WO2010063858A1 - Method for obtaining hydrogen - Google Patents

Method for obtaining hydrogen Download PDF

Info

Publication number
WO2010063858A1
WO2010063858A1 PCT/ES2009/000555 ES2009000555W WO2010063858A1 WO 2010063858 A1 WO2010063858 A1 WO 2010063858A1 ES 2009000555 W ES2009000555 W ES 2009000555W WO 2010063858 A1 WO2010063858 A1 WO 2010063858A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
salts
catalyst
present
production
Prior art date
Application number
PCT/ES2009/000555
Other languages
Spanish (es)
French (fr)
Inventor
Lluis Soler I Turu
Angélica Maria CANDELA SOTO
Jorge MACANÁS DE BENITO
Maria Muñoz Tapia
Juan Casado Giménez
Original Assignee
Universitat Autonoma De Barcelona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Autonoma De Barcelona filed Critical Universitat Autonoma De Barcelona
Publication of WO2010063858A1 publication Critical patent/WO2010063858A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention provides a process (hereinafter process of the invention) for obtaining hydrogen gas (H 2 ) from the reaction of metallic aluminum (Al) in a basic aqueous medium, at pH> 12, comprising at least a metal salt that acts as a reaction catalyst. Therefore, the present invention can be encompassed within the field of chemistry.
  • WO2006072115 refers to a method of obtaining H 2 by reacting Al with water in the presence of a catalyst and an initiator.
  • the catalyst used is a water-soluble inorganic salt selected from the group of halides, sulphides, sulfates or nitrates of metals of groups I (alkaline) or II (alkaline earth) of the periodic table.
  • the catalyst used is selected from: sodium chloride, potassium chloride, potassium nitrate, sodium nitrate or combinations thereof, with sodium chloride being preferred in a 1: 1 ratio.
  • other catalysts that may be employed are alumina, aluminum hydroxide or aluminum oxide, preferably in combination with the salts mentioned above.
  • the pH used in this document has a near neutral value. Specifically on page 6, lines 24-26, this document says that the initial pH varies between 4 and 8, preferably in the range 5-7. Said pH remains close to neutral (4-10) during the rest of the reaction.
  • WO2007016779 describes a method for the preparation of a metal (including microporous Al) for obtaining H 2 in its reaction with water; To this end, micropores are introduced by combining the metal particles with an agent that deforms them to produce an intermediate composition.
  • Said agent is selected from citric acid, ice, dry ice, PVA, organic waste, polymers Short chain organic or a water soluble inorganic salt, with NaCl or KCl being preferred.
  • the pH value used in the procedure described in this document varies between 4 and 10 (see page 25: “pH and temperature”).
  • additives can be used to improve the reaction with water.
  • the additive optionally used is a metal salt of group I (alkaline) or II (alkaline earth) of the periodic table, with K, Li, Na, Ca, Mg being preferred (see page 26: “additives”).
  • reaction promoters are chemical compounds that include one or more metal hydroxides selected from groups I (alkaline) or II (alkaline earth) of the periodic table: sodium hydroxide, potassium hydroxide, calcium hydroxide or mixtures thereof .
  • the reaction promoter precursors are compounds of metals selected from groups I (alkaline) or II (alkaline earth) of the periodic table which, when reacting with water, generate the reaction promoters indicated above.
  • the reaction promoter precursors can be, for example: sodium oxide, calcium oxide, calcium hydride, sodium hydride, lithium hydride or mixtures thereof.
  • the pH value selected for this reaction is less than 12, explaining in paragraph [0021] the reason why a pH value greater than this would not be positive to carry out the process.
  • JP2006321701 describes the obtaining of H 2 by contacting Al with water at room temperature.
  • the reaction is promoted by the use of catalysts and additives.
  • the additives promote the reaction of Al with the catalyst.
  • the catalyst is preferably mercury and the additive: citric acid, hydrochloric acid, sulfuric acid or other acidic agent.
  • Document US2003091503 describes a vehicle, whose engine runs on H 2 as fuel, comprising at least one locomotion system driven by
  • the H 2 generator includes an electrochemical reactor useful for generating H 2 fuel from water, electrolytes and material containing metals, and a system that supplies said fuel.
  • the catalyst used is based, at least, on one of the metals or metal oxides belonging to the platinum group and the transition metal group.
  • sodium hydroxide is used herein as an electrolyte.
  • the present invention relates to a process for obtaining H 2 from the reaction of metallic Al and water in basic medium, at pH> 12, said reaction being catalyzed by a salt (or mixture of salts) of a metal ( or metals).
  • the present invention differs from WO2006072115 in the following aspects:
  • the salts used as a catalyst in the present invention have been formulated by the combination of the most effective cations and anions that have been selected in the present invention in a particular way.
  • the present invention differs from WO2007016779 in the following aspects:
  • the present invention differs from US2007020174 in the following aspects: • In the process of the present invention the pH is adjusted to a value> 12. The pH value selected in US2007020174 is less than 12.
  • the compounds used in the present invention as catalysts are neither hydroxides nor metal oxides.
  • the present invention differs from JP2006321701 in the following aspects:
  • the present invention differs from US2003091503 in the following aspects:
  • the present invention does not contemplate the use of electrolytes.
  • the use made in the present invention of NaOH is to confer basicity (pH> 12), and the experiment with NaOH only acts as a target against which the results of the different catalysts used are compared.
  • the present invention demonstrates that the assertion made in several prior art documents (such as in WO2006072115 and WO2007016779) concerning the possibility of using any salt or compound of alkaline or alkaline earth metals as a catalyst for the reaction of obtaining H 2 could be too wide and far from reality.
  • each of the salts tested has a different, independent and unrelated behavior to the group of the periodic table to which the metal belongs.
  • Each salt has particular physicochemical characteristics that ultimately determine its effectiveness as catalysts.
  • the present invention provides a process for obtaining H 2 from the reaction of metallic Al in a basic aqueous medium (pH> 12) and at least one metal salt that acts as a catalyst for the reaction.
  • a basic aqueous medium pH> 12
  • at least one metal salt that acts as a catalyst for the reaction.
  • the technical problem solved by the present invention refers to an alternative, and more effective method, than those located in the state of the art of obtaining H 2 gas from metallic Al and water.
  • the effectiveness of the process of the invention is based on the one hand on the pH value used, equal to or greater than 12 (compare the results obtained in the examples at pH 13 and pH 12, described below) and, on the other hand side, in the type of salts specifically selected in the present invention after screening of the anions and cations that act as catalysts for the present reaction of production of H 2 .
  • H 2 was obtained from the reaction of metallic Al and water in basic medium (pH> 12), said reaction being catalyzed by salts formed from cations selected from: Fe + , Fe + , Mg 2+ , Ag 2+ , Na + , Co 2+ , Cu 2+ , Zn 2+ or NH 4 + with anions selected from: F “ , SO 4 " , PO 4 3 “ , ClO 4 " , Cl “ or CO 3 2 " . Examples of these salts can be seen in Tables 1, 2, 3 and 5 of the present invention.
  • the catalyst of the reaction between metallic Al and water can be formed by a single metal salt or by a mixture of metal salts that carry out a synergistic effect making the production reaction of H 2 more effective than when the salts They act as catalysts independently.
  • a synergistic effect was achieved that leads to a maximum speed value (ml / min) of production of H 2 above (even sometimes twice) the maximum production speed value of H 2 achieved when salts were used as catalysts independently. Examples of these salts can be seen in Table 4.
  • this is a salt formed from cations selected from: Fe 2+ , Fe 3+ , Mg 2+ , Ag 2+ , Na + , Co 2+ , Cu 2+ , Zn 2+ or NH 4 + with anions selected from: F “ , SO 4 2” , PO 4 3 “ , ClO 4 " , Cl “ or CO 3 2” .
  • Examples of these salts can be seen in Tables 1, 2, 3 and 5.
  • the catalyst is formed by a mixture of salts
  • said mixture is formed by at least two salts of those present in Tables 1, 2, 3 and 5. Examples of these salt mixtures can be seen in Table 4.
  • FIG. 6 The figure shows the thermal self-sufficiency of the process of the invention. As it can be seen from 40 minutes the temperature rises to 75 0 C, to obtain a production rate of hydrogen lOOml / min to 100% without heating the reactor externally.
  • the present invention provides an alternative, cost-effective and efficient method for obtaining H 2 gas.
  • metallic Al was combined in aqueous medium (Al and water are the reactants of the H 2 production reaction).
  • the aqueous medium comprises NaOH in a concentration suitable to adjust the pH of the reaction to a value> 12 and a salt metal, or a mixture of said salts, which acts as a catalyst for the reaction between metallic Al and water.
  • the examples demonstrate the effectiveness of the salts used in the invention as catalysts for the production of H 2 causing significant increases in the speed and / or the yield of hydrogen production. These effects can be observed by comparing the maximum speeds with respect to the maximum speed of the experiment without catalysts (white) and can also be observed by comparing the times at which 50% of the reaction yield is reached.
  • the experimental assembly depicted schematically in Figure 1 was used.
  • the reagents were added to a 100 ml Pyrex glass reactor containing 75 ml of the aqueous working medium.
  • the reactor was heated in a thermostated water bath to maintain a constant temperature of 75 ° C.
  • the production reactions of H 2 started at the moment when the solid Al came into contact with the aqueous medium comprising NaOH and a metal salt, or a mixture of said salts, which acted as the reaction catalyst.
  • the salts could be in solution or forming a suspension in the aqueous medium.
  • Said aqueous medium was adjusted to pH> 12 before starting the experiments, to favor the corrosion of Al.
  • the hydrogen produced left the reactor through a silicone tube 40 cm long and 8 mm internal diameter, passed through a water bath at room temperature to condense the water vapor present in the emanated gas, and finally collected in an inverted burette to measure the resulting H 2 volume.
  • different amounts of Al powder were used.
  • 0.2g of powdered aluminum ⁇ 44 ⁇ m diameter, 99.7% purity
  • successive additions of 1.Og of the same aluminum powder were made in all consecutive experiments performed to study the efficiency of the process.
  • the present invention also demonstrates the efficiency of the process of the invention in consecutive stages of production of H 2 .
  • Table 3 shows the experimental results obtained in a series of experiments carried out with the objective of evaluating the efficiency of the process using catalysts during consecutive H 2 production experiments.
  • the process of the present invention proved to be autothermal, which makes it possible to dispense with the external heating of the reactor where the H 2 production reaction is carried out, obtaining 100% yields.
  • the reactor was added l, 000g Al, 0,457g NaOH and 0577g Fe 2 (SO 4) 3 -9H 2 O and then water (about 1 drop / second) was added at 25 0 C at a rate of 3ml / min , for 1.5 min, using a compensated pressure funnel coupled to the reactor.
  • This experimental procedure allowed to obtain an initial solution of NaOH of very high concentration that in contact with the aluminum causes the initiation of the exothermic reaction of hydrogen production, heating the solution contained in the reactor.
  • Example 1 Catalytic effect of non-sodium salts.
  • the pH of the reaction was adjusted to a value of 13.0 by the addition of NaOH, the salt concentrations were 10 "2 M (except ZnSO 4 , which was 0.1 M), the temperature was 75 ° C and 0.2 g Al powder was added to the reactor.
  • the results obtained are shown in Table 1.
  • the effects Catalysts of MgCl 2 and Fe 2 (SO 4 ) 3 are shown in Figure 2.
  • Example 2 Catalytic effect of sodium salts.
  • the reaction pH was adjusted to a value of 13,0 by adding NaOH, the concentrations of the salts were 10 "2 M, the temperature was 75 0 C and 0.2 g Al powder was added in The reactor The results obtained are shown in Table 2.
  • the catalytic effect of NaF is shown in Figure 2.
  • Example 3 Efficiency of the process in consecutive stages. The first stage of all experiments was performed by adjusting the pH to a value of 13.0 by NaOH. All salt concentrations were 10 2 M. The temperature was 75 ° C and 1.0 g Al powder was added in the reactor for each of the steps performed. The results are seen in Table 3 and in Figures 3, 4 and 5.
  • Example 4 Synergistic catalyst effect carried out by mixtures of salts. All experiments were performed by adjusting the pH to a value of 13.0 by NaOH. All salt concentrations were 10 "2 M. The temperature was 75 0 C and 0.2 g of Al powder was added in the reactor. The results are shown in Table 4.
  • the experiments were performed by adjusting the pH to 12.0 by NaOH. All salt concentrations were 10 "2 M.
  • the temperature was 75 0 C and 0.2 g Al powder was added in the reactor. The results are shown in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Method for producing hydrogen. The present invention provides a method for obtaining hydrogen gas (H2) from the reaction of metallic aluminium (Al) in a basic aqueous medium at pH > 12. The aqueous medium comprises at least one metal salt that acts as reaction catalyst. Therefore, the present invention may be encompassed within the field of chemistry.

Description

PROCEDIMIENTO PARA LA OBTENCIÓN DE HIDRÓGENO PROCEDURE FOR OBTAINING HYDROGEN
CAMPO DE LA INVENCIÓNFIELD OF THE INVENTION
La presente invención proporciona un procedimiento (en adelante procedimiento de la invención) para la obtención de hidrógeno gas (H2) a partir de la reacción de aluminio metálico (Al) en un medio acuoso básico, a pH >12, que comprende al menos una sal metálica que actúa como catalizador de la reacción. Por lo tanto, la presente invención puede ser englobada dentro del campo de la química.The present invention provides a process (hereinafter process of the invention) for obtaining hydrogen gas (H 2 ) from the reaction of metallic aluminum (Al) in a basic aqueous medium, at pH> 12, comprising at least a metal salt that acts as a reaction catalyst. Therefore, the present invention can be encompassed within the field of chemistry.
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
El documento WO2006072115 se refiere a un método de obtención de H2 mediante la reacción de Al con agua en presencia de un catalizador y un iniciador. El catalizador utilizado es una sal inorgánica soluble en agua seleccionada del grupo de haluros, sulfuras, sulfates o nitratos de metales de los grupos I (alcalinos) o II (alcalinotérreos) de la tabla periódica. El catalizador utilizado se selecciona entre: cloruro sódico, cloruro potásico, nitrato potásico, nitrato de sodio o combinaciones de los mismos, siendo el cloruro sódico el preferido en una proporción 1 :1. Además, otros catalizadores que pueden ser empleados son alúmina, hidróxido de aluminio u óxido de aluminio, preferentemente en combinación con las sales arriba mencionadas. El pH utilizado en este documento tiene un valor cercano a neutro. Concretamente en la página 6, líneas 24-26, de este documento se comenta que el pH inicial varía entre 4 y 8, preferentemente en el rango 5-7. Dicho pH se mantiene cercano a neutro (4-10) durante el resto de la reacción.WO2006072115 refers to a method of obtaining H 2 by reacting Al with water in the presence of a catalyst and an initiator. The catalyst used is a water-soluble inorganic salt selected from the group of halides, sulphides, sulfates or nitrates of metals of groups I (alkaline) or II (alkaline earth) of the periodic table. The catalyst used is selected from: sodium chloride, potassium chloride, potassium nitrate, sodium nitrate or combinations thereof, with sodium chloride being preferred in a 1: 1 ratio. In addition, other catalysts that may be employed are alumina, aluminum hydroxide or aluminum oxide, preferably in combination with the salts mentioned above. The pH used in this document has a near neutral value. Specifically on page 6, lines 24-26, this document says that the initial pH varies between 4 and 8, preferably in the range 5-7. Said pH remains close to neutral (4-10) during the rest of the reaction.
El documento WO2007016779 describe un método para la preparación de un metal (entre los que se incluye el Al) microporoso para la obtención de H2 en su reacción con agua; para ello se introducen microporos combinando las partículas de metal con un agente que las deforma para producir una composición intermedia. Dicho agente se selecciona entre ácido cítrico, hielo, hielo seco, PVA, residuos orgánicos, polímeros orgánicos de cadena corta o una sal inorgánica soluble en agua, siendo las preferidas NaCl o KCl. El valor de pH utilizado en el procedimiento descrito en este documento varía entre 4 y 10 (ver página 25: "pH and temperature "). Opcionalmente se pueden emplear aditivos para mejorar la reacción con agua. El aditivo utilizado optativamente es una sal de metales del grupo I (alcalinos) o II (alcalinotérreos) de la tabla periódica, siendo los preferidos K, Li, Na, Ca, Mg (ver página 26: "additives").WO2007016779 describes a method for the preparation of a metal (including microporous Al) for obtaining H 2 in its reaction with water; To this end, micropores are introduced by combining the metal particles with an agent that deforms them to produce an intermediate composition. Said agent is selected from citric acid, ice, dry ice, PVA, organic waste, polymers Short chain organic or a water soluble inorganic salt, with NaCl or KCl being preferred. The pH value used in the procedure described in this document varies between 4 and 10 (see page 25: "pH and temperature"). Optionally, additives can be used to improve the reaction with water. The additive optionally used is a metal salt of group I (alkaline) or II (alkaline earth) of the periodic table, with K, Li, Na, Ca, Mg being preferred (see page 26: "additives").
El documento US2007020174 divulga la obtención de H2 poniendo en contacto Al metálico y agua, utilizando promotores de la reacción y/o precursores de promotores de la reacción. Los promotores de la reacción son compuestos químicos que incluyen uno o más hidróxidos de metales seleccionados de los grupos I (alcalinos) o II (alcalinotérreos) de la tabla periódica: hidróxido de sodio, hidróxido de potasio, hidróxido de calcio o mezclas de los mismos. Asimismo los precursores de promotores de la reacción son compuestos de metales seleccionados de los grupos I (alcalinos) o II (alcalinotérreos) de la tabla periódica que al reaccionar con agua generan los promotores de la reacción arriba indicados. Así, los precursores de promotores de la reacción pueden ser, por ejemplo: óxido de sodio, óxido de calcio, hidruro de calcio, hidruro de sodio, hidruro de litio o mezclas de los mismos. El valor de pH seleccionado para esta reacción es menor de 12, explicando en el párrafo [0021] el motivo por el cual un valor de pH superior a este no sería positivo para llevar a cabo el proceso.US2007020174 discloses obtaining H 2 by contacting metallic and water, using reaction promoters and / or reaction promoter precursors. Reaction promoters are chemical compounds that include one or more metal hydroxides selected from groups I (alkaline) or II (alkaline earth) of the periodic table: sodium hydroxide, potassium hydroxide, calcium hydroxide or mixtures thereof . Likewise, the reaction promoter precursors are compounds of metals selected from groups I (alkaline) or II (alkaline earth) of the periodic table which, when reacting with water, generate the reaction promoters indicated above. Thus, the reaction promoter precursors can be, for example: sodium oxide, calcium oxide, calcium hydride, sodium hydride, lithium hydride or mixtures thereof. The pH value selected for this reaction is less than 12, explaining in paragraph [0021] the reason why a pH value greater than this would not be positive to carry out the process.
El documento JP2006321701 describe la obtención de H2 poniendo en contacto Al con agua a temperatura ambiente. La reacción es promovida por el uso de catalizadores y aditivos. Los aditivos promueven la reacción de Al con el catalizador. El catalizador preferentemente es mercurio y el aditivo: ácido cítrico, ácido clorhídrico, ácido sulfúrico u otro agente ácido.JP2006321701 describes the obtaining of H 2 by contacting Al with water at room temperature. The reaction is promoted by the use of catalysts and additives. The additives promote the reaction of Al with the catalyst. The catalyst is preferably mercury and the additive: citric acid, hydrochloric acid, sulfuric acid or other acidic agent.
El documento US2003091503 describe un vehículo, cuyo motor funciona con H2 como combustible, que comprende al menos un sistema de locomoción impulsado porDocument US2003091503 describes a vehicle, whose engine runs on H 2 as fuel, comprising at least one locomotion system driven by
H2 y un operativo generador de H2 que sirva como suministro para el sistema de locomoción. El generador de H2 incluye un reactor electroquímico útil para generar H2 combustible a partir del agua, electrolitos y material que contenga metales, y un sistema que suministra dicho combustible. Según se dispone, por ejemplo, en el párrafo [0034], el catalizador utilizado está basado, al menos, en uno de los metales u óxidos de metales pertenecientes al grupo del platino y al grupo de metales de transición. Por otro lado, tal y como puede comprobarse por ejemplo en el párrafo [0051], el hidróxido sódico es utilizado en este documento como electrolito.H 2 and an operational H 2 generator that serves as a supply for the locomotion system. The H 2 generator includes an electrochemical reactor useful for generating H 2 fuel from water, electrolytes and material containing metals, and a system that supplies said fuel. As provided, for example, in paragraph [0034], the catalyst used is based, at least, on one of the metals or metal oxides belonging to the platinum group and the transition metal group. On the other hand, as can be seen, for example, in paragraph [0051], sodium hydroxide is used herein as an electrolyte.
La presente invención se refiere a un procedimiento para la obtención de H2 a partir de la reacción de Al metálico y agua en medio básico, a pH >12, estando dicha reacción catalizada por una sal (o mezcla de sales) de un metal (o metales).The present invention relates to a process for obtaining H 2 from the reaction of metallic Al and water in basic medium, at pH> 12, said reaction being catalyzed by a salt (or mixture of salts) of a metal ( or metals).
Por lo tanto la presente invención se diferencia del documento WO2006072115 en los siguientes aspectos:Therefore, the present invention differs from WO2006072115 in the following aspects:
• La presente invención no utiliza iniciador.• The present invention does not use initiator.
• En el procedimiento de la presente invención se ajusta el pH a un valor >12. En cambio el rango más amplio de valores de pH citado en WO2006072115 es 4-10.• In the process of the present invention the pH is adjusted to a value> 12. In contrast, the wider range of pH values cited in WO2006072115 is 4-10.
• Las sales utilizadas como catalizador en la presente invención han sido formuladas por la combinación de los cationes y aniones más eficaces que han sido seleccionados en la presente invención de forma particularizada.• The salts used as a catalyst in the present invention have been formulated by the combination of the most effective cations and anions that have been selected in the present invention in a particular way.
La presente invención se diferencia del documento WO2007016779 en los siguientes aspectos:The present invention differs from WO2007016779 in the following aspects:
• En la presente invención no es necesario que el Al sea microporoso..• In the present invention it is not necessary that Al be microporous.
• En el procedimiento de la presente invención el pH se ajusta a un valor >12. En cambio el rango más amplio de valores de pH citado en WO2006072115 es 4-10.• In the process of the present invention the pH is adjusted to a value> 12. In contrast, the wider range of pH values cited in WO2006072115 is 4-10.
La presente invención se diferencia del documento US2007020174 en los siguientes aspectos: • En el procedimiento de la presente invención se ajusta el pH a un valor >12. El valor de pH seleccionado en US2007020174 es menor de 12.The present invention differs from US2007020174 in the following aspects: • In the process of the present invention the pH is adjusted to a value> 12. The pH value selected in US2007020174 is less than 12.
• Los compuestos utilizados en la presente invención como catalizadores no son ni hidróxidos ni óxidos de metales.• The compounds used in the present invention as catalysts are neither hydroxides nor metal oxides.
La presente invención se diferencia del documento JP2006321701 en los siguientes aspectos:The present invention differs from JP2006321701 in the following aspects:
• La presente invención no emplea ácidos.• The present invention does not use acids.
• Ninguna de las sales que actúan como catalizadores en la presente invención es una sal de mercurio.• None of the salts that act as catalysts in the present invention is a mercury salt.
La presente invención se diferencia del documento US2003091503 en los siguientes aspectos:The present invention differs from US2003091503 in the following aspects:
• La presente invención no contempla el uso de electrolitos. El uso que se hace en la presente invención del NaOH es para conferir basicidad (pH >12), y el experimento con NaOH sólo actúa como blanco respecto al cual se comparan los resultados de los diferentes catalizadores empleados.• The present invention does not contemplate the use of electrolytes. The use made in the present invention of NaOH is to confer basicity (pH> 12), and the experiment with NaOH only acts as a target against which the results of the different catalysts used are compared.
• No se ha localizado en US2003091503 ninguna referencia a la influencia del valor del pH en el procedimiento descrito, siendo el pH alcalino un factor esencial en la presente invención.• No reference to the influence of the pH value in the described process has been located in US2003091503, the alkaline pH being an essential factor in the present invention.
El procedimiento de la invención además de diferenciarse de los documentos localizados en el estado de la técnica, por los aspectos arriba mencionados, es más efectivo, tal y como puede verse en las sucesivas tablas mostradas en la descripción de la presente invención donde se exponen los datos de velocidad máxima y rendimiento en la producción de H2 para cada una de las sales utilizadas en la presente invención.The process of the invention, in addition to differentiating itself from the documents located in the state of the art, by the aspects mentioned above, is more effective, as can be seen in the successive tables shown in the description of the present invention where the data of maximum speed and yield in the production of H 2 for each of the salts used in the present invention.
Por otro lado, la presente invención demuestra que la aseveración realizada en varios documentos del estado de la técnica (como por ejemplo en WO2006072115 y WO2007016779) relativa a la posibilidad de utilizar como catalizador de la reacción de obtención de H2 cualquier sal o compuesto de metales alcalinos o alcalinotérreos podría ser demasiado amplia y lejana de la realidad. En la presente invención queda evidenciado que cada una de las sales ensayadas tiene un comportamiento diferente, independiente y no ligado al grupo de la tabla periódica al que pertenece el metal. Cada sal tiene características físico-químicas particulares que determinan finalmente su eficacia como catalizadores. Por lo tanto ha de hacerse hincapié en que los documentos localizados en el estado de la técnica, a pesar de definir la sal preferentemente empleada (en todos los casos diferentes a las empleadas en la presente invención), aseveran y siembran el prejuicio relativo a que cualquier sal de metales alcalinos o alcalinotérreos puede ser eficazmente utilizada como catalizador de la reacción de obtención de H2 a partir de Al metálico y agua. Dicho prejuicio queda disipado en la presente invención ya que, algunas de las sales ensayadas, como por ejemplo el CaCl2, presentaron efectos inhibitorios sobre la reacción de producción de H2.On the other hand, the present invention demonstrates that the assertion made in several prior art documents (such as in WO2006072115 and WO2007016779) concerning the possibility of using any salt or compound of alkaline or alkaline earth metals as a catalyst for the reaction of obtaining H 2 could be too wide and far from reality. In the present invention it is evidenced that each of the salts tested has a different, independent and unrelated behavior to the group of the periodic table to which the metal belongs. Each salt has particular physicochemical characteristics that ultimately determine its effectiveness as catalysts. Therefore, it should be emphasized that documents located in the state of the art, despite defining the salt preferably used (in all cases other than those used in the present invention), assert and sow the prejudice regarding Any alkali metal or alkaline earth metal salt can be effectively used as a catalyst for the reaction to obtain H 2 from metallic Al and water. Said prejudice is dissipated in the present invention since some of the salts tested, such as CaCl 2 , had inhibitory effects on the reaction of production of H 2 .
Estos hechos demuestran que la elección particularizada de las sales que trabajan como catalizadores de forma eficaz no es un proceso trivial y requiere un exhaustivo proceso de cribado, tal y como se ha realizado en la presente invención. Mediante este proceso de selección, se identificaron los cationes y los aniones que forman las sales de metales más efectivas para el procedimiento de la invención y que son diferentes a las utilizadas en el estado de la técnica previo.These facts demonstrate that the particularized choice of salts that work as catalysts effectively is not a trivial process and requires a thorough screening process, as has been done in the present invention. Through this selection process, the cations and anions that form the most effective metal salts for the process of the invention and that are different from those used in the prior art were identified.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
Breve descripción de la invenciónBrief Description of the Invention
La presente invención proporciona un procedimiento para la obtención de H2 a partir de la reacción de Al metálico en un medio acuoso básico (pH > 12) y de al menos una sal metálica que actúa como catalizador de la reacción. Así, el problema técnico resuelto por la presente invención se refiere a un método alternativo, y más efectivo, que los localizados en el estado de la técnica de obtener H2 gas a partir de Al metálico y agua.The present invention provides a process for obtaining H 2 from the reaction of metallic Al in a basic aqueous medium (pH> 12) and at least one metal salt that acts as a catalyst for the reaction. Thus, the technical problem solved by the present invention refers to an alternative, and more effective method, than those located in the state of the art of obtaining H 2 gas from metallic Al and water.
La efectividad del procedimiento de la invención está basada por un lado en el valor de pH utilizado, igual o mayor que 12 (compárense a tal efecto los resultados obtenidos en los ejemplos a pH 13 y a pH 12, descritos más adelante) y, por otro lado, en el tipo de sales específicamente seleccionadas en la presente invención tras el cribado de los aniones y cationes que actúan como catalizadores de la presente reacción de producción de H2.The effectiveness of the process of the invention is based on the one hand on the pH value used, equal to or greater than 12 (compare the results obtained in the examples at pH 13 and pH 12, described below) and, on the other hand side, in the type of salts specifically selected in the present invention after screening of the anions and cations that act as catalysts for the present reaction of production of H 2 .
Por lo tanto, en la presente invención se llevó a cabo la obtención de H2 a partir de la reacción de Al metálico y agua en medio básico (pH >12), estando dicha reacción catalizada por sales formadas a partir de cationes seleccionados entre: Fe +, Fe +, Mg2+, Ag2+, Na+, Co2+, Cu2+, Zn2+ o NH4 + con aniones seleccionados entre: F", SO4 ", PO4 3", ClO4 ", Cl" o CO3 2". Ejemplos de estas sales pueden verse en las Tablas 1, 2, 3 y 5 de la presente invención.Therefore, in the present invention, H 2 was obtained from the reaction of metallic Al and water in basic medium (pH> 12), said reaction being catalyzed by salts formed from cations selected from: Fe + , Fe + , Mg 2+ , Ag 2+ , Na + , Co 2+ , Cu 2+ , Zn 2+ or NH 4 + with anions selected from: F " , SO 4 " , PO 4 3 " , ClO 4 " , Cl " or CO 3 2 " . Examples of these salts can be seen in Tables 1, 2, 3 and 5 of the present invention.
Es conveniente aclarar que el uso que se lleva a cabo en la presente invención del NaOH no es como catalizador, sino que se emplea para conferir basicidad al medio de la reacción. Este hecho queda demostrado en las Figuras 2-5 de la presente invención donde puede verse que el blanco, respecto al cual se comparan los resultados de los diferentes catalizadores empleados, comprende hidróxido de sodio. En relación a este hecho es importante destacar que ninguno de los compuestos utilizados como catalizadores en la presente invención son hidróxidos u óxidos de metales.It is convenient to clarify that the use that is carried out in the present invention of NaOH is not as a catalyst, but is used to confer basicity to the reaction medium. This fact is demonstrated in Figures 2-5 of the present invention where it can be seen that the blank, against which the results of the different catalysts used are compared, comprises sodium hydroxide. In relation to this fact it is important to note that none of the compounds used as catalysts in the present invention are hydroxides or metal oxides.
El catalizador de la reacción entre el Al metálico y el agua puede estar formado por una única sal metálica o por una mezcla de sales metálicas que llevan a cabo un efecto sinérgico haciendo que la reacción de producción de H2 sea más efectiva que cuando las sales actúan como catalizadores de forma independiente. Sorprendentemente, en la presente invención se evidenció que mediante la utilización como catalizador de mezclas de sales comprendidas en las Tablas 1, 2, 3 y 5 se conseguía un efecto sinérgico que desemboca en un valor de velocidad máxima (ml/min) de producción de H2 por encima (incluso en ocasiones el doble) del valor de velocidad máxima de producción de H2 conseguido cuando las sales se utilizaban como catalizadores de forma independiente. Ejemplos de estas sales pueden verse en la Tabla 4.The catalyst of the reaction between metallic Al and water can be formed by a single metal salt or by a mixture of metal salts that carry out a synergistic effect making the production reaction of H 2 more effective than when the salts They act as catalysts independently. Surprisingly, in the present invention it was shown that by using as a catalyst mixtures of salts comprised in Tables 1, 2, 3 and 5 a synergistic effect was achieved that leads to a maximum speed value (ml / min) of production of H 2 above (even sometimes twice) the maximum production speed value of H 2 achieved when salts were used as catalysts independently. Examples of these salts can be seen in Table 4.
Cuando el catalizador está formado por una única sal metálica, ésta es una sal formada a partir de cationes seleccionados entre: Fe2+, Fe3+, Mg2+, Ag2+, Na+, Co2+, Cu2+, Zn2+ o NH4 + con aniones seleccionados entre: F", SO4 2", PO4 3", ClO4 ", Cl" o CO3 2". Ejemplos de estas sales pueden verse en las Tablas 1, 2, 3 y 5.When the catalyst is formed by a single metal salt, this is a salt formed from cations selected from: Fe 2+ , Fe 3+ , Mg 2+ , Ag 2+ , Na + , Co 2+ , Cu 2+ , Zn 2+ or NH 4 + with anions selected from: F " , SO 4 2" , PO 4 3 " , ClO 4 " , Cl " or CO 3 2" . Examples of these salts can be seen in Tables 1, 2, 3 and 5.
Cuando el catalizador está formado por una mezcla de sales, dicha mezcla está formada por al menos dos sales de las presentes en las Tablas 1, 2, 3 y 5. Ejemplos de estas mezclas de sales pueden verse en la Tabla 4.When the catalyst is formed by a mixture of salts, said mixture is formed by at least two salts of those present in Tables 1, 2, 3 and 5. Examples of these salt mixtures can be seen in Table 4.
Descripción de las figurasDescription of the figures
En el procedimiento de la invención ilustrado en las figuras 2-5, el NaOH actúa como blanco frente al que se compara el resultado obtenido tras la utilización como catalizador de las sales citadas en cada figura. En cada una de las figuras 3-5 se procedió a la realización de varios experimentos consecutivos, donde se añadieron de forma secuencial cantidades fijas de 1,Og de Al sobre el mismo medio acuoso básico con catalizador objeto de estudio.In the process of the invention illustrated in Figures 2-5, NaOH acts as a target against which the result obtained after the use as a catalyst of the salts mentioned in each figure is compared. In each of Figures 3-5, several consecutive experiments were carried out, where fixed amounts of 1, Og of Al were sequentially added to the same basic aqueous medium with catalyst under study.
Figura 1. Esquema del montaje experimental.Figure 1. Scheme of experimental setup.
1. Reactor.1. Reactor.
2. Baño termostático.2. Thermostatic bath.
3. Termómetro.3. Thermometer
4. Entrada de reactivos.4. Reagent input.
5. Tubo de silicona. 6. Vaso lleno de agua a temperatura ambiente. 7. Bureta invertida llena de agua. Figura 2. Se muestran varias curvas típicas (volumen H2 vs tiempo) de producción de H2 a partir de 0,2 g de Al en medio acuoso con NaOH 0,1 M y distintas sales metálicas que actúan como catalizadores de la reacción. La producción de H2 tuvo lugar rápidamente al inicio de la reacción pero se desacelera a medida que el Al se consume, siendo la curva del blanco la que muestra la menor producción de hidrógeno. Las velocidades máximas se calcularon a partir de la pendiente obtenida en la recta de regresión de los puntos iniciales de las distintas curvas de producción de hidrógeno.5. Silicone tube. 6. Full glass of water at room temperature. 7. Inverted burette filled with water. Figure 2. Several typical curves (volume H 2 vs time) of production of H 2 from 0.2 g of Al in aqueous medium with 0.1 M NaOH and different metal salts acting as catalysts for the reaction are shown. The production of H 2 took place rapidly at the beginning of the reaction but slows down as Al is consumed, with the white curve showing the lowest hydrogen production. The maximum speeds were calculated from the slope obtained in the regression line of the initial points of the different hydrogen production curves.
Figura 3. Curvas de producción de hidrógeno para experimentos consecutivos empleando Fe2(SO4)3 como catalizador en el medio acuoso.Figure 3. Hydrogen production curves for consecutive experiments using Fe 2 (SO 4 ) 3 as catalyst in the aqueous medium.
Figura 4. Curvas de producción de hidrógeno para experimentos consecutivos empleando MgCl2 como catalizador en el medio acuoso.Figure 4. Hydrogen production curves for consecutive experiments using MgCl 2 as catalyst in the aqueous medium.
Figura 5. Curvas de producción de hidrógeno para experimentos consecutivos empleando NaF como catalizador en el medio acuoso.Figure 5. Hydrogen production curves for consecutive experiments using NaF as a catalyst in the aqueous medium.
Figura 6. La figura muestra la autosuficiencia térmica del proceso de la invención. Se puede observar como a partir del minuto 40 la temperatura aumenta hasta 750C, obteniendo una velocidad de producción de hidrógeno de lOOml/min hasta alcanzar el 100% sin necesidad de calentar externamente el reactor.Figure 6. The figure shows the thermal self-sufficiency of the process of the invention. As it can be seen from 40 minutes the temperature rises to 75 0 C, to obtain a production rate of hydrogen lOOml / min to 100% without heating the reactor externally.
Descripción detallada de la invenciónDetailed description of the invention
Descripción del procedimiento de la invenciónDescription of the method of the invention
Tal y como se ha comentado anteriormente, la presente invención proporciona un procedimiento alternativo, rentable y eficiente para la obtención de H2 gas. Para ello se combinó Al metálico en medio acuoso (el Al y el agua son los reactivos de la reacción de producción de H2). El medio acuoso comprende NaOH en una concentración adecuada para ajustar el pH de la reacción a un valor >12 y una sal metálica, o una mezcla de dichas sales, que actúa como catalizador de la reacción entre el Al metálico y el agua.As discussed above, the present invention provides an alternative, cost-effective and efficient method for obtaining H 2 gas. For this, metallic Al was combined in aqueous medium (Al and water are the reactants of the H 2 production reaction). The aqueous medium comprises NaOH in a concentration suitable to adjust the pH of the reaction to a value> 12 and a salt metal, or a mixture of said salts, which acts as a catalyst for the reaction between metallic Al and water.
En los ejemplos se demuestra la efectividad de las sales utilizadas en la invención como catalizadores de la producción de H2 provocando aumentos significativos de la velocidad y/o el rendimiento de producción de hidrógeno. Estos efectos se puede observar comparando las velocidades máximas respecto la velocidad máxima del experimento sin catalizadores (blanco) y también se puede observar comparando los tiempos a los cuales se alcanza el 50% de rendimiento de la reacción.The examples demonstrate the effectiveness of the salts used in the invention as catalysts for the production of H 2 causing significant increases in the speed and / or the yield of hydrogen production. These effects can be observed by comparing the maximum speeds with respect to the maximum speed of the experiment without catalysts (white) and can also be observed by comparing the times at which 50% of the reaction yield is reached.
La combinación de todos éstos reactivos permitió la obtención de H2 con elevadas velocidades de producción y rendimientos del 100% en la mayoría de los experimentos realizados. Paralelamente, también se obtuvo hidróxido de aluminio como subproducto de la reacción.The combination of all these reagents allowed to obtain H 2 with high production speeds and yields of 100% in most of the experiments performed. In parallel, aluminum hydroxide was also obtained as a byproduct of the reaction.
Cuantificación de la velocidad y rendimiento de la reacciónQuantification of the speed and yield of the reaction
Para cuantifϊcar la velocidad y el rendimiento de producción de H2 se utilizó el montaje experimental representado esquemáticamente en la Figura 1. Los reactivos se añadieron a un reactor de vidrio Pyrex de 100 mi que contenía 75 mi del medio acuoso de trabajo. El reactor se calentaba en un baño de agua termostatizado para mantener una temperatura constante de 75°C. Las reacciones de producción de H2 empezaban en el momento que el Al sólido entró en contacto con el medio acuoso que comprendía NaOH y una sal metálica, o una mezcla de dichas sales, que actuó como catalizador de la reacción. Las sales podían encontrarse en disolución o formando una suspensión en el medio acuoso. Dicho medio acuoso se ajustó a pH >12 antes de empezar los experimentos, para favorecer la corrosión del Al. Una vez iniciada la corrosión del Al, el hidrógeno producido salió del reactor a través de un tubo de silicona de 40 cm de longitud y 8 mm de diámetro interno, pasó a través de un baño de agua a temperatura ambiente para condensar el vapor de agua presente en el gas emanado, y finalmente se recogió en una bureta invertida para medir el volumen de H2 resultante. Según el tipo de experimento, se emplearon distintas cantidades de Al en polvo. En los experimentos realizados con el fin de evaluar el efecto sobre la producción de H2 de los distintos aditivos químicos considerados, se emplearon 0.2g de aluminio en polvo (<44 μm diámetro, pureza 99.7%). Por otro lado, se realizaron adiciones sucesivas de 1.Og del mismo aluminio en polvo en todos los experimentos consecutivos realizados para estudiar la eficiencia del proceso.To quantify the speed and production yield of H 2 , the experimental assembly depicted schematically in Figure 1 was used. The reagents were added to a 100 ml Pyrex glass reactor containing 75 ml of the aqueous working medium. The reactor was heated in a thermostated water bath to maintain a constant temperature of 75 ° C. The production reactions of H 2 started at the moment when the solid Al came into contact with the aqueous medium comprising NaOH and a metal salt, or a mixture of said salts, which acted as the reaction catalyst. The salts could be in solution or forming a suspension in the aqueous medium. Said aqueous medium was adjusted to pH> 12 before starting the experiments, to favor the corrosion of Al. Once the corrosion of Al started, the hydrogen produced left the reactor through a silicone tube 40 cm long and 8 mm internal diameter, passed through a water bath at room temperature to condense the water vapor present in the emanated gas, and finally collected in an inverted burette to measure the resulting H 2 volume. Depending on the type of experiment, different amounts of Al powder were used. In the experiments carried out in order to evaluate the effect on the production of H 2 of the different chemical additives considered, 0.2g of powdered aluminum (<44 μm diameter, 99.7% purity) were used. On the other hand, successive additions of 1.Og of the same aluminum powder were made in all consecutive experiments performed to study the efficiency of the process.
Efecto de los cationesCation Effect
A partir de los resultados mostrados en las Tabla 1 y 2 se puede concluir que la presencia de cationes como Fe2+, Fe3+, Mg2+, Ag2+, Na+, Co2+, Cu2+, Zn2+ o NH4 + puede provocar aumentos significativos de la velocidad de corrosión del aluminio y, consiguientemente, de la velocidad de producción de H2. Estos efectos se pueden observar comparando los valores de las velocidades máximas en presencia de las diferentes sales metálicas respecto la velocidad máxima del experimento sin sales (blanco). Además, dicho efecto se puede observar comparando los tiempos a los cuales se alcanza el 50% de rendimiento de la reacción.From the results shown in Table 1 and 2, it can be concluded that the presence of cations such as Fe 2+ , Fe 3+ , Mg 2+ , Ag 2+ , Na + , Co 2+ , Cu 2+ , Zn 2 + or NH 4 + can cause significant increases in the corrosion rate of aluminum and, consequently, in the production rate of H 2 . These effects can be observed by comparing the values of the maximum velocities in the presence of the different metal salts with respect to the maximum velocity of the experiment without salts (white). Furthermore, said effect can be observed by comparing the times at which 50% of the reaction yield is reached.
Para el caso concreto del Fe3+, se demuestra el efecto de dicho catión mediante la comparación de los experimentos donde se añade FeCl3 o NaCl, obteniendo velocidades máximas de 284 mi H2ZnUn y 226ml H2/min respectivamente (ver tablas 1 y 2). Comparando los experimentos Na2SO4 respecto Fe2(SO4)3 también se puede observar que la presencia del catión Fe3+ y/o del anión sulfato provocan un aumento significativo de la velocidad de corrosión del aluminio y, consiguientemente, de la velocidad de producción de H2. Este efecto positivo sobre la producción de H2 se puede observar comparando las velocidades máximas de ambos experimentos respecto al blanco y también se puede observar comparando los tiempos a los cuales se alcanza el 50% de rendimiento de la reacción. En todos los casos donde se empleaFor the specific case of Fe 3+ , the effect of this cation is demonstrated by comparing the experiments where FeCl 3 or NaCl is added, obtaining maximum speeds of 284 ml H 2 ZnUn and 226 ml H 2 / min respectively (see tables 1 and 2). Comparing the experiments Na 2 SO 4 with respect to Fe 2 (SO 4 ) 3 it can also be observed that the presence of the Fe 3+ cation and / or sulfate anion causes a significant increase in the corrosion rate of aluminum and, consequently, of the production speed of H 2 . This positive effect on the production of H 2 can be observed by comparing the maximum speeds of both experiments with respect to the target and can also be observed by comparing the times at which 50% of the reaction yield is reached. In all cases where it is used
Fe3+ como promotor de la reacción, el rendimiento alcanzado es del 100%. En cambio, en los casos del Fe2+ o Ag+, no se puede descartar un efecto sinérgico del anión SO4 ", puesto que en la mayoría de los experimentos donde se emplean sales con sulfato (exceptuando CuSO4 y ZnSO4) las velocidades máximas de producción de H2 mejoran los resultados obtenidos empleando NaOH O5IM sin añadir ninguna sal.Fe 3+ as a reaction promoter, the yield achieved is 100%. In contrast, in the cases of Fe 2+ or Ag + , a synergistic effect of the SO 4 " anion cannot be ruled out, since in most experiments where sulfate salts are used (except for CuSO 4 and ZnSO 4 ) the maximum production rates of H 2 improve the results obtained using NaOH O 5 IM without adding any salt.
Sin embargo, a partir de los resultados experimentales que se muestran en la Tabla 1 también se observa que los cationes como Ni2+, Pb2+ o Ca2+ pueden actuar como inhibidores del proceso de producción de H2. Este hecho confirma la importancia de la elección particularizada del anión y el catión que finalmente formará la sal que actúa como catalizador.However, from the experimental results shown in Table 1 it is also observed that cations such as Ni 2+ , Pb 2+ or Ca 2+ can act as inhibitors of the H 2 production process. This fact confirms the importance of the particularized choice of anion and cation that will eventually form the salt that acts as a catalyst.
Comparando los resultados experimentales obtenidos para MgCl2 y CaCl2, y ambos con el blanco, (ver Tabla 1), se puede afirmar que la presencia del catión Mg2+ provoca un aumento significativo de la velocidad de corrosión del aluminio y, consiguientemente, de la velocidad de producción de H2. La comparación de las velocidades máximas de producción de H2 entre estos tres experimentos muestra claramente que el uso del catión Ca inhibe la producción de H2, obteniendo una velocidad máxima incluso inferior a la del blanco.Comparing the experimental results obtained for MgCl 2 and CaCl 2 , and both with the blank, (see Table 1), it can be affirmed that the presence of the Mg 2+ cation causes a significant increase in the corrosion rate of aluminum and, consequently, of the production speed of H 2 . The comparison of the maximum production rates of H 2 between these three experiments clearly shows that the use of the Ca cation inhibits the production of H 2 , obtaining a maximum speed even lower than that of the blank.
Efecto de los anionesEffect of the anions
A partir de los datos experimentales expuestos en la Tabla 2 se puede enunciar que la presencia de aniones como F", SO4 ", PO4 ", ClO4 ", Cl" o CO3 " provoca incrementos significativos de la velocidad de producción de H2. Igual que en el caso anterior, estos efectos se pueden observar comparando la velocidad máxima del experimento sin aditivos (blanco) respecto las velocidades máximas obtenidas utilizando aniones en el medio acuoso y también se puede observar comparando los tiempos a los cuales se alcanza el 50% de rendimiento de la reacción de producción de H2.From the experimental data presented in Table 2 it can be stated that the presence of anions such as F " , SO 4 " , PO 4 " , ClO 4 " , Cl " or CO 3 " causes significant increases in the production speed of H 2 . As in the previous case, these effects can be observed by comparing the maximum speed of the experiment without additives (white) with respect to the maximum speeds obtained using anions in the aqueous medium and can also be observed by comparing the times at which 50% is reached of yield of the production reaction of H 2 .
Para el caso concreto del anión F", una comparación de los experimentos empleando NaCl y NaF, y ambos con el blanco, (ver Tabla 2) demuestra que la presencia del anión F" en la solución de trabajo provoca un aumento significativo de la velocidad de corrosión del aluminio y su efecto positivo sobre la producción de H2 es muy superior al experimento en presencia de Cl". Sin embargo, una comparación de los resultados obtenidos con NaBr y con el blanco (ver Tabla 2) demuestra que el uso del anión Br" inhibe la producción de H2. Así pues, se puede concluir que cada haluro presenta un efecto diferente sobre la producción de H2 debido a sus diferentes propiedades físico- químicas.For the specific case of anion F " , a comparison of the experiments using NaCl and NaF, and both with the blank, (see Table 2) shows that the presence of anion F " in the working solution causes a significant increase in speed of corrosion of aluminum and its positive effect on the production of H 2 is far superior to the experiment in the presence of Cl " . However, a comparison of the results obtained with NaBr and with the blank (see Table 2) demonstrates that the use of Br " anion inhibits the production of H 2. Thus, it can be concluded that each halide has a different effect on the production of H 2 due to its different physicochemical properties.
Eficiencia del proceso en experimentos consecutivosProcess efficiency in consecutive experiments
En la presente invención además se demuestra la eficiencia del procedimiento de la invención en etapas consecutivas de producción de H2. En la Tabla 3 se muestran los resultados experimentales obtenidos en una serie de experimentos realizada con el objetivo de evaluar la eficiencia del proceso empleando catalizadores durante experimentos consecutivos de producción de H2.The present invention also demonstrates the efficiency of the process of the invention in consecutive stages of production of H 2 . Table 3 shows the experimental results obtained in a series of experiments carried out with the objective of evaluating the efficiency of the process using catalysts during consecutive H 2 production experiments.
Tal como se puede apreciar en la Tabla 3, y en las Figuras 3, 4 y 5, la eficiencia del proceso en presencia de catalizadores se mantiene durante las etapas consecutivas de producción de H2, mejorando en todos los casos la velocidad de producción de H2 alcanzada en el experimento en ausencia de catalizadores (blanco NaOH 0,1M).As can be seen in Table 3, and in Figures 3, 4 and 5, the efficiency of the process in the presence of catalysts is maintained during the consecutive stages of production of H 2 , improving in all cases the production speed of H 2 reached in the experiment in the absence of catalysts (0.1M NaOH white).
También cabe destacar los bajos tiempos a los que se alcanza el 100% del rendimiento de la reacción de producción de H2, si se comparan con el tiempo final que requirió el blanco para alcanzar un rendimiento del 100%, de más de 8 horas y media.Also noteworthy are the low times at which 100% of the yield of the H 2 production reaction is achieved, if compared with the final time required by the blank to reach a 100% yield of more than 8 hours and half.
Eficiencia autotérmica del procesoAutothermal process efficiency
Por otro lado el proceso de la presente invención se demostró autotérmico, lo que permite prescindir del calentamiento exterior del reactor donde se lleva a cabo la reacción de producción de H2, obteniendo rendimientos del 100%. Concretamente, se añadieron al reactor l,000g Al, 0,457g NaOH y 0577g Fe2(SO4)3-9H2O y a continuación se añadió agua a 250C a una velocidad de 3ml/min (1 gota/segundo aproximadamente), durante 1,5 min, utilizando un embudo de presión compensada acoplado al reactor. Este procedimiento experimental permitió obtener una solución inicial de NaOH de concentración muy elevada que en contacto con el aluminio provoca el inició de la reacción exotérmica de producción de hidrógeno, calentando la solución contenida en el reactor. Mediante la variación del flujo de agua añadida al reactor es posible regular la temperatura de reacción, evitando que la solución de trabajo supere los 1000C. En la figura 6 se puede observar como a partir del minuto 40 la temperatura aumenta hasta 75°C, obteniendo una velocidad de producción de hidrógeno de lOOml/min hasta alcanzar el 100% sin necesidad de calentar externamente el reactor.On the other hand, the process of the present invention proved to be autothermal, which makes it possible to dispense with the external heating of the reactor where the H 2 production reaction is carried out, obtaining 100% yields. Specifically, the reactor was added l, 000g Al, 0,457g NaOH and 0577g Fe 2 (SO 4) 3 -9H 2 O and then water (about 1 drop / second) was added at 25 0 C at a rate of 3ml / min , for 1.5 min, using a compensated pressure funnel coupled to the reactor. This experimental procedure allowed to obtain an initial solution of NaOH of very high concentration that in contact with the aluminum causes the initiation of the exothermic reaction of hydrogen production, heating the solution contained in the reactor. By varying the flow of water added to the reactor it is possible to regulate the reaction temperature, preventing the working solution from exceeding 100 0 C. In Figure 6 it can be seen how from the 40th minute the temperature rises to 75 ° C , obtaining a hydrogen production rate of 100ml / min to reach 100% without the need to heat the reactor externally.
Efecto sinérgico de la combinación de sales iónicasSynergistic effect of the ionic salts combination
Además, en la presente invención se evidenció que la combinación de sales de metales de las Tablas 1 y 2 daba lugar a un efecto catalítico sinérgico, mayor al efecto conseguido cuando las sales se utilizaban como catalizadores pero de forma independiente.Furthermore, in the present invention it was shown that the combination of metal salts of Tables 1 and 2 gave rise to a synergistic catalytic effect, greater than the effect achieved when the salts were used as catalysts but independently.
A partir de los resultados mostrados en la Tabla 4 se puede concluir que la presencia combinada del catión Fe3+ y de los aniones sulfato y fosfato provocan un aumento muy importante de la velocidad de corrosión del aluminio y, consiguientemente, de la velocidad de producción de hidrógeno. Este efecto positivo inesperado consigue duplicar las velocidades máximas obtenidas en los experimentos realizados con las sales de Fe2(SO4)3 y Na3PO4 por separado (ver Tablas 1 y 2).From the results shown in Table 4, it can be concluded that the combined presence of Fe 3+ cation and sulfate and phosphate anions causes a very important increase in the corrosion rate of aluminum and, consequently, in the production speed of hydrogen. This unexpected positive effect manages to double the maximum speeds obtained in the experiments carried out with the Fe 2 (SO 4 ) 3 and Na 3 PO 4 salts separately (see Tables 1 and 2).
Aunque en una cuantía menor, los resultados obtenidos mediante la combinación de Fe3+ y de los aniones sulfato y perclorato también mejora los resultados obtenidos en experimentos empleando las distintas sales por separado.Although in a smaller amount, the results obtained by combining Fe 3+ and sulfate and perchlorate anions also improve the results obtained in experiments using the different salts separately.
Los ejemplos que se exponen a continuación tienen el objetivo de ilustrar la invención sin limitar el alcance de la misma.The examples set forth below are intended to illustrate the invention without limiting the scope thereof.
EJEMPLOSEXAMPLES
Ejemplo 1. Efecto catalizador de sales no sódicas. El pH de la reacción fue ajustado a un valor de 13,0 mediante la adición de NaOH, las concentraciones de las sales fueron de 10"2 M (excepto el ZnSO4, que fue 0,1 M), la temperatura fue de 75°C y se añadieron 0.2 g Al en polvo en el reactor. Los resultados obtenidos se observan en la Tabla 1. Los efectos catalíticos de MgCl2 y Fe2(SO4)3 se muestran en la Figura 2.Example 1. Catalytic effect of non-sodium salts. The pH of the reaction was adjusted to a value of 13.0 by the addition of NaOH, the salt concentrations were 10 "2 M (except ZnSO 4 , which was 0.1 M), the temperature was 75 ° C and 0.2 g Al powder was added to the reactor. The results obtained are shown in Table 1. The effects Catalysts of MgCl 2 and Fe 2 (SO 4 ) 3 are shown in Figure 2.
Tabla 1Table 1
Figure imgf000015_0001
Figure imgf000015_0001
Ejemplo 2. Efecto catalizador de las sales sódicas. El pH de la reacción fue ajustado a un valor de 13,0 mediante la adición de NaOH, las concentraciones de las sales fueron de 10"2 M, la temperatura fue de 750C y se añadieron 0,2 g Al en polvo en el reactor. Los resultados obtenidos se observan en la Tabla 2. El efecto catalítico de NaF se muestra en la Figura 2.Example 2. Catalytic effect of sodium salts. The reaction pH was adjusted to a value of 13,0 by adding NaOH, the concentrations of the salts were 10 "2 M, the temperature was 75 0 C and 0.2 g Al powder was added in The reactor The results obtained are shown in Table 2. The catalytic effect of NaF is shown in Figure 2.
Tabla 2Table 2
Figure imgf000016_0001
Figure imgf000016_0001
Ejemplo 3. Eficiencia del proceso en etapas consecutivas. La primera etapa de todos los experimentos se realizó ajustando el pH a una valor de 13,0 mediante NaOH. Todas las concentraciones de sales fueron 102 M. La temperatura fue de 75°C y se añadió 1.0 g Al en polvo en el reactor para cada una de las etapas realizadas. Los resultados se observan en la Tabla 3 y en las figuras 3, 4 y 5.Example 3. Efficiency of the process in consecutive stages. The first stage of all experiments was performed by adjusting the pH to a value of 13.0 by NaOH. All salt concentrations were 10 2 M. The temperature was 75 ° C and 1.0 g Al powder was added in the reactor for each of the steps performed. The results are seen in Table 3 and in Figures 3, 4 and 5.
Tabla 3Table 3
Figure imgf000017_0001
Figure imgf000017_0001
Ejemplo 4. Efecto catalizador sinérgico llevado a cabo por mezclas de sales. Todos los experimentos se realizaron ajustando el pH a un valor de 13,0 mediante NaOH. Todas las concentraciones de sales fueron 10"2 M. La temperatura fue de 750C y se añadieron 0,2 g de Al en polvo en el reactor. Los resultados se observan en la Tabla 4.Example 4. Synergistic catalyst effect carried out by mixtures of salts. All experiments were performed by adjusting the pH to a value of 13.0 by NaOH. All salt concentrations were 10 "2 M. The temperature was 75 0 C and 0.2 g of Al powder was added in the reactor. The results are shown in Table 4.
Tabla 4Table 4
Figure imgf000018_0001
Figure imgf000018_0001
Ejemplo 5. Efecto de las sales a pH=12. En este ejemplo los experimentos se realizaron .ajustando el pH a 12,0 mediante NaOH. Todas las concentraciones de sales fueron 10"2 M. La temperatura fue de 750C y se añadieron 0,2 g Al en polvo en el reactor. Los resultados se observan en la Tabla 5.Example 5. Effect of salts at pH = 12. In this example the experiments were performed by adjusting the pH to 12.0 by NaOH. All salt concentrations were 10 "2 M. The temperature was 75 0 C and 0.2 g Al powder was added in the reactor. The results are shown in Table 5.
Tabla 5Table 5
Figure imgf000019_0001
Figure imgf000019_0001

Claims

REIVINDICACIONES
1. Método para la obtención de hidrógeno gas poniendo en contacto aluminio metálico, agua y al menos una sal catalítica, caracterizado porque el medio de la reacción es ajustado a pH >12.1. Method for obtaining hydrogen gas by contacting metallic aluminum, water and at least one catalytic salt, characterized in that the reaction medium is adjusted to pH> 12.
2. Método, según la reivindicación 1, caracterizado porque el catalizador utilizado es una sal metálica formada a partir de cationes seleccionados entre: Fe2+, Fe3+, Mg2+, Ag2+, Na+, Co2+, Cu2+, Zn2+ o NH4 +.2. Method according to claim 1, characterized in that the catalyst used is a metal salt formed from cations selected from: Fe 2+ , Fe 3+ , Mg 2+ , Ag 2+ , Na + , Co 2+ , Cu 2+ , Zn 2+ or NH 4 + .
3. Método, según la reivindicación 1, caracterizado porque el catalizador utilizado es una sal metálica formada a partir de aniones seleccionados entre: F, SO4 2-, PO4 3", ClO4 ", Cl" o CO3 2-.3. Method according to claim 1, characterized in that the catalyst used is a metal salt formed from anions selected from: F, SO 4 2 -, PO 4 3 " , ClO 4 " , Cl " or CO 3 2 -.
4. Método, según la reivindicación 1, caracterizado porque el catalizador utilizado es una sal seleccionada entre: MgCl2, Fe(NH4)(SO4)2, Fe2(SO4)3, FeCl3, (NH4)2Fe(SO4)2, Ag2SO4, Co(NO3)2, K2CO3, CuSO4, ZnSO4, NaF, Na2SO4, Na3PO4 o NaClO4.4. Method according to claim 1, characterized in that the catalyst used is a salt selected from: MgCl 2 , Fe (NH 4 ) (SO 4 ) 2 , Fe 2 (SO 4 ) 3 , FeCl 3 , (NH 4 ) 2 Fe (SO 4 ) 2 , Ag 2 SO 4 , Co (NO 3 ) 2 , K 2 CO 3 , CuSO 4 , ZnSO 4 , NaF, Na 2 SO 4 , Na 3 PO 4 or NaClO 4 .
5. Método, según la reivindicación 1, caracterizado porque el catalizador utilizado está formado por una mezcla de al menos dos sales formadas a partir de la combinación de cationes seleccionados entre: Fe2+, Fe3+, Mg2+, Ag2+, Na+, Co2+, Cu2+, Zn2+ o NH4 + con aniones seleccionados entre: F", SO4 2", PO4 3", ClO4-, Cl" o CO3-.5. Method according to claim 1, characterized in that the catalyst used is formed by a mixture of at least two salts formed from the combination of cations selected from: Fe 2+ , Fe 3+ , Mg 2+ , Ag 2+ , Na + , Co 2+ , Cu 2+ , Zn 2+ or NH 4 + with anions selected from: F " , SO 4 2" , PO 4 3 " , ClO 4 -, Cl " or CO 3 -.
6. Método, según la reivindicación 1, caracterizado porque el catalizador está formado por una mezcla de sales seleccionadas entre: FeNH4(SO4)2 + NaClO4 o Fe2(SO4)3 + Na3PO4. Method according to claim 1, characterized in that the catalyst is formed by a mixture of salts selected from: FeNH 4 (SO 4 ) 2 + NaClO 4 or Fe 2 (SO 4 ) 3 + Na 3 PO 4 .
7. Método, según la reivindicación 1, caracterizado porque la reacción de obtención de hidrógeno es autotérmica y puede iniciarse sin un aporte externo de calor.7. Method according to claim 1, characterized in that the reaction for obtaining hydrogen is autothermal and can be initiated without an external heat input.
8. Catalizador que comprende una mezcla de al menos dos sales seleccionadas entre: MgCl2, Fe(NH4)(SO4)2, Fe2(SO4)3, FeCl3, (NH4)2Fe(SO4)2, Ag2SO4, Co(NO3)2, K2CO3, CuSO4, ZnSO4, NaF, Na2SO4, Na3PO4 o NaClO4.8. Catalyst comprising a mixture of at least two salts selected from: MgCl 2 , Fe (NH 4 ) (SO 4 ) 2 , Fe 2 (SO 4 ) 3 , FeCl 3 , (NH 4 ) 2 Fe (SO 4 ) 2 , Ag 2 SO 4 , Co (NO 3 ) 2 , K 2 CO 3 , CuSO 4 , ZnSO 4, NaF, Na 2 SO 4 , Na 3 PO 4 or NaClO 4 .
9. Catalizador, según la reivindicación 8, caracterizado porque la mezcla de sales se selecciona entre: FeNH4(SO4)2 + NaClO4 o Fe2(SO4)3 + Na3PO4.9. Catalyst according to claim 8, characterized in that the salt mixture is selected from: FeNH 4 (SO 4 ) 2 + NaClO 4 or Fe 2 (SO 4 ) 3 + Na 3 PO 4 .
10. Uso del catalizador de las reivindicaciones 4, 8 y/o 9 para la obtención de hidrógeno gas a partir de aluminio metálico y agua en un medio de reacción a pH >12. 10. Use of the catalyst of claims 4, 8 and / or 9 for obtaining hydrogen gas from metallic aluminum and water in a reaction medium at pH> 12.
PCT/ES2009/000555 2008-12-03 2009-12-02 Method for obtaining hydrogen WO2010063858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200803470A ES2321793B1 (en) 2008-12-03 2008-12-03 PROCEDURE FOR OBTAINING HYDROGEN.
ESP00803470 2008-12-03

Publications (1)

Publication Number Publication Date
WO2010063858A1 true WO2010063858A1 (en) 2010-06-10

Family

ID=41050604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000555 WO2010063858A1 (en) 2008-12-03 2009-12-02 Method for obtaining hydrogen

Country Status (2)

Country Link
ES (1) ES2321793B1 (en)
WO (1) WO2010063858A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE1550580A1 (en) 2015-05-07 2016-11-08 Myfc Ab Fuel cell based charger system and fuel generator therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014213A2 (en) * 2000-08-14 2002-02-21 The University Of British Columbia Hydrogen generation from water split reaction
US20050232837A1 (en) * 2004-04-09 2005-10-20 Tomasz Troczynski Compositions and methods for generating hydrogen from water
EP1829820A1 (en) * 2006-02-16 2007-09-05 Sociedad española de carburos metalicos, S.A. Method for obtaining hydrogen
US20070217972A1 (en) * 2006-01-27 2007-09-20 Greenberg Daniel N Apparatus for production of hydrogen
US20080260632A1 (en) * 2006-08-30 2008-10-23 Jasbir Kaur Anand Production of hydrogen from aluminum and water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014213A2 (en) * 2000-08-14 2002-02-21 The University Of British Columbia Hydrogen generation from water split reaction
US20050232837A1 (en) * 2004-04-09 2005-10-20 Tomasz Troczynski Compositions and methods for generating hydrogen from water
US20070217972A1 (en) * 2006-01-27 2007-09-20 Greenberg Daniel N Apparatus for production of hydrogen
EP1829820A1 (en) * 2006-02-16 2007-09-05 Sociedad española de carburos metalicos, S.A. Method for obtaining hydrogen
US20080260632A1 (en) * 2006-08-30 2008-10-23 Jasbir Kaur Anand Production of hydrogen from aluminum and water

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, H.Z. ET AL.: "A review on hydrogen production using aluminum and aluminum alloys", RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, vol. 13, 11 March 2008 (2008-03-11), pages 845 - 853 *

Also Published As

Publication number Publication date
ES2321793B1 (en) 2010-07-16
ES2321793A1 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
TW580482B (en) Continuous production of silica-based microgels
JP5895526B2 (en) Zeolite supporting copper and alkaline earth metals
ES2729959T3 (en) Loop reactor for preparing bromides
CN102399550A (en) Liquid formula used for in-depth acidification of high temperature carbonate rock
JP5867831B2 (en) Method for producing anion-exchange layered double hydroxide and method for replacing carbonate ion of layered double hydroxide containing carbonate ion
Frost et al. Thermogravimetric analysis of selected group (II) carbonateminerals—Implication for the geosequestration of greenhouse gases
US20060188436A1 (en) Apparatus and method for the production of hydrogen
US20080172932A1 (en) Compositions and methods for hydrogen generation
Zheng et al. Promoting H 2 generation from the reaction of Mg nanoparticles and water using cations
CN102340985A (en) Method for cooling the troposphere
ES2566333T3 (en) Catalyst and gas phase method using said catalyst
US20200270145A1 (en) Acidic ferrate composition and methods of making ferrate
ES2321793B1 (en) PROCEDURE FOR OBTAINING HYDROGEN.
JP6582356B2 (en) Chemical heat storage material
JP2018030924A (en) Heat storage material composition and heating pack containing the same
US20050042150A1 (en) Apparatus and method for the production of hydrogen
JP2012116747A (en) Chabazite-type zeolite supporting copper and catalyst using the same
NL7512646A (en) PROCEDURE FOR PREPARING AN AMORPIC SODIUM ALUMINUM SILICATE EXCHANGER.
WO2001098202A1 (en) Method for obtaining hydrogen by partial methanol oxidation
ES2227653T3 (en) USE OF HYDRATIONED SALTS TO IMPROVE PERFORMANCE IN CHLORINE DIOXIDE PRODUCTION.
JP2019014612A (en) Method for producing an aqueous solution of monochlorosulfamic acid salt
JP2006143537A (en) Manufacturing method for tetrahydroborate
RU2014129519A (en) Rhodium Catalysts for Ethanol Reforming
JPH01212214A (en) Production of magnesium hydroxide
CN110770320B (en) Chemical heat storage material and method for producing same, and chemical heat pump and method for operating same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830035

Country of ref document: EP

Kind code of ref document: A1