WO2010061822A1 - Method for immobilizing enzyme on electrode for fuel cell, fuel cell, method for manufacturing fuel cell, electrode for fuel cell, and method for manufacturing electrode for fuel cell - Google Patents

Method for immobilizing enzyme on electrode for fuel cell, fuel cell, method for manufacturing fuel cell, electrode for fuel cell, and method for manufacturing electrode for fuel cell Download PDF

Info

Publication number
WO2010061822A1
WO2010061822A1 PCT/JP2009/069803 JP2009069803W WO2010061822A1 WO 2010061822 A1 WO2010061822 A1 WO 2010061822A1 JP 2009069803 W JP2009069803 W JP 2009069803W WO 2010061822 A1 WO2010061822 A1 WO 2010061822A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
electrode
mutant
fuel cell
replaced
Prior art date
Application number
PCT/JP2009/069803
Other languages
French (fr)
Japanese (ja)
Inventor
英之 汲田
貴晶 中川
秀樹 酒井
正也 角田
裕一 戸木田
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008299151A external-priority patent/JP2009158480A/en
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US13/130,475 priority Critical patent/US20110229776A1/en
Publication of WO2010061822A1 publication Critical patent/WO2010061822A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/03Oxidoreductases acting on the CH-CH group of donors (1.3) with oxygen as acceptor (1.3.3)
    • C12Y103/03005Bilirubin oxidase (1.3.3.5)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an enzyme immobilization method on a fuel cell electrode. More specifically, the present invention relates to an enzyme immobilization method in which an enzyme whose activity can be increased by heat treatment is immobilized on an electrode in a temperature range where the activity can be increased. Furthermore, the present invention relates to a fuel cell using the enzyme immobilization method, a fuel cell electrode, and a method for producing them.
  • the fuel cell has a structure in which a positive electrode (oxidant electrode) and a negative electrode (fuel electrode) face each other with an electrolyte (proton conductor) interposed therebetween.
  • the fuel (hydrogen) supplied to the negative electrode is oxidized and separated into electrons and protons (H + ), the electrons are transferred to the negative electrode, and H + moves through the electrolyte to the positive electrode.
  • this H + reacts with oxygen supplied from the outside and electrons sent from the negative electrode through the external circuit to generate water (H 2 O).
  • a fuel cell is a highly efficient power generation device that directly converts the chemical energy of fuel into electrical energy, and converts the chemical energy of fossil fuels such as natural gas, oil, and coal, regardless of where and when they are used. It can be extracted as electrical energy with efficiency. For this reason, a wide range of applications such as large-scale power generation, automobile drive power supplies, portable power supplies such as personal computers and mobile devices are currently being attempted.
  • alcohols such as methanol and ethanol or saccharides such as glucose can be used as fuel, so that the above safety problems can be solved.
  • saccharides such as glucose
  • the enzyme is immobilized on the electrode material by immersing a carbon-based material or the like in an enzyme solution and then evaporating water by drying.
  • enzymes have the lowest stability in solution and are easily deactivated. Therefore, after the electrode material is immersed in the enzyme solution, it is necessary to quickly dry and evaporate the water, thereby preventing the enzyme from being deactivated. On the other hand, since the enzyme is easily denatured by heat, it is necessary to perform drying at room temperature or under a low temperature condition of about 30 ° C. even when a dryer is used.
  • the present invention provides a method for immobilizing an enzyme on a fuel cell electrode that can obtain an electrode exhibiting a high catalyst current value without causing a decrease in enzyme activity when the enzyme is immobilized on the electrode.
  • Another object of the present invention is to provide a fuel cell using the enzyme immobilization method of the present invention and a manufacturing method thereof, and an electrode for a fuel cell and a manufacturing method thereof.
  • the present invention is a method for immobilizing an enzyme on an electrode used in a fuel cell, wherein at least one amino acid residue is deleted from the wild-type amino acid sequence as the enzyme.
  • An immobilization method is provided.
  • thermotolerant bilirubin oxidase in particular, bilirubin oxidase derived from imperfect filamentous fungus Myrothecium verrucari, is used as the enzyme immobilized on the positive electrode.
  • a mutant thermotolerant bilirubin oxidase in which the amino acid residues are deleted, substituted, added or inserted can be used.
  • the 225th phenylalanine from the N-terminal is replaced with valine (F225V)
  • the 322nd aspartic acid is replaced with asparagine (D322N)
  • the 468th methionine is replaced with valine.
  • the present invention also relates to a method for producing a fuel cell having a structure in which electrodes face each other via a proton conductor, wherein at least one amino acid residue is deleted, substituted, added or inserted in the wild-type amino acid sequence. And a step of immobilizing the mutated enzyme having the property of increasing the activity by heat treatment in the temperature range where the activity can be increased.
  • a battery manufacturing method and a fuel cell obtained by the manufacturing method are provided.
  • an electrode used in a fuel cell which is a mutant enzyme in which at least one amino acid residue is deleted, substituted, added or inserted in a wild-type amino acid sequence, and is activated by heat treatment
  • a method for producing a fuel cell electrode comprising the step of immobilizing a mutant enzyme having a characteristic capable of increasing the activity to the electrode in a temperature range capable of increasing the activity.
  • a fuel cell electrode is also provided.
  • “Bilirubin oxidase” is an enzyme that catalyzes a reaction that oxidizes bilirubin to biliverdin, and is a kind of enzyme belonging to multi-body oxidase (generic name for enzymes having a plurality of copper ions as active centers). It is.
  • an enzyme when an enzyme is immobilized on an electrode, it is possible to obtain an electrode exhibiting a high catalyst current value without causing a decrease in enzyme activity, and a significant reduction in time and efficiency of the electrode preparation process can be achieved.
  • a possible enzyme immobilization method is provided.
  • this enzyme immobilization method even if a low-purity or unpurified enzyme is used for immobilization, other than the target enzyme can be inactivated by heat treatment during immobilization. It is possible to obtain an electrode exhibiting a high catalyst current value by preventing hindrance and stability reduction.
  • FIG. 10 is a diagram showing an example of a voltammogram (electrode 1) measured in Example 5.
  • an enzyme exemplified below which has a characteristic that its activity can be increased by heat treatment, is used.
  • the enzyme fixed to the positive electrode is an oxidase, for example, multi-copper oxidase such as bilirubin oxidase, laccase, ascorbate oxidase.
  • the enzyme immobilized on the negative electrode is selected according to the fuel used. For example, when a monosaccharide such as glucose is used as the fuel, an oxidase that promotes and decomposes the oxidation of the monosaccharide is used. Usually, in addition to this, a coenzyme oxidase which returns a coenzyme reduced by an oxidase to an oxidant is used. By the action of the coenzyme oxidase, electrons are generated when the coenzyme returns to the oxidized form, and the electrons are transferred from the coenzyme oxidase to the electrode via the electron mediator.
  • a monosaccharide such as glucose
  • an oxidase that promotes and decomposes the oxidation of the monosaccharide
  • a coenzyme oxidase which returns a coenzyme reduced by an oxidase to an oxidant is used.
  • NAD-dependent glucose dehydrogenase such as glucose dehydrogenase (GDH) is used as the oxidase
  • NADH oxidoreductase such as diaphorase is used as the coenzyme oxidase.
  • polysaccharides when polysaccharides are used as fuel, in addition to the above oxidase and coenzyme oxidase, degradation of polysaccharides, such as hydrolysis, is promoted and degrading enzymes that produce monosaccharides such as glucose are also immobilized. Is done.
  • the polysaccharide means a polysaccharide in a broad sense and refers to all carbohydrates that generate two or more monosaccharides by hydrolysis, and includes oligosaccharides such as disaccharides, trisaccharides, and tetrasaccharides. .
  • degrading enzymes examples include amylase, glucosidase, dextrinase, sucrase, lactase, and cellulase.
  • an enzyme having a characteristic that its activity is increased by heat treatment is artificially mutated by expressing a gene sequence encoding each enzyme protein in cells such as E. coli. It can be obtained by preparing a mutant enzyme in which at least one amino acid residue is deleted, substituted, added or inserted in the wild-type amino acid sequence, and conducting screening.
  • the modification of the base sequence of the gene can be performed by a technique capable of introducing a gene mutation at random, such as error-prone PCR.
  • a mutant enzyme can be obtained by introducing a modified gene into a host cell by a conventionally known method, extracting a protein from the cell, and then purifying it by affinity column chromatography. The obtained mutant enzyme is screened by a heat resistance test (see Examples) to obtain a mutant enzyme having the above-mentioned characteristics.
  • the mutant enzyme obtained by screening is immobilized on the electrode in a temperature range where the enzyme activity can be increased.
  • the upper limit of the temperature range is appropriately set for each mutant enzyme (mutant) based on the result of the heat resistance test.
  • the lower limit of the temperature range is 20 ° C. or higher, which is a normal environmental temperature (room temperature), more preferably 30 ° C., and even more preferably 40 ° C.
  • the immobilization of the mutant enzyme to the electrode can be performed by preparing a mutant enzyme solution according to the conventional method, immersing the electrode in this, and then drying using a dryer or the like.
  • this dry immobilization can be performed in the above temperature range.
  • the lower limit of the temperature range is as described above, but the moisture in the enzyme solution attached to the electrode can be evaporated more rapidly as the drying and fixing is performed at a higher temperature.
  • the time for performing the drying is appropriately set in order to sufficiently evaporate the water in the solution within the heat treatment time in which it was confirmed by the heat resistance test that the enzyme activity of the mutant can be increased.
  • the temperature and time of the heat treatment include 60 ° C. within 1 hour or 65 ° C. within 30 minutes.
  • the mutant enzyme may be immobilized by dropping, spraying, and applying a solution to the electrode, and similarly performing dry fixation.
  • Various immobilizing agents may be used for immobilization, and preferably polycations such as poly-L-lysine (PLL) or salts thereof and polyacrylic acid (for example, sodium polyacrylate (PAAcNa)).
  • PLL poly-L-lysine
  • PAAcNa sodium polyacrylate
  • other polyanions or salts thereof can be used.
  • the water in the enzyme solution can be quickly evaporated, so that the time during which the enzyme is in an unstable solution state is shortened, and the enzyme is deactivated. It becomes possible to prevent.
  • the mutated enzyme used in the present invention has increased enzyme activity due to heat treatment, so that the enzyme after dry fixation expresses higher enzyme activity than before fixation. Will be. Therefore, a high catalyst current value can be obtained with the electrode after enzyme immobilization.
  • the present inventors introduced random mutation into the wild-type amino acid sequence (see SEQ ID NO: 1) of bilirubin oxidase derived from the imperfect filamentous fungus Myrothecium verrucaria (hereinafter, M. verrucaria), and expressed and purified it.
  • the obtained mutant bilirubin oxidase was screened by a heat resistance test, and the following mutants were obtained as mutant bilirubin oxidase whose activity can be increased by heat treatment.
  • the 225th phenylalanine from the N-terminal is replaced with valine (F225V)
  • the 322nd aspartic acid is replaced with asparagine (D322N)
  • the 468th methionine is replaced with valine (M468V).
  • Mutant bilirubin oxidase shown in 2. -The 225th phenylalanine from the N-terminal is replaced with valine (F225V), the 370th aspartic acid is replaced with tyrosine (D370Y), and the 476th leucine is replaced with proline (L476P). Bilirubin oxidase.
  • the 264th alanine from the N-terminal is replaced with valine (A264V)
  • the 418th alanine is replaced with threonine (A418T)
  • the 476th leucine is replaced with proline (L476P).
  • mutant bilirubin oxidases retain a high level of enzyme activity even when heat-treated at 60 ° C. or 65 ° C., exhibit excellent heat resistance, and at the same time, are significantly different from wild-type enzymes when heat-treated at the same temperature. High enzyme activity was expressed.
  • a higher catalyst current value than that of the wild-type enzyme can be obtained by fixing at a temperature range of 65 ° C. or lower, more preferably 60 ° C. or lower. It becomes possible.
  • the fixation can be performed under a temperature condition higher than 60 ° C. or 65 ° C. as long as the activity of the mutant enzyme can be increased.
  • a carbon-based material can be used as an electrode material for manufacturing an electrode and a fuel cell by the above enzyme immobilization method.
  • a porous conductive material including a skeleton made of a porous material and a material mainly composed of a carbon-based material that covers at least a part of the surface of the skeleton can be used.
  • This porous conductive material can be obtained by coating at least a part of the surface of a skeleton made of a porous material with a material mainly composed of a carbon-based material.
  • the porous material constituting the skeleton of the porous conductive material may be basically any material as long as the skeleton can be stably maintained even if the porosity is high. It does not matter whether or not there is sex.
  • a material having high porosity and high conductivity is preferably used.
  • a metal material (metal or alloy), a carbon material with a strong skeleton, or the like can be used.
  • the porous material When a metal material is used as the porous material, various options are conceivable because the metal material has different state stability depending on the usage environment such as pH and potential of the solution. For example, nickel, copper, silver, gold Foam metal or foam alloy such as nickel-chromium alloy and stainless steel is one of readily available materials.
  • a resin material for example, a sponge-like material
  • the porosity and pore diameter (minimum pore diameter) of this porous material are in balance with the thickness of the material mainly composed of a carbon-based material that is coated on the surface of the skeleton made of this porous material. Is determined according to the required porosity and pore diameter.
  • the pore diameter of the porous material is generally 10 nm to 1 mm, typically 10 nm to 600 ⁇ m.
  • the material for covering the surface of the skeleton needs to be conductive and stable at the assumed operating potential.
  • a material mainly composed of a carbon-based material is used as such a material.
  • Carbon-based materials generally have a wide potential window, and many are chemically stable.
  • the carbon-based material is mainly composed of a carbon-based material, and the carbon-based material is the main component, and the secondary material is selected according to the characteristics required for the porous conductive material.
  • Some materials contain a small amount of material. Specific examples of the latter material include a material whose electrical conductivity has been improved by adding a metal or other highly conductive material to the carbon-based material, or a polytetrafluoroethylene-based material or the like added to the carbon-based material.
  • the carbon-based material is particularly preferably a fine powder carbon material having high conductivity and a high surface area.
  • Specific examples of the carbon-based material include materials imparted with high conductivity such as KB (Ketjen Black) and functional carbon materials such as carbon nanotubes and fullerenes.
  • any coating method can be used as long as the surface of the skeleton made of the porous material can be coated by using an appropriate binder as necessary. Also good.
  • the pore diameter of the porous conductive material is selected so that a solution containing a substrate or the like can easily enter and exit through the pores, and is generally 9 nm to 1 mm, more generally 1 ⁇ m to 1 mm, and more generally Specifically, it is 1 to 600 ⁇ m.
  • a state in which at least a part of the surface of the skeleton made of a porous material is coated with a material mainly composed of a carbon-based material, or a surface of at least a part of the skeleton made of a porous material is mainly composed of a carbon-based material is mainly composed of a carbon-based material
  • Electron mediators fixed to the electrodes are 2-methyl-1,4-naphthoquinone (VK3), 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ), 2-amino-1,4- Naphthoquinone (ANQ) or the like can be used, and potassium hexacyanoferrate or the like can be used for the positive electrode, if necessary.
  • VK3 2-methyl-1,4-naphthoquinone
  • ACNQ 2-amino-3-carboxy-1,4-naphthoquinone
  • ANQ 2-amino-1,4- Naphthoquinone
  • potassium hexacyanoferrate or the like can be used for the positive electrode, if necessary.
  • polysaccharide for example, starch, amylose, amylopectin, glycogen, cellulose, maltose, sucrose, lactose and the like can be used. These are a combination of two or more monosaccharides, and any polysaccharide contains glucose as a monosaccharide of the binding unit.
  • amylose and amylopectin are components contained in starch, and starch is a mixture of amylose and amylopectin.
  • glucoamylase When glucoamylase is used as a polysaccharide-degrading enzyme and glucose dehydrogenase is used as an oxidase that degrades monosaccharides, polysaccharides that can be degraded to glucose by glucoamylase, such as starch, amylose, amylopectin, glycogen If it contains any of maltose, it can be used as fuel.
  • Glucoamylase is a degrading enzyme that hydrolyzes ⁇ -glucan such as starch to produce glucose
  • glucose dehydrogenase is an oxidase that oxidizes ⁇ -D-glucose to D-glucono- ⁇ -lactone.
  • Examples of the proton conductor include electrolytes containing a buffer substance such as dihydrogen phosphate ion (H 2 PO 4 ⁇ ), 2-amino-2-hydroxymethyl-1,3-propanediol (abbreviated to Tris), 2- (N-morpholino) ethanesulfonic acid (MES), cacodylic acid, carbonic acid (H 2 CO 3 ), hydrogen citrate ion, N- (2-acetamido) iminodiacetic acid (ADA), piperazine-N, N′-bis (2-ethanesulfonic acid) (PIPES), N- (2-acetamido) -2-aminoethanesulfonic acid (ACES), 3- (N-morpholino) propanesulfonic acid (MOPS), N-2-hydroxyethylpiperazine -N'-2-ethanesulfonic acid (HEPES), N-2-hydroxyethylpiperazine-N'-3-propanesulfonic acid (HE
  • Buffer substances in general, as long as a pK a of 6 to 9, may be used What.
  • the concentration of the buffer substance contained in the electrolyte is 0.2 M or more. It is effective to be 5M or less, preferably 0.2M to 2M, more preferably 0.4M to 2M, and even more preferably 0.8M to 1.2M.
  • the pH of the electrolyte is preferably around 7, but may be any of 1 to 14 in general.
  • an electrode and a fuel cell are obtained by arbitrarily selecting the specific examples exemplified in each of the above configurations using the enzyme immobilization method described above. Can do. In this electrode and fuel cell, it is possible to obtain a high catalyst current value and a high output based on the high enzyme activity of the immobilized enzyme.
  • Example 1 cDNA cloning of M. verrucaria-derived bilirubin oxidase (BO) 1-1: Cultivation of M. verrucaria and isolation of messenger RNA M. verrucaria NBRC (IFO) 6113 strain used in this example is independent. Received sales from Biotechnology Headquarters, National Institute of Product Evaluation Technology. The obtained dried cells were suspended in a condensate (polypeptone: 0.5%, yeast extract: 0.3%, MgSO 4 .7H 2 O: 0.1%), and this suspension was potato dextrose agar ( PDA) plates (potato dextrose: 2.4%, agarose: 1.5%).
  • PDA potato dextrose agar
  • the surface of the PDA plate was covered with white mycelia. This was collected with a spatula and stored at -80 ° C. The yield of the bacterial cells was 50 to 60 mg (wet weight) per PDA plate (diameter 9 cm).
  • mRNA Messenger RNA
  • total RNA mixture of mRNA, ribosomal RNA, and transfer RNA
  • 100 ⁇ g (quantified by UV absorption) of total RNA was obtained from about 100 mg of M.verrucaria frozen cell powder, and a quarter of the total RNA was used as template RNA for one reaction of the next reverse transcription PCR.
  • the E.coli TOP10 strain (Invitrogen) was transformed with the reaction product obtained here and inoculated on LB / Amp agar plate medium (see Table 2 for composition). After overnight culture, transformant colonies having drug resistance to ampicillin were obtained. This was cultured overnight in 3 ml of LB / Amp medium, and a plasmid vector was isolated from the resulting cells.
  • the nucleotide sequence of the inserted portion containing the BO gene of the obtained plasmid vector was examined, and it was SEQ ID NO: 7.
  • the base sequence shown in SEQ ID NO: 7 is 1719 bp, corresponding to 572 amino acids.
  • mature-type M. verrucaria -derived BO is composed of 534 amino acids (see SEQ ID NO: 1).
  • the 38-residue amino acid corresponding to this difference exists on the N-terminal side, and is a signal peptide responsible for secretion of the protein existing on the C-terminal side. This part is cleaved upon secretion after translation.
  • the plasmid vector prepared in 1-3 was partially modified so that the expression level of the recombinant protein was increased. Specifically, the 3 bases upstream (5′-side) from the start codon (ATG) were changed as shown in “Table 3”. The change of 3 bases was performed by the Quick-change Mutagenesis Kit (Stratagene) using the PCR primers shown in “Table 4”. The detailed experimental procedure followed the attached manual.
  • the base sequence was confirmed in the entire region of the BO gene including the changed part, and it was confirmed that it was changed as designed.
  • the plasmid vector after the sequence change is referred to as “pYES2 / CT-BO vector”.
  • Example 2 Construction of secretory expression system of recombinant BO by S. cerevisiae 2-1: Transformation of S. cerevisiae with pYES2 / CT-BO vector.
  • S. cerevisiae was transformed using the above pYES2 / CT-BO vector.
  • a commercially available INVSc1 strain Invitrogen
  • S. cerevisiae was transformed by the lithium acetate method.
  • the detailed experimental procedure was based on the manual attached to the pYES2 / CT vector.
  • SCGlu agar plate medium see Table 5 for composition
  • the obtained bacterial cells were added to 50 ml of SCGal medium (refer to “Table 6” for the composition) so that the turbidity (OD 600 ) was about 0.5. This was subjected to shaking culture at 25 ° C. for 10 to 14 hours. After culturing, the cells were removed by centrifugation, and the remaining culture solution was concentrated to about 5 ml and dialyzed against 20 mM Na phosphate buffer (pH 7.4).
  • the purification of recombinant BO was performed by Ni-NTA affinity chromatography (His-trap HP (1 ml), Amersham Bioscience). The purification method followed the attached manual. The purified recombinant BO obtained was confirmed to have a purity of 100 by SDS-PAGE or the like. The yield of this was 0.36 mg when converted to 1 L culture.
  • Example 3 Heat-resistant screening of recombinant BO by molecular evolution engineering technique
  • heat-resistant screening of recombinant BO by molecular evolution engineering technique was performed. Specifically, random mutation insertion using Error-prone PCR, creation of mutant BO gene library, transformation of S. cerevisiae using mutant gene library, and heat resistance using 96-well plate Screening was performed.
  • PCR fragment of about 1500 bp could be obtained.
  • the mutation frequency calculated from the yield of the obtained PCR product was 1.5 sites per 1000 bp. Refer to the manual attached to the kit for the calculation method.
  • the whole 96-well plate was centrifuged once (1500 ⁇ g, 20 ° C., 10 minutes) to once precipitate the cells.
  • the SCGlu medium was completely removed so as not to disturb the cells precipitated on the bottom of each well.
  • 180 ml of SCGal sputum medium was dispensed and further shake-cultured at 27 ° C. for 8 hours. After this culture, centrifugation (1500 ⁇ g, 20 ° C., 10 minutes) was performed again to precipitate the cells. 100 ml of this supernatant was transferred to a new 96 well plate.
  • the sample solution on the 96-well plate was sealed with cellophane tape and then left in a dry oven at 80 ° C. for 15 minutes. After the heat treatment, it was rapidly cooled on an ice bath for 5 minutes and then allowed to stand at room temperature for 15 minutes. This was mixed with an equal amount of 20 mM ABTS solution (100 mM Tris-HCl pH 8.0). The state in which the solution in the well colored green with the reaction with ABTS was observed for 1 hour after the start of the reaction. Those having a strong color of ABTS compared to the wild type were picked up, and the corresponding cells were stored as a 20 glycerol stock at -80 ° C.
  • FIG. 1 shows an example of heat resistance screening.
  • FIG. 1 shows the state of coloration of ABTS 1 hour after the start of the reaction. All of the middle two columns (6th and 7th columns from the left) are wild-type recombinant BOs for comparison, and the 6th column is heat-treated in the same manner as the other wells. The seventh column is a comparison of the wild type recombinant BO without heat treatment.
  • 50 heat-resistant screening shown in 3-4 was performed on a total of 4000 samples in a 96-well plate, and 26 transformed yeasts that were considered to express heat-resistant mutant BO were selected.
  • thermostable mutants by Pichia methanolica
  • a new yeast Pichia methanolica hereinafter, We constructed a secretory expression system for recombinant BO using P. methanolica, and tried to express wild-type and thermostable mutant candidates in large quantities.
  • the obtained 1500 bp amplified fragment was digested with restriction enzymes EcoRI and SpeI, and then ligated with the pMETaB vector digested with the same enzyme. During this ligation reaction, the same treatment as that shown in 1-3 was performed on the reaction product.
  • the prepared pMETaB vector containing the BO gene region (hereinafter referred to as pMETaB-BO vector)
  • the base sequence of the inserted BO gene portion was confirmed.
  • mutant BO the mutation was inserted into the pMETaB-BO vector prepared here by QuickChange Mutagenesis Kits (Invitrogen). All subsequent operations were performed in the same manner regardless of the wild type or mutant.
  • pMETaB-BO vectors of 26 wild-type mutants and 26 heat-resistant mutant candidates as described above, a multi-mutant pMETaB-BO vector combining 2 or 3 or 4 of 26 heat-resistant mutant candidates is also available. A similar preparation was made and the nucleotide sequence was confirmed.
  • P. methanolica was transformed with all of the prepared pMETaB-BO vectors.
  • PMAD11 strain (Invitrogen) was used for P. methanolica. Transformation was performed according to the method described in the manual attached to the pMETaB vector. Selection of transformed yeast was carried out using MD agar plate medium (see “Table 9” for composition). The competency of this reaction was ⁇ 10 / 1 ⁇ g DNA, which almost coincided with the value described in the manual.
  • methanol was added at a final concentration of 0.5% and further cultured for 24 hours under the same conditions. After performing this for up to 96 hours, the cells were removed by centrifugation, and the remaining culture solution was concentrated to about 5 to 10 ml and dialyzed against 50 mM Tris-HCl buffer (pH 7.6).
  • the recombinant BO was purified by hydrophobic chromatography.
  • the column used for the hydrophobic chromatography is a Toyopearl Butyl-650M column (100 ml; 22 mm x 20 cm; Tosoh). Purification conditions were carried out with reference to a previous report (Biochemistry, 44, 7004-7012 (2005)).
  • the UV-vis spectrum of recombinant BO (A264V) obtained after purification is shown in FIG.
  • the condition of the “heat treatment” as a reference in the present invention is a static treatment at 60 ° C. for 1 hour or 65 ° C. for 30 minutes in a buffer solution, and the ratio of the enzyme activity values before and after this heat treatment is expressed as a percentage. .
  • the BO activity was measured using ABTS as a substrate, and the change in absorbance at 730 nm accompanying the progress of the reaction (derived from an increase in the reaction product of ABTS) was followed.
  • the measurement conditions were as shown in “Table 12”.
  • the BO concentration was adjusted so that the change in absorbance at 730 nm was about 0.01 to 0.2 per minute when measuring the activity.
  • the reaction was started by adding an enzyme solution (5 to 20 ⁇ L) to a phosphate buffer solution (2980 to 2995 ⁇ L) containing ABTS.
  • a total of 26 heat-resistant BO mutant candidates expressed in P. methanolica (Q49K, Q72E, V81L, A103P, Y121S, R147P, SA185S, P210L, F225V, G258V, A264V, Y270D, S299N, D322N, N335S, P359S, D370Y, V371A, V381L, A418T, P423L, R437H, M468V, L476P, V513L) and multiple mutants combining these two or three or four were subjected to heat resistance experiments.
  • the denaturation temperature Tm of the 55 heat-resistant BO mutant candidates for which heat resistance was evaluated was measured by differential scanning microcalorimetry (hereinafter abbreviated as DSC: Different scanning calorimetry).
  • DSC used VP-DSC of MicroCal.
  • the enzyme solution was 2.0 to 2.5 mg / ml, and the temperature was raised at a rate of 60 ° C. per hour.
  • the results are shown in “Table 13” together with the results of the heat resistance confirmation experiment.
  • thermostable BO mutant candidates maintain high enzyme activity even by heat treatment and exhibit excellent heat resistance.
  • the residual enzyme activity rate was increased by heat treatment at 65 ° C. for 30 minutes. This reveals that these five mutants have outstanding characteristics that the enzyme activity is increased by heat treatment in addition to heat resistance.
  • thermostabilized BO mutant Immobilization of thermostabilized BO mutant to electrode and evaluation of electrode performance
  • one of the five thermostabilized BO mutants whose enzyme activity was increased by heat treatment (mutant A103P / A264V / Y270D / L476P) was immobilized together with a mediator (K 3 [Fe (CN) 6 ]) to prepare an electrode.
  • a mediator K 3 [Fe (CN) 6 ]
  • the thermostabilized BO mutant was immobilized by two methods, the method according to the present invention and the conventional method, and the performance of the electrodes obtained by each method was compared.
  • the commercially available BO was similarly fixed by two methods, and the performance of the obtained electrodes was compared.
  • Electrode 1 (commercially available BO, conventional immobilization method) A commercial product (Amanoenzyme) BO solution (buffer solution: 46.5 mM sodium phosphate solution) 80 ⁇ l, and 1-cm square carbon felt (CF2) stacked, poly-L-lysine (PLL) ) 80 ⁇ l of 2 wt% solution and 80 ⁇ l of 200 mM solution of K 3 [Fe (CN) 6 ] (hereinafter abbreviated as “FeCN”) were immersed.
  • Commercially available BO was prepared by using a lyophilized product (enzyme activity 2.5 U / mg) in a 50 mg / ml solution (see the manufacturer's attachment for the definition of enzyme activity).
  • the CF2 soaked with the solution was dried in a dryer at 30 ° C. for 2 hours to evaporate water. After drying, a CF2 cage cut into a size of 6 mm in diameter was physically fixed to the tip of a 6 mm PFC electrode (carbon part is 3 mm in diameter) using a nylon net and an O-ring to obtain an electrode 1.
  • Electrode 2 (commercial product BO, immobilization method according to the present invention) In the same manner as in the electrode 1, CF2 soaked with each solution was dried with a dryer at 30 ° C. for 1 hour, and further dried at 60 ° C. for 1 hour to evaporate water. After drying, CF2 was cut out and fixed to the tip of the PFC electrode to obtain electrode 2.
  • Electrode 3 heat-resistant BO mutant / conventional immobilization method 80 ⁇ l of mutant BO solution, 80 ⁇ l of immobilizing agent poly-L-lysine (PLL) 2 wt% solution, and 80 ⁇ l of FeCN 200 mM solution were immersed in a stack of two 1 cm square carbon felts (CF2). .
  • the mutant BO solution was prepared and used so that the absorbance at 600 nm was comparable to that of the commercially available BO solution.
  • the CF2 soaked with the solution was dried in a dryer at 30 ° C. for 2 hours to evaporate water. After drying, the CF2 cage was cut out and fixed to the tip of the PFC electrode to obtain an electrode 3.
  • Electrode 4 heat-resistant BO mutant / immobilization method according to the present invention
  • CF2 soaked with each solution was dried with a dryer at 30 ° C. for 1 hour, and further dried at 60 ° C. for 1 hour to evaporate water. After drying, CF2 was cut out and fixed to the tip of the PFC electrode to obtain an electrode 4.
  • FIG. 3 shows a voltammogram obtained with the electrode 1.
  • the dotted line shows a voltammogram measured under argon
  • the solid line shows a voltammogram measured under oxygen saturation.
  • the difference between the current value under argon where the catalytic reaction of BO does not proceed and the current value under oxygen saturation where the catalytic reaction proceeds is defined as the catalytic current value, and the steady-state current at -0.2 V (vs.Ag
  • the catalyst current value of electrode 1 (commercial product BO, conventional immobilization method) was 6.60 ⁇ 0.57 mA / cm 2 .
  • the catalyst current value was 2.06 ⁇ 0.33 mA / cm 2 .
  • the catalyst current ratio of the electrode 2 to the electrode 1 is 44.8%.
  • the electrode performance may be significantly reduced by setting the immobilization temperature to 60 ° C. confirmed.
  • the catalyst current value of electrode 3 (heat-resistant BO mutant / conventional immobilization method) was 3.81 ⁇ 0.22 mA / cm 2 .
  • the catalyst current value was 4.56 ⁇ 0.46 mA / cm 2 , and the catalyst current value was about 119% compared to the electrode 3. Increased to. This is because when the thermostabilized BO mutant is used, the enzyme activity of BO is increased by setting the immobilization temperature to 60 ° C., which makes it possible to produce an electrode having superior performance compared to the conventional immobilization method. It shows that it is obtained.
  • the fuel cell according to the present invention, the fuel cell electrode and the production method thereof, and the enzyme immobilization method to the fuel cell electrode include, for example, an electronic device, a moving body, a power device, a construction machine, a machine tool, a power generation system, It can be widely used in various devices, devices, and systems that require electric power, such as cogeneration systems.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided are an enzyme immobilizing method, a fuel cell and an electrode for the fuel cell which employ the enzyme immobilizing method, and a method for manufacturing the fuel cell and the electrode. The enzyme immobilizing method prevents reduction in enzyme activity when the enzyme is immobilized on the electrode, so as to make it possible to obtain a high catalyst current value. In the method for immobilizing an enzyme on the electrode used in the fuel cell, an enzyme variant with at least one amino acid residue being deleted, substituted, added, or inserted in a wild type amino acid sequence is used as the enzyme, and the enzyme variant increases in activity through heat treatment. The immobilization is performed within a temperature range which makes it possible to increase the activity of the enzyme variant.

Description

燃料電池用電極への酵素固定化方法、燃料電池およびその製造方法、ならびに燃料電池用電極およびその製造方法Enzyme immobilization method on fuel cell electrode, fuel cell and production method thereof, and fuel cell electrode and production method thereof
 本発明は、燃料電池用電極への酵素固定化方法に関する。より詳しくは、熱処理により活性が上昇し得る酵素を、該活性を上昇させ得る温度範囲において電極に固定化する酵素固定化方法に関する。さらには、酵素固定化方法を用いる燃料電池および燃料電池用電極、並びにこれらの製造方法に関する。 The present invention relates to an enzyme immobilization method on a fuel cell electrode. More specifically, the present invention relates to an enzyme immobilization method in which an enzyme whose activity can be increased by heat treatment is immobilized on an electrode in a temperature range where the activity can be increased. Furthermore, the present invention relates to a fuel cell using the enzyme immobilization method, a fuel cell electrode, and a method for producing them.
 燃料電池は、正極(酸化剤極)と負極(燃料極)とが電解質(プロトン伝導体)を介して対向した構造を有する。従来の燃料電池では、負極に供給された燃料(水素)が酸化されて電子とプロトン(H+)とに分離し、電子は負極に渡され、H+は電解質を通って正極まで移動する。正極では、このH+ が、外部から供給された酸素および負極から外部回路を通って送られた電子と反応して水(H2O)を生成する。 The fuel cell has a structure in which a positive electrode (oxidant electrode) and a negative electrode (fuel electrode) face each other with an electrolyte (proton conductor) interposed therebetween. In the conventional fuel cell, the fuel (hydrogen) supplied to the negative electrode is oxidized and separated into electrons and protons (H + ), the electrons are transferred to the negative electrode, and H + moves through the electrolyte to the positive electrode. In the positive electrode, this H + reacts with oxygen supplied from the outside and electrons sent from the negative electrode through the external circuit to generate water (H 2 O).
 燃料電池は燃料の持つ化学エネルギーを直接電気エネルギーに変換する高効率な発電装置であり、天然ガス、石油、石炭などの化石燃料が持つ化学エネルギーを使用場所や使用時によらずに、しかも高い変換効率で電気エネルギーとして取り出すことができる。このため、現在、大規模発電や、自動車の駆動用電源、パーソナルコンピュータやモバイル機器などのポータブル電源などへの幅広い応用が試みられている。 A fuel cell is a highly efficient power generation device that directly converts the chemical energy of fuel into electrical energy, and converts the chemical energy of fossil fuels such as natural gas, oil, and coal, regardless of where and when they are used. It can be extracted as electrical energy with efficiency. For this reason, a wide range of applications such as large-scale power generation, automobile drive power supplies, portable power supplies such as personal computers and mobile devices are currently being attempted.
 しかしながら、特に燃料としてガスを用いる場合、取り扱いに注意が必要であり、特に燃料を高温に加熱して用いる場合には、安全上の問題が生じる。また、白金(Pt)などの高価な貴金属触媒を必要とするため、製造コスト上の問題もある。 However, when gas is used as the fuel, it is necessary to be careful in handling. In particular, when the fuel is heated to a high temperature, a safety problem arises. Moreover, since an expensive noble metal catalyst such as platinum (Pt) is required, there is a problem in manufacturing cost.
 そこで、近年、生物内で行われている生体代謝が高効率なエネルギー変換機構であることに着目し、酵素を用いて燃料をH+ と電子とに分離する燃料電池(「バイオ燃料電池」や「酵素電池」とも呼ばれる)の開発がなされてきている(特許文献1および2参照)。 Therefore, in recent years, focusing on the fact that biological metabolism carried out in living organisms is a highly efficient energy conversion mechanism, fuel cells that use enzymes to separate fuel into H + soot and electrons (“biofuel cells” and The development of “enzyme battery” has also been made (see Patent Documents 1 and 2).
 酵素電池では、燃料としてメタノールやエタノールのようなアルコール類あるいはグルコースのような糖類を用いることが可能であるため、上記のような安全上の問題を解決することができる。加えて、酵素の優れた触媒活性を利用することで、貴金属触媒を用いずに低コストに燃料電池を製造することが可能となる。 In the enzyme battery, alcohols such as methanol and ethanol or saccharides such as glucose can be used as fuel, so that the above safety problems can be solved. In addition, by utilizing the excellent catalytic activity of the enzyme, it becomes possible to produce a fuel cell at a low cost without using a noble metal catalyst.
 酵素電池の実用化に向けては、十分な出力を安定的に得るための技術が確立される必要があり、現在、特に電極に固定される酵素を環境の変化に対してより安定的に働かせ、高い活性を維持させるための技術開発が盛んに行われている。 For the practical application of enzyme batteries, it is necessary to establish a technique for stably obtaining sufficient output, and at present, the enzyme fixed to the electrode works more stably against environmental changes. The development of technology for maintaining high activity has been actively conducted.
特開2004-71559号公報JP 2004-71559 A 特開2005-13210号公報JP 2005-13210 A
 酵素電池において高い出力を得るためには、電極上に酵素を高密度に固定化することで、酵素反応により発生する電子を効率よく電極に取り込むことが必要となる。 In order to obtain a high output in an enzyme battery, it is necessary to efficiently capture electrons generated by the enzyme reaction into the electrode by immobilizing the enzyme on the electrode at a high density.
 通常、酵素を電極に固定する際には、カーボン系材料などを酵素溶液に浸漬した後、乾燥により水分を蒸発させることで、酵素を電極材料上に固定化している。 Usually, when an enzyme is immobilized on an electrode, the enzyme is immobilized on the electrode material by immersing a carbon-based material or the like in an enzyme solution and then evaporating water by drying.
 一般に、酵素は溶液状態で最も安定性が低く、失活し易い。従って、電極材料を酵素溶液に浸漬した後には、迅速に乾燥を行い、水分を蒸発させることで、酵素の失活を防止する必要がある。一方で、酵素は熱によって容易に変性してしまうため、乾燥は、室温ないしは、乾燥機を使用する場合にも30℃程度の低い温度条件下で行う必要があった。 Generally, enzymes have the lowest stability in solution and are easily deactivated. Therefore, after the electrode material is immersed in the enzyme solution, it is necessary to quickly dry and evaporate the water, thereby preventing the enzyme from being deactivated. On the other hand, since the enzyme is easily denatured by heat, it is necessary to perform drying at room temperature or under a low temperature condition of about 30 ° C. even when a dryer is used.
 このため、従来、酵素溶液への浸漬後の電極を迅速に乾燥させることは難しく、電極固定時の酵素活性の低下が、酵素電池において高い触媒電流値と高出力を得るための障害となっていた。 For this reason, conventionally, it is difficult to quickly dry an electrode after being immersed in an enzyme solution, and a decrease in enzyme activity when the electrode is fixed has been an obstacle to obtaining a high catalyst current value and a high output in an enzyme battery. It was.
 そこで、本発明は、酵素を電極に固定する際に、酵素活性の低下を引き起こすことなく、高い触媒電流値を示す電極を得ることが可能な燃料電池用電極への酵素固定化方法を提供することを主な目的とする。
 本発明の他の目的は、本発明の酵素固定化方法を用いた燃料電池およびその製造方法、ならびに燃料電池用電極およびその製造方法を提供することにある。
Accordingly, the present invention provides a method for immobilizing an enzyme on a fuel cell electrode that can obtain an electrode exhibiting a high catalyst current value without causing a decrease in enzyme activity when the enzyme is immobilized on the electrode. The main purpose.
Another object of the present invention is to provide a fuel cell using the enzyme immobilization method of the present invention and a manufacturing method thereof, and an electrode for a fuel cell and a manufacturing method thereof.
 上記課題解決のため、本発明は、燃料電池に用いられる電極に酵素を固定化するための方法であって、前記酵素として、その野生型アミノ酸配列において少なくとも一つ以上のアミノ酸残基が欠失、置換、付加若しくは挿入された変異型酵素であり、かつ、熱処理により活性が上昇し得る特性を備えた変異型酵素を、前記活性を上昇させ得る温度範囲において固定化することを特徴とする酵素固定化方法を提供する。
 この酵素固定化方法においては、正極に固定される酵素として、変異型熱耐性ビリルビンオキシダーゼ、特には、不完全糸状菌Myrothecium verrucari由来ビリルビンオキシダーゼの配列番号1の野生型アミノ酸配列において、少なくとも一つ以上のアミノ酸残基が欠失、置換、付加若しくは挿入された変異型熱耐性ビリルビンオキシダーゼを用いることができる。
 さらに、この場合には、前記野生型アミノ酸配列において、N末端から225番目のフェニルアラニンをバリンに置換(F225V)、322番目のアスパラギン酸をアスパラギンに置換(D322N)、468番目のメチオニンをバリンに置換(M468V)した配列番号2に示される変異型ビリルビンオキシダーゼ、N末端から225番目のフェニルアラニンをバリンに置換(F225V)、370番目のアスパラギン酸をチロシンに置換(D370Y)、476番目のロイシンをプロリンに置換(L476P)した配列番号3に示される変異型ビリルビンオキシダーゼ、N末端から264番目のアラニンをバリンに置換(A264V)、418番目のアラニンをスレオニンに置換(A418T)、476番目のロイシンをプロリンに置換(L476P)した配列番号4に示される変異型ビリルビンオキシダーゼ、N末端から264番目のアラニンをバリンに置換(A264V)、437番目のアルギニンをヒスチジンに置換(R437H)、476番目のロイシンをプロリンに置換(L476P )した配列番号5に示される変異型ビリルビンオキシダーゼ、および/又は、N末端から103番目のアラニンをプロリンに置換(A103P)、N末端から264番目のアラニンをバリンに置換(A264V)、270番目のチロシンをアスパラギン酸に置換(Y270D)、476番目のロイシンをプロリンに置換(L476P)した配列番号6に示される変異型耐熱性ビリルビンオキシダーゼを用い、20℃以上65℃以下の温度範囲において固定化を行なうことが好適となる。
In order to solve the above problems, the present invention is a method for immobilizing an enzyme on an electrode used in a fuel cell, wherein at least one amino acid residue is deleted from the wild-type amino acid sequence as the enzyme. An enzyme characterized by immobilizing a mutant enzyme that is a substituted, added, or inserted mutant enzyme and has a property that the activity can be increased by heat treatment in a temperature range that can increase the activity. An immobilization method is provided.
In this enzyme immobilization method, at least one of the wild-type amino acid sequences of SEQ ID NO: 1 of mutant thermotolerant bilirubin oxidase, in particular, bilirubin oxidase derived from imperfect filamentous fungus Myrothecium verrucari, is used as the enzyme immobilized on the positive electrode. A mutant thermotolerant bilirubin oxidase in which the amino acid residues are deleted, substituted, added or inserted can be used.
Further, in this case, in the wild type amino acid sequence, the 225th phenylalanine from the N-terminal is replaced with valine (F225V), the 322nd aspartic acid is replaced with asparagine (D322N), and the 468th methionine is replaced with valine. (M468V) Mutant bilirubin oxidase shown in SEQ ID NO: 2, 225th phenylalanine from the N-terminal is replaced with valine (F225V), 370th aspartic acid is replaced with tyrosine (D370Y), 476th leucine is replaced with proline Substituted (L476P) mutant bilirubin oxidase shown in SEQ ID NO: 3, 264th alanine from valine replaced with valine (A264V), 418th alanine replaced with threonine (A418T), 476th leucine replaced with proline Substituted (L476P) mutated bilirubin oxy represented by SEQ ID NO: 4 Derase, 264th alanine from the N-terminus replaced with valine (A264V), 437th arginine replaced with histidine (R437H), 476th leucine replaced with proline (L476P), mutant bilirubin shown in SEQ ID NO: 5 The oxidase and / or the 103rd alanine from the N-terminus is replaced with proline (A103P), the 264th alanine from the N-terminus is replaced with valine (A264V), and the 270th tyrosine is replaced with aspartic acid (Y270D), 476 It is preferable to perform immobilization in a temperature range of 20 ° C. or more and 65 ° C. or less using a mutant thermostable bilirubin oxidase represented by SEQ ID NO: 6 in which the second leucine is substituted with proline (L476P).
 また、本発明は、プロトン伝導体を介して電極が対向する構造を有する燃料電池の製造方法であって、野生型アミノ酸配列において少なくとも一つ以上のアミノ酸残基が欠失、置換、付加若しくは挿入された変異型酵素であり、かつ、熱処理により活性が上昇し得る特性を備えた変異型酵素を、該活性を上昇させ得る温度範囲において前記電極に固定化する工程を含むことを特徴とする燃料電池の製造方法、およびこの製造方法によって得られる燃料電池を提供する。
 さらに、燃料電池に用いられる電極の製造方法であって、野生型アミノ酸配列において少なくとも一つ以上のアミノ酸残基が欠失、置換、付加若しくは挿入された変異型酵素であり、かつ、熱処理により活性が上昇し得る特性を備えた変異型酵素を、該活性を上昇させ得る温度範囲において前記電極に固定化する工程を含むことを特徴とする燃料電池用電極の製造方法およびこの製造方法によって得られる燃料電池用電極をも提供するものである。
The present invention also relates to a method for producing a fuel cell having a structure in which electrodes face each other via a proton conductor, wherein at least one amino acid residue is deleted, substituted, added or inserted in the wild-type amino acid sequence. And a step of immobilizing the mutated enzyme having the property of increasing the activity by heat treatment in the temperature range where the activity can be increased. A battery manufacturing method and a fuel cell obtained by the manufacturing method are provided.
Furthermore, it is a method for producing an electrode used in a fuel cell, which is a mutant enzyme in which at least one amino acid residue is deleted, substituted, added or inserted in a wild-type amino acid sequence, and is activated by heat treatment And a method for producing a fuel cell electrode, comprising the step of immobilizing a mutant enzyme having a characteristic capable of increasing the activity to the electrode in a temperature range capable of increasing the activity. A fuel cell electrode is also provided.
 本発明において、「ビリルビンオキシダーゼ(Bilirubinoxidase)」とは、ビリルビンをビルベルジンに酸化する反応を触媒する酵素であり、マルチ胴オキシダーゼ(複数の銅イオンを活性中心に持つ酵素の総称)に属する酵素の一種である。 In the present invention, “Bilirubin oxidase” is an enzyme that catalyzes a reaction that oxidizes bilirubin to biliverdin, and is a kind of enzyme belonging to multi-body oxidase (generic name for enzymes having a plurality of copper ions as active centers). It is.
 本発明により、酵素を電極に固定する際に、酵素活性の低下を引き起こすことなく、高い触媒電流値を示す電極を得ることが可能であり、かつ電極作製工程の大幅な時間短縮、効率化が可能な酵素固定化方法が提供される。また、この酵素固定化方法によれば、低純度あるいは未精製の酵素を固定化に用いたとしても、固定化の際の熱処理により目的酵素以外を失活させることができるため、不純物による酵素活性の阻害や安定性低下を防止して、高い触媒電流値を示す電極を得ることが可能となる。 According to the present invention, when an enzyme is immobilized on an electrode, it is possible to obtain an electrode exhibiting a high catalyst current value without causing a decrease in enzyme activity, and a significant reduction in time and efficiency of the electrode preparation process can be achieved. A possible enzyme immobilization method is provided. In addition, according to this enzyme immobilization method, even if a low-purity or unpurified enzyme is used for immobilization, other than the target enzyme can be inactivated by heat treatment during immobilization. It is possible to obtain an electrode exhibiting a high catalyst current value by preventing hindrance and stability reduction.
耐熱化スクリーニングの一例を示し、ABTSの発色の様子を示している図(反応開始1時間)である。It is a figure (one hour of reaction start) which shows an example of heat-resistant screening and has shown the mode of color development of ABTS. 変異型組換えBOのUV-visスペクトルを示す図である。It is a figure which shows the UV-vis spectrum of mutant type | mold recombinant BO. 実施例5において測定されたボルタモグラムの一例(電極1)を示す図である。10 is a diagram showing an example of a voltammogram (electrode 1) measured in Example 5. FIG.
 本発明に係る酵素固定化方法においては、以下に例示する酵素であって、熱処理により活性が上昇し得る特性を備える酵素が用いられる。 In the enzyme immobilization method according to the present invention, an enzyme exemplified below, which has a characteristic that its activity can be increased by heat treatment, is used.
 正極に固定される酵素には、酸化酵素であって、例えば、ビリルビンオキシダーゼ、ラッカーゼ、アスコルビン酸オキシダーゼなどのマルチ銅オキシダーゼを用いる。 The enzyme fixed to the positive electrode is an oxidase, for example, multi-copper oxidase such as bilirubin oxidase, laccase, ascorbate oxidase.
 負極に固定される酵素は、使用する燃料に応じて選ばれるが、例えば、燃料としてグルコースのような単糖類を用いる場合には、単糖類の酸化を促進し分解する酸化酵素を用いる。通常は、これに加えて酸化酵素によって還元される補酵素を酸化体に戻す補酵素酸化酵素を使用する。この補酵素酸化酵素の作用により、補酵素が酸化体に戻るときに電子が生成され、補酵素酸化酵素から電子メディエーターを介して電極に電子が渡される。 The enzyme immobilized on the negative electrode is selected according to the fuel used. For example, when a monosaccharide such as glucose is used as the fuel, an oxidase that promotes and decomposes the oxidation of the monosaccharide is used. Usually, in addition to this, a coenzyme oxidase which returns a coenzyme reduced by an oxidase to an oxidant is used. By the action of the coenzyme oxidase, electrons are generated when the coenzyme returns to the oxidized form, and the electrons are transferred from the coenzyme oxidase to the electrode via the electron mediator.
 酸化酵素としては、例えば、グルコースデヒドロゲナーゼ(GDH)などのNAD依存型グルコースデヒドロゲナーゼ、補酵素酸化酵素としては、例えば、ジアホラーゼなどのNADHオキシドリダクターゼを用いる。 For example, NAD-dependent glucose dehydrogenase such as glucose dehydrogenase (GDH) is used as the oxidase, and NADH oxidoreductase such as diaphorase is used as the coenzyme oxidase.
 さらに、燃料として多糖類を用いる場合には、上記の酸化酵素および補酵素酸化酵素に加えて、多糖類の加水分解などの分解を促進し、グルコースなどの単糖類を生成する分解酵素も固定化される。なお、ここで、多糖類とは、広義の多糖類を意味し、加水分解によって2分子以上の単糖を生じる全ての炭水化物を指し、二糖、三糖、四糖などのオリゴ糖を含むものとする。 In addition, when polysaccharides are used as fuel, in addition to the above oxidase and coenzyme oxidase, degradation of polysaccharides, such as hydrolysis, is promoted and degrading enzymes that produce monosaccharides such as glucose are also immobilized. Is done. Here, the polysaccharide means a polysaccharide in a broad sense and refers to all carbohydrates that generate two or more monosaccharides by hydrolysis, and includes oligosaccharides such as disaccharides, trisaccharides, and tetrasaccharides. .
 分解酵素としては、例えば、アミラーゼ、グルコシダーゼ、デキストリナーゼ、スクラーゼ、ラクターゼ、セルラーゼを用いる。 Examples of degrading enzymes include amylase, glucosidase, dextrinase, sucrase, lactase, and cellulase.
 これらの酵素において、特に、熱処理により活性が上昇する特性を備える酵素は、各酵素タンパクをコードする遺伝子の塩基配列を人工的に変異させ、大腸菌等の細胞内で発現させることにより、人工的に野生型アミノ酸配列において少なくとも一つ以上のアミノ酸残基を、欠失、置換、付加若しくは挿入させた変異型酵素を作製し、スクリーニングを行うことによって得ることができる。遺伝子の塩基配列の改変は、エラープローンPCR等のランダムに遺伝子変異を導入可能な手法によって行うことができる。変異型酵素は、従来公知の方法により、改変後の遺伝子を宿主細胞に導入し、細胞からタンパク質を抽出した後、アフィニティーカラムクロマトグラフィーによる精製を行うことにより得ることができる。そして、得られた変異型酵素について、耐熱化試験(実施例参照)によるスクリーニングを行うことにより、上記の特性を備えた変異型酵素を得ることが可能である。 Among these enzymes, in particular, an enzyme having a characteristic that its activity is increased by heat treatment is artificially mutated by expressing a gene sequence encoding each enzyme protein in cells such as E. coli. It can be obtained by preparing a mutant enzyme in which at least one amino acid residue is deleted, substituted, added or inserted in the wild-type amino acid sequence, and conducting screening. The modification of the base sequence of the gene can be performed by a technique capable of introducing a gene mutation at random, such as error-prone PCR. A mutant enzyme can be obtained by introducing a modified gene into a host cell by a conventionally known method, extracting a protein from the cell, and then purifying it by affinity column chromatography. The obtained mutant enzyme is screened by a heat resistance test (see Examples) to obtain a mutant enzyme having the above-mentioned characteristics.
 本発明に係る酵素固定化方法では、スクリーニングによって得られた変異型酵素を、その酵素活性を上昇させ得る温度範囲において電極に固定する。温度範囲の上限値は、耐熱化試験の結果に基づき各変異型酵素(変異体)について適宜設定される。温度範囲の下限値は、通常の環境温度(室温)である20℃以上とするが、より好適には30℃、さらに好適には40℃とする。 In the enzyme immobilization method according to the present invention, the mutant enzyme obtained by screening is immobilized on the electrode in a temperature range where the enzyme activity can be increased. The upper limit of the temperature range is appropriately set for each mutant enzyme (mutant) based on the result of the heat resistance test. The lower limit of the temperature range is 20 ° C. or higher, which is a normal environmental temperature (room temperature), more preferably 30 ° C., and even more preferably 40 ° C.
 変異型酵素の電極への固定は、従来方法に従い、変異型酵素溶液を調製し、これに電極を浸漬した後、乾燥機等を用いて乾燥することにより行うことができる。本発明に係る酵素固定化方法では、この乾燥固定を上記温度範囲において行うことが可能である。温度範囲の下限値については上記の通りであるが、より高い温度で乾燥固定を行なう程、迅速に電極に付された酵素溶液中の水分を蒸発させることができる。乾燥を行う時間は、耐熱化試験により変異体の酵素活性が上昇し得ることが確認された熱処理時間内において、溶液中の水分を十分に蒸発させため適宜設定される。熱処理の温度および時間は、例えば、実施例に示す例によれば、60℃で1時間以内又は65℃で30分以内が挙げられる。 The immobilization of the mutant enzyme to the electrode can be performed by preparing a mutant enzyme solution according to the conventional method, immersing the electrode in this, and then drying using a dryer or the like. In the enzyme immobilization method according to the present invention, this dry immobilization can be performed in the above temperature range. The lower limit of the temperature range is as described above, but the moisture in the enzyme solution attached to the electrode can be evaporated more rapidly as the drying and fixing is performed at a higher temperature. The time for performing the drying is appropriately set in order to sufficiently evaporate the water in the solution within the heat treatment time in which it was confirmed by the heat resistance test that the enzyme activity of the mutant can be increased. For example, according to the example shown in the examples, the temperature and time of the heat treatment include 60 ° C. within 1 hour or 65 ° C. within 30 minutes.
 変異型酵素は、溶液を電極に滴下、噴霧、塗布し、同様に乾燥固定を行って固定化してもよい。また、固定時には各種の固定化剤を用いてもよく、好適には、ポリ-L-リシン(PLL)をはじめとしたポリカチオンまたはその塩とポリアクリル酸(例えば、ポリアクリル酸ナトリウム(PAAcNa))をはじめとしたポリアニオンまたはその塩とを用いて形成されるポリイオンコンプレックスを用いることができる。 The mutant enzyme may be immobilized by dropping, spraying, and applying a solution to the electrode, and similarly performing dry fixation. Various immobilizing agents may be used for immobilization, and preferably polycations such as poly-L-lysine (PLL) or salts thereof and polyacrylic acid (for example, sodium polyacrylate (PAAcNa)). ) And other polyanions or salts thereof can be used.
 このように、本発明に係る酵素固定化方法によれば、酵素溶液中の水分を迅速に蒸発させることができるため、酵素が不安定な溶液状態にある時間を短縮し、酵素の失活を防止することが可能となる。加えて、通常用いられる酵素と異なり、本発明で用いる変異型酵素は、熱処理によって酵素活性が上昇するものであることから、乾燥固定後の酵素は、固定前に比して高い酵素活性を発現することとなる。従って、酵素固定後の電極では高い触媒電流値を得ることが可能となる。 Thus, according to the enzyme immobilization method of the present invention, the water in the enzyme solution can be quickly evaporated, so that the time during which the enzyme is in an unstable solution state is shortened, and the enzyme is deactivated. It becomes possible to prevent. In addition, unlike normally used enzymes, the mutated enzyme used in the present invention has increased enzyme activity due to heat treatment, so that the enzyme after dry fixation expresses higher enzyme activity than before fixation. Will be. Therefore, a high catalyst current value can be obtained with the electrode after enzyme immobilization.
 具体的には、本発明者らは、不完全糸状菌Myrothecium verrucaria(以下、M. verrucaria)由来ビリルビンオキシダーゼの野生型アミノ酸配列(配列番号1参照)にランダムミューテーションを導入し、発現、精製して得た変異型ビリルビンオキシダーゼについて耐熱性試験によるスクリーニングを行い、熱処理により活性が上昇し得る変異型ビリルビンオキシダーゼとして、以下の変異体を得た。
・ 上記野生型アミノ酸配列において、N末端から225番目のフェニルアラニンをバリンに置換(F225V)、322番目のアスパラギン酸をアスパラギンに置換(D322N)、468番目のメチオニンをバリンに置換(M468V)した配列番号2に示される変異型ビリルビンオキシダーゼ。
・ N末端から225番目のフェニルアラニンをバリンに置換(F225V)、370番目のアスパラギン酸をチロシンに置換(D370Y)、476番目のロイシンをプロリンに置換(L 476P)した配列番号3に示される変異型ビリルビンオキシダーゼ。
・ N末端から264番目のアラニンをバリンに置換(A264V)、418番目のアラニンをスレオニンに置換(A418T)、476番目のロイシンをプロリンに置換(L476P)した配列番号4に示される変異型ビリルビンオキシダーゼ。
・ N末端から264番目のアラニンをバリンに置換(A264V)、437番目のアルギニンをヒスチジンに置換(R437H)、476番目のロイシンをプロリンに置換(L476P )した配列番号5に示される変異型ビリルビンオキシダーゼ
・ N末端から103番目のアラニンをプロリンに置換(A103P)、N末端から264番目のアラニンをバリンに置換(A264V)、270番目のチロシンをアスパラギン酸に置換(Y270D)、476番目のロイシンをプロリンに置換(L476P)した配列番号6に示され変異型ビリルビンオキシダーゼ。
Specifically, the present inventors introduced random mutation into the wild-type amino acid sequence (see SEQ ID NO: 1) of bilirubin oxidase derived from the imperfect filamentous fungus Myrothecium verrucaria (hereinafter, M. verrucaria), and expressed and purified it. The obtained mutant bilirubin oxidase was screened by a heat resistance test, and the following mutants were obtained as mutant bilirubin oxidase whose activity can be increased by heat treatment.
In the above wild-type amino acid sequence, the 225th phenylalanine from the N-terminal is replaced with valine (F225V), the 322nd aspartic acid is replaced with asparagine (D322N), and the 468th methionine is replaced with valine (M468V). 2. Mutant bilirubin oxidase shown in 2.
-The 225th phenylalanine from the N-terminal is replaced with valine (F225V), the 370th aspartic acid is replaced with tyrosine (D370Y), and the 476th leucine is replaced with proline (L476P). Bilirubin oxidase.
-The 264th alanine from the N-terminal is replaced with valine (A264V), the 418th alanine is replaced with threonine (A418T), and the 476th leucine is replaced with proline (L476P). .
-The 264th alanine from the N-terminal is replaced with valine (A264V), the 437th arginine is replaced with histidine (R437H), the 476th leucine is replaced with proline (L476P), and the mutant bilirubin oxidase shown in SEQ ID NO: 5・ Substitute 103th alanine from N-terminal with proline (A103P), 264th alanine from N-terminal with valine (A264V), 270th tyrosine with aspartic acid (Y270D), 476th leucine with proline A mutant bilirubin oxidase represented by SEQ ID NO: 6 substituted (L476P).
 これらの変異型ビリルビンオキシダーゼは、60℃ないしは65℃の熱処理によっても酵素活性が高度に保持され、優れた耐熱性を示すと同時に、同温度での熱処理によって、野生型酵素に比して有意に高い酵素活性を発現した。 These mutant bilirubin oxidases retain a high level of enzyme activity even when heat-treated at 60 ° C. or 65 ° C., exhibit excellent heat resistance, and at the same time, are significantly different from wild-type enzymes when heat-treated at the same temperature. High enzyme activity was expressed.
 従って、これらの変異型酵素を電極に固定するに際し、65℃以下、より好適には60℃以下の温度範囲において固定を行うことにより、野生型酵素に比して高い触媒電流値を得ることが可能となる。なお、固定は、変異型酵素の活性を上昇させ得る限りにおいて、60℃ないしは65℃より高い温度条件下で行うことも可能である。 Therefore, when immobilizing these mutant enzymes on the electrode, a higher catalyst current value than that of the wild-type enzyme can be obtained by fixing at a temperature range of 65 ° C. or lower, more preferably 60 ° C. or lower. It becomes possible. The fixation can be performed under a temperature condition higher than 60 ° C. or 65 ° C. as long as the activity of the mutant enzyme can be increased.
 上記の酵素固定方法により、電極および燃料電池を製造するための電極材料には、カーボン系材料などの従来公知の材料を用いることができる。この他、多孔体材料からなる骨格と、この骨格の少なくとも一部の表面を被覆する、カーボン系材料を主成分とする材料とを含む多孔体導電材料を用いることができる。 Conventionally known materials such as a carbon-based material can be used as an electrode material for manufacturing an electrode and a fuel cell by the above enzyme immobilization method. In addition, a porous conductive material including a skeleton made of a porous material and a material mainly composed of a carbon-based material that covers at least a part of the surface of the skeleton can be used.
 この多孔体導電材料は、多孔体材料からなる骨格の少なくとも一部の表面に、カーボン系材料を主成分とする材料をコーティングすることにより得ることができる。この多孔体導電材料の骨格を構成する多孔体材料は、多孔率が高くても骨格を安定に維持することができるものであれば、基本的にはどのようなものであってもよく、導電性の有無も問わない。多孔体材料としては、好適には、高多孔率および高導電性を有する材料が用いられる。このような高多孔率および高導電性を有する多孔体材料としては、具体的には、金属材料(金属または合金)や、骨格を強固にしたカーボン系材料などを用いることができる。多孔体材料として金属材料を用いる場合、金属材料は溶液のpHや電位などの使用環境との兼ね合いにより状態安定性が異なることから様々な選択肢が考えられるが、例えば、ニッケル、銅、銀、金、ニッケル-クロム合金、ステンレス鋼などの発泡金属あるいは発泡合金は入手しやすい材料の一つである。多孔体材料としては、上記の金属材料やカーボン系材料以外に樹脂材料(例えば、スポンジ状のもの)を用いることもできる。この多孔体材料の多孔率および孔径(孔の最小径)は、この多孔体材料からなる骨格の表面にコーティングする、カーボン系材料を主成分とする材料の厚さとの兼ね合いで、多孔体導電材料に要求される多孔率および孔径に応じて決められる。この多孔体材料の孔径は一般的には10nm~1mm、典型的には10nm~600μmである。 This porous conductive material can be obtained by coating at least a part of the surface of a skeleton made of a porous material with a material mainly composed of a carbon-based material. The porous material constituting the skeleton of the porous conductive material may be basically any material as long as the skeleton can be stably maintained even if the porosity is high. It does not matter whether or not there is sex. As the porous material, a material having high porosity and high conductivity is preferably used. As such a porous material having a high porosity and high conductivity, specifically, a metal material (metal or alloy), a carbon material with a strong skeleton, or the like can be used. When a metal material is used as the porous material, various options are conceivable because the metal material has different state stability depending on the usage environment such as pH and potential of the solution. For example, nickel, copper, silver, gold Foam metal or foam alloy such as nickel-chromium alloy and stainless steel is one of readily available materials. As the porous material, a resin material (for example, a sponge-like material) can be used in addition to the metal material and the carbon-based material. The porosity and pore diameter (minimum pore diameter) of this porous material are in balance with the thickness of the material mainly composed of a carbon-based material that is coated on the surface of the skeleton made of this porous material. Is determined according to the required porosity and pore diameter. The pore diameter of the porous material is generally 10 nm to 1 mm, typically 10 nm to 600 μm.
 一方、骨格の表面を被覆する材料は、導電性を有し、想定される作動電位において安定なものを用いる必要がある。ここでは、このような材料としてカーボン系材料を主成分とする材料を用いる。カーボン系材料は一般に電位窓が広く、しかも化学的に安定なものが多い。このカーボン系材料を主成分とする材料は、具体的には、カーボン系材料のみからなるものと、カーボン系材料を主成分とし、多孔体導電材料に要求される特性などに応じて選ばれる副材料を微量含む材料とがある。後者の材料の具体例を挙げると、カーボン系材料に金属などの高導電性材料を添加することにより電気伝導性を向上させた材料や、カーボン系材料にポリテトラフルオロエチレン系材料などを添加することにより表面撥水性を付与するなど、導電性以外の機能を付与した材料である。カーボン系材料にも様々な種類が存在するが、いかなるカーボン系材料であってもよく、カーボン単体のほか、カーボンに他の元素を添加したものであってもよい。このカーボン系材料は、特に、高導電性・高表面積を有する微細粉末カーボン材料が好ましい。このカーボン系材料としては、具体的には、例えば、KB(ケッチェンブラック)などの高導電性を付与したものや、カーボンナノチューブ、フラーレンなどの機能性カーボン材料などを用いることができる。 On the other hand, the material for covering the surface of the skeleton needs to be conductive and stable at the assumed operating potential. Here, a material mainly composed of a carbon-based material is used as such a material. Carbon-based materials generally have a wide potential window, and many are chemically stable. Specifically, the carbon-based material is mainly composed of a carbon-based material, and the carbon-based material is the main component, and the secondary material is selected according to the characteristics required for the porous conductive material. Some materials contain a small amount of material. Specific examples of the latter material include a material whose electrical conductivity has been improved by adding a metal or other highly conductive material to the carbon-based material, or a polytetrafluoroethylene-based material or the like added to the carbon-based material. Thus, it is a material imparted with a function other than conductivity, such as imparting surface water repellency. There are various types of carbon-based materials, but any carbon-based material may be used. In addition to carbon alone, carbon may be added with other elements. The carbon-based material is particularly preferably a fine powder carbon material having high conductivity and a high surface area. Specific examples of the carbon-based material include materials imparted with high conductivity such as KB (Ketjen Black) and functional carbon materials such as carbon nanotubes and fullerenes.
 このカーボン系材料を主成分とする材料のコーティング方法は、必要に応じて適当な結着剤を用いるなどして多孔体材料からなる骨格の表面にコーティング可能であれば、いかなるコーティング方法を用いてもよい。この多孔体導電材料の孔径は、その孔を通して基質などを含む溶液が容易に出入り可能な程度の大きさに選ばれ、一般的には9nm~1mm、より一般的には1μm~1mm、さらに一般的には1~600μmである。多孔体材料からなる骨格の少なくとも一部の表面がカーボン系材料を主成分とする材料により被覆された状態、あるいは、多孔質材料からなる骨格の少なくとも一部の表面をカーボン系材料を主成分とする材料によりコーティングした状態では、孔が全て互いに連通し、あるいは、カーボン系材料を主成分とする材料による目詰まりが発生しないようにするのが望ましい。 As a coating method of the material mainly composed of the carbon-based material, any coating method can be used as long as the surface of the skeleton made of the porous material can be coated by using an appropriate binder as necessary. Also good. The pore diameter of the porous conductive material is selected so that a solution containing a substrate or the like can easily enter and exit through the pores, and is generally 9 nm to 1 mm, more generally 1 μm to 1 mm, and more generally Specifically, it is 1 to 600 μm. A state in which at least a part of the surface of the skeleton made of a porous material is coated with a material mainly composed of a carbon-based material, or a surface of at least a part of the skeleton made of a porous material is mainly composed of a carbon-based material In the state coated with the material, it is desirable to prevent all the holes from communicating with each other or clogging with a material mainly composed of a carbon-based material.
 電極に固定される電子メディエーターは、負極には2-メチル-1,4-ナフトキノン(VK3)、2-アミノ-3-カルボキシ-1,4-ナフトキノン(ACNQ)、2-アミノ-1,4-ナフトキノン(ANQ)などを、正極にはヘキサシアノ鉄酸カリウムなどを、必要に応じて一種または二種以上用いることができる。 Electron mediators fixed to the electrodes are 2-methyl-1,4-naphthoquinone (VK3), 2-amino-3-carboxy-1,4-naphthoquinone (ACNQ), 2-amino-1,4- Naphthoquinone (ANQ) or the like can be used, and potassium hexacyanoferrate or the like can be used for the positive electrode, if necessary.
 燃料としては、多糖類を用いる場合、例えば、デンプン、アミロース、アミロペクチン、グリコーゲン、セルロース、マルトース、スクロース、ラクトースなどを使用することができる。これらは単糖類が二つ以上結合したものであり、いずれの多糖類においても結合単位の単糖類としてグルコースが含まれている。なお、アミロースとアミロペクチンとはデンプンに含まれる成分であり、デンプンはアミロースとアミロペクチンとの混合物である。多糖類の分解酵素としてグルコアミラーゼを用い、単糖類を分解する酸化酵素としてグルコースデヒドロゲナーゼを用いた場合には、グルコアミラーゼによりグルコースにまで分解することができる多糖類、例えばデンプン、アミロース、アミロペクチン、グリコーゲン、マルトースのいずれかを含むものであれば、これを燃料として使用できる。なお、グルコアミラーゼはデンプンなどのα-グルカンを加水分解しグルコースを生成する分解酵素であり、グルコースデヒドロゲナーゼはβ-D-グルコースをD-グルコノ-δ-ラクトンに酸化する酸化酵素である。 As the fuel, when polysaccharide is used, for example, starch, amylose, amylopectin, glycogen, cellulose, maltose, sucrose, lactose and the like can be used. These are a combination of two or more monosaccharides, and any polysaccharide contains glucose as a monosaccharide of the binding unit. Note that amylose and amylopectin are components contained in starch, and starch is a mixture of amylose and amylopectin. When glucoamylase is used as a polysaccharide-degrading enzyme and glucose dehydrogenase is used as an oxidase that degrades monosaccharides, polysaccharides that can be degraded to glucose by glucoamylase, such as starch, amylose, amylopectin, glycogen If it contains any of maltose, it can be used as fuel. Glucoamylase is a degrading enzyme that hydrolyzes α-glucan such as starch to produce glucose, and glucose dehydrogenase is an oxidase that oxidizes β-D-glucose to D-glucono-δ-lactone.
 プロトン伝導体には、緩衝物質を含む電解質として、例えば、リン酸二水素イオン(H2 PO4 -)、2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール(略称トリス)、2-(N-モルホリノ)エタンスルホン酸(MES)、カコジル酸、炭酸(HCO3)、クエン酸水素イオン、N-(2-アセトアミド)イミノ二酢酸(ADA)、ピペラジン-N,N’-ビス(2-エタンスルホン酸)(PIPES)、N-(2-アセトアミド)-2-アミノエタンスルホン酸(ACES)、3-(N-モルホリノ)プロパンスルホン酸(MOPS)、N-2-ヒドロキシエチルピペラジン-N’-2-エタンスルホン酸(HEPES)、N-2-ヒドロキシエチルピペラジン-N’-3-プロパンスルホン酸(HEPPS)、N-[トリス(ヒドロキシメチル)メチル]グリシン(略称トリシン)、グリシルグリシン、N,N-ビス(2-ヒドロキシエチル)グリシン(略称ビシン)などを含む電解質を用いることができる。緩衝物質は、一般的には、pKaが6以上9以下のものであれば、どのようなものを用いてもよい。高出力動作時に十分な緩衝能を得ることができ、酵素が本来持っている能力を十分に発揮することができるようにするために、電解質に含まれる緩衝物質の濃度を0.2M以上2.5M以下にすることが有効であり、好適には0.2M以上2M以下、より好適には0.4M以上2M以下、さらに好適には0.8M以上1.2M以下とする。電解質のpHは、好適には7付近であるが、一般的には1~14のいずれであってもよい。 Examples of the proton conductor include electrolytes containing a buffer substance such as dihydrogen phosphate ion (H 2 PO 4 ), 2-amino-2-hydroxymethyl-1,3-propanediol (abbreviated to Tris), 2- (N-morpholino) ethanesulfonic acid (MES), cacodylic acid, carbonic acid (H 2 CO 3 ), hydrogen citrate ion, N- (2-acetamido) iminodiacetic acid (ADA), piperazine-N, N′-bis (2-ethanesulfonic acid) (PIPES), N- (2-acetamido) -2-aminoethanesulfonic acid (ACES), 3- (N-morpholino) propanesulfonic acid (MOPS), N-2-hydroxyethylpiperazine -N'-2-ethanesulfonic acid (HEPES), N-2-hydroxyethylpiperazine-N'-3-propanesulfonic acid (HEPPS), N- [tri (Hydroxymethyl) methyl] glycine (abbreviated as tricine), glycylglycine, N, can be used N- bis (2-hydroxyethyl) glycine (abbreviated as bicine) electrolyte including. Buffer substances, in general, as long as a pK a of 6 to 9, may be used What. In order to obtain a sufficient buffer capacity at the time of high output operation and to fully exhibit the inherent ability of the enzyme, the concentration of the buffer substance contained in the electrolyte is 0.2 M or more. It is effective to be 5M or less, preferably 0.2M to 2M, more preferably 0.4M to 2M, and even more preferably 0.8M to 1.2M. The pH of the electrolyte is preferably around 7, but may be any of 1 to 14 in general.
 本発明に係る電極製造方法および燃料電池製造方法においては、これらの各構成において例示した具定例を、上述の酵素固定化方法を用いた上で任意に選択することにより電極および燃料電池を得ることができる。この電極および燃料電池においては、固定化された酵素の高い酵素活性に基づく高い触媒電流値および高出力を得ることが可能である。 In the electrode manufacturing method and the fuel cell manufacturing method according to the present invention, an electrode and a fuel cell are obtained by arbitrarily selecting the specific examples exemplified in each of the above configurations using the enzyme immobilization method described above. Can do. In this electrode and fuel cell, it is possible to obtain a high catalyst current value and a high output based on the high enzyme activity of the immobilized enzyme.
(実施例1):M. verrucaria 由来ビリルビンオキシダーゼ(BO)のcDNAクローニング
1-1:M. verrucaria の培養およびメッセンジャーRNAの単離
 本実施例で使用したM. verrucariaNBRC(IFO)6113 株は、独立行政法人製品評価技術基盤機構バイオテクノロジー本部から分譲を受けた。入手した乾燥菌体を、復水液(ポリペプトン:0.5%、酵母エキス:0.3%、MgSO・7H2O:0.1 %)に懸濁させ、この懸濁液をポテトデキストロース寒天(PDA)プレート(ポテトデキストロース:2.4%、アガロース:1.5%)に接種した。これを5~7日間、室温で培養を行ったところ、PDAプレートの表面は白色の菌糸により覆われた。これをスパチュラでかき集めて-80℃で保存した。菌体の収量はPDA プレート1枚(直径9cm)当たり50~60mg(湿重量)であった。
(Example 1): cDNA cloning of M. verrucaria-derived bilirubin oxidase (BO) 1-1: Cultivation of M. verrucaria and isolation of messenger RNA M. verrucaria NBRC (IFO) 6113 strain used in this example is independent. Received sales from Biotechnology Headquarters, National Institute of Product Evaluation Technology. The obtained dried cells were suspended in a condensate (polypeptone: 0.5%, yeast extract: 0.3%, MgSO 4 .7H 2 O: 0.1%), and this suspension was potato dextrose agar ( PDA) plates (potato dextrose: 2.4%, agarose: 1.5%). When this was cultured at room temperature for 5 to 7 days, the surface of the PDA plate was covered with white mycelia. This was collected with a spatula and stored at -80 ° C. The yield of the bacterial cells was 50 to 60 mg (wet weight) per PDA plate (diameter 9 cm).
 メッセンジャーRNA(以下、mRNA)は、トータルRNA(mRNA、リボソームRNA、転移RNAの混合物)として抽出した。約100mgのM.verrucaria の凍結菌体粉末から100μg(UV吸収により定量)のトータルRNAが得られ、その1/4量を次の逆転写PCRの一反応分の鋳型RNA として用いた。 Messenger RNA (hereinafter referred to as mRNA) was extracted as total RNA (mixture of mRNA, ribosomal RNA, and transfer RNA). 100 μg (quantified by UV absorption) of total RNA was obtained from about 100 mg of M.verrucaria frozen cell powder, and a quarter of the total RNA was used as template RNA for one reaction of the next reverse transcription PCR.
1- 2:逆転写PCRによるBO遺伝子断片の作製。
 逆転写PCRは、OneStep RT-PCR Kit(キアゲン)を用いて、上記トータルRNAを鋳型として行った。逆転写PCRに用いるPCRプライマーは、既報のBOの環状DNA (cDNA)の塩基配列を基に、以下の「表1」に示すように設計した。
1-2: Preparation of BO gene fragment by reverse transcription PCR.
Reverse transcription PCR was performed using OneStep RT-PCR Kit (Qiagen) using the total RNA as a template. PCR primers used for reverse transcription PCR were designed as shown in the following “Table 1” based on the base sequence of the previously reported circular DNA (cDNA) of BO.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られたPCR産物のアガロースゲル電気泳動を行った結果、1700bp付近に強いバンドが確認できた。この1700bpというサイズから目的のBO遺伝子を含む増幅断片であると推察されたので、この断片をアガロースゲルスラブより切り出して、次の工程に用いた。 As a result of agarose gel electrophoresis of the obtained PCR product, a strong band was confirmed around 1700 bp. Since this 1700 bp size was assumed to be an amplified fragment containing the target BO gene, this fragment was excised from an agarose gel slab and used in the next step.
1- 3:pYES2/CTベクターへのBO遺伝子断片の組み込み
 得られた1700bpの増幅断片は制限酵素HindIII 、XbaIにより消化した後、同酵素で消化したpYES2/CTプラスミドベクター(インビトロジェン)と連結した。この際、制限酵素処理によるpYES2/CTベクターの5’突出末端の脱リン酸化処理にはCalf intestine由来アルカリフォスファターゼ(タカラバイオ)を、挿入断片とpYES2/CTベクターとの連結反応にはT4 DNAリガーゼ(タカラバイオ)をそれぞれ用いた。
1-3: Integration of BO gene fragment into pYES2 / CT vector The obtained 1700 bp amplified fragment was digested with restriction enzymes HindIII and XbaI and then ligated with pYES2 / CT plasmid vector (Invitrogen) digested with the same enzymes. At this time, Calf intestine-derived alkaline phosphatase (Takara Bio) is used for dephosphorylation of the 5 ′ overhang of the pYES2 / CT vector by restriction enzyme treatment, and T4 DNA ligase is used for the ligation reaction between the inserted fragment and the pYES2 / CT vector. (Takara Bio) was used.
 ここで得られる反応産物によりE. coli TOP10 株(インビトロジェン)を形質転換して、LB/Amp寒天平板培地(組成は「表2」参照)に接種した。一晩培養後、アンピシリンに対する薬剤耐性を有する形質転換体のコロニーが得られた。これを3mlのLB/Amp培地で一晩培養し、得られた菌体からプラスミドベクターを単離した。 The E.coli TOP10 strain (Invitrogen) was transformed with the reaction product obtained here and inoculated on LB / Amp agar plate medium (see Table 2 for composition). After overnight culture, transformant colonies having drug resistance to ampicillin were obtained. This was cultured overnight in 3 ml of LB / Amp medium, and a plasmid vector was isolated from the resulting cells.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られたプラスミドベクターのBO遺伝子を含む挿入部分の塩基配列を調べたところ、配列番号7であった。 The nucleotide sequence of the inserted portion containing the BO gene of the obtained plasmid vector was examined, and it was SEQ ID NO: 7.
 配列番号7に示した塩基配列は1719bpであり、572残基分のアミノ酸に相当する。一方、成熟型のM. verrucaria 由来BOは、534残基のアミノ酸から構成される (配列番号1参照)。ここで、この差分にあたる38残基のアミノ酸はN末端側に存在し、そのC末端側に存在するタンパクの分泌を司るシグナルペプチドである。この部分は翻訳後、分泌に際して切断される。 The base sequence shown in SEQ ID NO: 7 is 1719 bp, corresponding to 572 amino acids. On the other hand, mature-type M. verrucaria -derived BO is composed of 534 amino acids (see SEQ ID NO: 1). Here, the 38-residue amino acid corresponding to this difference exists on the N-terminal side, and is a signal peptide responsible for secretion of the protein existing on the C-terminal side. This part is cleaved upon secretion after translation.
1-4: AAA配列の挿入
 次に、1-3で作製したプラスミドベクターに対して、組換えタンパクの発現量を増加させるように、その塩基配列の一部に改良を施した。具体的には、開始コドン(ATG)より上流側(5’-側)の3塩基を「表3」のように変更した。3塩基の変更には、「表4」に示すPCRプライマーを用いて、Quick-change Mutagenesis Kit(ストラタジーン)によって行った。詳細な実験手順は付属のマニュアルに従った。
1-4: Insertion of AAA sequence Next, the plasmid vector prepared in 1-3 was partially modified so that the expression level of the recombinant protein was increased. Specifically, the 3 bases upstream (5′-side) from the start codon (ATG) were changed as shown in “Table 3”. The change of 3 bases was performed by the Quick-change Mutagenesis Kit (Stratagene) using the PCR primers shown in “Table 4”. The detailed experimental procedure followed the attached manual.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 塩基配列の確認は、変更箇所を含むBO遺伝子の全領域において行い、設計したとおりに変更されていることを確認した。以降、配列変更後のプラスミドベクターを「pYES2/CT-BO ベクター」と称する。 The base sequence was confirmed in the entire region of the BO gene including the changed part, and it was confirmed that it was changed as designed. Hereinafter, the plasmid vector after the sequence change is referred to as “pYES2 / CT-BO vector”.
 (実施例2):S. cerevisiae による組換えBOの分泌発現系の構築
2-1:pYES2/CT-BOベクターによるS. cerevisiaeの形質転換。
 次に、上記pYES2/CT-BO ベクターを用いて、S. cerevisiaeの形質転換を行った。S. cerevisiae は、pYES2/CTベクターと共に市販されているINVSc1株(インビトロジェン)を用いた。ここでは、酢酸リチウム法によりS. cerevisiaeの形質転換を行った。詳細な実験手順はpYES2/CTベクターに付属のマニュアルを参考にした。形質転換酵母の選択には、SCGlu 寒天平板培地(組成は「表5」を参照)を用いた。
(Example 2): Construction of secretory expression system of recombinant BO by S. cerevisiae 2-1: Transformation of S. cerevisiae with pYES2 / CT-BO vector.
Next, S. cerevisiae was transformed using the above pYES2 / CT-BO vector. For S. cerevisiae, a commercially available INVSc1 strain (Invitrogen) was used together with the pYES2 / CT vector. Here, S. cerevisiae was transformed by the lithium acetate method. The detailed experimental procedure was based on the manual attached to the pYES2 / CT vector. For selection of transformed yeast, SCGlu agar plate medium (see Table 5 for composition) was used.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
2-2:組換えBOの分泌発現。
 pYES2/CT-BOベクターによるS. cerevisiaeの形質転換体のコロニーを15 ml のSCGlu液体培地に接種し、14~20時間、30℃で震とう培養を行った。得られた菌体は一旦、遠心分離(1500×g、室温、10分)により沈澱させた。
2-2: Secretory expression of recombinant BO.
Colonies of transformants of S. cerevisiae with pYES2 / CT-BO vector were inoculated into 15 ml of SCGlu liquid medium, and cultured with shaking at 30 ° C. for 14 to 20 hours. The obtained bacterial cells were once precipitated by centrifugation (1500 × g, room temperature, 10 minutes).
 ここで、SCGlu液体培地を捨てた後、得られた菌体はSCGal 培地(組成は「表6」を参照)50mlに濁度(OD600)が約0.5になるように加えた。これを10~14時間、25℃で震盪培養を行った。培養後は遠心分離により菌体を除き、残りの培養液を5ml程度まで濃縮して、20mMリン酸Naバッファー(pH7.4)に対して透析を行った。 Here, after discarding the SCGlu liquid medium, the obtained bacterial cells were added to 50 ml of SCGal medium (refer to “Table 6” for the composition) so that the turbidity (OD 600 ) was about 0.5. This was subjected to shaking culture at 25 ° C. for 10 to 14 hours. After culturing, the cells were removed by centrifugation, and the remaining culture solution was concentrated to about 5 ml and dialyzed against 20 mM Na phosphate buffer (pH 7.4).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 組換えBOの精製は、Ni-NTAアフィニティークロマトグラフィー(His-trap HP (1ml)、アマシャムバイオサイエンス)により行った。精製の方法は付属のマニュアルに従った。得られた精製後の組換えBOはSDS-PAGE等により純度100であることを確認した。これの収量は1L培養に換算するとそれぞれ0.36mgであった。 The purification of recombinant BO was performed by Ni-NTA affinity chromatography (His-trap HP (1 ml), Amersham Bioscience). The purification method followed the attached manual. The purified recombinant BO obtained was confirmed to have a purity of 100 by SDS-PAGE or the like. The yield of this was 0.36 mg when converted to 1 L culture.
(実施例3):分子進化工学的手法による組換えBOの耐熱化スクリーニング
 次に、分子進化工学的手法による組換えBOの耐熱化スクリーニングを行った。具体的には、Error-prone PCR を用いたランダム変異の挿入、変異体のBO遺伝子ライブラリの作製、変異体遺伝子ライブラリによるS. cerevisiae の形質転換を行なった後、96ウェルプレートを用いた耐熱化スクリーニングを行った。
(Example 3): Heat-resistant screening of recombinant BO by molecular evolution engineering technique Next, heat-resistant screening of recombinant BO by molecular evolution engineering technique was performed. Specifically, random mutation insertion using Error-prone PCR, creation of mutant BO gene library, transformation of S. cerevisiae using mutant gene library, and heat resistance using 96-well plate Screening was performed.
3-1:Error-prone PCRを用いたランダム変異の挿入
 pYES2/CT-BOベクターを鋳型としてError-prone PCR によるランダム変異の挿入を行った。ここで用いるN末端側のPCRプライマーは開始コドンより218塩基対下流に存在する唯一のBglII サイト(AGATCT)を含むように設計した。また、C末端側はXbaIサイト(TCTAGA)を含むよう以下のように設計した(「表7」参照)。
3-1: Insertion of random mutations using Error-prone PCR Random mutations were inserted by Error-prone PCR using the pYES2 / CT-BO vector as a template. The N-terminal PCR primer used here was designed to contain a unique BglII site (AGATCT) present 218 base pairs downstream from the start codon. Further, the C-terminal side was designed as follows so as to include an XbaI site (TCTAGA) (see “Table 7”).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 これらのプライマーを用いて、GeneMorph PCR Mutagenesis Kit (ストラタジーン)によりError-prone PCRを行った。反応条件は同キットに付属のマニュアルを参考にして設定した。 Using these primers, Error-prone PCR was performed by GeneMorph PCR-Mutagenesis Kit (Stratagene). The reaction conditions were set with reference to the manual attached to the kit.
 得られたPCR産物をアガロースゲル電気泳動によって分析したところ、約1500bpのPCR断片を得ることができた。得られたPCR産物の収量から計算される変異の頻度は、1000bp当たり1.5箇所であった。計算方法は同キットに付属のマニュアルを参照した。 When the obtained PCR product was analyzed by agarose gel electrophoresis, a PCR fragment of about 1500 bp could be obtained. The mutation frequency calculated from the yield of the obtained PCR product was 1.5 sites per 1000 bp. Refer to the manual attached to the kit for the calculation method.
3-2:変異体のBO遺伝子ライブラリの作製
 上記3-1で作製した、ランダムに変異が挿入されたBO遺伝子断片は、1-3で示した方法と同様の方法でpYES2/CT-BOベクターのBglII-XbaIサイトへの組み込み、E. coliTO P10 株の形質転換を行った。ここでは約6600個の形質転換体のコロニー、即ち、約6600種の変異体遺伝子を含むプラスミドのライブラリを得た。
3-2: Preparation of mutant BO gene library The BO gene fragment randomly generated with mutations prepared in 3-1 above is prepared by the same method as shown in 1-3, pYES2 / CT-BO vector. Was incorporated into the BglII-XbaI site, and E. coliTO P10 strain was transformed. Here, a colony library of about 6600 transformants, that is, a plasmid library containing about 6600 mutant genes was obtained.
3-3:変異体BO遺伝子ライブラリによるS. cerevisiae の形質転換
 上記3-2で示した方法によって、変異体遺伝子ライブラリによるS. cerevisiae INV Sc1 株(インビトロジェン)の形質転換を行った。S. cerevisiae INVSc1のコンピテントセルは、酢酸リチウム法によって作製した。得られた形質転換体のライブラリに対して96ウェルプレートを用いた耐熱化スクリーニングを行った。
3-3: Transformation of S. cerevisiae with mutant BO gene library According to the method described in 3-2 above, S. cerevisiae INV Sc1 strain (Invitrogen) was transformed with the mutant gene library. A competent cell of S. cerevisiae INVSc1 was produced by the lithium acetate method. The obtained transformant library was subjected to heat-resistant screening using a 96-well plate.
3-4:96ウェルプレートを用いた耐熱化スクリーニング実験
 SCGlu 培地を96ウェルプレートに150mlずつ分注した後、上記で作製した形質転換酵母ライブラリのコロニーを個々のウェルに1つずつ接種した。これを20~23時間、27℃で震盪培養を行った。培養後、それぞれのウェルの濁度は目視によるとほぼ一定となった。
3-4: Heat-resistant screening experiment using 96-well plate After dispensing 150 ml of SCGlu medium into a 96-well plate, one colony of the transformed yeast library prepared above was inoculated into each well. This was subjected to shaking culture at 27 ° C. for 20 to 23 hours. After culturing, the turbidity of each well was almost constant visually.
 この段階において一度96ウェルプレートごと遠心分離(1500×g,20℃,10分)を行い、菌体を一旦沈殿させた。それぞれのウェルの底に沈澱した菌体をかき乱さないように、SCGlu 培地を完全に取り除いた。ここへSCGal 培地を180ml分注して、さらに8時間、27℃で震盪培養を行った。この培養後、再び遠心分離(1500×g,20℃,10分)を行い、菌体を沈澱させた。この上澄み液100mlを新しい96ウェルプレートに移し変えた。ここで熱処理を行う場合には、この96ウェルプレート上のサンプル溶液をセロファンテープでシールした後、80℃のドライオーブンで15分間放置した。熱処理後、5分間氷浴上で急冷した後、室温で15分間放置した。これに等量の20mMのABTS溶液(100 mM Tris-HCl pH8.0)を混合した。ウェル内の溶液がABTSとの反応に伴って緑色に呈色する様子を反応開始後、1時間観察した。野生型と比較してABTSの呈色が強いものをピックアップして、それに相当する菌体を20グリセロールストックとして-80℃で保存した。 At this stage, the whole 96-well plate was centrifuged once (1500 × g, 20 ° C., 10 minutes) to once precipitate the cells. The SCGlu medium was completely removed so as not to disturb the cells precipitated on the bottom of each well. To this, 180 ml of SCGal sputum medium was dispensed and further shake-cultured at 27 ° C. for 8 hours. After this culture, centrifugation (1500 × g, 20 ° C., 10 minutes) was performed again to precipitate the cells. 100 ml of this supernatant was transferred to a new 96 well plate. When heat treatment was performed here, the sample solution on the 96-well plate was sealed with cellophane tape and then left in a dry oven at 80 ° C. for 15 minutes. After the heat treatment, it was rapidly cooled on an ice bath for 5 minutes and then allowed to stand at room temperature for 15 minutes. This was mixed with an equal amount of 20 mM ABTS solution (100 mM Tris-HCl pH 8.0). The state in which the solution in the well colored green with the reaction with ABTS was observed for 1 hour after the start of the reaction. Those having a strong color of ABTS compared to the wild type were picked up, and the corresponding cells were stored as a 20 glycerol stock at -80 ° C.
 図1に耐熱化スクリーニングの一例を示す。図1は、反応開始1時間後のABTSの呈色の様子を示している。中央の2列(左から6,7列目)のすべては比較としての野生型の組換えBOであり、6列目は他のウェルと同様に熱処理を行ったものである。7列目は野生型の組換えBOの熱処理のない場合の比較である。 Figure 1 shows an example of heat resistance screening. FIG. 1 shows the state of coloration of ABTS 1 hour after the start of the reaction. All of the middle two columns (6th and 7th columns from the left) are wild-type recombinant BOs for comparison, and the 6th column is heat-treated in the same manner as the other wells. The seventh column is a comparison of the wild type recombinant BO without heat treatment.
 図1によると、四角囲い部分のウェルが6列目の野生型のどれよりも強くABTSが呈色していることがわかる。これらのウェルでは、野生型組換えBOと比較して熱安定性が向上した変異体BOが発現していると考えられる。 Referring to FIG. 1, it can be seen that ABTS is colored more strongly than any of the wild type in the sixth row in the square-enclosed wells. In these wells, it is considered that mutant BO having improved thermostability compared to wild-type recombinant BO is expressed.
 本実施例では3-4で示した耐熱化スクリーニングを96ウェルプレートで50枚、計4000検体について行い、耐熱化変異体BOを発現したと考えられる形質転換酵母を26個選出した。 In this example, 50 heat-resistant screening shown in 3-4 was performed on a total of 4000 samples in a 96-well plate, and 26 transformed yeasts that were considered to express heat-resistant mutant BO were selected.
 得られた26個の形質転換酵母からプラスミドベクターを抽出し、BO遺伝子領域の塩基配列の解析を行った結果、以下の26種の変異がBO遺伝子に挿入されていることが判明した。すなわち、野生型アミノ酸配列においてN末端から49番目のグルタミンをリジンに置換した変異(Q49K)、以下同様に、72番目のグルタミンがグルタミン酸に置換した変異(Q72E)、81番目のバリンがロイシンに置換した変異(V81L)、103番目のアラニンがプロリンに置換した変異(A103P)、121番目のチロシンがセリンに置換した変異(Y121S)、147番目のアルギニンがプロリンに置換した変異(R147P)、185番目のアラニンがセリンに置換した変異(A185S)、210番目のプロリンがロイシンに置換した変異(P210L)、225番目のフェニルアラニンがバリンに置換した変異(F225V)、258番目のグリシンがバリンに置換した変異(G258V)、264番目のアラニンがバリンに置換した変異(A264V)、270番目のチロシンがアスパラギン酸に置換した変異(Y270D)、299番目のセリンがアスパラギンに置換した変異(S299N)、322番目のアスパラギン酸がアスパラギンに置換した変異(D322N)、335番目のアスパラギンがセリンに置換した変異(N335S)、356番目のアルギニンがロイシンに置換した変異(R356L)、359番目のプロリンがセリンに置換した変異(P359S)、370番目のアスパラギン酸がチロシンに置換した変異(D370Y)、371番目のバリンがアラニンに置換した変異(V371A)、381番目のバリンがロイシンに置換した変異(V381L)、418番目のアラニンがスレオニンに置換した変異(A418T)、423番目のプロリンがロイシンに置換した変異(P423L)、437番目のアルギニンがヒスチジンに置換した(R437H)、468番目のメチオニンがバリンに置換した変異(M468V)、476番目のロイシンがプロリンに置換した変異(L476P)、513番目のバリンがロイシンに置換した変異(V513L)が確認された。 As a result of extracting a plasmid vector from the obtained 26 transformed yeasts and analyzing the nucleotide sequence of the BO gene region, it was found that the following 26 types of mutations were inserted into the BO gene. That is, a mutation in which the 49th glutamine from the N-terminus in the wild-type amino acid sequence is replaced with lysine (Q49K), a mutation in which the 72nd glutamine is replaced with glutamic acid (Q72E), and the valine in the 81st are replaced with leucine. Mutation (V81L), mutation in which 103rd alanine is replaced with proline (A103P), mutation in which 121th tyrosine is replaced with serine (Y121S), mutation in which 147th arginine is replaced with proline (R147P), 185th Mutation in which alanine was replaced with serine (A185S), mutation in which 210th proline was replaced with leucine (P210L), mutation in which 225th phenylalanine was replaced with valine (F225V), mutation in which 258th glycine was replaced with valine (G258V) Mutation in which 264th alanine is replaced with valine (A264V), 270th tyrosine is asthma Mutation substituted with aspartic acid (Y270D) Mutation where 299th serine was replaced with asparagine (S299N) Mutation where 322nd aspartic acid was replaced with asparagine (D322N) Mutation where 335th asparagine was replaced with serine ( N335S) 356th arginine substitution with leucine (R356L), 359th proline substitution with serine (P359S), 370th aspartic acid substitution with tyrosine (D370Y), 371th valine Is a mutation in which the alanine is replaced with alanine (V371A), a mutation in which the 381st valine is replaced with leucine (V381L), a mutation in which the 418th alanine is replaced with threonine (A418T), a mutation in which the 423rd proline is replaced with leucine (P423L ) Arginine at 437 was replaced with histidine (R437H), and methionine at 468 was Bali Substituted mutated to (M468V), 476 th leucine is substituted with proline mutation (L476P), 513 th valine mutation was substituted with leucine (V513L) was confirmed.
(実施例4):耐熱化変異体のPichia methanolicaによる大量発現
 以下では、耐熱化スクリーニングによって発見された26種の耐熱化変異体候補を大量に発現するために、新たに酵母Pichia methanolica(以下、P. methanolica)を用いた組換えBOの分泌発現系の構築を行い、野生型および耐熱化変異体候補の大量発現を試みた。
(Example 4): Mass expression of thermostable mutants by Pichia methanolica In the following, in order to express a large amount of 26 thermostable mutant candidates discovered by thermostable screening, a new yeast Pichia methanolica (hereinafter, We constructed a secretory expression system for recombinant BO using P. methanolica, and tried to express wild-type and thermostable mutant candidates in large quantities.
4-1:pMETaB- BOベクターの作製およびそれによるP. methanolicaの形質転換
 まず、P. methanolicaの発現系で用いる発現ベクターの作製を行った。ここで用いるpMETaBベクター(インビトロジェン)にはS. cerevisiae 由来の分泌シグナル:α因子が含まれるので、その下流に成熟BOに相当する遺伝子を挿入した。成熟BO遺伝子領域のPCRによる増幅には、鋳型としてpYES2/CT-BO ベクターを、プライマーとして以下の「表8」に示すものを用いて行った。
4-1: Preparation of pMETaB-BO vector and transformation of P. methanolica using the vector First, an expression vector for use in an expression system of P. methanolica was prepared. Since the pMETaB vector (Invitrogen) used here contains a secretion signal: α factor derived from S. cerevisiae, a gene corresponding to mature BO was inserted downstream thereof. Amplification of the mature BO gene region by PCR was performed using the pYES2 / CT-BO vector as a template and the primers shown in “Table 8” below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 得られた1500bpの増幅断片を制限酵素EcoRI 、SpeIにより消化した後、同酵素で消化されたpMETaBベクターと連結した。この連結反応の際、1-3で示した処理と同様の処理を反応物に施した。作製したBO遺伝子領域を含むpMETaBベクター(以降、pMETaB-BOベクターとする)について、挿入したBO遺伝子部分の塩基配列の確認を行った。変異体BOの場合は、ここで作成したpMETaB-BO ベクターに対してQuickChangeMutagenesisKits (インビトロジェン)により変異を挿入した。以降の操作は野生型、変異体に関わらずすべて同様に行った。 The obtained 1500 bp amplified fragment was digested with restriction enzymes EcoRI and SpeI, and then ligated with the pMETaB vector digested with the same enzyme. During this ligation reaction, the same treatment as that shown in 1-3 was performed on the reaction product. Regarding the prepared pMETaB vector containing the BO gene region (hereinafter referred to as pMETaB-BO vector), the base sequence of the inserted BO gene portion was confirmed. In the case of mutant BO, the mutation was inserted into the pMETaB-BO vector prepared here by QuickChange Mutagenesis Kits (Invitrogen). All subsequent operations were performed in the same manner regardless of the wild type or mutant.
 上記の野生型および26種の耐熱化変異体候補のpMETaB-BOベクターに加え、26種の耐熱化変異体候補の2つまたは3つまたは4つを組み合わせた多重変異体のpMETaB-BO ベクターも同様に作製し、塩基配列の確認を行った。 In addition to the pMETaB-BO vectors of 26 wild-type mutants and 26 heat-resistant mutant candidates as described above, a multi-mutant pMETaB-BO vector combining 2 or 3 or 4 of 26 heat-resistant mutant candidates is also available. A similar preparation was made and the nucleotide sequence was confirmed.
 作製したすべてのpMETaB-BO ベクターによるP. methanolicaの形質転換を行った。P. methanolicaは、PMAD11株(インビトロジェン)を用いた。形質転換はpMETaBベクターに付属のマニュアルに記載された方法に従って行った。形質転換酵母の選択はMD寒天平板培地(組成は「表9」を参照)により行った。この反応のコンピテンシーは、いずれも~10/ 1μgDNAであり、マニュアルに記載の値とほぼ一致した。 P. methanolica was transformed with all of the prepared pMETaB-BO vectors. PMAD11 strain (Invitrogen) was used for P. methanolica. Transformation was performed according to the method described in the manual attached to the pMETaB vector. Selection of transformed yeast was carried out using MD agar plate medium (see “Table 9” for composition). The competency of this reaction was ˜10 / 1 μg DNA, which almost coincided with the value described in the manual.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
4-2:P. methanolicaによる組換えBOの大量発現
 形質転換後5~7日で得られたMD培地上の形質転換酵母のコロニーは3mLのBMDY培地(組成は「表10」を参照)で一晩培養した。得られた培養液の一部を再度、MD寒天平板培地に展開した。この2~3日後に得られる白色の精製コロニーは、次項の大量発現に用いた。
4-2: Large-scale expression of recombinant BO by P. methanolica The transformed yeast colonies on MD medium obtained 5-7 days after transformation were 3 mL of BMDY medium (see Table 10 for composition). Cultured overnight. A part of the obtained culture broth was again developed on an MD agar plate medium. The white purified colony obtained 2 to 3 days later was used for mass expression of the next item.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 次に、P. methanolicaによる組換えBOの大量発現作業に移行した。形質転換酵母の精製コロニーを50mL のBMDY液体培地に接種して、一晩、30℃で震とう培養を行った。このときOD600は2~5となった。ここで、得られた菌体を一旦遠心分離(1500×g、室温、10分)により沈澱させ、BMDY液体培地を除いた後、菌体のみをBMMY液体培地(組成は「表11」を参照)50~100mlに懸濁した。これを24時間、27℃で震とう培養を行った。その後、終濃度0.5%メタノールを添加して、さらに24時間、同条件で培養を行った。これを96時間まで行った後、遠心分離により菌体を除き、残りの培養液を5~10ml程度まで濃縮して、50mM Tris-HCl バッファー(pH7.6)に対して透析を行った。 Next, it shifted to the mass expression work of recombinant BO by P. methanolica. Purified colonies of transformed yeast were inoculated into 50 mL of BMDY liquid medium and cultured overnight at 30 ° C. with shaking. At this time, the OD 600 was 2-5. Here, the obtained bacterial cells were once precipitated by centrifugation (1500 × g, room temperature, 10 minutes), and after removing the BMDY liquid medium, only the bacterial cells were treated with the BMMY liquid medium (see “Table 11” for the composition). ) Suspended in 50-100 ml. This was cultured with shaking at 27 ° C. for 24 hours. Thereafter, methanol was added at a final concentration of 0.5% and further cultured for 24 hours under the same conditions. After performing this for up to 96 hours, the cells were removed by centrifugation, and the remaining culture solution was concentrated to about 5 to 10 ml and dialyzed against 50 mM Tris-HCl buffer (pH 7.6).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
4-3.組換えBOの精製
 続いて、アニオン交換クロマトグラフィーによる組換えBOの精製を行った。前工程で調製した組換えBOを含む粗製液は、アニオン交換カラム(HiTrap Q HP ;ベッド体積:5ml;GEヘルスケアバイオサイエンス)を用いて精製を行った。精製条件は既報(Biochemistry, 38, 3034-3042(1999))を参考にして行った。
4-3. Purification of recombinant BO Subsequently, the recombinant BO was purified by anion exchange chromatography. The crude liquid containing recombinant BO prepared in the previous step was purified using an anion exchange column (HiTrap Q HP; bed volume: 5 ml; GE Healthcare Bioscience). Purification conditions were carried out with reference to a previous report (Biochemistry, 38, 3034-3042 (1999)).
 次に、疎水クロマトグラフィーによる組換えBOの精製を行った。疎水クロマトグラフィーに使用したカラムはToyopearlButyl-650Mカラム(100 ml;22 mm x 20 cm ;東ソー)である。精製条件は既報(Biochemistry, 44, 7004-7012(2005))を参考にして行った。精製後に得られた組換えBO(A264V)のUV-visスペクトルを図2に示す。 Next, the recombinant BO was purified by hydrophobic chromatography. The column used for the hydrophobic chromatography is a Toyopearl Butyl-650M column (100 ml; 22 mm x 20 cm; Tosoh). Purification conditions were carried out with reference to a previous report (Biochemistry, 44, 7004-7012 (2005)). The UV-vis spectrum of recombinant BO (A264V) obtained after purification is shown in FIG.
 図2に示したA264Vのスペクトルパターンは既報(Protein ExpressionPurif., 41, 77 -83 (2005))のP. pastrisによる組換えBOのそれに完全に一致していた。 The spectrum pattern of A264V shown in FIG. 2 completely matched that of the recombinant BO by P. pastris in the previous report (Protein Expression Purif., 41, 77 -83 (2005)).
 P. methanolicaによる大量培養の最終的な収量は、最大で11.7mg/1L培養であった。 The final yield of mass culture with P. methanolica was 11.7 mg / 1L maximum.
4-4:耐熱性の評価
 次に、P. methanolicaによる組換えBOおよび市販品のBO(アマノエンザイム)の耐熱性の評価を行った。耐熱性の評価は熱処理後の残存活性率の比較によって行った。ここで、「熱処理後の残存酵素活性率(residual activity )」とは、「酵素活性残存率」、あるいは「酵素活性維持率」と称してもよく、酵素に対して所定の熱処理を施したときに、その前後で活性がどのように変化するかを表した値である。すなわち、熱処理の前後において、同一条件で酵素活性測定を行い、熱処理後の活性値が処理前に比べてどれだけ存在するかを百分率で表した値である。本発明において基準とする「熱処理」の条件は、緩衝液中60℃で1時間又は65℃で30分静置処理であり、この熱処理前後における、前記酵素活性値の比を百分率で表している。
4-4: Evaluation of heat resistance Next, the heat resistance of recombinant BO by P. methanolica and commercially available BO (Amanoenzyme) was evaluated. The heat resistance was evaluated by comparing the residual activity after heat treatment. Here, “residual activity after heat treatment” (residual activity) may be referred to as “enzyme activity remaining rate” or “enzyme activity maintenance rate”. When the enzyme is subjected to a predetermined heat treatment It is a value representing how the activity changes before and after that. That is, the enzyme activity measurement is performed under the same conditions before and after the heat treatment, and the percentage value indicates how much the activity value after the heat treatment is present before the treatment. The condition of the “heat treatment” as a reference in the present invention is a static treatment at 60 ° C. for 1 hour or 65 ° C. for 30 minutes in a buffer solution, and the ratio of the enzyme activity values before and after this heat treatment is expressed as a percentage. .
 BO活性測定はABTSを基質として用い、反応進行に伴う730nmの吸光度変化 (ABTSの反応物の増加に由来する)を追跡した。測定条件は「表12」のとおりとした。なお、BO濃度は活性測定の際、730nmの吸光度変化が1分間当たり0.01~0.2程度となるように調製した。反応はABTSを含むリン酸緩衝液(2980~2995μL)に酵素溶液(5~20μL)を加えることで開始した。 The BO activity was measured using ABTS as a substrate, and the change in absorbance at 730 nm accompanying the progress of the reaction (derived from an increase in the reaction product of ABTS) was followed. The measurement conditions were as shown in “Table 12”. The BO concentration was adjusted so that the change in absorbance at 730 nm was about 0.01 to 0.2 per minute when measuring the activity. The reaction was started by adding an enzyme solution (5 to 20 μL) to a phosphate buffer solution (2980 to 2995 μL) containing ABTS.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 P. methanolicaで発現させた計26種の耐熱化BO変異体候補(Q49K, Q72E, V81L, A103P, Y121S,R147P, A185S, P210L, F225V, G258V, A264V, Y270D, S299N, D322N, N335S, R356L,P359S, D370Y, V371A, V381L, A418T, P423L, R437H, M468V, L476P, V513L)およびこれらの2つまたは3つまたは4つを組み合わせた多重変異体について、耐熱性実験を行った。各酵素溶液の熱処理は氷浴中の500mlチューブに分注した150mlの酵素溶液(100mMリン酸カリウム)バッファー( pH6.0))を60℃に設定したヒートブロック上にすばやく移動させ、1時間放置後、再び氷浴中にすばやく戻すという方法を採用した。この耐熱化確認実験の結果を「表13」にまとめた。 A total of 26 heat-resistant BO mutant candidates expressed in P. methanolica (Q49K, Q72E, V81L, A103P, Y121S, R147P, SA185S, P210L, F225V, G258V, A264V, Y270D, S299N, D322N, N335S, P359S, D370Y, V371A, V381L, A418T, P423L, R437H, M468V, L476P, V513L) and multiple mutants combining these two or three or four were subjected to heat resistance experiments. For heat treatment of each enzyme solution, 150 ml of enzyme solution (100 mM potassium phosphate buffer (バ ッ フ ァ ー pH 6.0)) dispensed into a 500 ml tube in an ice bath was quickly transferred onto a heat block set at 60 ° C. and left for 1 hour. After that, the method of quickly returning to the ice bath again was adopted. The results of the heat resistance confirmation experiment are summarized in “Table 13”.
 耐熱性の評価を行った55種の耐熱化BO変異体候補の変性温度Tm を示差走査マイクロカロリメトリー(以下、DSC:Differenctialscanning calorimetry と略す)により測定した。DSCはMicroCal社のVP-DSCを用いた。酵素溶液は2.0~2.5mg/mlとし、昇温は1時間に60℃の速度で行った。この結果を、耐熱化確認実験の結果と共に「表13」にまとめた。 The denaturation temperature Tm of the 55 heat-resistant BO mutant candidates for which heat resistance was evaluated was measured by differential scanning microcalorimetry (hereinafter abbreviated as DSC: Different scanning calorimetry). DSC used VP-DSC of MicroCal. The enzyme solution was 2.0 to 2.5 mg / ml, and the temperature was raised at a rate of 60 ° C. per hour. The results are shown in “Table 13” together with the results of the heat resistance confirmation experiment.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 「表13」において、三重変異体または四重変異体の中には、残存酵素活性率が100%を超えるものがいくつか観測された。そこで、次に、熱処理温度を65℃に上昇させて同様の耐熱化確認実験を行った。この結果を「表14」にまとめた。なお、「表14」では、熱処理時間を30分とした。 In Table 13, several triple mutants or quadruple mutants having a residual enzyme activity rate exceeding 100% were observed. Then, the heat treatment temperature was raised to 65 ° C., and a similar heat resistance confirmation experiment was performed. The results are summarized in “Table 14”. In Table 14, the heat treatment time was 30 minutes.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 「表13」および「表14」にまとめたように、野生型および市販品のBOでは、熱処理により顕著な残存酵素活性率の低下が認められた。これに対して、耐熱化BO変異体候補の多くは、熱処理によっても酵素活性を高度に維持し、優れた耐熱性を示すことが確認された。 As summarized in “Table 13” and “Table 14”, in the wild-type and commercially available BO, a remarkable decrease in the residual enzyme activity rate was observed by heat treatment. On the other hand, it was confirmed that many of the thermostable BO mutant candidates maintain high enzyme activity even by heat treatment and exhibit excellent heat resistance.
 さらに、「表14」に示すように、変異体F225V/D322N/M468V ,変異体F225V/D370Y/L476P ,変異体A264V/A418T/L476P ,変異体A264V/R437H/L476P および変異体A103P/A264V/Y270D/L476P の5つの耐熱化BO変異体では、65℃,30分の熱処理によって逆に残存酵素活性率が上昇した。このことは、これらの5変異体が耐熱性に加え、熱処理により酵素活性が上昇するという際立った特性を有することを明らかにするものである。 Furthermore, as shown in Table 14, mutant F225V / D322N / M468VM, variant F225V / D370Y / L476P, variant A264V / A418T / L476P, variant A264V / R437H / L476P and variant A103P / A264V / Y270D In the 5 thermostable BO mutants of / L476P, the residual enzyme activity rate was increased by heat treatment at 65 ° C. for 30 minutes. This reveals that these five mutants have outstanding characteristics that the enzyme activity is increased by heat treatment in addition to heat resistance.
 (実施例5):耐熱化BO変異体の電極への固相化と電極の性能評価
 本実施例では、熱処理によって酵素活性が上昇した5つの耐熱化BO変異体のひとつ (変異体A103P/A264V/Y270D/L476P )をメディエーター(K3[Fe(CN)6 ])とともに固定化して電極を作製した。回転電極装置を用いて、作製した電極の触媒電流値を測定し、燃料電池用電極としての性能評価を行った。耐熱化BO変異体の固定化は、本発明に係る方法と従来方法の2通りによって行い、それぞれの方法によって得られた電極の性能を比較した。また、市販品BOについても、同様に2通りの方法によって固定化を行い、得られた電極の性能比較を行った。
(Example 5): Immobilization of thermostabilized BO mutant to electrode and evaluation of electrode performance In this example, one of the five thermostabilized BO mutants whose enzyme activity was increased by heat treatment (mutant A103P / A264V / Y270D / L476P) was immobilized together with a mediator (K 3 [Fe (CN) 6 ]) to prepare an electrode. Using the rotating electrode device, the catalyst current value of the produced electrode was measured, and performance evaluation as a fuel cell electrode was performed. The thermostabilized BO mutant was immobilized by two methods, the method according to the present invention and the conventional method, and the performance of the electrodes obtained by each method was compared. In addition, the commercially available BO was similarly fixed by two methods, and the performance of the obtained electrodes was compared.
5-1:電極の作製
(1)電極1(市販品BO・従来固定化方法)
 1cm角のカーボンフェルトを2枚重ねたもの(CF2) に、市販品(アマノエンザイム)のBO溶液(緩衝液は46.5mMリン酸ナトリウム溶液)を80μl、固定化剤ポリ-L-リシン(PLL)2wt%溶液を80μl、K[Fe(CN)6 ](以下、「FeCN」と略記)200mM溶液を80μl、浸み込ませた。市販品BOは、凍結乾燥品(酵素活性2.5U/mg)を、50mg/ml溶液に調製して用いた(酵素の活性定義についてはメーカー添付書を参照)。
5-1: Preparation of electrode (1) Electrode 1 (commercially available BO, conventional immobilization method)
A commercial product (Amanoenzyme) BO solution (buffer solution: 46.5 mM sodium phosphate solution) 80 μl, and 1-cm square carbon felt (CF2) stacked, poly-L-lysine (PLL) ) 80 μl of 2 wt% solution and 80 μl of 200 mM solution of K 3 [Fe (CN) 6 ] (hereinafter abbreviated as “FeCN”) were immersed. Commercially available BO was prepared by using a lyophilized product (enzyme activity 2.5 U / mg) in a 50 mg / ml solution (see the manufacturer's attachment for the definition of enzyme activity).
 溶液を浸み込ませたCF2 を、乾燥機で30℃、2時間乾燥させて水分を蒸発させた。乾燥後、直径6mmの大きさに切り出したCF2 を、6mm径のPFC電極(カーボン部分は3mm径)の先端にナイロン製ネットとOリングを用いて物理的に固定し、電極1を得た。 The CF2 soaked with the solution was dried in a dryer at 30 ° C. for 2 hours to evaporate water. After drying, a CF2 cage cut into a size of 6 mm in diameter was physically fixed to the tip of a 6 mm PFC electrode (carbon part is 3 mm in diameter) using a nylon net and an O-ring to obtain an electrode 1.
(2)電極2(市販品BO・本発明に係る固定化方法)
 電極1と同様にして各溶液を浸み込ませたCF2 を、乾燥機で30℃、1時間乾燥させた後、さらに60℃、1時間乾燥させて水分を蒸発させた。乾燥後、CF2 を切り出し、PFC電極の先端に固定して、電極2を得た。
(2) Electrode 2 (commercial product BO, immobilization method according to the present invention)
In the same manner as in the electrode 1, CF2 soaked with each solution was dried with a dryer at 30 ° C. for 1 hour, and further dried at 60 ° C. for 1 hour to evaporate water. After drying, CF2 was cut out and fixed to the tip of the PFC electrode to obtain electrode 2.
(3)電極3(耐熱化BO変異体・従来固定化方法)
 1cm角のカーボンフェルトを2枚重ねたもの(CF2) に、変異体BO溶液を80μl、固定化剤ポリ-L-リシン(PLL)2wt%溶液を80μl、FeCN200mM溶液を80μl、浸み込ませた。変異体BO溶液は、市販品BO溶液と600nmの吸光度が同程度になるように調製して用いた。
(3) Electrode 3 (heat-resistant BO mutant / conventional immobilization method)
80 μl of mutant BO solution, 80 μl of immobilizing agent poly-L-lysine (PLL) 2 wt% solution, and 80 μl of FeCN 200 mM solution were immersed in a stack of two 1 cm square carbon felts (CF2). . The mutant BO solution was prepared and used so that the absorbance at 600 nm was comparable to that of the commercially available BO solution.
 溶液を浸み込ませたCF2 を、乾燥機で30℃、2時間乾燥させて水分を蒸発させた。乾燥後、CF2 を切り出し、PFC電極の先端に固定して、電極3を得た。 The CF2 soaked with the solution was dried in a dryer at 30 ° C. for 2 hours to evaporate water. After drying, the CF2 cage was cut out and fixed to the tip of the PFC electrode to obtain an electrode 3.
(4)電極4(耐熱化BO変異体・本発明に係る固定化方法)
 電極3と同様にして各溶液を浸み込ませたCF2 を、乾燥機で30℃、1時間乾燥させた後、さらに60℃、1時間乾燥させて水分を蒸発させた。乾燥後、CF2 を切り出し、PFC電極の先端に固定して、電極4を得た。
(4) Electrode 4 (heat-resistant BO mutant / immobilization method according to the present invention)
In the same manner as in the electrode 3, CF2 soaked with each solution was dried with a dryer at 30 ° C. for 1 hour, and further dried at 60 ° C. for 1 hour to evaporate water. After drying, CF2 was cut out and fixed to the tip of the PFC electrode to obtain an electrode 4.
5-2:触媒電流値の測定
 電極1~4について、回転電極装置を用いてサイクリックボルタンメトリー(CV)を測定した。CV測定は、初期電位0.6V(vs. Ag |AgCl) から-0.35V(vs. Ag |AgCl) までの電位領域を、速度10mV/sで電位走査して行った。緩衝液には、46.5mMリン酸ナトリウム緩衝液(2ml)を用い、これに純酸素をバブリングさせることで酸素飽和溶液とした。また、電極の回転数は、1000rpmとした。
5-2: Measurement of catalyst current value For electrodes 1 to 4, cyclic voltammetry (CV) was measured using a rotating electrode device. The CV measurement was performed by scanning the potential in the potential region from the initial potential of 0.6 V (vs. Ag | AgCl) to −0.35 V (vs. Ag | AgCl) at a speed of 10 mV / s. As the buffer solution, 46.5 mM sodium phosphate buffer solution (2 ml) was used, and pure oxygen was bubbled through this to obtain an oxygen saturated solution. The rotation speed of the electrode was 1000 rpm.
 図3に、電極1で得られたボルタモグラムを示す。図中、点線は、アルゴン下で測定されたボルタモグラムを、実線は、酸素飽和下で測定されたボルタモグラムを示す。BOの触媒反応が進行しないアルゴン下での電流値と、触媒反応が進行する酸素飽和下での電流値との差分を触媒電流値とし、-0.2V(vs.Ag |AgCl)における定常電流値の差分を電極性能評価のための触媒電流値とした。 FIG. 3 shows a voltammogram obtained with the electrode 1. In the figure, the dotted line shows a voltammogram measured under argon, and the solid line shows a voltammogram measured under oxygen saturation. The difference between the current value under argon where the catalytic reaction of BO does not proceed and the current value under oxygen saturation where the catalytic reaction proceeds is defined as the catalytic current value, and the steady-state current at -0.2 V (vs.Ag | AgCl) The difference between the values was used as the catalyst current value for electrode performance evaluation.
 電極1~4で得られた触媒電流値(mA/cm2)を「表15」に示す。 The catalyst current values (mA / cm 2 ) obtained with the electrodes 1 to 4 are shown in “Table 15”.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 電極1(市販品BO・従来固定化方法)の触媒電流値は、6.60±0.57mA/cm2であった。一方、市販品BOを本発明に係る固定化方法によって固定した電極3では、触媒電流値は2.06±0.33mA/cm2となった。電極1に対する電極2の触媒電流比は44.8%であり、耐熱性の低い市販品BOを用いた場合には、固定化温度を60℃とすることによって顕著に電極性能が低下することが確認された。 The catalyst current value of electrode 1 (commercial product BO, conventional immobilization method) was 6.60 ± 0.57 mA / cm 2 . On the other hand, in the electrode 3 in which the commercial product BO was fixed by the fixing method according to the present invention, the catalyst current value was 2.06 ± 0.33 mA / cm 2 . The catalyst current ratio of the electrode 2 to the electrode 1 is 44.8%. When a commercially available BO having low heat resistance is used, the electrode performance may be significantly reduced by setting the immobilization temperature to 60 ° C. confirmed.
 電極3(耐熱化BO変異体・従来固定化方法)の触媒電流値は、3.81±0.22mA/cm2であった。一方、耐熱化BO変異体を本発明に係る固定化方法によって固定した電極4では、触媒電流値は4.56±0.46mA/cm2となり、電極3に比べて触媒電流値が119%程度に増加した。これは、耐熱化BO変異体を用いた場合には、固定化温度を60℃とすることでBOの酵素活性が上昇し、これによって従来の固定化方法に比べて優れた性能を有する電極が得られることを示している。 The catalyst current value of electrode 3 (heat-resistant BO mutant / conventional immobilization method) was 3.81 ± 0.22 mA / cm 2 . On the other hand, in the electrode 4 in which the heat-resistant BO mutant was immobilized by the immobilization method according to the present invention, the catalyst current value was 4.56 ± 0.46 mA / cm 2 , and the catalyst current value was about 119% compared to the electrode 3. Increased to. This is because when the thermostabilized BO mutant is used, the enzyme activity of BO is increased by setting the immobilization temperature to 60 ° C., which makes it possible to produce an electrode having superior performance compared to the conventional immobilization method. It shows that it is obtained.
 本発明に係る燃料電池、燃料電池用電極およびこれらの製造方法、並びに燃料電池用電極への酵素固定化方法は、例えば、電子機器、移動体、動力装置、建設機械、工作機械、発電システム、コージェネレーションシステム等、電力を必要とする様々な機器、装置、システムに広く用いることができる。 The fuel cell according to the present invention, the fuel cell electrode and the production method thereof, and the enzyme immobilization method to the fuel cell electrode include, for example, an electronic device, a moving body, a power device, a construction machine, a machine tool, a power generation system, It can be widely used in various devices, devices, and systems that require electric power, such as cogeneration systems.

Claims (13)

  1.  燃料電池に用いられる電極に酵素を固定化するための方法であって、
     前記酵素として、その野生型アミノ酸配列において少なくとも一つ以上のアミノ酸残基が欠失、置換、付加若しくは挿入された変異型酵素であり、かつ、熱処理により活性が上昇し得る特性を備えた変異型酵素を、前記活性を上昇させ得る温度範囲において固定化する酵素固定化方法。
    A method for immobilizing an enzyme on an electrode used in a fuel cell,
    As the enzyme, a mutant enzyme in which at least one amino acid residue is deleted, substituted, added or inserted in the wild-type amino acid sequence, and having a property that activity can be increased by heat treatment An enzyme immobilization method for immobilizing an enzyme in a temperature range in which the activity can be increased.
  2.  前記電極は正極であり、前記変異型酵素は変異型ビリルビンオキシダーゼである、請求項1記載の酵素固定化方法。 The enzyme immobilization method according to claim 1, wherein the electrode is a positive electrode, and the mutant enzyme is a mutant bilirubin oxidase.
  3.  前記野生型アミノ酸配列は、配列番号1に示す不完全糸状菌 Myrothecium verrucari 由来ビリルビンオキシダーゼのアミノ酸配列である、請求項2記載の酵素固定化方法。 The enzyme immobilization method according to claim 2, wherein the wild type amino acid sequence is the amino acid sequence of bilirubin oxidase derived from the incomplete filamentous fungus yro Myrothercium verrucari 配 列 shown in SEQ ID NO: 1.
  4.  前記変異型ビリルビンオキシダーゼとして、前記野生型アミノ酸配列において、N末端から225番目のフェニルアラニンをバリンに置換(F225V)、322番目のアスパラギン酸をアスパラギンに置換(D322N)、468番目のメチオニンをバリンに置換(M468V)した配列番号2に示される変異型ビリルビンオキシダーゼを用いる、請求項3記載の酵素固定化方法。 As the mutant bilirubin oxidase, in the wild type amino acid sequence, 225th phenylalanine from the N-terminus is replaced with valine (F225V), 322rd aspartic acid is replaced with asparagine (D322N), and 468th methionine is replaced with valine. The method for immobilizing an enzyme according to claim 3, wherein the mutant bilirubin oxidase represented by SEQ ID NO: 2 (M468V) is used.
  5.  前記変異型ビリルビンオキシダーゼとして、前記野生型アミノ酸配列において、N末端から225番目のフェニルアラニンをバリンに置換(F225V)、370番目のアスパラギン酸をチロシンに置換(D370Y)、476番目のロイシンをプロリンに置換(L476P)した配列番号3に示される変異型ビリルビンオキシダーゼを用いる、請求項3記載の酵素固定化方法。 As the mutant bilirubin oxidase, in the wild type amino acid sequence, 225th phenylalanine from the N-terminal is replaced with valine (F225V), 370th aspartic acid is replaced with tyrosine (D370Y), and 476th leucine is replaced with proline. The method for immobilizing an enzyme according to claim 3, wherein the mutant bilirubin oxidase represented by SEQ ID NO: 3 (L476P) is used.
  6.  前記変異型ビリルビンオキシダーゼとして、前記野生型アミノ酸配列において、N末端から264番目のアラニンをバリンに置換(A264V)、418番目のアラニンをスレオニンに置換(A418T)、476番目のロイシンをプロリンに置換(L476P)した配列番号4に示される変異型ビリルビンオキシダーゼを用いる、請求項3記載の酵素固定化方法。 As the mutant bilirubin oxidase, in the wild type amino acid sequence, the 264th alanine from the N-terminus is replaced with valine (A264V), the 418th alanine is replaced with threonine (A418T), and the 476th leucine is replaced with proline ( The method for immobilizing an enzyme according to claim 3, wherein the mutant bilirubin oxidase represented by SEQ ID NO: 4 is used.
  7.  前記変異型ビリルビンオキシダーゼとして、前記野生型アミノ酸配列において、N末端から264番目のアラニンをバリンに置換(A264V)、437番目のアルギニンをヒスチジンに置換(R437H)、476番目のロイシンをプロリンに置換(L476P)した配列番号5に示される変異型ビリルビンオキシダーゼを用いる、請求項3記載の酵素固定化方法。 As the mutant bilirubin oxidase, in the wild-type amino acid sequence, the 264th alanine from the N-terminus is replaced with valine (A264V), the 437th arginine is replaced with histidine (R437H), and the 476th leucine is replaced with proline ( 4. The enzyme immobilization method according to claim 3, wherein the mutant bilirubin oxidase represented by SEQ ID NO: 5 is used.
  8.  前記変異型ビリルビンオキシダーゼとして、前記野生型アミノ酸配列において、N末端から103番目のアラニンをプロリンに置換(A103P)、N末端から264番目のアラニンをバリンに置換(A264V)、270番目のチロシンをアスパラギン酸に置換(Y270D)、476番目のロイシンをプロリンに置換(L476P)した配列番号6に示される変異型ビリルビンオキシダーゼを用いる、請求項3記載の酵素固定化方法。 As the mutant bilirubin oxidase, in the wild type amino acid sequence, the 103rd alanine from the N-terminus is replaced with proline (A103P), the 264th alanine from the N-terminus is replaced with valine (A264V), and the 270th tyrosine is asparagine. The enzyme immobilization method according to claim 3, wherein the mutant bilirubin oxidase represented by SEQ ID NO: 6 in which the acid is substituted (Y270D) and the 476th leucine is substituted with proline (L476P) is used.
  9.  前記温度範囲が、20℃以上65℃以下であることを特徴とする請求項4~8のいずれか一項に記載の酵素固定化方法。 The enzyme immobilization method according to any one of claims 4 to 8, wherein the temperature range is from 20 ° C to 65 ° C.
  10.  プロトン伝導体を介して電極が対向する構造を有する燃料電池の製造方法であって、
     野生型アミノ酸配列において少なくとも一つ以上のアミノ酸残基が欠失、置換、付加若しくは挿入された変異型酵素であり、かつ、熱処理により活性が上昇し得る特性を備えた変異型酵素を、該活性を上昇させ得る温度範囲において前記電極に固定化する工程を含む燃料電池の製造方法。
    A method of manufacturing a fuel cell having a structure in which electrodes face each other via a proton conductor,
    A mutant enzyme having at least one amino acid residue deleted, substituted, added or inserted in the wild-type amino acid sequence, and having a property that the activity can be increased by heat treatment; A method for producing a fuel cell, comprising a step of fixing to the electrode in a temperature range in which the temperature can be increased.
  11.  プロトン伝導体を介して電極が対向する構造を有する燃料電池であって、
     野生型アミノ酸配列において少なくとも一つ以上のアミノ酸残基が欠失、置換、付加若しくは挿入された変異型酵素であり、かつ、熱処理により活性が上昇し得る特性を備えた変異型酵素が、該活性を上昇させ得る温度範囲において前記電極に固定化されている燃料電池。
    A fuel cell having a structure in which electrodes face each other via a proton conductor,
    A mutant enzyme in which at least one or more amino acid residues are deleted, substituted, added or inserted in the wild-type amino acid sequence and has a characteristic that the activity can be increased by heat treatment is A fuel cell fixed to the electrode in a temperature range in which the temperature can be increased.
  12.  燃料電池に用いられる電極の製造方法であって、
     野生型アミノ酸配列において少なくとも一つ以上のアミノ酸残基が欠失、置換、付加若しくは挿入された変異型酵素であり、かつ、熱処理により活性が上昇し得る特性を備えた変異型酵素を、該活性を上昇させ得る温度範囲において前記電極に固定化する工程を含む燃料電池用電極の製造方法。
    A method of manufacturing an electrode used in a fuel cell,
    A mutant enzyme having at least one amino acid residue deleted, substituted, added or inserted in the wild-type amino acid sequence, and having a property that the activity can be increased by heat treatment; A method for producing an electrode for a fuel cell, comprising a step of fixing to the electrode in a temperature range in which the temperature can be increased.
  13.  燃料電池に用いられる電極であって、
     野生型アミノ酸配列において少なくとも一つ以上のアミノ酸残基が欠失、置換、付加若しくは挿入された変異型酵素であり、かつ、熱処理により活性が上昇し得る特性を備えた変異型酵素が、該活性を上昇させ得る温度範囲において前記電極に固定化されている燃料電池用電極。
     
    An electrode used in a fuel cell,
    A mutant enzyme in which at least one or more amino acid residues are deleted, substituted, added or inserted in the wild-type amino acid sequence and has a characteristic that the activity can be increased by heat treatment is A fuel cell electrode fixed to the electrode in a temperature range in which the temperature can be increased.
PCT/JP2009/069803 2007-12-04 2009-11-24 Method for immobilizing enzyme on electrode for fuel cell, fuel cell, method for manufacturing fuel cell, electrode for fuel cell, and method for manufacturing electrode for fuel cell WO2010061822A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/130,475 US20110229776A1 (en) 2007-12-04 2009-11-24 Method for immobilizing enzyme on electrode for fuel cell, fuel cell, method for manufacturing fuel cell, electrode for fuel cell, and method for manufacturing electrode for fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-299151 2008-11-25
JP2008299151A JP2009158480A (en) 2007-12-04 2008-11-25 Enzyme immobilizing method to electrode for fuel cell

Publications (1)

Publication Number Publication Date
WO2010061822A1 true WO2010061822A1 (en) 2010-06-03

Family

ID=42226424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069803 WO2010061822A1 (en) 2007-12-04 2009-11-24 Method for immobilizing enzyme on electrode for fuel cell, fuel cell, method for manufacturing fuel cell, electrode for fuel cell, and method for manufacturing electrode for fuel cell

Country Status (1)

Country Link
WO (1) WO2010061822A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2975704A1 (en) * 2011-05-24 2012-11-30 Centre Nat Rech Scient BILIRUBIN OXIDASE OF MAGNAPORTHE ORYZAE AND ITS APPLICATIONS
CN102884180A (en) * 2010-05-13 2013-01-16 索尼公司 Recombinant bilirubin oxidase and production method for same
EP3892723A4 (en) * 2018-12-05 2022-08-31 Ozeki Corporation Bilirubin oxidase activity improving method, and bilirubin oxidase product

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004089042A (en) * 2002-08-30 2004-03-25 Amano Enzyme Inc Heat-resistant bilirubin oxidase and method for producing the same
JP2006127957A (en) * 2004-10-29 2006-05-18 Sony Corp Fuel cell and its manufacturing method
JP2007225444A (en) * 2006-02-23 2007-09-06 Denso Corp Enzyme functional electrode, biosensor and fuel cell
JP2007280944A (en) * 2006-03-15 2007-10-25 Sony Corp Enzyme immobilization electrode and its manufacturing method, fuel cell and its manufacturing method, electronic apparatus, and manufacturing method of electrode reaction utilization apparatus
JP2008161178A (en) * 2006-12-07 2008-07-17 Sony Corp Variant type bilirubin oxidase having thermal stability
JP2008237099A (en) * 2007-03-27 2008-10-09 Denso Corp Enzyme functional electrode, biosensor and fuel cell
JP2009158480A (en) * 2007-12-04 2009-07-16 Sony Corp Enzyme immobilizing method to electrode for fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004089042A (en) * 2002-08-30 2004-03-25 Amano Enzyme Inc Heat-resistant bilirubin oxidase and method for producing the same
JP2006127957A (en) * 2004-10-29 2006-05-18 Sony Corp Fuel cell and its manufacturing method
JP2007225444A (en) * 2006-02-23 2007-09-06 Denso Corp Enzyme functional electrode, biosensor and fuel cell
JP2007280944A (en) * 2006-03-15 2007-10-25 Sony Corp Enzyme immobilization electrode and its manufacturing method, fuel cell and its manufacturing method, electronic apparatus, and manufacturing method of electrode reaction utilization apparatus
JP2008161178A (en) * 2006-12-07 2008-07-17 Sony Corp Variant type bilirubin oxidase having thermal stability
JP2008237099A (en) * 2007-03-27 2008-10-09 Denso Corp Enzyme functional electrode, biosensor and fuel cell
JP2009158480A (en) * 2007-12-04 2009-07-16 Sony Corp Enzyme immobilizing method to electrode for fuel cell

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ATSUSHI SHIMIZU ET AL.: "Myrothecium verrucaria Bilirubin Oxidase and Its Mutants for Potential Copper Ligands", BIOCHEMISTRY, vol. 38, 1999, pages 3034 - 3042 *
DMITRI IVNITSKI ET AL.: "Surface characterization and direct electrochemistry of redox copper centers of bilirubin oxidase from fungi Myrothecium verrucaria", BIOELECTROCHEMISTRY, vol. 74, May 2008 (2008-05-01), pages 101 - 110 *
YUJI KAMITAKA ET AL.: "Bilirubin Oxidase Oyobi sono Hen'itai no Koso -Denkyokukan Chokusetsu Denshi Ido Hanno", REVIEW OF POLAROGRAPHY, vol. 50, no. 3, 2004, pages 293 *
YUJI KAMITAKA ET AL.: "Effects of axial ligand mutation of the type I copper site in bilirubin oxidase on direct electron transfer-type bioelectrocatalytic reduction of dioxygen", JOURNAL OF ELECTROANALYTICAL CHEMISTRY, vol. 601, 2007, pages 119 - 124 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102884180A (en) * 2010-05-13 2013-01-16 索尼公司 Recombinant bilirubin oxidase and production method for same
FR2975704A1 (en) * 2011-05-24 2012-11-30 Centre Nat Rech Scient BILIRUBIN OXIDASE OF MAGNAPORTHE ORYZAE AND ITS APPLICATIONS
EP3892723A4 (en) * 2018-12-05 2022-08-31 Ozeki Corporation Bilirubin oxidase activity improving method, and bilirubin oxidase product

Similar Documents

Publication Publication Date Title
Murata et al. Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell
JP2009158480A (en) Enzyme immobilizing method to electrode for fuel cell
JP6084981B2 (en) Protein with flavin adenine dinucleotide-dependent glucose dehydrogenase activity
Szczupak et al. A hybrid biocathode: surface display of O 2-reducing enzymes for microbial fuel cell applications
JP5211559B2 (en) Mutant bilirubin oxidase with thermostability
JP4300743B2 (en) Fuel cell
JP5445902B2 (en) Electrocatalyst, enzyme electrode, fuel cell and biosensor
Tsujimura et al. CueO-immobilized porous carbon electrode exhibiting improved performance of electrochemical reduction of dioxygen to water
WO2010061822A1 (en) Method for immobilizing enzyme on electrode for fuel cell, fuel cell, method for manufacturing fuel cell, electrode for fuel cell, and method for manufacturing electrode for fuel cell
JP2007280944A (en) Enzyme immobilization electrode and its manufacturing method, fuel cell and its manufacturing method, electronic apparatus, and manufacturing method of electrode reaction utilization apparatus
Cai et al. A membraneless starch/O2 biofuel cell based on bacterial surface regulable displayed sequential enzymes of glucoamylase and glucose dehydrogenase
JP2013053907A (en) Enzyme immobilization electrode using dna and chitosan, and manufacturing method therefor
JP2016007192A (en) Protein having flavin-adenine-dinucleotide-dependent glucose dehydrogenase activity
JP7234528B2 (en) Saccharide oxidation method, saccharide oxidase agent, and saccharide oxidase electrode
JP2008071722A (en) Enzyme fuel cell
JP2012028181A (en) Enzyme electrode and fuel cell having the same
JP6728589B2 (en) Method for preparing enzyme electrode and method for storing enzyme electrode
JP2016208916A (en) Mutant protein having flavine adenine dinucleotide-dependent glucose dehydrogenase activity
JP6680084B2 (en) An enzyme electrode having a gluconic acid oxidation catalytic ability, a method for producing the enzyme electrode, a biobattery, and a biosensor.
JP2015104373A (en) [NiFe]-HYDROGENASE EXPRESSION SYSTEM
Matsumoto et al. Two‐Stage Oxidation of Glucose by an Enzymatic Bioanode
US20220154242A1 (en) Method for modifying substrate specificity of glucose dehydrogenase and agent for modifying substrate specificity of glucose dehydrogenase
US8093029B2 (en) Bilirubin oxidase mutant having thermal stability
JP6264602B2 (en) Glucose multi-stage oxidation enzyme electrode, method for producing the enzyme electrode, and biofuel cell using the enzyme electrode
Topcagic et al. Characterization/optimization of oxygen biocathodes for membraneless biofuel cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829070

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13130475

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09829070

Country of ref document: EP

Kind code of ref document: A1