WO2010063236A1 - 通信网络、设备和通信方法 - Google Patents

通信网络、设备和通信方法 Download PDF

Info

Publication number
WO2010063236A1
WO2010063236A1 PCT/CN2009/075267 CN2009075267W WO2010063236A1 WO 2010063236 A1 WO2010063236 A1 WO 2010063236A1 CN 2009075267 W CN2009075267 W CN 2009075267W WO 2010063236 A1 WO2010063236 A1 WO 2010063236A1
Authority
WO
WIPO (PCT)
Prior art keywords
user plane
base station
packet
function module
service
Prior art date
Application number
PCT/CN2009/075267
Other languages
English (en)
French (fr)
Inventor
赵永祥
杨联
雍文远
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP09830020.5A priority Critical patent/EP2373091B1/en
Publication of WO2010063236A1 publication Critical patent/WO2010063236A1/zh
Priority to US13/150,979 priority patent/US8854968B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication network, device, and communication method. Background technique
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service ce
  • the 3GPP R7 release proposes a "One tunnel" packet network architecture solution, as shown in Figure 1, which includes the network elements:
  • Node B 101
  • Radio Network Controller (RNC) 103 Radio Network Controller
  • SGSN Serving GPRS Support Node
  • IP backbone network (IP backbone) 105 IP backbone network (IP backbone) 105;
  • GGS Gateway General Packet Radio Service Node
  • PDN Public Data Network
  • the Node B 101 is interconnected with the RNC 103 via the Iub interface transport network via the Iub interface; the RNC 103 is interconnected with the SGSN 104 through the Iu-PS interface; the SGSN 104 interacts with the GGSN 106 via the IP backbone 105 via the Gn/Gc interface.
  • the GGSN 106 is interconnected with the PDN network 107 via a Gi interface.
  • the basic principle of the "One tunnel” solution is that the control plane signaling goes through the traditional path through the RN C 103 - SGSN 104 - GGSN 106 path; while the user plane data does not pass through the SGSN 10 4 , the RNC 103 directly passes the user plane of the Gn
  • the interface is interconnected with the GGSN 106 to circumvent the capacity bottleneck of the SG SN 104.
  • the "One tunnel” solution also needs to access the PDN through the G GSN of the backbone network, and the packet service is less efficient. Summary of the invention
  • Embodiments of the present invention provide a communication network, device, and communication method to improve transmission efficiency of a mobile packet service.
  • the embodiment of the invention provides a communication method, including:
  • the mobile broadband edge node sends the indication information for performing the branching processing to the base station according to the splitting policy; the base station passes the user plane data of the packet service through the split fixed broadband bearer network according to the indication information of the split processing. Direct access to the public data network.
  • the embodiment of the invention further provides a mobile broadband edge node, including:
  • a radio network controller function module configured to send, to the base station, indication information for performing a shunting process according to the shunting policy; the indication information for performing the shunting process, to indicate, by the base station, user plane data of the packet service Direct access to the public data network through the split fixed broadband bearer network.
  • the embodiment of the present invention further provides a base station, including: a base station function module, a radio network controller packet user plane function module, and a gateway general packet radio service support node user plane function module; the base station function module, configured to receive the mobile station User plane data of the required packet service, sending the user plane data to the radio network controller grouping user plane function module; The radio network controller packet user plane function module is configured to receive indication information for performing branch processing on the user plane data, and send user plane data received from the base station function module to the gateway general packet radio service. Support node user plane function module;
  • the gateway general packet radio service support node user plane function module is configured to: according to the indication information for performing the shunt processing on the user plane data, the user plane data received from the radio network controller group user plane function module Direct access to the public data network through the split fixed broadband bearer network.
  • An embodiment of the present invention further provides a communication network, including the foregoing mobile broadband edge node and the foregoing base station.
  • the embodiment of the invention further provides another communication network, including:
  • the base station includes a base station function module, a radio network controller packet user plane function module, and a gateway general packet radio service support node user plane function module, configured to directly use the user plane data of the packet service through the split fixed broadband bearer network Access to the public data network;
  • the mobile broadband edge node includes a radio network controller function module and a gateway general packet radio service support node function module, configured to control the base station to perform a branch operation on the user plane data of the packet service.
  • FIG. 1 is a schematic diagram of a packet network architecture in the prior art
  • FIG. 2 is a flowchart of a communication method according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a communication network application scenario according to an embodiment of the present invention
  • FIG. 3b is a schematic diagram of a network architecture according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a communication network application scenario according to an embodiment of the present invention
  • FIG. 3b is a schematic diagram of a network architecture according to an embodiment of the present invention
  • FIG. 3c is a schematic diagram of a distribution of a HSPDA user plane protocol stack of a Node B according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a distribution of a HSPDA user plane protocol stack of a Node B according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a network architecture according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a network architecture according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a shunt control flow of a communication network according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a shunt control flow of a communication network according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a mobile broadband according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a newly built WCDMA network in an application scenario according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an application scenario for upgrading an existing WCDMA network according to an embodiment of the present invention. detailed description
  • FIG. 2 is a flowchart of a communication method according to an embodiment of the present invention. As shown in FIG. 2, the communication method in this embodiment includes:
  • Step 21 The Mobile Broadband Edge (MBB-Edge) node sends the indication information for performing the shunt processing to the base station according to the splitting policy.
  • MBB-Edge Mobile Broadband Edge
  • the mobile broadband edge node can obtain a branching strategy in advance, where the integrated service gateway acquires the branching
  • the manner of the policy is not limited, for example: the mobile broadband edge node receives and saves the splitting policy sent by the operation and maintenance center, and the splitting policy is pre-configured by the operation and maintenance center according to the business policy of the packet service; or, When the mobile station activates the packet service, the broadband edge node sends the service information of the packet service to the policy server; and receives the policy server to determine the branching policy and the like according to the service information.
  • the mobile broadband edge node determines whether the user plane data of the packet service needs to be grouped according to the splitting policy.
  • the mobile broadband edge node sends the indication information for performing the shunt processing to the base station; and the indication information for performing the shunt processing is used to indicate the
  • the base station directly accesses the user plane data of the packet service to the public data network through the split fixed broadband bearer network.
  • Step 22 The base station directly accesses the user plane data of the packet service to the public data network through the split fixed broadband bearer network according to the indication information of the branch processing.
  • the mobile broadband edge node when the splitting policy indicates that the user plane data of the packet service does not need to be processed by the branching, the mobile broadband edge node sends the indication information that does not perform the shunt processing to the base station; and the indication information that does not perform the shunt processing, And configured to instruct the base station to send user plane data of the packet service to the mobile broadband edge node.
  • the base station transmits the user plane data of the packet service to the mobile broadband edge node according to the indication information that does not perform the branching process.
  • the mobile broadband edge node receives the user plane data of the packet service, and directly accesses the user plane data of the packet service to the public data network.
  • the embodiment provides a communication method for implementing mobile broadband access.
  • the mobile broadband edge node controls the base station to perform corresponding branch processing on the user plane data of the packet service according to the splitting policy, so that part of the service can be split by the base station.
  • the fixed broadband bearer network directly accesses the public data network.
  • some services may also be directly accessed by the base station through the integrated service gateway to the public data network, thereby improving the transmission efficiency of the mobile packet service.
  • the mobile broadband edge node may be an RNC node that controls the base station to perform branch processing according to the splitting policy, so that the RNC node can control the base station to perform partial packet service.
  • the user plane data is directly connected to the PDN through the split fixed broadband bearer network.
  • the mobile broadband edge node may also be an integrated service gateway integrated with all functions of the RNC and some or all functions of the GGSN, so that the integrated service gateway can control the base station to transmit the user plane data of part of the packet service through the split fixed broadband bearer network.
  • the PDN is directly accessed, and/or the control base station sends the user plane data of the part of the packet service to the integrated service gateway itself, and the integrated service gateway directly accesses the PDN.
  • the specific implementation form of the mobile broadband edge node is not limited in the embodiment of the present invention, as long as the foregoing functions can be implemented.
  • the base station may be a Node B integrated with the RNC packet user plane part function and the GGSN user plane part function, so that the base station passes the user plane data of the partial packet service according to the indication information of the mobile broadband edge node.
  • the split fixed broadband bearer network directly accesses the PDN, and/or the base station sends the user plane data of the part of the packet service to the integrated service gateway according to the indication information of the mobile broadband edge node, and the integrated service gateway directly accesses the PDN.
  • the embodiment of the present invention does not limit the specific implementation form of the base station, as long as the above functions can be implemented.
  • FIG. 3 is a schematic structural diagram of a communication network application scenario according to an embodiment of the present invention. As shown in Figure 3a, the communication network includes:
  • the integrated service gateway may include an RNC function module and a GGSN function module; the RNC function module integrates all functions of the RNC, such as a radio resource management function, a cell management function, a base station management function, a user access processing function, and a user. Data surface processing functions, etc.
  • the GGSN function module integrates all or part of the functions of the GGSN, such as integrated user session management function, charging function, monitoring function and GPRS tunneling protocol processing function, etc. GPRS tunneling protocol processing function such as GPRS Tunneling Protocol-User Plane, GTPU) Features, etc.
  • IP backbone network IP backbone ;
  • SGSN Serving GPRS Support Node
  • PDN Public Data Network
  • the transmission path of the control plane signaling is indicated by a broken line, and the transmission path of the user plane data is indicated by a solid line.
  • the integrated service gateway integrates all or part of the functions of the RNC and the GGSN.
  • the control plane signaling is transmitted via the "Node B - Integrated Services Gateway - SGSN - Integrated Services Gateway” path; and the user plane data is not passed through the SGSN via "Node B".
  • - Integrated Service Gateway-PDN path transmission, forming a "Node B - Integrated Services Gateway” two-layer flat network architecture.
  • the integrated service gateway integrates all the functions of the RNC, it can be deployed by using the traditional RNC deployment strategy. It does not need to change the existing circuit domain network architecture, which is conducive to saving network upgrade costs and can solve the long transmission path of packet user data in the network.
  • the problems experienced by many nodes can reduce the network cost in the era of mobile broadband and improve the transmission efficiency of mobile packet services.
  • FIG. 3 is only an application scenario of the communication method embodiment of the present invention.
  • the communication method of this embodiment may also be used in the application scenario shown in FIG. 3a, for example, the RNC may control the base station to the user of the packet service.
  • the surface data is subjected to branching processing.
  • the RNC has a function of controlling the base station to perform branching processing on the user plane data of the packet service according to the branching policy.
  • the RNC determines that the user plane data of the packet service needs to be split according to the splitting policy
  • the RNC sends the indication information for performing the split processing to the base station, and the base station sets the user plane data of the packet service according to the indication information of the split processing. Direct access to the PDN through a fixed bearer network.
  • the following detailed description of the embodiments only uses the application scenario shown in FIG. 3a as an example to describe the communication method based on the integrated service gateway, so as to further improve the transmission efficiency of the packet service, and the RNC has no base station to control the packet service according to the split strategy.
  • FIG. 3b is a schematic diagram of a network architecture according to an embodiment of the present invention.
  • the communication network includes a Node B, an integrated services gateway, an SGSN, a fixed broadband bearer network, and a PDN.
  • the NodeB is connected to the integrated service gateway through the TDM backhaul.
  • One end of the fixed broadband bearer network is connected to the PDN through the IP backbone network, and the other end is connected to the Node B.
  • the integrated service gateway provided in this embodiment has the following advantages: 1.
  • the CS domain architecture is not changed, and there is no impact on the CS service and the CS core network device.
  • PS core network equipment only needs to increase the interconnection and interworking configuration of the related and integrated service gateways
  • the integrated service gateway sends out the Gi interface and directly connects to the PDN network, saving the cost of the SGSN or GGSN.
  • the Node B in this embodiment integrates the RNC packet user plane (PS UP) part function and the GGSN user plane part function, and the Node B can partially fix the partial packet service user plane data according to the indication information of the integrated service gateway.
  • a broadband bearer network such as xDSL/xPON, directly accesses the PDN, and provides an access similar to xDSL through a split, that is, a Mobile Digital Subscriber Loop (Mobile DSL) access.
  • Mobile DSL Mobile Digital Subscriber Loop
  • the Node B integrates the RNC packet user plane part function and the GGSN user plane part function, including the Node B function module, the RNC group user plane function module, and the GGSN user plane function module.
  • the Node B receives the indication information of the integrated service gateway for the branch processing, the Node B can directly access the user plane data of the packet service to the PDN through the split fixed bearer network.
  • FIG. 3c is a schematic diagram showing the distribution of the HSPDA user plane protocol stack of the Node B according to an embodiment of the present invention.
  • the Node B can integrate the RNC packet user plane part functions, for example: physical layer (PHY), media access control. ( Medium Access Control ) , such as: MAC-d and MAC-hs, Radio Link Control (RLC), Packet Data Convergence Protocol (PDCP), GTPU, etc.; Node B can also be integrated
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • GTPU etc.
  • Node B can also be integrated
  • There are some functions of the GGSN user plane such as: TNL-L1, TNL-L2, UDP/IP (User Datagram Protocol/IP), GTPU and other functions.
  • FIG. 3 is a schematic diagram of a distribution of an HSPDA user plane protocol stack of a Node B according to an embodiment of the present invention.
  • Node B can integrate RNC packet user plane functions, such as: PHY, MAC-d, MAC-es, MAC-s. , RLC, PDCP, GTPU and other functions;
  • Node B can also be integrated with GGSN User plane functions, such as: TNL-L1, TNL-L2, UDP/IP, GTPU and other functions.
  • the interworking of the internal functional modules of the Node B can be flexibly used.
  • the design method can save the mode of the Iub-FP protocol layer; or, the GTPU layer can be removed, the user application layer data of the user can be directly extracted from the PDCP PDU, and the user plane data is output through the GGSN user plane function module.
  • the interface is directly connected to the PDN mode (not shown).
  • the integrated service gateway controls the Node B to access the user plane data of the part of the packet service through the split fixed bearer network according to the grouping policy, similar to the DSL broadband access for implementing the mobile packet service user plane data, and the packet service.
  • the user plane data does not need to pass through the GGSN node of the backbone network, thereby improving the transmission efficiency of the packet service.
  • FIG. 4 is a schematic diagram of a network architecture according to an embodiment of the present invention.
  • the communication network shown in FIG. 4 is different from the communication network shown in FIG. 3b in that the present embodiment can pre-configure the branching policy of the packet service on the integrated service gateway.
  • an OMC may be included, and the OMC interacts with the integrated service gateway through the management plane channel.
  • the OMC is configured to configure a splitting policy corresponding to the packet service required by the mobile station (MS), send the splitting policy to the integrated service gateway, and the integrated service gateway receives and saves the splitting policy.
  • the integrated service gateway includes an RNC function module and a GGSN function module.
  • the RNC function module integrates all the functions of the RNC, and the GGSN function module integrates all or part of the functions of the GGSN.
  • the integrated service gateway can control the base station to directly access the user plane data of the part of the packet service, and directly access the PDN through the split fixed broadband bearer network, and/or control the base station to send the user plane data of the part of the packet service to the integrated service gateway itself, The integrated service gateway itself directly accesses the PDN.
  • the module structure of the integrated service gateway in the figure is only an example.
  • the integrated service gateway can also add other modules according to actual needs, such as a policy acquisition module for obtaining a split strategy (not shown).
  • the Node B includes a Node B function module, a RNC group user plane part function module, and a GGSN user plane function module.
  • the Node B function module integrates all the functions of the Node B, and the RNC group user plane part function module integrates the RNC group. Some functions of the user plane, the GGSN user plane function module integrates some functions of the GGSN user plane.
  • the base station directly accesses the user plane data of the part of the packet service to the PDN through the split fixed broadband bearer network according to the indication information of the integrated service gateway, and/or the base station user of the part of the packet service according to the indication information of the integrated service gateway.
  • the face data is sent to the integrated service gateway, and the integrated service gateway directly accesses the PDN.
  • the method for implementing the split transmission of the user plane data in the network shown in FIG. 4 includes:
  • the OMC delivers the splitting policy of the packet service to the integrated service gateway through the management plane channel.
  • the integrated service gateway receives and saves the shunting policy.
  • the splitting strategy is used to indicate whether the user plane data of the packet service required by the mobile station needs to be branched.
  • the split strategy can be formulated according to the business strategy of the packet service, for example: It can be based on the Access Point Name (APN), for example, the Internet service can be based on the APN to establish a split strategy; or, according to the user's international mobile user International Mobile Subscriber Identity (IMSI) or International Mobile Equipment Identity (IMEI) of the device, such as splitting the packet data of the data card user only, and formulating a splitting strategy; or
  • the branching strategy is pre-defined according to factors such as location cell (Cell) or SAI.
  • the integrated service gateway determines, according to the previously configured splitting policy, whether the Node B needs to perform the split processing on the user plane data; if necessary, interacts with the Node B to control the Node B execution. road.
  • the Node B may be sent indication information for instructing the Node B to perform the branching processing on the user plane data.
  • the integrated service gateway in the foregoing 402 may send the indication to the Node B.
  • Node B does not perform branching processing on user plane data.
  • the Node B sends the user plane data of the packet service to the integrated service gateway.
  • the integrated service gateway directly accesses the user plane data of the packet service to the PDN.
  • the Node B receives the indication information for instructing the Node B to perform the branching process on the user plane data, and according to the indication information, directly accesses the user plane data of the packet service required by the mobile station to the PDN through the split fixed broadband bearer network.
  • the Node B reports the user data traffic statistics to the integrated service gateway.
  • FIG. 405 The integrated service gateway generates a bill to a Charging Gateway (CG).
  • FIG. 5 is a schematic diagram of a network architecture according to an embodiment of the present invention. The difference between the communication network shown in FIG. 5 and the communication network shown in FIG. 3b is that the integrated service gateway can obtain the branching policy of the packet service in the packet service activation process.
  • a policy server may be further included, and the policy server interacts with the integrated service gateway. Alternatively, the policy server may be customized to the operator.
  • the third-party interface interacts with the integrated services gateway.
  • the policy server is configured to: when the mobile station activates the packet service, obtain information about the packet service, determine a split policy of the packet service required by the mobile station according to the information of the packet service, and send the split policy to the integrated service gateway.
  • the integrated service gateway can also be used to interact with the policy server when the mobile station activates the packet service, and receive and save the branching policy sent by the policy server.
  • the integrated service gateway includes an RNC function module and a GGSN function module.
  • the RNC function module integrates all the functions of the RNC, and the GGSN function module integrates all or part of the functions of the GGSN.
  • the integrated service gateway can control the base station to directly access the user plane data of the part of the packet service, and directly access the PDN through the split fixed broadband bearer network, and/or control the base station to send the user plane data of the part of the packet service to the integrated service gateway itself, The integrated service gateway itself directly accesses the PDN.
  • the module structure of the integrated service gateway in the figure is only an example.
  • the integrated service gateway can also add other modules according to actual needs, such as a policy acquisition module for obtaining a split strategy (not shown).
  • the Node B includes a Node B function module, a RNC group user plane part function module, and a GGSN user plane function module.
  • the Node B function module integrates all the functions of the Node B, and the RNC group user plane part function module integrates the RNC group. Some functions of the user plane, the GGSN user plane function module integrates some functions of the GGSN user plane.
  • the base station directly accesses the user plane data of the part of the packet service to the PDN through the split fixed broadband bearer network according to the indication information of the integrated service gateway, and/or the base station user of the part of the packet service according to the indication information of the integrated service gateway.
  • the face data is sent to the integrated service gateway, and the integrated service gateway directly accesses the PDN.
  • the method for implementing the split transmission of the user plane data in the network shown in FIG. 5 includes:
  • the integrated service gateway and the policy server interact, and the policy server determines whether the current packet activation is split from the Node B.
  • the integrated service gateway may report the service information, such as the packet data protocol (PDP) context, the mobile station location information, and the user information, to the policy server; The information determines whether the service data of the packet service required by the mobile station needs to be processed by the branch, and the branching policy is sent to the integrated service gateway.
  • PDP packet data protocol
  • the integrated service gateway interacts with the Node B to control the Node B to perform the splitting.
  • the integrated service gateway receives the splitting policy sent by the policy server. If the splitting policy indicates that the user plane data of the packet service needs to be processed by the splitting process, the node B may send the indication information to the Node B, for example, the Node B may be sent to the Node B to indicate the Node B. The indication information for performing the branch processing on the user plane data of the packet service.
  • the Node B receives the indication information for performing the branch processing, and according to the indication information, the user plane data of the packet service required by the mobile station is directly connected to the PDN through the split fixed broadband bearer network.
  • the Node B reports the user data traffic statistics to the integrated service gateway.
  • the integrated service gateway generates a bill to a Charging Gateway (CG).
  • CG Charging Gateway
  • the Node B may interact with the Node B to send the indication information to the Node B. For example: sending, to the Node B, indication information indicating that the Node B does not perform the shunt processing on the user plane data of the packet service. Based on the indication information, the Node B sends the user plane data to the integrated service gateway.
  • the integrated service gateway directly accesses the user plane data to the PDN.
  • the transmission performance of the mobile packet data is improved by combining the 2-layer flattening architecture (Node B-integrated service gateway) and the 1-layer flat architecture (Node B). And efficiency; through the integrated service gateway and OMC or policy server, control Node B directly out of Gi, similar to DSL broadband access, reducing the transmission cost of the last mile, but also reducing the cost of RNC / xGSN.
  • FIG. 6 is a schematic flowchart of a shunt control process of a communication network according to an embodiment of the present invention.
  • the integrated service gateway includes an RNC function module and a GGSN function module.
  • the RNC function module integrates all the functions of the RNC
  • the GGSN function module integrates all or part of the functions of the GGSN.
  • the integrated service gateway can control the base station to directly access the user plane data of the part of the packet service, and directly access the PDN through the split fixed broadband bearer network, and/or control the base station to send the user plane data of the part of the packet service to the integrated service gateway itself,
  • the integrated service gateway itself directly accesses the PDN.
  • the module structure of the integrated service gateway in the figure is only an example.
  • the integrated service gateway can also add other modules according to actual needs, such as a policy acquisition module for obtaining a split strategy (not shown).
  • the Node B includes a Node B function module, a RNC group user plane part function module, and a GGSN user plane function module.
  • the Node B function module integrates all the functions of the Node B, and the RNC group user plane part function module integrates the RNC group. Some functions of the user plane, the GGSN user plane function module integrates some functions of the GGSN user plane.
  • the base station directly accesses the user plane data of the part of the packet service to the PDN through the split fixed broadband bearer network according to the indication information of the integrated service gateway, and/or the base station user of the part of the packet service according to the indication information of the integrated service gateway.
  • the face data is sent to the integrated service gateway, and the integrated service gateway directly accesses the PDN.
  • the integrated service gateway acquires the grouping policy from the OMC and saves it to the local.
  • the shunt control process shown in Figure 6 includes:
  • the OMC delivers the splitting policy of the packet service to the integrated service gateway through the management plane channel.
  • the integrated services gateway receives and saves the splitting policy.
  • the established shunting strategy is used to indicate whether the user plane data of the packet service required by the MS needs to be shunted.
  • the branching strategy can be described in detail according to 401 according to the business strategy of the grouping business, and will not be described here.
  • the MS sends a Radio Resource Control (RRC) Connection Request (RRC_Connection_Request) message to the integrated service gateway.
  • RRC Radio Resource Control
  • the integrated service gateway sends an RRC Connection Establishment (RRC_Connection_Setup) message to the MS.
  • RRC_Connection_Setup RRC Connection Establishment
  • the integrated service gateway sends a Radio Link (RL) Setup Request (RL_Setup_Request) message to the Node B.
  • RL Radio Link
  • the Node B sends a Radio Link Setup Response (RL_Setup_Response) message to the Integrated Services Gateway.
  • RL_Setup_Response Radio Link Setup Response
  • the MS sends a Service Request message to the SGSN.
  • the integrated services gateway provides RNC functionality.
  • the SGSN sends a Service Accept message to the MS.
  • the MS sends a Packet Data Protocol (PDP) Context Request (Active PDP Context Request) message to the SGSN.
  • PDP Packet Data Protocol
  • the integrated services gateway provides RNC functionality.
  • the SGSN obtains the IP address of the GGSN function module in the integrated service gateway from the Domain Name Server (DNS).
  • DNS Domain Name Server
  • the SGSN sends a Create PDP Context Request to the Integrated Services Gateway (Create PDP)
  • the integrated service gateway sends a Create PDP Context Response message to the SGSN.
  • the SGSN can start the "One Tunnel” mode.
  • the SGSN sends a radio access bearer (Radio Access Bearers) to the integrated service gateway.
  • a radio access bearer Radio Access Bearers
  • RAB Assignment Request
  • TEID Tunnel Endpoint Identifier
  • the integrated service gateway can determine whether the split processing process needs to be activated according to the pre-acquisition split policy. In this embodiment, it is assumed that the packet service required by the MS needs to activate the branch processing flow, and the integrated service gateway starts the branch function of the packet service of the Node B.
  • the split routing policy pre-acquired by the integrated service gateway may include the policy information of whether the mobile packet service corresponding to the different IMSI needs to perform the split processing. In this case, whether the current mobile packet service needs to be determined according to the user IMSI corresponding to the MS may be needed. Perform branching; or,
  • the split routing policy pre-acquired by the integrated service gateway may include the policy information of whether the different types of services need to be processed by the branch.
  • the policy may be configured as a P2P service requiring split processing, and the value-added service does not need to be split processing.
  • the integrated service gateway searches for the policy information corresponding to the type of the packet service required by the MS in the splitting policy. If the packet service required by the MS belongs to a service type that needs to be processed by the splitting process, for example, the splitting policy determines that the low-tariff service is performed. The split processing is performed, and the packet service required by the MS is a low-value service (such as a P2P service), and the integrated service gateway can start the packet service split function of the Node B.
  • a low-value service such as a P2P service
  • the integrated service gateway sends an extended radio link setup request (RL_Setup_Request) message to the Node B.
  • RL_Setup_Request extended radio link setup request
  • the radio link setup request message may be extended, and the extended radio link setup request message may carry indication information for instructing the Node B to perform split processing on the user plane data of the packet service.
  • Node B sends an extended radio link response (RL_Setup_Response) message to the integrated services gateway.
  • the Node B After receiving the indication information for performing the shunt processing, the Node B starts the branch processing function of the Node B itself, and transmits a radio link response message to the integrated service gateway.
  • the radio link response message may be extended to carry the response information that the Node B has started the shunt processing function in the extended radio link response message.
  • the integrated service gateway and the Node B can also complete the device resource allocation related to the internal partial packet service, so that the user plane data can use the configured device resources to access the PDN through the fixed broadband bearer network.
  • the integrated service gateway sends a radio bearer (RB) setup request to the MS.
  • RB radio bearer
  • the MS sends an RB Setup Response (RB_Setup_Request) message to the integrated service gateway.
  • RB_Setup_Request RB_Setup_Request
  • RAB Assignment Response
  • the SGSN sends an Update PDP Context Request to the Integrated Services Gateway (Update PDP)
  • IP address and its TEID are associated with IP address and its TEID.
  • the integrated service gateway sends an update PDP context response to the SGSN (Update PDP)
  • the integrated service gateway provides the RNC function, which is a standard NAS direct transmission message.
  • the MS starts to transmit the user plane data of the packet service, and the Node B performs the split processing on the user plane data of the packet service required by the MS, that is, the Node B directly accesses the user plane data to the PDN through the split fixed bearer network.
  • the user plane data does not need to go through the integrated service gateway or the SGSN, but the Node B directly accesses the PDN through the fixed bearer network.
  • the Node B sends the traffic statistics of the MS to the integrated service gateway, and the GGSN function module of the integrated service gateway generates a Calling Detail Records (G-CDR) CDR, and reports the G-CDR to the charging gateway through the Ga interface.
  • G-CDR Calling Detail Records
  • the above-mentioned shunt control flow uses the RRC I Iub I IuPS I Gn interface message of the 3GPP standard, wherein 61, 62, 63, 64, 65, 67, 610, 616, 617 and 623 are standard Iub and RRC messages, 614 and 615 are extended standard Iub and RRC messages, 66, 68, 69, and 621 are standard non-access stratum (NAS) direct messages, and 613 and 618 are standard IuPS interface messages, 611, 612, 619, and 620. For standard Gn interface messages.
  • NAS non-access stratum
  • split control flow is only an example, and should not be understood as a static restriction between the message and message sequence required to implement the split control.
  • the message or process shown may be performed according to actual control needs.
  • the order of execution between messages can also be adjusted according to actual control needs.
  • the integrated service gateway obtains the branching policy from the OMC and saves it to the local, and controls the Node B to perform the branching operation according to the splitting policy, so that certain packet services, such as the user plane data of the low-value service determined by the operator, can be used.
  • the Node B directly accesses the PDN through the fixed broadband bearer network, so that the user plane data transmission of these services does not need to consume the resources of the traditional network element RNC, SGSN, and GGSN, which is beneficial to solving the capacity bottleneck problem of these network elements and improving the packet service. Transmission efficiency.
  • FIG. 7 is a schematic flowchart of a shunt control process of a communication network according to an embodiment of the present invention.
  • the integrated service gateway includes an RNC function module and a GGSN function module, and the RNC function module integrates all the functions of the RNC, and the GGSN function module integrates all or part of the functions of the GGSN.
  • the integrated service gateway can control the base station to directly access the user plane data of the part of the packet service, and directly access the PDN through the split fixed broadband bearer network, and/or control the base station to send the user plane data of the part of the packet service to the integrated service gateway itself, The integrated service gateway itself directly accesses the PDN.
  • the module structure of the integrated service gateway in the figure is only an example, and the integrated service gateway can also be based on actual needs. Add other modules, such as the policy acquisition module for obtaining the split strategy (not shown).
  • the Node B includes a Node B function module, a RNC group user plane part function module, and a GGSN user plane function module.
  • the Node B function module integrates all the functions of the Node B, and the RNC group user plane part function module integrates the RNC group. Some functions of the user plane, the GGSN user plane function module integrates some functions of the GGSN user plane.
  • the base station directly accesses the user plane data of the part of the packet service to the PDN through the split fixed broadband bearer network according to the indication information of the integrated service gateway, and/or the base station user of the part of the packet service according to the indication information of the integrated service gateway.
  • the face data is sent to the integrated service gateway, and the integrated service gateway directly accesses the PDN.
  • the integrated service gateway acquires the grouping policy from the policy server.
  • the shunt control process shown in Figure 7 includes:
  • the integrated service gateway reports the service information of the packet service required by the MS to the policy server.
  • the service information of the required packet service of the MS may include: PDP context, location information, and user information.
  • the policy server determines the branching policy according to the received information, and sends the splitting policy to the integrated service gateway.
  • the splitting policy is used to indicate whether the user plane data of the packet service required by the MS needs to be processed by the branch.
  • the integrated service gateway and the policy server can communicate based on the operator's customized third-party interface.
  • the policy server formulates a branching policy based on the information reported by the integrated service gateway, and sends the established routing policy to the integrated service gateway.
  • the above-mentioned shunt control flow uses the RRC I Iub I IuPS I Gn interface message of the 3GPP standard, wherein 71, 72, 73, 74, 76, 79, 716, 717 and 723 are standard Iub and RRC messages, 714 and 715 is an extended standard Iub and RRC message, 75, 77, 78, and 721 are standard Non-Access Stratum (NAS) direct messaging messages, and 713 and 718 are standard IuPS interface messages, 710, 711, 712, 719, and 720. For standard Gn interface messages.
  • NAS Non-Access Stratum
  • the integrated service gateway when the MS initiates the activation of the packet service process, the integrated service gateway reports the service information of the packet service to the policy server, and the policy server determines the branching policy according to the information in real time, and the integrated service gateway according to the branch
  • the policy control Node B performs the branching operation, and the user plane data of some packet services, such as low-cost services, can be directly accessed by the Node B through the fixed broadband bearer network, so that the user plane data transmission of these services does not need to consume the traditional
  • the resources of the network element RNC, SGSN and GGSN are beneficial to solve the capacity bottleneck problem of these network elements and improve the transmission efficiency of the packet service.
  • FIG. 8 is a schematic structural diagram of a mobile broadband edge node according to an embodiment of the present invention. As shown in Figure 8, the mobile broadband edge node includes: RNC function module 81.
  • the RNC function module 81 is configured to send the indication information for performing the branching processing to the base station according to the splitting policy, and the indication information for performing the branching processing is used to instruct the base station to pass the user plane data of the packet service.
  • the fixed broadband bearer network of the road directly accesses the public data network.
  • the RNC function module integrates all the functions of the RNC, such as radio resource management functions, cell management functions, base station management functions, user access processing functions, and user data plane processing functions.
  • the RNC function module is specifically configured to: when the splitting policy indicates that the user plane data of the packet service needs to be branched, send the indication information about performing the branching processing to the base station.
  • the mobile broadband edge node may further include: a GGSN function module 82.
  • the RNC function module 81 is further configured to: when the splitting policy indicates that the user plane data of the packet service does not need to perform the branching processing, send the indication information that does not perform the branching processing to the base station, where the splitting is not performed. And the indication information that is sent to the base station to send user plane data of the packet service to the mobile broadband edge node; receive user plane data of the packet service sent by the base station, and perform general grouping to the gateway.
  • the wireless service support node function module sends the packet User plane data of the business;
  • the GGSN function module 82 is configured to directly access the user plane data of the packet service received by the RNC function module 81 to the public data network.
  • the GGSN function module integrates all or part of the functions of the GGSN, such as integrated user session management function, billing function, monitoring function and GPRS tunneling protocol processing function, GPRS tunneling protocol processing functions, such as GTPU function.
  • the mobile broadband edge node may further include: a policy acquisition module
  • the policy acquisition module 83 is configured to acquire a split strategy.
  • the way the policy acquisition module obtains the split strategy is not limited.
  • the policy obtaining module is specifically configured to receive and save the branching policy sent by the operation and maintenance center, where the branching policy is pre-configured by the operation and maintenance center according to a business policy of the grouping service.
  • the policy obtaining module is specifically configured to: when the mobile station activates the packet service, send the service information of the packet service to the policy server; and receive the policy server to determine the branching policy according to the service information.
  • the mobile broadband edge node controls the base station to perform corresponding branch processing on the user plane data of the packet service according to the splitting policy, so that part of the service can directly access the public data network through the split fixed broadband bearer network, optionally Some services can also directly access the public data network through the mobile broadband edge node, thereby improving the transmission efficiency of the mobile packet service.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station includes: a base station function module 91, an RNC group user plane function module 92, and a GGSN user plane function module 93.
  • the base station function module 91 is configured to receive user plane data of a packet service required by the mobile station, and send the user plane data to the radio network controller group user plane function module.
  • the RNC grouping user plane function module 92 is configured to receive the indication information for performing the branching processing on the user plane data, and send the user plane data received from the base station function module 91 to the GGSN user plane function module 93.
  • the information is that the user plane data received from the RNC packet user plane function module 92 is directly connected to the public data network through the split fixed broadband bearer network.
  • the RNC grouping user plane function module 92 is further configured to receive indication information that the user plane data is not subjected to the branching processing.
  • the base station function module 91 may be further configured to: send the user plane data of the packet service to the mobile broadband edge node according to the indication information that does not perform the branching processing, to use the user plane data of the packet service. Accessing the public data network directly through the mobile broadband edge node.
  • the base station integrates the RNC packet user plane part function and the GGSN user plane part function, and can perform branch processing on the user plane data of the packet service under the instruction of the mobile broadband edge node, so that part of the service can pass the fixed fixed bandwidth of the branch.
  • the bearer network directly accesses the public data network.
  • some services can also directly access the public data network through the mobile broadband edge node, thereby improving the transmission efficiency of the mobile packet service.
  • the RNC packet user plane part function integrated by the base station and the function of the GGSN user part refer to the distribution example of the base station user plane protocol stack in FIG. 3c and FIG. 3d, and details are not described herein.
  • the embodiment of the invention further provides a communication system, comprising: a mobile broadband edge node and a base station.
  • the mobile broadband edge node is configured to send, to the base station, indication information for performing the branching processing according to the splitting policy; and the base station is configured to: use the user plane data of the packet service by the split fixed broadband according to the indication information for performing the split processing
  • the bearer network directly accesses the public data network.
  • the structure of the mobile broadband edge node refer to the description corresponding to FIG. 8.
  • the structure of the base station can be referred to the description of the corresponding embodiment in FIG.
  • the mobile broadband edge node and the base station can be flexibly networked to obtain a communication system capable of implementing mobile broadband access.
  • the following is an example of the networking structure of the communication system.
  • FIG. 10 is a schematic structural diagram of a newly built WCDMA network in an application scenario according to an embodiment of the present invention.
  • the application example has a fixed broadband bearer resource in a split manner, and may use a mobile broadband edge node as shown in FIG. 8, such as an integrated service gateway.
  • the base station shown in FIG. 9 is newly built to implement a WCDMA network for mobile broadband access.
  • the SGSN can be deployed in a core city, and the SGSN is similar to an MSC server in a circuit switched (CS) domain, such that a packet switched domain (PS) network can be similar.
  • CS circuit switched
  • PS packet switched domain
  • the softswitch architecture of the CS domain The softswitch architecture of the CS domain.
  • a centralized GGSN can be deployed.
  • the GGSN is mainly used to aggregate PS traffic of roaming users.
  • the user plane data branching processing of the packet service is performed at the same time based on the technical solution provided by the first embodiment. For the split control of different packet services, for example:
  • the user plane data transmission path is "visit network Node B - visited network RNC - visited network SGSN - visited network BG - home network GGSN", in the application scenario, packet service The user plane data does not pass through the integrated service gateway.
  • the integrated service gateway interacts with the OMC or the policy server, and the integrated service gateway obtains the split strategy, and performs the split processing of the user plane data of the packet service according to the split strategy.
  • the user plane transmission path can go "Node B - Integrated Services Gateway - PDN" (not shown).
  • packet services that need to perform branching processing such as partial low-value packet services
  • user plane data can be directly accessed from the Node B to the PDN. In this case, the user plane data does not need to go through the integrated service gateway, that is, the user plane transmission path is " Node B - PDN"
  • the integrated service gateway and the Node B according to the first embodiment can be introduced in the new network, which can meet the requirements of different service data transmission, and can adopt a flexible user plane data transmission scheme according to the service type, and is a mobile broadband connection. Into provide an efficient solution to improve the efficiency of packet service transmission.
  • FIG. 11 is a schematic structural diagram of an application scenario for upgrading an existing WCDMA network according to an embodiment of the present invention.
  • the application example has a fixed broadband bearer resource of a split, and may use a mobile broadband edge service node as shown in FIG.
  • the integrated service gateway, and the base station shown in FIG. 9, upgrades the WCDMA network that can implement mobile broadband access on the existing network.
  • the inventory RNC can be processed by new processing.
  • the Node B of some hotspots can be upgraded, and the user plane data of some packet services is directly connected to the PDN by the upgraded Node B.
  • the split control of different packet services for example:
  • the transmission path of user plane data is "NodeB - Integrated Service Gateway after RNC upgrade - SGSN - GGSN";
  • the user plane data transmission path is "visit network Node B - visited network RNC - visited network SGSN - visited network BG - home network GGSN", in the application scenario, packet service The user plane data does not pass through the integrated service gateway upgraded from the RNC.
  • the integrated service gateway interacts with the OMC or the policy server, and the integrated service gateway acquires the split strategy, and performs the split processing of the user plane data of the packet service according to the split strategy.
  • the user plane transmission path may be "NodeB - Integrated Service Gateway from the RNC upgrade - PDN," for packet services that need to perform branch processing, such as partial low value packets.
  • the user plane data can be directly accessed from the upgraded Node B. In this case, the user plane data does not need to go through the integrated service gateway, that is, the user plane transmission path is "upgraded Node B - PDN".
  • the function of the network element in the network can be upgraded in the inventory network, so that the integrated service gateway and the Node B as described in the first embodiment can be introduced to meet the requirements of different service data transmission, and can be used according to the service type.
  • the flexible user plane data transmission scheme provides an efficient solution for mobile broadband access, thereby improving the transmission efficiency of packet services.
  • the mobile broadband edge node as shown in FIG. 8 can be smoothly introduced, whether it is a new network or a stock network, such as an "integrated service gateway", and as shown in FIG.
  • the mobile broadband access solution of the base station, such as Node B is therefore applicable to a wide range of embodiments.
  • the method includes the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

通信网络、 设备和通信方法 本申请要求于 2008年 12月 2日提交中国专利局、 申请号为 2008102180 39.5、发明名称为"通信网络和通信方法"的中国专利申请的优先权,其全部内 容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域,特别是涉及一种通信网络、设备和通信方法。 背景技术
随着通信技术的发展,运营商在发展互联网业务方面的迫切性越来越强, 但由于宽带码分多址(Wideband Code Division Multiple Access, WCDMA ) 分组网络架构基本上继承了通用分组无线业务(General Packet Radio Servi ce, GPRS ) , 使得每 MB数据的成本即使在高速包接入 (High-Speed Packet Access, HSPA)空口演进后也无法快速降下来。
3GPP R7 版本提出了 "One tunnel"分组网络架构解决方案 , 如图 1所 示, 包括网络单元:
Node B 101 ;
移动回程网 (Mobile backhaul ) 102;
无线网络控制器 (Radio Network Controller, RNC ) 103;
服务通用分组无线业务支持节点(Serving GPRS Support Node, SGSN )
104;
IP 骨干网 (IP backbone ) 105;
网关通用分组无线业务支持节点 (Gateway GPRS Support Node, GGS
N ) 106; 公用数据网 (Public Data Network, PDN ) 107。
其中, Node B 101通过 Iub接口经移动的 Iub接口传输网和 RNC 103 互连; RNC 103通过 Iu-PS接口与 SGSN 104互连; SGSN 104经 IP 骨干网 105通过 Gn/Gc接口与 GGSN 106互连, GGSN 106通过 Gi接口与 PDN网 络 107互连。
"One tunnel"解决方案的基本原理是控制面信令走传统路径, 经由 RN C 103— SGSN 104— GGSN 106路径; 而用户面数据, 则不经过 SGSN 10 4, RNC 103直接通过 Gn的用户面接口和 GGSN 106互连, 从而规避了 SG SN 104 的容量瓶颈。 但是, "One tunnel" 解决方案还需要通过骨干网的 G GSN接入 PDN, 分组业务的传送效率较低。 发明内容
本发明实施例提供一种通信网络、 设备和通信方法, 以提高移动分组业 务的传送效率。
本发明实施例提供了一种通信方法, 包括:
移动宽带边缘节点根据分路策略,向基站发送进行分路处理的指示信息; 所述基站根据所述进行分路处理的指示信息,将分组业务的用户面数据, 通过分路的固定宽带承载网直接接入公用数据网。
本发明实施例还提供了一种移动宽带边缘节点, 包括:
无线网络控制器功能模块, 用于根据分路策略, 向基站发送进行分路处 理的指示信息; 所述进行分路处理的指示信息, 用于指示所述基站将所述分 组业务的用户面数据, 通过分路的固定宽带承载网直接接入公用数据网。
本发明实施例还提供了一种基站, 包括: 基站功能模块、 无线网络控制 器分组用户面功能模块和网关通用分组无线业务支持节点用户面功能模块; 所述基站功能模块, 用于接收移动台所需的分组业务的用户面数据, 向 所述无线网络控制器分组用户面功能模块发送所述用户面数据; 所述无线网络控制器分组用户面功能模块, 用于接收对所述用户面数据 进行分路处理的指示信息, 将从所述基站功能模块接收的用户面数据发送给 所述网关通用分组无线业务支持节点用户面功能模块;
所述网关通用分组无线业务支持节点用户面功能模块, 用于根据所述对 用户面数据进行分路处理的指示信息, 将从所述无线网络控制器分组用户面 功能模块接收到的用户面数据, 通过分路的固定宽带承载网直接接入公用数 据网。
本发明实施例还提供了一种通信网络, 包括上述移动宽带边缘节点和上 述基站。
本发明实施例还提供了另一种通信网络, 包括:
基站, 所述基站包括基站功能模块、 无线网络控制器分组用户面功能模 块和网关通用分组无线业务支持节点用户面功能模块, 用于将分组业务的用 户面数据通过分路的固定宽带承载网直接接入公用数据网;
移动宽带边缘节点, 包括无线网络控制器功能模块和网关通用分组无线 业务支持节点功能模块, 用于控制所述基站对分组业务的用户面数据执行分 路操作。
本发明上述实施例能够提高移动分组业务的传送效率, 降低成本。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术中的一种分组网络架构示意图;
图 2为本发明一实施例提供的通信方法流程图;
图 3a是本发明一实施例提供的通信网络应用场景结构示意图; 图 3b是本发明一实施例提供的一种网络架构示意图;
图 3c为本发明一实施例提供的 Node B的 HSPDA用户面协议栈分布示 意图;
图 3d为本发明一实施例提供的 Node B的 HSPDA用户面协议栈分布示 意图;
图 4是本发明一实施例提供的一种网络架构示意图;
图 5是本发明一实施例提供的一种网络架构示意图;
图 6为本发明一实施例提供的通信网络的分路控制流程示意图; 图 7为本发明一实施例提供的通信网络的分路控制流程示意图; 图 8为本发明一实施例提供的移动宽带边缘节点的结构示意图; 图 9为本发明一实施例提供的基站的结构示意图;
图 10为本发明一实施例提供的应用场景中新建 WCDMA网络结构示意 图;
图 11为本发明一实施例提供的应用场景在存量 WCDMA网络升级的结 构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有付 出创造性劳动前提下所获得的所有其他实施例 , 都属于本发明保护的范围。
图 2为本发明一实施例提供的通信方法流程图。 如图 2所示, 本实施例 通信方法包括:
步骤 21、 移动宽带边缘(Mobile Broadband Edge, MBB-Edge )节点根 据分路策略, 向基站发送进行分路处理的指示信息。
移动宽带边缘节点可预先获取分路策略, 其中, 综合业务网关获取分路 策略的方式不受限制, 例如: 移动宽带边缘节点接收并保存操作维护中心发 送的所述分路策略, 所述分路策略由所述操作维护中心根据分组业务的经营 策略预先配置; 或者, 移动宽带边缘节点在移动台激活分组业务时, 向策略 服务器发送所述分组业务的业务信息; 接收所述策略服务器根据所述业务信 息确定所述分路策略等。
移动宽带边缘节点根据分路策略, 确定是否需要对分组业务的用户面数 据进行分组处理。 在分路策略表示分组业务的用户面数据需要进行分路处理 时, 移动宽带边缘节点向基站发送所述进行分路处理的指示信息; 所述进行 分路处理的指示信息, 用于指示所述基站将所述分组业务的用户面数据, 通 过分路的固定宽带承载网直接接入公用数据网。
步骤 22、 基站根据所述进行分路处理的指示信息, 将分组业务的用户面 数据, 通过分路的固定宽带承载网直接接入公用数据网。
可选的,在分路策略表示分组业务的用户面数据不需要进行分路处理时, 移动宽带边缘节点向基站发送不进行分路处理的指示信息; 所述不进行分路 处理的指示信息, 用于指示所述基站将所述分组业务的用户面数据发送给所 述移动宽带边缘节点。 该情形下, 基站根据所述不进行分路处理的指示信息, 将分组业务的用户面数据, 发送给移动宽带边缘节点。 移动宽带边缘节点接 收所述分组业务的用户面数据, 并将所述分组业务的用户面数据直接接入公 用数据网。
本实施例提供了一种可实现移动宽带接入的通信方法, 移动宽带边缘节 点根据分路策略, 控制基站对分组业务的用户面数据进行相应的分路处理, 使得部分业务可由基站通过分路的固定宽带承载网直接接入公用数据网, 可 选的, 部分业务还可由基站通过综合业务网关直接接入公用数据网, 从而提 高了移动分组业务的传送效率。
本发明所有实施例中, 移动宽带边缘节点可以为根据分路策略控制基站 进行分路处理的 RNC节点, 使得该 RNC节点可控制基站将部分分组业务的 用户面数据, 通过分路的固定宽带承载网直接接入 PDN。 或者, 移动宽带边 缘节点也可以为集成有 RNC全部功能以及 GGSN部分或全部功能的综合业 务网关, 使得该综合业务网关可控制基站将部分分组业务的用户面数据, 通 过分路的固定宽带承载网直接接入 PDN, 和 /或, 控制基站将部分分组业务的 用户面数据发送给综合业务网关自身, 由综合业务网关自身直接接入 PDN。 本发明实施例对移动宽带边缘节点的具体实现形式并不进行限定, 只要能够 实现上述功能即可。
本发明所有实施例中,基站可以是集成有 RNC分组用户面部分功能以及 GGSN用户面部分功能的 Node B等,使得基站根据移动宽带边缘节点的指示 信息, 将部分分组业务的用户面数据, 通过分路的固定宽带承载网直接接入 PDN, 和 /或, 基站根据移动宽带边缘节点的指示信息, 将部分分组业务的用 户面数据发送给综合业务网关, 由综合业务网关直接接入 PDN。 本发明实施 例也不对基站的具体实现形式进行限定, 只要能够实现上述功能即可。
图 3a是本发明一实施例提供的通信网络应用场景结构示意图。 如图 3a 所示, 通信网络包括:
Node B;
移动回程网 ( Mobile backhaul ) ;
综合业务网关,例如,该综合业务网关可以包括 RNC功能模块和 GGSN 功能模块; RNC功能模块集成 RNC全部功能, 如无线资源管理功能、 小区 管理功能、 基站管理功能、 用户接入处理功能, 以及用户数据面处理功能等。 GGSN功能模块集成 GGSN全部或者部分功能, 如集成用户会话管理功能、 计费功能、 监听功能以及 GPRS隧道协议处理功能等, GPRS隧道协议处理 功能例如 GPRS隧道协议用户面( GPRS Tunneling Protocol-User Plane, GTPU ) 功能等。
IP 骨干网 (IP backbone ) ;
服务 GPRS支持节点 ( Serving GPRS Support Node, SGSN ) ; 公用数据网 (PDN ) 。
如图 3a所示的通信网络中, 釆用虚线表示控制面信令的传输路径, 釆用 实线表示用户面数据的传输路径。 综合业务网关集成有 RNC和 GGSN的全 部或部分功能,控制面信令经由 "Node B—综合业务网关一 SGSN—综合业务 网关" 路径传输; 而用户面数据, 则不经过 SGSN, 经由 "Node B—综合业 务网关一 PDN" 路径传输, 形成了 "Node B—综合业务网关" 2层扁平化的 网络架构。
由于综合业务网关集成有 RNC全部功能, 可釆用传统 RNC部署策略进 行部署, 不需要改变现有的电路域网络架构, 有利于节约网络升级成本, 并 可解决分组用户数据在网络中传输路径长、 经历的节点多等问题, 从而能够 降低移动宽带时代的网络成本, 提高移动分组业务的传送效率。
需要说明的是, 图 3a仅为本发明通信方法实施例的一个应用场景, 本实 施例通信方法还可脱离图 3a所示的应用场景中使用, 例如: 可以由 RNC控 制基站对分组业务的用户面数据进行分路处理, 该情形下, RNC具有根据分 路策略控制基站对分组业务的用户面数据进行分路处理的功能。当 RNC根据 分路策略确定分组业务的用户面数据需要进行分路处理时, RNC向基站发送 进行分路处理的指示信息, 基站根据该进行分路处理的指示信息, 将分组业 务的用户面数据, 通过固定承载网直接接入 PDN。
下面各详述实施例仅以图 3a所示的应用场景为例,说明基于综合业务网 关的通信方法, 以进一步提高分组业务的传送效率, 不再赘述 RNC具有根据 分路策略控制基站对分组业务的用户面数据进行分路处理的功能的情形。
图 3b是本发明一实施例提供的一种网络架构示意图。 如图 3b所示, 通 信网络包括 Node B、 综合业务网关、 SGSN、 固定宽带承载网和 PDN。 NodeB 与综合业务网关通过 TDM传输网 (TDM backhaul )相连, 固定宽带承载网 一端通过 IP骨干网与 PDN相连, 另一端与 Node B相连。
本实施例提供的综合业务网关具有以下优点: 1、 不改变 CS域架构, 对 CS 业务及 CS 核心网设备没有影响;
2、 对 PS 业务及 PS 核心网设备没有影响, PS 核心网设备只需要增 加相关和综合业务网关互连互通配置;
3、综合业务网关出 Gi接口,直接连接 PDN网络, 节省 SGSN或 GGSN 成本。
如图 3b所示, 本实施例 Node B集成 RNC 分组用户面 ( PS UP )部分 功能和 GGSN用户面部分功能, Node B根据综合业务网关的指示信息, 可将 部分分组业务用户面数据可以从固定宽带承载网,如 xDSL/ xPON, 直接接入 PDN , 通过分路提供了类似 xDSL 的接入, 即实现了移动数字用户环路 ( Mobile Digital Subscriber Loop, Mobile DSL )接入。
本实施例中, Node B集成 RNC分组用户面部分功能和 GGSN用户面 部分功能, 包括有 Node B功能模块、 RNC分组用户面功能模块和 GGSN用 户面功能模块。 在 Node B接收到综合业务网关进行分路处理的指示信息时, Node B可将分组业务的用户面数据, 通过分路的固定承载网直接接入 PDN。
图 3c为本发明一实施例提供的 Node B的 HSPDA用户面协议栈分布示 意图。如 3c所示 ,在高速下行分组接入 ( High Speed Downlink Packet Access, HSPDA )应用中, Node B可集成有 RNC分组用户面部分功能, 例如: 物理 层(Physical layer, PHY ) , 媒体接入控制 ( Medium Access Control ) , 如: MAC-d和 MAC-hs, 无线链路控制 ( Radio Link Control, RLC ) 、 分组数据 汇聚协议 ( Packet Data Convergence Protocol , PDCP ) 、 GTPU等功能; Node B还可集成有 GGSN用户面部分功能,例如: TNL-L1、 TNL-L2、 UDP/IP( User Datagram Protocol/IP ) 、 GTPU等功能。
图 3d为本发明一实施例提供的 Node B的 HSPDA用户面协议栈分布示 意图。如 3d所示,在高速上行链路分组接入( High Speed Uplink Packet Access, HSUPA ) , Node B可集成有 RNC分组用户面部分功能,例如: PHY、 MAC-d, MAC-es、 MAC-s、 RLC、 PDCP, GTPU等功能; Node B还可集成有 GGSN 用户面部分功能, 例如: TNL-L1、 TNL-L2、 UDP/IP、 GTPU等功能。
图 3c和图 3d所示的 Node B的用户面协议栈分布示例中, Node B内部 功能模块的互通, 如 RNC分组用户面功能模块和 GGSN用户面功能模块的 互通上, 可以釆用比较灵活的设计方式, 比如可省去 Iub-FP协议层的模式; 或者,也可以釆取取消 GTPU层, 直接从 PDCP PDU 中提取用户的业务应用 层数据, 将用户面数据通过 GGSN用户面功能模块出 Gi接口直达 PDN的模 式(图中未示出) 。
本实施例综合业务网关根据分组策略, 控制 Node B将部分分组业务的 用户面数据, 通过分路的固定承载网接入 PDN, 类似于实现移动分组业务用 户面数据的 DSL 宽带接入, 分组业务的用户面数据不需要经过骨干网的 GGSN节点, 因而提高了分组业务的传送效率。
图 4是本发明一实施例提供的一种网络架构示意图。 图 4所示的通信网 络与图 3b所示的通信网络的区别在于,本实施例可在综合业务网关上预先配 置分组业务的分路策略。 例如, 如图 4所示的通信网络中, 除了包括图 3b所 示的各网元之外, 还可包括 OMC, OMC通过管理面通道与综合业务网关交 互。
可选的, OMC用于配置移动台 (Mobile Station, MS )所需的分组业务 对应的分路策略, 向综合业务网关发送该分路策略, 综合业务网关接收并保 存分路策略。
本实施例中, 综合业务网关包括 RNC功能模块以及 GGSN功能模块,
RNC功能模块集成有 RNC的全部功能, GGSN功能模块集成有 GGSN的全 部或部分功能。 综合业务网关可控制基站将部分分组业务的用户面数据, 通 过分路的固定宽带承载网直接接入 PDN, 和 /或, 控制基站将部分分组业务的 用户面数据发送给综合业务网关自身, 由综合业务网关自身直接接入 PDN。 图中综合业务网关的模块结构仅为示例, 综合业务网关还可根据实际需要, 增设其他模块, 如用于获取分路策略的策略获取模块等 (图中未示出) 。 本实施例中, Node B包括 Node B 功能模块、 RNC分组用户面部分功能 模块以及 GGSN用户面功能模块, Node B功能模块集成有 Node B的全部功 能, RNC分组用户面部分功能模块集成有 RNC分组用户面的部分功能, GGSN 用户面功能模块集成有 GGSN用户面的部分功能。 基站根据综合业务网关的 指示信息, 将部分分组业务的用户面数据, 通过分路的固定宽带承载网直接 接入 PDN, 和 /或, 基站根据综合业务网关的指示信息, 将部分分组业务的用 户面数据发送给综合业务网关, 由综合业务网关直接接入 PDN。
如图 4所示的网络中实现用户面数据的分路传输方法, 包括:
401 : OMC 将分组业务的分路策略通过管理面通道下发到综合业务网 关。 综合业务网关接收并保存该分路策略。
分路策略用于表示是否需要对移动台所需分组业务的用户面数据进行分 路处理。 分路策略可根据分组业务的经营策略制定, 例如: 可基于 接入点名 称(Access Point Name, APN )制定, 如 Internet 业务可基于 APN制定分路 策略; 或者, 还可根据用户的国际移动用户识别码 ( International Mobile Subscriber Identity , IMSI )或设备的国际移动设备身份码 ( International Mobile Equipment Identity, IMEI ) , 如仅对数据卡用户的分组数据进行分路处理, 制定分路策略; 或者, 还可根据位置小区 (Cell )或 SAI等因素预先制定分 路策略等。
402: 当移动台发起 PDP 激活流程时, 综合业务网关根据事先配置的分 路策略, 确定 Node B是否需要对用户面数据进行分路处理; 如果需要, 则和 Node B 交互, 控制 Node B 执行分路。
如果综合业务网关保存的分路策略表示分组业务的用户面数据需要进行 分路处理时, 可向 Node B发送用于指示 Node B对用户面数据进行分路处理 的指示信息。
可选的, 如果上述 402中综合业务网关根据分路策略确定 Node B不需 要对用户面数据进行分路处理, 则综合业务网关可向 Node B发送用于指示 Node B对用户面数据不进行分路处理的指示信息。 Node B根据该指示,将分 组业务的用户面数据发送给综合业务网关。综合业务网关在接收到 Node B发 送的分组业务的用户面数据时, 将分组业务的用户面数据直接接入 PDN。
403: 用户面数据通过分路的路径传递。
Node B接收用于指示 Node B对用户面数据进行分路处理的指示信息, 根据该指示信息将移动台所需分组业务的用户面数据, 通过分路的固定宽带 承载网直接接入 PDN。
404: Node B上报用户数据流量统计信息给综合业务网关。
405: 综合业务网关产生话单给计费网关 (Charging Gateway, CG ) 。 图 5是本发明一实施例提供的一种网络架构示意图。 图 5所示的通信网 络与图 3b所示的通信网络的区别在于, 本实施例可在分组业务激活过程中, 综合业务网关获取分组业务的分路策略。 例如, 如图 5所示的通信网络中, 除了包括图 3b所示的各网元之外, 还可包括策略服务器, 策略服务器与综合 业务网关交互, 可选的, 策略服务器可给予运营商定制的第三方接口与综合 业务网关交互。
可选的, 策略服务器用于在移动台激活分组业务时, 获取分组业务的信 息, 根据分组业务的信息确定移动台所需分组业务的分路策略, 将分路策略 发送给综合业务网关。 相应的, 综合业务网关还可用于在移动台激活分组业 务时, 与策略服务器交互, 接收并保存策略服务器发送的分路策略。
本实施例中, 综合业务网关包括 RNC功能模块以及 GGSN功能模块,
RNC功能模块集成有 RNC的全部功能, GGSN功能模块集成有 GGSN的全 部或部分功能。 综合业务网关可控制基站将部分分组业务的用户面数据, 通 过分路的固定宽带承载网直接接入 PDN, 和 /或, 控制基站将部分分组业务的 用户面数据发送给综合业务网关自身, 由综合业务网关自身直接接入 PDN。 图中综合业务网关的模块结构仅为示例, 综合业务网关还可根据实际需要, 增设其他模块, 如用于获取分路策略的策略获取模块等 (图中未示出) 。 本实施例中, Node B包括 Node B功能模块、 RNC分组用户面部分功能 模块以及 GGSN用户面功能模块, Node B功能模块集成有 Node B的全部功 能, RNC分组用户面部分功能模块集成有 RNC分组用户面的部分功能, GGSN 用户面功能模块集成有 GGSN用户面的部分功能。 基站根据综合业务网关的 指示信息, 将部分分组业务的用户面数据, 通过分路的固定宽带承载网直接 接入 PDN, 和 /或, 基站根据综合业务网关的指示信息, 将部分分组业务的用 户面数据发送给综合业务网关, 由综合业务网关直接接入 PDN。
如图 5所示的网络中实现用户面数据的分路传输方法, 包括:
501 : 在移动台发起分组业务激活流程中, 综合业务网关和策略服务器交 互, 由策略服务器决定本次 分组激活是否从 Node B分路。
综合业务网关在移动台发起分组业务激活流程时, 可将业务信息, 如分 组数据协议( Packet Data Protocol , PDP )上下文、 移动台位置信息、 用户信 息等, 上报给策略服务器; 策略服务器根据获取的这些信息确定移动台所需 的分组业务的业务数据是否需要进行分路处理, 将分路策略发送给综合业务 网关。
502: 如果需要 Node B分路, 综合业务网关和 Node B交互, 控制 Node B执行分路。
综合业务网关接收策略服务器发送的分路策略, 如果分路策略表示分组 业务的用户面数据需要进行分路处理时, 可向 Node B发送指示信息, 例如: 可向 Node B发送用于指示 Node B对分组业务的用户面数据进行分路处理的 指示信息。
503: 用户面数据通过分路的路径传递。
Node B接收进行分路处理的指示信息 ,根据该指示信息将移动台所需分 组业务的用户面数据, 通过分路的固定宽带承载网直接接入 PDN。
504: Node B上报用户数据流量统计信息给综合业务网关。
505: 综合业务网关产生话单给计费网关(Charging Gateway,简称 CG )。 在上述技术方案的基础上, 可选的, 如果上述 502中综合业务网关根据 分路策略确定 Node B不需要对用户面数据进行分路处理, 则可与 Node B交 互, 向 Node B发送指示信息, 例如: 向 Node B发送用于指示 Node B对分 组业务的用户面数据不进行分路处理的指示信息。 Node B根据该指示信息, 向综合业务网关发送用户面数据。综合业务网关在接收到 Node B发送的用户 面数据时, 将用户面数据直接接入 PDN。
本发明提供的图 4和图 5所示的实施例中, 通过 2 层扁平化架构(Node B—综合业务网关)和 1 层扁平架构 (Node B )相结合, 提高了移动分组数 据的传送性能和效率; 通过综合业务网关与 OMC或策略服务器配合, 控制 Node B 直接出 Gi, 类似 DSL宽带接入, 降低了最后一公里传输成本, 同时 也降低了 RNC/xGSN成本。
图 6为本发明一实施例提供的通信网络的分路控制流程示意图。
本实施例中, 综合业务网关包括 RNC功能模块以及 GGSN功能模块, RNC功能模块集成有 RNC的全部功能, GGSN功能模块集成有 GGSN的全 部或部分功能。 综合业务网关可控制基站将部分分组业务的用户面数据, 通 过分路的固定宽带承载网直接接入 PDN, 和 /或, 控制基站将部分分组业务的 用户面数据发送给综合业务网关自身, 由综合业务网关自身直接接入 PDN。 图中综合业务网关的模块结构仅为示例, 综合业务网关还可根据实际需要, 增设其他模块, 如用于获取分路策略的策略获取模块等 (图中未示出) 。
本实施例中, Node B包括 Node B功能模块、 RNC分组用户面部分功能 模块以及 GGSN用户面功能模块, Node B功能模块集成有 Node B的全部功 能, RNC分组用户面部分功能模块集成有 RNC分组用户面的部分功能, GGSN 用户面功能模块集成有 GGSN用户面的部分功能。 基站根据综合业务网关的 指示信息, 将部分分组业务的用户面数据, 通过分路的固定宽带承载网直接 接入 PDN, 和 /或, 基站根据综合业务网关的指示信息, 将部分分组业务的用 户面数据发送给综合业务网关, 由综合业务网关直接接入 PDN。 本实施例中, 综合业务网关向 OMC获取分组策略并保存到本地。如图 6 所示的分路控制流程包括:
61 : OMC将分组业务的分路策略通过管理面通道下发到综合业务网关。 综合业务网关接收并保存分路策略。
制定的分路策略用于表示是否需要对 MS所需分组业务的用户面数据进 行分路处理。 分路策略可根据分组业务的经营策略制定详见 401 的记载, 在 此不再赘述。
62: MS 向综合业务网关发送无线资源控制 (Radio Resource Control, RRC )连接请求 ( RRC_Connection_Request ) 消息。
63: 综合业务网关向 MS发送 RRC连接建立 ( RRC— Connection— Setup ) 消息。
64: 综合业务网关向 Node B发送无线链路 ( Radio Link, RL )建立请求 ( RL— Setup— Request ) 消息。
65: Node B向综合业务网关发送无线链路建立响应 ( RL— Setup— Respon se ) 消息。
66: MS向 SGSN发送服务请求( Service Request ) 消息。
在该信令流程中, 综合业务网关提供 RNC功能。
67: 发起安全功能( Security Functions ) 流程。 本步骤为可选步骤。
68: SGSN向 MS发送服务接受 ( Service Accept ) 消息。
69: MS向 SGSN发送激活分组数据协议(Packet Data Protocol, PDP ) 上下文请求 ( Activate PDP Context Request ) 消息。
在该信令流程中, 综合业务网关提供 RNC功能。
610: SGSN向域名服务器 (Domain Name Server, DNS )获取综合业务 网关中 GGSN功能模块的 IP地址。
611 : SGSN 向综合业务网关发送创建 PDP 上下文请求 (Create PDP
Context Request ) 消息。 612: 综合业务网关向 SGSN发送创建 PDP 上下文响应 (Create PDP Context Response ) 消息。
如果本实施例中综合业务网关中的 GGSN功能模块支持 "One Tunnel" 模式, 则 SGSN可以启动 "One Tunnel" 模式。
613: SGSN向综合业务网关发送无线接入承载( Radio Access Bearers,
RAB )分配请求 ( RAB— Assignment— Request ) 消息, 消息中携带综合网关中 的 GGSN 功能模块的 GGSN IP 地址及其可使用的隧道端点标识 (Tunnel Endpoint Identifier, TEID ) 。
综合业务网关可以根据预先获取的分路策略确定是否需要激活分路处理 流程。 本实施例假设 MS所需的分组业务需要激活分路处理流程, 则综合业 务网关启动 Node B的分组业务的分路功能。
综合业务网关预先获取的分路策略中, 可包括不同的 IMSI对应的移动 分组业务是否需要进行分路处理的策略信息, 该情形下, 可根据 MS对应的 用户 IMSI, 确定当前移动分组业务是否需要进行分路处理; 或者,
综合业务网关预先获取的分路策略中, 可包括对不同类型的业务是否需 要进行分路处理的策略信息, 例如, 策略可以配置为 P2P业务需要分路处理, 增值业务不需要分路处理等。 综合业务网关在分路策略中, 查找 MS所需的 分组业务的类型对应的策略信息, 如果 MS所需的分组业务属于需要进行分 路处理的业务类型, 例如分路策略确定对低资费业务进行分路处理, 而 MS 所需的分组业务为低价值的业务(如 P2P业务等) , 综合业务网关则可启动 Node B的分组业务分路功能。
614 : 综合业务网关向 Node B 发送扩展的无线链路建立请求 ( RL— Setup— Request ) 消息。
可对无线链路建立请求消息进行扩展, 在扩展的无线链路建立请求消息 中,可以携带用于指示 Node B对分组业务的用户面数据进行分路处理的指示 信息。 615: Node B 向综合业务网 关发送扩展的无线链路响应 ( RL— Setup— Response ) 消息。
Node B在接收到进行分路处理的指示信息之后, 启动 Node B 自身的分 路处理功能, 并向综合业务网关发送无线链路响应消息。 可对无线链路响应 消息进行扩展,在扩展的无线链路响应消息中携带 Node B已启动分路处理功 能的响应信息。
在上述 614和 615中, 综合业务网关和 Node B还可完成内部分路分组 业务相关的设备资源分配, 使得用户面数据可釆用配置的设备资源, 通过固 定宽带承载网接入 PDN。
616: 综合业务网关向 MS发送无线承载( Radio Bearers, RB )建立请求
( RB— Setup— Request ) 消息。
617: MS向综合业务网关发送 RB建立响应( RB— Setup— Request )消息。 618: 综合业务网关向 SGSN发送 RAB分配响应 ( RAB— Assignment— Re sponse ) 消息。
619: SGSN 向综合业务网关发送更新 PDP 上下文请求 (Update PDP
Context Request )消息, 消息中携带综合业务网关中的 RNC功能模块的 RNC
IP地址及其 TEID。
620: 综合业务网关向 SGSN发送更新 PDP上下文响应 (Update PDP
Context Response ) 消息。
621 : SGSN 向 MS 发送激活 PDP 上下文接受 (Update PDP Context
Response ) 消息。
在该信令流程中, 综合业务网关提供 RNC功能, 该信令为标准的 NAS 直传消息。
622: MS开始传送分组业务的用户面数据, Node B对 MS所需的分组业 务的用户面数据进行分路处理, 即: Node B将用户面数据通过分路的固定承 载网直接接入 PDN。 该情形下, 用户面数据接入 PDN过程中, 不需要经过综合业务网关, 也 不需要经过 SGSN, 而是由 Node B通过分路的固定承载网直接接入 PDN。
623: Node B向综合业务网关发送 MS的流量统计信息, 综合业务网关的 GGSN功能模块生成呼叫明细记录(Calling Detail Records, G-CDR )话单, 通过 Ga接口将 G-CDR上报给计费网关 ( Charging Gateway, CG ) 。
上述分路控制流程釆用了 3GPP 标准的 RRC I Iub I IuPS I Gn接口消 息, 其中, 61、 62、 63、 64、 65、 67、 610、 616、 617和 623为标准的 Iub 和 RRC 消息, 614和 615为扩展的标准 Iub 和 RRC 消息, 66、 68、 69和 621 为标准的非接入层(NAS )直传消息, 613和 618为标准的 IuPS接口消息, 611、 612、 619和 620为标准的 Gn接口消息。
需要说明的是, 以上分路控制流程仅为一个示例, 不应理解为对实现分 路控制所需消息及消息时序之间的静态限制, 例如: 所示的消息或过程可根 据实际控制需要进行删减或相似替换, 消息之间的执行顺序也可根据实际控 制需要进行调整等。
本实施例综合业务网关从 OMC获取分路策略, 并保存到本地, 根据该 分路策略控制 Node B执行分路操作, 可将某些分组业务,如运营商确定的低 价值业务的用户面数据由 Node B通过固定宽带承载网直接接入 PDN, 使得 这些业务的用户面数据传输不需要消耗传统的网元 RNC、 SGSN和 GGSN的 资源, 有利于解决这些网元的容量瓶颈问题, 提高分组业务的传送效率。
图 7为本发明一实施例提供的通信网络的分路控制流程示意图。
本实施例中, 综合业务网关包括 RNC功能模块以及 GGSN功能模块, RNC功能模块集成有 RNC的全部功能, GGSN功能模块集成有 GGSN的全 部或部分功能。 综合业务网关可控制基站将部分分组业务的用户面数据, 通 过分路的固定宽带承载网直接接入 PDN, 和 /或, 控制基站将部分分组业务的 用户面数据发送给综合业务网关自身, 由综合业务网关自身直接接入 PDN。 图中综合业务网关的模块结构仅为示例, 综合业务网关还可根据实际需要, 增设其他模块, 如用于获取分路策略的策略获取模块等 (图中未示出) 。 本实施例中, Node B包括 Node B功能模块、 RNC分组用户面部分功能 模块以及 GGSN用户面功能模块, Node B功能模块集成有 Node B的全部功 能, RNC分组用户面部分功能模块集成有 RNC分组用户面的部分功能, GGSN 用户面功能模块集成有 GGSN用户面的部分功能。 基站根据综合业务网关的 指示信息, 将部分分组业务的用户面数据, 通过分路的固定宽带承载网直接 接入 PDN, 和 /或, 基站根据综合业务网关的指示信息, 将部分分组业务的用 户面数据发送给综合业务网关, 由综合业务网关直接接入 PDN。
本实施例中, 综合业务网关在 MS激活分组业务时, 向策略服务器获取 分组策略。 如图 7所示的分路控制流程包括:
71-710: 与 62-611相似, 在此不再赘述。
711 : 综合业务网关将 MS所需分组业务的业务信息上报给策略服务器, 例如, MS 所需分组业务的业务信息可包括: PDP上下文、 位置信息和用户 信息等信息。 策略服务器根据接收的这些信息, 确定分路策略, 将分路策略 发送给综合业务网关; 其中, 该分路策略用于表示 MS所需的分组业务的用 户面数据是否需要进行分路处理。
综合业务网关与策略服务器之间可基于运营商订制的第三方接口进行通 信。 策略服务器根据综合业务网关上报的信息制定分路策略, 并将制定的分 路策略发送给综合业务网关。
712-723: 与 612-623相似, 在此不再赘述。
上述分路控制流程釆用了 3GPP 标准的 RRC I Iub I IuPS I Gn接口消 息, 其中, 71、 72、 73、 74、 76、 79、 716、 717和 723为标准的 Iub 和 RRC 消息, 714和 715为扩展的标准 Iub 和 RRC 消息, 75、 77、 78和 721为标 准的非接入层(NAS ) 直传消息, 713和 718为标准的 IuPS接口消息, 710、 711、 712、 719和 720为标准的 Gn接口消息。
需要说明的是, 以上分路控制流程仅为一个示例, 不应理解为对实现分 路控制所需消息及消息时序之间的静态限制, 例如: 所示的消息或过程可根 据实际控制需要进行删减或相似替换, 消息之间的执行顺序也可根据实际控 制需要进行调整等。
本实施例综合业务网关在 MS发起激活分组业务流程时, 综合业务网关 将分组业务的业务信息上报给策略服务器, 由策略服务器根据该信息实时确 定分路策略, 并由综合业务网关根据该分路策略控制 Node B执行分路操作, 可将某些分组业务,如低资费等业务的用户面数据由 Node B通过固定宽带承 载网直接接入 PDN, 使得这些业务的用户面数据传输不需要消耗传统的网元 RNC、 SGSN和 GGSN的资源, 有利于解决这些网元的容量瓶颈问题, 提高 分组业务的传送效率。
图 8为本发明一实施例提供的移动宽带边缘节点的结构示意图。 如图 8 所示, 移动宽带边缘节点包括: RNC功能模块 81。
RNC功能模块 81用于根据分路策略, 向基站发送进行分路处理的指示 信息; 所述进行分路处理的指示信息, 用于指示所述基站将所述分组业务的 用户面数据, 通过分路的固定宽带承载网直接接入公用数据网。
RNC功能模块集成 RNC全部功能, 如无线资源管理功能、 小区管理功 能、 基站管理功能、 用户接入处理功能, 以及用户数据面处理功能等。 可选 的, RNC功能模块具体可用于在所述分路策略表示所述分组业务的用户面数 据需要进行分路处理时, 向所述基站发送所述进行分路处理的指示信息。
在上述技术方案的基础上, 移动宽带边缘节点还可包括: GGSN功能模 块 82。
RNC功能模块 81还可用于在所述分路策略表示所述分组业务的用户面 数据不需要进行分路处理时, 向所述基站发送不进行分路处理的指示信息, 所述不进行分路处理的指示信息, 用于指示所述基站将所述分组业务的用户 面数据发送给所述移动宽带边缘节点; 接收所述基站发送的所述分组业务的 用户面数据, 向所述网关通用分组无线业务支持节点功能模块发送所述分组 业务的用户面数据;
GGSN功能模块 82用于将 RNC功能模块 81接收的分组业务的用户面数 据, 直接接入公用数据网。 GGSN功能模块集成 GGSN全部或者部分功能, 如集成用户会话管理功能、 计费功能、 监听功能以及 GPRS隧道协议处理功 能等, GPRS隧道协议处理功能, 如 GTPU功能等。
在上述技术方案的基础上, 移动宽带边缘节点还可包括: 策略获取模块
83。
策略获取模块 83用于获取分路策略。策略获取模块获取分路策略的方式 不受限制。 例如: 策略获取模块具体可用于接收并保存操作维护中心发送的 所述分路策略, 所述分路策略由所述操作维护中心根据分组业务的经营策略 预先配置。 策略获取模块具体可用于在移动台激活分组业务时, 向策略服务 器发送所述分组业务的业务信息; 接收所述策略服务器根据所述业务信息确 定所述分路策略。
本实施例移动宽带边缘节点根据分路策略, 控制基站对分组业务的用户 面数据进行相应的分路处理, 使得部分业务可通过分路的固定宽带承载网直 接接入公用数据网, 可选的, 部分业务还可通过移动宽带边缘节点直接接入 公用数据网, 从而提高了移动分组业务的传送效率。
图 9为本发明一实施例提供的基站的结构示意图。 如图 9所示, 基站包 括: 基站功能模块 91、 RNC分组用户面功能模块 92和 GGSN用户面功能 模块 93。
基站功能模块 91用于接收移动台所需的分组业务的用户面数据,向所述 无线网络控制器分组用户面功能模块发送所述用户面数据。
RNC分组用户面功能模块 92用于接收对所述用户面数据进行分路处理 的指示信息, 将从基站功能模块 91接收的用户面数据发送给 GGSN用户面 功能模块 93。 示信息, 将从 RNC分组用户面功能模 92块接收到的用户面数据, 通过分路 的固定宽带承载网直接接入公用数据网。
在上述技术方案的基础上, 可选的, RNC分组用户面功能模块 92还可 用于接收关于用户面数据不进行分路处理的指示信息。 该情形下, 基站功能 模块 91还可用于根据所述不进行分路处理的指示信息,将所述分组业务的用 户面数据发送给移动宽带边缘节点, 用以将所述分组业务的用户面数据, 通 过所述移动宽带边缘节点直接接入公用数据网。
本实施例基站集成有 RNC分组用户面部分功能和 GGSN用户面部分功 能, 可在移动宽带边缘节点指示下, 对分组业务的用户面数据进行分路处理, 使得部分业务可通过分路的固定宽带承载网直接接入公用数据网, 可选的, 部分业务还可通过移动宽带边缘节点直接接入公用数据网, 从而提高了移动 分组业务的传送效率。 基站集成的 RNC分组用户面部分功能以及 GGSN用 户面部分功能, 可参见图 3c和图 3d的基站用户面协议栈分布示例, 在此不 再赘述。
本发明实施例还提供了一种通信系统, 该通信系统包括: 移动宽带边缘 节点和基站。 移动宽带边缘节点用于根据分路策略, 向基站发送进行分路处 理的指示信息; 基站用于根据所述进行分路处理的指示信息, 将分组业务的 用户面数据, 通过分路的固定宽带承载网直接接入公用数据网。
其中, 移动宽带边缘节点的结构可参见图 8对应的记载, 基站的结构可 参见图 9对应实施例的记载。 在实际应用过程中, 可基于移动宽带边缘节点 和基站进行灵活组网, 得到可实现移动宽带接入的通信系统。 下面举例说明 通信系统的组网结构。
图 10为本发明一实施例提供的应用场景中新建 WCDMA网络结构示意 图, 该应用示例中具有分路的固定宽带承载资源, 可釆用如图 8所示的移动 宽带边缘节点, 如综合业务网关, 以及如图 9所示的基站, 新建可实现移动 宽带接入的 WCDMA网络。 如图 10所示,对于新建 WCDMA 网络,在 "One Tunnel"标准下, SGSN 可以部署在核心城市, SGSN类似电路交换(CS )域中的 MSC服务器, 这样 分组交换域(PS ) 网络可类似于 CS域的软交换架构, 同时, 可部署集中的 GGSN, 该 GGSN主要用于汇聚漫游用户的 PS流量。 在具有 DSL 资源的情 况下, 同时基于实施例一提供的技术方案进行分组业务的用户面数据分路处 理。 对于不同的分组业务的分路控制例如:
1、对于漫游到它网的本网用户的业务, 用户面数据传输路径为 "拜访网 络 Node B -拜访网络 RNC -拜访网络 SGSN -拜访网络 BG -归属网络 GGSN", 该应用场景中, 分组业务的用户面数据不经过综合业务网关。
2、对于其它业务, 通过综合业务网关和 OMC 或策略服务器交互, 综合 业务网关获取分路策略, 根据分路策略执行分组业务的用户面数据的分路处 理。例如:对于不需要执行分路处理的分组业务,用户面传输路径可以走" Node B - 综合业务网关 - PDN" (图中未示出) 。 对于需要执行分路处理的分组业 务, 如部分低价值分组业务, 其用户面数据可从 Node B直接接入 PDN, 该 情形下用户面数据不需要经过综合业务网关, 即用户面传输路径为 "Node B - PDN"„
本实施例可在新建网络中引入如实施例一所述的综合业务网关和 Node B,可满足不同业务数据传输的需求,根据业务类型可釆用灵活的用户面数据 传输方案, 为移动宽带接入提供高效的解决方案, 从而提高分组业务的传送 效率。
图 11为本发明一实施例提供的应用场景在存量 WCDMA网络升级的结 构示意图, 该应用示例中具有分路的固定宽带承载资源, 可釆用如图 8所示 的移动宽带边缘业务节点, 如综合业务网关, 以及如图 9所示的基站, 在现 有网络上升级可实现移动宽带接入的 WCDMA网络。
如图 11 所示, 对于存量 WCDMA 网络, 存量 RNC 可通过新增处理
GGSN 功能的单板并软件升级, 或者在存量 RNC硬件能力冗余的条件直接 软件升级, 实现分组业务的分流。 同时在用户面分组数据激增的压力下, 可 以对部分热点地区的 Node B 升级, 将部分分组业务的用户面数据由升级后 的 Node B直接接入 PDN。 对于不同的分组业务的分路控制例如:
1、 对于 CAMEL、 监听或运营商经营的增值业务, 用户面数据的传输路 径为 "NodeB -从 RNC升级后的综合业务网关- SGSN - GGSN";
2、对于漫游到它网的本网用户的业务, 用户面数据传输路径为 "拜访网 络 Node B -拜访网络 RNC -拜访网络 SGSN -拜访网络 BG - 归属网络 GGSN", 该应用场景中, 分组业务的用户面数据不经过从 RNC 升级后的综 合业务网关。
3、对于其它业务, 通过综合业务网关和 OMC 或策略服务器交互, 综合 业务网关获取分路策略, 根据分路策略执行分组业务的用户面数据的分路处 理。例如:对于不需要执行分路处理的分组业务,用户面传输路径可为 "NodeB -从 RNC升级后的综合业务网关 - PDN,,。 对于需要执行分路处理的分组业 务, 如部分低价值分组业务, 其用户面数据可从升级后的 Node B直接接入 PDN, 该情形下用户面数据不需要经过综合业务网关, 即用户面传输路径为 "升级后的 Node B - PDN"。
本实施例可在存量网络中对网络中的部分网元进行功能升级, 从而引入 如实施例一所述的综合业务网关和 Node B,可满足不同业务数据传输的需求, 根据业务类型可釆用灵活的用户面数据传输方案, 为移动宽带接入提供高效 的解决方案, 从而提高分组业务的传送效率。
通过上述图 10和图 11的组网示例可见, 不管是新建网络、 还是在存量 网络, 都能平滑引入如图 8所述的移动宽带边缘节点, 如 "综合业务网关" , 以及如图 9所述的基站, 如 Node B, 的移动宽带接入解决方案, 因此, 本发 明实施例适用性广。
本领域普通技术人员可以理解: 附图只是一个实施例的示意图, 附图中 的模块或流程并不一定是实施本发明所必须的。 本领域普通技术人员可以理解: 实施例中的装置中的模块可以按照实施 例描述分布于实施例的装置中, 也可以进行相应变化位于不同于本实施例的 一个或多个装置中。 上述实施例的模块可以合并为一个模块, 也可以进一步 拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述实施例所记载的技术方案进行 ^ί'爹改, 或者 对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术 方案的本质脱离本发明实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种通信方法, 其特征在于, 包括:
移动宽带边缘节点根据分路策略,向基站发送进行分路处理的指示信息; 所述基站根据所述进行分路处理的指示信息,将分组业务的用户面数据, 通过分路的固定宽带承载网直接接入公用数据网。
2、 根据权利要求 1所述的通信方法, 其特征在于, 在移动宽带边缘节点 向基站发送进行分路处理的指示信息之前, 还包括:
所述移动宽带边缘节点获取所述分路策略。
3、 根据权利要求 2所述的通信方法, 其特征在于, 所述移动宽带边缘节 点获取所述分路策略, 包括:
所述移动宽带边缘节点接收并保存操作维护中心发送的所述分路策略, 所述分路策略由所述操作维护中心根据分组业务的经营策略预先配置;
或者,
所述移动宽带边缘节点在移动台激活分组业务时, 向策略服务器发送所 述分组业务的业务信息, 接收所述策略服务器根据所述业务信息确定的所述 分路策略。
4、 根据权利要求 1所述的通信方法, 其特征在于, 所述移动宽带边缘节 点根据分路策略, 向基站发送进行分路处理的指示信息, 包括:
所述移动宽带边缘节点在所述分路策略表示所述分组业务的用户面数据 需要进行分路处理时, 向所述基站发送所述进行分路处理的指示信息; 所述 进行分路处理的指示信息,用于指示所述基站将所述分组业务的用户面数据, 通过分路的固定宽带承载网直接接入公用数据网。
5、 根据权利要求 1所述的通信方法, 其特征在于, 还包括:
所述移动宽带边缘节点在所述分路策略表示所述分组业务的用户面数据 不需要进行分路处理时, 向所述基站发送不进行分路处理的指示信息; 所述 不进行分路处理的指示信息, 用于指示所述基站将所述分组业务的用户面数 据发送给所述移动宽带边缘节点;
所述移动宽带边缘节点接收所述分组业务的用户面数据, 并将所述分组 业务的用户面数据直接接入公用数据网。
6、 根据权利要求 1所述的通信方法, 其特征在于,
所述移动宽带边缘节点具备无线网络控制器功能, 或者, 所述移动宽带 边缘节点具备无线网络控制功能和网关通用分组无线业务支持节点功能; 所述基站具备无线网络控制器分组用户面功能、 以及网关通用分组无线 业务支持节点用户面功能。
7、 一种移动宽带边缘节点, 其特征在于, 包括:
无线网络控制器功能模块, 用于根据分路策略, 向基站发送进行分路处 理的指示信息; 所述进行分路处理的指示信息, 用于指示所述基站将所述分 组业务的用户面数据, 通过分路的固定宽带承载网直接接入公用数据网。
8、 根据权利要求 7所述的移动宽带边缘节点, 其特征在于, 所述移动宽 带边缘节点还包括:
策略获取模块, 用于获取分路策略。
9、 根据权利要求 8所述的移动宽带边缘节点, 其特征在于,
所述策略获取模块, 具体用于接收并保存操作维护中心发送的所述分路 策略,所述分路策略由所述操作维护中心根据分组业务的经营策略预先配置; 或者,
所述策略获取模块, 具体用于在移动台激活分组业务时, 向策略服务器 发送所述分组业务的业务信息; 接收所述策略服务器根据所述业务信息确定 的所述分路策略。
10、 根据权利要求 7所述的移动宽带边缘节点, 其特征在于,
所述无线网络控制器功能模块, 具体用于在所述分路策略表示所述分组 业务的用户面数据需要进行分路处理时, 向所述基站发送所述进行分路处理 的指示信息。
11、 根据权利要求 7所述的移动宽带边缘节点, 其特征在于, 所述移动 宽带边缘节点还包括: 网关通用分组无线业务支持节点功能模块;
所述无线网络控制器功能模块, 还用于在所述分路策略表示所述分组业 务的用户面数据不需要进行分路处理时, 向所述基站发送不进行分路处理的 指示信息, 所述不进行分路处理的指示信息, 用于指示所述基站将所述分组 业务的用户面数据发送给所述移动宽带边缘节点; 接收所述基站发送的所述 分组业务的用户面数据, 向所述网关通用分组无线业务支持节点功能模块发 送所述分组业务的用户面数据;
所述网关通用分组无线业务支持节点功能模块, 用于将从所述无线网络 控制器功能模块接收的分组业务的用户面数据, 直接接入公用数据网。
12、 一种基站, 其特征在于, 包括: 基站功能模块、 无线网络控制器分 组用户面功能模块和网关通用分组无线业务支持节点用户面功能模块;
所述基站功能模块, 用于接收移动台所需的分组业务的用户面数据, 向 所述无线网络控制器分组用户面功能模块发送所述用户面数据;
所述无线网络控制器分组用户面功能模块, 用于接收对所述用户面数据 进行分路处理的指示信息, 将从所述基站功能模块接收的用户面数据发送给 所述网关通用分组无线业务支持节点用户面功能模块;
所述网关通用分组无线业务支持节点用户面功能模块, 用于根据所述对 用户面数据进行分路处理的指示信息, 将从所述无线网络控制器分组用户面 功能模块接收到的用户面数据, 通过分路的固定宽带承载网直接接入公用数 据网。
13、 根据权利要求 12所述的基站, 其特征在于,
所述无线网络控制器分组用户面功能模块, 还用于接收对所述用户面数 据不进行分路处理的指示信息;
所述基站功能模块, 还用于根据所述不进行分路处理的指示信息, 将所 述分组业务的用户面数据发送给移动宽带边缘节点, 用以将所述分组业务的 用户面数据, 通过所述移动宽带边缘节点直接接入公用数据网。
14、 一种通信网络, 其特征在于, 包括:
如权利要求 7-11任一权利要求所述的移动宽带边缘节点; 和
如权利要求 12或 13所述的基站。
15、 一种通信网络, 其特征在于, 包括:
基站, 所述基站包括基站功能模块、 无线网络控制器分组用户面功能模 块和网关通用分组无线业务支持节点用户面功能模块, 用于将分组业务的用 户面数据通过分路的固定宽带承载网直接接入公用数据网;
移动宽带边缘节点, 包括无线网络控制器功能模块和网关通用分组无线 业务支持节点功能模块, 用于控制所述基站对分组业务的用户面数据执行分 路操作。
PCT/CN2009/075267 2008-12-02 2009-12-02 通信网络、设备和通信方法 WO2010063236A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09830020.5A EP2373091B1 (en) 2008-12-02 2009-12-02 Communication device and method
US13/150,979 US8854968B2 (en) 2008-12-02 2011-06-01 Communication network, device, and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810218039A CN101754064A (zh) 2008-12-02 2008-12-02 通信网络和通信方法
CN200810218039.5 2008-12-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/150,979 Continuation US8854968B2 (en) 2008-12-02 2011-06-01 Communication network, device, and method

Publications (1)

Publication Number Publication Date
WO2010063236A1 true WO2010063236A1 (zh) 2010-06-10

Family

ID=42232901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075267 WO2010063236A1 (zh) 2008-12-02 2009-12-02 通信网络、设备和通信方法

Country Status (4)

Country Link
US (1) US8854968B2 (zh)
EP (1) EP2373091B1 (zh)
CN (1) CN101754064A (zh)
WO (1) WO2010063236A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118789B (zh) * 2009-12-31 2013-02-27 华为技术有限公司 业务卸载方法、业务卸载功能实体和业务卸载系统
WO2013164386A1 (en) * 2012-05-02 2013-11-07 Nokia Siemens Networks Oy Methods and apparatus
US9408125B2 (en) * 2012-07-05 2016-08-02 Qualcomm Incorporated Aggregation of data bearers for carrier aggregation
CN103782554B (zh) * 2012-07-25 2016-10-26 华为技术有限公司 数据分流方法,数据发送装置以及分流节点装置
GB201400302D0 (en) 2014-01-08 2014-02-26 Vodafone Ip Licensing Ltd Telecommunications network
CN105916218A (zh) * 2016-04-19 2016-08-31 国网浙江省电力公司信息通信分公司 一体化基站系统以及基于一体化基站系统的通信方法
CN108307402A (zh) * 2016-08-31 2018-07-20 中兴通讯股份有限公司 管理upf的方法、装置及系统
US10798635B2 (en) * 2018-12-03 2020-10-06 At&T Intellectual Property I, L.P. Mobile edge computing for data network traffic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197817A (zh) * 2006-12-05 2008-06-11 华为技术有限公司 一种更新分组数据协议上下文的方法
WO2008077423A1 (en) * 2006-12-22 2008-07-03 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement relating to communications network services request activation
CN101291464A (zh) * 2007-04-17 2008-10-22 阿尔卡特朗讯公司 将Femto小区设备与移动核心网络联接的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030046330A1 (en) * 2001-09-04 2003-03-06 Hayes John W. Selective offloading of protocol processing
US20070297334A1 (en) * 2006-06-21 2007-12-27 Fong Pong Method and system for network protocol offloading
FI20075252A0 (fi) * 2007-04-13 2007-04-13 Nokia Corp Menetelmä, radiojärjestelmä, matkaviestin ja tukiasema
US8964781B2 (en) * 2008-11-05 2015-02-24 Qualcomm Incorporated Relays in a multihop heterogeneous UMTS wireless communication system
US8341262B2 (en) * 2008-11-07 2012-12-25 Dell Products L.P. System and method for managing the offload type for offload protocol processing
US8743696B2 (en) * 2009-08-07 2014-06-03 Cisco Technology, Inc. Mobile transport solution for offloading to an alternate network
WO2011038359A2 (en) * 2009-09-26 2011-03-31 Cisco Technology, Inc. Providing services at a communication network edge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197817A (zh) * 2006-12-05 2008-06-11 华为技术有限公司 一种更新分组数据协议上下文的方法
WO2008077423A1 (en) * 2006-12-22 2008-07-03 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement relating to communications network services request activation
CN101291464A (zh) * 2007-04-17 2008-10-22 阿尔卡特朗讯公司 将Femto小区设备与移动核心网络联接的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2373091A4 *

Also Published As

Publication number Publication date
EP2373091A4 (en) 2012-03-07
CN101754064A (zh) 2010-06-23
US8854968B2 (en) 2014-10-07
EP2373091B1 (en) 2013-06-05
US20110228676A1 (en) 2011-09-22
EP2373091A1 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP5803696B2 (ja) ネットワークシステム,オフロード装置及びオフロード装置の利用者識別情報取得方法
US20220225437A1 (en) Relay communication method and relay communications apparatus and system
WO2010063236A1 (zh) 通信网络、设备和通信方法
US8730906B2 (en) Apparatus and method for removing path management
WO2018059268A1 (zh) 网络切片的建立方法和装置
JP2020504517A (ja) 無線通信システムにおいてサービス品質(QoS)フロー基盤のULパケットを送信する方法及びそのための装置
CN109257827A (zh) 通信方法、装置、系统、终端和接入网设备
WO2011006447A1 (zh) 分组业务数据的传输方法、装置和系统
US20100226372A1 (en) Packet communication system and packet communication method, and node and user device
WO2014127515A1 (zh) 业务提供系统、方法、移动边缘应用服务器及支持节点
WO2019185062A1 (zh) 一种通信方法及装置
WO2013064104A1 (zh) 一种数据传输方法、移动性管理实体和移动终端
WO2011015147A1 (zh) 数据传输方法、装置和通信系统
WO2016191963A1 (zh) 一种建立承载的方法、用户设备及基站
WO2011134434A1 (zh) 数据传输设备、方法以及通信系统
WO2010015188A1 (zh) 接入点接入移动核心网的方法、设备及系统
US11412564B2 (en) Method and apparatus for providing next generation network service in heterogeneous network environment
WO2018170747A1 (zh) 一种通信方法及装置
WO2009065321A1 (fr) Procédé, système et dispositif pour traiter le service d'un domaine à commutation de circuits
WO2012152130A1 (zh) 承载处理方法及装置
CN102056141A (zh) 一种实现本地接入的系统和方法
WO2019137242A1 (zh) 建立承载方法、装置、处理器及存储介质
WO2011009353A1 (zh) 建立ip分流连接的实现方法和系统
CN101925136B (zh) 承载建立方法及相关装置
WO2011035719A1 (zh) 一种释放本地连接的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2695/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009830020

Country of ref document: EP