WO2010061793A1 - Phenol resin molding material and phenol resin molded article - Google Patents

Phenol resin molding material and phenol resin molded article Download PDF

Info

Publication number
WO2010061793A1
WO2010061793A1 PCT/JP2009/069714 JP2009069714W WO2010061793A1 WO 2010061793 A1 WO2010061793 A1 WO 2010061793A1 JP 2009069714 W JP2009069714 W JP 2009069714W WO 2010061793 A1 WO2010061793 A1 WO 2010061793A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol resin
molding material
resin molding
silica
phenolic resin
Prior art date
Application number
PCT/JP2009/069714
Other languages
French (fr)
Japanese (ja)
Inventor
辰雄 平林
正法 三好
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to JP2010540466A priority Critical patent/JP5416717B2/en
Publication of WO2010061793A1 publication Critical patent/WO2010061793A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/14Modified phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the present invention relates to a phenol resin molding material used for molding various molded products and a phenol resin molded product molded using the phenol resin molding material.
  • the phenol resin molding material is excellent in heat resistance and is expected as a substitute material for metal and ceramic parts (see, for example, Patent Document 1), but compared with metal and ceramic parts. Further, since the molding shrinkage ratio, anisotropy and linear expansion coefficient are large, improvement in dimensional accuracy has been a problem.
  • the phenol resin undergoes a chemical change and physical change such as a curing reaction and cooling in the molding process, causes a volume change, and shrinks after molding.
  • phenol resin is blended with fillers such as inorganic fillers, but since the volume change of this inorganic filler is much smaller than that of phenol resin, a large residual strain is formed on the interface between the inorganic filler and phenol resin after molding. Occurs.
  • the strain direction is non-uniform because it is oriented during material flow, and there is a difference in molding shrinkage and dimensional changes after moisture absorption and heat treatment, resulting in warping and strain. appear.
  • reinforcing fibers such as glass fibers are usually used frequently as reinforcing fillers to be blended with phenol resins.
  • a technique for reducing the molding shrinkage rate and the linear expansion coefficient it is generally used to fill with a high amount of an inorganic filler.
  • kneading stability and moldability during production are remarkably increased. Damaged.
  • epoxy resin materials for semiconductor encapsulation that are highly filled with fused silica have a high shrinkage rate, anisotropy, and thermal expansion coefficient without sacrificing kneading stability and moldability during production by being filled with fused silica. Can be reduced.
  • the molded product obtained by curing the epoxy resin molding material changes with time due to moisture absorption, so it is difficult to use in precision parts that require dimensional accuracy on the micron order. Improvement of dimensional stability is an issue.
  • an epoxy resin molding material is inferior in heat resistance as compared with a phenol resin molding material, a problem remains even in use in a high temperature environment.
  • the epoxy resin molding material required refrigerated transportation and storage at 10 ° C. or lower.
  • the present invention has been made in view of the above points, and without causing damage to the heat resistance and moldability inherent in the phenolic resin, by reducing the molding shrinkage rate and anisotropy, warping and distortion are generated.
  • Phenol which can suppress cracking and peeling of the interface between the metal and the resin material by reducing the thermal expansion coefficient, and can suppress dimensional change due to moisture absorption or heat treatment.
  • Resin molding materials and phenolic resin molded products that is, before curing, storage stability, kneading stability and moldability can be improved, and after curing, heat resistance, dimensional accuracy and dimensional stability are improved. It is an object of the present invention to provide a phenol resin molding material and a phenol resin molding product that can be made to be produced.
  • the phenol resin molding material containing only silica as a filler is extremely low viscosity and excellent in fluidity compared with the conventional phenol resin molding material containing glass fiber, but it exists in the mold. Gas or gas generated from the material during molding is entrained in the material to cause poor filling, and since molding pressure cannot be applied sufficiently, defective molding occurs on the surface of the molded product, which is released from the mold. It causes a defect. Further, when silica is highly filled, rigidity is increased and resistance when the mold is removed from the mold is increased. Therefore, when the molded article is taken out from the mold, the molded article may be cracked or chipped.
  • the present invention has been made in view of the above points, and the mold release resistance when taking out a molded product from a mold is good even when continuously molded without deteriorating fluidity.
  • Another object is to provide a phenolic resin molding material and a phenolic resin molded product capable of reducing the above.
  • the phenol resin molding material according to claim 1 of the present invention is a phenol resin molding material containing a novolac type phenol resin, a polyvinyl acetate-modified novolac type phenol resin, and a filler, wherein silica is the phenol resin molding material. It is characterized by containing 75 to 90% by mass with respect to the total amount.
  • the invention according to claim 2 is characterized in that, in claim 1, the polyvinyl acetate-modified novolak type phenol resin is contained in an amount of 20 to 80% by mass based on the total amount of the phenol resin.
  • the invention according to claim 3 is characterized in that, in claim 1 or 2, 15 to 40% by mass of novolac type phenol resin having a weight average molecular weight of 20000 or more is contained with respect to the total amount of novolac type phenol resin. It is.
  • the invention according to claim 4 is characterized in that, in any one of claims 1 to 3, the particle size of silica is 100 ⁇ m or less.
  • the invention according to claim 5 is characterized in that, in any one of claims 1 to 4, the silica is spherical.
  • the invention according to claim 6 is the method according to any one of claims 1 to 5, wherein the silica having an average particle diameter of 10 to 30 ⁇ m is 80 to 95% by mass and the average particle diameter is 0.5 to 5 ⁇ m with respect to the total amount of silica. It is characterized by containing 5 to 15% by mass of silica.
  • the invention according to claim 7 is characterized in that boric acid is contained in any one of claims 1 to 6.
  • the invention according to claim 8 is characterized in that in any one of claims 1 to 7, an elastomer is contained.
  • the phenol resin molded product according to claim 9 of the present invention is characterized by being formed by molding the phenol resin molding material according to any one of claims 1 to 8.
  • the phenol resin molding material according to claim 1 of the present invention it is possible to improve storage stability, kneading stability and moldability before curing, and after curing, heat resistance, dimensional accuracy and Dimensional stability can be improved.
  • the mold releasability is good even if continuously molded without impairing the fluidity, and the mold release resistance when taking out the molded product from the mold can be reduced. is there.
  • the dimensional accuracy can be further improved by improving the surface smoothness.
  • kneading stability and moldability can be further improved before curing, and dimensional accuracy and dimensional stability can be further improved after curing. is there.
  • the phenol resin molded product according to claim 9 of the present invention is excellent in heat resistance, dimensional accuracy and dimensional stability.
  • the phenolic resin molding material contains a polyvinyl acetate-modified novolac type phenolic resin, other novolac type phenolic resin, and a filler.
  • a resol type phenolic resin is used. It may be contained.
  • the polyvinyl acetate-modified novolac type phenol resin is prepared by, for example, reacting phenol, formalin (about 50% aqueous solution) and oxalic acid at 100 ° C. for 90 minutes, and emulsifying the mixture over 120 minutes. It can be obtained by adding (weight average molecular weight 10,000 to 20,000), cooling and solidifying a material treated at a temperature of 160 ° C. in an atmosphere of 520 mmHg (69.3 kPa), and pulverizing the solidified product.
  • a polyvinyl acetate-modified novolac type phenol resin By using such a polyvinyl acetate-modified novolac type phenol resin, the linear expansion coefficient of the molded product can be reduced, and the dimensional stability of the molded product in a high-temperature atmosphere can be improved.
  • the polyvinyl acetate-modified novolak type phenol resin it is preferable to contain 20 to 80% by mass of the polyvinyl acetate-modified novolak type phenol resin with respect to the total amount of the phenol resin.
  • the content of the polyvinyl acetate-modified novolak phenol resin is 20% by mass or more, the dimensional accuracy and the dimensional stability can be further improved.
  • a molding cycle can be shortened more as content of resin is 80 mass% or less.
  • the content of the polyvinyl acetate modified novolak type phenol resin is less than 20% by mass, the effect of improving the dimensional accuracy and dimensional stability may be reduced.
  • the amount exceeds 80% by mass the molding cycle during production of the molded product may be deteriorated. Although the reason for this is not clear, it is considered that polyvinyl acetate inhibits the curing of the phenol resin.
  • a high molecular weight novolak type phenol resin having a weight average molecular weight (polystyrene conversion) of 20000 or more (upper limit is 100,000) is contained with respect to the total amount of the novolak type phenol resin. More preferably, the content is 35% by mass.
  • the content of the high molecular weight novolak type phenol resin is less than 15% by mass, the melt viscosity of the phenol resin molding material becomes too low, and there is a possibility that a mold release failure due to poor filling may occur. If the content of the high molecular weight novolak type phenolic resin exceeds 40% by mass, the melt viscosity of the phenolic resin molding material becomes too high, so that the fluidity is lowered and the moldability may be deteriorated. Further, when the weight average molecular weight of the novolac type phenol resin is less than 20000, the melt viscosity of the phenol resin molding material becomes too low, and there is a possibility that a release failure due to a filling failure may occur.
  • the phenol resin is preferably contained in an amount of 8 to 25% by mass, more preferably 10 to 20% by mass, based on the total amount of the phenol resin molding material.
  • the content of the phenol resin is less than 8% by mass, the kneading stability is remarkably deteriorated and the moldability may be lowered.
  • the content of the phenol resin exceeds 25% by mass, the molding shrinkage rate or As the linear expansion coefficient increases and the dimensional change with time after the moisture resistance treatment increases, there is a possibility that good dimensional accuracy cannot be obtained.
  • the said phenol resin means what contains a polyvinyl acetate modified novolak-type phenol resin and a novolak-type phenol resin other than this at least.
  • silica is used as the filler, and the silica is contained in an amount of 75 to 90% by mass, preferably 80 to 88% by mass based on the total amount of the phenol resin molding material.
  • the silica content is less than 75% by mass, the molding shrinkage rate and the linear expansion coefficient increase.
  • the silica content exceeds 90% by mass, the kneading stability is remarkably deteriorated and the moldability is increased. Decreases.
  • the silica particle size is preferably 100 ⁇ m or less.
  • the surface smoothness is improved, so that the dimensional accuracy can be further improved.
  • precision parts that require dimensional accuracy on the micron order can be easily produced without problems. It is something that can be done.
  • the particle size of silica exceeds 100 ⁇ m, the effect of improving the surface smoothness may not be obtained.
  • the silica is preferably spherical.
  • the shape of the silica is spherical, the flowability during molding can be improved, so that kneading stability and moldability can be further improved, and the equipment such as molds can be prevented from being worn. Is something that can be done.
  • the shape of the silica is other than spherical, for example, in the form of fibers or plates, the fluidity at the time of molding is not sufficiently improved due to the entanglement of silica and the effect of improving kneading stability and moldability. There is a risk that it may not be obtained, or equipment such as a mold may be worn out.
  • silica two or more types having different average particle diameters can be used in combination.
  • kneading stability and moldability can be further improved before curing, and dimensional accuracy and dimensional stability can be improved after curing. It can be further improved.
  • the phenol resin molding material contains boric acid as a curing aid.
  • boric acid as a curing aid.
  • the degree of surface hardening after curing of the molded product is improved and good releasability can be obtained while preventing deterioration of kneadability before curing. is there.
  • the phenol resin molding material contains an elastomer.
  • the elastomer for example, NBR, SBR, acrylic rubber, silicone resin, polybutadiene and the like can be used.
  • the elastomer is preferably contained in an amount of 0.3 to 5% by mass, more preferably 0.5 to 3% by mass, based on the total amount of the phenol resin molding material. .
  • a phenol resin molding material can be manufactured as follows. First, a polyvinyl acetate modified novolak type phenolic resin, other novolak type phenolic resin, and a filler are mixed, and if necessary, a curing agent such as hexamethylenetetramine and a release agent such as zinc stearate. Then, a pigment such as carbon black, a coupling agent such as an aminosilane coupling agent, and the like are mixed, and this mixture is kneaded at a temperature of 100 to 110 ° C. for 2 to 5 minutes using a biaxial kneader such as a biaxial roll.
  • the kneaded product is cooled and solidified, and the solidified product is pulverized and then granulated, whereby a phenol resin molding material can be obtained.
  • a phenol resin molding material can be obtained in this way, storage stability, kneading stability and moldability can be improved before curing, and after curing, heat resistance, dimensional accuracy and Dimensional stability can be improved.
  • various phenol resin molded products can be formed by molding by hot pressing, injection molding, transfer molding, compression molding, or the like.
  • the molded product thus obtained is excellent in heat resistance, dimensional accuracy and dimensional stability.
  • precision parts that have conventionally been processed by cutting metal or ceramics can be processed by molding if the phenolic resin molding material of the present invention is used, so that the number of processing steps can be greatly reduced. It is expected to lead to improvement in design freedom.
  • parts that have already been made into resin can achieve higher dimensional accuracy and dimensional stability by using the phenol resin molding material of the present invention.
  • Example 1 to 8 and Comparative Examples 1 to 4 “TNR” (weight average molecular weight of about 3000) manufactured by Panasonic Electric Works Co., Ltd. was used as the polyvinyl acetate modified novolak type phenol resin. As other novolak-type phenolic resins, “PAR” (weight average molecular weight: 2000 to 4000) manufactured by Panasonic Electric Works Co., Ltd. was used.
  • HS-201 microparticle size is 100 ⁇ m or less, spherical, average particle size 24 ⁇ m which is fused silica, which is fused silica
  • HS-301 particles, which is fused silica, which is fused silica
  • the diameter is 100 ⁇ m or less, spherical, average particle size 2.4 ⁇ m
  • “Wollastonite NYAD400” manufactured by NYCO and “CS3E-479S” manufactured by Nitto Boseki Co., Ltd., which is a glass fiber (fiber diameter average ⁇ 12 ⁇ m, fiber length 3 mm) ) was used.
  • hexamethylenetetramine (“S-4” manufactured by Mitsui Toatsu Co., Ltd.) is used as the curing agent
  • zinc stearate (“SZ-P” manufactured by Sakai Chemical Industry Co., Ltd.) is used as the release agent
  • the pigment is used.
  • Carbon black was used, and an aminosilane coupling agent was used as the coupling agent.
  • Linear expansion coefficient A test piece having a size of ⁇ 5 mm ⁇ 15 mm was produced by direct pressure molding (mold temperature: 165 ° C., pressure: 10 MPa, curing time: 180 seconds) using the phenol resin molding material. And the linear expansion coefficient of the test piece was measured by the TMA method.
  • TNR weight average molecular weight of about 3000 manufactured by Panasonic Electric Works Co., Ltd. was used as the polyvinyl acetate modified novolac type phenol resin.
  • PAR weight average molecular weight 2000 to 4000 manufactured by Panasonic Electric Works Co., Ltd.
  • BRM595 weight average molecular weight 28000 manufactured by Showa Polymer Co., Ltd., which is a high molecular weight, were used.
  • HS-201 particle size is 100 ⁇ m or less, spherical, average particle size 24 ⁇ m
  • Micron Corporation which is fused silica
  • boric acid was used as a curing aid, and “Nipol 1411” manufactured by Nippon Zeon Co., Ltd., which is NBR, was used as an elastomer.
  • hexamethylenetetramine (“S-4” manufactured by Mitsui Toatsu Co., Ltd.) is used as the curing agent
  • zinc stearate (“SZ-P” manufactured by Sakai Chemical Industry Co., Ltd.) is used as the release agent
  • the pigment is used.
  • Carbon black was used, and an aminosilane coupling agent was used as the coupling agent.
  • Linear expansion coefficient A test piece was prepared based on JISK6911 by transfer molding (molding temperature: 165 ° C., curing time: 90 seconds) using the phenol resin molding material. And the linear expansion coefficient of the test piece was measured by the dilatometer method.
  • Release property 50 shots of injection molding using the above-mentioned phenol resin molding material were continuously carried out, and the release property was evaluated by three items of mold haze, release resistance, and molded product surface peeling.
  • Mold haze (visually) was determined according to the following criteria.
  • Mold release resistance was determined according to the following criteria.
  • Moisture-resistant dimensional change A test piece (90 mm ⁇ ) was prepared based on JISK6911 by transfer molding (molding temperature: 165 ° C., curing time: 90 seconds) using the phenol resin molding material. Then, this test piece was placed in a high-temperature and high-humidity tank of 40 ° C. ⁇ 90% RH for 250 hours, and the dimensional change rate relative to the initial dimension was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a phenol resin molding material which has improved storage stability, kneading stability and moldability before curing, while exhibiting improved heat resistance, dimensional accuracy and dimensional stability after curing. The phenol resin molding material contains a novolac phenol resin, a polyvinyl acetate-modified novolac phenol resin, and a filler.  Silica is contained therein as the filler in an amount of 75-90% by mass relative to the total amount of the phenol resin molding material.

Description

フェノール樹脂成形材料及びフェノール樹脂成形品Phenolic resin molding materials and phenolic resin moldings
 本発明は、各種成形品の成形に使用されるフェノール樹脂成形材料及びこのフェノール樹脂成形材料を使用して成形されるフェノール樹脂成形品に関するものである。 The present invention relates to a phenol resin molding material used for molding various molded products and a phenol resin molded product molded using the phenol resin molding material.
 電気・電子部品や自動車部品に使用されている金属やセラミックス部品の代替え材料としてエンジニアリングプラスチックやエポキシ樹脂材料が使用されているが、これらの代替え材料は、金属やセラミックス部品と比較して、耐熱性や寸法安定性の点では未だにその領域に近づけていないというのが現状である。 Engineering plastics and epoxy resin materials are used as substitutes for metal and ceramic parts used in electrical and electronic parts and automotive parts, but these substitute materials are more resistant to heat than metal and ceramic parts. In terms of dimensional stability, it is still not close to that area.
 近年、特にエレクトロニクス分野ではますます小型化や高精密化が追求されており、成形品の耐熱性や寸法安定性の要求が一層厳しくなっている。 In recent years, particularly in the electronics field, miniaturization and high precision have been pursued, and the requirements for heat resistance and dimensional stability of molded products have become more severe.
 このような状況下において、フェノール樹脂成形材料は、耐熱性に優れているため、金属やセラミックス部品の代替え材料として期待されるが(例えば、特許文献1参照。)、金属やセラミックス部品と比べると、成形収縮率、異方性、線膨張係数が大きいため、寸法精度の向上が課題であった。 Under such circumstances, the phenol resin molding material is excellent in heat resistance and is expected as a substitute material for metal and ceramic parts (see, for example, Patent Document 1), but compared with metal and ceramic parts. Further, since the molding shrinkage ratio, anisotropy and linear expansion coefficient are large, improvement in dimensional accuracy has been a problem.
 すなわち、フェノール樹脂は、成形過程において硬化反応や冷却等の化学変化及び物理変化を伴い、体積変化を生じ、成形後に収縮する。また、フェノール樹脂は無機フィラー等の充填材と配合されるが、この無機フィラーの体積変化はフェノール樹脂に比べて格段に小さいため、無機フィラーとフェノール樹脂の境界面には成形後、大きな残留ひずみが生じる。特に繊維状や板状の異方性無機フィラーの場合、材料流動時に配向するためにひずみ方向が不均一であり、成形収縮率や吸湿・熱処理後の寸法変化に差が生じて反りやひずみが発生する。 That is, the phenol resin undergoes a chemical change and physical change such as a curing reaction and cooling in the molding process, causes a volume change, and shrinks after molding. In addition, phenol resin is blended with fillers such as inorganic fillers, but since the volume change of this inorganic filler is much smaller than that of phenol resin, a large residual strain is formed on the interface between the inorganic filler and phenol resin after molding. Occurs. Especially in the case of fibrous or plate-like anisotropic inorganic fillers, the strain direction is non-uniform because it is oriented during material flow, and there is a difference in molding shrinkage and dimensional changes after moisture absorption and heat treatment, resulting in warping and strain. appear.
 さらにこのような反りやひずみは、成形品の形状や成形条件によって変化するため、安定した寸法精度の製品を得ることが難しい。 Furthermore, since such warpage and distortion vary depending on the shape and molding conditions of the molded product, it is difficult to obtain a product with stable dimensional accuracy.
 また金属をインサート成形する場合、樹脂材料と金属との熱膨張係数が異なると、成形品にクラックが発生したり界面剥離が生じたりする。 In addition, when metal is insert-molded, if the thermal expansion coefficient differs between the resin material and the metal, cracks may occur in the molded product or interface peeling may occur.
 特にフェノール樹脂成形材料においては、寸法安定性を改善するため、フェノール樹脂に配合する補強用充填材として通常ガラス繊維等の補強用繊維が多用されている。このように、成形収縮率や線膨張係数を低減する手法としては、無機充填材を高充填することが一般的に用いられるが、このような手法では製造時の混練安定性や成形性が著しく損なわれる。 Particularly in phenol resin molding materials, in order to improve dimensional stability, reinforcing fibers such as glass fibers are usually used frequently as reinforcing fillers to be blended with phenol resins. As described above, as a technique for reducing the molding shrinkage rate and the linear expansion coefficient, it is generally used to fill with a high amount of an inorganic filler. However, with such a technique, kneading stability and moldability during production are remarkably increased. Damaged.
 一方、溶融シリカを高充填した半導体封止用エポキシ樹脂材料は、溶融シリカを高充填することによって製造時の混練安定性や成形性を損なうことなく、成形収縮率、異方性、熱膨張係数を低減することが可能である。しかし、エポキシ樹脂成形材料を硬化させて得られた成形品は、吸湿によりその寸法が経時変化するために、ミクロンオーダーでの寸法精度が要求される精密部品においては使用するのが困難であり、寸法安定性の向上が課題とされている。またエポキシ樹脂成形材料は、フェノール樹脂成形材料と比べると耐熱性が劣るため、高温環境下での使用にも課題が残る。さらにエポキシ樹脂成形材料は、10℃以下での冷蔵輸送・保管が必要であった。 On the other hand, epoxy resin materials for semiconductor encapsulation that are highly filled with fused silica have a high shrinkage rate, anisotropy, and thermal expansion coefficient without sacrificing kneading stability and moldability during production by being filled with fused silica. Can be reduced. However, the molded product obtained by curing the epoxy resin molding material changes with time due to moisture absorption, so it is difficult to use in precision parts that require dimensional accuracy on the micron order. Improvement of dimensional stability is an issue. Moreover, since an epoxy resin molding material is inferior in heat resistance as compared with a phenol resin molding material, a problem remains even in use in a high temperature environment. Furthermore, the epoxy resin molding material required refrigerated transportation and storage at 10 ° C. or lower.
特開2008-184488号公報JP 2008-184488 A
 本発明は上記の点に鑑みてなされたものであり、フェノール樹脂本来の特性である耐熱性や成形性を損なうことなく、成形収縮率や異方性を低減することにより、反りやひずみの発生を抑えることができると共に、熱膨張係数を低減することでクラックの発生や金属と樹脂材料の界面の剥離を抑えることが可能であり、かつ吸湿や熱処理による寸法経時変化を小さく抑えることができるフェノール樹脂成形材料及びフェノール樹脂成形品、つまり、硬化前においては、保存安定性、混練安定性及び成形性を向上させることができると共に、硬化後においては、耐熱性、寸法精度及び寸法安定性を向上させることができるフェノール樹脂成形材料及びフェノール樹脂成形品を提供することを目的とするものである。 The present invention has been made in view of the above points, and without causing damage to the heat resistance and moldability inherent in the phenolic resin, by reducing the molding shrinkage rate and anisotropy, warping and distortion are generated. Phenol, which can suppress cracking and peeling of the interface between the metal and the resin material by reducing the thermal expansion coefficient, and can suppress dimensional change due to moisture absorption or heat treatment. Resin molding materials and phenolic resin molded products, that is, before curing, storage stability, kneading stability and moldability can be improved, and after curing, heat resistance, dimensional accuracy and dimensional stability are improved. It is an object of the present invention to provide a phenol resin molding material and a phenol resin molding product that can be made to be produced.
 また、充填材としてシリカのみを配合したフェノール樹脂成形材料は、従来のガラス繊維を配合したフェノール樹脂成形材料と比べると、非常に低粘度で流動性に優れている反面、金型内に存在するガスや成形時に材料から発生するガスを材料中に巻き込んで充填不良を発生させるものであり、また成形圧力を十分にかけることができないため、成形品の表面に硬化不良が発生し、これが離型不良の原因となる。さらに、シリカを高充填すると剛性が高くなり、金型から脱型する際の抵抗が大きくなるため、金型から成形品を取り出す際に成形品に割れや欠けが生じるおそれがある。 In addition, the phenol resin molding material containing only silica as a filler is extremely low viscosity and excellent in fluidity compared with the conventional phenol resin molding material containing glass fiber, but it exists in the mold. Gas or gas generated from the material during molding is entrained in the material to cause poor filling, and since molding pressure cannot be applied sufficiently, defective molding occurs on the surface of the molded product, which is released from the mold. It causes a defect. Further, when silica is highly filled, rigidity is increased and resistance when the mold is removed from the mold is increased. Therefore, when the molded article is taken out from the mold, the molded article may be cracked or chipped.
 そこで、本発明は上記の点にも鑑みてなされたものであり、流動性を損なうことなく、連続して成形しても離型性が良好で金型から成形品を取り出す際の離型抵抗を低減することができるフェノール樹脂成形材料及びフェノール樹脂成形品を提供することを付加的に目的とするものである。 Therefore, the present invention has been made in view of the above points, and the mold release resistance when taking out a molded product from a mold is good even when continuously molded without deteriorating fluidity. Another object is to provide a phenolic resin molding material and a phenolic resin molded product capable of reducing the above.
 本発明の請求項1に係るフェノール樹脂成形材料は、ノボラック型フェノール樹脂、ポリ酢酸ビニル変性ノボラック型フェノール樹脂、充填材を含有するフェノール樹脂成形材料であって、充填材としてシリカがフェノール樹脂成形材料全量に対して75~90質量%含有されていることを特徴とするものである。 The phenol resin molding material according to claim 1 of the present invention is a phenol resin molding material containing a novolac type phenol resin, a polyvinyl acetate-modified novolac type phenol resin, and a filler, wherein silica is the phenol resin molding material. It is characterized by containing 75 to 90% by mass with respect to the total amount.
 請求項2に係る発明は、請求項1において、フェノール樹脂全量に対してポリ酢酸ビニル変性ノボラック型フェノール樹脂が20~80質量%含有されていることを特徴とするものである。 The invention according to claim 2 is characterized in that, in claim 1, the polyvinyl acetate-modified novolak type phenol resin is contained in an amount of 20 to 80% by mass based on the total amount of the phenol resin.
 請求項3に係る発明は、請求項1又は2において、ノボラック型フェノール樹脂全量に対して重量平均分子量が20000以上のノボラック型フェノール樹脂が15~40質量%含有されていることを特徴とするものである。 The invention according to claim 3 is characterized in that, in claim 1 or 2, 15 to 40% by mass of novolac type phenol resin having a weight average molecular weight of 20000 or more is contained with respect to the total amount of novolac type phenol resin. It is.
 請求項4に係る発明は、請求項1乃至3のいずれか1項において、シリカの粒径が100μm以下であることを特徴とするものである。 The invention according to claim 4 is characterized in that, in any one of claims 1 to 3, the particle size of silica is 100 μm or less.
 請求項5に係る発明は、請求項1乃至4のいずれか1項において、シリカが球状であることを特徴とするものである。 The invention according to claim 5 is characterized in that, in any one of claims 1 to 4, the silica is spherical.
 請求項6に係る発明は、請求項1乃至5のいずれか1項において、シリカ全量に対して、平均粒径10~30μmのシリカが80~95質量%、平均粒径0.5~5μmのシリカが5~15質量%含有されていることを特徴とするものである。 The invention according to claim 6 is the method according to any one of claims 1 to 5, wherein the silica having an average particle diameter of 10 to 30 μm is 80 to 95% by mass and the average particle diameter is 0.5 to 5 μm with respect to the total amount of silica. It is characterized by containing 5 to 15% by mass of silica.
 請求項7に係る発明は、請求項1乃至6のいずれか1項において、ホウ酸が含有されていることを特徴とするものである。 The invention according to claim 7 is characterized in that boric acid is contained in any one of claims 1 to 6.
 請求項8に係る発明は、請求項1乃至7のいずれか1項において、エラストマーが含有されていることを特徴とするものである。 The invention according to claim 8 is characterized in that in any one of claims 1 to 7, an elastomer is contained.
 本発明の請求項9に係るフェノール樹脂成形品は、請求項1乃至8のいずれか1項に記載のフェノール樹脂成形材料を成形して形成されていることを特徴とするものである。 The phenol resin molded product according to claim 9 of the present invention is characterized by being formed by molding the phenol resin molding material according to any one of claims 1 to 8.
 本発明の請求項1に係るフェノール樹脂成形材料によれば、硬化前においては、保存安定性、混練安定性及び成形性を向上させることができると共に、硬化後においては、耐熱性、寸法精度及び寸法安定性を向上させることができるものである。 According to the phenol resin molding material according to claim 1 of the present invention, it is possible to improve storage stability, kneading stability and moldability before curing, and after curing, heat resistance, dimensional accuracy and Dimensional stability can be improved.
 請求項2に係る発明によれば、ポリ酢酸ビニル変性ノボラック型フェノール樹脂の含有量が20質量%以上であることによって、寸法精度及び寸法安定性をより向上させることができるものであり、また、ポリ酢酸ビニル変性ノボラック型フェノール樹脂の含有量が80質量%以下であることによって、成形サイクルをより短縮することができるものである。 According to the invention of claim 2, when the content of the polyvinyl acetate-modified novolac phenol resin is 20% by mass or more, dimensional accuracy and dimensional stability can be further improved, When the content of the polyvinyl acetate-modified novolac phenol resin is 80% by mass or less, the molding cycle can be further shortened.
 請求項3に係る発明によれば、流動性を損なうことなく、連続して成形しても離型性が良好で金型から成形品を取り出す際の離型抵抗を低減することができるものである。 According to the invention of claim 3, the mold releasability is good even if continuously molded without impairing the fluidity, and the mold release resistance when taking out the molded product from the mold can be reduced. is there.
 請求項4に係る発明によれば、表面平滑性が向上することによって、寸法精度をより向上させることができるものである。 According to the invention of claim 4, the dimensional accuracy can be further improved by improving the surface smoothness.
 請求項5に係る発明によれば、成形時の流動性が向上することによって、混練安定性及び成形性をより向上させることができると共に、金型等の設備が摩耗するのを防止することができるものである。 According to the invention which concerns on Claim 5, while improving the fluidity | liquidity at the time of shaping | molding, while improving kneading | mixing stability and a moldability, it can prevent that facilities, such as a metal mold | die, wear. It can be done.
 請求項6に係る発明によれば、硬化前においては、混練安定性及び成形性をより向上させることができると共に、硬化後においては、寸法精度及び寸法安定性をより向上させることができるものである。 According to the invention of claim 6, kneading stability and moldability can be further improved before curing, and dimensional accuracy and dimensional stability can be further improved after curing. is there.
 請求項7に係る発明によれば、硬化前の混練性の低下を防止しつつ、成形品の硬化後の表面硬化度が向上し、良好な離型性を得ることができるものである。 According to the seventh aspect of the present invention, the degree of surface hardening after curing of the molded product is improved and good mold release properties can be obtained while preventing a decrease in kneadability before curing.
 請求項8に係る発明によれば、成形品の機械特性の低下を防止しつつ、低弾性化効果が得られ、離型抵抗を低減することができるものである。 According to the invention of claim 8, it is possible to obtain the effect of reducing elasticity while reducing the mechanical properties of the molded product and to reduce the mold release resistance.
 本発明の請求項9に係るフェノール樹脂成形品によれば、耐熱性、寸法精度及び寸法安定性に優れているものである。 The phenol resin molded product according to claim 9 of the present invention is excellent in heat resistance, dimensional accuracy and dimensional stability.
 以下、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described.
 本発明においてフェノール樹脂成形材料は、ポリ酢酸ビニル変性ノボラック型フェノール樹脂と、これ以外のノボラック型フェノール樹脂と、充填材とを含有するものであるが、他のフェノール樹脂として、レゾール型フェノール樹脂が含有されていてもよい。 In the present invention, the phenolic resin molding material contains a polyvinyl acetate-modified novolac type phenolic resin, other novolac type phenolic resin, and a filler. As another phenolic resin, a resol type phenolic resin is used. It may be contained.
 ポリ酢酸ビニル変性ノボラック型フェノール樹脂は、例えば、フェノール、ホルマリン(約50%水溶液)、蓚酸を100℃で90分間反応させ、さらに120分間かけて乳化させた後、この乳化物にポリ酢酸ビニル樹脂(重量平均分子量10000~20000)を添加して、520mmHg(69.3kPa)の雰囲気下で160℃の温度で処理したものを冷却・固化し、この固化物を粉砕することによって得ることができる。このようなポリ酢酸ビニル変性ノボラック型フェノール樹脂を用いることによって、成形品の線膨張係数を小さくすることができ、高温雰囲気下での成形品の寸法安定性を向上させることができるものである。 The polyvinyl acetate-modified novolac type phenol resin is prepared by, for example, reacting phenol, formalin (about 50% aqueous solution) and oxalic acid at 100 ° C. for 90 minutes, and emulsifying the mixture over 120 minutes. It can be obtained by adding (weight average molecular weight 10,000 to 20,000), cooling and solidifying a material treated at a temperature of 160 ° C. in an atmosphere of 520 mmHg (69.3 kPa), and pulverizing the solidified product. By using such a polyvinyl acetate-modified novolac type phenol resin, the linear expansion coefficient of the molded product can be reduced, and the dimensional stability of the molded product in a high-temperature atmosphere can be improved.
 また、フェノール樹脂全量に対してポリ酢酸ビニル変性ノボラック型フェノール樹脂は20~80質量%含有するのが好ましい。このように、ポリ酢酸ビニル変性ノボラック型フェノール樹脂の含有量が20質量%以上であると、寸法精度及び寸法安定性をより向上させることができるものであり、また、ポリ酢酸ビニル変性ノボラック型フェノール樹脂の含有量が80質量%以下であると、成形サイクルをより短縮することができるものである。しかし、ポリ酢酸ビニル変性ノボラック型フェノール樹脂の含有量が20質量%未満であると、寸法精度及び寸法安定性向上の効果が小さくなるおそれがあり、逆にポリ酢酸ビニル変性ノボラック型フェノール樹脂の含有量が80質量%を超えると、成形品製造時の成形サイクルが悪化するおそれがある。なお、この理由は明確ではないが、ポリ酢酸ビニルがフェノール樹脂の硬化を阻害するからであると考えられる。 Further, it is preferable to contain 20 to 80% by mass of the polyvinyl acetate-modified novolak type phenol resin with respect to the total amount of the phenol resin. As described above, when the content of the polyvinyl acetate-modified novolak phenol resin is 20% by mass or more, the dimensional accuracy and the dimensional stability can be further improved. A molding cycle can be shortened more as content of resin is 80 mass% or less. However, if the content of the polyvinyl acetate modified novolak type phenol resin is less than 20% by mass, the effect of improving the dimensional accuracy and dimensional stability may be reduced. If the amount exceeds 80% by mass, the molding cycle during production of the molded product may be deteriorated. Although the reason for this is not clear, it is considered that polyvinyl acetate inhibits the curing of the phenol resin.
 また、ノボラック型フェノール樹脂全量に対して、重量平均分子量(ポリスチレン換算)が20000以上(上限は100000)の高分子量のノボラック型フェノール樹脂が15~40質量%含有されているのが好ましく、20~35質量%含有されているのがより好ましい。これにより、流動性を損なうことなく、連続して成形しても離型性が良好で金型から成形品を取り出す際の離型抵抗を低減することができるものである。しかし、上記高分子量のノボラック型フェノール樹脂の含有量が15質量%未満であると、フェノール樹脂成形材料の溶融粘度が低くなりすぎるため、充填不良による離型不良が発生するおそれがあり、逆に上記高分子量のノボラック型フェノール樹脂の含有量が40質量%を超えると、フェノール樹脂成形材料の溶融粘度が高くなりすぎるため、流動性が低下して成形性が悪化するおそれがある。また、ノボラック型フェノール樹脂の重量平均分子量が20000未満であると、フェノール樹脂成形材料の溶融粘度が低くなりすぎるため、充填不良による離型不良が発生するおそれがある。 Further, it is preferable that 15 to 40% by mass of a high molecular weight novolak type phenol resin having a weight average molecular weight (polystyrene conversion) of 20000 or more (upper limit is 100,000) is contained with respect to the total amount of the novolak type phenol resin. More preferably, the content is 35% by mass. Thereby, without deteriorating the fluidity, the mold releasability is good even when continuously molded, and the mold release resistance when taking out the molded product from the mold can be reduced. However, if the content of the high molecular weight novolak type phenol resin is less than 15% by mass, the melt viscosity of the phenol resin molding material becomes too low, and there is a possibility that a mold release failure due to poor filling may occur. If the content of the high molecular weight novolak type phenolic resin exceeds 40% by mass, the melt viscosity of the phenolic resin molding material becomes too high, so that the fluidity is lowered and the moldability may be deteriorated. Further, when the weight average molecular weight of the novolac type phenol resin is less than 20000, the melt viscosity of the phenol resin molding material becomes too low, and there is a possibility that a release failure due to a filling failure may occur.
 また、フェノール樹脂成形材料全量に対してフェノール樹脂は8~25質量%含有するのが好ましく、10~20質量%含有するのがより好ましい。フェノール樹脂の含有量が8質量%未満であると、混練安定性が著しく悪化し、成形性が低下するおそれがあり、逆にフェノール樹脂の含有量が25質量%を超えると、成形収縮率や線膨張係数が大きくなると共に、耐湿処理後の寸法経時変化が大きくなるため、良好な寸法精度を得ることができなくなるおそれがある。なお、上記フェノール樹脂とは、ポリ酢酸ビニル変性ノボラック型フェノール樹脂と、これ以外のノボラック型フェノール樹脂とを少なくとも含有するものを意味する。 Further, the phenol resin is preferably contained in an amount of 8 to 25% by mass, more preferably 10 to 20% by mass, based on the total amount of the phenol resin molding material. When the content of the phenol resin is less than 8% by mass, the kneading stability is remarkably deteriorated and the moldability may be lowered. Conversely, when the content of the phenol resin exceeds 25% by mass, the molding shrinkage rate or As the linear expansion coefficient increases and the dimensional change with time after the moisture resistance treatment increases, there is a possibility that good dimensional accuracy cannot be obtained. In addition, the said phenol resin means what contains a polyvinyl acetate modified novolak-type phenol resin and a novolak-type phenol resin other than this at least.
 また充填材としてはシリカを用い、このシリカはフェノール樹脂成形材料全量に対して75~90質量%含有するが、80~88質量%含有するのが好ましい。しかし、シリカの含有量が75質量%未満であると、成形収縮率や線膨張係数が大きくなり、逆にシリカの含有量が90質量%を超えると、混練安定性が著しく悪化し、成形性が低下する。 Further, silica is used as the filler, and the silica is contained in an amount of 75 to 90% by mass, preferably 80 to 88% by mass based on the total amount of the phenol resin molding material. However, when the silica content is less than 75% by mass, the molding shrinkage rate and the linear expansion coefficient increase. Conversely, when the silica content exceeds 90% by mass, the kneading stability is remarkably deteriorated and the moldability is increased. Decreases.
 ここで、シリカの粒径は100μm以下であることが好ましい。このようなシリカを用いると、表面平滑性が向上することによって、寸法精度をより向上させることができるものであり、特にミクロンオーダーの寸法精度が要求される精密部品を問題なく容易に製造することができるものである。しかし、シリカの粒径が100μmを超えると、表面平滑性向上の効果を得ることができないおそれがある。 Here, the silica particle size is preferably 100 μm or less. When such silica is used, the surface smoothness is improved, so that the dimensional accuracy can be further improved. In particular, precision parts that require dimensional accuracy on the micron order can be easily produced without problems. It is something that can be done. However, if the particle size of silica exceeds 100 μm, the effect of improving the surface smoothness may not be obtained.
 またシリカは球状であることが好ましい。このように、シリカの形状が球状であると、成形時の流動性が向上することによって、混練安定性及び成形性をより向上させることができると共に、金型等の設備が摩耗するのを防止することができるものである。しかし、シリカの形状が球状以外のもの、例えば、繊維状や板状であると、シリカ同士が絡み合うなどして成形時の流動性が十分向上せず、混練安定性及び成形性向上の効果を得ることができなかったり、金型等の設備が摩耗したりするおそれがある。 Further, the silica is preferably spherical. Thus, when the shape of the silica is spherical, the flowability during molding can be improved, so that kneading stability and moldability can be further improved, and the equipment such as molds can be prevented from being worn. Is something that can be done. However, when the shape of the silica is other than spherical, for example, in the form of fibers or plates, the fluidity at the time of molding is not sufficiently improved due to the entanglement of silica and the effect of improving kneading stability and moldability. There is a risk that it may not be obtained, or equipment such as a mold may be worn out.
 またシリカとしては、平均粒径の異なる2種類以上のものを併用することができる。この場合には特に、シリカ全量に対して、平均粒径10~30μmのシリカを80~95質量%、平均粒径0.5~5μmのシリカを5~15質量%含有するのが好ましい。このように、シリカの平均粒径及び含有量を設定することによって、硬化前においては、混練安定性及び成形性をより向上させることができると共に、硬化後においては、寸法精度及び寸法安定性をより向上させることができるものである。しかし、シリカの平均粒径及び含有量が上記範囲を逸脱すると、混練安定性及び成形性向上の効果も、寸法精度及び寸法安定性向上の効果も得られないおそれがある。なお、シリカの平均粒径は、レーザー回折・散乱法によって測定することができる。 As silica, two or more types having different average particle diameters can be used in combination. In this case, it is particularly preferable to contain 80 to 95% by mass of silica having an average particle size of 10 to 30 μm and 5 to 15% by mass of silica having an average particle size of 0.5 to 5 μm, based on the total amount of silica. Thus, by setting the average particle size and content of silica, kneading stability and moldability can be further improved before curing, and dimensional accuracy and dimensional stability can be improved after curing. It can be further improved. However, if the average particle size and content of silica deviate from the above ranges, there is a possibility that neither the effect of improving kneading stability and moldability nor the effect of improving dimensional accuracy and dimensional stability can be obtained. The average particle diameter of silica can be measured by a laser diffraction / scattering method.
 また、フェノール樹脂成形材料には硬化助剤としてホウ酸が含有されているのが好ましい。このように、ホウ酸が含有されていると、硬化前の混練性の低下を防止しつつ、成形品の硬化後の表面硬化度が向上し、良好な離型性を得ることができるものである。このような効果をより確実に得るためには、フェノール樹脂成形材料全量に対して、ホウ酸を0.1~0.5質量%含有するのが好ましい。ホウ酸の含有量が0.1質量%未満であると、成形品の硬化後の表面硬化度が不十分で離型性が悪化するおそれがあり、逆にホウ酸の含有量が0.5質量%を超えると、混練性が低下するおそれがある。 Further, it is preferable that the phenol resin molding material contains boric acid as a curing aid. As described above, when boric acid is contained, the degree of surface hardening after curing of the molded product is improved and good releasability can be obtained while preventing deterioration of kneadability before curing. is there. In order to obtain such an effect more reliably, it is preferable to contain 0.1 to 0.5% by mass of boric acid with respect to the total amount of the phenol resin molding material. If the boric acid content is less than 0.1% by mass, the degree of surface hardening after curing of the molded product may be insufficient, and the mold release property may be deteriorated. Conversely, the boric acid content is 0.5. If it exceeds mass%, the kneadability may be reduced.
 また、フェノール樹脂成形材料にはエラストマーが含有されているのが好ましい。エラストマーとしては、例えば、NBR、SBR、アクリルゴム、シリコーン樹脂、ポリブタジエン等を用いることができる。このようなエラストマーが含有されていると、成形品の機械特性の低下を防止しつつ、低弾性化効果が得られ、離型抵抗を低減することができるものである。このような効果をより確実に得るためには、フェノール樹脂成形材料全量に対して、エラストマーを0.3~5質量%含有するのが好ましく、0.5~3質量%含有するのがより好ましい。エラストマーの含有量が0.3質量%未満であると、低弾性化効果が得られにくく、離型抵抗を低減することができないおそれがあり、逆にエラストマーの含有量が5質量%を超えると、成形品の機械特性が低下するおそれがある。 Moreover, it is preferable that the phenol resin molding material contains an elastomer. As the elastomer, for example, NBR, SBR, acrylic rubber, silicone resin, polybutadiene and the like can be used. When such an elastomer is contained, it is possible to obtain a low elasticity effect and to reduce the mold release resistance while preventing the deterioration of the mechanical properties of the molded product. In order to obtain such an effect more reliably, the elastomer is preferably contained in an amount of 0.3 to 5% by mass, more preferably 0.5 to 3% by mass, based on the total amount of the phenol resin molding material. . If the elastomer content is less than 0.3% by mass, it is difficult to obtain a low elasticity effect, and the release resistance may not be reduced. Conversely, if the elastomer content exceeds 5% by mass, There is a risk that the mechanical properties of the molded product may be deteriorated.
 そして、フェノール樹脂成形材料は、次のようにして製造することができる。まず、ポリ酢酸ビニル変性ノボラック型フェノール樹脂と、これ以外のノボラック型フェノール樹脂と、充填材とを混合すると共に、必要に応じて、ヘキサメチレンテトラミン等の硬化剤、ステアリン酸亜鉛等の離型剤、カーボンブラック等の顔料、アミノシランカップリング剤等のカップリング剤等を混合し、2軸ロール等の2軸混練機によってこの混合物を100~110℃の温度で2~5分間混練する。次にこの混練物を冷却・固化し、さらにこの固化物を粉砕した後、造粒することによって、フェノール樹脂成形材料を得ることができる。このようにして得られたフェノール樹脂成形材料にあっては、硬化前においては、保存安定性、混練安定性及び成形性を向上させることができると共に、硬化後においては、耐熱性、寸法精度及び寸法安定性を向上させることができるものである。 And a phenol resin molding material can be manufactured as follows. First, a polyvinyl acetate modified novolak type phenolic resin, other novolak type phenolic resin, and a filler are mixed, and if necessary, a curing agent such as hexamethylenetetramine and a release agent such as zinc stearate. Then, a pigment such as carbon black, a coupling agent such as an aminosilane coupling agent, and the like are mixed, and this mixture is kneaded at a temperature of 100 to 110 ° C. for 2 to 5 minutes using a biaxial kneader such as a biaxial roll. Next, the kneaded product is cooled and solidified, and the solidified product is pulverized and then granulated, whereby a phenol resin molding material can be obtained. In the phenol resin molding material obtained in this way, storage stability, kneading stability and moldability can be improved before curing, and after curing, heat resistance, dimensional accuracy and Dimensional stability can be improved.
 次に、上記のようにして得られたフェノール樹脂成形材料を用いて、加熱プレス、射出成形、トランスファー成形、圧縮成形等により成形を行うことによって、各種フェノール樹脂成形品を形成することができる。このようにして得られた成形品にあっては、耐熱性、寸法精度及び寸法安定性に優れているものである。 Next, using the phenol resin molding material obtained as described above, various phenol resin molded products can be formed by molding by hot pressing, injection molding, transfer molding, compression molding, or the like. The molded product thus obtained is excellent in heat resistance, dimensional accuracy and dimensional stability.
 すなわち、本発明によれば、フェノール樹脂が本来有する耐熱性、機械特性、成形性を損なうことなく、成形収縮率、異方性、熱膨張係数を小さくすることで、従来の樹脂材料からは得られない非常に高いレベルの寸法精度及び寸法安定性を有する成形品を得ることができる。また本発明のフェノール樹脂成形材料を用いて金属をインサート成形した場合でもクラックの発生や界面の剥離を起こさないものである。さらに本発明の成形品については吸湿や熱処理による寸法経時変化を小さくすることができる。しかも本発明のフェノール樹脂成形材料は保存安定性に優れており、常温での輸送・保管が可能である。 That is, according to the present invention, by reducing the molding shrinkage ratio, anisotropy, and thermal expansion coefficient without impairing the heat resistance, mechanical properties, and moldability inherent to the phenolic resin, it can be obtained from conventional resin materials. It is possible to obtain a molded article having a very high level of dimensional accuracy and dimensional stability that is not possible. Further, even when the metal is insert-molded using the phenol resin molding material of the present invention, cracks and interface peeling do not occur. Furthermore, the dimensional change with time due to moisture absorption or heat treatment can be reduced in the molded article of the present invention. Moreover, the phenolic resin molding material of the present invention is excellent in storage stability and can be transported and stored at room temperature.
 また従来金属やセラミックスを切削によって加工していた精密部品については、本発明のフェノール樹脂成形材料を用いれば、成形によって加工することができるので、大幅に加工工数を削減することが可能になると共に設計自由度の向上にもつながることが期待される。 In addition, precision parts that have conventionally been processed by cutting metal or ceramics can be processed by molding if the phenolic resin molding material of the present invention is used, so that the number of processing steps can be greatly reduced. It is expected to lead to improvement in design freedom.
 またすでに樹脂化されている部品についても、本発明のフェノール樹脂成形材料を使用することによって、さらに高い寸法精度及び寸法安定性を実現することが可能となる。 Also, parts that have already been made into resin can achieve higher dimensional accuracy and dimensional stability by using the phenol resin molding material of the present invention.
 例えば、成形品としては、携帯電話のカメラレンズ保持部、ガスメータ部品、光ファイバ接続用コネクタ部品、OA機器の部品、自動車の燃料ポンプ部品等を挙げることができ、非常に高寸法精度及び高寸法安定性が要求される部品への使用が期待される。 For example, the molded product can include a camera lens holding part of a mobile phone, a gas meter part, an optical fiber connector part, an OA equipment part, a fuel pump part of an automobile, etc. Expected to be used for parts that require stability.
 以下、本発明を実施例によって具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples.
 (実施例1~8及び比較例1~4)
 ポリ酢酸ビニル変性ノボラック型フェノール樹脂として、パナソニック電工株式会社製「TNR」(重量平均分子量約3000)を用いた。これ以外のノボラック型フェノール樹脂として、パナソニック電工株式会社製「PAR」(重量平均分子量2000~4000)を用いた。
(Examples 1 to 8 and Comparative Examples 1 to 4)
“TNR” (weight average molecular weight of about 3000) manufactured by Panasonic Electric Works Co., Ltd. was used as the polyvinyl acetate modified novolak type phenol resin. As other novolak-type phenolic resins, “PAR” (weight average molecular weight: 2000 to 4000) manufactured by Panasonic Electric Works Co., Ltd. was used.
 また、充填材として、溶融シリカである株式会社マイクロン製「HS-201」(粒径は100μm以下、球状、平均粒径24μm)と、溶融シリカである株式会社マイクロン製「HS-301」(粒径は100μm以下、球状、平均粒径2.4μm)と、NYCO社製「ウォラストナイトNYAD400」と、ガラス繊維である日東紡績株式会社製「CS3E-479S」(繊維径平均φ12μm、繊維長3mm)とを用いた。 In addition, as a filler, “HS-201” (microparticle size is 100 μm or less, spherical, average particle size 24 μm) which is fused silica, which is fused silica, and “HS-301” (particles, which is fused silica, which is fused silica) The diameter is 100 μm or less, spherical, average particle size 2.4 μm), “Wollastonite NYAD400” manufactured by NYCO, and “CS3E-479S” manufactured by Nitto Boseki Co., Ltd., which is a glass fiber (fiber diameter average φ12 μm, fiber length 3 mm) ) Was used.
 その他に、硬化剤としてヘキサメチレンテトラミン(三井東圧株式会社製「S-4」)を用い、離型剤としてステアリン酸亜鉛(堺化学工業株式会社製「SZ-P」)を用い、顔料としてカーボンブラックを用い、カップリング剤としてアミノシランカップリング剤を用いた。 In addition, hexamethylenetetramine (“S-4” manufactured by Mitsui Toatsu Co., Ltd.) is used as the curing agent, zinc stearate (“SZ-P” manufactured by Sakai Chemical Industry Co., Ltd.) is used as the release agent, and the pigment is used. Carbon black was used, and an aminosilane coupling agent was used as the coupling agent.
 そして、下記[表1]に示す配合量(質量%)で、ポリ酢酸ビニル変性ノボラック型フェノール樹脂、これ以外のノボラック型フェノール樹脂、充填材、硬化剤、離型剤、顔料、カップリング剤を1分間混合し、この混合物を2軸混練機によって100~110℃の温度で3分間混練した。次にこの混練物を冷却・固化し、さらにこの固化物を粉砕した後、造粒することによって、フェノール樹脂成形材料を製造した。 And in the compounding quantity (mass%) shown in the following [Table 1], polyvinyl acetate modified novolak type phenol resin, other novolac type phenol resin, filler, curing agent, release agent, pigment, coupling agent. The mixture was mixed for 1 minute, and this mixture was kneaded for 3 minutes at a temperature of 100 to 110 ° C. by a twin-screw kneader. Next, the kneaded product was cooled and solidified, and the solidified product was pulverized and granulated to produce a phenol resin molding material.
 次に、上記のようにして得られたフェノール樹脂成形材料について、下記項目のような各種測定・計測を行った。 Next, various measurements and measurements were performed on the phenolic resin molding material obtained as described above, as described below.
 1.曲げ強さ、曲げ弾性率、成形収縮率
 上記フェノール樹脂成形材料を用い、射出成形(成形温度165℃、硬化時間70秒)により、JISK6911に基づいてテストピースを作製した。そして、引き続きJISK6911に基づいて、テストピースの曲げ強さ、曲げ弾性率及び成形収縮率を測定した。
1. Bending strength, bending elastic modulus, molding shrinkage rate Using the above phenol resin molding material, a test piece was produced based on JISK6911 by injection molding (molding temperature 165 ° C., curing time 70 seconds). And based on JISK6911, the bending strength, bending elastic modulus, and molding shrinkage rate of the test piece were measured.
 2.線膨張係数
 上記フェノール樹脂成形材料を用い、直圧成形(金型温度165℃、圧力10MPa、硬化時間180秒)により、φ5mm×15mmの大きさのテストピースを作製した。そして、TMA法により、テストピースの線膨張係数を測定した。
2. Linear expansion coefficient A test piece having a size of φ5 mm × 15 mm was produced by direct pressure molding (mold temperature: 165 ° C., pressure: 10 MPa, curing time: 180 seconds) using the phenol resin molding material. And the linear expansion coefficient of the test piece was measured by the TMA method.
 3.溶融粘度(最低トルク)
 上記フェノール樹脂成形材料をラボプラストミルによって混練し、溶融時のトルクが最も低くなったときのトルク(最低トルク)を計測した。
3. Melt viscosity (minimum torque)
The phenol resin molding material was kneaded with a lab plast mill, and the torque (minimum torque) when the torque during melting was lowest was measured.
 4.硬化時間
 上記フェノール樹脂成形材料をラボプラストミルによって混練し、フェノール樹脂成形材料が溶融してから硬化反応が進行してトルク値が5kgf・mになるまでの時間を硬化時間として計測した。
4). Curing time The phenol resin molding material was kneaded with a lab plast mill, and the time from when the phenol resin molding material melted until the curing reaction progressed until the torque value reached 5 kgf · m was measured as the curing time.
 5.耐湿寸法変化
 上記フェノール樹脂成形材料を用い、射出成形(成形温度165℃、硬化時間70秒)により、JISK6911に基づいてテストピース(90mmφ)を作製した。そして、このテストピースを40℃×90%RHの高温高湿槽に1000時間入れて、初期寸法に対する寸法変化率を測定した。
5). Moisture-resistant dimensional change Using the above phenol resin molding material, a test piece (90 mmφ) was produced based on JISK6911 by injection molding (molding temperature 165 ° C., curing time 70 seconds). And this test piece was put into a 40 degreeC * 90% RH high-temperature, high-humidity tank for 1000 hours, and the dimensional change rate with respect to an initial dimension was measured.
 6.耐熱寸法変化
 上記フェノール樹脂成形材料を用い、射出成形(成形温度165℃、硬化時間70秒)により、JISK6911に基づいてテストピース(90mmφ)を作製した。そして、このテストピースを200℃の高温槽に1000時間入れて、初期寸法に対する寸法変化率を測定した。
6). Change in heat-resistant dimension Using the above phenol resin molding material, a test piece (90 mmφ) was produced based on JISK6911 by injection molding (molding temperature 165 ° C., curing time 70 seconds). And this test piece was put into a 200 degreeC high temperature tank for 1000 hours, and the dimensional change rate with respect to the initial dimension was measured.
 上記項目の測定・計測結果を下記[表1]に示す。 The measurement and measurement results of the above items are shown in [Table 1] below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例9~18)
 ポリ酢酸ビニル変性ノボラック型フェノール樹脂として、パナソニック電工株式会社製「TNR」(重量平均分子量約3000)を用いた。これ以外のノボラック型フェノール樹脂として、パナソニック電工株式会社製「PAR」(重量平均分子量2000~4000)及び高分子量である昭和高分子株式会社製「BRM595」(重量平均分子量28000)を用いた。
(Examples 9 to 18)
“TNR” (weight average molecular weight of about 3000) manufactured by Panasonic Electric Works Co., Ltd. was used as the polyvinyl acetate modified novolac type phenol resin. As other novolak-type phenol resins, “PAR” (weight average molecular weight 2000 to 4000) manufactured by Panasonic Electric Works Co., Ltd. and “BRM595” (weight average molecular weight 28000) manufactured by Showa Polymer Co., Ltd., which is a high molecular weight, were used.
 また、充填材として、溶融シリカである株式会社マイクロン製「HS-201」(粒径は100μm以下、球状、平均粒径24μm)を用いた。 As the filler, “HS-201” (particle size is 100 μm or less, spherical, average particle size 24 μm) manufactured by Micron Corporation, which is fused silica, was used.
 また硬化助剤としてホウ酸を用いると共に、エラストマーとしてNBRである日本ゼオン株式会社製「Nipol 1411」を用いた。 Further, boric acid was used as a curing aid, and “Nipol 1411” manufactured by Nippon Zeon Co., Ltd., which is NBR, was used as an elastomer.
 その他に、硬化剤としてヘキサメチレンテトラミン(三井東圧株式会社製「S-4」)を用い、離型剤としてステアリン酸亜鉛(堺化学工業株式会社製「SZ-P」)を用い、顔料としてカーボンブラックを用い、カップリング剤としてアミノシランカップリング剤を用いた。 In addition, hexamethylenetetramine (“S-4” manufactured by Mitsui Toatsu Co., Ltd.) is used as the curing agent, zinc stearate (“SZ-P” manufactured by Sakai Chemical Industry Co., Ltd.) is used as the release agent, and the pigment is used. Carbon black was used, and an aminosilane coupling agent was used as the coupling agent.
 そして、下記[表2]に示す配合量(質量%)で、ポリ酢酸ビニル変性ノボラック型フェノール樹脂、これ以外のノボラック型フェノール樹脂、充填材、硬化剤、硬化助剤、エラストマー、離型剤、顔料、カップリング剤を1分間混合し、この混合物を2軸混練機によって100~110℃の温度で3分間混練した。次にこの混練物を冷却・固化し、さらにこの固化物を粉砕した後、造粒することによって、フェノール樹脂成形材料を製造した。 And with the compounding quantity (mass%) shown in the following [Table 2], a polyvinyl acetate modified novolak-type phenol resin, other novolak-type phenol resins, fillers, curing agents, curing aids, elastomers, release agents, The pigment and the coupling agent were mixed for 1 minute, and this mixture was kneaded for 3 minutes at a temperature of 100 to 110 ° C. by a biaxial kneader. Next, the kneaded product was cooled and solidified, and the solidified product was pulverized and granulated to produce a phenol resin molding material.
 次に、上記のようにして得られたフェノール樹脂成形材料について、下記項目のような各種測定・計測を行った。 Next, various measurements and measurements were performed on the phenolic resin molding material obtained as described above, as described below.
 1.曲げ強さ、曲げ弾性率、成形収縮率
 上記フェノール樹脂成形材料を用い、トランスファー成形(成形温度165℃、硬化時間90秒)により、JISK6911に基づいてテストピースを作製した。そして、引き続きJISK6911に基づいて、テストピースの曲げ強さ、曲げ弾性率及び成形収縮率を測定した。
1. Bending strength, flexural modulus, molding shrinkage rate Using the above phenol resin molding material, a test piece was prepared based on JISK6911 by transfer molding (molding temperature 165 ° C., curing time 90 seconds). And based on JISK6911, the bending strength, bending elastic modulus, and molding shrinkage rate of the test piece were measured.
 2.線膨張係数
 上記フェノール樹脂成形材料を用い、トランスファー成形(成形温度165℃、硬化時間90秒)により、JISK6911に基づいてテストピースを作製した。そして、ディラトメーター法により、テストピースの線膨張係数を測定した。
2. Linear expansion coefficient A test piece was prepared based on JISK6911 by transfer molding (molding temperature: 165 ° C., curing time: 90 seconds) using the phenol resin molding material. And the linear expansion coefficient of the test piece was measured by the dilatometer method.
 3.溶融粘度(最低トルク)
 上記フェノール樹脂成形材料をラボプラストミルによって混練し、溶融時のトルクが最も低くなったときのトルク(最低トルク)を計測した。
3. Melt viscosity (minimum torque)
The phenol resin molding material was kneaded with a lab plast mill, and the torque (minimum torque) when the torque during melting was lowest was measured.
 4.離型性
 上記フェノール樹脂成形材料を用いた射出成形を連続して50ショット実施し、金型曇り、離型抵抗、成形品表面剥離の3項目により離型性を評価した。
4). Release property 50 shots of injection molding using the above-mentioned phenol resin molding material were continuously carried out, and the release property was evaluated by three items of mold haze, release resistance, and molded product surface peeling.
 金型曇り(目視)は下記の基準で判定した。 Mold haze (visually) was determined according to the following criteria.
 ○:金型に曇りのないもの
 △:金型に若干曇りのあるもの
 ×:金型に曇りのあるもの
 離型抵抗は下記の基準で判定した。
○: Mold is not cloudy Δ: Mold is slightly cloudy ×: Mold is cloudy The mold release resistance was determined according to the following criteria.
 ○:離型抵抗のないもの
 △:徐々に離型抵抗が大きくなるもの
 ×:初期から離型抵抗の大きいもの
 成形品表面剥離は下記の基準で判定した。
○: No release resistance Δ: Gradually increased release resistance ×: High release resistance from the beginning Molded product surface peeling was determined according to the following criteria.
 ○:成形品の表面に剥離のないもの
 △:30ショット以降に成形品の表面に剥離が発生したもの
 ×:初期から成形品の表面に剥離が発生したもの
 5.耐湿寸法変化
 上記フェノール樹脂成形材料を用い、トランスファー成形(成形温度165℃、硬化時間90秒)により、JISK6911に基づいてテストピース(90mmφ)を作製した。そして、このテストピースを40℃×90%RHの高温高湿槽に250時間入れて、初期寸法に対する寸法変化率を測定した。
○: No peeling on the surface of the molded product. Δ: No peeling on the surface of the molded product after 30 shots. X: No peeling on the surface of the molded product from the beginning. Moisture-resistant dimensional change A test piece (90 mmφ) was prepared based on JISK6911 by transfer molding (molding temperature: 165 ° C., curing time: 90 seconds) using the phenol resin molding material. Then, this test piece was placed in a high-temperature and high-humidity tank of 40 ° C. × 90% RH for 250 hours, and the dimensional change rate relative to the initial dimension was measured.
 6.耐熱寸法変化
 上記フェノール樹脂成形材料を用い、トランスファー成形(成形温度165℃、硬化時間90秒)により、JISK6911に基づいてテストピース(90mmφ)を作製した。そして、このテストピースを200℃の高温槽に250時間入れて、初期寸法に対する寸法変化率を測定した。
6). Change in heat-resistant dimension Using the above phenol resin molding material, a test piece (90 mmφ) was produced based on JISK6911 by transfer molding (molding temperature: 165 ° C., curing time: 90 seconds). And this test piece was put into a 200 degreeC high temperature tank for 250 hours, and the dimensional change rate with respect to an initial dimension was measured.
 上記項目の測定・計測結果を下記[表2]に示す。 The measurement and measurement results of the above items are shown in [Table 2] below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (9)

  1.  ノボラック型フェノール樹脂、ポリ酢酸ビニル変性ノボラック型フェノール樹脂、充填材を含有するフェノール樹脂成形材料であって、充填材としてシリカがフェノール樹脂成形材料全量に対して75~90質量%含有されていることを特徴とするフェノール樹脂成形材料。 A phenolic resin molding material containing a novolac type phenolic resin, a polyvinyl acetate modified novolac type phenolic resin, and a filler, wherein silica is contained in an amount of 75 to 90% by mass based on the total amount of the phenolic resin molding material. A phenolic resin molding material characterized by
  2.  フェノール樹脂全量に対してポリ酢酸ビニル変性ノボラック型フェノール樹脂が20~80質量%含有されていることを特徴とする請求項1に記載のフェノール樹脂成形材料。 The phenolic resin molding material according to claim 1, wherein the polyvinyl acetate-modified novolac type phenolic resin is contained in an amount of 20 to 80% by mass based on the total amount of the phenolic resin.
  3.  ノボラック型フェノール樹脂全量に対して重量平均分子量が20000以上のノボラック型フェノール樹脂が15~40質量%含有されていることを特徴とする請求項1又は2に記載のフェノール樹脂成形材料。 3. The phenolic resin molding material according to claim 1, wherein 15-40% by mass of a novolac type phenol resin having a weight average molecular weight of 20000 or more with respect to the total amount of the novolac type phenol resin is contained.
  4.  シリカの粒径が100μm以下であることを特徴とする請求項1乃至3のいずれか1項に記載のフェノール樹脂成形材料。 The phenol resin molding material according to any one of claims 1 to 3, wherein the particle diameter of silica is 100 µm or less.
  5.  シリカが球状であることを特徴とする請求項1乃至4のいずれか1項に記載のフェノール樹脂成形材料。 The phenol resin molding material according to any one of claims 1 to 4, wherein the silica is spherical.
  6.  シリカ全量に対して、平均粒径10~30μmのシリカが80~95質量%、平均粒径0.5~5μmのシリカが5~15質量%含有されていることを特徴とする請求項1乃至5のいずれか1項に記載のフェノール樹脂成形材料。 2. The silica according to claim 1, wherein 80 to 95% by mass of silica having an average particle diameter of 10 to 30 μm and 5 to 15% by mass of silica having an average particle diameter of 0.5 to 5 μm are contained with respect to the total amount of silica. The phenolic resin molding material according to any one of 5.
  7.  ホウ酸が含有されていることを特徴とする請求項1乃至6のいずれか1項に記載のフェノール樹脂成形材料。 The phenol resin molding material according to any one of claims 1 to 6, wherein boric acid is contained.
  8.  エラストマーが含有されていることを特徴とする請求項1乃至7のいずれか1項に記載のフェノール樹脂成形材料。 The phenol resin molding material according to any one of claims 1 to 7, wherein an elastomer is contained.
  9.  請求項1乃至8のいずれか1項に記載のフェノール樹脂成形材料を成形して形成されていることを特徴とするフェノール樹脂成形品。 A phenolic resin molded product formed by molding the phenolic resin molding material according to any one of claims 1 to 8.
PCT/JP2009/069714 2008-11-25 2009-11-20 Phenol resin molding material and phenol resin molded article WO2010061793A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010540466A JP5416717B2 (en) 2008-11-25 2009-11-20 Phenolic resin molding materials and phenolic resin moldings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008300169 2008-11-25
JP2008-300169 2008-11-25

Publications (1)

Publication Number Publication Date
WO2010061793A1 true WO2010061793A1 (en) 2010-06-03

Family

ID=42225669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069714 WO2010061793A1 (en) 2008-11-25 2009-11-20 Phenol resin molding material and phenol resin molded article

Country Status (2)

Country Link
JP (1) JP5416717B2 (en)
WO (1) WO2010061793A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052127A1 (en) * 2009-10-26 2011-05-05 パナソニック電工株式会社 Phenol resin molding material and phenol resin molded article
JP2012025940A (en) * 2010-06-25 2012-02-09 Panasonic Electric Works Co Ltd Phenol resin molding material and phenol resin molded article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874017B2 (en) * 2010-03-25 2016-03-01 パナソニックIpマネジメント株式会社 Phenolic resin molding materials and molded products using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296569A (en) * 1985-10-24 1987-05-06 Denki Kagaku Kogyo Kk Semiconductor sealing resin composition
JPS6316830A (en) * 1986-07-09 1988-01-23 Gunei Kagaku Kogyo Kk Resin covered sand for shell mold
JPH1121432A (en) * 1997-06-30 1999-01-26 Nippon Shiyaauin Uiriamuzu Kk Encapsulant for semiconductor
JP2003342444A (en) * 2002-05-30 2003-12-03 Sumitomo Bakelite Co Ltd Phenol resin molding material
WO2005040276A1 (en) * 2003-10-29 2005-05-06 Matsushita Electric Works, Ltd. Phenolic resin molding material and molded article thereof
JP2008184488A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Phenolic resin molding material and molded article
JP2008184490A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Phenolic resin molding material and molded article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296569A (en) * 1985-10-24 1987-05-06 Denki Kagaku Kogyo Kk Semiconductor sealing resin composition
JPS6316830A (en) * 1986-07-09 1988-01-23 Gunei Kagaku Kogyo Kk Resin covered sand for shell mold
JPH1121432A (en) * 1997-06-30 1999-01-26 Nippon Shiyaauin Uiriamuzu Kk Encapsulant for semiconductor
JP2003342444A (en) * 2002-05-30 2003-12-03 Sumitomo Bakelite Co Ltd Phenol resin molding material
WO2005040276A1 (en) * 2003-10-29 2005-05-06 Matsushita Electric Works, Ltd. Phenolic resin molding material and molded article thereof
JP2008184488A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Phenolic resin molding material and molded article
JP2008184490A (en) * 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Phenolic resin molding material and molded article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052127A1 (en) * 2009-10-26 2011-05-05 パナソニック電工株式会社 Phenol resin molding material and phenol resin molded article
JP2012025940A (en) * 2010-06-25 2012-02-09 Panasonic Electric Works Co Ltd Phenol resin molding material and phenol resin molded article

Also Published As

Publication number Publication date
JP5416717B2 (en) 2014-02-12
JPWO2010061793A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
KR101380916B1 (en) Metallic alloy and ceramic resin composite and method of producing the same
JP6193114B2 (en) Phenol resin molding material and method for producing the same
WO2011052127A1 (en) Phenol resin molding material and phenol resin molded article
JP5416717B2 (en) Phenolic resin molding materials and phenolic resin moldings
JP5696304B2 (en) Phenolic resin molding materials and phenolic resin moldings
US20080142568A1 (en) Circuit carrier board/solder pallett
JP5887510B2 (en) Phenolic resin molding materials and molded products using the same
JP5551915B2 (en) Phenolic resin molding materials and phenolic resin moldings
JP2009001638A (en) Molding resin composition, molded article and semiconductor package
JP5874017B2 (en) Phenolic resin molding materials and molded products using the same
JP2016014121A (en) Epoxy resin composition for injection molding and sensor component
KR102146996B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
JP5356669B2 (en) Phenolic resin molding materials and molded products using the same
JP2009102595A (en) Phenolic resin molding material and its molded article
KR101908179B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
KR101513377B1 (en) Phenol resin based molding material
JP5395330B2 (en) Phenolic resin molding materials and molded products
JP4508165B2 (en) Phenolic resin molding materials and molded products
KR102319560B1 (en) Plate-shaped epoxy resin composition for semiconductor device encapsulation, method for manufacturing the same, and semiconductor device encapsulated using the same
JP4432408B2 (en) Phenol resin molding material and sealing plate for electrolytic capacitor sealing plate
JP6993390B2 (en) Casing member for in-vehicle camera and its manufacturing method
KR102601431B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
JP2007077325A (en) Thermosetting resin molding material for board made of resin for electronic/electric part and board made of resin for electronic/electric part molded from said molding material
KR102408095B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
KR100898337B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829041

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010540466

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09829041

Country of ref document: EP

Kind code of ref document: A1