing at the same time the uncontrolled air entrance into the system (for example a valve or a vibrating extractor or simply a close connection with another transportation or storage closed apparatus);
- a possible ash-water mixer which will be activated, as alternative to the discharge end apparatus of the preceding step 8, thanks to the actuation of a flow diverter, in case the system, due to the ash unusual conditions (high flow and/or temperature) is not able to guarantee an adequate ash cooling - such mixer in turn will be equipped with:
- connection pipe, or duct for venting the humid air to the pipe of step 6
- FIG. 1 shows a general scheme exemplifying a preferred embodiment of the invention plant, in an operating mode providing a pressure separation between two cooling environments and the connection of the second plant portion to the environment air inletting line to the air/fume heater;
- - figure 2 shows a schematic view in longitudinal section of a separation area of the two cooling environments of the plant of figure 1 ;
- figure 3 shows a cross-section view performed according to the line A-A of figure 2;
- figure 4 shows a general scheme exemplifying the plant of figure 1 , in a different operating mode which does not provide said separation in two cooling environments;
- - figure 5 shows a cross-section view of a continuous double-shaft mixer equipped with nozzles for the cooling air of the plant of figure 1 , performed according to the line B-B of this last figure; and - figure 6 shows a general scheme exemplifying the plant of figure 1 , in an operating mode which provides sending the still hot ash to the mixer of figure 5.
- a plant for extracting and cooling the combustion residues of the type used for example in solid fossil fuel thermoelectric plants and according to a preferred embodiment of the invention, is designated as a whole with 1.
- the plant 1 is particularly suitable to handle large flows of heavy ashes, produced for example by the combustion of coals or lignites with high ash content.
- the different components of the plant 1 will be described as follows by referring to the path followed by the combustion residues as from the extraction thereof from the bottom of the combustion chamber (or boiler), designated with 100, until the disposal thereof.
- the plant 1 Immediately downstream of the combustion chamber 100, or better of a transition hopper 105 of the latter, the plant 1 provides a first extraction and transport unit, in particular a dry extractor 9 mainly implemented in steel with high thermal resistance.
- Said extractor 9 is of the type known on itself and described for example in EP 0 252 967, incorporated herein by means of this reference.
- the extractor 9 gathers the heavy ashes which precipitate downwards in the combustion chamber 100 through the above-mentioned transition hopper 105.
- the extractor 9, at the side walls of its own casing, has a plurality of holes for the outer cooling air entrance, distributed in a substantially uniform way along the development of the extractor 9 itself and each one designated with 10.
- Said entrances 10 may be equipped with means for regulating the flow or may be made active or de-activated.
- the extractor 9 can further have an additional outer cooling air entrance 19, preferably regulated, too, by an automatic valve or by equivalent flow regulating means and arranged substantially at an end portion of the extractor 9 itself.
- the cooling air is attracted through the entrances 10 and 19 within the extractor 9 and in countercurrent with respect thereto under the effect of the depression existing in the combustion chamber 100. More in detail, the air entrance takes place thanks to the depression existing in the transition hopper 105, on the bottom thereof there is a depression regulated by the control system of the combustion chamber 100 (generally around 300-500 Pa under the atmospheric pressure).
- the ashes Downstream of the extractor 9 the ashes are fed to a mill 3, which crushes the most coarse fractions thereof so as to increase the thermal exchange surface and thus improving the efficiency of such exchange and therefore the cooling.
- an additional outer cooling air entrance is provided, designated with 17 and in case equipped, too, with flow regulating means as those already described. Also in this case, the air coming from the entrance 17 is fed in countercurrent through the mill 3 itself and along the first extractor 9 under the effect of the depression existing in the combustion chamber 100. Said cooling air results useful not only for cooling the ash but also for cooling the machines. As illustrated in greater detail in figures 2 and 3, downstream of the mill 3 the ashes are conveyed by means of a hopper/reservoir 8 to a second steel belt conveyor- cooler 6.
- the described plant configuration allows the hopper 8 to operate as a storage reservoir, allowing to accumulate the ash so as to guarantee the disconnection of the two atmospheres of the extractor 9 and of the conveyor/cooler 6.
- the conveyor 6 works correctly as second extractor, by working continuously under a head of material which guarantees the separation between the environment of the extractor associated to the pressure speed of the combustion chamber 100 and that of the conveyor/cooler associated to the different pressure speed of the area therewith it is put into communication.
- Minimum and maximum level sensors, designated with 7, and a layer leveller 18, the latter arranged at an initial portion inletting the conveyor 6, are also associated to the hopper 8.
- the position indication of the layer regulator 18 connected to the velocity indication of the belt of the conveyor cooler 6 provides information about the ash volumetric flow, useful together with the temperature indication for regulating the cooling fluids.
- the ash continues to be cooled both by means of the air attracted from outside through additional entrances 1 1 arranged on the side walls of the extractor 6 itself in a way analogous to what already illustrated for the first extractor 9, and analogously it can have an additional outer cooling air entrance, equivalent to 19, preferably regulated, too, by an automatic valve or by equivalent flow regulating means and arranged substantially at an initial portion of the conveyor 6 itself.
- the cooling on the conveyor 6 can take place by means of water finely dosed by means of delivery nozzles 12 positioned inside the cover of the conveyor 6.
- the plant 1 can be equipped with a twofold, air-water cooling system, among other things implemented by the air entrances 10, 1 1 , 17 and 19 and by the water delivery nozzles 12.
- the plant 1 further provides means for feeding part of the cooling air, heated after the heat exchange with the combustion residues, into an environment air discharge duct 50 associated to the air/fume exchanger 102.
- said feeding means comprises a duct 51 , properly insulated and thermally traced to avoid condensate, apt to be selectively regulated and however interdicted/enabled by means of an automatic valve 150 (or equivalent means) arranged along the development thereof.
- the duct 51 connects, or better is apt to connect, the discharge area of the conveyor 6 (figure 1 ) and and/or in case of the mixer 2 (figure 6) with the sucking area of the secondary environment air to the air/fume exchanger. Therefore, preferably the duct 51 outflows upstream of a line associated to a secondary air fan 54 inletting environment air to the air/fume exchanger 102 (air side), the latter apt to pre-heat the combustion air and typically provided in the combustion plants associated to the invention. As it is known, such inletting area has negative pressure provided by the above-mentioned air fan 54 or by equivalent means for the pressure control.
- the exchanger 102 can be of the type commonly called Ljungstrom.
- a cyclone separator 55 or an equivalent apparatus apt to gather the fine ash in case existing in the cooling air flow outletting the conveyor 6 and/or the mixer 2 and suitable regulating valves 150, 59 can be associated to the line of the duct 51. Still in line with the duct 51 there may be a fan 56 in case the concentrated and distributed load losses of the cooling air are higher than the depression provided in the inletting site on the duct upstream of the fan 54 or the head available on the same.
- the optimum inletting site of the cooling air is represented by the sucking duct of the combustion air fan which picks up the air from the environment and it sends it to the air/fume exchanger.
- the exchanger is of the trisector type that is it has two entrances, respectively 61 and 62, dedicated to the combustion air (divided into primary and secondary) and an entrance dedicated to the fumes
- the preferential site for inletting the cooling air is detected, as said, by the sucking duct of the secondary air.
- Said site in fact, is preferred with respect to the sucking line of the fan of the primary air 58, as the pressure level of the primary fan 58 is considerable higher than the secondary one and therefor the energy lost in the pumping is higher.
- cooling air upstream of the (primary 58 or secondary 54) fan results also in making that the same always processes the same amount of inletting air and therefore that it is not subjected to operating variations.
- the cooling air can be sent directly entering the air/fume exchanger 102 on the air side.
- the ash cooling on the conveyor 6 can be made more effective thanks to the presence of specific re-mixing means, in particular substantially cuneiform members 14 fixed with respect to the conveyor belt 6 itself and which in the present example are shaped like a share.
- Said share-like members 14 are distributed in a substantially uniform way along the development of the conveyor 6 and they are arranged at the transport section of the ashes.
- the share-like members 14 plough the ashes by making a continuous re-mixing during the transport on the belt, by exposing in such way the maximum surface thereof available for the thermal exchange with the air and/or the cooling water.
- an automatic diverting valve 16 (or equivalent means for deviating selectively the ash flow) is provided, which allows selectively the cooled ash feeding to a discharge means 13 directed outwards or to a continuous mixer 2, in turn in the present example in communication outwards and shown in greater detail in figure 5.
- the discharge conveyor 13 is equipped with a device for controlling the entering air, not illustrated, to eliminate the uncontrolled entering of air from outside (or, in embodiment variants, to connect the system to other transport or storage closed environments).
- the mixer with water 2 allows completing the ash cooling if necessary to reach temperature values compatible with the downstream processes or to humidify the ash to decrease the powder emissions under certain transport and disposal conditions.
- the mixer 2 is equipped with a discharge casing 21 , equipped with means able to allow the ash discharge from the system by preventing at the same time an uncontrolled outer air return.
- Such device can be constituted for example by a double clapet valve or rubber boards which, upon deforming under the ash weight, allow the discharge thereof into the needed minimum passage section.
- a pipe 66 connecting the mixer 2 to the duct 51 is provided, for the air and vapour vent into the latter with the valve 59 or equivalent in line means.
- the plant 1 then comprises sensors of temperature and/or volumetric and/or ponderal flow sensors of the ashes which in the present example are arranged at the end or discharge portion of the conveyor 6 and/or on the main extractor 9 or more preferably at the ash discharge at the conveyor 13.
- sensors of the above-mentioned type are provided also at the hopper/reservoir 8.
- load cells or equivalent means can be provided to control the ash level in the hopper/reservoir.
- temperature sensor means can be provided, arranged at the duct 51.
- the plant 1 comprises a control system, in communication with said sensor means, apt to control the operation modes of the plant 1 related to the quantity and temperature of the ashes.
- the operation modes of the plant 1 and in particular those of the cooling system thereof controlled by the above-mentioned control means, will be now illustrated in greater detail.
- the ash temperature and/or flow values provided by the sensor means are compared to values pre-fixed and stored by the control system and based upon the result of such comparison, the operating mode most suitable to the operation of the plant 1 is determined.
- the increase in the ash temperature usually is linked to the increase in the flow thereof in the plant 1 considered herein.
- the plant in the starting phase is configured in the mode illustrated in figure 4, by regulating all the air entrance valves 10, 11 , 17 and 19 and closing the automatic valve 150, so as to obtain that the whole air quantity corresponding to 1.5% of the combustion air is attracted through the bottom flue from the hopper 105 of the boiler 100 by crossing in countercurrent the ash both in the extractor 9 and in the conveyor 6.
- Such operating mode is performed until the ash temperature at the exhaust of the conveyor 6 reaches the predetermined value T m ⁇ n ⁇ mum ,
- the control means acts on the related velocity of the belt of the extractor 9 and of the belt of the conveyor 6, substantially by making so that the conveyor 6 has a greater potential ash flow than the extractor 9 so as to avoid the formation of a material head within the hopper 8.
- the system acts on the velocity of the conveyor 6, in particular by decreasing it and regulating it so as to determine an ash accumulation in the hopper 8 and therefore the creation of a continuous ash plug and furthermore it opens the valve 150 of the duct 51 so as to create two different atmospheres, respectively in the extractor 9 and in the conveyor 6, the first one linked to the pressure existing in the boiler and the second one connected to the pressure existing in the environment air feeding duct 51.
- the air entrance valves 10, 19 and 17 of the extractor 9 and of the hopper 8 are regulated automatically so as to concentrate in the extractor only the whole 1.5 % of cooling air which can be inlet into the boiler and the valves 1 1 and in case subsequently the nozzles 12 of the conveyor 6 by adding at first air until a percentage calculated so as not to influence the operation of the downstream air/fume exchanger and subsequently water if needed to reach the wished cooling.
- the fan 54 processes always the same air quantity, upon increasing the cooling air through the duct 51 the air attracted from the environment will decrease.
- the cooling air acting on the main extractor 9 introduced by means of the entrances 10, 17 and 19 crosses such countercurrent extractor and it enters the combustion chamber 100 in the limit of 1.5%.
- the cooling air exceeding 1.5% is picked up from outside through the entrances 1 1 and equivalent to 19 if present of the conveyor 6, and it crosses the latter in equicurrent and it is sucked through the duct 51 , together with the vapour produced by the possible water local cooling, by the depression generated by the air fan 54 and in case by the supporting fan 56 positioned in line to the duct 51.
- the emptying of the load hopper 8 is avoided by controlling the velocity of the conveyor 6 depending upon the detections of the maximum and minimum level sensors 7. In particular, if the level reaches the minimum one, the slowing down is provided until stopping the conveyor 6, whereas when the minimum level is exceeded, the re-start of the conveyor 6 is provided and upon reaching the maximum level the increase in velocity and therefore in the flow of the belt of the conveyor 6.
- control means can have available additional information detected by specific sensor means, in particular related to the ash temperature in the hopper 8 and to the forwarding velocity of the conveyor 6.
- the latter together with the (fixed) value of the extraction section defines exactly the ash volumetric flow. It has to be specified that the extraction level, in order to avoid possible obstructions in the extraction section itself, will have to be higher than a suitable margin in the size of the ash pieces outletting the mill 3.
- the plant 1 can be handled also in case of very large ash flows/temperatures - even higher than the design values - for example depending upon the fuel type or by the operations for cleaning the combustion chamber 100.
- the plant 1 provides an operating mode like the last described and the discharge of the still hot ash to the mixer 2 instead of to the conveyor 13 by means of the diverting valve 16.
- an additional water quantity could be introduced so as to bring the ash at the provided end temperature (typically approximately 80 0 C) with a suitable humidity content (preferably around 10 %) to guarantee the absence of powders in the following motion operations.
- an upside- down "Y" connection can be provided directly between the conveyor 6, the mixer 2 and the duct 51. Thanks to this so-made configuration, the air and in case the vapour arriving from the conveyor-cooler 6 goes towards the duct connecting the fume line by joining to the vapour which has generated into the mixer 2.
- This connection duct (between the mixer 2 and the main duct 51 ), which could be suitably heated if the design conditions should perceive the risk of the condensate formation and related ash incrustations, remains with the risk of condensing.
- prefixed values of temperature and/or flow or quantity of predetermined combustion air can be set selectively by an operator handling the plant 1. It will be further understood that the previously described operating modes constitute only one of the possibilities of handling the plant 1. A simpler operating mode can provide, for example, that the ash head is created upon reaching a prefixed temperature value and that the handling takes place for the remaining part by properly modulating the cooling air and water flow, the latter if needed.
- a series of operating modes like those considered sofar can be set manually or automatically by means of a handling and controlling system which, based upon the ash temperature/flow value, determines the cooling mode of the ash itself by acting onto the formation of the separation area, on the air flows inletting the extractor 9 and the conveyor 6, on the possible dosing of nebulised water and on the activation of the diverting valve.
- the plant 1 has a total operating versatility and therefore the capability of practically handling any ash flow, and this without the problems associated to the introduction of an exceeding quantity of cooling air from the bottom of the boiler 100.
- such versatility is obtained by introducing even very high cooling air flows and feeding the additional air flow which is not suitable to introduce from the boiler bottom into the environment air inletting duct to the air/fume exchanger and by means of the possibility of adding even cooling water, if needed.
- the plant 1 through the control means thereof, can dose adequately the used water quantity so that it wholly vaporizes during the cooling process and the at the outlet of the conveyor 6 substantially dry ashes are then obtained, suitable to be milled and transported automatically.
- This can be obtained by making that the ash end temperature keeps above 100 0 C.
- the water flow to be nebulised and injected will be controlled by means of a thermal balance leading to equal on one side the heat to be removed from the ash (produced of the flow for the specific enthalpy variation requested between the temperature in the hopper 8 and the discharge end temperature) and on the other side the sum of the water evaporation heat and of the enthalpy variation experienced by the cooling air.
- the temperature sensors arranged at the duct 51 apart from allowing a more complete control of the plant parameters, further allow to verify the formation of possible condensate sites at the whole duct 51 due to the vapour deriving from the cooling water.
- knowing both the temperature of the air itself and of the nebulised water quantity allows easily to calculate the related humidity of the cooling air and to verify that:
- the humidity itself is below 100% with suitable significative margin; and - on the other side, even in possible cold sites existing in the path (and that is mainly on the cover of the conveyor 6 and on the surface of the connection duct 51 ) the water content in the air is not so as to produce beginning of condensate, which could result to be troublesome for the good system operation.
- an additional connection duct (or equivalent means) can be provided between the transition hopper 105 and the conveyor 6 near the hopper 8, by moving selectively the outer air entrance on such duct and providing valves for regulating the flow both of the hot air arriving from the transition hopper 105 and of the cold environment air. This allows raising the air temperature in the system up to levels so as to eliminate the condensate formation risk.
- the above-mentioned regulation of inletting hot and cold air flows could then take place based upon the detections of the above- mentioned temperature sensor positioned onto the duct 51.
- the above-mentioned separation into two environments can be also obtained by means of devices different from those described above.
- additional devices can be provided such as clapet valves or equivalent devices, moreover the separation of the two environments can be obtained by applying under the hopper/reservoir 8 a second crushing stage with variable flow with respect to the mill 3, so as to produce in the hopper the necessary ash head apt to separate the environments.
- the invention allows an efficient energy recovery deriving from having sent the maximum outer air flow on the extractor 9 and having decreased drastically the air quantity on the second extractor 6 (for the water addition) and therefore the energy necessary to the fume treatment.
- the invention object is also a method for extracting, cooling and recovering energy of heavy ashes as described sofar with reference to the plant 1.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gasification And Melting Of Waste (AREA)
- Paper (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Processing Of Solid Wastes (AREA)
- Air Supply (AREA)
Abstract
Description
Claims
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011540308A JP2012511692A (en) | 2008-12-12 | 2009-12-09 | High-efficiency large-volume heavy ash extraction and cooling system |
CA2746849A CA2746849A1 (en) | 2008-12-12 | 2009-12-09 | Extracting and cooling system for large flows of heavy ashes with efficiency increase |
CN2009801538432A CN102272525A (en) | 2008-12-12 | 2009-12-09 | Extracting and cooling system for large flows of heavy ashes with efficiency increase |
EA201100940A EA201100940A1 (en) | 2008-12-12 | 2009-12-09 | INSTALLATION FOR REMOVAL AND COOLING OF LARGE COSTS OF HEAVY SLAGS WITH IMPROVED EFFICIENCY |
EP09801556A EP2368070A2 (en) | 2008-12-12 | 2009-12-09 | Extracting and cooling system for large flows of heavy ashes with efficiency increase |
MX2011006263A MX2011006263A (en) | 2008-12-12 | 2009-12-09 | Extracting and cooling system for large flows of heavy ashes with efficiency increase. |
AU2009325882A AU2009325882A1 (en) | 2008-12-12 | 2009-12-09 | Extracting and cooling system for large flows of heavy ashes with efficiency increase |
BRPI0923347A BRPI0923347A2 (en) | 2008-12-12 | 2009-12-09 | installation and method for extracting and cooling heavy ashes. |
US13/139,134 US20110297061A1 (en) | 2008-12-12 | 2009-12-09 | Extracting and cooling system for large flows of heavy ashes with efficiency increase |
ZA2011/04340A ZA201104340B (en) | 2008-12-12 | 2011-06-10 | Extracting and cooling system for large flows of heavy ashes with efficiency increase |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ITRM2008A000662 | 2008-12-12 | ||
ITRM2008A000662A IT1392240B1 (en) | 2008-12-12 | 2008-12-12 | EXTRACTION AND COOLING SYSTEM FOR LARGE RANGE OF HEAVY ASHES WITH EFFICIENCY INCREASE. |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010067312A2 true WO2010067312A2 (en) | 2010-06-17 |
WO2010067312A3 WO2010067312A3 (en) | 2011-04-21 |
Family
ID=41254621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2009/055604 WO2010067312A2 (en) | 2008-12-12 | 2009-12-09 | Extracting and cooling system for large flows of heavy ashes with efficiency increase |
Country Status (14)
Country | Link |
---|---|
US (1) | US20110297061A1 (en) |
EP (1) | EP2368070A2 (en) |
JP (1) | JP2012511692A (en) |
KR (1) | KR20110106362A (en) |
CN (1) | CN102272525A (en) |
AR (1) | AR076449A1 (en) |
AU (1) | AU2009325882A1 (en) |
BR (1) | BRPI0923347A2 (en) |
CA (1) | CA2746849A1 (en) |
EA (1) | EA201100940A1 (en) |
IT (1) | IT1392240B1 (en) |
MX (1) | MX2011006263A (en) |
WO (1) | WO2010067312A2 (en) |
ZA (1) | ZA201104340B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102287814A (en) * | 2011-09-01 | 2011-12-21 | 中国华能集团清洁能源技术研究院有限公司 | Two-stage wind-water joint cooling scraper-type cold slag conveyer |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010033307A1 (en) * | 2010-08-04 | 2012-02-09 | Clyde Bergemann Drycon Gmbh | Apparatus and method for post-burning hot material on a conveyor |
US11135547B1 (en) * | 2012-11-09 | 2021-10-05 | Arkansas State University—Jonesboro | Air cooled condensing heat exchanger system with acid condensate neutralizer |
CN105953222A (en) * | 2016-05-10 | 2016-09-21 | 钱伟 | Solid material energy comprehensive recovery system |
JP7423204B2 (en) * | 2019-06-28 | 2024-01-29 | 三菱重工業株式会社 | Grinding equipment, boiler system, and method of operating the grinding equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0471055B1 (en) | 1990-03-02 | 1995-07-26 | MAGALDI, Mario | Steam generating system and method for discharge of ash |
WO2008023393A1 (en) | 2006-08-22 | 2008-02-28 | Magaldi Power S.P.A. | Extraction and air/water cooling system for large quantities of heavy ashes |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1276747B1 (en) * | 1995-06-19 | 1997-11-03 | Magaldi Ricerche & Brevetti | BULK MATERIALS EXTRACTOR / COOLER |
ITMI20041371A1 (en) * | 2004-07-09 | 2004-10-09 | Magaldi Power Spa | INTEGRATED HEAVY ASH EXTRACTION SYSTEM TRANSFORMATION OF THEMSELVES INTO LIGHT ASH AND REDUCTION OF INCOMBUSTS |
JP2010501822A (en) * | 2006-08-22 | 2010-01-21 | マガルディ パワー ソシエタ ペル アチオニ | Cooling system for dry extraction of heavy ash from boilers |
-
2008
- 2008-12-12 IT ITRM2008A000662A patent/IT1392240B1/en active
-
2009
- 2009-12-09 CN CN2009801538432A patent/CN102272525A/en active Pending
- 2009-12-09 KR KR1020117016167A patent/KR20110106362A/en not_active Application Discontinuation
- 2009-12-09 WO PCT/IB2009/055604 patent/WO2010067312A2/en active Application Filing
- 2009-12-09 MX MX2011006263A patent/MX2011006263A/en not_active Application Discontinuation
- 2009-12-09 AU AU2009325882A patent/AU2009325882A1/en not_active Abandoned
- 2009-12-09 US US13/139,134 patent/US20110297061A1/en not_active Abandoned
- 2009-12-09 EA EA201100940A patent/EA201100940A1/en unknown
- 2009-12-09 BR BRPI0923347A patent/BRPI0923347A2/en not_active IP Right Cessation
- 2009-12-09 CA CA2746849A patent/CA2746849A1/en not_active Abandoned
- 2009-12-09 EP EP09801556A patent/EP2368070A2/en not_active Withdrawn
- 2009-12-09 JP JP2011540308A patent/JP2012511692A/en active Pending
- 2009-12-11 AR ARP090104811A patent/AR076449A1/en unknown
-
2011
- 2011-06-10 ZA ZA2011/04340A patent/ZA201104340B/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0471055B1 (en) | 1990-03-02 | 1995-07-26 | MAGALDI, Mario | Steam generating system and method for discharge of ash |
WO2008023393A1 (en) | 2006-08-22 | 2008-02-28 | Magaldi Power S.P.A. | Extraction and air/water cooling system for large quantities of heavy ashes |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102287814A (en) * | 2011-09-01 | 2011-12-21 | 中国华能集团清洁能源技术研究院有限公司 | Two-stage wind-water joint cooling scraper-type cold slag conveyer |
Also Published As
Publication number | Publication date |
---|---|
WO2010067312A3 (en) | 2011-04-21 |
BRPI0923347A2 (en) | 2019-04-02 |
EP2368070A2 (en) | 2011-09-28 |
ZA201104340B (en) | 2012-02-29 |
US20110297061A1 (en) | 2011-12-08 |
AR076449A1 (en) | 2011-06-15 |
CA2746849A1 (en) | 2010-06-17 |
IT1392240B1 (en) | 2012-02-22 |
AU2009325882A1 (en) | 2011-07-07 |
EA201100940A1 (en) | 2012-03-30 |
CN102272525A (en) | 2011-12-07 |
MX2011006263A (en) | 2011-09-06 |
JP2012511692A (en) | 2012-05-24 |
ITRM20080662A1 (en) | 2010-06-13 |
KR20110106362A (en) | 2011-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100294457A1 (en) | Extraction and air/water cooling system for large quantities of heavy ashes | |
AU2009341208B2 (en) | Thermal power plant using low-grade coal as fuel | |
US20110297061A1 (en) | Extracting and cooling system for large flows of heavy ashes with efficiency increase | |
JP6343033B2 (en) | High moisture, low calorific value drying and moisture recovery method and apparatus for power generation facilities | |
CN105258134B (en) | Coal sludge mixture burning control system based on two medium flue gas dryings and CFBB | |
US20100170425A1 (en) | Cooling system for the dry extraction of heavy ashes from boilers | |
WO2007134874A1 (en) | Cooling system for dry extraction of heavy bottom ash for furnaces during the storing step at the hopper | |
KR20110130519A (en) | Reagent drying via excess air preheat | |
CN105864800B (en) | A kind of sludge anhydration burning technique | |
JP5569547B2 (en) | Sludge treatment equipment | |
CN204006066U (en) | A kind of fine cleaned coal drying system dust treatment plant | |
TW202309444A (en) | Sludge incineration system and sludge incineration method | |
CN110436740A (en) | A kind of sludge classification desiccation gasification coupling coal generating system and its process | |
CN104154554B (en) | A kind of fine cleaned coal dehumidification system dust disposal technique | |
CN101066846B (en) | Technological process of using fume afterheat of cement kiln in preheating and humidifying raw material | |
JP2000140679A (en) | Automatic water injecting device of coal bunker for pulverized coal mill | |
CN204024733U (en) | Draw gas and become back pressure turbine formula material cooling residual heat power generation system | |
JP5956210B2 (en) | Start-up method of pressurized flow furnace system | |
CN208349287U (en) | A kind of coal chemical industry solid waste utilization of resources system | |
KR20090050087A (en) | Extraction and air/water cooling system for large quantities of heavy ashes | |
JP2013200087A (en) | Operation method of pressurized fluidized bed furnace system | |
JP7118854B2 (en) | Ash processing system, power plant and control method for ash processing system | |
JP5832944B2 (en) | Emergency stop method for pressurized flow furnace system | |
WO2012137011A2 (en) | Biomass plant | |
JP2013200088A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980153843.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09801556 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011540308 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2011/006263 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2746849 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009325882 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009801556 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4597/CHENP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2009325882 Country of ref document: AU Date of ref document: 20091209 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201100940 Country of ref document: EA |
|
ENP | Entry into the national phase |
Ref document number: 20117016167 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13139134 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI0923347 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI0923347 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110610 |