WO2010064514A1 - Method for producing hydroxyalkyl(meth)acrylic acid ester - Google Patents

Method for producing hydroxyalkyl(meth)acrylic acid ester Download PDF

Info

Publication number
WO2010064514A1
WO2010064514A1 PCT/JP2009/068798 JP2009068798W WO2010064514A1 WO 2010064514 A1 WO2010064514 A1 WO 2010064514A1 JP 2009068798 W JP2009068798 W JP 2009068798W WO 2010064514 A1 WO2010064514 A1 WO 2010064514A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
meth
acrylic acid
acid ester
vinyl ether
Prior art date
Application number
PCT/JP2009/068798
Other languages
French (fr)
Japanese (ja)
Inventor
淳一 亀井
一彦 羽場
Original Assignee
日立化成工業株式会社
丸善石油化学株式会社
伊藤忠ケミカルフロンティア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社, 丸善石油化学株式会社, 伊藤忠ケミカルフロンティア株式会社 filed Critical 日立化成工業株式会社
Priority to JP2010541276A priority Critical patent/JP5548618B2/en
Priority to KR1020117012869A priority patent/KR101727332B1/en
Priority to CN200980148132.6A priority patent/CN102227400B/en
Publication of WO2010064514A1 publication Critical patent/WO2010064514A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/29Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by introduction of oxygen-containing functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a method for producing a hydroxyalkyl (meth) acrylic acid ester using a vinyl ether-containing alcohol.
  • a method for producing a hydroxyalkyl (meth) acrylic acid ester generally, after obtaining a diol, monoester, diester mixture from an alkanediol by an esterification reaction, only the monoester body is extracted and separated. Specifically, a method of reacting acrylic acid and alkanediol in the presence of a strong acid (for example, see Patent Document 1) has been reported. However, a by-product due to a strong acid is produced, and the yield is reduced. Has a disadvantage. As a method for solving this problem, various reports have been made on the transesterification reaction between alkanediol and (meth) acrylic acid ester (see, for example, Patent Documents 2 to 4).
  • An object of the present invention is to provide a production method capable of efficiently producing a hydroxyalkyl (meth) acrylic acid ester without requiring a complicated purification step.
  • a vinyl ether-containing alcohol is (meth) acrylated into a vinyl ether-containing (meth) acrylic acid ester, and then devinylated by coexisting water in the presence of an acid catalyst. It has been found that an aqueous layer that is obtained in a high yield of pure hydroxyalkyl (meth) acrylic acid ester and separated and recovered after thereafter can be reused. That is, the present invention is as follows. (1) The vinyl ether-containing alcohol is (meth) acrylated by a transesterification method to give a vinyl ether-containing (meth) acrylic acid ester, and then water is allowed to coexist in the intendylation reaction in the presence of an acid catalyst. The manufacturing method of hydroxyalkyl (meth) acrylic acid ester.
  • a hydroxyalkyl (meth) acrylic acid ester can be efficiently obtained without going through complicated purification steps such as distillation, and water used in the istylation step can be reused.
  • An economical method for producing a hydroxyalkyl (meth) acrylic acid ester can be provided.
  • the method for producing a hydroxyalkyl (meth) acrylic acid ester of the present invention is such that a vinyl ether-containing alcohol is (meth) acrylated by a transesterification method to give a vinyl ether-containing (meth) acrylic acid ester, followed by thereafter possessing an acid catalyst In carrying out the reaction, water is allowed to coexist.
  • the hydroxyl group of a vinyl ether-containing alcohol is esterified to obtain a vinyl ether-containing (meth) acrylic acid ester.
  • the esterification method mainly includes dehydration esterification method using (meth) acrylic acid, transesterification method using lower (meth) acrylic acid ester, and acid halogen method using (meth) acrylic acid chloride.
  • the dehydration esterification method uses an acid catalyst, so that devinylation occurs at the same time and cannot be applied.
  • the acid halogen method halogen is eliminated by the reaction and remains in the system, and thus a purification treatment such as washing with water, adsorption or distillation is necessary.
  • the transesterification method since the transesterification method has few impurities and does not require a purification operation, the transesterification method is adopted in the present invention.
  • Examples of the vinyl ether-containing alcohol used in the present invention include the following general formulas (I) such as 4-hydroxybutyl vinyl ether, 6-hydroxyhexyl vinyl ether, 9-hydroxynonyl vinyl ether, 10-hydroxydecanyl vinyl ether, 12-hydroxydodecyl vinyl ether and the like. ); Compounds represented by the following general formula (II) such as cyclohexanedimethanol monovinyl ether; and phenyldimethanol monovinyl ether.
  • n an integer of 3 to 11
  • A represents a cyclopentylene group or a cyclohexylene group.
  • the lower (meth) acrylate used in the transesterification method include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate.
  • the lower (meth) acrylic acid ester referred to in the present application refers to one having an alkyl group having 4 or less carbon atoms as an ester substituent.
  • the lower (meth) acrylic acid ester in an equivalent amount to an excessive amount with respect to the vinyl ether-containing alcohol compound from the viewpoint of a short-time reaction, a high ester conversion rate, and post-treatment after the reaction. .
  • a lower (meth) acrylic acid ester in the range of 1.0 to 20 mol with respect to 1 mol of the hydroxyl group usually possessed by the vinyl ether-containing alcohol compound.
  • the amount of the lower (meth) acrylic acid ester used is less than 1.0 mol relative to 1 mol of the hydroxyl group of the vinyl ether-containing alcohol compound, the reaction does not proceed sufficiently, and if it exceeds 20 mol, the concentration step after the reaction Takes a long time to deteriorate productivity.
  • Catalysts used in the transesterification method include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkali metal carbonates such as lithium carbonate, sodium carbonate, and potassium carbonate; lithium methoxide, sodium Alkali metal alkoxides such as methoxide, sodium ethoxide and potassium t-butoxide; alkali metal amides such as lithium amide, sodium amide and potassium amide; tetramethyl orthotitanate, tetraethyl orthotitanate, tetrapropyl orthotitanate, orthotitanium
  • Examples include titanium alkoxides such as tetraisopropyl acid and tetrabutyl orthotitanate; other aluminum alkoxides; tin alkoxides; Among these, the side reaction is suppressed as much as possible, and the catalyst can be easily removed by adding water after the completion of the reaction. Therefore, titanium alk
  • the amount of the catalyst used is preferably in the range of usually 0.01 to 5.0% by mass with respect to the total amount of the lower (meth) acrylic acid ester and the vinyl ether-containing alcohol compound. If the amount of the catalyst is increased more than necessary, the reaction rate is hardly affected, and conversely, a large amount of water is required for removing the catalyst, and it is only uneconomical.
  • a known polymerization inhibitor can be added and used in combination.
  • the polymerization inhibitor include phenols such as hydroquinone and hydroquinone monomethyl ether (also referred to as “methoquinone”); sulfur compounds such as phenothiazine and ethylenethiourea; copper salts such as copper dibutyldithiocarbamate; manganese salts such as manganese acetate; Nitro compounds, nitroso compounds, N-oxyl compounds such as 4-hydroxy-2,2,6,6-tetramethylpiperidinooxyl; and the like.
  • the addition amount of the polymerization inhibitor is preferably 0.1% by mass or less with respect to the produced ester. If it exceeds 0.1% by mass, coloring due to the additive may occur.
  • molecular oxygen it is preferable to blow a small amount of molecular oxygen in order to prevent polymerization of the reaction solution during the reaction.
  • molecular oxygen it is preferable to use it in a diluted state, and it is preferable to use air.
  • the blowing of molecular oxygen is also preferable for preventing the polymerization of (meth) acrylic acid esters which are evaporated and exist as vapor or condensed on the upper wall of the tank.
  • Molecular oxygen means a ground-state triplet oxygen molecule (O 2 ) formed by two oxygen atoms, and can directly participate in the reaction as it is, but it interacts with catalysts and reaction reagents. Means an oxygen molecule that can also participate in the reaction after being converted to a singlet oxygen molecule, oxygen atom, superoxide, peroxide, or the like.
  • the amount of molecular oxygen introduced is also affected by the shape of the reactor and the stirring power, but it is blown at a rate of 5 to 500 ml / min (25 to 2500 ml / min as air) with respect to 1 mol of the raw material vinyl ether-containing alcohol. That's fine.
  • the amount of molecular oxygen introduced is less than 5 ml / min, the effect of inhibiting the polymerization is not sufficient, and when it exceeds 500 ml / min, the effect of extruding lower (meth) acrylic acid ester out of the system becomes stronger. Loss of the lower (meth) acrylic acid ester as
  • the transesterification reaction in the present invention is preferably performed at 60 to 120 ° C. under normal pressure or reduced pressure.
  • the temperature is less than 60 ° C., the reaction rate is extremely slow, and when it exceeds 120 ° C., polymerization of the vinyl ether-containing (meth) acrylate obtained by the transesterification reaction is likely to occur, and coloration is likely to occur. .
  • the form of the transesterification reaction it can be carried out by a method generally known among those skilled in the art of producing (meth) acrylic acid esters.
  • a method generally known among those skilled in the art of producing (meth) acrylic acid esters it is necessary to azeotropically distill off the by-produced lower alcohol with a lower (meth) acrylic acid ester and / or a solvent.
  • a reaction apparatus for example, a batch reaction tank attached to a rectification column is used.
  • the catalyst is deactivated with water, and excess low-boiling components are distilled off with a concentrator. Distillation of the low boiling point component by the concentrator is preferably performed under normal pressure or reduced pressure while maintaining the liquid temperature at 90 ° C. or less, and more preferably in the range of 50 to 70 ° C. When the liquid temperature exceeds 90 ° C., the vinyl ether-containing (meth) acrylic acid ester is likely to be colored or polymerized.
  • the vinyl ether-containing (meth) acrylic acid ester from which the low-boiling components have been distilled off can remove insoluble matters such as a deactivated catalyst remaining by filtration.
  • a filter aid such as diatomaceous earth.
  • the intendylation reaction is carried out in the presence of an acid catalyst.
  • acid catalysts are usually sulfuric acid, sodium hydrogen sulfate, paratoluenesulfonic acid, benzenesulfonic acid, methanesulfonic acid, solid acid (zeolite). , Amberlite, Amberlist, Nafion, etc.).
  • the amount of catalyst used is preferably 0.01% by mass to 10% by mass and more preferably 0.1% by mass to 5% by mass with respect to the vinyl ether-containing (meth) acrylic ester to be reacted.
  • the amount of the catalyst used is less than 0.01% by mass, the reactivity is remarkably lowered, and the intendylation reaction may be extremely slow.
  • the amount is more than 10% by mass, the reaction rate is hardly affected, but impurities may be generated.
  • the intendylation reaction according to the present invention is characterized by being carried out in the presence of water.
  • the amount of water used is not particularly limited as long as it is equimolar or more based on the vinyl ether-containing (meth) acrylic acid ester. Preferably, it is used twice or more based on the vinyl ether-containing (meth) acrylic acid ester.
  • the reaction proceeds quickly. When water is used in a proportion less than equimolar, the reaction stops midway.
  • the devinylation reaction according to the present invention is an exothermic reaction.
  • the reaction temperature by controlling the reaction temperature to 60 ° C. or lower, preferably 0 ° C. to 40 ° C., it is possible to obtain a high-purity hydroxyalkyl (meth) acrylate.
  • the method for controlling the reaction temperature include cooling the reactor or gradually adding a vinyl ether-containing (meth) acrylic acid ester to the aqueous catalyst solution.
  • acetaldehyde is by-produced during the reaction, but acetaldehyde can be quickly removed by reducing the pressure in the system, and the reaction can be promoted.
  • the aqueous layer is separated and removed from the reaction residual liquid.
  • solvents such as toluene and xylene can be used alone or in combination of two or more.
  • the water in the aqueous layer obtained by separation and removal can be reused as water that coexists in the devinylation reaction in the next and subsequent productions.
  • the separated organic layer contains a catalyst, it is separated and removed by neutralization with a base.
  • the base include hydroxides or salts of alkali metals and alkaline earth metals such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium bicarbonate, and sodium bicarbonate. A method in which these are used as an aqueous solution and separated and removed after neutralization is preferred.
  • insolubles such as remaining neutralized salts can be removed by filtration.
  • a filter aid such as diatomaceous earth.
  • the production method of the hydroxyalkyl (meth) acrylic acid ester of the present invention uses water during the devinylation reaction, a high-purity hydroxyalkyl (meth) acrylic acid ester can be obtained. No purification step is necessary.
  • Example 1 Synthesis of vinyloxybutyl methacrylate
  • HBVE 4-hydroxybutyl vinyl ether
  • methyl methacrylate 3000 g
  • methoquinone 0.65 g
  • heating was started while introducing dry air at 100 ml / min, and the pressure was adjusted to about 40 kPa so that the liquid temperature in the flask at reflux became 75 ° C., thereby removing moisture in the system.
  • reaction conversion rate was almost 100% as analyzed by gas chromatography, so the reaction was terminated.
  • 100 g of toluene and 50 g of 17% by mass saline were added and subjected to oil / water separation, and only the organic layer was taken out (the aqueous layer was used in Example 4).
  • the organic layer was washed with 70 g of a 5% by mass aqueous sodium hydrogen carbonate solution using a separating funnel and then washed with 70 g of a 17% by mass saline solution.
  • the organic layer was placed in an eggplant-shaped flask and excess toluene was distilled off under reduced pressure using a rotary evaporator, followed by suction filtration to obtain 395 g of the desired 4-hydroxybutyl methacrylate (yield 92.2%, Purity 99.1%).
  • the ester conversion rate was 99.0%.
  • the reaction liquid was cooled, and when the liquid temperature reached 75 ° C., 250 g of 17% by mass saline was added to hydrolyze the catalyst. After standing for 15 minutes, the organic layer was taken into an eggplant-shaped flask by decantation, and after distilling off the excess ethyl acrylate under reduced pressure using a rotary evaporator, the solution in the eggplant flask was filtered by suction filtration. 1376 g of vinyloxybutyl acrylate was obtained.
  • reaction conversion rate was 99.9% as analyzed by gas chromatography.
  • 200 g of toluene and 50 g of 17% by mass saline were added and separated into oil and water, and only the organic layer was taken out.
  • the organic layer was washed with 70 g of a 5% by mass aqueous sodium hydrogen carbonate solution using a separating funnel and then washed with 70 g of a 17% by mass saline solution.
  • the organic layer was placed in an eggplant-shaped flask and excess toluene was distilled off under reduced pressure using a rotary evaporator, followed by suction filtration to obtain 389 g of the desired 4-hydroxybutyl acrylate (yield 92.0%, Purity 99.0%).
  • reaction conversion rate was 99.9% as analyzed by gas chromatography.
  • 80 g of toluene and 30 g of 17% by mass saline were added and subjected to oil / water separation, and only the organic layer was taken out.
  • the organic layer was washed with 20 g of a 5% by mass aqueous sodium hydrogen carbonate solution using a separatory funnel and then with 30 g of 17% by mass saline.
  • the organic layer was placed in an eggplant-shaped flask and excess toluene was distilled off under reduced pressure using a rotary evaporator, followed by suction filtration to obtain 163 g of the desired cyclohexanedimethanol monomethacrylate (yield 91.5%, Purity 99.4%).
  • Example 4 Method for producing 4-hydroxybutyl methacrylate by water reuse
  • the 1 L 4-neck separable flask was charged with the aqueous layer (total amount) separated after the reaction in Example 1, and a stirrer, thermometer, air inlet tube, and vacuum pump with a cooling trap were installed.
  • 500 g of vinyloxybutyl methacrylate synthesized in Example 1 was slowly added to the flask.
  • the system pressure was set to 20 kPa, and the reaction was carried out while removing acetaldehyde produced from the system while stirring. At this time, the reaction temperature was maintained at 15 to 30 ° C. while cooling the flask with ice water.
  • reaction conversion rate was 99.9% as analyzed by gas chromatography.
  • 100 g of toluene was added to the reaction completion liquid and oil-water separation was performed, and only the organic layer was taken out.
  • the organic layer was washed with 70 g of a 5% by mass aqueous sodium hydrogen carbonate solution using a separating funnel and then washed with 70 g of a 17% by mass saline solution.
  • the organic layer was placed in an eggplant-shaped flask and excess toluene was distilled off under reduced pressure using a rotary evaporator, followed by filtration by suction filtration to obtain 398 g of the desired 4-hydroxybutyl methacrylate (yield 92.8%, Purity 99.2%).
  • Example 5 Method for producing 4-hydroxybutyl methacrylate when the reaction temperature is 60 ° C. or higher
  • a 1 L four-necked separable flask was charged with 16 g of paratoluenesulfonic acid and 200 g of pure water, and a stirrer, a thermometer, an air introduction tube, and a vacuum pump with a cooling trap were installed.
  • the system internal pressure was set to 20 kPa, and the reaction was advanced while removing the generated acetaldehyde from the system under stirring.
  • reaction conversion rate was 78% as analyzed by gas chromatography. Moreover, since the acetal compound remained in the reaction system by analysis, the reaction was continued by heating to 50 ° C. Since the reaction conversion rate in 1 hour after the start of heating was 98.4%, the reaction was terminated.
  • 200 g of toluene and 150 g of 5% by mass saline were added and separated into oil and water, and only the organic layer was taken out. The organic layer was washed with 70 g of a 5% by mass aqueous sodium hydrogen carbonate solution using a separating funnel and then washed with 70 g of a 17% by mass saline solution.
  • the organic layer was placed in an eggplant-shaped flask and excess toluene was distilled off under reduced pressure using a rotary evaporator, followed by suction filtration to obtain 395 g of the desired 4-hydroxybutyl methacrylate (yield: 87.6%, Purity 92.3%) was obtained.
  • Example 4 shows that the aqueous layer separated and recovered after istylation can be reused for the istylation reaction in the next and subsequent productions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is a method whereby a hydroxyalkyl(meth)acrylic acid ester can be efficiently produced without requiring any troublesome purification step. A method for producing a hydroxyalkyl(meth)acrylic acid ester characterized by comprising (meth)acrylating a vinyl ether-containing alcohol by the ester exchange method to give a vinyl ether-containing (meth)acrylic acid ester and then conducting a devinylation reaction in the presence of an acid catalyst together with water.

Description

ヒドロキシアルキル(メタ)アクリル酸エステルの製造方法Method for producing hydroxyalkyl (meth) acrylic acid ester
 本発明は、ビニルエーテル含有アルコールを用いるヒドロキシアルキル(メタ)アクリル酸エステルの製造方法に関する。 The present invention relates to a method for producing a hydroxyalkyl (meth) acrylic acid ester using a vinyl ether-containing alcohol.
 ヒドロキシアルキル(メタ)アクリル酸エステルの製造方法として一般的にはアルカンジオールからエステル化反応によりジオール、モノエステル、ジエステル混合体を得た後、モノエステル体のみを抽出分離する方法が主流である。具体的には、アクリル酸とアルカンジオールとを強酸存在下で反応させる方法(例えば、特許文献1参照)が報告されているが、強酸による副生成物が生成し、収率が低下するなどの不利な点を有している。この問題を解決する方法として、アルカンジオールと(メタ)アクリル酸エステルとのエステル交換反応について種々の報告がある(例えば、特許文献2~4参照)。また、4-ヒドロキシブチル(メタ)アクリレートに関して、効率的に抽出及び精製する方法(例えば、特許文献5~6参照)なども報告されている。しかし、アルカンジオールからのエステル交換法では、得られる生成物が混合物であるため、モノエステルのみを分離するのに過剰な抽出溶剤が必要となり、効率的ではない。 As a method for producing a hydroxyalkyl (meth) acrylic acid ester, generally, after obtaining a diol, monoester, diester mixture from an alkanediol by an esterification reaction, only the monoester body is extracted and separated. Specifically, a method of reacting acrylic acid and alkanediol in the presence of a strong acid (for example, see Patent Document 1) has been reported. However, a by-product due to a strong acid is produced, and the yield is reduced. Has a disadvantage. As a method for solving this problem, various reports have been made on the transesterification reaction between alkanediol and (meth) acrylic acid ester (see, for example, Patent Documents 2 to 4). In addition, methods for efficiently extracting and purifying 4-hydroxybutyl (meth) acrylate (for example, see Patent Documents 5 to 6) have been reported. However, in the transesterification method from alkanediol, since the product obtained is a mixture, an excessive extraction solvent is required to separate only the monoester, which is not efficient.
 ヒドロキシアルキル(メタ)アクリル酸エステルを2段階で得る方法としては、ビニルエーテル含有アルコールをエステル交換した後、酸触媒とアルコール存在下に脱ビニル化する方法が報告されている(例えば、特許文献7参照)。しかし、この方法では脱ビニル化反応の際にアセタール化合物が生成するためアセタール化合物を除く必要があるが、反応中のアセタール化合物を除く作業をすることが容易ではない。また、この反応時に過剰に用いたアルコールは水洗除去により廃棄しなければならず、効率的ではない。 As a method for obtaining hydroxyalkyl (meth) acrylic acid ester in two steps, a method in which a vinyl ether-containing alcohol is transesterified and then devinylated in the presence of an acid catalyst and an alcohol has been reported (for example, see Patent Document 7). ). However, in this method, since an acetal compound is generated during the devinylation reaction, it is necessary to remove the acetal compound, but it is not easy to remove the acetal compound during the reaction. Moreover, the alcohol used excessively at the time of this reaction must be discarded by washing with water, which is not efficient.
ドイツ特許第15118572号公報German Patent No. 15118572 特開平10-298143号公報Japanese Patent Laid-Open No. 10-298143 特開平11-43466号公報JP-A-11-43466 特開2000-159727号公報JP 2000-159727 A 特開平8-53392号公報JP-A-8-53392 特開2005-194201号公報JP-A-2005-194201 特開平10-182555号公報Japanese Patent Laid-Open No. 10-182555
 本発明は、煩雑な精製工程を必要とすることなく、効率的にヒドロキシアルキル(メタ)アクリル酸エステルを製造することができる製造方法を提供することを課題とする。 An object of the present invention is to provide a production method capable of efficiently producing a hydroxyalkyl (meth) acrylic acid ester without requiring a complicated purification step.
 本発明者等は種々検討した結果、ビニルエーテル含有アルコールを(メタ)アクリル化してビニルエーテル含有(メタ)アクリル酸エステルとした後、酸触媒存在下、水を共存させることによる脱ビニル化法により、高純度のヒドロキシアルキル(メタ)アクリル酸エステルを高収率で得られ、かつ脱ビニル化後に分離回収される水層は、再利用可能であることを見出した。
 すなわち、本発明は以下の通りである。
(1)ビニルエーテル含有アルコールをエステル交換法により(メタ)アクリル化してビニルエーテル含有(メタ)アクリル酸エステルとした後、酸触媒存在下、脱ビニル化反応を行う際に、水を共存させることを特徴とする、ヒドロキシアルキル(メタ)アクリル酸エステルの製造方法。
As a result of various studies, the present inventors have found that a vinyl ether-containing alcohol is (meth) acrylated into a vinyl ether-containing (meth) acrylic acid ester, and then devinylated by coexisting water in the presence of an acid catalyst. It has been found that an aqueous layer that is obtained in a high yield of pure hydroxyalkyl (meth) acrylic acid ester and separated and recovered after devinylation can be reused.
That is, the present invention is as follows.
(1) The vinyl ether-containing alcohol is (meth) acrylated by a transesterification method to give a vinyl ether-containing (meth) acrylic acid ester, and then water is allowed to coexist in the devinylation reaction in the presence of an acid catalyst. The manufacturing method of hydroxyalkyl (meth) acrylic acid ester.
(2)脱ビニル化反応の際の反応温度が60℃以下である、前記(1)に記載のヒドロキシアルキル(メタ)アクリル酸エステルの製造方法。 (2) The method for producing a hydroxyalkyl (meth) acrylic acid ester according to (1), wherein the reaction temperature in the devinylation reaction is 60 ° C. or lower.
(3)ビニルエーテル含有アルコールが下記一般式(I)又は(II)で表される、前記(1)又は(2)に記載のヒドロキシアルキル(メタ)アクリル酸エステルの製造方法。
Figure JPOXMLDOC01-appb-C000003

(一般式(I)中、nは3~11の整数を示す。)
Figure JPOXMLDOC01-appb-C000004

(一般式(II)中、Aはシクロペンチレン基又はシクロへキシレン基を示す。)
(3) The method for producing a hydroxyalkyl (meth) acrylic acid ester according to (1) or (2), wherein the vinyl ether-containing alcohol is represented by the following general formula (I) or (II).
Figure JPOXMLDOC01-appb-C000003

(In general formula (I), n represents an integer of 3 to 11)
Figure JPOXMLDOC01-appb-C000004

(In general formula (II), A represents a cyclopentylene group or a cyclohexylene group.)
 本出願は、同出願人により先にされた日本国特許出願、すなわち、特願2008-306256(出願日2008年12月1日)に基づく優先権主張を伴うものであって、これらの明細書を参照のためにここに組み込むものとする。 This application is accompanied by a priority claim based on a Japanese patent application previously filed by the same applicant, ie, Japanese Patent Application No. 2008-306256 (filing date: December 1, 2008). Are hereby incorporated by reference.
 本発明によれば、蒸留等の煩雑な精製工程を経ることなく効率的にヒドロキシアルキル(メタ)アクリル酸エステルが得られ、さらに脱ビニル化工程で使用する水を再利用できるため、短工程且つ経済的なヒドロキシアルキル(メタ)アクリル酸エステルの製造方法を提供することができる。 According to the present invention, a hydroxyalkyl (meth) acrylic acid ester can be efficiently obtained without going through complicated purification steps such as distillation, and water used in the devinylation step can be reused. An economical method for producing a hydroxyalkyl (meth) acrylic acid ester can be provided.
 本発明のヒドロキシアルキル(メタ)アクリル酸エステルの製造方法の実施の形態について詳細に説明する。 Embodiments of the method for producing a hydroxyalkyl (meth) acrylic acid ester of the present invention will be described in detail.
 本発明のヒドロキシアルキル(メタ)アクリル酸エステルの製造方法は、ビニルエーテル含有アルコールをエステル交換法により(メタ)アクリル化してビニルエーテル含有(メタ)アクリル酸エステルとした後、酸触媒存在下、脱ビニル化反応を行う際に、水を共存させることを特徴とする。 The method for producing a hydroxyalkyl (meth) acrylic acid ester of the present invention is such that a vinyl ether-containing alcohol is (meth) acrylated by a transesterification method to give a vinyl ether-containing (meth) acrylic acid ester, followed by devinylation in the presence of an acid catalyst In carrying out the reaction, water is allowed to coexist.
 本発明ではまず、ビニルエーテル含有アルコールの水酸基をエステル化して、ビニルエーテル含有(メタ)アクリル酸エステルを得る。エステル化の方法としては主に、(メタ)アクリル酸を使用する脱水エステル化法、低級(メタ)アクリル酸エステルを使用するエステル交換法、(メタ)アクリル酸クロライドを使用する酸ハロゲン法が挙げられるが、この内、脱水エステル化法では酸触媒を使用するために、脱ビニル化が同時に起こるため適用できない。また、酸ハロゲン法は反応によりハロゲンが脱離して系内に残存するため、水洗、吸着又は蒸留などの精製処理が必要である。一方、エステル交換法は不純物が少なく精製作業も必要ないことから、本発明ではエステル交換法を採用している。 In the present invention, first, the hydroxyl group of a vinyl ether-containing alcohol is esterified to obtain a vinyl ether-containing (meth) acrylic acid ester. The esterification method mainly includes dehydration esterification method using (meth) acrylic acid, transesterification method using lower (meth) acrylic acid ester, and acid halogen method using (meth) acrylic acid chloride. However, among them, the dehydration esterification method uses an acid catalyst, so that devinylation occurs at the same time and cannot be applied. Further, in the acid halogen method, halogen is eliminated by the reaction and remains in the system, and thus a purification treatment such as washing with water, adsorption or distillation is necessary. On the other hand, since the transesterification method has few impurities and does not require a purification operation, the transesterification method is adopted in the present invention.
 本発明で使用するビニルエーテル含有アルコールとしては、例えば、4-ヒドロキシブチルビニルエーテル、6-ヒドロキシヘキシルビニルエーテル、9-ヒドロキシノニルビニルエーテル、10-ヒドロキシデカニルビニルエーテル、12-ヒドロキシドデシルビニルエーテル等の下記一般式(I)で表される化合物;シクロヘキサンジメタノールモノビニルエーテル等の下記一般式(II)で表される化合物;フェニルジメタノールモノビニルエーテル等が挙げられる。 Examples of the vinyl ether-containing alcohol used in the present invention include the following general formulas (I) such as 4-hydroxybutyl vinyl ether, 6-hydroxyhexyl vinyl ether, 9-hydroxynonyl vinyl ether, 10-hydroxydecanyl vinyl ether, 12-hydroxydodecyl vinyl ether and the like. ); Compounds represented by the following general formula (II) such as cyclohexanedimethanol monovinyl ether; and phenyldimethanol monovinyl ether.
Figure JPOXMLDOC01-appb-C000005

(一般式(I)中、nは3~11の整数を示す。)
Figure JPOXMLDOC01-appb-C000005

(In general formula (I), n represents an integer of 3 to 11)
Figure JPOXMLDOC01-appb-C000006

(一般式(II)中、Aはシクロペンチレン基又はシクロへキシレン基を示す。)
Figure JPOXMLDOC01-appb-C000006

(In general formula (II), A represents a cyclopentylene group or a cyclohexylene group.)
 エステル交換法に使用する低級(メタ)アクリル酸エステルとして具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル等が挙げられる。つまり、本願でいう低級(メタ)アクリル酸エステルとは、エステル置換基として炭素数が4以下のアルキル基を有するものをいう。 Specific examples of the lower (meth) acrylate used in the transesterification method include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. . That is, the lower (meth) acrylic acid ester referred to in the present application refers to one having an alkyl group having 4 or less carbon atoms as an ester substituent.
 エステル交換反応に際しては、短時間反応、高エステル転換率、反応後の後処理の観点から、低級(メタ)アクリル酸エステルをビニルエーテル含有アルコール化合物に対して、等量から過剰に使用することが好ましい。具体的には、通常ビニルエーテル含有アルコール化合物が有する水酸基1モルに対して、低級(メタ)アクリル酸エステルを1.0~20モルの範囲で使用することが好ましい。低級(メタ)アクリル酸エステルの使用量がビニルエーテル含有アルコール化合物の水酸基1モルに対して、1.0モル未満であると反応が十分に進行せず、また20モルを超えると反応後の濃縮工程に長時間を要し生産性が悪化する。 In the transesterification reaction, it is preferable to use the lower (meth) acrylic acid ester in an equivalent amount to an excessive amount with respect to the vinyl ether-containing alcohol compound from the viewpoint of a short-time reaction, a high ester conversion rate, and post-treatment after the reaction. . Specifically, it is preferable to use a lower (meth) acrylic acid ester in the range of 1.0 to 20 mol with respect to 1 mol of the hydroxyl group usually possessed by the vinyl ether-containing alcohol compound. If the amount of the lower (meth) acrylic acid ester used is less than 1.0 mol relative to 1 mol of the hydroxyl group of the vinyl ether-containing alcohol compound, the reaction does not proceed sufficiently, and if it exceeds 20 mol, the concentration step after the reaction Takes a long time to deteriorate productivity.
 エステル交換法に使用される触媒としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸化物;リチウムメトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムt-ブトキシド等のアルカリ金属アルコキシド;リチウムアミド、ナトリウムアミド、カリウムアミド等のアルカリ金属アミド;オルトチタン酸テトラメチル、オルトチタン酸テトラエチル、オルトチタン酸テトラプロピル、オルトチタン酸テトライソプロピル、オルトチタン酸テトラブチル等のチタンアルコキシド;その他アルミニウムアルコキシド;スズアルコキシド;等が挙げられる。このうち副反応が極力抑えられ、反応終了後に水を添加することで容易に触媒除去できることから、チタンアルコキシド又はアルミニウムアルコキシドがより好ましい。 Catalysts used in the transesterification method include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkali metal carbonates such as lithium carbonate, sodium carbonate, and potassium carbonate; lithium methoxide, sodium Alkali metal alkoxides such as methoxide, sodium ethoxide and potassium t-butoxide; alkali metal amides such as lithium amide, sodium amide and potassium amide; tetramethyl orthotitanate, tetraethyl orthotitanate, tetrapropyl orthotitanate, orthotitanium Examples include titanium alkoxides such as tetraisopropyl acid and tetrabutyl orthotitanate; other aluminum alkoxides; tin alkoxides; Among these, the side reaction is suppressed as much as possible, and the catalyst can be easily removed by adding water after the completion of the reaction. Therefore, titanium alkoxide or aluminum alkoxide is more preferable.
 また、触媒の使用量は、低級(メタ)アクリル酸エステルとビニルエーテル含有アルコール化合物の合計量に対して、通常0.01~5.0質量%の範囲が好ましい。触媒量が必要以上に多くなっても反応速度にはほとんど影響がなく、逆に触媒除去の際に大量の水が必要になるなど、不経済になるのみである。 The amount of the catalyst used is preferably in the range of usually 0.01 to 5.0% by mass with respect to the total amount of the lower (meth) acrylic acid ester and the vinyl ether-containing alcohol compound. If the amount of the catalyst is increased more than necessary, the reaction rate is hardly affected, and conversely, a large amount of water is required for removing the catalyst, and it is only uneconomical.
 本発明におけるエステル交換反応において、公知の重合禁止剤を添加、併用することができる。重合禁止剤としては、例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル(「メトキノン」ともいう)等のフェノール類;フェノチアジン、エチレンチオ尿素等の硫黄化合物;ジブチルジチオカルバミン酸銅等の銅塩;酢酸マンガン等のマンガン塩;ニトロ化合物、ニトロソ化合物、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジノオキシル等のN-オキシル化合物;等が挙げられる。重合禁止剤の添加量は、生成エステルに対して0.1質量%以下が好ましい。0.1質量%を超えると添加剤に起因する着色を生じる場合がある。 In the transesterification reaction in the present invention, a known polymerization inhibitor can be added and used in combination. Examples of the polymerization inhibitor include phenols such as hydroquinone and hydroquinone monomethyl ether (also referred to as “methoquinone”); sulfur compounds such as phenothiazine and ethylenethiourea; copper salts such as copper dibutyldithiocarbamate; manganese salts such as manganese acetate; Nitro compounds, nitroso compounds, N-oxyl compounds such as 4-hydroxy-2,2,6,6-tetramethylpiperidinooxyl; and the like. The addition amount of the polymerization inhibitor is preferably 0.1% by mass or less with respect to the produced ester. If it exceeds 0.1% by mass, coloring due to the additive may occur.
 エステル交換反応の際には、反応中の反応液の重合を防止するために少量の分子状酸素を吹き込むことが好ましい。分子状酸素としては、希釈された状態で使用することが好ましく、空気を用いることが好適である。また、分子状酸素の吹き込みは、蒸発して蒸気として存在したり、上部の釜壁面等に凝縮した(メタ)アクリル酸エステル類の重合を防止したりするためにも好ましい。 In the transesterification reaction, it is preferable to blow a small amount of molecular oxygen in order to prevent polymerization of the reaction solution during the reaction. As molecular oxygen, it is preferable to use it in a diluted state, and it is preferable to use air. The blowing of molecular oxygen is also preferable for preventing the polymerization of (meth) acrylic acid esters which are evaporated and exist as vapor or condensed on the upper wall of the tank.
 分子状酸素とは、2個の酸素原子によって作られた基底状態の三重項酸素分子(O)を意味し、反応にそのままの状態で直接関与もできるが、触媒や反応試剤との相互作用により、一重項酸素分子や酸素原子、スーパーオキシド、ペルオキシド等の状態に変換された後、反応に関与することもできる酸素分子を意味する。 Molecular oxygen means a ground-state triplet oxygen molecule (O 2 ) formed by two oxygen atoms, and can directly participate in the reaction as it is, but it interacts with catalysts and reaction reagents. Means an oxygen molecule that can also participate in the reaction after being converted to a singlet oxygen molecule, oxygen atom, superoxide, peroxide, or the like.
 分子状酸素の導入量としては、反応機の形状や攪拌動力によっても影響を受けるが、原料ビニルエーテル含有アルコール1モルに対して5~500ml/分(空気として25~2500ml/分)の速度で吹き込めばよい。分子状酸素導入量が5ml/分未満の場合は、重合禁止の効果が十分でなく,500ml/分を超えると、低級(メタ)アクリル酸エステルを系外に押し出してしまう効果が強くなり、原料としての低級(メタ)アクリル酸エステルのロスを招く。 The amount of molecular oxygen introduced is also affected by the shape of the reactor and the stirring power, but it is blown at a rate of 5 to 500 ml / min (25 to 2500 ml / min as air) with respect to 1 mol of the raw material vinyl ether-containing alcohol. That's fine. When the amount of molecular oxygen introduced is less than 5 ml / min, the effect of inhibiting the polymerization is not sufficient, and when it exceeds 500 ml / min, the effect of extruding lower (meth) acrylic acid ester out of the system becomes stronger. Loss of the lower (meth) acrylic acid ester as
 本発明におけるエステル交換反応は、常圧又は減圧下60~120℃で行うことが好ましい。温度が60℃未満であると反応速度が極端に反応が遅くなり、また120℃を超えると、エステル交換反応で得られるビニルエーテル含有(メタ)アクリル酸エステルの重合が起こりやすく、また着色を引き起こしやすい。 The transesterification reaction in the present invention is preferably performed at 60 to 120 ° C. under normal pressure or reduced pressure. When the temperature is less than 60 ° C., the reaction rate is extremely slow, and when it exceeds 120 ° C., polymerization of the vinyl ether-containing (meth) acrylate obtained by the transesterification reaction is likely to occur, and coloration is likely to occur. .
 エステル交換反応の形態としては、(メタ)アクリル酸エステルを製造する当業者間で一般的に知られた方法で行うことができる。エステル交換反応時には、副生する低級アルコールを低級(メタ)アクリル酸エステル及び/又は溶媒で共沸留去することが必要である。このため、反応装置としては例えば精留塔付属回分式反応槽が使用される。 As the form of the transesterification reaction, it can be carried out by a method generally known among those skilled in the art of producing (meth) acrylic acid esters. During the transesterification reaction, it is necessary to azeotropically distill off the by-produced lower alcohol with a lower (meth) acrylic acid ester and / or a solvent. For this reason, as a reaction apparatus, for example, a batch reaction tank attached to a rectification column is used.
 エステル交換反応終了後は、触媒を水により失活させ、過剰の低沸成分を濃縮装置で留去する。低沸成分の濃縮装置による留去は、常圧又は減圧下、液温を90℃以下に保持しながら行うことが好ましく、より好ましくは50~70℃の範囲内である。液温が90℃を超えるとビニルエーテル含有(メタ)アクリル酸エステルの着色や重合を引き起こす可能性が高くなる。 After completion of the transesterification reaction, the catalyst is deactivated with water, and excess low-boiling components are distilled off with a concentrator. Distillation of the low boiling point component by the concentrator is preferably performed under normal pressure or reduced pressure while maintaining the liquid temperature at 90 ° C. or less, and more preferably in the range of 50 to 70 ° C. When the liquid temperature exceeds 90 ° C., the vinyl ether-containing (meth) acrylic acid ester is likely to be colored or polymerized.
 低沸成分の留去が完了したビニルエーテル含有(メタ)アクリル酸エステルは、ろ過を行うことによって残存する失活触媒等の不溶分を取り除くことができる。ろ過の際には効率良く不溶分を取り除くために、珪藻土等のろ過助剤を用いることが好ましい。 The vinyl ether-containing (meth) acrylic acid ester from which the low-boiling components have been distilled off can remove insoluble matters such as a deactivated catalyst remaining by filtration. In order to remove insolubles efficiently during filtration, it is preferable to use a filter aid such as diatomaceous earth.
 続いて、ビニルエーテル含有(メタ)アクリル酸エステルの脱ビニル化反応を行い、ヒドロキシアルキル(メタ)アクリル酸エステルを得る方法について説明する。 Subsequently, a method for obtaining a hydroxyalkyl (meth) acrylate ester by devinylation of a vinyl ether-containing (meth) acrylate ester will be described.
 本発明においては、脱ビニル化反応を酸触媒存在下で行うが、使用可能な酸触媒としては通常、硫酸、硫酸水素ナトリウム、パラトルエンスルホン酸、ベンゼンスルホン酸、メタンスルホン酸、固体酸(ゼオライト、アンバーライト、アンバーリスト、ナフィオン等)が挙げられる。また、使用する触媒量は、反応させるビニルエーテル含有(メタ)アクリル酸エステルに対して0.01質量%~10質量%が好ましく、0.1質量%~5質量%がより好ましい。使用する触媒量が0.01質量%未満の場合、反応性が著しく低下し、脱ビニル化反応が極端に遅くなる場合がある。また、10質量%よりも多い場合は、反応速度にはほとんど影響がない一方、不純物が生成する恐れがある。 In the present invention, the devinylation reaction is carried out in the presence of an acid catalyst. Usable acid catalysts are usually sulfuric acid, sodium hydrogen sulfate, paratoluenesulfonic acid, benzenesulfonic acid, methanesulfonic acid, solid acid (zeolite). , Amberlite, Amberlist, Nafion, etc.). The amount of catalyst used is preferably 0.01% by mass to 10% by mass and more preferably 0.1% by mass to 5% by mass with respect to the vinyl ether-containing (meth) acrylic ester to be reacted. When the amount of the catalyst used is less than 0.01% by mass, the reactivity is remarkably lowered, and the devinylation reaction may be extremely slow. On the other hand, when the amount is more than 10% by mass, the reaction rate is hardly affected, but impurities may be generated.
 本発明に係る脱ビニル化反応は、水を共存させて行うことが特徴である。水を共存させて行うことにより、脱ビニル化反応時に副生するアルデヒドを容易に除去できる。水の使用量としては、ビニルエーテル含有(メタ)アクリル酸エステルを基準として等モル以上であれば特に制限はないが、好ましくは、ビニルエーテル含有(メタ)アクリル酸エステルを基準として2倍モル以上用いることで反応が速やかに進行する。水を等モルより少ない割合で使用した場合は、反応が途中で停止する。 The devinylation reaction according to the present invention is characterized by being carried out in the presence of water. By carrying out in the presence of water, the aldehyde produced as a by-product during the devinylation reaction can be easily removed. The amount of water used is not particularly limited as long as it is equimolar or more based on the vinyl ether-containing (meth) acrylic acid ester. Preferably, it is used twice or more based on the vinyl ether-containing (meth) acrylic acid ester. The reaction proceeds quickly. When water is used in a proportion less than equimolar, the reaction stops midway.
 本発明に係る脱ビニル化反応は、発熱反応である。このとき、反応温度を60℃以下、好ましくは0℃~40℃に制御することで高純度のヒドロキシアルキル(メタ)アクリル酸エステルを得ることが可能となる。反応温度を制御する方法としては、反応器を冷却するかまたは、触媒水溶液にビニルエーテル含有(メタ)アクリル酸エステルを徐々に添加する方法が挙げられる。また、反応時はアセトアルデヒドが副生するが、系内を減圧下にすることによってアセトアルデヒドを速やかに除去することができ、反応を促進することができる。 The devinylation reaction according to the present invention is an exothermic reaction. At this time, by controlling the reaction temperature to 60 ° C. or lower, preferably 0 ° C. to 40 ° C., it is possible to obtain a high-purity hydroxyalkyl (meth) acrylate. Examples of the method for controlling the reaction temperature include cooling the reactor or gradually adding a vinyl ether-containing (meth) acrylic acid ester to the aqueous catalyst solution. In addition, acetaldehyde is by-produced during the reaction, but acetaldehyde can be quickly removed by reducing the pressure in the system, and the reaction can be promoted.
 脱ビニル化反応終了後は、反応残液から水層を分離除去する。その際、分離能を上げるために、例えばトルエンやキシレン等の溶媒を単独又は2種以上組み合わせて用いることができる。分離除去して得た水層の水は、次回以降の製造において脱ビニル化反応で共存させる水として再利用することができる。 After completion of the devinylation reaction, the aqueous layer is separated and removed from the reaction residual liquid. At that time, in order to increase the resolution, for example, solvents such as toluene and xylene can be used alone or in combination of two or more. The water in the aqueous layer obtained by separation and removal can be reused as water that coexists in the devinylation reaction in the next and subsequent productions.
 分離した有機層は触媒を含むため、塩基で中和して分離除去する。塩基としては例えば、水酸化カリウム、水酸化ナトリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素カリウム、炭酸水素ナトリウムなどのアルカリ金属、アルカリ土類金属の水酸化物又は塩が挙げられる。これらを水溶液として用いて、中和後に分離除去して用いる方法が好ましい。 Since the separated organic layer contains a catalyst, it is separated and removed by neutralization with a base. Examples of the base include hydroxides or salts of alkali metals and alkaline earth metals such as potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, potassium bicarbonate, and sodium bicarbonate. A method in which these are used as an aqueous solution and separated and removed after neutralization is preferred.
 中和後は、過剰のアルカリを水又は中性塩水溶液により洗浄して除去した後、濃縮によって過剰の水分や、溶媒を使用している場合は溶媒を留去する。濃縮は常圧又は減圧下、液温を90℃以下に保持しながら行うことが好ましく、より好ましくは50℃~80℃の範囲内である。液温が90℃を超えると、ヒドロキシアルキル(メタ)アクリル酸エステルの着色や重合を引き起こす可能性が高くなる。 After neutralization, excess alkali is removed by washing with water or a neutral salt aqueous solution, and then the solvent is distilled off by concentration if excess water or solvent is used. Concentration is preferably carried out under normal pressure or reduced pressure while maintaining the liquid temperature at 90 ° C. or less, more preferably in the range of 50 ° C. to 80 ° C. When the liquid temperature exceeds 90 ° C., there is a high possibility of causing coloring or polymerization of the hydroxyalkyl (meth) acrylic acid ester.
 濃縮後は、ろ過を行うことによって残存する中和塩等の不溶分を取り除くことができる。ろ過の際には効率良く不溶分を取り除くために、珪藻土等のろ過助剤を用いることが好ましい。 After concentration, insolubles such as remaining neutralized salts can be removed by filtration. In order to remove insolubles efficiently during filtration, it is preferable to use a filter aid such as diatomaceous earth.
 本発明のヒドロキシアルキル(メタ)アクリル酸エステルの製造方法は、脱ビニル化反応の際に水を用いるために、高純度のヒドロキシアルキル(メタ)アクリル酸エステルを得ることが出来るため、蒸留等の精製工程は必要ない。 Since the production method of the hydroxyalkyl (meth) acrylic acid ester of the present invention uses water during the devinylation reaction, a high-purity hydroxyalkyl (meth) acrylic acid ester can be obtained. No purification step is necessary.
 以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらにより限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
[実施例1]
(ビニルオキシブチルメタクリレートの合成)
 4Lの4つ口丸底セパラブルフラスコに4-ヒドロキシブチルビニルエーテル(丸善石油化学製 HBVE)1000g、メタクリル酸メチル3000g、メトキノン0.65gを入れて、精留塔(15段)、攪拌機、空気導入管、温度計を設置した。攪拌下、乾燥空気を100ml/分で導入しながら加熱を始め、還流時のフラスコ内の液温が75℃になるように圧力を40kPa程度に調整して、系内の水分を除去した。系内の水分が300ppm以下であることを確認した後、触媒としてチタンテトライソプロポキシド8.6gを入れ、反応温度が95±5℃になるようフラスコ内圧力を60kPa程度に制御した。加熱還流時に精留塔上部の温度(塔頂温度)を監視していると、生成するメタノールとメタクリル酸メチルの共沸温度に近づいたので、塔頂温度が60℃程度になるよう還流比を調節してメタノールをメタクリル酸メチルとの共沸物として留去しながら反応を行った。
[Example 1]
(Synthesis of vinyloxybutyl methacrylate)
Into a 4 L 4-neck round bottom separable flask, 1000 g of 4-hydroxybutyl vinyl ether (HBVE manufactured by Maruzen Petrochemical Co., Ltd.), 3000 g of methyl methacrylate, and 0.65 g of methoquinone were placed. A tube and a thermometer were installed. Under stirring, heating was started while introducing dry air at 100 ml / min, and the pressure was adjusted to about 40 kPa so that the liquid temperature in the flask at reflux became 75 ° C., thereby removing moisture in the system. After confirming that the water content in the system was 300 ppm or less, 8.6 g of titanium tetraisopropoxide was added as a catalyst, and the pressure in the flask was controlled to about 60 kPa so that the reaction temperature was 95 ± 5 ° C. If the temperature at the top of the rectification column (column top temperature) was monitored during heating to reflux, the reflux ratio was adjusted so that the column top temperature would be about 60 ° C. because it approached the azeotropic temperature of methanol and methyl methacrylate produced. The reaction was carried out while distilling off methanol as an azeotrope with methyl methacrylate.
 反応4時間を経過した頃から塔頂温度が上昇し始めたので、還流比を徐々に大きくして反応を続けた。反応5時間目の反応液をガスクロマトグラフィで分析したところ、エステル転換率が99.2%であったので、反応終了とした。反応液を冷却し、液温が75℃となったところで17質量%食塩水250gを加えて触媒を加水分解した。15分静置した後、デカンテーションにより有機層をナス型フラスコにとり、ロータリーエバポレータを用いて、過剰なメタクリル酸メチル減圧下留去してから、吸引ろ過によりナスフラスコ内液をろ過して、目的とするビニルオキシブチルメタクリレートを1522g得た。 Since the tower top temperature began to rise after about 4 hours of the reaction, the reaction was continued by gradually increasing the reflux ratio. When the reaction solution at the 5th hour of reaction was analyzed by gas chromatography, the ester conversion rate was 99.2%. Therefore, the reaction was terminated. The reaction liquid was cooled, and when the liquid temperature reached 75 ° C., 250 g of 17% by mass saline was added to hydrolyze the catalyst. After standing for 15 minutes, the organic layer was taken into an eggplant-shaped flask by decantation, and after distilling off the excess methyl methacrylate under reduced pressure using a rotary evaporator, the solution in the eggplant flask was filtered by suction filtration. As a result, 1522 g of vinyloxybutyl methacrylate was obtained.
(4-ヒドロキシブチルメタクリレートの合成)
 1Lの4つ口セパラブルフラスコにパラトルエンスルホン酸16g、純水200gを仕込み、攪拌機、温度計、空気導入管、冷却トラップ付き真空ポンプを設置した。上述のようにして合成したビニルオキシブチルメタクリレート500gをフラスコへゆっくりと添加した。系内圧力を20kPaとし、攪拌下、生成するアセトアルデヒドを系内から除去しながら、反応を進めた。このとき、フラスコは氷水で冷却しながら反応温度を15~30℃に保った。反応3時間後、ガスクロマトグラフィによる分析により反応転換率がほぼ100%であったため、反応終了とした。反応完了液にトルエン100g、17質量%食塩水50gを入れて油水分離し、有機層のみを取り出した(水層は実施例4で使用)。有機層は分液ろうとを使用して5質量%炭酸水素ナトリウム水溶液70gで洗浄した後、17質量%食塩水70gで洗浄した。有機層をナス型フラスコにとり、ロータリーエバポレータを用いて、過剰なトルエンを減圧下留去してから、吸引ろ過によりろ過して、目的とする4-ヒドロキシブチルメタクリレート395g(収率92.2%、純度99.1%)を得た。
(Synthesis of 4-hydroxybutyl methacrylate)
A 1 L four-necked separable flask was charged with 16 g of paratoluenesulfonic acid and 200 g of pure water, and a stirrer, a thermometer, an air introduction tube, and a vacuum pump with a cooling trap were installed. 500 g vinyloxybutyl methacrylate synthesized as described above was slowly added to the flask. The system pressure was set to 20 kPa, and the reaction was carried out while removing acetaldehyde produced from the system while stirring. At this time, the reaction temperature was maintained at 15 to 30 ° C. while cooling the flask with ice water. After 3 hours of the reaction, the reaction conversion rate was almost 100% as analyzed by gas chromatography, so the reaction was terminated. To the reaction completion liquid, 100 g of toluene and 50 g of 17% by mass saline were added and subjected to oil / water separation, and only the organic layer was taken out (the aqueous layer was used in Example 4). The organic layer was washed with 70 g of a 5% by mass aqueous sodium hydrogen carbonate solution using a separating funnel and then washed with 70 g of a 17% by mass saline solution. The organic layer was placed in an eggplant-shaped flask and excess toluene was distilled off under reduced pressure using a rotary evaporator, followed by suction filtration to obtain 395 g of the desired 4-hydroxybutyl methacrylate (yield 92.2%, Purity 99.1%).
[実施例2]
(ビニルオキシブチルアクリレートの合成)
 4Lの4つ口丸底セパラブルフラスコに4-ヒドロキシブチルビニルエーテル(丸善石油化学製 HBVE)1000g、アクリル酸エチル3000g、メトキノン0.65gを入れて、精留塔(15段)、攪拌機、空気導入管、温度計を設置した。攪拌下、乾燥空気を100ml/分で導入しながら加熱を始め、還流時のフラスコ内の液温が75℃になるように圧力を40kPa程度に調整して、系内の水分を除去した。系内の水分が300ppm以下であることを確認した後、触媒としてチタンテトライソプロポキシド8.6gを入れ、反応温度が95±5℃になるようフラスコ内圧力を60kPa程度に制御した。加熱還流時に精留塔上部の温度(塔頂温度)を監視していると、生成するエタノールとアクリル酸エチルの共沸温度に近づいたので、塔頂温度が70℃程度になるよう還流比を調節してメタノールをメタクリル酸メチルとの共沸物として留去しながら反応を行った。
 反応4時間を経過した頃から塔頂温度が上昇し始めたので、還流比を徐々に大きくして反応を続けた。反応5時間目の反応液をガスクロマトグラフィで分析したところ、エステル転換率が99.0%であったので、反応終了とした。反応液を冷却し、液温が75℃となったところで17質量%食塩水250gを加えて触媒を加水分解した。15分静置した後、デカンテーションにより有機層をナス型フラスコにとり、ロータリーエバポレータを用いて、過剰なアクリル酸エチル減圧下留去してから、吸引ろ過によりナスフラスコ内液をろ過して、目的とするビニルオキシブチルアクリレートを1376g得た。
[Example 2]
(Synthesis of vinyloxybutyl acrylate)
Into a 4 L 4-neck round bottom separable flask, 1000 g of 4-hydroxybutyl vinyl ether (HBVE manufactured by Maruzen Petrochemical Co., Ltd.), 3000 g of ethyl acrylate, and 0.65 g of methoquinone were placed. A tube and a thermometer were installed. Under stirring, heating was started while introducing dry air at 100 ml / min, and the pressure was adjusted to about 40 kPa so that the liquid temperature in the flask at reflux became 75 ° C., thereby removing moisture in the system. After confirming that the water content in the system was 300 ppm or less, 8.6 g of titanium tetraisopropoxide was added as a catalyst, and the pressure in the flask was controlled to about 60 kPa so that the reaction temperature was 95 ± 5 ° C. When the temperature at the top of the rectification column (column top temperature) was monitored during heating to reflux, the reflux ratio was adjusted so that the column top temperature was about 70 ° C because it approached the azeotropic temperature of ethanol and ethyl acrylate. The reaction was carried out while distilling off methanol as an azeotrope with methyl methacrylate.
Since the tower top temperature began to rise from about 4 hours after the reaction, the reaction was continued by gradually increasing the reflux ratio. When the reaction solution at the 5th hour of the reaction was analyzed by gas chromatography, the ester conversion rate was 99.0%. The reaction liquid was cooled, and when the liquid temperature reached 75 ° C., 250 g of 17% by mass saline was added to hydrolyze the catalyst. After standing for 15 minutes, the organic layer was taken into an eggplant-shaped flask by decantation, and after distilling off the excess ethyl acrylate under reduced pressure using a rotary evaporator, the solution in the eggplant flask was filtered by suction filtration. 1376 g of vinyloxybutyl acrylate was obtained.
(4-ヒドロキシブチルアクリレートの合成)
 1Lの4つ口セパラブルフラスコにパラトルエンスルホン酸16g、純水200gを仕込み、攪拌機、温度計、空気導入管、冷却トラップ付き真空ポンプを設置した。上述のようにして合成したビニルオキシブチルアクリレート500gをフラスコへゆっくりと添加した。系内圧力を20kPaとし、攪拌下、生成するアセトアルデヒドを系内から除去しながら、反応を進めた。このとき、フラスコは氷水で冷却しながら反応温度を15~30℃に保った。反応3時間後、ガスクロマトグラフィによる分析により反応転換率が99.9%であったため、反応終了とした。反応完了液にトルエン200g、17質量%食塩水50gを入れて油水分離し、有機層のみを取り出した。有機層は分液ろうとを使用して5質量%炭酸水素ナトリウム水溶液70gで洗浄した後、17質量%食塩水70gで洗浄した。有機層をナス型フラスコにとり、ロータリーエバポレータを用いて、過剰なトルエンを減圧下留去してから、吸引ろ過によりろ過して、目的とする4-ヒドロキシブチルアクリレート389g(収率92.0%、純度99.0%)を得た。
(Synthesis of 4-hydroxybutyl acrylate)
A 1 L four-necked separable flask was charged with 16 g of paratoluenesulfonic acid and 200 g of pure water, and a stirrer, a thermometer, an air introduction tube, and a vacuum pump with a cooling trap were installed. 500 g vinyloxybutyl acrylate synthesized as described above was slowly added to the flask. The system pressure was set to 20 kPa, and the reaction was carried out while removing acetaldehyde produced from the system while stirring. At this time, the reaction temperature was maintained at 15 to 30 ° C. while cooling the flask with ice water. Three hours after the reaction, the reaction conversion rate was 99.9% as analyzed by gas chromatography. To the reaction completion liquid, 200 g of toluene and 50 g of 17% by mass saline were added and separated into oil and water, and only the organic layer was taken out. The organic layer was washed with 70 g of a 5% by mass aqueous sodium hydrogen carbonate solution using a separating funnel and then washed with 70 g of a 17% by mass saline solution. The organic layer was placed in an eggplant-shaped flask and excess toluene was distilled off under reduced pressure using a rotary evaporator, followed by suction filtration to obtain 389 g of the desired 4-hydroxybutyl acrylate (yield 92.0%, Purity 99.0%).
[実施例3]
(シクロヘキサンジメタノールビニルエーテルメタクリレートの合成)
 1Lの4つ口丸底フラスコにシクロヘキサンジメタノールモノビニルエーテル(丸善石油化学製 CHMVE)300g、メタクリル酸メチル600g、メトキノン0.20gを入れて、精留塔(15段)、攪拌機、空気導入管、温度計を設置した。攪拌下、乾燥空気を100ml/分で導入しながら加熱を始め、還流時のフラスコ内の液温が75℃になるように圧力を40kPa程度に調整して、系内の水分を除去した。系内の水分が300ppm以下であることを確認した後、触媒としてチタンテトライソプロポキシド2.6gを入れ、反応温度が95±5℃になるようフラスコ内圧力を60kPa程度に制御した。加熱還流時に精留塔上部の温度(塔頂温度)を監視していると、生成するメタノールとメタクリル酸メチルの共沸温度に近づいたので、塔頂温度が60℃程度になるよう還流比を調節してメタノールをメタクリル酸メチルとの共沸物として留去しながら反応を行った。
 反応2時間を経過した頃から塔頂温度が上昇し始めたので、還流比を徐々に大きくして反応を続けた。反応3時間目の反応液をガスクロマトグラフィで分析したところ、エステル転換率が99.4%であったので、反応終了とした。反応液を冷却し、液温が75℃となったところで17質量%食塩水100gを加えて触媒を加水分解した。15分静置した後、デカンテーションにより有機層をナス型フラスコにとり、ロータリーエバポレータを用いて、過剰なメタクリル酸メチル減圧下留去してから、吸引ろ過によりナスフラスコ内液をろ過して、目的とするシクロヘキサンジメタノールビニルエーテルメタクリレートを385g得た。
[Example 3]
(Synthesis of cyclohexanedimethanol vinyl ether methacrylate)
A 1 L 4-neck round bottom flask was charged with 300 g of cyclohexanedimethanol monovinyl ether (CHMVE manufactured by Maruzen Petrochemical Co., Ltd.), 600 g of methyl methacrylate and 0.20 g of methoquinone, and a rectification tower (15 stages), a stirrer, an air introduction tube, A thermometer was installed. Under stirring, heating was started while introducing dry air at 100 ml / min, and the pressure was adjusted to about 40 kPa so that the liquid temperature in the flask at reflux became 75 ° C., thereby removing moisture in the system. After confirming that the water content in the system was 300 ppm or less, 2.6 g of titanium tetraisopropoxide was added as a catalyst, and the pressure in the flask was controlled to about 60 kPa so that the reaction temperature was 95 ± 5 ° C. If the temperature at the top of the rectification column (column top temperature) was monitored during heating to reflux, the reflux ratio was adjusted so that the column top temperature would be about 60 ° C. because it approached the azeotropic temperature of methanol and methyl methacrylate produced. The reaction was carried out while distilling off methanol as an azeotrope with methyl methacrylate.
Since the tower top temperature began to rise from about 2 hours after the reaction, the reaction was continued by gradually increasing the reflux ratio. When the reaction solution at 3 hours of reaction was analyzed by gas chromatography, the ester conversion rate was 99.4%, so the reaction was terminated. The reaction liquid was cooled, and when the liquid temperature reached 75 ° C., 100 g of 17% by mass saline was added to hydrolyze the catalyst. After standing for 15 minutes, the organic layer was taken into an eggplant-shaped flask by decantation, and after distilling off the excess methyl methacrylate under reduced pressure using a rotary evaporator, the solution in the eggplant flask was filtered by suction filtration. 385 g of cyclohexanedimethanol vinyl ether methacrylate was obtained.
(シクロヘキサンジメタノールモノメタクリレートの合成)
 500mLの4つ口セパラブルフラスコにパラトルエンスルホン酸6.4g、純水80gを仕込み、攪拌機、温度計、空気導入管、冷却トラップ付き真空ポンプを設置した。上述のようにして合成したシクロヘキサンジメタノールビニルエーテルメタクリレート200gをフラスコへゆっくりと添加した。系内圧力を20kPaとし、攪拌下、生成するアセトアルデヒドを系内から除去しながら、反応を進めた。このとき、フラスコは氷水で冷却しながら反応温度を15~30℃に保った。反応2時間後、ガスクロマトグラフィによる分析により反応転換率が99.9%であったため、反応終了とした。反応完了液にトルエン80g、17質量%食塩水30gを入れて油水分離し、有機層のみを取り出した。有機層は分液ろうとを使用して5質量%炭酸水素ナトリウム水溶液20gで洗浄した後、17質量%食塩水30gで洗浄した。有機層をナス型フラスコにとり、ロータリーエバポレータを用いて、過剰なトルエンを減圧下留去してから、吸引ろ過によりろ過して、目的とするシクロヘキサンジメタノールモノメタクリレート163g(収率91.5%、純度99.4%)を得た。
(Synthesis of cyclohexanedimethanol monomethacrylate)
A 500 mL four-necked separable flask was charged with 6.4 g of paratoluenesulfonic acid and 80 g of pure water, and a stirrer, a thermometer, an air introduction tube, and a vacuum pump with a cooling trap were installed. 200 g of cyclohexanedimethanol vinyl ether methacrylate synthesized as described above was slowly added to the flask. The system pressure was set to 20 kPa, and the reaction was carried out while removing acetaldehyde produced from the system while stirring. At this time, the reaction temperature was maintained at 15 to 30 ° C. while cooling the flask with ice water. Two hours after the reaction, the reaction conversion rate was 99.9% as analyzed by gas chromatography. To the reaction completion solution, 80 g of toluene and 30 g of 17% by mass saline were added and subjected to oil / water separation, and only the organic layer was taken out. The organic layer was washed with 20 g of a 5% by mass aqueous sodium hydrogen carbonate solution using a separatory funnel and then with 30 g of 17% by mass saline. The organic layer was placed in an eggplant-shaped flask and excess toluene was distilled off under reduced pressure using a rotary evaporator, followed by suction filtration to obtain 163 g of the desired cyclohexanedimethanol monomethacrylate (yield 91.5%, Purity 99.4%).
[実施例4]
(水再利用による4-ヒドロキシブチルメタクリレートの製造方法)
 1Lの4つ口セパラブルフラスコに実施例1で反応後に分離した水層(全量)を仕込み、攪拌機、温度計、空気導入管、冷却トラップ付き真空ポンプを設置した。実施例1で合成したビニルオキシブチルメタクリレート500gをフラスコへゆっくりと添加した。系内圧力を20kPaとし、攪拌下、生成するアセトアルデヒドを系内から除去しながら、反応を進めた。このとき、フラスコは氷水で冷却しながら反応温度を15~30℃に保った。反応3時間後、ガスクロマトグラフィによる分析により反応転換率が99.9%であったため、反応終了とした。反応完了液にトルエン100gを入れて油水分離し、有機層のみを取り出した。有機層は分液ろうとを使用して5質量%炭酸水素ナトリウム水溶液70gで洗浄した後、17質量%食塩水70gで洗浄した。有機層をナス型フラスコにとり、ロータリーエバポレータを用いて、過剰なトルエンを減圧下留去してから、吸引ろ過によりろ過して、目的とする4-ヒドロキシブチルメタクリレート398g(収率92.8%、純度99.2%)を得た。
[Example 4]
(Method for producing 4-hydroxybutyl methacrylate by water reuse)
The 1 L 4-neck separable flask was charged with the aqueous layer (total amount) separated after the reaction in Example 1, and a stirrer, thermometer, air inlet tube, and vacuum pump with a cooling trap were installed. 500 g of vinyloxybutyl methacrylate synthesized in Example 1 was slowly added to the flask. The system pressure was set to 20 kPa, and the reaction was carried out while removing acetaldehyde produced from the system while stirring. At this time, the reaction temperature was maintained at 15 to 30 ° C. while cooling the flask with ice water. Three hours after the reaction, the reaction conversion rate was 99.9% as analyzed by gas chromatography. 100 g of toluene was added to the reaction completion liquid and oil-water separation was performed, and only the organic layer was taken out. The organic layer was washed with 70 g of a 5% by mass aqueous sodium hydrogen carbonate solution using a separating funnel and then washed with 70 g of a 17% by mass saline solution. The organic layer was placed in an eggplant-shaped flask and excess toluene was distilled off under reduced pressure using a rotary evaporator, followed by filtration by suction filtration to obtain 398 g of the desired 4-hydroxybutyl methacrylate (yield 92.8%, Purity 99.2%).
[実施例5]
(反応温度60℃以上の場合の4-ヒドロキシブチルメタクリレートの製造方法)
 1Lの4つ口セパラブルフラスコにパラトルエンスルホン酸16g、純水200gを仕込み、攪拌機、温度計、空気導入管、冷却トラップ付き真空ポンプを設置した。実施例1で合成したビニルオキシブチルメタクリレート500gをフラスコへ一気に添加した後、直ちに系内圧力を20kPaとし、攪拌下、生成するアセトアルデヒドを系内から除去しながら反応を進めた。このとき、フラスコは冷却せずに放置したところ、反応温度は65℃まで上昇した。反応3時間後、ガスクロマトグラフィによる分析により反応転換率がほぼ100%であったため、反応終了とした。反応完了液にトルエン100g、17質量%食塩水50gを入れて油水分離し、有機層のみを取り出した。有機層は分液ろうとを使用して5質量%炭酸水素ナトリウム水溶液70gで洗浄した後、17質量%食塩水70gで洗浄した。有機層をナス型フラスコにとり、ロータリーエバポレータを用いて、過剰なトルエンを減圧下留去してから、吸引ろ過によりろ過して、目的とする4-ヒドロキシブチルメタクリレート385g(収率89.9%、純度97.0%)を得た。
 このように、反応温度が60℃を超えた場合、実施例1と比較して収率が若干低下したことが分かる。
[Example 5]
(Method for producing 4-hydroxybutyl methacrylate when the reaction temperature is 60 ° C. or higher)
A 1 L four-necked separable flask was charged with 16 g of paratoluenesulfonic acid and 200 g of pure water, and a stirrer, a thermometer, an air introduction tube, and a vacuum pump with a cooling trap were installed. Immediately after adding 500 g of vinyloxybutyl methacrylate synthesized in Example 1 to the flask, the system internal pressure was set to 20 kPa, and the reaction was advanced while removing the generated acetaldehyde from the system under stirring. At this time, when the flask was left uncooled, the reaction temperature rose to 65 ° C. After 3 hours of the reaction, the reaction conversion rate was almost 100% as analyzed by gas chromatography, so the reaction was terminated. To the reaction completion liquid, 100 g of toluene and 50 g of 17% by mass saline were added and separated into oil and water, and only the organic layer was taken out. The organic layer was washed with 70 g of a 5% by mass aqueous sodium hydrogen carbonate solution using a separating funnel and then washed with 70 g of a 17% by mass saline solution. The organic layer was placed in an eggplant-shaped flask and excess toluene was distilled off under reduced pressure using a rotary evaporator, followed by suction filtration to obtain 385 g of the desired 4-hydroxybutyl methacrylate (yield 89.9%, Purity 97.0%) was obtained.
Thus, it can be seen that when the reaction temperature exceeded 60 ° C., the yield was slightly reduced as compared with Example 1.
[比較例1]
(ジオール共存下での4-ヒドロキシブチルメタクリレートの製造方法)
 1Lの4つ口セパラブルフラスコにパラトルエンスルホン酸16g、エチレングリコール200gを仕込み、攪拌機、温度計、空気導入管、冷却トラップ付き真空ポンプを設置した。合成例1で合成したビニルオキシブチルメタクリレート500gをフラスコへゆっくりと添加した。系内圧力を20kPaとし、攪拌下、生成するアセタールを系内から除去しながら、反応を進めた。このとき、フラスコは氷水で冷却しながら反応温度を15~30℃に保った。反応3時間後、ガスクロマトグラフィによる分析により反応転換率は78%であった。また、分析により反応系内にアセタール化合物が残存していたため、50℃まで加熱して反応を続けた。加熱開始後1時間での反応転換率が98.4%であったため、反応を終了とした。反応完了液にトルエン200g、5質量%食塩水150gを入れて油水分離し、有機層のみを取り出した。有機層は分液ろうとを使用して5質量%炭酸水素ナトリウム水溶液70gで洗浄した後、17質量%食塩水70gで洗浄した。有機層をナス型フラスコにとり、ロータリーエバポレータを用いて、過剰なトルエンを減圧下留去してから、吸引ろ過によりろ過して、目的とする4-ヒドロキシブチルメタクリレート395g(収率87.6%、純度92.3%)を得た。
[Comparative Example 1]
(Method for producing 4-hydroxybutyl methacrylate in the presence of diol)
A 1 L 4-neck separable flask was charged with 16 g of paratoluenesulfonic acid and 200 g of ethylene glycol, and a stirrer, a thermometer, an air introduction tube, and a vacuum pump with a cooling trap were installed. 500 g of vinyloxybutyl methacrylate synthesized in Synthesis Example 1 was slowly added to the flask. The system pressure was set to 20 kPa, and the reaction was allowed to proceed while removing the acetal produced from the system while stirring. At this time, the reaction temperature was maintained at 15 to 30 ° C. while cooling the flask with ice water. After 3 hours of reaction, the reaction conversion rate was 78% as analyzed by gas chromatography. Moreover, since the acetal compound remained in the reaction system by analysis, the reaction was continued by heating to 50 ° C. Since the reaction conversion rate in 1 hour after the start of heating was 98.4%, the reaction was terminated. To the reaction completion liquid, 200 g of toluene and 150 g of 5% by mass saline were added and separated into oil and water, and only the organic layer was taken out. The organic layer was washed with 70 g of a 5% by mass aqueous sodium hydrogen carbonate solution using a separating funnel and then washed with 70 g of a 17% by mass saline solution. The organic layer was placed in an eggplant-shaped flask and excess toluene was distilled off under reduced pressure using a rotary evaporator, followed by suction filtration to obtain 395 g of the desired 4-hydroxybutyl methacrylate (yield: 87.6%, Purity 92.3%) was obtained.
 以上の結果から、ヒドロキシアルキル(メタ)アクリレートを得るための脱ビニル化反応の際に、水を共存させることによって、高純度のヒドロキシアルキル(メタ)アクリル酸エステルを高収率で得ることができる。また、実施例4より、脱ビニル化後に分離回収される水層は次回以降の製造における脱ビニル化反応に再利用可能であることが分かる。 From the above results, high-purity hydroxyalkyl (meth) acrylate can be obtained in high yield by allowing water to coexist in the devinylation reaction for obtaining hydroxyalkyl (meth) acrylate. . Further, Example 4 shows that the aqueous layer separated and recovered after devinylation can be reused for the devinylation reaction in the next and subsequent productions.

Claims (3)

  1.  ビニルエーテル含有アルコールをエステル交換法により(メタ)アクリル化してビニルエーテル含有(メタ)アクリル酸エステルとした後、酸触媒存在下、脱ビニル化反応を行う際に、水を共存させることを特徴とする、ヒドロキシアルキル(メタ)アクリル酸エステルの製造方法。 After the vinyl ether-containing alcohol is (meth) acrylated by a transesterification method to form a vinyl ether-containing (meth) acrylic acid ester, water is allowed to coexist in the devinylation reaction in the presence of an acid catalyst. A method for producing a hydroxyalkyl (meth) acrylic ester.
  2.  脱ビニル化反応の際の反応温度が60℃以下である、請求項1に記載のヒドロキシアルキル(メタ)アクリル酸エステルの製造方法。 The method for producing a hydroxyalkyl (meth) acrylic acid ester according to claim 1, wherein the reaction temperature during the devinylation reaction is 60 ° C or lower.
  3.  ビニルエーテル含有アルコールが下記一般式(I)又は(II)で表される、請求項1又は2に記載のヒドロキシアルキル(メタ)アクリル酸エステルの製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(I)中、nは3~11の整数を示す。)
    Figure JPOXMLDOC01-appb-C000002

    (一般式(II)中、Aはシクロペンチレン基又はシクロヘキシレン基を示す。)
    The manufacturing method of the hydroxyalkyl (meth) acrylic acid ester of Claim 1 or 2 with which vinyl ether containing alcohol is represented by the following general formula (I) or (II).
    Figure JPOXMLDOC01-appb-C000001

    (In general formula (I), n represents an integer of 3 to 11)
    Figure JPOXMLDOC01-appb-C000002

    (In general formula (II), A represents a cyclopentylene group or a cyclohexylene group.)
PCT/JP2009/068798 2008-12-01 2009-11-04 Method for producing hydroxyalkyl(meth)acrylic acid ester WO2010064514A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010541276A JP5548618B2 (en) 2008-12-01 2009-11-04 Method for producing hydroxyalkyl (meth) acrylic acid ester
KR1020117012869A KR101727332B1 (en) 2008-12-01 2009-11-04 Method for producing hydroxyalkyl(meth)acrylic acid ester
CN200980148132.6A CN102227400B (en) 2008-12-01 2009-11-04 Method for producing hydroxyalkyl(meth)acrylic acid ester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008306256 2008-12-01
JP2008-306256 2008-12-01

Publications (1)

Publication Number Publication Date
WO2010064514A1 true WO2010064514A1 (en) 2010-06-10

Family

ID=42233168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068798 WO2010064514A1 (en) 2008-12-01 2009-11-04 Method for producing hydroxyalkyl(meth)acrylic acid ester

Country Status (5)

Country Link
JP (1) JP5548618B2 (en)
KR (1) KR101727332B1 (en)
CN (1) CN102227400B (en)
TW (1) TWI461402B (en)
WO (1) WO2010064514A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041310A (en) * 2010-08-20 2012-03-01 Hitachi Chem Co Ltd Method of producing hydroxyalkyl (meth)acrylic acid ester
WO2013015156A1 (en) * 2011-07-22 2013-01-31 日立化成工業株式会社 Method for producing alkyldiol monoglycidyl ether
JP2013018744A (en) * 2011-07-12 2013-01-31 Daicel Corp Method for producing vinylether

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155813A (en) * 1991-12-05 1993-06-22 Nitto Denko Corp Production of hydroxyalkyl monoacrylate and its intermediate
JPH10182555A (en) * 1996-12-13 1998-07-07 Basf Ag Production of alpha,beta-unsaturated carboxylic omega-hydroxy-ester

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2877264A (en) * 1957-02-14 1959-03-10 Rohm & Haas Process for preparing hydroxyalkyl acrylates and methacrylates
WO2005019128A2 (en) * 2003-08-20 2005-03-03 Dsm Ip Assets B.V. Radiation-curable liquid resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155813A (en) * 1991-12-05 1993-06-22 Nitto Denko Corp Production of hydroxyalkyl monoacrylate and its intermediate
JPH10182555A (en) * 1996-12-13 1998-07-07 Basf Ag Production of alpha,beta-unsaturated carboxylic omega-hydroxy-ester

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GANGAVARAM V.M. SHARMA ET AL., TETRAHEDRON: ASYMMETRY, vol. 18, no. 18, 2007, pages 2175 - 2184 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041310A (en) * 2010-08-20 2012-03-01 Hitachi Chem Co Ltd Method of producing hydroxyalkyl (meth)acrylic acid ester
KR101854917B1 (en) * 2010-08-20 2018-05-04 히타치가세이가부시끼가이샤 Method for producing hydroxyalkyl(meth)acrylic acid ester
JP2013018744A (en) * 2011-07-12 2013-01-31 Daicel Corp Method for producing vinylether
WO2013015156A1 (en) * 2011-07-22 2013-01-31 日立化成工業株式会社 Method for producing alkyldiol monoglycidyl ether
JP2013023479A (en) * 2011-07-22 2013-02-04 Hitachi Chemical Co Ltd Process for production of alkyldiol monoglycidyl ether
CN103702987A (en) * 2011-07-22 2014-04-02 日立化成株式会社 Method for producing alkyldiol monoglycidyl ether
CN103702987B (en) * 2011-07-22 2016-03-30 日立化成株式会社 The manufacture method of alkyl diol list glycidyl ether
KR101610557B1 (en) 2011-07-22 2016-04-07 히타치가세이가부시끼가이샤 Method for producing alkyldiol monoglycidyl ether
US9394265B2 (en) 2011-07-22 2016-07-19 Hitachi Chemical Company, Ltd. Method for producing alkyldiol monoglycidyl ether

Also Published As

Publication number Publication date
CN102227400A (en) 2011-10-26
KR101727332B1 (en) 2017-04-14
TW201029969A (en) 2010-08-16
JP5548618B2 (en) 2014-07-16
KR20110091002A (en) 2011-08-10
JPWO2010064514A1 (en) 2012-05-10
CN102227400B (en) 2014-09-10
TWI461402B (en) 2014-11-21

Similar Documents

Publication Publication Date Title
JP5582032B2 (en) Method for producing (meth) acrylic acid ester
JP6373276B2 (en) Process for producing alkyl acrylates
JP2006315960A (en) Tricyclodecanediol di(meth)acrylate and method for producing the same
JP5516090B2 (en) Method for producing hydroxyalkyl (meth) acrylic acid ester
WO2013157597A1 (en) Process for preparing 4-hydroxybutyl acrylate
JP5548618B2 (en) Method for producing hydroxyalkyl (meth) acrylic acid ester
JP2012515751A (en) Method for purifying azeotropic fraction generated during synthesis of N, N-dimethylaminoethyl acrylate
US9242949B2 (en) Method for producing alkanediol monoglycidyl ether (meth)acrylate
JP7336541B2 (en) Process for producing diacyl peroxide
JP2012041310A (en) Method of producing hydroxyalkyl (meth)acrylic acid ester
JP2012236805A (en) Method for producing (meth)acrylic ester
JP4099950B2 (en) Method for producing cyclohexyl (meth) acrylate
JP5900657B2 (en) Method for producing polyfunctional (meth) acrylic acid ester
JP3858968B2 (en) Method for producing tris (trimethylsilyl) silylethyl ester
JP4239500B2 (en) Production method of (meth) acrylic acid ester
JP2022007362A (en) Method for producing (meth)acrylic acid ester
JP5230499B2 (en) Alcohol recovery method
JP2009007304A (en) Method for preparing adamantyl(meth)acrylates
CN113993844A (en) Process for the production of diacyl peroxides
JP2005255584A (en) Method for producing lactone skeleton-containing (meth)acrylic acid ester
JP2007314502A (en) Method for producing (meth)acrylic acid

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980148132.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010541276

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117012869

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09830282

Country of ref document: EP

Kind code of ref document: A1