WO2010063231A1 - Gsm分组域编码的方法、设备及系统 - Google Patents

Gsm分组域编码的方法、设备及系统 Download PDF

Info

Publication number
WO2010063231A1
WO2010063231A1 PCT/CN2009/075231 CN2009075231W WO2010063231A1 WO 2010063231 A1 WO2010063231 A1 WO 2010063231A1 CN 2009075231 W CN2009075231 W CN 2009075231W WO 2010063231 A1 WO2010063231 A1 WO 2010063231A1
Authority
WO
WIPO (PCT)
Prior art keywords
length
rlc
encoding
data
channel coding
Prior art date
Application number
PCT/CN2009/075231
Other languages
English (en)
French (fr)
Inventor
薛怀杰
王超
张岩强
胡宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010063231A1 publication Critical patent/WO2010063231A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/009Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location arrangements specific to transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end

Definitions

  • the present invention relates to the field of network communication technologies, and in particular, to a method, device and system for GSM packet domain coding.
  • the existing Global System for Mobile Communications (GSM) Packet Switched Domain (PS) uses fixed radio link control or medium access control (RLC/MAC, Radio Link Control / Medium Access Control).
  • the coding mode is to carry a Logical Link Control Packet Data Unit (LLC PDU).
  • LLC PDU Logical Link Control Packet Data Unit
  • EDGE Enhanced Data Rates for GSM Evolution
  • MCS-l MCS-9 MCS-l MCS-9
  • the /MAC encoding method has a fixed length.
  • the LLC PDU data is carried in the RLC/MAC block in a segmented concatenation manner.
  • the GSM EDGE Radio Access Network (GERAN, GSM EDGE Radio Access Network) carries a circuit domain (CS).
  • the voice service uses the RLC/MAC block to carry CS frames. Since the Adaptive Multi-Rate codec (AMR) rate of the CS domain does not match the RLC rate of the Packet Switched Domain (PS), the sum of the lengths of the LLC PDU data cannot normally fill the current RLC/MAC block.
  • AMR Adaptive Multi-Rate codec
  • Embodiments of the present invention provide a method, device, and system for GSM packet domain coding to save limited bandwidth resources and improve link transmission performance.
  • the embodiment of the present invention provides a GSM packet domain coding method, including: determining whether there is information indicating a valid data length of a bearer in a control domain in a radio link control/media access control RLC/MAC block header, the valid data The length is the length of the input data before encoding; when the information of the valid data length exists in the control domain in the RLC/MAC block header, the variable length channel is performed according to the length of the input data before encoding and the length of the output data after encoding. coding.
  • An embodiment of the present invention further provides a GSM packet domain coding apparatus, including: a judgment unit and a variable length channel coding unit.
  • the determining unit is configured to determine whether there is information indicating a valid data length of the bearer in the control domain in the radio link control/media access control RLC/MAC block header, where the valid data length is the length of the input data before encoding;
  • the variable length channel coding unit is configured to: when the judgment result of the determining unit is information that the valid data length exists in a control domain in the RLC/MAC block header, according to the length of the input data before encoding and after encoding The length of the output data is subjected to variable length channel coding.
  • the embodiment of the present invention further provides a GSM packet domain codec system, where the system includes the foregoing encoding device, and further includes a receiving end, and the receiving end is configured to, after receiving the data sent by the device, according to the The length of the input data before decoding and the length of the output data after decoding are subjected to variable length channel decoding.
  • information indicating the length of the valid data carried by the RLC/MAC block is added in the control domain in the RLC/MAC block header, and the length of the input data before encoding and the length of the output data after decoding are both the length of the valid data.
  • the transmitting end performs variable length channel coding according to the length of the input data before encoding and the length of the output data after encoding.
  • the method embodiment provided by the present invention can increase the length of the data according to the effective data length because the length information indicating the valid data is added in the control domain; and since the data length carried in the RLC/MAC block is variable, Therefore, idle bits or invalid padding bytes are avoided in the carried frame, thereby saving limited bandwidth resources and improving link performance.
  • Figure 1 is a flow chart of a first embodiment of the method of the present invention
  • FIG. 2 is a schematic diagram of an RLC/MAC header format of a GMSK downlink CS over GERAN according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an RLC/MAC header format of the 8PSK downlink CS over GERAN according to the embodiment of the present invention
  • FIG. 2 is a schematic diagram of an RLC/MAC header format of a GMSK downlink CS over GERAN according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an RLC/MAC header format of the 8PSK downlink CS over GERAN according to the embodiment of the present invention
  • FIG. 4 is a schematic diagram of an RLC/MAC header format of a GMSK uplink CS over GERAN according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an RLC/MAC header format of an 8PSK uplink CS over GERAN according to an embodiment of the present invention
  • Figure 6 is a schematic view showing a second embodiment of the method of the present invention.
  • FIG. 7 is a schematic diagram of a variable length channel codec in which CS over GERAN carries two 5.9 kb/s AMR frames in the embodiment of the present invention
  • Figure 1 is a structural view of a first embodiment of the apparatus of the present invention
  • FIG. 8B is a structural diagram of an embodiment of a variable length channel coding unit in the first embodiment of the present invention
  • FIG. 9 is a structural diagram of a second embodiment of the apparatus of the present invention.
  • Figure 10 is a structural view of a first embodiment of the system of the present invention.
  • Figure 11 is a structural view of a second embodiment of the system of the present invention.
  • a method for implementing GSM packet domain coding including: determining whether there is information indicating a valid data length of a bearer in a control domain in a radio link control/media access control RLC/MAC block header,
  • the effective data length is the length of the input data before encoding; when the information of the valid data length exists in the control domain in the RLC/MAC block header, according to the length of the input data before encoding and the length of the output data after encoding Variable length channel coding.
  • FIG. 1 there is shown a flow chart of a first embodiment of the method based on the present invention.
  • a first embodiment of a GSM packet domain codec according to the present invention includes the following steps: S101: Adding information indicating a length of valid data carried in the RLC/MAC block in a control domain in a header of an RLC/MAC block .
  • the length of the input data before encoding and the length of the output data after decoding are the same as the length of the valid data.
  • the information indicating the length of the valid data carried in the RLC/MAC block can be specifically indicated by two indications.
  • the information is represented by, for example, a coding mode indication (CMI, Code Mode Indicator) indicating the AMR and a frame number (FN, Frame Number) of the frame.
  • CMI is used to indicate the AMR mode of each CS frame in the current RLC/MAC block, and the length of each frame can be obtained by the AMR mode of each frame.
  • the FN is used to indicate the number of CS frames carried in the current RLC/MAC block.
  • the same AMR mode can also be used.
  • the number of CS frames carried in the RLC/MAC block may be one or more.
  • the length of each frame multiplied by the number of valid frames indicated by FN is the length of the valid data carried in the RLC/MAC block.
  • the length of the data carried in the RLC/MAC block can be calculated by the AMR mode indicated by the CMI and the number of frames indicated by the FN. Therefore, the combination of CMI and FN can indicate the length of valid data. Of course, in addition to the combination of CMI and FN, there are other ways of identifying valid data length information.
  • S102 Perform variable length channel coding according to the length of the input data before encoding and the length of the output data after encoding.
  • the channel coding method and rate are selected according to the length of the input data before encoding and the length of the output data after encoding.
  • Variable length channel coding is then performed by puncturing or padding redundancy according to a variable length puncturing algorithm or a padding redundancy algorithm.
  • the channel coding rate may select 1/2 or 1/3 of the convolutional code.
  • the channel coding may also select a convolutional code of another rate.
  • the decoding step may also be included:
  • S103 Perform variable length channel decoding according to the length of the input data before decoding and the length of the output data after decoding.
  • the length of the decoded output data is obtained, and the length of the output data after decoding is the same as the length of the valid data.
  • the method of punching or filling redundancy used in encoding is calculated and correctly performed. Variable length channel decoding.
  • the transmitting end may perform variable length channel coding according to the effective data length, and the receiving end performs variable length decoding according to the effective data length. Since the variable length channel coding is used, the data carried in the RLC/MAC block does not have idle bits, thereby avoiding invalid padding bytes, thereby distinguishing the conventional PS domain RLC/MAC coding method (for example, MCS-1) MCS-9) saves limited bandwidth resources and improves link performance.
  • the header format of the uplink and downlink RLC/MAC of the CS over GERAN variable length codec is described in detail below with reference to the accompanying drawings.
  • the header type of RLC/MAC is related to the modulation method.
  • the modulation method is different, and the length of the header type of RLC/MAC is different.
  • FIG. 2 the figure is a schematic diagram of an RLC/MAC header format of a GMSK downlink CS over GERAN according to an embodiment of the present invention.
  • the following describes the RLC/MAC header format by taking the CS over GERAN as the example of Gaussian Minimum Shift-frequency Keying (GMSK).
  • GMSK Gaussian Minimum Shift-frequency Keying
  • CMI and FN indicating the effective data length are added to the RLC/MAC header format.
  • the header format of one RLC/MAC shown in FIG. 2 includes four CMIs, namely CMI1, CMI2, CMI3, and CMI4, for indicating that four CS frames are carried in one RLC/MAC block, and Each CMI represents a different AMR mode.
  • the AMR mode of each CS frame carried in one RLC/MAC block can be the same, that is, the values of the four CMIs are the same.
  • FIG. 2 shows data in which four CS frames are carried in one RLC/MAC block.
  • FN indicates the effective number of CS frames carried in an RLC/MAC block. For example, if FN is 3, it indicates that CMI1, CMI2, and CMI3 are valid frame modes, that is, the length of valid data carried in the RLC/MAC block includes only CMI1. , the length of the frame represented by CMI2 and CMI3. Similarly, if FN is 2, the length of the valid data includes only the length of the frame represented by CMI1 and CMI2.
  • the header format of the RLC/MAC may be the same as the conventional PS encoding, such as the Uplink State Flag (USF, Uplink State Flag) and the Temporary Flow Identity (TFI, Temporary Flow Identity) in FIG.
  • the encoding can be the same as the original PS encoding. among them, The USF is used to schedule uplink data of each user.
  • FIG. 3 the figure is a schematic diagram of an RLC/MAC header format of an 8PSK downlink CS over GERAN according to an embodiment of the present invention.
  • Figure 3 shows the RLC/MAC header format by taking the downlink CS over GERAN of Phase Shift Keying (8PSK, 8 Phase Shift Keying 8) as an example.
  • FIG. 4 the figure is a schematic diagram of an RLC/MAC header format of a GMSK uplink CS over GERAN according to an embodiment of the present invention.
  • Figure 4 is similar to Figure 2, and the uplink RLC/MAC header also includes TFI, CMI, and FN.
  • FIG. 5 the figure is a schematic diagram of an RLC/MAC header format of an 8PSK uplink CS over GERAN according to an embodiment of the present invention.
  • Figure 5 is similar to the RLC/MAC header format shown in Figure 4. It can be seen that only the length of the data in the headers of GMSK and 8PSK is different. The fourth byte of GMSK has 7 bits, and the fifth byte of 8PSK has 5 bits. Bit.
  • this figure is a flow chart of a second embodiment of the method based on the present invention.
  • variable length channel coding process of the embodiment of the present invention by taking CS over GERAN as an example.
  • S601 Determine, according to the TFI in the RLC/MAC header, that the current RLC/MAC header format is a CS over GERAN header format of the variable length channel codec, read CMI and FN in the control domain, and determine that the current data RLC/MAC block is valid. The length of the data.
  • the value of the TFI can determine whether the current RLC/MAC header format is a conventional PS header format or a variable length channel coding header format.
  • the length of the valid data can be obtained by CMI and FN.
  • S602 Perform Cyclic Redundancy Check (CRC) on important bits of each frame carried in the RLC/MAC block.
  • CRC Cyclic Redundancy Check
  • the important bits of each frame may be the most important bits of the la class of each frame.
  • the check digits can be optionally added after each frame, or can be added to other positions of the frame.
  • the length of the check digit can also be selected according to actual needs. For example, it can be 3 bits or 6 bits.
  • the embodiment of the present invention can save the block check sequence (BCS), thereby increasing the length of the CRC and protecting important data.
  • BCS block check sequence
  • step of the CRC check is optional.
  • S603 Encoding the USF and the RLC/MAC header, and the coding format is the same as that of the conventional PS coding, and details are not described herein again.
  • S604 Add tail bits (TB, Tail Bits) for each frame carried by the RLC/MAC block.
  • the RLC/MAC header format in the present invention removes the traditional PS coding.
  • S605 Perform independent channel coding on each frame of the above TB plus.
  • Each frame can be adapted to the air interface rate using a variable length puncturing or padding redundancy algorithm.
  • S606 At the same time of encoding, the stealing bits (SB, Steal Bits) are added at the forefront of the CS frame to be carried, and the SB is used to indicate the header type of the current RLC/MAC.
  • SB Steal Bits
  • the current RLC/MAC header type can be known from the value of SB, such as GMSK or 8PSK.
  • the SB in the GMSK modulation mode, the SB is 12 bits; in the 8PSK modulation mode, the SB is 8 bits.
  • the header types of the RLC/MAC are different, and the bit length indicated by the SB is different.
  • the receiving end first reads the SB to obtain the header type of the RLC/MAC.
  • the receiving end may first read the SB to obtain the header type of the RLC/MAC.
  • the receiving end reads the TFI.
  • the RLC/MAC header format is a variable length channel coding format
  • the CMI and FN in the control domain are read, and the length of the valid data is obtained, that is, the length of the output data after decoding.
  • S609 Perform variable-length channel decoding on the CS frame carried by the RLC/MAC according to the length of the input data before decoding and the length of the output data after decoding.
  • the receiving end determines the number of valid frames carried in the RLC/MAC block according to the value of the FN, and obtains the length of each frame according to the AMR mode indicated by the CMI.
  • the receiving end can only decode the valid frame and obtain the length of the valid data.
  • the method for variable length channel codec according to the present invention effectively utilizes the remaining space after the RLC/MAC block carries the CS frame, and further increases redundancy during channel coding and decoding, thereby improving link transmission performance.
  • the embodiment of the present invention utilizes a variable length channel codec for CS over GERAN, and can perform CRC check on the most important bits in the CS frame of the RLC/MAC block, thereby improving the accuracy of data transmission.
  • the variable length channel codec of the present invention will be described in detail below by taking CS hans GW to carry two 5.9 kb/s AMR frames as an example.
  • FIG. 7 is a schematic diagram of a variable length channel codec that carries two 5.9 kb/s AMR frames according to an embodiment of the present invention.
  • the data carried by the CS over GERAN block before convolutional coding includes USF, RLC/MAC header, HCS (header check sequence), CRC, TB, and two 5.9 kb/s AMR frames (ie Data data section).
  • TB can be added after each frame for frame-to-frame separation protection for convolutional coding.
  • each indication is as follows: where USF can be 3 bits; RLC/MAC header and HCS are 36 bits, CRC can be 6bits or 3bits, and TB can be 6bits.
  • Each 5.9 kb/s AMR frame includes 118 bits of data.
  • Rate 1/3 convolutional coding is performed on all data except USF, and the rate is adapted to obtain a convolutionally encoded data format as shown in FIG.
  • the USF is 12bits; the RLC/MAC header and the HCS are 108bits.
  • the convolutionally encoded data is punctured by a puncturing algorithm, as shown in Fig. 7, to obtain a punctured data format.
  • the puncturing bit SB is added at the forefront while puncturing, and the SB is used to indicate the header type of the current RLC/MAC.
  • the SB is 12 bits; in the 8PSK modulation mode, the SB is 8 bits. In this embodiment, GMSK modulation is used, so the SB is 12 bits.
  • the RLC/MAC header and HCS total 68 bits; CRC, TB and an AMR frame A total of 186bits.
  • variable length channel coding described in the embodiment of the present invention
  • variable length channel codec is described by taking CS ACK RAN as an example for carrying two 5.9 kb/s AMR frames.
  • CS over GERAN can carry one or more frames, where the AMR mode of the frame can be selected.
  • the AMR mode of each frame may be the same or different. If the AMR mode of each frame is different, since each frame is independently coded, when each frame mode has a different length, different lengths of redundancy can be added to each frame according to its length ratio. In this way, each frame can be independently decoded according to the length ratio at the receiving end.
  • the CS over GERAN provided by the embodiment of the present invention carries a variable length channel codec of two 5.9 kb/s AMR frames. Since the control field indicates the length of the valid data, the sender can perform variable length coding according to the effective data length. The terminal performs variable length decoding according to the effective data length. The data carried in the RLC/MAC block does not have idle bits, thereby avoiding invalid padding bytes, thereby distinguishing the traditional PS domain RLC/MAC coding method (for example, MCS-1 MCS-9), saving limited Bandwidth resources improve link performance. It should be noted that the GSM packet domain codec method of the present invention is applicable not only to the CS over GERAN service but also to the traditional PS service. The embodiment of the invention provides a GSM packet domain coding device.
  • FIG. 8A there is shown a schematic view of a first embodiment of a device based on the present invention.
  • the present invention provides a GSM packet domain coding apparatus, comprising: a determination unit 801 and a variable length channel coding unit 802.
  • the determining unit 801 is configured to determine whether there is information indicating a valid data length of the bearer in the control domain in the radio link control/media access control RLC/MAC block header, where the valid data length is the length of the input data before encoding. .
  • variable length channel coding unit 802 is configured to: when the determination result of the determining unit 801 is that the information of the valid data length exists in the control domain in the RLC/MAC block header, according to the length of the input data before encoding Variable length channel coding is performed for the length of the output data after encoding.
  • Information indicating the effective data length carried in the RLC/MAC block is added in the control field of the RLC/MAC block header, wherein the length of the valid data is the same as the length of the input data before encoding. Moreover, the length of the output data after decoding is also the length of the valid data, i.e., its length is the same as the effective data length.
  • the information of the effective data length may include CMI and FN.
  • the CMI is used to indicate the AMR mode of each CS frame in the current RLC/MAC block. It should be noted that each CS frame in the RLC/MAC block can use the unused AMR mode or the same AMR mode.
  • FN is used to indicate the number of valid CS frames carried in the current RLC/MAC block.
  • the number of CS frames carried in the RLC/MAC block may be one or more. It can be understood that the length of the data carried in the RLC/MAC block can be calculated by the AMR mode indicated by the CMI and the number of frames indicated by the FN.
  • variable length channel coding unit 802 may include two subunits, which are a first subunit 8021 and a second subunit 8022, respectively.
  • the first sub-unit 8021 is configured to select a variable-length channel coding rate according to the length of the input data before the encoding and the length of the output data after the encoding
  • the second sub-unit 8022 is configured to use the variable length selected according to the first sub-unit 8021.
  • the channel coding rate is subjected to variable length channel coding.
  • the channel coding rate may select a 1/2 or 1/3 convolutional code.
  • convolutional codes of other rates can also be selected.
  • the second sub-unit 8022 may select a variable length puncturing algorithm or a padding redundancy algorithm to perform variable length channel coding by puncturing or padding redundancy.
  • the receiving end can obtain the length of the decoded output data according to the control field in the header of the RLC/MAC block. Then, based on the length of the input data before decoding and the length of the decoded output data (i.e., the effective data length), a method of puncturing or filling redundancy used in encoding is derived to perform correct variable length channel decoding.
  • the transmitting end may perform variable length coding according to the effective data length, and the receiving end performs variable length decoding according to the effective data length.
  • the length of data carried in the RLC/MAC block is variable, so that idle bits or invalid padding bytes can be avoided in the bearer frame, thereby saving limited bandwidth. Resources that improve link performance.
  • FIG. 9 is a schematic view of a second embodiment of the apparatus based on the present invention.
  • the second embodiment of the present invention differs from the first embodiment in that a check unit 901 is added, which can be lengthened in the variable length channel coding unit 802 according to the length of the input data before encoding and the length of the output data after encoding. Cyclic redundancy check is performed on important bits before channel coding.
  • check digits may be added after each frame, or may be added to other positions of the frame.
  • important bits may specifically be the most important bits of the la class.
  • the device may further include: a tail bit adding unit, configured to add TB to each frame.
  • SB can be added at the forefront of the CS frame being carried while encoding. The SB is used to indicate the header type of the current RLC/MAC.
  • the GSM packet domain coding apparatus of the present invention effectively utilizes the remaining space after the CS frame is carried by the RLC/MAC block, and further increases redundancy during channel coding and decoding, thereby improving link transmission performance.
  • the CS over GERAN uses the variable length channel codec to perform CRC check on the most important bits in the CS frame carried by the RLC/MAC block, thereby improving the accuracy of data transmission.
  • Embodiments of the present invention provide a system for encoding and decoding a GSM packet domain.
  • FIG. 10 there is shown a schematic view of a first embodiment of a system based on the present invention.
  • the present invention provides a system for GSM packet domain codec, comprising a transmitting end 1001 and a receiving end 1002.
  • the sending end 1001 may be the GSM packet domain encoding device in the foregoing device embodiment, and details are not described herein again.
  • the receiving end 1002 is configured to perform variable length channel decoding according to the length of the input data before decoding and the length of the output data after decoding, after receiving the data sent by the GSM packet domain coding apparatus.
  • the receiving end may calculate the puncturing or padding redundancy method used by the encoding device in encoding according to the length of the input data before decoding and the length of the valid data, so as to perform correct variable length channel decoding at the receiving end.
  • the transmitting end may perform variable length coding according to the effective data length, and receive The terminal performs variable length decoding according to the effective data length.
  • the length of data carried in the RLC/MAC block is variable, avoiding idle bits or invalid padding bytes in the carried frame, thereby saving limited bandwidth resources and improving link performance.
  • FIG. 11 there is shown a schematic view of a second embodiment of a system based on the present invention.
  • the transmitting end 1001 in this embodiment includes a judging unit 1001a, a checking unit 1001b, a tail bit adding unit 1001c, and a variable length channel encoding unit 1001d.
  • the determining unit 1001a is configured to determine whether there is information indicating a valid data length of the bearer in the control domain in the radio link control/media access control RLC/MAC block header, where the valid data length is the length of the input data before encoding.
  • the check unit 1001b is configured to perform cyclic redundancy check on the most important bits of the la class.
  • the check digits can be added after each frame or at other locations in each frame.
  • the tail bit adding unit 1001c is for adding a tail bit to each frame. It should be noted that, at the same time of encoding, SB is added at the forefront of the CS frame that is carried. The SB is used to indicate the header type of the current RLC/MAC.
  • variable length channel coding unit 100 Id is configured to: when the determination result of the determination unit 1001a is the information of the valid data length in the control domain in the RLC/MAC block header, according to the length of the input data before encoding and the length of the output data after encoding Variable length channel coding is performed.
  • the receiving end 1002 is the same as the system embodiment 1, and details are not described herein again.
  • variable length codec system provided by the embodiment of the present invention effectively utilizes the remaining space after the CS frame is carried by the RLC/MAC block, and further increases redundancy in the channel codec, thereby improving link transmission performance.
  • the embodiment of the present invention uses the variable length channel codec for CS over GERAN, and can perform CRC check on the most important bits in the CS frame of the RLC/MAC block, thereby improving the accuracy of data transmission.
  • the GSM packet domain coding method provided by the embodiment of the present invention adds information indicating the length of valid data carried by the RLC/MAC block in the control domain of the RLC/MAC block header. The length of the input data before encoding and the length of the output data after decoding are the same as the length of the valid data.
  • the transmitting end performs variable length channel coding according to the length of the input data before encoding and the length of the output data after encoding.
  • the receiving end performs variable length channel decoding according to the length of the input data before decoding and the length of the output data after decoding.
  • the transmitting end since the control field indicates the length of the valid data, the transmitting end can perform variable length coding according to the effective data length, and the receiving end performs variable length decoding according to the effective data length.
  • the data length carried in the RLC/MAC block is variable, avoiding idle bits or invalid padding bytes in the bearer frame, thereby saving limited bandwidth resources and improving link transmission performance.
  • the method includes the following steps: determining whether there is information indicating a valid data length of the bearer in the control domain in the RLC/MAC block header of the radio link control/media access control, where the valid data length is the length of the input data before encoding; When the information of the valid data length exists in the control domain in the RLC/MAC block header, the variable length channel coding is performed according to the length of the input data before encoding and the length of the output data after encoding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

GSM分组域编码的方法、 设备及系统 本申请要求于 2008 年 12 月 5 日提交中国专利局、 申请号为 200810182901.1、发明名称为" GSM分组域编解码的方法、设备及系统"的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及网络通信技术领域, 特别涉及一种 GSM分组域编码的方法、 设备及系统。
背景技术
现有全球移动通讯系统( GSM, Global System for Mobile Communications ) 分组域(PS, Packet Switched domain )釆用固定的无线链路控制或媒介接入 控制(RLC/MAC, Radio Link Control / Medium Access Control )编码方式来 载逻辑链路控制分组数据单元(LLC PDU, Logical Link Control Packet Data Unit )。 例如增强型数据速率 GSM演进技术(EDGE, Enhanced Data Rates for GSM Evolution )网络中有调制编码方式 MCS-l MCS-9 ( MCS , Modulation and Coding Scheme )共九种 RLC/MAC编码方式, 每种 RLC/MAC编码方式具有固 定的长度。 LLC PDU数据釆用分段级联的方式承载在所述 RLC/MAC块中。
GSM EDGE无线接入网 ( GERAN, GSM EDGE Radio Access Network )承 载电路域(CS, Circuit Switched domain ) 语音业务是利用 RLC/MAC块承载 CS帧。 由于 CS域的自适应多速率编解码( AMR, Adaptive Multi-Rate codec ) 速率与分组域(PS, Packet Switched Domain ) 的 RLC速率不匹配, 所以通常 情况下, LLC PDU数据长度总和无法填满当前的 RLC/MAC块。
现有技术中, 当所有剩余的 LLC PDU数据长度总和无法填满当前的 RLC/MAC块时, 釆用填充 0x2B无效字节的方式填满整个 RLC/MAC块。 但是 釆用现有技术中的 0x2B无效字节填充剩余空间, 将浪费有限的带宽资源。 在 信道编码时,无法利用剩余空间进一步增加冗余。尤其在当前业务数据流量小, 并且 LLC PDU数据长度较小时, RLC/MAC块中出现填充无效字节的几率很 大, 利用现有的填充技术无法提升链路传输性能。
发明内容 本发明实施例提供一种 GSM分组域编码的方法、 设备及系统, 以节省有 限的带宽资源, 提高链路传输性能。
本发明实施例提供一种 GSM分组域编码的方法, 包括: 判断无线链路控 制 /媒介接入控制 RLC/MAC块头中的控制域中是否存在指示承载的有效数据 长度的信息, 所述有效数据长度为编码前输入数据的长度; 当所述 RLC/MAC 块头中的控制域中存在所述有效数据长度的信息时,根据编码前输入数据的长 度和编码后输出数据的长度, 进行变长信道编码。
本发明实施例还提供一种 GSM分组域编码设备, 包括: 判断单元和变长 信道编码单元。 所述判断单元, 用于判断无线链路控制 /媒介接入控制 RLC/MAC块头中的控制域中是否存在指示承载的有效数据长度的信息, 所述 有效数据长度为编码前输入数据的长度; 所述变长信道编码单元, 用于当所述 判断单元的判断结果为所述 RLC/MAC 块头中的控制域中存在所述有效数据 长度的信息时 ,根据编码前输入数据的长度和编码后输出数据的长度进行变长 信道编码。
本发明实施例还提供一种 GSM分组域编解码的系统, 所述系统包括上述 编码设备,还包括接收端;所述接收端,用于在接收到所述设备发送的数据后, 根据所述解码前输入数据的长度和解码后输出数据的长度进行变长信道解码。
以上技术方案,在 RLC/MAC块头中的控制域中增加指示 RLC/MAC块承 载的有效数据的长度的信息 ,编码前输入数据的长度和解码后输出数据的长度 均与所述有效数据的长度相同,发送端根据编码前输入数据的长度和编码后输 出数据的长度进行变长信道编码。本发明提供的方法实施例由于在控制域中增 加了指示有效数据的长度信息,因此发送端可以根据有效数据长度进行变长编 码; 并且由于 RLC/MAC块中承载的数据长度是可变的, 因此避免了承载的帧 中出现空闲比特或无效的填充字节,从而节省了有限的带宽资源,提高了链路 性能。
附图说明
图 1 于本发明方法第一实施例流程图;
图 2 ^^于本发明实施例 GMSK下行 CS over GERAN的 RLC/MAC头格 式示意图; 图 3 ^^于本发明实施例 8PSK下行 CS over GERAN的 RLC/MAC头格 式示意图;
图 4 ^^于本发明实施例 GMSK上行 CS over GERAN的 RLC/MAC头格 式示意图;
图 5 ^^于本发明实施例 8PSK上行 CS over GERAN的 RLC/MAC头格 式示意图;
图 6 于本发明方法第二实施例示意图;
图 7 ^^于本发明实施例 CS over GERAN承载两个 5.9kb/s AMR帧的变 长信道编解码示意图;
图 于本发明设备第一实施例结构图;
图 8B是本发明设备第一实施例中变长信道编码单元的实施例结构图; 图 9 于本发明设备第二实施例结构图;
图 10 于本发明系统第一实施例结构图;
图 11 于本发明系统第二实施例结构图。
具体实施方式
首先对本发明实施例实现一种 GSM分组域编码的方法进行说明, 包括: 判断无线链路控制 /媒介接入控制 RLC/MAC块头中的控制域中是否存在 指示承载的有效数据长度的信息, 所述有效数据长度为编码前输入数据的长 度; 当所述 RLC/MAC块头中的控制域中存在所述有效数据长度的信息时,根 据编码前输入数据的长度和编码后输出数据的长度, 进行变长信道编码。 下面 结合附图, 对本发明的实施例进行详细描述。
方法实施例一:
参见图 1 , 该图为基于本发明方法第一实施例流程图。
本发明一种 GSM分组域编解码的方法第一实施例包括以下步骤: S101:在 RLC/MAC块的头中的控制域中增加指示所述 RLC/MAC块中承 载的有效数据的长度的信息。
其中,编码前输入数据的长度和解码后输出数据的长度均与所述有效数据 的长度相同。
指示 RLC/MAC 块中承载的有效数据的长度的信息具体可以用两种指示 信息来表示,比如:用于指示 AMR的编码模式指示( CMI, Code Mode Indicator ) 和帧的个数帧数( FN, Frame Number )。其中, CMI用于指示当前 RLC/MAC 块中各个 CS帧的 AMR模式, 由每个帧的 AMR模式可以得到每个帧的长度。 FN用于指示当前 RLC/MAC块中承载的 CS帧的个数。 也可以使用相同的 AMR模式。 RLC/MAC块中承载的 CS帧个数可以为一个 或多个。
每个帧的长度乘以 FN指示的有效帧的个数便是 RLC/MAC块中承载的有 效数据的长度。
由 CMI指示的 AMR模式和 FN指示的帧的个数就可以计算出 RLC/MAC 块中承载的数据的长度。 所以, 通过 CMI和 FN的组合, 可以指示有效数据 的长度。 当然, 除了使用 CMI和 FN的组合的方式之外, 还可以有其他表示 有效数据长度信息的标识方式。
需要说明的是, 所述 CMI和 FN在 RLC/MAC头中的位置是可以选择的。 S102:根据编码前输入数据的长度和编码后输出数据的长度进行变长信道 编码。
具体的,根据编码前输入数据的长度和编码后输出数据的长度, 选择信道 编码方法和速率。 然后根据变长打孔算法或填充冗余算法,通过打孔或填充冗 余进行变长信道编码。
例如,当编码前输入数据的长度与编码后输出数据的长度的差值在一定范 围内时, 信道编码速率可以选择 1/2或 1/3卷积码。
需要说明的是,编码前输入数据的长度与编码后输出数据的长度的差值变 化时, 信道编码也可以选择其他速率的卷积码。
在接收端, 还可以包括解码的步骤:
S103:根据所述解码前输入数据的长度和解码后输出数据的长度进行变长 信道解码。
根据 RLC/MAC块的头中的控制域, 获得解码后输出数据的长度, 解码后 输出数据的长度与有效数据的长度相同。根据解码前输入数据的长度和所述解 码后输出数据的长度,推算出编码时使用的打孔或填充冗余的方法, 进行正确 的变长信道解码。
本发明实施例提供的 GSM分组域编解码方法, 由于控制域增加了指示有 效数据的长度的信息,发送端可以根据有效数据长度进行变长信道编码,接收 端根据有效数据长度进行变长解码。 由于釆用变长信道编码, 因此 RLC/MAC 块中承载的数据不会出现空闲比特, 进而避免出现无效的填充字节,从而区别 传统的 PS域的 RLC/MAC编码方法(例如, MCS-1 MCS-9 ), 节省了有限的 带宽资源, 提高了链路性能。
下面结合附图详细说明本发明实施例所述 CS over GERAN变长编解码的 上下行 RLC/MAC的头格式。 RLC/MAC的头类型与调制方式有关。 调制方式 不同, RLC/MAC的头类型的长度不同。
参见图 2 , 该图为基于本发明实施例 GMSK 下行 CS over GERAN 的 RLC/MAC头格式示意图。
下面以高斯滤波最小移频键控 ( GMSK, Gaussian Minimum Shift-frequency Keying ) 下行 CS over GERAN为例说明 RLC/MAC头格式。
从图 2中可以看出, RLC/MAC头格式中增加了指示有效数据长度的 CMI 和 FN。
需要说明的是, 图 2中所示为一个 RLC/MAC的头格式中包含四个 CMI, 分别是 CMI1、 CMI2、 CMI3和 CMI4 , 用于指示一个 RLC/MAC块中承载 4 个 CS帧, 并且每个 CMI代表不同的 AMR模式。 当然, 一个 RLC/MAC块中 承载的各个 CS帧的 AMR模式可以相同, 即四个 CMI的数值相同。
需要说明的是, 一个 RLC/MAC块中承载的 CS帧的个数是可以选择的, 图 2中所示为一个 RLC/MAC块中承载了 4个 CS帧的数据。
FN表示一个 RLC/MAC块中承载的 CS帧的有效个数, 例如 FN是 3 , 则 表示 CMI1、 CMI2和 CMI3是有效的帧模式, 即 RLC/MAC块中承载的有效 数据的长度仅包括 CMI1、 CMI2和 CMI3代表的帧的长度。 同理, 如果 FN是 2, 则有效数据的长度仅包括 CMI1和 CMI2代表的帧的长度。
需要说明的是, RLC/MAC的头格式中其他的编码与传统的 PS编码可以 是相同的, 例如图 2中的上行状态标识(USF, Uplink State Flag )和临时流标 识(TFI, Temporary Flow Identity )编码可以与原来的 PS编码相同。 其中, USF用于调度各用户的上行数据。
参见图 3 , 该图为基于本发明实施例 8PSK 下行 CS over GERAN 的 RLC/MAC头格式示意图。
与图 2类型, 图 3所示是以相移相键控 ( 8PSK, 8 Phase Shift Keying 8 ) 的下行 CS over GERAN为例介绍 RLC/MAC头格式。
比较图 2和图 3的 RLC/MAC头格式,可以看出 GMSK和 8PSK的头中仅 数据的长度不同。 GMSK的第四个字节有 7位, 而 8PSK的第四个字节仅有 4 位。
参见图 4, 该图为基于本发明实施例 GMSK上行 CS over GERAN 的 RLC/MAC头格式示意图。
图 4与图 2类似, 上行的 RLC/MAC头中也包括 TFI、 CMI和 FN。
参见图 5 , 该图为基于本发明实施例所述 8PSK上行 CS over GERAN的 RLC/MAC头格式示意图。
图 5与图 4表示的 RLC/MAC头格式类似,可以看出 GMSK和 8PSK的头 中仅数据的长度不同, GMSK的第四个字节有 7位, 而 8PSK的第五个字节有 5位。 方法实施例二:
参见图 6, 该图为基于本发明方法第二实施例流程图。
下面以 CS over GERAN为例介绍本发明实施例的变长信道编码流程。
S601 :根据 RLC/MAC头中的 TFI判断当前 RLC/MAC头格式是变长信道 编解码的 CS over GERAN头格式时, 读取控制域中的 CMI和 FN, 确定当前 数据 RLC/MAC块的有效数据的长度。
需要说明的是, 由 TFI的数值可以判断当前 RLC/MAC头格式是传统的 PS头格式还是变长信道编码头格式。
由 CMI和 FN可以得到有效数据的长度。
S602: 对 RLC/MAC 块中承载的各个帧的重要比特进行循环冗余校验 ( CRC , Cyclic Redundancy Check )。
需要说明的是, 所谓各个帧的重要比特可以是各个帧的 la类最重要比特, 而且, 校验位可以选择加在每个帧之后, 也可以选择加在帧的其他位置。 校验 位的长度也可以根据实际需要选择, 例如可以为 3bit, 也可以为 6bit。
需要说明的是, 与传统的 AMR模式相比, 本发明实施例可以省去块校验 序列 (BCS, Block Check Sequence ), 从而增加 CRC的长度, 对重要数据进 行保护。
需要说明的是, 该 CRC校验的步骤是可选的。
S603: 对 USF和 RLC/MAC头进行编码, 其编码形式与传统的 PS编码相 同, 在此不再赘述。
S604: 为 RLC/MAC块承载的每个帧加上尾比特(TB, Tail Bits )。
需要说明的是, 本发明中的 RLC/MAC头格式中去掉了传统 PS编码中的
BCS、末块指示(FBI , Final Block Indication )和扩充比特(E, Extension bit )。
S605: 对上述加上 TB的每个帧进行独立的信道编码。
每个帧可以利用变长打孔或填充冗余算法进行空口速率的适配。
S606:编码的同时,在承载的 CS帧最前端增加窃取比特( SB, Steal Bits ) , SB用于指示当前 RLC/MAC的头类型。
由 SB的数值可以得知当前的 RLC/MAC的头类型, 例如是 GMSK还是 8PSK。
需要说明的是, GMSK调制方式时, SB是 12bits; 8PSK调制方式下, SB 是 8bits。 RLC/MAC的头类型不同, 则 SB所指示的比特长度不同。
S607: 接收端首先读取 SB获得 RLC/MAC的头类型。
本步骤中, 接收端在接收到发送端编码后发送的数据后, 可以首先读取 SB获得 RLC/MAC的头类型。
S608: 接收端读取 TFI判断 RLC/MAC头格式是变长信道编码格式时, 读 取控制域中的 CMI和 FN, 得到有效数据的长度, 即解码后输出数据的长度。
S609:根据解码前输入数据的长度和解码后输出数据的长度,对 RLC/MAC 承载的 CS帧进行变长信道解码。
接收端根据 FN 的值确定 RLC/MAC 块中承载的有效帧的个数, 并根据 CMI指示的 AMR模式得到各个帧的长度。接收端可以只解码有效帧, 得到有 效数据的长度。 本发明所述变长信道编解码的方法, 有效利用了 RLC/MAC块承载 CS帧 后的剩余空间, 在信道编解码时进一步增加冗余, 从而提升链路传输性能。 而 且, 本发明实施例针对 CS over GERAN利用变长信道编解码, 而且, 可以对 RLC/MAC块承载 CS帧中最重要的比特进行 CRC校验,提高了数据传输的精 度。 下面以 CS over GERAN承载两个 5.9kb/s AMR帧为例来详细介绍本发明 的变长信道编解码。
参见图 7, 该图为基于本发明实施例 CS over GERAN承载两个 5.9kb/s AMR帧的变长信道编解码示意图。
由图 7 中可以看出, 卷积编码之前 CS over GERAN块承载的数据包括 USF、 RLC/MAC头、 HCS (头校验序列)、 CRC、 TB, 以及两个 5.9kb/s AMR 帧 (即 Data数据部分)。
每个 AMR帧之后均加 CRC和 TB。
由于各个帧是独立编码的, 所以每个帧后可以添加 TB, 用于帧与帧之间 的间隔保护, 以便进行卷积编码。
各个指示的长度举例如下: 其中 USF可以是 3 bits; RLC/MAC头和 HCS 共 36bits, CRC可以是 6bits或 3bits、 TB可以是 6bits。
每个 5.9kb/s AMR帧包括 118bits的数据。
对除了 USF之外的所有数据进行 1/3 卷积编码(Rate 1/3 convolutional coding ), 进行速率的适配, 得到如图 7所示的卷积编码后的数据格式。
其中 USF是 12bits; RLC/MAC头和 HCS共 108bits。
对卷积编码后的数据通过打孔算法进行打孔(puncturing ), 如图 7 所示, 得到打孔后的数据格式。
另外, 由图 7看出, 打孔的同时在最前端加上窃取比特 SB, 该 SB用于指 示当前 RLC/MAC的头类型。
需要说明的是, GMSK调制方式时, SB是 12bits; 8PSK调制方式下, SB 是 8bits。 本实施例釆用的是 GMSK调制, 因此 SB是 12bits。
经过打孔以后, RLC/MAC头和 HCS共 68bits; CRC、 TB和一个 AMR帧 共 186bits。
由此可得, 釆用本发明实施例所述的变长信道编码后, 有效数据的码率为 118bits/186bits=63.4%。 可以看出, 针对 CS over GERAN业务的变长信道编码 方式, 大大提高了链路的传输性能。
上述实施例仅以 CS over GERAN承载两个 5.9kb/s AMR帧为例对变长信 道编解码进行了说明。 需要说明的是, CS over GERAN可以承载一个或多个 帧, 其中帧的 AMR模式可以选择。 当 CS over GERAN承载多个 AMR帧时 , 每个帧的 AMR模式可以相同,也可以不相同。如果每个帧的 AMR模式不同, 由于各帧都是独立编码, 因此当各帧模式即长度不同时, 可以按其长度比例对 每帧增加不同长度的冗余。 这样, 在接收端也可以根据长度比例, 对每帧进行 独立解码。
本发明实施例提供的 CS over GERAN承载两个 5.9kb/s AMR帧的变长信 道编解码的方法, 由于增加控制域指示有效数据的长度,发送端可以根据有效 数据长度进行变长编码, 接收端根据有效数据长度进行变长解码。 RLC/MAC 块中承载的数据不会出现空闲比特, 进而避免出现无效的填充字节,从而区别 传统的 PS域的 RLC/MAC编码方法(例如, MCS-1 MCS-9 ), 节省了有限的 带宽资源, 提高了链路性能。 需要说明的是, 本发明所述 GSM分组域编解码 的方法不仅适用于 CS over GERAN业务, 而且适用于传统的 PS业务。 本发明实施例提供一种 GSM分组域编码设备。
设备实施例一:
参见图 8A, 该图为基于本发明设备第一实施例示意图。
本发明提供一种 GSM分组域编码设备, 包括: 判断单元 801和变长信道 编码单元 802。
所述判断单元 801 ,用于判断无线链路控制 /媒介接入控制 RLC/MAC块头 中的控制域中是否存在指示承载的有效数据长度的信息,所述有效数据长度为 编码前输入数据的长度。
变长信道编码单元 802, 用于当判断单元 801的判断结果为 RLC/MAC块 头中的控制域中存在上述有效数据长度的信息时 ,根据编码前输入数据的长度 和编码后输出数据的长度进行变长信道编码。
在 RLC/MAC块头的控制域中增加指示 RLC/MAC块中承载的有效数据长 度的信息, 其中, 有效数据的长度与编码前输入数据的长度相同。 而且, 解码 后输出数据的长度也是该有效数据的长度, 即, 其长度与有效数据长度相同。 具体的, 有效数据长度的信息可以包括 CMI和 FN。 其中, CMI用于指示当前 RLC/MAC块中各个 CS帧的 AMR模式。 需要说明的是, RLC/MAC块中的各 个 CS帧可以使用不用的 AMR模式,也可以使用相同的 AMR模式。另外, FN 用于指示当前 RLC/MAC 块中承载的有效 CS 帧的个数。 需要说明的是, RLC/MAC块中承载的 CS帧个数可以为一个或多个。 可以理解的是, 由 CMI 指示的 AMR模式和 FN指示的帧的个数就可以计算出 RLC/MAC块中承载的 数据的长度。
具体实现时, 参见图 8B, 变长信道编码单元 802可以包括两个子单元, 分别是第一子单元 8021和第二子单元 8022。
其中, 第一子单元 8021 , 用于根据编码前输入数据的长度和编码后输出 数据的长度, 选择变长信道编码速率; 第二子单元 8022, 用于根据第一子单 元 8021选择的变长信道编码速率进行变长信道编码, 例如, 所述信道编码速 率可以选择 1/2或 1/3卷积码。 当然, 也可以选择其他速率的卷积码。 具体的, 第二子单元 8022可以选择变长打孔算法或填充冗余算法, 通过打孔或填充冗 余进行变长信道编码。
当编码后的数据发送到接收端后,接收端可以根据 RLC/MAC块的头中的 控制域, 获得解码后输出数据的长度。 然后, 根据解码前输入数据的长度和所 述解码后输出数据的长度(即有效数据长度), 推算出编码时使用的打孔或填 充冗余的方法, 进行正确的变长信道解码。
本发明实施例提供的 GSM分组域编码设备, 由于控制域中增加了指示有 效数据的长度的信息,发送端可以根据有效数据长度进行变长编码,接收端根 据有效数据长度进行变长解码。 釆用本发明实施例提供的技术方案后, RLC/MAC块中承载的数据长度是可变的, 这样, 可以避免承载的帧中出现空 闲比特或无效的填充字节, 从而节省了有限的带宽资源, 提高了链路性能。 设备实施例二:
参见图 9, 该图为基于本发明设备第二实施例示意图。
本发明设备第二实施例与第一实施例的区别是增加了: 校验单元 901 , 该 单元可以在变长信道编码单元 802 根据编码前输入数据的长度和编码后输出 数据的长度进行变长信道编码之前, 对重要比特进行循环冗余校验。
需要说明的是,校验位可以选择加在每个帧之后, 也可以选择加在帧的其 他位置。 另外, 上述重要比特具体可以是 la类最重要比特。
进一步的, 设备中还可以包括: 尾比特增加单元, 用于对每个帧增加 TB。 另外, 在编码的同时, 可以在承载的 CS帧最前端增加 SB。 SB用于指示 当前 RLC/MAC的头类型。
本发明所述 GSM分组域编码设备, 有效利用了 RLC/MAC块承载 CS帧 后的剩余空间, 在信道编解码时进一步增加冗余, 从而提升链路传输性能。 而 且, 本发明实施例所述 CS over GERAN利用变长信道编解码, 对 RLC/MAC 块承载 CS帧中最重要的比特进行 CRC校验, 提高了数据传输的精度。 本发明实施例提供一种 GSM分组域编解码的系统。
系统实施例一:
参见图 10, 该图为基于本发明系统第一实施例示意图。
本发明提供一种 GSM分组域编解码的系统, 包括发送端 1001和接收端 1002。
需要说明的是, 发送端 1001 可以是上述设备实施例中 GSM分组域编码 设备, 此处不再赘述。
接收端 1002, 用于接收到上述 GSM分组域编码设备发送的数据后, 根据 所述解码前输入数据的长度和解码后输出数据的长度进行变长信道解码。
具体的, 接收端可以根据解码前输入数据的长度和有效数据的长度, 推算 出编码设备在编码时使用的打孔或填充冗余的方法,从而在接收端进行正确的 变长信道解码。
本发明实施例提供的 GSM分组域编解码的系统, 由于控制域中增加了指 示有效数据的长度的信息,发送端可以根据有效数据长度进行变长编码,接收 端根据有效数据长度进行变长解码。 RLC/MAC 块中承载的数据长度是可变 的,避免承载的帧中出现空闲比特或无效的填充字节,从而节省了有限的带宽 资源, 提高了链路性能。 系统实施例二:
参见图 11 , 该图为基于本发明系统第二实施例示意图。
本实施例中的发送端 1001包括判断单元 1001a、校验单元 1001b、尾比特 增加单元 1001c和变长信道编码单元 1001d。
判断单元 1001a,用于判断无线链路控制 /媒介接入控制 RLC/MAC块头中 的控制域中是否存在指示承载的有效数据长度的信息,所述有效数据长度为编 码前输入数据的长度。
校验单元 1001b,用于对 la类最重要比特进行循环冗余校验。校验位可以 加在每个帧之后, 也可以加在每个帧的其他位置。
尾比特增加单元 1001c, 用于对每个帧增加尾比特。 需要说明的是, 编码 的同时, 在承载的 CS帧最前端增加 SB。 SB用于指示当前 RLC/MAC的头类 型。
变长信道编码单元 100 Id,用于当判断单元 1001a的判断结果为 RLC/MAC 块头中的控制域中存在上述有效数据长度的信息时,根据编码前输入数据的长 度和编码后输出数据的长度进行变长信道编码。
接收端 1002与系统实施例一相同, 在此不再赘述。
本发明实施例提供的变长编解码的系统, 有效利用了 RLC/MAC 块承载 CS帧后的剩余空间, 在信道编解码时进一步增加冗余, 从而提升链路传输性 能。 而且, 本发明实施例针对 CS over GERAN利用变长信道编解码, 可以对 RLC/MAC块承载 CS帧中最重要的比特进行 CRC校验,提高了数据传输的精 度。
本领域普通技术人员可以理解实现上述方法实施方式中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于计算机可 读取存储介质中, 该程序在执行时, 可以包括前述的通信方法各个实施方式的 内容。 这里所称得的存储介质, 如: ROM/RAM、 磁碟、 光盘等。 综上所述, 本发明实施例所提供的一种 GSM 分组域编码的方法, 在 RLC/MAC块头的控制域中增加指示 RLC/MAC块承载的有效数据的长度的信 息。编码前输入数据的长度和解码后输出数据的长度均与所述有效数据的长度 相同。发送端根据编码前输入数据的长度和编码后输出数据的长度进行变长信 道编码。接收端根据所述解码前输入数据的长度和解码后输出数据的长度进行 变长信道解码。本发明提供的方法由于增加控制域指示有效数据的长度,发送 端可以根据有效数据长度进行变长编码,接收端根据有效数据长度进行变长解 码。 RLC/MAC块中承载的数据长度是可变的, 避免承载的帧中出现空闲比特 或无效的填充字节, 从而节省了有限的带宽资源, 提高了链路传输的性能。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于一计算机可 读取存储介质中, 该程序在执行时, 包括如下步骤: 判断无线链路控制 /媒介 接入控制 RLC/MAC 块头中的控制域中是否存在指示承载的有效数据长度的 信息, 所述有效数据长度为编码前输入数据的长度; 当所述 RLC/MAC块头中 的控制域中存在所述有效数据长度的信息时,根据编码前输入数据的长度和编 码后输出数据的长度, 进行变长信道编码。

Claims

权 利 要 求
1、 一种 GSM分组域编码的方法, 其特征在于, 包括以下步骤: 判断无线链路控制 /媒介接入控制 RLC/MAC块头中的控制域中是否存在 指示承载的有效数据长度的信息, 所述有效数据长度为编码前输入数据的长 度;
当所述 RLC/MAC块头中的控制域中存在所述有效数据长度的信息时,根 据编码前输入数据的长度和编码后输出数据的长度, 进行变长信道编码。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据编码前输入数据 的长度和编码后输出数据的长度, 进行变长信道编码包括:
根据编码前输入数据的长度和编码后输出数据的长度,选择变长信道编码 速率;
根据选择的变长信道编码速率, 进行变长信道编码。
3、 根据权利要求 2所述的方法, 其特征在于, 所述有效数据长度的信息 包括: 用于指示所述承载数据中各个帧的自适应多速率编解码 AMR模式的编 码模式指示 CMI和用于指示承载的有效帧个数的帧数 FN。
4、 根据权利要求 1所述的方法, 其特征在于, 所述判断 RLC/MAC块头 中的控制域中是否存在指示承载的有效数据长度的信息包括:
由 RLC/MAC块头中的临时流标识判断 RLC/MAC头中的控制域中是否存 在指示承载的有效数据长度的信息。
5、 根据权利要求 2所述的方法, 其特征在于, 所述根据编码前输入数据 的长度和编码后输出数据的长度进行变长信道编码之前还包括:
对重要比特进行循环冗余校验。
6、 根据权利要求 1至 5任一项所述的方法, 其特征在于, 在所述根据编 码前输入数据的长度和编码后输出数据的长度进行变长信道编码之后, 还包 括: 根据解码前输入数据的长度和解码后输出数据的长度进行变长信道解码。
7、 根据权利要求 1至 5任一项所述的方法, 其特征在于, 所述变长信道 编码应用于 CS over GERAN业务中。
8、 一种 GSM分组域编码设备, 其特征在于, 包括: 判断单元和变长信 道编码单元; 所述判断单元, 用于判断无线链路控制 /媒介接入控制 RLC/MAC块头中 的控制域中是否存在指示承载的有效数据长度的信息,所述有效数据长度为编 码前输入数据的长度;
所述变长信道编码单元, 用于当所述判断单元的判断结果为所述 RLC/MAC块头中的控制域中存在所述有效数据长度的信息时, 根据编码前输 入数据的长度和编码后输出数据的长度进行变长信道编码。
9、 根据权利要求 8所述的设备, 其特征在于, 所述变长信道编码单元包 括第一子单元和第二子单元, 其中,
所述第一子单元,用于根据编码前输入数据的长度和编码后输出数据的长 度, 选择变长信道编码速率;
所述第二子单元,用于根据所述第一子单元选择的变长信道编码速率进行 变长信道编码。
10、根据权利要求 9所述的设备,其特征在于,所述设备还包括校验单元, 用于在所述变长信道编码单元根据编码前输入数据的长度和编码后输出数据 的长度进行变长信道编码之前, 对重要比特进行循环冗余校验。
11、 根据权利要求 8至 10任一项所述的设备, 其特征在于, 所述有效数 据长度的信息包括用于指示所述承载数据中各个帧的自适应多速率编解码器 模式的编码模式指示 CMI和用于指示有效帧的个数的帧数 FN。
12、 一种 GSM分组域编解码的系统, 其特征在于, 所述系统包括如权利 要求 8至 11任一项所述的 GSM分组域编码设备, 还包括接收端;
所述接收端, 用于在接收到所述 GSM分组域编码设备发送的数据后, 根 据解码前输入数据的长度和解码后输出数据的长度进行变长信道解码。
PCT/CN2009/075231 2008-12-05 2009-12-01 Gsm分组域编码的方法、设备及系统 WO2010063231A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810182901.1 2008-12-05
CN 200810182901 CN101753253B (zh) 2008-12-05 2008-12-05 Gsm分组域编解码的方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2010063231A1 true WO2010063231A1 (zh) 2010-06-10

Family

ID=42232898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075231 WO2010063231A1 (zh) 2008-12-05 2009-12-01 Gsm分组域编码的方法、设备及系统

Country Status (2)

Country Link
CN (1) CN101753253B (zh)
WO (1) WO2010063231A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102823193A (zh) * 2012-04-28 2012-12-12 华为技术有限公司 数字用户线的信号处理方法、装置及数字用户线系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006083149A1 (en) * 2005-02-07 2006-08-10 Samsung Electronics Co., Ltd. Method and apparatus for requesting/transmitting status report of a mobile communication system
CN101282164A (zh) * 2007-04-02 2008-10-08 华为技术有限公司 一种减少无线通讯业务时延的方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101116277A (zh) * 2005-02-07 2008-01-30 三星电子株式会社 用于请求/传送移动通信系统的状态报告的方法和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006083149A1 (en) * 2005-02-07 2006-08-10 Samsung Electronics Co., Ltd. Method and apparatus for requesting/transmitting status report of a mobile communication system
CN101282164A (zh) * 2007-04-02 2008-10-08 华为技术有限公司 一种减少无线通讯业务时延的方法及装置

Also Published As

Publication number Publication date
CN101753253A (zh) 2010-06-23
CN101753253B (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
US11252700B2 (en) Method and apparatus for transmitting/receiving control information in a wireless communication system
JP4573342B2 (ja) 無線チャンネルでヘッダを復号する方法とシステム
JP4308817B2 (ja) パケットデータの伝送を支援する移動通信システムにおける信頼度の高いデータ送受信方法及び装置
US7188300B2 (en) Flexible layer one for radio interface to PLMN
KR101526990B1 (ko) 전송 블록 크기 결정 방법 및 이를 이용한 신호 전송 방법
JP4885499B2 (ja) マルチユーザ/マルチサービスを処理する方法および装置
JP2006520138A (ja) チャネル適応の方法およびシステム
WO2014146277A1 (zh) 数据传输方法、基站及用户设备
WO2013166719A1 (zh) 数据传输方法和设备
CN108649965A (zh) 编码、译码方法及设备
EP3065329B1 (en) Aggregated data frame structures
JP2009538050A (ja) 無線通信ネットワークにおける符号語上での情報の符号化
JP4989723B2 (ja) 不連続伝送(dtx)検出を使用するブラインド・トランスポート・フォーマット検出のための方法および装置
RU2304840C1 (ru) Способ передачи и приема данных с высокой надежностью в системе мобильной связи, поддерживающей передачу пакетных данных, и устройство для его осуществления
WO2010063231A1 (zh) Gsm分组域编码的方法、设备及系统
JP4037724B2 (ja) 電力移行に基づくブラインドトランスポートフォーマット検出の方法
WO2014101212A1 (zh) 多速率语音业务的信道编码方法、信道译码方法和装置
EP4085582A1 (en) Communication devices and methods
US8014365B2 (en) Method and a device for transferring signalling information in a TDMA based system
TWI538459B (zh) 蜂巢式無線通信網路上支援網路語音服務方法及裝置
WO2005039066A1 (ja) 受信装置および伝送レート判定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830015

Country of ref document: EP

Kind code of ref document: A1