WO2010064884A1 - Improved portable test device for self-diagnosis of uterine cervical cancer by means of simultaneous electrical and optical measurements - Google Patents

Improved portable test device for self-diagnosis of uterine cervical cancer by means of simultaneous electrical and optical measurements Download PDF

Info

Publication number
WO2010064884A1
WO2010064884A1 PCT/MX2009/000116 MX2009000116W WO2010064884A1 WO 2010064884 A1 WO2010064884 A1 WO 2010064884A1 MX 2009000116 W MX2009000116 W MX 2009000116W WO 2010064884 A1 WO2010064884 A1 WO 2010064884A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
self
cancer
portable device
uterine cervical
Prior art date
Application number
PCT/MX2009/000116
Other languages
Spanish (es)
French (fr)
Inventor
Noel LEÓN ROVIRA
Olivia Maricela BARRÓN CANO
Jesús Manuel SEÁNEZ DE VILLA
Original Assignee
Instituto Tecnologico Y De Estudios Superiores De Monterrey
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Tecnologico Y De Estudios Superiores De Monterrey filed Critical Instituto Tecnologico Y De Estudios Superiores De Monterrey
Publication of WO2010064884A1 publication Critical patent/WO2010064884A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/303Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the vagina, i.e. vaginoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4318Evaluation of the lower reproductive system
    • A61B5/4331Evaluation of the lower reproductive system of the cervix

Definitions

  • the present invention is related to personal devices for the identification and diagnosis of normal and pathological cells of the cervix.
  • the present invention describes an opto-electronic device for the identification and diagnosis of normal and pathological cells of the cervix, which by means of a set of indicator lights warns the presence or absence of cancer or neoplasia in the cervix.
  • tissue diagnostic system which describes an apparatus capable of performing two measurements that may or may not be simultaneous, the first is the measurement of the tissue discharge time when subjected to an electric current produced by the apparatus and the second measurement It consists in measuring the light intensity of the tissue by reflectance when subjected to a stimulation of light generated by the device that is manipulated by a specialist in charge of manipulating it and interpreting the signals to diagnose your patient.
  • MX 261,228 called "Portable device for self-diagnostic testing of uterine cervical cancer by means of simultaneous electrical and optical measurements" which describes a portable device consisting of a solid body composed of a housing and a test tube, capable of executing two simultaneous measurements, Ia first that consists in the measurement of the impedance of the tissue to be subjected to an impulse of electric current generated and regulated by the device and the second measurement, which consists in measuring the light intensity of! tissue when subjected to a stimulation of light generated by the device.
  • FIGURE 1 A schematic side view of the device of the present invention is presented.
  • FIGURE 2. A schematic side view with hidden lines of the device of the present invention is presented.
  • FIGURE 3. A top view with hidden views of the device of the present invention is presented.
  • FIGURE 4 An exploded view with hidden lines of the device of the present invention is presented.
  • FIGURE 5 A view of the guide with fissures is presented.
  • FIGURE 6. An isometric view of the guide with fissures is presented.
  • FIGURE 7. An isometric view of the guide is presented.
  • FIGURE 8. An isometric view of the lens holder is presented.
  • FIGURE 9. A front view of the bezel to hold the lens is presented.
  • FIGURE 10 A schematic representation of the converging lens is presented
  • FIGURE 1 An exploded view of the tip of the specimen is presented.
  • FIGURE 12. The assembly of the tip of the specimen is presented. It can be seen where the tip of the electrode needle ends, and the channel where the drop of the material would laugh.
  • FIGURE 13 Block diagram of the operation of the device of the present invention.
  • FIGURE 14 A view of the specimen with hidden lines is presented.
  • FIGURE 15. An isometric view is presented with hidden lines of the tip of the specimen that makes contact with the cervix.
  • FIGURE 16 There is a side view with hidden lines of the tip of the specimen that makes contact with the cervix.
  • FIGURE 1 A side view is shown with hidden lines of the tip of the specimen that makes contact with the cervix.
  • the present invention relates to a portable device (see figure 1), capable of executing two simultaneous measurements, the first consisting of the measurement of the impedance of the tissue when subjected to an electrical current pulse generated and regulated by the device and the second measurement, which consists in measuring the light intensity of the tissue by reflectance when subjected to a light stimulus generated by the device.
  • the motive device of this invention (see figure 1), is a single movable and easy to transport body that has an ergonomic design, to facilitate manipulation by the person who is going to apply the test, and has a result in real time, without requiring taking physical samples of the tissue and transporting them to a laboratory for examination by a cytologist.
  • FIG 1 a schematic view of the device of the present invention is presented, which consists of a solid body composed of a housing (2) and a test tube (3), at whose tip (4) of the test tube (see figures 15, 16 and 17) a convergent (5) or convex lens is located on both sides (not shown in the figure) to concentrate and focus the beam or light stimulus on a specific area of the tissue; and in the same way to receive the light intensity response, only from the area of stimulated tissue and concentrate the reflection or fluorescence in a central point on the other side of the lens, thus allowing to focus all the result on the fiber used for the optical reading (fiber connected to the photo detector).
  • a convergent (5) or convex lens is located on both sides (not shown in the figure) to concentrate and focus the beam or light stimulus on a specific area of the tissue; and in the same way to receive the light intensity response, only from the area of stimulated tissue and concentrate the reflection or fluorescence in a central point on the other side of the lens, thus allowing to focus
  • the device of the invention comprises an FPGA (7) and operational amplifiers (8) to generate and regulate an electrical current output of 10 A peak to peak through two electrodes of the four washing resistant electrodes (9), for example gold or silver chloride.
  • the FPGA (7) and the operational amplifiers (8) are inside the housing (2) while the two electrodes (9) are located in the tip (4) of the test tube (2), crossing the holder (10) and The guide (11) in order that both electrodes (9) can make contact with the tissue to transmit the electric current produced.
  • the device uses two other electrodes (9) also located in the tip (4) of the test piece (2) crossing the holder (10) and the guide (11); and that receive the electrical voltage generated by the tissue due to the impulse of electric current applied by the other two electrodes (9).
  • the electrical tension of the tissue perceived by the two electrodes (9) is digitized by the FPGA (7) and converted to an impedance value that is compared with the ranges of impedance values previously recorded for healthy cervical tissues, cervical tissues with pre-cancer and Cervical tissues with cancer and is classified as normal or abnormal and indicated by the external LEDs (6) (see figure 4).
  • the electric current is applied on the surface of the tissue; However, this does not necessarily expand through the surface of the tissue but penetrates into it at a certain depth, the characteristics of the electrical impedance of the tissues can be explained by changes in the cell arrangements and the size of the nucleus.
  • test piece (3) (see figure 14) is approximately 7.0-12.0 mm in diameter, and approximately 17 cm long, with four electrodes of 0.8-1.5 mm in diameter.
  • the device of the invention comprises the same FPGA (7) and a set of LEDs (to generate pulses of light in three different wavelengths, for example, blue, green and red; or a Multicolored or white spectrum LED capable of emitting light beams of different wavelengths within the visible spectrum 380nm-780nm).
  • the FPGA (7) and the LED 's light generators are located in the casing (2), whereas the light emitted by these LED' s is passed through optical fibers stations (13) to the guide (11) located in the inside of the tip (4) of the test tube (3).
  • the device employs a receiving optical fiber (12) located inside and along the specimen (3) ranging from the guide (11) to the photodiode (13) located in the housing (2) in order to receive the light intensity generated by the tissue due to the light pulse applied by the light generating LED (s) and transmitted by the emitting optical fibers (12) to the converging lens (5) that concentrates the light pulse, to transmit it to a specific area of tissue.
  • a receiving optical fiber (12) located inside and along the specimen (3) ranging from the guide (11) to the photodiode (13) located in the housing (2) in order to receive the light intensity generated by the tissue due to the light pulse applied by the light generating LED (s) and transmitted by the emitting optical fibers (12) to the converging lens (5) that concentrates the light pulse, to transmit it to a specific area of tissue.
  • the emitting optical fibers (12) maintain a static position because they cross the interior of the guide (11), see figure 5, figure 6 and figure 7;
  • the guide has inside the holes (14) to allow the passage of the emitting optical fibers (12);
  • Two designs of the guide are presented, in the first one represented in Figures 5 and Figure 6, it presents fissures (17) to allow the passage of the electrodes (9); or as shown in Figure 7, it presents 4 first perforations (16) to allow the passage of the electrodes (9).
  • the lens (5) is located in a holder (10), see figure 8, it is located in the tip (4) of the specimen (2).
  • the holder (10) has a bevel (15) halfway along its length (see figure 9) to hold the lens (5), and ensure that the light beams received from the tissue are focused on the optical fiber in the middle of the guide and in the same way, that the light beam of the emitting optical fibers stimulates a specific area of the tissue, the holder has 4 perforations (18), to allow the passage of the electrodes, and these coincide with the perforations or fissures (16) of the guide (11).
  • the lens (5) is convergent, (see figure 10) with a refractive index equal to or less than 1,517 nD, with a cover to decrease the percentage of reflection.
  • the lens is selected convergent, since it transmits the beam of light that falls on it, in the same way in a sense that in another, by Io Both presents two equidistant foci. Furthermore, with the geometry of the lens it is ensured that the chromatic aberration decreases.
  • the diameter of the lens is smaller than the diameter of the tip of the specimen, to allow its positioning, which is determined by the focal point (BFL and EFL, described below). For example, for a 3 mm diameter lens the measurements are presented below;
  • CT Width of the center of the lens 1.80 mm ET Width of the edge of the lens; 1.41 mm
  • the convergent lens of choice can be BK7, with a cover to decrease the percentage of reflection.
  • Figure 11 shows an exploded view of the tip of the specimen for greater illustration, and in figure 12, the assembly of the tip of the specimen is shown, the point where the electrode tips are located , and a free space (19) after the tip of the electrode to locate there a drop of material for the conduction of the current with the tissue.
  • the light intensity of the tissue perceived by the photodiode (13) is digitized by the FPGA (7) and converted to a light intensity value that is compared with the ranges of light intensity values previously recorded for healthy cervical tissues, cervical tissues with pre-cancer and cervical tissues with cancer.
  • Figure 13 shows the flow chart of the operation of the device, where the FPGA (7) simultaneously sends two signals, an optical signal (20) and an electrical signal (21).
  • the optical signal (20) consisting of beams of light in different wavelength ranges (preferably blue, green and red), which affect an area determined tissue, and this tissue in response to the stimulus, emits a light intensity value (22), to the FPGA (7).
  • the electrical signal (21) consisting of a current of 10 ⁇ A peak to peak affects the surface of the tissue, and this tissue in response to the stimulus, emits a value of impedance (23), to the FPGA (5).
  • the FPGA (7) receives the electrical signal (23) and the light intensity (22) of the stimulated tissue, through the electrodes (9) and photodiodes (13) respectively, compares these values with stored tissue impedance and intensity values and preset and provides a test result, emitting a signal (24) to activate one of the external LEDs (6), result indicators and another signal to activate the horn that will emit the sound that indicates the end of the measurement .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Endoscopes (AREA)

Abstract

The present invention is an improvement on patent MX 261,228, in that optical measurement and information processing have been modified in order to enhance the reliability thereof. The device is capable of yielding electrical and optical measurements that are FPGA-processed on the basis of a neuronal network, programmed on the basis of mathematical principles and trained by means of multiple in vivo test measurements in the various cases of neoplasia that can be identified by means of said device. The object of the present invention is to improve optical measurement, since the principles of reflectance and luminescence have been included and a greater number of measurements is involved, thereby covering a broader range within the visible spectrum, which allows more reliable diagnosis and identification.

Description

DISPOSITIVO PORTÁTIL MEJORADO PARA PRUEBA DE AUTODIAGNOSTICO DE CÁNCER CERVICO UTERINO POR MEDIO DE MEDICIONES ELÉCTRICAS Y IMPROVED PORTABLE DEVICE FOR UTERINE CERVIC CANCER AUTODIAGNOSTIC TEST THROUGH ELECTRICAL MEASUREMENTS AND
ÓPTICAS SIMULTÁNEASSIMULTANEOUS OPTICS
DESCRIPCIÓNDESCRIPTION
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La presente invención está relacionada con dispositivos personales para Ia identificación y diagnóstico de células normales y patológicas del cérvix.The present invention is related to personal devices for the identification and diagnosis of normal and pathological cells of the cervix.
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La presente invención describe un dispositivo opto-electrónico para Ia identificación y diagnóstico de células normales y patológicas del cérvix, el cual mediante un conjunto de luces indicadoras advierte Ia presencia o ausencia de cáncer o neoplasia en el cérvix.The present invention describes an opto-electronic device for the identification and diagnosis of normal and pathological cells of the cervix, which by means of a set of indicator lights warns the presence or absence of cancer or neoplasia in the cervix.
ANTECEDENTESBACKGROUND
Es bien sabido que las espectroscopias eléctrica y óptica son útiles para Ia identificación y diagnóstico temprano de células cancerosas, debido a que Ia identificación de diversos tipos de células está basada en Ia respuesta a una estimulación eléctrica y/o Ia incidencia de luz sobre dichas células; siendo que, Ia respuesta a este estimulo depende de Ia estructura y componentes de las células. Por ejemplo, los tejidos biológicos tienen una impedancia eléctrica característica Ia cual está en función de Ia frecuencia con Ia cual se estimula, esto debido a que el tejido contiene componentes que tienen características resistivas y capacitivas (almacenaje de carga) y de igual forma, son conocidos diversos principios ópticos probados para Ia identificación de tejidos como Ia Fluorescencia Espectroscópica, Ia Espectroscopia Raman y Ia OCT. Se conocen dispositivos personales para Ia identificación y diagnóstico de células cancerosas en cérvix, fundamentados éstos, en Ia respuesta de las células a mediciones eléctricas y ópticas, como el reportado en las patentes:It is well known that electrical and optical spectroscopies are useful for the identification and early diagnosis of cancer cells, because the identification of various types of cells is based on the response to an electrical stimulation and / or the incidence of light on said cells. ; being that, the response to this stimulus depends on the structure and components of the cells. For example, biological tissues have a characteristic electrical impedance which is a function of the frequency with which it is stimulated, this because the tissue contains components that have resistive and capacitive characteristics (load storage) and in the same way, they are known various optical principles tested for the identification of tissues such as Spectroscopic Fluorescence, Raman Spectroscopy and OCT. Personal devices are known for the identification and diagnosis of cancer cells in the cervix, based on these, in the response of the cells to electrical and optical measurements, such as that reported in the patents:
US 6,026,323 denominada "Tissue diagnostic system" que describe un aparato capaz de realizar dos mediciones que pueden ser o no simultáneas, Ia primera es Ia medición del tiempo de descarga del tejido al ser sometido a una corriente eléctrica producida por el aparato y Ia segunda medición consiste en medir por reflectancia Ia intensidad luminosa del tejido al ser sometido a un estimulo de luz generado por el aparato que es manipulado por un especialista encargado de manipularlo y de interpretar las señales para diagnosticar a su paciente.US 6,026,323 called "Tissue diagnostic system" which describes an apparatus capable of performing two measurements that may or may not be simultaneous, the first is the measurement of the tissue discharge time when subjected to an electric current produced by the apparatus and the second measurement It consists in measuring the light intensity of the tissue by reflectance when subjected to a stimulation of light generated by the device that is manipulated by a specialist in charge of manipulating it and interpreting the signals to diagnose your patient.
MX 261,228 denominada "Dispositivo portátil para prueba de autodiagnóstico de cáncer cérvico uterino por medio de mediciones eléctricas y ópticas simultáneas" que describe un aparato portátil que consta de un cuerpo sólido integrado por una carcasa y una probeta, capaz de ejecutar dos mediciones simultáneas, Ia primera que consiste en Ia medición de Ia impedancia del tejido al ser sometido a un impulso de corriente eléctrica generado y regulado por el dispositivo y Ia segunda medición, que consiste en medir por reflectancia Ia intensidad luminosa de! tejido al ser sometido a un estimulo de luz generado por el dispositivo.MX 261,228 called "Portable device for self-diagnostic testing of uterine cervical cancer by means of simultaneous electrical and optical measurements" which describes a portable device consisting of a solid body composed of a housing and a test tube, capable of executing two simultaneous measurements, Ia first that consists in the measurement of the impedance of the tissue to be subjected to an impulse of electric current generated and regulated by the device and the second measurement, which consists in measuring the light intensity of! tissue when subjected to a stimulation of light generated by the device.
En las patentes anteriormente mencionadas los estímulos de luz generados por cada uno de los dispositivos incide sobre diferentes áreas de tejido; Ia respuesta de intensidad luminosa medida, es de un área de tejido adyacente al estimulado; evidenciando con esto que existe una desviación en los resultados de Ia medición óptica, debido a Io cual, se presenta el dispositivo portátil motivo de esta invención que es capaz de generar mediciones eléctricas y ópticas simultáneas, asegurando que Ia respuesta de Ia medición óptica únicamente es del área de tejido estimulada y no de sus contornos. BREVE DESCRIPCIÓN DE LAS FIGURAS FIGURA 1 . Se presenta una vista esquemática lateral del dispositivo de Ia presente invención. FIGURA 2. Se presenta una vista esquemática lateral con líneas ocultas del dispositivo de Ia presente invención FIGURA 3. Se presenta una vista superior con vistas ocultas del dispositivo de Ia presente invención.In the aforementioned patents, the light stimuli generated by each of the devices affect different areas of tissue; The measured light intensity response is from an area of tissue adjacent to the stimulated one; evidencing with this that there is a deviation in the results of the optical measurement, due to which, the portable device is the reason for this invention that is capable of generating simultaneous electrical and optical measurements, ensuring that the response of the optical measurement is only of the area of stimulated tissue and not of its contours. BRIEF DESCRIPTION OF THE FIGURES FIGURE 1. A schematic side view of the device of the present invention is presented. FIGURE 2. A schematic side view with hidden lines of the device of the present invention is presented. FIGURE 3. A top view with hidden views of the device of the present invention is presented.
FIGURA 4. Se presenta una vista explotada con líneas ocultas del dispositivo de Ia presente invención.FIGURE 4. An exploded view with hidden lines of the device of the present invention is presented.
FIGURA 5. Se presenta una vista de Ia guía con cisuras. FIGURA 6. Se presenta una vista isométrica de Ia guía con cisuras. FIGURA 7. Se presenta una vista isométrica de Ia guía. FIGURA 8. Se presenta una vista isométrica del porta lente. FIGURA 9. Se presenta una vista frontal del bisel para sujetar lente.FIGURE 5. A view of the guide with fissures is presented. FIGURE 6. An isometric view of the guide with fissures is presented. FIGURE 7. An isometric view of the guide is presented. FIGURE 8. An isometric view of the lens holder is presented. FIGURE 9. A front view of the bezel to hold the lens is presented.
FIGURA 10. Se presenta una representación esquemática del lente convergenteFIGURE 10. A schematic representation of the converging lens is presented
(convexo por ambos lados).(convex on both sides).
FIGURA 1 1. Se presenta una vista explotada de Ia punta de Ia probeta. FIGURA 12. Se presenta el ensamble de Ia punta de Ia probeta. Se puede observar en donde termina Ia punta de Ia aguja de los electrodos, y el canal en donde ¡ría Ia gota del material. FIGURA 13. Diagrama a bloques del funcionamiento del dispositivo de Ia presente invención.FIGURE 1 1. An exploded view of the tip of the specimen is presented. FIGURE 12. The assembly of the tip of the specimen is presented. It can be seen where the tip of the electrode needle ends, and the channel where the drop of the material would laugh. FIGURE 13. Block diagram of the operation of the device of the present invention.
FIGURA 14. Se presenta una vista de Ia probeta con líneas ocultas. FIGURA 15. Se presenta una vista isométrica con líneas ocultas de Ia punta de Ia probeta que hace contacto con el cérvix. FIGURA16. Se presenta una vista lateral con líneas ocultas de Ia punta de Ia probeta que hace contacto con el cérvix.FIGURE 14. A view of the specimen with hidden lines is presented. FIGURE 15. An isometric view is presented with hidden lines of the tip of the specimen that makes contact with the cervix. FIGURE 16. There is a side view with hidden lines of the tip of the specimen that makes contact with the cervix.
FIGURA 1 7. Se presenta una vista lateral con líneas ocultas de de Ia punta de Ia probeta que hace contacto con el cérvix. DESCRIPCIÓN DETALLADA DE LA INVENCIÓNFIGURE 1 7. A side view is shown with hidden lines of the tip of the specimen that makes contact with the cervix. DETAILED DESCRIPTION OF THE INVENTION
La presente invención, se refiere a un dispositivo portátil (ver figura 1), capaz de ejecutar dos mediciones simultáneas, Ia primera que consiste en Ia medición de Ia impedancia del tejido al ser sometido a un impulso de corriente eléctrica generado y regulado por el dispositivo y Ia segunda medición, que consiste en medir por reflectancia Ia intensidad luminosa del tejido al ser sometido a un estímulo de luz generado por el dispositivo. El dispositivo motivo de esta invención (ver figura 1), es un cuerpo único movible y fácil de transportar que presenta un diseño ergonómico, para facilitar Ia manipulación por Ia persona que se va a aplicar Ia prueba, y presenta un resultado en tiempo real, sin requerir tomar muestras físicas del tejido y transportarlas hasta un laboratorio para su exanimación por medio de un citólogo. En Ia figura 1, se presenta una vista esquemática del dispositivo de Ia presente invención, que consta de un cuerpo sólido integrado por una carcasa (2) y una probeta (3), en cuya punta (4) de probeta(ver figuras 15, 16 y 17) se localiza un lente convergente (5) o convexo por ambos lados (no mostrado en Ia figura) para concentrar y enfocar el haz o estímulo de luz en un área determinada del tejido; y de igual forma recibir Ia respuesta de intensidad luminosa, únicamente del área de tejido estimulada y concentrar Ia reflexión o fluorescencia en un punto central en el otro lado de Ia lente, permitiendo con esto focalizar todo el resultado en Ia fibra usada para Ia lectura óptica (fibra conectada al foto detector). De tal manera que el dispositivo se sujeta y manipula por Ia carcasa (2) para introducir así Ia probeta (3) y hacer incidir Ia punta (4) de Ia probeta en el cérvix, y dado que se trata de un dispositivo de autodiagnóstico, el dispositivo emite un sonido a través de una bocina al concluir una medición y Ia misma persona que se realiza Ia prueba puede interpretar por si misma las señales de diagnostico indicadas por el dispositivo a través de los LED 's exteriores (6), ver figura 3. Para medir Ia impedancia del tejido, el dispositivo de Ia invención comprende un FPGA (7) y amplificadores operacionales (8) para generar y regular una salida de corriente eléctrica de 10 A pico a pico a través de dos electrodos de los cuatro electrodos (9) resistentes al lavado, por ejemplo de oro o cloruro de plata. El FPGA (7) y los amplificadores operacionales (8) están dentro de Ia carcasa (2) mientras que los dos electrodos (9) están ubicados en Ia punta (4) de Ia probeta (2), atravesando el portalente (10) y Ia guía (11) con el fin de que ambos electrodos (9) puedan hacer contacto con el tejido para transmitirle Ia corriente eléctrica producida. El dispositivo emplea otros dos electrodos (9) ubicados también en Ia punta (4) de Ia probeta (2) atravesando el portalente (10) y Ia guía (11); y que reciben Ia tensión eléctrica generada por el tejido debido al impulso de corriente eléctrica aplicado por los otros dos electrodos (9). La tensión eléctrica del tejido percibida por los dos electrodos (9) es digitalizada por el FPGA (7) y convertida a un valor de impedancia que es comparado con los rangos de valores de impedancia previamente registrados para tejidos cervicales sanos, tejidos cervicales con precáncer y tejidos cervicales con cáncer y se clasifica como normal o anormal y se indica a través de los LED 's exteriores (6) (ver figura 4). La corriente eléctrica se aplica sobre Ia superficie del tejido; sin embargo, esta no necesariamente se expande por Ia superficie del tejido sino que penetra en el mismo a cierta profundidad, las características de Ia impedancia eléctrica de los tejidos puede ser explicada por cambios en los arreglos de las células y el tamaño del núcleo. Esta relación es Ia base para conocer Ia estructura del tejido partiendo de las mediciones del espectro de impedancia eléctrica, es decir, este patrón nos servirá para diferenciar los tejidos normales de los precancerosos. Los mayores cambios en el tejido precanceroso se dan en Ia subdivisión en las capas de células superficiales y se da un aumento en el tamaño del núcleo. Preferentemente, Ia probeta (3) (ver figura 14) tiene aproximadamente de 7.0 - 12.0 mm de diámetro, y una longitud aproximada de 17 cm, con cuatro electrodos de 0.8 - 1.5 mm de diámetro.The present invention relates to a portable device (see figure 1), capable of executing two simultaneous measurements, the first consisting of the measurement of the impedance of the tissue when subjected to an electrical current pulse generated and regulated by the device and the second measurement, which consists in measuring the light intensity of the tissue by reflectance when subjected to a light stimulus generated by the device. The motive device of this invention (see figure 1), is a single movable and easy to transport body that has an ergonomic design, to facilitate manipulation by the person who is going to apply the test, and has a result in real time, without requiring taking physical samples of the tissue and transporting them to a laboratory for examination by a cytologist. In Figure 1, a schematic view of the device of the present invention is presented, which consists of a solid body composed of a housing (2) and a test tube (3), at whose tip (4) of the test tube (see figures 15, 16 and 17) a convergent (5) or convex lens is located on both sides (not shown in the figure) to concentrate and focus the beam or light stimulus on a specific area of the tissue; and in the same way to receive the light intensity response, only from the area of stimulated tissue and concentrate the reflection or fluorescence in a central point on the other side of the lens, thus allowing to focus all the result on the fiber used for the optical reading (fiber connected to the photo detector). In such a way that the device is held and manipulated by the casing (2) to introduce the test tube (3) and make the tip (4) of the test piece in the cervix, and given that it is a self-diagnostic device, The device emits a sound through a horn at the conclusion of a measurement and the same person who performs the test can interpret the diagnostic signals indicated by the device itself through the external LEDs (6), see figure 3. To measure the impedance of the tissue, the device of the invention comprises an FPGA (7) and operational amplifiers (8) to generate and regulate an electrical current output of 10 A peak to peak through two electrodes of the four washing resistant electrodes (9), for example gold or silver chloride. The FPGA (7) and the operational amplifiers (8) are inside the housing (2) while the two electrodes (9) are located in the tip (4) of the test tube (2), crossing the holder (10) and The guide (11) in order that both electrodes (9) can make contact with the tissue to transmit the electric current produced. The device uses two other electrodes (9) also located in the tip (4) of the test piece (2) crossing the holder (10) and the guide (11); and that receive the electrical voltage generated by the tissue due to the impulse of electric current applied by the other two electrodes (9). The electrical tension of the tissue perceived by the two electrodes (9) is digitized by the FPGA (7) and converted to an impedance value that is compared with the ranges of impedance values previously recorded for healthy cervical tissues, cervical tissues with pre-cancer and Cervical tissues with cancer and is classified as normal or abnormal and indicated by the external LEDs (6) (see figure 4). The electric current is applied on the surface of the tissue; However, this does not necessarily expand through the surface of the tissue but penetrates into it at a certain depth, the characteristics of the electrical impedance of the tissues can be explained by changes in the cell arrangements and the size of the nucleus. This relationship is the basis for knowing the structure of the tissue based on the measurements of the electrical impedance spectrum, that is, this pattern will help us to differentiate normal and precancerous tissues. The greatest changes in precancerous tissue occur in the subdivision in the layers of superficial cells and there is an increase in the size of the nucleus. Preferably, the test piece (3) (see figure 14) is approximately 7.0-12.0 mm in diameter, and approximately 17 cm long, with four electrodes of 0.8-1.5 mm in diameter.
Para medir Ia intensidad luminosa del tejido, el dispositivo de Ia invención comprende el mismo FPGA (7) y un conjunto de LED 's (para generar impulsos de luz en tres diferentes longitudes de onda, por ejemplo, azul, verde y rojo; o un LED multicolor o de espectro blanco capaz de emitir haces de luz de diferentes longitudes de onda dentro del espectro visible 380nm-780nm). El FPGA (7) y los LED 's generadores de luz están ubicados en Ia carcasa (2), mientras que Ia luz emitida por estos LED 's se hace llegar por fibras ópticas emisoras (13) hasta Ia guía (11) localizada en el interior de Ia punta (4) de Ia probeta (3). El dispositivo emplea una fibra óptica receptora (12) ubicada en el interior y a Io largo de Ia probeta (3) que van desde Ia guía (11) hasta el fotodiodo (13) ubicado en Ia carcasa (2) con el fin de recibir Ia intensidad luminosa generada por el tejido debido al impulso de luz aplicado por el o los LED 's generadores de luz y transmitido por las fibras ópticas emisoras (12) a Ia lente convergente (5) que concentra el impulso de luz, para transmitirlo a un área especifica del tejido. Las fibras ópticas emisoras (12) mantienen una posición estática debido a que atraviesan el interior de Ia guía (11), ver figura 5, figura 6 y figura 7; Ia guía tiene en su interior los orificios (14) para permitir el paso de las fibras ópticas emisoras (12); se presentan dos diseños de Ia guía, en el primero representado en las figura 5 y figura 6, presenta cisuras (17) para permitir el paso de los electrodos (9); o como se muestra en Ia figura 7, presenta 4 primeras perforaciones (16) para permitir el paso de los electrodos (9). La lente (5) se localiza en un portalente (10), ver figura 8, esta localizado en Ia punta (4) de Ia probeta (2). El portalente (10) presenta a Ia mitad de su longitud un bisel (15) (ver figura 9) para sujetar Ia lente (5),y asegurar que los haces de luz recibidos del tejido se enfoquen en Ia fibra óptica que esta en medio de Ia guía y de igual manera, que el haz de luz de las fibras ópticas emisoras estimule un área especifica del tejido, el portalente tiene 4 perforaciones (18), para permitir el paso de los electrodos, y estas coinciden con las perforaciones o cisuras (16) de Ia guía (11).To measure the light intensity of the tissue, the device of the invention comprises the same FPGA (7) and a set of LEDs (to generate pulses of light in three different wavelengths, for example, blue, green and red; or a Multicolored or white spectrum LED capable of emitting light beams of different wavelengths within the visible spectrum 380nm-780nm). The FPGA (7) and the LED 's light generators are located in the casing (2), whereas the light emitted by these LED' s is passed through optical fibers stations (13) to the guide (11) located in the inside of the tip (4) of the test tube (3). The device employs a receiving optical fiber (12) located inside and along the specimen (3) ranging from the guide (11) to the photodiode (13) located in the housing (2) in order to receive the light intensity generated by the tissue due to the light pulse applied by the light generating LED (s) and transmitted by the emitting optical fibers (12) to the converging lens (5) that concentrates the light pulse, to transmit it to a specific area of tissue. The emitting optical fibers (12) maintain a static position because they cross the interior of the guide (11), see figure 5, figure 6 and figure 7; The guide has inside the holes (14) to allow the passage of the emitting optical fibers (12); Two designs of the guide are presented, in the first one represented in Figures 5 and Figure 6, it presents fissures (17) to allow the passage of the electrodes (9); or as shown in Figure 7, it presents 4 first perforations (16) to allow the passage of the electrodes (9). The lens (5) is located in a holder (10), see figure 8, it is located in the tip (4) of the specimen (2). The holder (10) has a bevel (15) halfway along its length (see figure 9) to hold the lens (5), and ensure that the light beams received from the tissue are focused on the optical fiber in the middle of the guide and in the same way, that the light beam of the emitting optical fibers stimulates a specific area of the tissue, the holder has 4 perforations (18), to allow the passage of the electrodes, and these coincide with the perforations or fissures (16) of the guide (11).
Particularmente el lente (5) es convergente, (ver figura 10) con un índice de refracción igual o menor a 1.517 nD, con una cubierta para disminuir el porcentaje de reflección. El lente es seleccionado convergente, dado que transmite el haz de luz que incide sobre el, de igual forma en un sentido que en otro, por Io tanto presenta dos focos equidistantes. Además con Ia geometría del lente se asegura que Ia aberración cromática disminuya.Particularly the lens (5) is convergent, (see figure 10) with a refractive index equal to or less than 1,517 nD, with a cover to decrease the percentage of reflection. The lens is selected convergent, since it transmits the beam of light that falls on it, in the same way in a sense that in another, by Io Both presents two equidistant foci. Furthermore, with the geometry of the lens it is ensured that the chromatic aberration decreases.
El diámetro del lente es menor que el diámetro de Ia punta de Ia probeta, para permitir su posicionamiento, que esta determinado por el punto focal (BFL y EFL, descritos mas adelante). Por ejemplo, para un lente de 3 mm de diámetro las medidas se presentan a continuación;The diameter of the lens is smaller than the diameter of the tip of the specimen, to allow its positioning, which is determined by the focal point (BFL and EFL, described below). For example, for a 3 mm diameter lens the measurements are presented below;
CT Ancho del centro de Ia lente; 1.80 mm ET Ancho de Ia arista de Ia lente; 1.41 mmCT Width of the center of the lens; 1.80 mm ET Width of the edge of the lens; 1.41 mm
BFL Distancia entre Ia ultima superficie del lente y el punto focal; 5.37 mmBFL Distance between the last lens surface and the focal point; 5.37 mm
EFL Distancia entre el plano principal del lente y el punto focal; 6.00 mmEFL Distance between the main plane of the lens and the focal point; 6.00 mm
R1 Primer diámetro; 5.88 mmR1 First diameter; 5.88 mm
R2 Segundo diámetro; -5.88 mmR2 Second diameter; -5.88 mm
El lente convergente de elección puede ser BK7, con una cubierta para disminuir el porcentaje de reflección.The convergent lens of choice can be BK7, with a cover to decrease the percentage of reflection.
En Ia figura 11 se presenta para mayor ilustración una vista explotada de Ia punta de Ia probeta, y en Ia figura 12, se muestra el ensamble de Ia punta de Ia probeta, se pueden observar: el punto donde se localizan las puntas de los electrodos, y un espacio libre (19) después de Ia punta del electrodo para ubicar ahí una gota de material para Ia conducción de Ia corriente con el tejido.Figure 11 shows an exploded view of the tip of the specimen for greater illustration, and in figure 12, the assembly of the tip of the specimen is shown, the point where the electrode tips are located , and a free space (19) after the tip of the electrode to locate there a drop of material for the conduction of the current with the tissue.
La intensidad luminosa del tejido percibida por el fotodiodo (13) es digitalizada por el FPGA (7) y convertida a un valor de intensidad luminosa que es comparado con los rangos de valores de intensidad luminosa previamente registrados para tejidos cervicales sanos, tejidos cervicales con precáncer y tejidos cervicales con cáncer. La figura 13 muestra el diagrama de flujo del funcionamiento del dispositivo, donde el FPGA (7) envía simultáneamente dos señales, una señal óptica (20) y una señal eléctrica (21). La señal óptica (20) que consiste en haces de luz en diferentes rangos de longitud de onda (preferentemente azul, verde y rojo), que inciden sobre un área determinada de tejido, y este tejido en respuesta al estímulo, emite un valor de intensidad luminosa (22), al FPGA (7).The light intensity of the tissue perceived by the photodiode (13) is digitized by the FPGA (7) and converted to a light intensity value that is compared with the ranges of light intensity values previously recorded for healthy cervical tissues, cervical tissues with pre-cancer and cervical tissues with cancer. Figure 13 shows the flow chart of the operation of the device, where the FPGA (7) simultaneously sends two signals, an optical signal (20) and an electrical signal (21). The optical signal (20) consisting of beams of light in different wavelength ranges (preferably blue, green and red), which affect an area determined tissue, and this tissue in response to the stimulus, emits a light intensity value (22), to the FPGA (7).
La señal eléctrica (21) que consiste en una corriente de 10 μA pico a pico incide sobre Ia superficie del tejido, y este tejido en respuesta al estímulo, emite un valor de ¡mpedancia (23), al FPGA (5).The electrical signal (21) consisting of a current of 10 μA peak to peak affects the surface of the tissue, and this tissue in response to the stimulus, emits a value of impedance (23), to the FPGA (5).
El FPGA (7) recibe Ia señal eléctrica (23) y Ia intensidad luminosa (22) del tejido estimulado, a través de los electrodos (9) y fotodiodos (13) respectivamente, compara estos valores con valores de impedancia e intensidad de tejido almacenados y preestablecidos y provee un resultado de Ia prueba, emitiendo una señal (24) para activar uno de los LED 's exteriores (6), indicadores de resultado y otra señal para activar Ia bocina que emitirá el sonido que indica el final de Ia medición.The FPGA (7) receives the electrical signal (23) and the light intensity (22) of the stimulated tissue, through the electrodes (9) and photodiodes (13) respectively, compares these values with stored tissue impedance and intensity values and preset and provides a test result, emitting a signal (24) to activate one of the external LEDs (6), result indicators and another signal to activate the horn that will emit the sound that indicates the end of the measurement .
Es recomendable realizar al menos cuatro mediciones, a fin de realizar un barrido en el cérvix para obtener un resultado promedio de diferentes mediciones con mayor exactitud, y los resultados de estas mediciones son guardados en una memoria.It is advisable to perform at least four measurements, in order to perform a scan on the cervix to obtain an average result of different measurements with greater accuracy, and the results of these measurements are stored in a memory.
Cabe mencionar que Ia descripción de Ia solicitud de patente no indica un tamaño del dispositivo; por Ia forma del dispositivo, su configuración y por Ia proporción guardada entre Ia carcasa y Ia probeta que se muestra en Ia Figura 1, aunado a su descripción y a Ia aplicación en particular del mismo, se infiere que se trata de un dispositivo portátil de tamaño adecuado para ser manipulado por una sola mano. It should be mentioned that the description of the patent application does not indicate a size of the device; by the shape of the device, its configuration and by the proportion stored between the housing and the specimen shown in Figure 1, together with its description and the particular application thereof, it is inferred that it is a portable device of size Suitable to be manipulated by one hand.

Claims

REIVINDICACIONESDespués de haber descrito suficientemente Ia invención, consideramos como una novedad y por Io tanto reclamamos como de nuestra exclusiva propiedad Io contenido en las siguientes cláusulas: CLAIMS After having sufficiently described the invention, we consider it as a novelty and therefore claim as our exclusive property contained in the following clauses:
1. Un dispositivo portátil para prueba de autodiagnóstico de cáncer en tejido cérvico uterino, el dispositivo portátil se caracteriza por comprender: una probeta (1) que contiene hasta su punta electrodos para transmitir una corriente eléctrica al tejido, electrodos para percibir una tensión eléctrica del tejido producida por Ia corriente eléctrica aplicada, una pluralidad de fibras ópticas emisoras (10) para transmitir impulso de luz al tejido, un lente convergente sujetado por un portalente localizado entre Ia punta y Ia guía de Ia probeta, el lente convergente concentra los impulsos de luz emitidos en un área determinada y capta Ia intensidad óptica de Ia misma área estimulada, esto mediante una pluralidad de fibras ópticas receptoras (11) para captar Ia intensidad luminosa del tejido producida por el impulso de luz; una carcasa (2) unida a Ia probeta (1) formando un solo cuerpo, Ia carcasa (2) incluye amplificadores operacionales para generar y regular Ia corriente eléctrica transmitida al tejido a través de los electrodos de Ia probeta (1), LEDs para generar el impulso de luz transmitido al tejido a través de las fibras ópticas emisoras (12) de Ia probeta (1), fotodiodos para percibir Ia intensidad luminosa del tejido proveniente de las fibras ópticas receptoras (11) de Ia probeta (1), y un FPGA operativamente conectado a los amplificadores operacionales, a los LEDs, a los fotodiodos y a los electrodos que perciben Ia tensión eléctrica del tejido producida por Ia corriente eléctrica aplicada; y en donde el FPGA recibe Ia tensión eléctrica y Ia intensidad luminosa del tejido a través de los electrodos y fotodiodos respectivamente para determinar los valores de Ia impedancia y de Ia intensidad luminosa del tejido para luego compararlos con valores de impedancia e intensidad de tejido almacenados y preestablecidos y proveer un resultado de Ia prueba. 1. A portable device for self-diagnostic test of cancer in uterine cervical tissue, the portable device is characterized by comprising: a test tube (1) containing electrodes to transmit an electrical current to the tissue, electrodes to perceive an electrical voltage of the tissue produced by the applied electric current, a plurality of emitting optical fibers (10) to transmit light impulse to the tissue, a converging lens held by a holder located between the tip and the guide of the test tube, the converging lens concentrates the impulses of light emitted in a certain area and captures the optical intensity of the same stimulated area, this by means of a plurality of receiving optical fibers (11) to capture the light intensity of the tissue produced by the light pulse; A housing (2) attached to the test tube (1) forming a single body, the housing (2) includes operational amplifiers to generate and regulate the electric current transmitted to the tissue through the electrodes of the test tube (1), LEDs to generate the light impulse transmitted to the tissue through the emitting optical fibers (12) of the specimen (1), photodiodes to perceive the light intensity of the tissue from the receiving optical fibers (11) of the specimen (1), and a FPGA operatively connected to the operational amplifiers, the LEDs, the photodiodes and the electrodes that perceive the electrical tension of the tissue produced by the applied electric current; and where the FPGA receives the electrical voltage and the light intensity of the tissue through the electrodes and photodiodes respectively to determine the values of the impedance and the light intensity of the tissue and then compare them with values of impedance and intensity of tissue stored and preset and provide a test result.
2. El dispositivo portátil para prueba de autod i agnóstico de cáncer en tejido cérvico uterino, de conformidad con Ia reivindicación 1 caracterizado porque el lente convergente tiene un índice de refracción igual o menor a 1.517 nD.2. The portable device for the test of self-diagnosis of cancer in uterine cervical tissue, in accordance with claim 1, characterized in that the converging lens has a refractive index equal to or less than 1,517 nD.
3. El dispositivo portátil para prueba de autodiagnóstico de cáncer en tejido cérvico uterino, de conformidad con Ia reivindicación 1 caracterizado porque el lente convergente tiene una cubierta para disminuir el porcentaje de reflección.3. The portable device for self-diagnostic test of cancer in uterine cervical tissue, according to claim 1 characterized in that the converging lens has a cover to decrease the percentage of reflection.
4. El dispositivo portátil para prueba de autodiagnóstico de cáncer en tejido cérvico uterino, de conformidad con Ia reivindicación 1 caracterizado porque el lente convergente es BK7.4. The portable device for self-diagnosis of cancer in uterine cervical tissue, according to claim 1 characterized in that the converging lens is BK7.
5. El dispositivo portátil para prueba de autodiagnóstico de cáncer en tejido cérvico uterino, de conformidad con Ia reivindicación 1 caracterizado porque el lente convergente tiene un diámetro menor, al diámetro de Ia punta de Ia probeta.5. The portable device for self-diagnosis of cancer in uterine cervical tissue, in accordance with claim 1, characterized in that the converging lens has a smaller diameter, than the diameter of the tip of the specimen.
6. El dispositivo portátil para prueba de autodiagnóstico de cáncer en tejido cérvico uterino, de conformidad con Ia reivindicación 1 caracterizado porque Ia distancia entre el lente convergente y el extremo distal de Ia punta de Ia probeta esta determinado por el punto focal del lente convergente.6. The portable device for the self-diagnostic test of cancer in uterine cervical tissue, according to claim 1, characterized in that the distance between the converging lens and the distal end of the tip of the specimen is determined by the focal point of the converging lens.
7. El dispositivo portátil para prueba de autodiagnóstico de cáncer en tejido cérvico uterino, de conformidad con Ia reivindicación 1 caracterizado porque tiene una bocina para emitir un sonido al finalizar un barrido.7. The portable device for self-diagnostic test of cancer in uterine cervical tissue, according to claim 1 characterized in that it has a horn to emit a sound at the end of a scan.
8. El dispositivo portátil para prueba de autodiagnóstico de cáncer en tejido cérvico uterino, de conformidad con Ia reivindicación 1 caracterizado porque tiene una memoria para guardar los resultados de múltiples barridos. 8. The portable device for self-diagnosis of cancer in uterine cervical tissue, according to claim 1, characterized in that it has a memory for saving the results of multiple scans.
9. El dispositivo portátil para prueba de autodiagnóstico de cáncer en tejido cérvico uterino, de conformidad con Ia reivindicación 1 caracterizado porque los impulsos de luz son generados por un LED multicolor capaz de emitir haces de luz de diferentes longitudes de onda dentro del espectro visible9. The portable device for self-diagnosis of cancer in uterine cervical tissue, according to claim 1, characterized in that the light pulses are generated by a multicolored LED capable of emitting light beams of different wavelengths within the visible spectrum
380nm-780nm. 380nm-780nm.
PCT/MX2009/000116 2008-12-01 2009-10-19 Improved portable test device for self-diagnosis of uterine cervical cancer by means of simultaneous electrical and optical measurements WO2010064884A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2008/015279 2008-12-01
MX2008015279A MX2008015279A (en) 2008-12-01 2008-12-01 Improved portable test device for self-diagnosis of uterine cervical cancer by means of simultaneous electrical and optical measurements.

Publications (1)

Publication Number Publication Date
WO2010064884A1 true WO2010064884A1 (en) 2010-06-10

Family

ID=42233415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2009/000116 WO2010064884A1 (en) 2008-12-01 2009-10-19 Improved portable test device for self-diagnosis of uterine cervical cancer by means of simultaneous electrical and optical measurements

Country Status (2)

Country Link
MX (1) MX2008015279A (en)
WO (1) WO2010064884A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498481A (en) * 1982-09-28 1985-02-12 Lemke Judith K Estrus cycle monitoring system
US5505686A (en) * 1994-05-05 1996-04-09 Imagyn Medical, Inc. Endoscope with protruding member and method of utilizing the same
US5792053A (en) * 1997-03-17 1998-08-11 Polartechnics, Limited Hybrid probe for tissue type recognition
EP0865761A1 (en) * 1997-03-17 1998-09-23 Polartechnics Ltd Sheathed probes for tissue type recognition
WO1998041150A1 (en) * 1997-03-17 1998-09-24 Polartechnics Limited Us9804494 for tissue type recognition within a body canal
WO2006088343A1 (en) * 2005-02-21 2006-08-24 Instituto Tecnológico y de Estudios Superiores de Monterrey Optoelectronic device for the detection of uterine cervical cancer, comprising a self-positioning attachment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4498481A (en) * 1982-09-28 1985-02-12 Lemke Judith K Estrus cycle monitoring system
US5505686A (en) * 1994-05-05 1996-04-09 Imagyn Medical, Inc. Endoscope with protruding member and method of utilizing the same
US5792053A (en) * 1997-03-17 1998-08-11 Polartechnics, Limited Hybrid probe for tissue type recognition
EP0865761A1 (en) * 1997-03-17 1998-09-23 Polartechnics Ltd Sheathed probes for tissue type recognition
WO1998041150A1 (en) * 1997-03-17 1998-09-24 Polartechnics Limited Us9804494 for tissue type recognition within a body canal
WO2006088343A1 (en) * 2005-02-21 2006-08-24 Instituto Tecnológico y de Estudios Superiores de Monterrey Optoelectronic device for the detection of uterine cervical cancer, comprising a self-positioning attachment

Also Published As

Publication number Publication date
MX2008015279A (en) 2010-06-01

Similar Documents

Publication Publication Date Title
US11786152B2 (en) Tissue oximetry probe with tissue marking feature
Utzinger et al. Fiber optic probes for biomedical optical spectroscopy
ES2464718T3 (en) Method and system for characterization and mapping of tissue lesions
ES2923751T3 (en) eye treatment system
US20060282009A1 (en) Device for measuring physical properties of the tympanic membrane
ES2289344T3 (en) USE OF RAMAN SPECTROSCOPY OF ELEVATED WAVE NUMBER FOR TISSUE MEASUREMENT.
ES2708573T3 (en) Photoacoustic detection device and method
US11696689B2 (en) System and method for axially resolved light collection from a tapered waveguide
Thompson et al. In vivo measurements of diffuse reflectance and time‐resolved autofluorescence emission spectra of basal cell carcinomas
US20150105669A1 (en) Optoelectronic Device for The Detection of Uterine Cervical Cancer, Comprising A Self-Positioning Attachment
JP5861000B2 (en) Biopsy needle with large fiber spacing at the tip
US11076784B2 (en) System for analyzing tissue
JPH11510254A (en) Optical microprobe and method for spectral analysis of materials
US20080306470A1 (en) Optical screening device
RU2138192C1 (en) Method of identification of tissue type and apparatus for method embodiment
ES2908682T3 (en) Skin Lesion Imaging Device
WO2010064884A1 (en) Improved portable test device for self-diagnosis of uterine cervical cancer by means of simultaneous electrical and optical measurements
CN102585814A (en) Method and device for identifying type of tissue
US11324425B2 (en) Apparatus and method for assessment of cancer margin
RU2370202C1 (en) Automated device for diagnosing oncopathologies in gynecology
Pisano et al. Multipoint and large volume fiber photometry with a single tapered optical fiber implant
RU187072U1 (en) SAPPHIRE NEUROSURGICAL PROBE FOR TUMOR AND SPINAL TUMOR REMOVAL UNDER CONTROL OF THE COMBINED SPECTROSCOPIC DIAGNOSTICS
WO2006088343A1 (en) Optoelectronic device for the detection of uterine cervical cancer, comprising a self-positioning attachment
Kwek et al. Distance and angular dependence of intensity ratios in laser‐induced autofluorescence techniques
WO2021260244A1 (en) Optical device for identifying tumour regions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830620

Country of ref document: EP

Kind code of ref document: A1