WO2010066999A1 - Procédé et dispositif de traitement d'au moins un composé transporté dans un liquide - Google Patents

Procédé et dispositif de traitement d'au moins un composé transporté dans un liquide Download PDF

Info

Publication number
WO2010066999A1
WO2010066999A1 PCT/FR2009/052434 FR2009052434W WO2010066999A1 WO 2010066999 A1 WO2010066999 A1 WO 2010066999A1 FR 2009052434 W FR2009052434 W FR 2009052434W WO 2010066999 A1 WO2010066999 A1 WO 2010066999A1
Authority
WO
WIPO (PCT)
Prior art keywords
radial
cavitation
chamber
liquid
inlet
Prior art date
Application number
PCT/FR2009/052434
Other languages
English (en)
Inventor
Yves Lecoffre
Original Assignee
Rc - Lux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40822980&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010066999(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rc - Lux filed Critical Rc - Lux
Priority to BRPI0922556 priority Critical patent/BRPI0922556B1/pt
Priority to EP09803818.5A priority patent/EP2355921B1/fr
Priority to US13/133,308 priority patent/US9579614B2/en
Publication of WO2010066999A1 publication Critical patent/WO2010066999A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/44Mixers in which the components are pressed through slits
    • B01F25/441Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits
    • B01F25/4412Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits the slits being formed between opposed planar surfaces, e.g. pushed again each other by springs
    • B01F25/44121Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits the slits being formed between opposed planar surfaces, e.g. pushed again each other by springs with a plurality of parallel slits, e.g. formed between stacked plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/44Mixers in which the components are pressed through slits
    • B01F25/441Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits
    • B01F25/4412Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits the slits being formed between opposed planar surfaces, e.g. pushed again each other by springs
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/322Volatile compounds, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • C02F2101/363PCB's; PCP's
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3223Single elongated lamp located on the central axis of a turbular reactor

Definitions

  • the present invention relates to the field of the treatment of compounds, such as compounds or chemical or organic species or microorganisms.
  • Undesirable chemical compounds are often found in polluted water, for example by volatile compounds such as hydrocarbons or chlorinated compounds (trichlorethylene for example) or by low volatility compounds such as PCBs (Polychlorobiphenyl) PCP (Pentachlorophenol) used as fungicides or certain molecules considered as endocrine disruptors. These bodies are most often carcinogenic and cause disorders in animals and men.
  • US 6,200,486 discloses a device which comprises an inner cylindrical wall having orifices and an outer cylindrical wall, forming a large gap therebetween. As in the documents cited in the preceding paragraph, the flow at the outlet of the orifices is in the form of jets in this large space.
  • US 4,585,357 discloses a device which comprises a radial micro-slot in front of which is installed, at a great distance, a deflection wall. Here again, the flow through the slit produces dispersion jets.
  • JP 11 42432 discloses a device in which two opposite flows collide. The resulting flow flows radially and is discharged into a peripheral evacuation chamber, again in the form of dispersion jets.
  • DE 3728946 discloses a device in which an axial flow is deflected to a radial chamber which has a peripheral opening. This chamber is frustoconical and formed so that its thickness is reduced by going outwards. Turbulence effects occur only beyond the peripheral opening of the radial chamber in the large exhaust chamber.
  • the document JP 2008/207099 describes a device in which the liquid is introduced axially into a blind hole and is evacuated by divergent frustoconical radial channels arranged in the wall of the blind hole, away from the bottom. It is in fact, in each frustoconical radial channel diverging from a Venturi type operation, axially to this channel.
  • the present invention aims to produce a particular cavitation capable of improving the mechanical and / or chemical and / or bacteriological and / or micro-organisms on the compound or compounds carried in a liquid to be treated.
  • the present invention is based on cavitation which causes the formation of bubbles or pockets of vapor in a liquid under the effect of depressions and in which the bubbles or pockets of vapor produced during this depression then condense abruptly when the pressure is rising.
  • this rapid condensation also called collapse, takes place in times of for example between one tenth of a second and one microsecond depending on the initial size of the bubble or pocket, this reaction being able to be fast enough for the gases are compressed and heat up to higher temperatures for example at 2000 0 C, thus producing a plasma.
  • the present invention seeks in particular to increase the combined effects of the intense turbulence prevailing in the collapse zone of bubbles or cavitation pockets and very high speeds of the wall of the latter; and / or to increase the effects resulting from the plasma produced in the bubbles or cavitation pockets and capable in particular of producing radiation in the liquid; and / or destroying compounds present in bubbles or cavitation pockets; and / or generating the production of molecules, ions or species or chemical radicals capable of migrating into the liquid and acting on the compounds that the liquid carries; and / or to produce intense sound waves in the liquid.
  • the present invention firstly relates to a method of treating a compound, such as a chemical compound and / or organic and / or a microorganism, carried by a liquid.
  • This method is such that two substantially radial faces disposed opposite one another delimit between them a radial cavitation chamber, one of said faces having an axial inlet orifice arranged axially in its central part and said faces forming a peripheral opening.
  • the liquid, fed axially through the axial inlet orifice, is deflected and flows into said radial cavitation chamber in various radial directions towards the peripheral exit opening; and that the thickness of said cavitation chamber (18) between said radial faces is chosen to be between 0.1 and 0.25 times the diameter of said axial inlet orifice, preferably 0, 14.
  • the liquid flow conditions generate bubbles or pockets of cavitation in the first portion of the radial flow around the central inlet port. Also, bubbles or cavitation pockets implode before reaching the peripheral exit opening, in order to at least partially treat said compound in said cavitation chamber.
  • the distance between the axis of said central inlet port and said peripheral opening of said cavitation chamber may be chosen to be greater than twice the diameter of said central inlet port.
  • the ratio between the absolute pressure upstream of said cavitation chamber and the pressure downstream of this chamber may be between 1, 5 and 6.
  • the present invention also relates to a device for treating at least one compound, such as a chemical compound and / or organic and / or a micro-organic, transported by a liquid.
  • This device comprises a first element having a substantially radial face and a substantially axial inlet of the liquid inlet and a second element having a substantially radial face.
  • Said radial faces are arranged vis-à-vis so as to form therebetween a space forming a radial cavitation chamber having a peripheral exit opening, said axial orifice input of the first element opening into a central portion of the cavitation chamber opposite said radial face of the second element.
  • the thickness of said cavitation chamber, between said radial faces, is between 0.1 and 0.25 times the diameter of said axial inlet orifice, preferably 0, 14.
  • the liquid brought axially through the axial inlet orifice, is deflected in the central inlet portion and flows into said radial cavitation chamber in various radial directions towards the peripheral exit opening and the conditions of the the liquid flow generates bubbles or pockets of cavitation in the first part of this flow, around the central inlet orifice, and that the bubbles or cavitation pockets implode before reaching the peripheral exit opening, to at least partially treat said compound.
  • Said radial faces delimiting said radial cavitation chamber may be parallel.
  • the distance between the axis of the central inlet orifice and said peripheral opening of said cavitation chamber may be greater than twice the diameter of said central inlet orifice.
  • Said peripheral outlet opening of said radial cavitation chamber may communicate with a secondary chamber connected to at least one outlet passage.
  • Another processing means may be associated with said secondary chamber, in particular an emission means generating ultraviolet radiation in said secondary chamber.
  • the first element and the second element may comprise two walls forming between them a space, one of the walls having a plurality of liquid inlet ports and the other wall having a plurality of outlet orifices, so as to forming in said space and between said inlet ports and said outlet ports a plurality of cavitation chambers.
  • the inlet ports may open into an inlet manifold and the outlets may open into the inlet manifold.
  • an outlet collecting chamber said walls being annular and concentric, preferably cylindrical or concentric, or flat.
  • Said first element may have a chamfer on the edge of said axial inlet orifice, this chamfer can be rounded and have a radius of between 0.1 and 0.5 times the distance between said radial faces in the central part of the chamber.
  • cavitation or be frustoconical being disposed at an angle of between 30 ° and 60 °, preferably at 45 °, and a height, along the axis of said axial inlet port, between 0, 1 and 0.5 times the distance between said radial faces in the central portion of the cavitation chamber.
  • FIG. 1 shows a longitudinal section of a treatment device
  • FIG. 2 shows a cross section along H-II of the processing device of Figure 1;
  • FIG. 3 represents an enlarged radial section of the cavitation chamber of the treatment device of FIG. 1;
  • FIG. 4 shows a longitudinal section of an alternative embodiment of the treatment device
  • FIG. 5 represents a radial section along V-V of the processing device of FIG. 4;
  • FIG. 6 shows a longitudinal section of a variant of the treatment device
  • FIG. 7 represents an internal side view of the processing device of FIG. 6; - Figure 8 shows an enlarged radial section of the central portion of the cavitation chamber, according to an alternative embodiment; and - Figure 9 shows an enlarged radial section of the central portion of the cavitation chamber, according to another embodiment.
  • a treatment device 1 represented in FIGS. 1 to 3 comprises a casing 2 which comprises two opposite shells 3 and 4 having a vertical axis 5 and delimiting between them a radial cavity
  • a spacer 9 which comprises a disk 10 which has a radial face 1 1 resting on the annular radial face 7 of the shell 3 and which comprises a cylindrical peripheral portion 12 projecting from the disk 10 and resting on the annular radial face 8 of the shell 4.
  • the shells 3 and 4 have adjacent peripheral portions 13 and 14 connected by bolts 15 to fix them and maintain the supports above.
  • An annular sealing gasket 16 is installed between the periphery of the cylindrical peripheral portion 12 of the spacer 9 and the periphery of the cavity 6, in the annular zone of the radial faces vis-à-vis the adjacent peripheral parts 13 and 14 hulls 3 and 4.
  • the shell 3 Within its annular radial face 7, the shell 3 (first element) has a recess 17 which delimits, with the radial face 11 of the disk 10 (second element), a cavitation chamber 18, the bottom 19 of the recess 17 extending radially, parallel to the radial face 1 1 of the disc 10.
  • the shell 3 has an axial passage 20 which has a central terminal orifice 21, for example cylindrical, which opens axially into the central portion of the cavitation chamber 18, through the radial face constituted by the bottom 19 of the recess 17
  • the shell 4 has an axial passage 25 which opens axially, for example through a central terminal orifice 26, in the central part of the secondary chamber 27 formed in the spacer 9, opposite the radial cavitation chamber 18.
  • the passage 25 is engaged and sealingly attached to the end of the liquid discharge duct 28, for example by an annular gland system 29.
  • the disk 10 of the spacer 9 has a plurality of through passages 30 which open on the one hand in the periphery of the radial cavitation chamber 18 and on the other hand in the secondary chamber 27.
  • the through passages 30 are regularly distributed over a circumference so as to constitute a peripheral outlet opening of the radial cavitation chamber 18.
  • These through passages 30 may be formed by cylindrical holes or circumferential slots.
  • the liquid 23, supplied by the supply duct 22, is introduced into the central portion of the radial cavitation chamber 18 through the central orifice 21, then is deflected radially in this central portion, then flows into the radial cavitation chamber 18 in various radial directions towards the peripheral outlet opening formed by the through passages 30. Then, the liquid from the through passages 30 is collected in the secondary chamber 27, then discharged through the exhaust duct 28.
  • the conditions of the radial flow of the liquid 23 in the radial cavitation chamber 18, from the central inlet orifice 21 to the peripheral through passages 30, are such that this flow is hydrodynamic, that bubbles or cavitation pockets 31 appear in the first part of this flow, around the central inlet orifice 21, then collapse or implode immediately before, preferably well before, that these bubbles or cavitation pockets 31 reach the through passages output devices 30.
  • the phenomenon of creation and collapse of bubbles or pockets of cavitation results from the effects of depressions followed immediately overpressures.
  • gases dissolved in the liquid tend to be released in these bubbles.
  • an adiabatic compression occurs which generates very high temperatures and very high pressures in the imploding bubbles.
  • the cavitation produced is a hydrodynamic cavitation which results from the acceleration of the flow due to a decrease in its passage section followed by a gradual increase of said passage section in a quasi radial direction.
  • This cavitation makes it possible to create a very sudden rise in pressure in the zone of condensation or collapse, which has the effect of increasing the intensity of the effects described above for a given flow rate.
  • the particular form of this device is that the phenomenon is produced with a loss of pressure and therefore a minimum energy expenditure.
  • the cavitation pockets or cavities 31 may comprise a pocket or annular main bubble very close to the inlet orifice.
  • This annular main pocket or bubble is divided into smaller sized pockets or bubbles that move away from the center of the chamber and condense, collapse, or implode.
  • the cavitation bubbles or cavities 31 produced are able to at least partially treat the compound or compounds transported by the liquid.
  • This treatment can be of a chemical, thermal, chemical and thermal order and / or possibly sonic order because the cavitation phenomenon can possibly produce sonic waves radiating in the liquid.
  • the formation against the wall 19 and the collapse of the bubbles or vapor pockets 31 can be located in a virtually predetermined manner and / or can be controlled. Because of the adapted thickness of the radial cavitation chamber 18 with respect to the cavitation bubbles or cavities 31 produced, the cavitation concerns all the liquid to be treated flowing in this chamber 18. In the case where the liquid such as water carries a chemical compound or compounds, specific chemical radicals or species can be formed in cavitation bubbles 3 1 produced and collapsing, these specific chemical radicals or species being suitable for react with these chemical compounds and produce other compounds.
  • the chemical effects can produce the destruction of compounds present in the bubbles, generally volatile compounds initially dissolved in the liquid by production of molecules, ions or radicals able to migrate in the liquid and to have an action on the compounds that it transported.
  • the oxidation by OH ° radicals makes it possible to destroy dissolved molecules that are difficult to eliminate.
  • the cavitation bubbles 31 produced can make it possible to attack these microorganisms and / or films or clusters of the latter, to destroy them, to disperse or dislocate them by chemical, mechanical or intense pressure waves.
  • the flow conditions of the liquid in the cavitation chamber 18 of the treatment device 1 may result from a subsequent dimensioning.
  • the thickness of the cavitation chamber 18 between the opposite radial faces 7 and 19 may be between 0.1 and 0.25 times the diameter of the central supply orifice 21.
  • the thickness of the cavitation chamber 18 may in particular be equal to 0.14 times the diameter of the central supply orifice 21.
  • the distance between the axis 5 of the central supply orifice 21 and the circumference on which is formed the peripheral opening of the cavitation chamber 18 determined by the through passages 30 may be greater than 2.5 times the diameter of the central supply port 21
  • the ratio of the inlet pressure to the outlet pressure may be in the range of 1.5 to 6.
  • the diameter of the supply orifice 21 may be equal to 8 mm
  • the thickness of the chamber of cavitation 18 may be equal to 1, 12 mm
  • the distance between the axis 5 of the central supply orifice 21 and the circumference on which is formed the peripheral opening of the cavitation chamber 18 determined by the through passages 30 may be equal to 30 mm.
  • said first element 3 may have a rounded bevel 21 arranged on the edge of the axial inlet orifice 21 and joining the face 17. This rounded bevel 21 may have a radius r between 0, 1 and 0.5 times the distance between the radial faces 1 1 and 19 in the central portion of the cavitation chamber 18.
  • said first element 3 may have a frustoconical bevel 21b arranged on the edge of the axial inlet orifice 21.
  • This frustoconical bevel 21b may be arranged at an angle of between 30.degree. ° and 60 °, preferably at 45 °.
  • Its height h, along the axis of the axial inlet orifice 21, can be between 0, 1 and 0.5 times the distance between the radial faces 1 1 and 19 in the central part of the cavitation chamber 18. .
  • the chamfers 21a or 21b may facilitate the formation of the cavitation pocket 31 at their periphery.
  • FIGS. 4 and 5 it can be seen that another processing device 100 has been shown which comprises a cylinder 101 (first element) which has a radial end face 102 in which a cylindrical recess 103 is formed and which comprises a circular disk 104 (second element) remotely engaged in the cylindrical recess 103 and fixed axially against three inner fingers 105 of a circular washer 106 resting on the radial end face 102 of the cylinder 101.
  • a cylinder 101 first element
  • second element remotely engaged in the cylindrical recess 103 and fixed axially against three inner fingers 105 of a circular washer 106 resting on the radial end face 102 of the cylinder 101.
  • the stack constituted by the cylinder 101 and the circular washer 106 is engaged in the end of an outer cylindrical tube 107 so that the washer bears on an inner shoulder 108 of this tube 107.
  • peripheral shoulder 109 and fixing screws 1 10 pass through this shoulder and are screwed into the cylindrical tube 107 to fix this stacking.
  • An annular seal 1 1 1 seals between said stack and the cylindrical tube 107.
  • the circular disc 104 is placed in the cylindrical recess
  • the radial bottom 103 a of the recess 103 is provided with projecting bosses 103b against which the radial face 1 12 of the disc
  • bosses 103b are placed at the periphery so as not to interfere with the flow of the liquid.
  • the bosses 103b also center the disc 104 in the recess 103.
  • the cylinder 101 has an axial passage 1 15 which has a central central orifice 1 16, for example cylindrical, which opens axially in the central part of the cavitation chamber 1 13.
  • a tip 1 17 in which is fixed sealingly the end of the conduit 1 18 for supplying a liquid.
  • the structure thus formed is such that the cavitation chamber 13 is equivalent to the cavitation chamber 18 of the treatment device 1.
  • the treatment device 100 may advantageously be followed by another treatment device 100a as described below.
  • the other end of the cylindrical tube 107 is closed by a radial wall January 19 and has a lateral outlet opening 120 in the vicinity of this wall January 19.
  • a conduit not shown can be connected to the outlet side opening 120 to evacuate the treated liquid.
  • the wall 1 19 is penetrated in a sealed manner, thanks to a seal 1 19a held by a sleeve January 19b by an inner axial cylindrical tube 121, for example quartz, a closed end 122 is located at near the circular disc 104, the inner fingers 105 of the circular washer 106 being extended by lugs 123 for centering and holding the end 122 of the inner cylindrical tube 121.
  • an inner axial cylindrical tube 121 for example quartz
  • the inner tube 121 is connected to known means, not shown, capable of generating in this tube 121 ultraviolet radiation radiating in the annular chamber 124 formed between the outer tube 107 and the inner tube 120.
  • a liquid such as water carrying one or more compounds to be treated is, in a first step, treated by the treatment device 100 and immediately, in a second step, treated by the treatment device 100a, in the chamber annular secondary 124 by the ultraviolet radiation generated by the inner tube 120, then discharged through the outlet side opening 120.
  • the radiation radiates throughout the annular secondary chamber 124.
  • the disk 104 being quartz, the radiation can also reach the passage 1 through 14 and the cavitation chamber 13.
  • the means for generating radiation could be placed around the outer tube 107.
  • a processing device 200 comprises an inner cylindrical wall 201 and an outer cylindrical wall 202, which are concentric and which delimit between them a cylindrical space 203 of constant thickness closed at its ends by any known means.
  • the inner cylindrical wall 201 has a plurality of inlet orifices 204 opening on the one hand in the space 203 and on the other hand in the interior space 205 of this wall 201, this inner space 205 forming a longitudinal collector chamber entrance.
  • the outer cylindrical wall 202 has a plurality of outlet orifices 206 opening on the one hand in the space 203 and on the other hand in a peripheral space 207 delimited by a wall cylindrical peripheral 208, the peripheral space 207 forming an annular longitudinal outlet collector chamber.
  • the outlet orifices 206 are distributed around and away from the inlet orifices 204 so as to form a plurality of substantially radial cavitation chambers 209 with substantially parallel flows, functioning respectively as the cavitation chambers described in the preceding examples.
  • the inlet orifices 204 are distributed at equal distances from each other, around the inner cylindrical wall 201 and longitudinally to the latter, and the outlet orifices 206 are distributed at equal distances from each other, all around the outer cylindrical wall 202 and longitudinally to the latter, being offset by a half-step relative to the inlet ports 204, circumferentially and longitudinally.
  • the outlet orifices 206 advantageously have sections much larger than the sections of the inlet orifices 204.
  • the internal space 205 forming an inlet collecting chamber is closed at one end by a radial wall 205a and can communicate at its other end with an axial duct of FIG. 210 input adapted to be connected to a source of liquid to be treated.
  • the peripheral space 207 forming an outlet collecting chamber is closed at one end by an annular wall 207a and can communicate with an axial outlet duct 21 1 for the liquid treated in parallel in the cavitation chambers 209, this axial outlet duct 21 1 being opposed to the axial inlet conduit 210.
  • the inner and outer cylindrical walls 201 and 202 are carried at one end by the wall 205a and at the other end by the wall 207a, sealingly through annular joints 205b and 207b.
  • the walls 201 and 202 could have other annular shapes, for example be frustoconical, or could be flat.
  • treatment devices according to any one of those just described, could be put in series, the liquid outlet of one being in communication with the liquid inlet of the next.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Water Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Procédé et dispositif de traitement d'un composé, tel qu'un composé chimique et/ou organique et/ou un micro-organisme, transporté par un liquide, dans lesquels le liquide est amené axialement, par un orifice axial d' entrée (21), dans une partie centrale d' entrée d'une chambre radiale de cavitation (18) présentant une ouverture périphérique de sortie (30), de telle sorte que le liquide est dévié dans la partie centrale d'entrée et s'écoule dans la chambre radiale selon diverses directions radiales vers l'ouverture périphérique de sortie, et dans lesquels, entre l'orifice d' entrée et l'ouverture périphérique de sortie de la chambre radiale, les conditions de l' écoulement du liquide sont aptes à générer des bulles ou poches de cavitation (31) puis à provoquer le collapse ou l'implosion de ces bulles ou poches afin de traiter au moins partiellement ledit composé.

Description

Procédé et dispositif de traitement d'au moins un composé transporté dans un liquide
La présente invention concerne le domaine du traitement de composés, tels que des composés ou des espèces chimiques ou organiques ou des micro-organismes.
Des composés chimiques indésirables se rencontrent très souvent dans les eaux polluées, par exemple par des composés volatils tels les hydrocarbures ou les composés chlorés (Trichloréthylène par exemple) ou par des composés peu volatils comme les PCB (Polychlorobiphényle) des PCP (Pentachlorophénol) utilisés comme fongicides ou certaines molécules considérées comme des perturbateurs endocriniens. Ces corps sont le plus souvent cancérigènes et sont à l'origine de troubles chez les animaux et les hommes.
Actuellement, la destruction ou le transfert de ces corps indésirables se font en utilisant plusieurs techniques dont l'adsorption sur charbon actif, la thermolyse, la réduction électrolytique, l'irradiation par rayonnements ultraviolets ou l'oxydation par composés chimiques comme l'ozone, le peroxyde ou le réactif de Fenton. Certains traitements associent plusieurs de ces procédés élémentaires . Dans tous les cas, il s'agit de procédés onéreux et de mise en œuvre délicate. L'eau peut également contenir des micro-organismes vivants tels que des bactéries ou des algues microscopiques. Il est souvent souhaitable de les détruire pour éviter des effets pathologiques. Cette destruction se fait avec des techniques équivalentes à celles utilisées pour les composés chimiques, par exemple par stérilisation par le chlore ou le peroxyde, ou par irradiation par rayonnements ultra violets.
Pour effectuer certains traitements, il a aussi été proposé l'usage d'ondes ultrasoniques émises dans des liquides à traiter et/ou l'usage de la cavitation à l'intérieur des liquides à traiter s' écoulant dans des tubes de venturi ou dans des tubes équivalents à écoulement axial. De tels dispositions sont décrites dans les documents EP 1 738 775 , US 2007/0280861 , WO2005/028375).
Les documents US 5 749 650, US 5 899 564 et US 2006/256645 décrivent des dispositifs de traitement dans lesquels le liquide passe radialement au travers de micro-fentes annulaires aménagées entre des couronnes axialement superposées et réglables axialement. Le liquide s 'échappe des fentes en formant des jets radiaux qui se dispersent dans des grands espaces périphériques d' évacuation, ces jets produisant des turbulences dans ces espaces, sans formation de poche de cavitation.
Le document US 6 200 486 décrit un dispositif qui comprend une paroi cylindrique intérieure présentant des orifices et une paroi cylindrique extérieure, formant entre elles un grand espace. Comme dans les documents cités dans le paragraphe qui précède, l' écoulement à la sortie des orifices se présente sous la forme de jets dans ce grand espace.
Le document US 4 585 357 décrit un dispositif qui comprend une micro-fente radiale en face de laquelle est installée, à grande distance, une paroi de déviation. Là également, l' écoulement au travers de la fente produit des jets de dispersion.
Le document JP 1 1 42432 décrit un dispositif dans lequel deux écoulements opposés se collisionnent. L ' écoulement résultant s ' écoule radialement et est déchargé dans une chambre périphérique d' évacuation, là également sous forme de jets de dispersion. Le document DE 3728946 décrit un dispositif dans lequel un écoulement axial est dévié vers une chambre radiale qui présente une ouverture périphérique. Cette chambre est tronconique et formée de façon à ce que son épaisseur se réduise en allant vers l' extérieur. Des effets de turbulences se produisent uniquement au-delà de l'ouverture périphérique de la chambre radiale, dans la grande chambre d' évacuation.
Le document JP 2008/207099 décrit un dispositif dans lequel le liquide est introduit axialement dans un trou borgne et est évacué par des canaux radiaux tronconiques divergents aménagés dans la paroi du trou borgne, à distance du fond. Il s' agit en fait, dans chaque canal radial tronconique divergent d'un fonctionnement de type Venturi, axialement à ce canal.
La présente invention a pour but de produire une cavitation particulière apte à améliorer les effets mécaniques et/ou chimiques et/ou bactériologiques et/ou sur les micro-organismes, sur le ou les composés transportés dans un liquide à traiter.
Pour cela, la présente invention est basée sur une cavitation qui engendre la formation de bulles ou poches de vapeur dans un liquide sous l'effet de dépressions et dans laquelle les bulles ou poches de vapeur produites pendant cette mise en dépression se condensent ensuite brutalement lorsque la pression remonte. Sous certaines conditions, cette condensation rapide, également appelée collapse, s'effectue dans des durées comprises par exemple entre un dix millième de seconde et une microseconde selon la dimension initiale de la bulle ou de la poche, cette réaction pouvant être suffisamment rapide pour que les gaz se compriment et s'échauffent jusqu'à des températures supérieures par exemple à 20000C, produisant ainsi un plasma. C ' est ainsi que la présente invention cherche en particulier à accroître les effets combinés de la turbulence intense qui règne dans la zone de collapse des bulles ou poches de cavitation et des vitesses très élevées de la paroi de ces dernières ; et/ou à accroître les effets résultant du plasma produit dans les bulles ou poches de cavitation et apte notamment à produire des rayonnements dans le liquide ; et/ou à détruire des composés présents dans les bulles ou poches de cavitation ; et/ou à engendrer la production de molécules, d'ions ou d' espèces ou de radicaux chimiques susceptibles de migrer dans le liquide et d' agir sur les composés que le liquide transporte ; et/ou à produire des ondes sonores intenses dans le liquide.
La présente invention a tout d' abord pour objet un procédé de traitement d'un composé, tel qu'un composé chimique et/ou organique et/ou un micro-organisme, transporté par un liquide. Ce procédé est tel que deux faces substantiellement radiales disposées en vis-à-vis délimitent entre elles une chambre radiale de cavitation, l'une desdites faces présentant un orifice axial d' entrée aménagé axialement dans sa partie centrale et lesdites faces formant une ouverture périphérique de sortie ; que le liquide, amené axialement par l'orifice axial d'entrée, est dévié et s ' écoule dans ladite chambre radiale de cavitation selon diverses directions radiales vers l'ouverture périphérique de sortie ; et que l'épaisseur de ladite chambre de cavitation ( 18), entre lesdites faces radiales, est choisie de façon à être comprise entre 0, 1 et 0,25 fois le diamètre dudit orifice axial d' entrée, préférentiellement 0, 14.
Ainsi, les conditions de l' écoulement du liquide génèrent des bulles ou poches de cavitation dans la première partie de l' écoulement radial, autour de l'orifice central d' entrée. Ainsi également, les bulles ou poches de cavitation implosent avant d'atteindre l'ouverture périphérique de sortie, afin de traiter au moins partiellement ledit composé dans ladite chambre de cavitation.
La distance entre l'axe dudit orifice central d' entrée et ladite ouverture périphérique de ladite chambre de cavitation peut être choisie de façon à être supérieure à deux fois le diamètre dudit orifice central d' entrée.
Le rapport entre la pression absolue en amont de ladite chambre de cavitation et la pression en aval de cette chambre peut être compris entre 1 ,5 et 6. La présente invention a également pour objet un dispositif de traitement d' au moins un composé, tel qu'un composé chimique et/ou organique et/ou un micro-organique, transporté par un liquide.
Ce dispositif comprend un premier élément présentant une face substantiellement radiale et un orifice substantiellement axial d' entrée du liquide et un second élément présentant une face substantiellement radiale.
Lesdites faces radiales sont disposées en vis-à-vis de façon à former entre elle un espace formant une chambre radiale de cavitation présentant une ouverture périphérique de sortie, ledit orifice axial d' entrée du premier élément débouchant dans une partie centrale de cette chambre de cavitation en face de ladite face radiale du second élément.
L ' épaisseur de ladite chambre de cavitation, entre lesdites faces radiales, est comprise entre 0, 1 et 0,25 fois le diamètre dudit orifice axial d' entrée, préférentiellement 0, 14.
Ainsi, le liquide, amené axialement par l'orifice axial d'entrée, est dévié dans la partie centrale d'entrée et s ' écoule dans ladite chambre radiale de cavitation selon diverses directions radiales vers l'ouverture périphérique de sortie et les conditions de l' écoulement du liquide génèrent des bulles ou poches de cavitation dans la première partie de cet écoulement, autour de l'orifice central d' entrée, et que les bulles ou poches de cavitation implosent avant d' atteindre l'ouverture périphérique de sortie, afin de traiter au moins partiellement ledit composé.
Lesdites faces radiales délimitant ladite chambre radiale de cavitation peuvent être parallèles.
La distance entre l' axe de l'orifice central d' entrée et ladite ouverture périphérique de ladite chambre de cavitation peut être supérieure à deux fois le diamètre dudit orifice central d' entrée.
Ladite ouverture périphérique de sortie de ladite chambre radiale de cavitation peut communiquer avec une chambre secondaire reliée à au moins un passage de sortie.
Un autre moyen de traitement peut être associé à ladite chambre secondaire, en particulier un moyen d' émission générant un rayonnement ultraviolet dans ladite chambre secondaire.
Le premier élément et le second élément peuvent comprendre deux parois ménageant entre elles un espace, l'une des parois présentant une pluralité d'orifices d'entrée du liquide et l' autre paroi présentant une pluralité d'orifices de sortie, de façon à former, dans ledit espace et entre lesdits orifices d' entrée et lesdits orifices de sortie, une pluralité de chambres de cavitation.
Lesdits orifices d' entrée peuvent déboucher dans une chambre collectrice d' entrée et les orifices de sortie peuvent déboucher dans une chambre collectrice de sortie, lesdites parois pouvant être annulaires et concentriques, préférentiellement cylindriques ou concentriques, ou plates.
Ledit premier élément peut présenter un chanfrein sur le bord dudit orifice axial d' entrée, ce chanfrein pouvant être arrondi et présenter un rayon compris entre 0, 1 et 0,5 fois la distance entre lesdites faces radiales dans la partie centrale de la chambre de cavitation ou être tronconique en étant disposé selon un angle compris entre 30° et 60°, préférentiellement à 45° , et sur une hauteur, selon l' axe dudit orifice axial d' entrée, comprise entre 0, 1 et 0,5 fois la distance entre lesdites faces radiales dans la partie centrale de la chambre de cavitation.
La présente invention sera mieux comprise à l'étude de dispositifs de traitement à chambre de cavitation, décrits à titre d'exemples non limitatifs et illustrés par le dessin sur lequel :
- la figure 1 représente une coupe longitudinale d'un dispositif de traitement ;
- la figure 2 représente une coupe transversale selon H-II du dispositif de traitement de la figure 1 ; - la figure 3 représente une coupe radiale agrandie de la chambre de cavitation du dispositif de traitement de la figure 1 ;
- la figure 4 représente une coupe longitudinale d'une variante de réalisation du dispositif de traitement ;
- la figure 5 représente une coupe radiale selon V-V du dispositif de traitement de la figure 4 ;
- la figure 6 représente une coupe longitudinale d'une variante du dispositif de traitement ;
- la figure 7 représente une vue latérale intérieure du dispositif de traitement de la figure 6 ; - la figure 8 représente une coupe radiale agrandie de la partie centrale de la chambre de cavitation, selon une variante de réalisation ; et - la figure 9 représente une coupe radiale agrandie de la partie centrale de la chambre de cavitation, selon une autre variante de réalisation.
Un dispositif de traitement 1 représenté sur les figures 1 à 3 comprend un carter 2 qui comprend deux coques opposées 3 et 4 présentant un axe vertical 5 et délimitant entre elles une cavité radiale
6 qui est formée entre une face radiale annulaire 7 de la coque 3 et une face radiale annulaire 8 de la coque 4. Les coques 3 et 4 peuvent être identiques et placées à l'opposé l'une de l'autre. Dans la cavité radiale 6 est disposée une entretoise 9 qui comprend un disque 10 qui présente une face radiale 1 1 en appui sur la face radiale annulaire 7 de la coque 3 et qui comprend une partie périphérique cylindrique 12 en saillie par rapport au disque 10 et en appui sur la face radiale annulaire 8 de la coque 4. Les coques 3 et 4 présentent des parties périphériques adjacentes 13 et 14 reliées par des boulons 15 pour les fixer entre elles et maintenir les appuis ci-dessus.
Un joint annulaire d' étanchéité 16 est installé entre la périphérie de la partie périphérique cylindrique 12 de l' entretoise 9 et la périphérie de la cavité 6, dans la zone annulaire des faces radiales en vis-à-vis des parties périphériques adj acentes 13 et 14 des coques 3 et 4.
A l' intérieur de sa face radiale annulaire 7, la coque 3 (premier élément) présente un évidement 17 qui délimite, avec la face radiale 1 1 du disque 10 (second élément), une chambre de cavitation 18, le fond 19 de l' évidement 17 s 'étendant radialement, parallèlement à la face radiale 1 1 du disque 10.
La coque 3 présente un passage axial 20 qui présente un orifice central terminal 21 , par exemple cylindrique, qui débouche axialement dans la partie centrale de la chambre de cavitation 18 , au travers de la face radiale constituée par le fond 19 de l' évidement 17. Dans le passage 20 est engagée et fixée de façon étanche l'extrémité du conduit 22 d' amenée d'un liquide 23 , par exemple par un système de presse-étoupe annulaire 24. La coque 4 présente un passage axial 25 qui débouche axialement, par exemple par un orifice central terminal 26, dans la partie centrale de la chambre secondaire 27 formée dans l' entretoise 9, à l'opposé de la chambre radiale de cavitation 18. Dans le passage 25 est engagée et fixée de façon étanche l' extrémité du conduit 28 d' évacuation du liquide 23 , par exemple par un système de presse- étoupe annulaire 29.
Le disque 10 de l 'entretoise 9 présente une pluralité de passages traversants 30 qui débouchent d'une part dans la périphérie de la chambre radiale de cavitation 18 et d' autre part dans la chambre secondaire 27. Les passages traversants 30 sont régulièrement répartis sur une circonférence de façon à constituer une ouverture périphérique de sortie de la chambre radiale de cavitation 18. Ces passages traversants 30 peuvent être formés par des trous cylindriques ou des fentes circonférentielles.
Ainsi, le liquide 23 , amené par le conduit d'amenée 22, est introduit dans la partie centrale de la chambre radiale de cavitation 18 par l'orifice central 21 , puis est dévié radialement dans cette partie centrale, puis s ' écoule dans la chambre radiale de cavitation 18 selon diverses directions radiales vers l'ouverture périphérique de sortie constituée par les passages traversants 30. Puis, le liquide issu des passages traversants 30 est collecté dans la chambre secondaire 27, puis évacué par le conduit d' évacuation 28.
Les conditions de l' écoulement radial du liquide 23 dans la chambre radiale de cavitation 18, depuis l'orifice central d' entrée 21 jusqu' aux passages traversants périphériques 30, sont telles que cet écoulement est hydrodynamique, que des bulles ou poches de cavitation 31 apparaissent dans la première partie de cet écoulement, autour de l'orifice central d' entrée 21 , puis se collapsent ou implosent immédiatement, avant, de préférence bien avant, que ces bulles ou poches de cavitation 3 1 n' atteignent les passages traversants périphériques de sortie 30.
Le phénomène de création et de collapse des bulles ou poches de cavitation résulte des effets de dépressions suivies immédiatement de surpressions. Lors de la création des bulles, des gaz dissous dans le liquide tendent à se libérer dans ces bulles. Lors du collapse, il se produit une compression adiabatique qui engendre des températures très élevées et des pressions très élevées dans les bulles qui implosent. La cavitation produite est une cavitation hydrodynamique qui résulte de l'accélération de l' écoulement en raison d'une diminution de sa section de passage suivie d'une augmentation progressive de ladite section de passage selon une direction quasi radiale. Cette cavitation permet de créer une remontée en pression très brutale dans la zone de condensation ou collapse, ce qui a pour effet d'accroître l'intensité des effets ci-dessus décrits pour une vitesse d'écoulement donnée. De plus, la forme particulière de ce dispositif fait que le phénomène est produit avec une perte de pression et donc une dépense énergétique minimale.
Les poches ou bulles de cavitation 31 peuvent comprendre une poche ou bulle principale annulaire très voisine de l'orifice d' entrée
21 et collée à ou située contre la face radiale 19 de la coque 3 , alimentée en gaz dissous par le liquide qui s' écoule. Cette poche ou bulle principale annulaire se divise en poches ou bulles de tailles plus petites qui s ' éloignent du centre de la chambre et qui se condensent, collapsent ou implosent.
Grâce au dispositif de traitement 1 , les bulles ou poches de cavitation 31 produites sont aptes à traiter au moins partiellement le ou les composés transportés par le liquide. Ce traitement peut être d'ordre chimique, d'ordre thermique, d'ordre chimique et thermique et/ou éventuellement d'ordre sonique car le phénomène de cavitation peut éventuellement produire des ondes soniques rayonnant dans le liquide.
La formation contre la paroi 19 et le collapse des bulles ou poches de vapeur 31 peuvent être localisés de façon quasiment prédéterminée et/ou peuvent être contrôlés. Du fait de l' épaisseur adaptée de la chambre radiale de cavitation 18 par rapport aux bulles ou poches de cavitation 31 produites, la cavitation intéresse tout le liquide à traiter s 'écoulant dans cette chambre 18. Dans le cas où le liquide tel que de l' eau transporte un ou des composés chimiques, il peut se former des radicaux ou espèces chimiques spécifiques dans les bulles de cavitation 3 1 produites et se collapsant, ces radicaux ou espèces chimiques spécifiques étant aptes à réagir avec ces composés chimiques et produire d'autres composés.
Les effets chimiques peuvent produire la destruction de composés présents dans les bulles, en général des composés volatils initialement dissous dans le liquide par production de molécules, ions ou radicaux susceptibles de migrer dans le liquide et d'avoir une action sur les composés qu'il transporte. Parmi ces actions, l'oxydation par les radicaux OH° permet de détruire des molécules dissoutes difficiles à éliminer.
Dans le cas où le liquide tel que de l' eau transporte un ou des micro-organismes, les bulles de cavitation 31 produites peuvent permettre d' attaquer ces micro-organismes et/ou des films ou amas de ces derniers, pour les détruire, les disperser ou les disloquer par effets chimiques, mécaniques ou par des ondes de pression intense.
Les conditions d' écoulement du liquide dans la chambre de cavitation 18 du dispositif de traitement 1 peuvent résulter d'un dimensionnement suivant.
L 'épaisseur de la chambre de cavitation 18, entre les faces radiales opposées 7 et 19, peut être comprise entre 0, 1 et 0,25 fois le diamètre de l'orifice central d' amenée 21.
L 'épaisseur de la chambre de cavitation 18 peut en particulier être égale à 0, 14 fois le diamètre de l'orifice central d'amenée 21.
La distance entre l'axe 5 de l'orifice central d' amenée 21 et la circonférence sur laquelle est formée l'ouverture périphérique de la chambre de cavitation 18 déterminée par les passages traversants 30 peut être supérieure à 2.5 fois le diamètre de l'orifice central d' amenée 21
Le rapport entre la pression d' entrée et la pression de sortie peut être compris entre 1 ,5 et 6.
Dans un exemple de réalisation, le diamètre de l'orifice d' amenée 21 peut être égal à 8 mm, l' épaisseur de la chambre de cavitation 18 peut être égale à 1 , 12 mm, la distance entre l'axe 5 de l'orifice central d' amenée 21 et la circonférence sur laquelle est formée l'ouverture périphérique de la chambre de cavitation 18 déterminée par les passages traversants 30 peut être égale à 30 mm. Selon une variante de réalisation représentée sur la figure 8, ledit premier élément 3 peut présenter un chanfrein arrondi 21 a aménagé sur le bord de l'orifice axial d'entrée 21 et rejoignant la face 17. Ce chanfrein arrondi 21 a peut présenter un rayon r compris entre 0, 1 et 0,5 fois la distance entre les faces radiales 1 1 et 19 dans la partie centrale de la chambre de cavitation 18.
Selon une autre variante de réalisation représentée sur la figure 9, ledit premier élément 3 peut présenter un chanfrein tronconique 21b aménagé sur le bord de l'orifice axial d' entrée 21. Ce chanfrein tronconique 21 b peut être disposé selon un angle compris entre 30° et 60°, préférentiellement à 45°. Sa hauteur h, selon l' axe de l'orifice axial d' entrée 21 , peut être comprise entre 0, 1 et 0,5 fois la distance entre les faces radiales 1 1 et 19 dans la partie centrale de la chambre de cavitation 18.
Les chanfreins 21 a ou 21b peuvent faciliter la formation de la poche de cavitation 31 à leur périphérie.
En se reportant aux figures 4 et 5 , on peut voir qu'on a représenté un autre dispositif de traitement 100 qui comprend un cylindre 101 (premier élément) qui présente une face frontale radiale 102 dans laquelle est ménagé un évidement cylindrique 103 et qui comprend un disque circulaire 104 (second élément) engagé à distance dans l' évidement cylindrique 103 et fixé axialement contre trois doigts intérieurs 105 d'une rondelle circulaire 106 en appui sur la face frontale radiale 102 du cylindre 101.
L 'empilage constitué par le cylindre 101 et la rondelle circulaire 106 est engagé dans l' extrémité d'un tube cylindrique extérieur 107 de telle sorte que la rondelle soit en appui sur un épaulement intérieur 108 de ce tube 107. Le cylindre 101 présente un épaulement périphérique 109 et des vis de fixation 1 10 traversent cet épaulement et sont vissées dans le tube cylindrique 107 pour fixer cet empilage. Un joint annulaire d'étanchéité 1 1 1 assure l'étanchéité entre ledit empilage et le tube cylindrique 107.
Le disque circulaire 104 est placé dans l'évidement cylindrique
103 de telle sorte qu'une face radiale 1 12 de ce disque 104 et le fond radial 103a de cet évidement 103 forment entre eux une chambre de cavitation 1 13 d' épaisseur constante et que la périphérie du disque 104 et la périphérie de l' évidement 103 déterminent entre elles un passage traversant annulaire 1 14 déterminant une ouverture périphérique de la chambre de cavitation 1 13 et débouchant à l'intérieur du tube 107, entre les doigts intérieurs 105 de la rondelle circulaire 106.
Afin d' assurer une épaisseur constante de la chambre de cavitation 1 13 , le fond radial 103 a de l' évidement 103 est pourvu de bossages en saillie 103b contre lesquels la face radiale 1 12 du disque
104 est en appui, ces bossages 103b étant placés à la périphérie de façon à ne pas nuire à l'écoulement du liquide. Les bossages 103b assurent également le centrage du disque 104 dans l' évidement 103.
Le cylindre 101 présente un passage axial 1 15 qui présente un orifice central terminal 1 16, par exemple cylindrique, qui débouche axialement dans la partie centrale de la chambre de cavitation 1 13. Dans le passage 1 15 est vissé un embout 1 17 dans lequel est fixée de façon étanche l' extrémité du conduit 1 18 d'amenée d'un liquide.
La structure ainsi constituée est telle que la chambre de cavitation 1 13 est équivalente à la chambre de cavitation 18 du dispositif de traitement 1. Le dispositif de traitement 100 peut avantageusement être suivi d'un autre dispositif de traitement 100a comme décrit ci-dessous.
L ' autre extrémité du tube cylindrique 107 est fermée par une paroi radiale 1 19 et présente une ouverture latérale de sortie 120 au voisinage de cette paroi 1 19. Un conduit non représenté peut être branché sur l'ouverture latérale de sortie 120 pour évacuer le liquide traité.
La paroi 1 19 est traversée de façon étanche, grâce à un joint 1 19a tenu par un manchon 1 19b par un tube cylindrique axial intérieur 121 , par exemple en quartz, dont une extrémité fermée 122 est située à proximité du disque circulaire 104, les doigts intérieurs 105 de la rondelle circulaire 106 étant prolongés par des ergots 123 de centrage et de maintien de l' extrémité 122 du tube cylindrique intérieur 121.
Le tube intérieur 121 est relié à des moyens connus, non représentés, aptes à générer dans ce tube 121 un rayonnement ultraviolet rayonnant dans la chambre annulaire 124 formée entre le tube extérieur 107 et le tube intérieur 120.
Ainsi, un liquide tel que de l' eau transportant un ou des composés à traiter est, dans une première étape, traité par le dispositif de traitement 100 puis immédiatement, dans une seconde étape, traité par le dispositif de traitement 100a, dans la chambre secondaire annulaire 124 par le rayonnement ultraviolet généré par le tube intérieur 120, puis évacué par l'ouverture latérale de sortie 120. Le rayonnement rayonne dans toute la chambre secondaire annulaire 124. Le disque 104 étant en quartz, le rayonnement peut aussi atteindre le passage traversant annulaire 1 14 et la chambre de cavitation 1 13.
Une telle disposition est particulièrement avantageuse lorsqu'il s 'agit de détruire des micro-organismes transportés par de l' eau afin de traiter cette dernière et de la rendre moins polluée. Dans une variante, le moyen pour générer un rayonnement pourrait être placé autour du tube extérieur 107.
A titre de variante illustrée sur les figures 6 et 7, un dispositif de traitement 200 comprend une paroi cylindrique intérieure 201 et une paroi cylindrique extérieure 202, qui sont concentriques et qui délimitent entre elles un espace cylindrique 203 d'épaisseur constante fermé à ses extrémités par tous moyens connus.
La paroi cylindrique intérieure 201 présente une pluralité d'orifices d'entrée 204 débouchant d'une part dans l' espace 203 et d' autre part dans l' espace intérieur 205 de cette paroi 201 , cet espace intérieur 205 formant une chambre longitudinale collectrice d' entrée.
La paroi cylindrique extérieure 202 présente une pluralité d'orifices de sortie 206 débouchant d'une part dans l'espace 203 et d' autre part dans un espace périphérique 207 délimité par une paroi périphérique cylindrique 208, l'espace périphérique 207 formant une chambre annulaire longitudinale collectrice de sortie.
Les orifices de sortie 206 sont répartis autour et à distance des orifices d' entrée 204 de façon à former une pluralité de chambres substantiellement radiales de cavitation 209 à écoulements substantiellement parallèles, fonctionnant respectivement comme les chambres de cavitation décrites dans les exemples qui précèdent.
Dans l' exemple représenté, comme le montre plus précisément la figure 7, les orifices d' entrée 204 sont répartis à égales distances les uns des autres, tout autour de la paroi cylindrique intérieure 201 et longitudinalement à cette dernière, et les orifices de sortie 206 sont répartis à égales distances les uns des autres, tout autour de la paroi cylindrique extérieure 202 et longitudinalement à cette dernière, en étant décalés d'un demi-pas par rapport aux orifices d' entrée 204, circonférentiellement et longitudinalement. Les orifices de sortie 206 présentent avantageusement des sections largement supérieures aux sections des orifices d'entrée 204.
Dans l' exemple représenté, comme le montre plus précisément la figure 6, l' espace intérieur 205 formant une chambre collectrice d' entrée est fermé à une extrémité par une paroi radiale 205a et peut communiquer à son autre extrémité avec un conduit axial d' entrée 210 apte à être relié à une source de liquide à traiter. L ' espace périphérique 207 formant une chambre collectrice de sortie est fermé à une extrémité par une paroi annulaire 207a et peut communiquer avec un conduit axial 21 1 de sortie du liquide traité en parallèle dans les chambres de cavitation 209, ce conduit axial de sortie 21 1 étant opposé au conduit axial d' entrée 210. Les parois cylindriques intérieure et extérieure 201 et 202 sont portées à une extrémité par la paroi 205 a et à l' autre extrémité par la paroi 207a, de façon étanche grâce à des joints annulaires 205b et 207b.
Dans d' autres variantes, les parois 201 et 202 pourraient présenter d' autres formes annulaires, par exemple être tronconiques, ou pourraient être plates. Dans une autre variante, des dispositifs de traitement, selon l'un quelconque de ceux qui viennent d'être décrits, pourraient être mis en série, la sortie de liquide de l'un étant en communication avec l' entrée de liquide du suivant.

Claims

REVENDICATIONS
1. Procédé de traitement d'un composé, tel qu'un composé chimique et/ou organique et/ou un micro-organisme, transporté par un liquide, dans lequel deux faces substantiellement radiales ( 1 1 , 19) disposées en vis-à-vis délimitent entre elles une chambre radiale de cavitation ( 18), l'une desdites faces présentant un orifice axial d' entrée (21 ) aménagé axialement dans sa partie centrale et lesdites faces formant une ouverture périphérique de sortie (30) ; dans lequel le liquide, amené axialement par l'orifice axial d' entrée (21 ), est dévié et s 'écoule dans ladite chambre radiale de cavitation ( 18) selon diverses directions radiales vers l'ouverture périphérique de sortie (30) ; et dans lequel l' épaisseur de ladite chambre de cavitation ( 18), entre lesdites faces radiales ( 1 1 , 19), est choisie de façon à être comprise entre 0, 1 et 0,25 fois le diamètre dudit orifice axial d' entrée
(21 ), préférentiellement 0, 14 ; de telle sorte que les conditions de l' écoulement du liquide génèrent des bulles ou poches de cavitation (31 ) dans la première partie de l' écoulement radial, autour de l'orifice central d' entrée (21 ) et que les bulles ou poches de cavitation (31 ) implosent avant d' atteindre l'ouverture périphérique de sortie (30), afin de traiter au moins partiellement ledit composé dans ladite chambre de cavitation ( 18).
2. Procédé selon la revendication 1 , dans lequel la distance entre l' axe (5) de l'orifice central d' entrée (21 ) et ladite ouverture périphérique de ladite chambre de cavitation ( 18) est choisie de façon à être supérieure à deux fois le diamètre dudit orifice central d'entrée (21 ).
3. Procédé selon l'une des revendications 1 et 2, dans lequel le rapport entre la pression absolue en amont de ladite chambre de cavitation ( 18) et la pression en aval de cette chambre est compris entre 1 ,5 et 6.
4. Dispositif de traitement d'au moins un composé, tel qu'un composé chimique et/ou organique et/ou un micro-organisme, transporté par un liquide, comprenant : un premier élément (3) présentant une face substantiellement radiale (18) et un orifice substantiellement axial (21) d'entrée du liquide et un second élément (10) présentant une face substantiellement radiale (11), dans lequel lesdites faces radiales sont disposées en vis-à-vis de façon à former entre elle un espace formant une chambre radiale de cavitation (18) présentant une ouverture périphérique de sortie (30), ledit orifice axial d'entrée du premier élément débouchant dans une partie centrale de cette chambre de cavitation (18) en face de ladite face radiale (11) du second élément (10) ; l'épaisseur de ladite chambre de cavitation (18), entre lesdites faces radiales (11, 19), est comprise entre 0,1 et 0,25 fois le diamètre dudit orifice axial d'entrée (21), préférentiellement 0,14 ; de telle sorte que le liquide, amené axialement par l'orifice axial d'entrée (21), est dévié dans la partie centrale d'entrée et s'écoule dans ladite chambre radiale de cavitation (18) selon diverses directions radiales vers l'ouverture périphérique de sortie (30) et de telle sorte que les conditions de l'écoulement du liquide génèrent des bulles ou poches de cavitation (31) dans la première partie de cet écoulement, autour de l'orifice central d'entrée (21), et que les bulles ou poches de cavitation (31) implosent avant d'atteindre l'ouverture périphérique de sortie (30), afin de traiter au moins partiellement ledit composé.
5. Dispositif selon la revendication 4, dans lequel lesdites faces radiales (11, 19) délimitant ladite chambre radiale de cavitation (18) sont parallèles.
6. Dispositif selon l'une des revendications 4 et 5, dans lequel la distance entre l'axe (5) de l'orifice central d'entrée (21) et ladite ouverture périphérique de ladite chambre de cavitation (18) est supérieure à deux fois le diamètre dudit orifice central d'entrée (21).
7. Dispositif selon l'une quelconque des revendications 4 à 6, dans lequel ladite ouverture périphérique de sortie de ladite chambre radiale de cavitation (18) communique avec une chambre secondaire ( 124) reliée à au moins un passage de sortie (120).
8. Dispositif selon la revendication 7, comprenant un autre moyen de traitement ( 121 ) associé à ladite chambre secondaire, en particulier un moyen d' émission générant un rayonnement ultraviolet dans ladite chambre secondaire.
9. Dispositif selon l'une quelconque des revendications 7 à 8, dans lequel le premier élément et le second élément comprennent deux parois (201 , 202) ménageant entre elles un espace, l'une des parois présentant une pluralité d'orifices (204) d' entrée du liquide et l' autre paroi présentant une pluralité d'orifices (206) de sortie, de façon à former, dans ledit espace et entre lesdits orifices d' entrée et lesdits orifices de sortie, une pluralité de chambres de cavitation (209).
10. Dispositif selon la revendication 9, dans lequel lesdits orifices d' entrée débouchent dans une chambre collectrice d' entrée (205) et les orifices de sortie débouchent dans une chambre collectrice de sortie (207), lesdites parois pouvant être annulaires et concentriques, préférentiellement cylindriques ou concentriques, ou plates.
1 1. Dispositif selon l'une quelconque des revendications 4 à 10, dans lequel ledit premier élément (3) présente un chanfrein sur le bord dudit orifice axial d' entrée (21 ), ce chanfrein étant arrondi et présentant un rayon compris entre 0, 1 et 0,5 fois la distance entre lesdites faces radiales ( 1 1 , 19) dans la partie centrale de la chambre de cavitation ( 18) ou étant tronconique en étant disposé selon un angle compris entre 30° et 60°, préférentiellement à 45°, et sur une hauteur, selon l' axe dudit orifice axial d' entrée (21 ), comprise entre 0, 1 et 0,5 fois la distance entre lesdites faces radiales ( 1 1 , 19) dans la partie centrale de la chambre de cavitation ( 18).
PCT/FR2009/052434 2008-12-09 2009-12-08 Procédé et dispositif de traitement d'au moins un composé transporté dans un liquide WO2010066999A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI0922556 BRPI0922556B1 (pt) 2008-12-09 2009-12-08 processo e dispositivo de tratamento de pelo menos um composto transportado em um líquido.
EP09803818.5A EP2355921B1 (fr) 2008-12-09 2009-12-08 Procédé et dispositif de traitement d'au moins un composé transporté dans un liquide
US13/133,308 US9579614B2 (en) 2008-12-09 2009-12-08 Device comprising a cavitation chamber with opposed radial and parallel faces, in communication with a secondary chamber, for treating compounds in a liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0858405 2008-12-09
FR0858405A FR2939423B1 (fr) 2008-12-09 2008-12-09 Procede et dispositif de traitement d'au moins un compose transporte dans un liquide

Publications (1)

Publication Number Publication Date
WO2010066999A1 true WO2010066999A1 (fr) 2010-06-17

Family

ID=40822980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/052434 WO2010066999A1 (fr) 2008-12-09 2009-12-08 Procédé et dispositif de traitement d'au moins un composé transporté dans un liquide

Country Status (6)

Country Link
US (1) US9579614B2 (fr)
EP (1) EP2355921B1 (fr)
KR (1) KR20110097928A (fr)
BR (1) BRPI0922556B1 (fr)
FR (1) FR2939423B1 (fr)
WO (1) WO2010066999A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150201578A1 (en) * 2012-07-05 2015-07-23 Tetra Laval Holdings & Finance S.A. Homogenizer valve
WO2021113424A1 (fr) 2019-12-05 2021-06-10 Hydrocav, Llc Dispositif de filtration de fluide
CN110921770A (zh) * 2019-12-23 2020-03-27 北京工业大学 一种自激振荡空化撞击流反应器
FR3111077B1 (fr) * 2020-06-08 2022-07-22 Behring Dispositif de traitement d’un liquide par rayonnements ultra-violets

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585357A (en) 1984-10-18 1986-04-29 Kazuo Ogata Homogenizer
DE3728946A1 (de) 1987-08-29 1989-03-09 Bran & Luebbe Homogenisiervorrichtung
JPH01142432A (ja) 1987-11-28 1989-06-05 Minolta Camera Co Ltd シリンドリカルレンズの物性値測定装置
US5749650A (en) 1997-03-13 1998-05-12 Apv Homogenizer Group, A Division Of Apv North America, Inc. Homogenization valve
JPH1142432A (ja) * 1997-07-25 1999-02-16 Jiinasu:Kk 微粒化方法および装置
US6200486B1 (en) 1999-04-02 2001-03-13 Dynaflow, Inc. Fluid jet cavitation method and system for efficient decontamination of liquids
WO2005028375A1 (fr) 2003-08-29 2005-03-31 BIONIK GmbH - Innovative Technik für die Umwelt Procede et dispositif permettant la desintegration de substances organiques particulaires dans des suspensions de microorganismes
US20060256645A1 (en) 2003-11-03 2006-11-16 Invensys Process System A/S Treatment of particle-bearing liquid
EP1738775A1 (fr) 2005-05-26 2007-01-03 Henri Drean Epurateur bacterien
US20070280861A1 (en) 2003-03-06 2007-12-06 Hitachi, Ltd. Water treatment method and water treatment device
JP2008207099A (ja) 2007-02-27 2008-09-11 Meidensha Corp マイクロバブル発生装置及びマイクロバブル発生システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4193635A (en) * 1978-04-07 1980-03-18 Hochrein Ambrose A Jr Controlled cavitation erosion process and system
US4610321A (en) * 1985-03-25 1986-09-09 Whaling Michael H Cavitating jet device
US20030199595A1 (en) * 2002-04-22 2003-10-23 Kozyuk Oleg V. Device and method of creating hydrodynamic cavitation in fluids
AU2003281265A1 (en) * 2002-07-09 2004-01-23 Toshiba Plant Systems & Services Corporation Liquid mixing apparatus and method of liquid mixing
DE60307741T2 (de) * 2002-07-16 2007-08-23 M Technique Co., Ltd., Izumi Verfahren und Verarbeitungsgerät for Flüssigkeiten
EP2191890B1 (fr) * 2007-09-21 2014-03-19 M Technique Co., Ltd. Procédé de fabrication de fines particules

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585357A (en) 1984-10-18 1986-04-29 Kazuo Ogata Homogenizer
DE3728946A1 (de) 1987-08-29 1989-03-09 Bran & Luebbe Homogenisiervorrichtung
JPH01142432A (ja) 1987-11-28 1989-06-05 Minolta Camera Co Ltd シリンドリカルレンズの物性値測定装置
US5749650A (en) 1997-03-13 1998-05-12 Apv Homogenizer Group, A Division Of Apv North America, Inc. Homogenization valve
US5899564A (en) 1997-03-13 1999-05-04 Apv Homogenizer Group, Div. Of Apv North America Homogenization valve
JPH1142432A (ja) * 1997-07-25 1999-02-16 Jiinasu:Kk 微粒化方法および装置
US6200486B1 (en) 1999-04-02 2001-03-13 Dynaflow, Inc. Fluid jet cavitation method and system for efficient decontamination of liquids
US20070280861A1 (en) 2003-03-06 2007-12-06 Hitachi, Ltd. Water treatment method and water treatment device
WO2005028375A1 (fr) 2003-08-29 2005-03-31 BIONIK GmbH - Innovative Technik für die Umwelt Procede et dispositif permettant la desintegration de substances organiques particulaires dans des suspensions de microorganismes
US20060256645A1 (en) 2003-11-03 2006-11-16 Invensys Process System A/S Treatment of particle-bearing liquid
EP1738775A1 (fr) 2005-05-26 2007-01-03 Henri Drean Epurateur bacterien
JP2008207099A (ja) 2007-02-27 2008-09-11 Meidensha Corp マイクロバブル発生装置及びマイクロバブル発生システム

Also Published As

Publication number Publication date
US20110284478A1 (en) 2011-11-24
BRPI0922556B1 (pt) 2019-12-10
FR2939423B1 (fr) 2011-12-09
US9579614B2 (en) 2017-02-28
FR2939423A1 (fr) 2010-06-11
EP2355921A1 (fr) 2011-08-17
EP2355921B1 (fr) 2014-03-05
KR20110097928A (ko) 2011-08-31

Similar Documents

Publication Publication Date Title
EP2355921B1 (fr) Procédé et dispositif de traitement d'au moins un composé transporté dans un liquide
EP2771282B1 (fr) Procede de traitement d'effluents dans un lit de microbilles par plasma froid et photocatalyse
BE1010407A4 (fr) Procede et installation de traitement des eaux.
US20100187437A1 (en) Double-walled chamber for ultra violet radiation treatment of liquids
EP0721920A1 (fr) Réacteur d'irradiation uv pour le traitement de liquides
EP1112118B1 (fr) Procede de purification d'effluents gazeux par photocatalyse, installation pour la mise en oeuvre dudit procede
EP0718552A1 (fr) Brûleur du type à mélange externe
EP0367799A1 (fr) Dispositif de dispersion de gaz au sein d'une phase liquide
US20040226893A1 (en) Water treatment apparatus
EP1862185A3 (fr) Dispositif destiné à la traitement de liquides par lumière UV et ultrason
EP0459928B1 (fr) Installation pour le traitement de flux de liquides à contacteur monophasique, et dispositifrecirculateur-dégazeur pour une telle installation
WO2005044441A1 (fr) Methode de melange et de distribution d'une phase liquide et d'une phase gazeuse
EP1194175A1 (fr) Procede de traitement de milieu gazeux contenant des particules contaminantes
CN106881013A (zh) 一种分解三甲胺恶臭气体的装置
WO2020120536A2 (fr) Dispositif d'injection de fluide dans un liquide
EP1635882B1 (fr) Dispositif et procede de traitement d'odeurs par plasma froid d'un flux gazeux vicie
FR3073752A1 (fr) Dispositif et procede de traitement par des ondes acoustiques
FR2932058A1 (fr) Procede de demarrage d'un plasma micro-onde et systeme de destruction selective de molecules chimiques utilisant ce procede
FR3111077A1 (fr) Dispositif de traitement d’un liquide par rayonnements ultra-violets
FR2750889A1 (fr) Procede et dispositif d'injection d'un gaz dans un liquide
FR2714851A1 (fr) Procédé de traitement des solutions aqueuses par désorbtion de tout ou partie des gaz dissous qu'elles contiennent.
FR2737483A1 (fr) Dispositif perfectionne de traitement d'eau par irradiation ultraviolette
EP1434019A1 (fr) Procédé de séchage de matières humides, notamment de boues, sans risque d'explosion
WO1993003819A1 (fr) Dispositif et procede d'epuration par voie biologique de polluants gazeux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09803818

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009803818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4306/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117015555

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13133308

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0922556

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110608