WO2010061790A1 - Method for producing hydraulic transfer film - Google Patents

Method for producing hydraulic transfer film Download PDF

Info

Publication number
WO2010061790A1
WO2010061790A1 PCT/JP2009/069706 JP2009069706W WO2010061790A1 WO 2010061790 A1 WO2010061790 A1 WO 2010061790A1 JP 2009069706 W JP2009069706 W JP 2009069706W WO 2010061790 A1 WO2010061790 A1 WO 2010061790A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
water
hydraulic transfer
printing
Prior art date
Application number
PCT/JP2009/069706
Other languages
French (fr)
Japanese (ja)
Inventor
英晶 小田
孝徳 磯▲ざき▼
修 風藤
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2010502100A priority Critical patent/JP5290274B2/en
Publication of WO2010061790A1 publication Critical patent/WO2010061790A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/175Transfer using solvent

Definitions

  • the present invention relates to a method for producing a hydraulic transfer film.
  • a water-soluble polyvinyl alcohol film (hereinafter, polyvinyl alcohol film may be abbreviated as PVA film, and the raw material polyvinyl alcohol is PVA).
  • the water pressure transfer film obtained by printing on one side of the base film is floated on the water surface with the printing surface up, and the structure is pressed from above to utilize the water pressure.
  • a hydraulic transfer method for transferring a printing surface to a structure surface There is known a hydraulic transfer method for transferring a printing surface to a structure surface.
  • the PVA single-layer base film absorbs moisture in the atmosphere when printing the pattern and generates elongation, which may cause multicolor pattern shift. This phenomenon can be alleviated by lowering the temperature and humidity of the environment. However, when the temperature and humidity are lowered too much, another problem that the film becomes brittle and cuts is brought to the surface. Therefore, when a PVA single-layer base film is used, high-precision printing is difficult.
  • the use of ink containing water may be preferred for reasons such as having little influence on the environment.
  • the PVA single layer is formed by the water contained in the ink. Since the base film swells, the film is stretched before drying, resulting in the same problem (multicolor pattern misalignment) as when moisture in the atmosphere is absorbed. Further, in drying the ink after printing, it is necessary to dry at a low temperature in order to suppress the occurrence of elongation, and thus there is a problem that the printing speed cannot be increased.
  • a base film wound in a roll shape film roll
  • environmental moisture adheres to the end face of the film roll.
  • the base films are welded together (blocking), and the base film is cut when unwound.
  • a multilayer hydraulic transfer film in which a resin fine particle emulsion containing PVA as a dispersant is applied to a water-soluble PVA film and printed thereon is also known (Patent Document 1).
  • Patent Document 1 A multilayer hydraulic transfer film in which a resin fine particle emulsion containing PVA as a dispersant is applied to a water-soluble PVA film and printed thereon is also known.
  • Patent Document 1 A multilayer hydraulic transfer film in which a resin fine particle emulsion containing PVA as a dispersant is applied to a water-soluble PVA film and printed thereon is also known.
  • the present invention solves the above-mentioned problems of the prior art, and provides a method for producing a hydraulic transfer film capable of performing high-precision, high-definition printing at high speed on a base film using ink containing moisture.
  • the purpose is to do.
  • the present inventors have achieved the above object by using a multilayer base film for hydraulic transfer including a water-soluble PVA (X) layer and a moisture resistant resin (Y) layer.
  • a multilayer base film for hydraulic transfer including a water-soluble PVA (X) layer and a moisture resistant resin (Y) layer.
  • X water-soluble PVA
  • Y moisture resistant resin
  • the present invention prints on a water-soluble PVA (X) layer of a multilayer base film for hydraulic transfer including a water-soluble PVA (X) layer and a moisture-resistant resin (Y) layer using an ink containing moisture.
  • the present invention relates to a method for producing a hydraulic transfer film.
  • the water-soluble PVA (X) layer contains 0.01 to 3% by weight of a crosslinking agent.
  • the crosslinking agent is more preferably a boron compound.
  • the moisture resistant resin (Y) is preferably at least one resin selected from the group consisting of a polyester resin and a polyolefin resin.
  • the 90 ° interlayer adhesive strength (JIS K6854-3) between the water-soluble PVA (X) layer and the moisture-resistant resin (Y) layer at 20 ° C. and 65% RH is 0. It is preferably 001 to 0.1 N / cm.
  • the printing is preferably performed by an ink jet method.
  • the water content of the ink containing water is preferably 0.5 to 80% by weight.
  • the film stretches and talmi is not affected even when printed at high temperature and high humidity. Since there are few, there is no generation
  • the film has little stretch and tarnish, and has good dimensional stability, so there is no occurrence of misalignment of multiple colors and high-definition printing is possible. is there. Further, since blocking between the base films due to moisture hardly occurs, loss due to cutting of the base film at the time of unwinding is small, and long roll winding is also possible.
  • the hydraulic transfer film obtained by the production method of the present invention hardly causes curling when it floats on the water surface for transfer, so that there is little loss and deformation of the printing surface is small.
  • the multilayer base film for hydraulic transfer used in the present invention has a water-soluble PVA (X) layer (X layer) and a moisture-resistant resin (Y) layer (Y layer). Since this is particularly important, this point will be described first.
  • the PVA used for the X layer in the present invention is water-soluble.
  • water-soluble means that the complete dissolution time in water at 20 ° C. is 500 seconds or shorter, preferably 300 seconds or shorter.
  • the minimum of complete dissolution time Preferably it is 1 second or more, More preferably, it is 2 seconds or more.
  • the complete dissolution time of PVA can be determined by the method described in Examples described later.
  • the water solubility of PVA can be adjusted by appropriately selecting the degree of saponification, the degree of polymerization, the degree of modification with a comonomer, and the like.
  • the degree of saponification of the PVA used for the X layer is preferably 75 to 99 mol%, more preferably 80 to 97 mol%.
  • the degree of polymerization is preferably 300 to 2500, and more preferably 400 to 2400.
  • the saponification degree of PVA indicates the proportion of units that are actually saponified to vinyl alcohol units among the units that can be converted into vinyl alcohol units by saponification, and is measured according to JIS K6726.
  • the degree of polymerization (Po) is a value measured according to JIS K6726.
  • PVA can be produced by polymerizing a vinyl ester monomer and saponifying the resulting vinyl ester polymer.
  • vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatate, and the like. Of these, vinyl acetate is preferred.
  • vinyl ester monomer When the vinyl ester monomer is polymerized, if necessary, another copolymerizable monomer can be copolymerized within a range not impairing the effects of the invention.
  • Other monomers copolymerizable with such vinyl ester monomers include, for example, olefins having 2 to 30 carbon atoms such as ethylene, propylene, 1-butene and isobutene; acrylic acid and salts thereof; methyl acrylate, Ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate, etc.
  • Methacrylic acid and its salts methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodemethacrylate
  • methacrylic acid esters such as octadecyl methacrylate; acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetone acrylamide, acrylamidopropyldimethylamine and salts thereof, N-methylolacrylamide and derivatives thereof
  • Methacrylamide derivatives such as methacrylamide, N-methyl methacrylamide, N-ethyl methacrylamide, methacrylamide propyl dimethylamine and salts thereof, N-methylol methacrylamide and derivatives thereof;
  • copolymerizable monomers other than those described above include monomers represented by the following formula (II), N-vinyl-2-pyrrolidones, N-vinyl-2-caprolactams and the like. -Vinylamides.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
  • R 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • examples of the alkyl group having 1 to 3 carbon atoms represented by R 1 include a methyl group, an ethyl group, a propyl group, and an isopropyl group
  • the carbon represented by R 2 Examples of the alkyl group of 1 to 5 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group and the like.
  • Examples of the monomer represented by the formula (II) include N-vinylformamide, N-vinylacetamide, N-methyl-N-vinylformamide, N-methyl-N-vinylacetamide and the like.
  • Examples of N-vinyl-2-pyrrolidones include N-vinyl-2-pyrrolidone, N-vinyl-3-propyl-2-pyrrolidone, N-vinyl-5,5-dimethyl-2-pyrrolidone, and N-vinyl. Examples include -3,5-dimethyl-2-pyrrolidone and the like.
  • Further preferred other copolymerizable monomers include sulfonic acid group-containing monomers.
  • the sulfonic acid group-containing monomer one containing a sulfonic acid group or a salt thereof in the molecule and copolymerizable with a vinyl ester can be used.
  • Specific examples include 2-acrylamido-2-methylpropanesulfonic acid, 2-acrylamido-1-methylpropanesulfonic acid, 2-methacrylamide-2-methylpropanesulfonic acid and alkali metal salts thereof; ethylenesulfonic acid, allyl Examples thereof include olefin sulfonic acids such as sulfonic acid and methacryl sulfonic acid, and alkali metal salts thereof.
  • 2-acrylamido-2-methylpropanesulfonic acid and alkali metal salts thereof are preferable from the viewpoints of reactivity when copolymerized with vinyl ester and stability during saponification.
  • alkali metal include Na, K, and Li.
  • the copolymerization ratio of these other copolymerizable monomers is preferably 15 mol% or less, and more preferably 10 mol% or less. About a lower limit, it is 0.01 mol% or more suitably, and is 0.05 mol% or more more suitably.
  • PVA may be used alone or in combination of two or more.
  • blending a water-soluble resin other than PVA with the PVA used for the X layer in the present invention is preferable because it can improve the affinity with the ink and the clinging property during hydraulic transfer in addition to the adjustment of the dissolution behavior.
  • the water-soluble resin include polysaccharides such as starch and cellulose; and water-soluble acrylic resins.
  • starch natural starch such as corn starch and potato starch; etherified starch, esterified starch, cross-linked starch, grafted starch, baked dextrin, enzyme-modified dextrin, pregelatinized starch, oxidized starch and the like are preferable.
  • cellulose metal salts such as carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl cellulose, nitrocellulose, cationized cellulose, and sodium salts thereof are preferable.
  • water-soluble acrylic resin metal salts, such as polyacrylamide, polyacrylic acid, and its sodium salt, are mentioned.
  • polysaccharides, particularly cellulose is more preferable for achieving the object of the present invention.
  • the viscosity of aqueous solution should just be suitable for formation of the layer mentioned later. Specifically, a 1% by weight aqueous solution having a viscosity of 1 to 10,000 mPa ⁇ s when measured with a B-type viscometer at 20 ° C. is preferable.
  • the water-soluble PVA (X) layer contains a cross-linking agent because transferability can be improved and higher-definition printing can be performed.
  • the content of the crosslinking agent is preferably 0.01 to 3% by weight, and more preferably 0.03 to 2.5% by weight.
  • the content of the crosslinking agent is a value calculated by the following formula (III).
  • Content of crosslinking agent (% by weight) (weight of crosslinking agent in X layer / weight of X layer) ⁇ 100 (III)
  • the crosslinking agent is not particularly limited as long as it causes a crosslinking reaction with PVA, and among them, a boron compound is preferable.
  • a boron compound examples include boric acid; borate salts such as calcium salt, zinc salt, cobalt salt, ammonium salt, potassium salt, lithium salt, and borax. Among these, boric acid and borax are preferable.
  • the water-soluble PVA (X) layer also contains a plasticizer.
  • the high strength of the film is due to the strength of the film and the smoothness of the surface of the X layer and the provision of some flexibility. This is preferable from the viewpoint of enabling easy printing.
  • the plasticizer content is preferably 1 to 30% by weight, more preferably 2 to 25% by weight.
  • the plasticizer is preferably a polyhydric alcohol, and examples thereof include ethylene glycol, glycerin, diglycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, trimethylolpropane, and the like, one or two of these. A mixture of seeds or more can be used. Among these, ethylene glycol, glycerin and diglycerin are preferable.
  • the water-soluble PVA (X) layer also contains a surfactant from the viewpoint of film-forming property, transferability, higher-definition printing, and control of water surface swelling during transfer. Is preferred.
  • the compounding amount of the surfactant is preferably 0.01 to 7% by weight, more preferably 0.02 to 5% by weight with respect to PVA as a raw material for the X layer.
  • the surfactant examples include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant.
  • the anionic surfactant include carboxylic acid types such as potassium laurate; sulfate ester types such as octyl sulfate; sulfonic acid types such as dodecylbenzenesulfonate and sodium alkylbenzenesulfonate; polyoxyethylene lauryl ether phosphate mono Ethanolamine salt, octyl phosphate potassium salt, lauryl phosphate potassium salt, stearyl phosphate potassium salt, octyl ether phosphate potassium salt, dodecyl phosphate sodium salt, tetradecyl phosphate sodium salt, dioctyl phosphate Ester sodium salt, Trioctyl phosphate sodium salt, Polyoxyethylene aryl phenyl ether phosphate potassium salt, Polyoxy
  • nonionic surfactants include alkyl ether types such as polyoxyethylene oleyl ether and polyoxyethylene lauryl ether; alkylphenyl ether types such as polyoxyethylene octylphenyl ether; alkyl ester types such as polyoxyethylene laurate.
  • An alkylamine type such as polyoxyethylene lauryl amino ether; an alkylamide type such as polyoxyethylene lauric acid amide; a polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether; an alkanolamide type such as oleic acid diethanolamide; Examples include allyl phenyl ether type such as oxyalkylene allyl phenyl ether.
  • cationic surfactant examples include amines such as laurylamine hydrochloride; quaternary ammonium salts such as lauryltrimethylammonium chloride; and pyridinium salts such as laurylpyridinium chloride.
  • amphoteric surfactant examples include N-alkyl-N, N-dimethylammonium betaine. Surfactant can be used 1 type or in combination of 2 or more types.
  • a water-soluble PVA (X) layer contains a slip agent such as starch or silica.
  • the addition amount of the slip agent is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight, based on the weight of the X layer.
  • cross-linking agent plasticizer, surfactant and the like can be mixed and used in advance when the PVA film (X layer) is manufactured or when the PVA coating solution is manufactured.
  • the moisture-resistant resin used for the Y layer is left in a film state in an atmosphere of 20 ° C. and 60% RH for 24 hours and in an atmosphere of 60 ° C. and 90% RH for 24 hours. It is important that the rate of change of the vertical and horizontal lengths is 5% or less, preferably 3% or less. Specifically, the rate of change in the length of the moisture-resistant resin can be determined by the method described in Examples described later.
  • moisture resistant resins examples include polyester resins, polyolefin resins, polyamide resins, acrylic resins (polyacrylic acid esters, polymethacrylic acid esters, etc.), halogen resins (polyvinyl chloride, polyvinylidene chloride, etc.), and the like.
  • a polyester resin and a polyolefin resin are preferable, and a polyester resin is more preferable.
  • the polyester resin include polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, and polybutylene terephthalate. Among these, polyethylene terephthalate is preferable.
  • polystyrene resin examples include polypropylene, polyethylene, ethylene copolymers (ethylene-propylene copolymer, ionomer, etc.), and among these, polypropylene is preferable. These resins are blocked, grafted or grafted to prevent thermal deterioration during film formation, to prevent the occurrence of unmelted materials, to improve water resistance, to improve fracture resistance, to improve slip properties, to improve strength, and to improve stretchability. It is also preferable to use random copolymers or to add additives such as plasticizers, antioxidants, crystallization agents, slip agents, etc. to these resins.
  • the Y layer may be an unstretched film, but a stretched film is preferable from the viewpoint of water resistance, and a biaxially stretched film is more preferable.
  • a biaxial stretching method either sequential biaxial stretching or simultaneous biaxial stretching can be employed.
  • a draw ratio changes with kinds of resin, in the case of a polyester resin, it is preferable to extend about 3 times in a vertical direction and a horizontal direction, respectively.
  • the multi-layer base film for hydraulic transfer used in the present invention has a multilayer structure including a water-soluble PVA (X) layer and a moisture-resistant resin (Y) layer, so that even in printing under high temperature and high humidity, printing including moisture is performed.
  • the multilayer structure means a two-layer structure of X layer / Y layer, a three-layer structure of X layer / Z layer / Y layer, or a multilayer structure of more than that.
  • the ratio of the total thickness of the X layer and the Y layer to the total thickness of the multilayer base film for hydraulic transfer is preferably 80% or more.
  • examples of the Z layer include a water-soluble PVA (X) layer, a water-soluble resin layer other than PVA, a hardly soluble PVA layer (the aforementioned complete dissolution time exceeds 500 seconds), and a moisture-resistant resin. (Y) layer etc. are mentioned.
  • X water-soluble PVA
  • Y moisture-resistant resin
  • an adhesive layer may exist between the respective layers.
  • a two-layer structure of X layer / Y layer is preferable from the viewpoint of productivity.
  • the interlayer adhesion between the X layer and the Y layer is 0.001 to 0.00 as the 90 ° interlayer adhesion measured by the 90 ° peeling method (JIS K 6854-3) in an atmosphere of 20 ° C. and 65% RH. It is preferably 1 N / cm, more preferably 0.005 to 0.05 N / cm.
  • the interlayer adhesion is less than 0.001 N / cm, there is a possibility that delamination may occur during printing due to printing tension or moisture absorption. Further, when the interlayer adhesive strength exceeds 0.1 N / cm, it may be difficult to peel off the X layer during hydraulic transfer.
  • an adhesive may be used between the X layer and the Y layer.
  • a water-soluble adhesive that is easily dissolved in water after hydraulic transfer is preferable because the appearance after transfer is good.
  • a PVA-based adhesive, a starch-based adhesive, and those obtained by adding 0.5 to 40 parts by weight of an inorganic substance such as silica for controlling the adhesive force are preferably used.
  • the interlayer adhesive force between the X layer and the Y layer is a water-soluble layer including the X layer and a moisture-resistant layer including the Y layer. It means the interlaminar adhesion strength with the layer.
  • each of the X layer and the Y layer is preferably 10 to 90 ⁇ m, more preferably 15 to 80 ⁇ m, and even more preferably 20 to 50 ⁇ m when each is a film.
  • the thickness of the X layer is preferably 10 to 70 ⁇ m, more preferably 15 to 50 ⁇ m, and even more preferably 20 to 40 ⁇ m.
  • the total thickness of the hydraulic transfer multilayer base film is preferably 10 to 120 ⁇ m, more preferably 30 to 45 ⁇ m.
  • the surface roughness (Ra) measured by JIS B0601 on the outer surface of the X layer, which is the printing surface is preferably 0.1 to 5.0. 2 to 3.0 is more preferable. If the surface roughness (Ra) is less than 0.1, the slipperiness is poor and a problem may occur due to friction during printing. When surface roughness (Ra) exceeds 5.0, the unevenness
  • the moisture content of the X layer is preferably 0.5 to 10% by weight, more preferably 1 to 8% by weight from the viewpoint of the strength and flexibility of the film. If the moisture content of the X layer is less than 0.5% by weight, the film may be easily torn, whereas if it exceeds 10% by weight, the film may be stretched during printing and the multicolor pattern may be lost.
  • the moisture content of the X layer can be determined by appropriately adjusting the amount of water at the time of producing a PVA film or PVA coating liquid described later, the drying conditions after film formation or coating, and the like.
  • the method for producing the hydraulic transfer multilayer base film used in the present invention and a method of laminating the water-soluble PVA (X) film and the moisture-resistant resin (Y) film separately, and moisture resistance.
  • examples thereof include a method of coating a resin (Y) film with a water-soluble PVA (X) coating solution, a method of co-extruding the X layer and the Y layer, and the like.
  • a method of coating a moisture-resistant resin (Y) film with a water-soluble PVA (X) coating solution is preferable from the viewpoint of cost and performance.
  • the method of laminating after forming the films separately is effective when the thickness and quality of each layer are controlled and high quality is pursued.
  • the PVA concentration is dissolved in a solvent so as to be 5 to 40% by weight, and this is dissolved in a usual coating method, for example, Coating by gravure roll coating, Meyer bar coating, reverse roll coating, air knife coating, spray coating, etc., or extruding from a die in the same way as a general melt extrusion method while keeping the coating solution at a high viscosity Etc.
  • the coating process and conditions are not particularly limited, but the moisture-resistant resin (Y) film roll is continuously fed out from the feeding device, guided onto the belt or roll, and then coated by the method exemplified above, and thereafter And a method of drying or solidifying by known means such as hot air drying, hot roll drying, and far infrared drying. At that time, in order not to impair the physical properties of the moisture-resistant resin (Y) film, it is important to adjust the temperature, amount, drying or solidifying temperature, timing and the like of the coating liquid. As drying conditions, a temperature of 30 to 120 ° C. and a time of 3 to 500 seconds are preferable.
  • a typical solvent for PVA is water, but organic solvents such as methanol, ethanol, propanol, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone can also be used. When using these organic solvents, it is preferable to use together with water. In particular, when coating, mixing water with methanol, ethanol and / or propanol is preferable because drying time can be shortened and deterioration of the film before coating can be reduced.
  • organic solvents such as methanol, ethanol, propanol, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone
  • a generally used method can be adopted. For example, a normal film laminator is used and a heat roll is heated to 110 ° C. The film can be bonded by processing at a speed of 40 m / min, with the tension on the film being 5 kg / m. If the tension on the film is too large, residual stress is generated after bonding, and printability may be deteriorated.
  • the water content is preferably 2 to 5% by weight by humidifying the water-soluble PVA (X) film before bonding.
  • the interlayer adhesion may be insufficient.
  • the moisture content exceeds 5% by weight, there is a risk that tarmi may occur in the film.
  • a method for producing a water-soluble PVA (X) film as a pre-lamination step for example, using a PVA solution, a casting film forming method, a solution coating method, a wet film forming method (discharging into a poor solvent) Method), a gel film forming method (a method in which an aqueous solution of PVA is once cooled and gelled, and then a solvent is extracted and removed), a method using a combination thereof, a melt extrusion film forming method in which PVA containing a plasticizer is melted, Can be mentioned.
  • the casting film forming method, the solution coating method, and the melt extrusion film forming method are preferable.
  • the PVA solvent those mentioned above can be used.
  • the multilayer film thus obtained can be used as it is as a multilayer base film for hydraulic transfer, or, if necessary, can be uniaxially or biaxially stretched before and after the drying step to form a multilayer base film for hydraulic transfer.
  • the temperature is preferably 20 to 120 ° C.
  • the stretching ratio is preferably 1.05 to 5 times, more preferably 1.1 to 3 times.
  • the residual stress can be reduced by heat fixing the film after stretching.
  • the X layer of the above-mentioned multilayer base film for hydraulic transfer is embossed as necessary, and after drying, water-insoluble (80% by mass or more of the total amount of ink (after drying) does not dissolve within 3 minutes on the water surface)
  • a hydraulic transfer film can be manufactured by printing a picture pattern, a character, etc. using the ink which becomes. Examples of the printing method include inkjet printing, gravure printing, screen printing, offset printing, roll coating, and the like.
  • ink jet printing printing by an ink jet method
  • Ink-jet printing makes it possible to directly print a pattern created by a computer or the like without producing a plate, which is advantageous in terms of cost in the production of a hydraulic transfer film and greatly shortens the production period. it can.
  • the ink used in the above printing contains moisture.
  • the moisture content of the ink is not necessarily limited, it is preferably 0.5 to 80% by weight and more preferably 1 to 75% by weight because the effects of the present invention are more remarkable. preferable. If the moisture content of the ink exceeds 80% by weight, the degree of curling that occurs when the moisture-resistant resin (Y) layer is peeled off from the hydraulic transfer film for transfer and then floats on the water surface increases, and the printed surface is deformed. There is a tendency to increase the possibility.
  • the printing environment is preferably normal temperature (eg, 5 to 40 ° C.) and humidity of 20 to 90% RH, more preferably 30 to 80% RH, and even more preferably 40 to 75% RH.
  • the drying temperature is preferably 30 to 100 ° C., more preferably 50 to 90 ° C.
  • the dimensional change of the hydraulic transfer film due to the tension in the printing process and the heat in the drying process is reduced, and the hydraulic transfer film using the conventional PVA single layer base film Compared with, water resistance is significantly improved. For this reason, it is possible to greatly increase the printing speed without causing multicolor pattern misalignment during printing. Ink that needs to be dried at a high temperature can also be used.
  • conventional PVA single-layer base films often experience film elongation, tarmi, and blocking due to moisture absorption and temperature rise, requiring careful attention to temperature and humidity control during storage, transportation, and printing processes.
  • this problem is greatly improved, and the management range can be greatly relaxed.
  • the printed layer is floated on the water surface, the ink activator is sprayed on the printed surface, and the transferred object is pressed from above, and the printed layer Is sufficiently fixed to the surface of the transfer object, then the water-soluble PVA (X) layer is removed with water or the like, dried, and then coated with a protective film such as an acrylic resin to obtain a product printed on the surface. .
  • the ink activator may be sprayed or coated before the moisture resistant resin (Y) layer is peeled off.
  • the water-soluble PVA (X) layer of the hydraulic transfer film is dried without applying tension on the moisture-resistant resin (Y) layer when the ink is dried, so that the moisture-resistant resin (Y) layer is peeled off.
  • the water-soluble PVA (X) layer after undergoing little dimensional change has little curl when it floats on the water surface.
  • the maximum curl length determined by the method described in Examples described later is preferably 0.2 to 9 cm, more preferably 0.4 to 8 cm, and even more preferably 0.5. ⁇ 8cm.
  • the maximum curl length does not exceed the above upper limit, the effective transfer area is not reduced and lost, and when it is not less than the above lower limit, the surrounding film is suppressed by slight curling of the floated film. This is preferable because printing blur is reduced.
  • it is preferable that the above-mentioned maximum curl length is also satisfied for the multilayer base film for hydraulic transfer before printing.
  • Examples of the material to be transferred include a structure having a flat surface and a structure having a curved surface (curved surface structure).
  • the hydraulic transfer film obtained by the production method of the present invention is capable of high-definition printing. It is extremely useful for required transfer, especially for transfer of curved structures.
  • the curved surface means a spherical surface, an undulating surface, a three-dimensional surface with unevenness, or the like.
  • Specific examples of structures include wood base materials such as wood plates, plywood and particle boards, various plastic molded products, pulp cement, slate boards, cement products such as glass fiber reinforced cement, concrete boards, gypsum boards, calcium silicate boards, Examples include inorganic products such as magnesium silicate, metal products such as iron, steel, copper, aluminum, and alloys, and glass products.
  • the film immersed in water dissolves on the slide mount over time or tears, then comes off the slide mount, gradually dissolves while floating in water, and becomes invisible to the naked eye.
  • the time from immediately after immersing the film until it disappears with the naked eye is measured, and this is defined as the complete dissolution time.
  • a multilayer base film for hydraulic transfer having a PET film width of 100 cm, a coat width of 96 cm, and a length of 1000 m was obtained.
  • the complete dissolution time of the water-soluble PVA (X) layer peeled from the multilayer base film was 24 seconds, and the thickness measured with an Anritsu contact-type continuous thickness meter was 30 ⁇ m.
  • the water content of the water-soluble PVA (X) layer was measured by a 90 ° peeling method (JIS K 6854-3) at 3.1% by weight, glycerin content at 4.0% by weight, 20 ° C. and 65% RH.
  • the interlayer adhesion (90 ° interlayer adhesion) between the water-soluble PVA (X) layer and the PET (Y) layer is 0.024 N / cm, and the surface of the outer surface of the water-soluble PVA (X) layer measured according to JIS B0601 The roughness (Ra) was 0.5.
  • ink for building materials consisting of 70% by weight of a mixture of dye and barium sulfate and 30% by weight of a mixture of alkyd resin and nitrocellulose, and the above-mentioned multilayer for hydraulic transfer in an atmosphere of 20 ° C. and 72% RH Gravure printing was performed on the water-soluble PVA (X) layer of the base film.
  • the thickness of the printing layer was 2 ⁇ m each, the unwinding tension was 1 kg / m, and the printing speed was 40 m / min.
  • the multilayer film was dried in a 1 m drying zone heated with hot air at 60 ° C. and wound up at a winding tension of 5 kg / m.
  • the moisture content in the ink remaining in the pan under the gravure roll was measured with a Karl Fischer moisture meter and found to be 2.3% by weight.
  • the obtained printed matter was subjected to various evaluations shown below.
  • Printing failure The printing failure of the above printed matter was determined according to the following criteria. There is a 1mm 2 or more print missing without There is no 1mm 2 or more print missing in ⁇ 50cm ⁇ 50cm in ⁇ 50cm ⁇ 50cm in
  • Number of cuttings The number of times of film cutting (not considering film cutting due to machine fluctuations) generated by the adhesion of the film, particularly the film end face, during the 1000 m printing of the film in the above printing process was defined as the number of cuttings.
  • the printed water-soluble PVA (X) layer is peeled off, and both ends of the short side (22 cm side) of the water-soluble PVA (X) film are folded by 1 cm each on the printing surface side to form an elongated cylinder.
  • a 2 mm diameter iron rod was inserted into the shape, wrapped in the folded portion of the film, and fixed with paper tape.
  • the film was floated on water, and the film was curled. After 10 seconds, before the film began to swell, the width of the most curled portion at the center of the film was measured. The same measurement was performed 5 times, the average value was taken, and the value was subtracted from the original film width of 22 cm to obtain the maximum curl length.
  • Example 2 A printed matter (hydraulic transfer film) was obtained in the same manner as in Example 1 except that the printing speed was 80 m / min and the drying temperature after printing was 90 ° C., and subjected to various evaluations. The results are shown in Tables 1-3.
  • Example 3 From the hydraulic transfer multilayer base film obtained in Example 1, a rectangular multilayer film of 43 cm in the film forming direction and 22 cm in the width direction (the center of the original film coincides with the center of the film to be cut out) was cut out. Using a Canon inkjet printer PIXUS MX850, a similar pattern produced via a computer was printed on the cut multilayer film. Within 10 seconds after printing, it was dried with hot air at 60 ° C. for 10 seconds. No abnormalities in the appearance such as film elongation and tarmi were observed.
  • Example 4 The solution X used in Example 1 was cast on a conveyor belt and dried for 5 minutes while applying hot air of 120 ° C. on the belt to obtain a water-soluble PVA (X) film having a thickness of 31 ⁇ m, a width of 97 cm, and a length of 1050 m. Obtained.
  • the water-soluble PVA (X) film had a complete dissolution time of 21 seconds, a moisture content of 2.9% by weight, and a glycerin content of 4.0% by weight.
  • Example 2 Under an atmosphere of 20 ° C. and 45% RH, the water-soluble PVA (X) film and the PET film used in Example 1 were stacked so that the water-soluble PVA (X) film was in contact with the corona-treated surface of the PET film.
  • a multilayer base film for hydraulic transfer was obtained by passing between a metal roll and a rubber roll heated to 80 ° C. at a speed of 40 m / min.
  • the interlayer adhesion (90 ° interlayer adhesion) between the water-soluble PVA (X) layer and the PET (Y) layer was 0.009 N / cm, and the water-soluble PVA (X) layer
  • the surface roughness (Ra) of the outer surface was 0.4.
  • Example 5 A multilayer base film for hydraulic transfer was obtained in the same manner as in Example 1 except that 0.15 part by weight of boric acid was added to 100 parts by weight of the X solution of Example 1.
  • the complete dissolution time of the water-soluble PVA (X) layer was 28 seconds
  • the thickness was 29 ⁇ m
  • the moisture content was 3.0% by weight
  • the glycerin content was 4.0% by weight
  • the interlayer adhesive strength (90 ° interlayer adhesive strength) between the water-soluble PVA (X) layer and the PET (Y) layer is 0.031 N / cm
  • the surface roughness (Ra) of the outer surface of the water-soluble PVA (X) layer is 0. 6.
  • Example 6 Example 1 except that silica having an average particle size of 6.6 ⁇ m (“NIPGEL0063” manufactured by Tosoh Corporation) was added to the solution X of Example 1 so that the concentration was 0.3% by weight. In the same manner as above, a multilayer base film for hydraulic transfer was obtained.
  • silica having an average particle size of 6.6 ⁇ m (“NIPGEL0063” manufactured by Tosoh Corporation) was added to the solution X of Example 1 so that the concentration was 0.3% by weight.
  • Example 7 Instead of the biaxially stretched PET film, a biaxially stretched polypropylene film (PP film OP U-1, manufactured by Tosero Co., Ltd., thickness 20 ⁇ m, width 100 cm, single-sided corona treatment, rate of change in length in the longitudinal direction and width direction when opened, and A multi-layer base film for hydraulic transfer was obtained in the same manner as in Example 1 except that the rate of change under load was 1% or less.
  • PP film OP U-1 manufactured by Tosero Co., Ltd.
  • thickness 20 ⁇ m thickness 20 ⁇ m, width 100 cm
  • single-sided corona treatment rate of change in length in the longitudinal direction and width direction when opened
  • a multi-layer base film for hydraulic transfer was obtained in the same manner as in Example 1 except that the rate of change under load was 1% or less.
  • Example 8 A multilayer base film for hydraulic transfer was obtained in the same manner as in Example 1 except that PVA (B) having a saponification degree of 91 mol% and a polymerization degree of 1700 was used instead of PVA (A).
  • PVA (B) having a saponification degree of 91 mol% and a polymerization degree of 1700 was used instead of PVA (A).
  • the complete dissolution time of the water-soluble PVA (X) layer was 43 seconds
  • the thickness was 28 ⁇ m
  • the moisture content was 3.4% by weight
  • the glycerin content was 4.0% by weight
  • the interlayer adhesive strength (90 ° interlayer adhesive strength) between the water-soluble PVA (X) layer and the PET (Y) layer is 0.018 N / cm
  • the surface roughness (Ra) of the outer surface of the water-soluble PVA (X) layer is 0. 0. 4.
  • Example 9 The ink cartridge used in Example 3 was opened, and each ink was taken out. After adding 100 parts by weight of deionized water to 100 parts by weight of each ink and stirring well, the ink cartridge was returned to the ink cartridge, taking care not to overflow. A printed matter (hydraulic transfer film) was obtained in the same manner as in Example 3 except that this ink cartridge was used, and was subjected to various evaluations. After printing, the moisture content in the ink remaining in the ink cartridge was measured with a Karl Fischer moisture meter, and it was in the range of 81 to 84% by weight, although it was different for each of the four types of ink. The results are shown in Tables 1-3.
  • Example 1 A printed matter (hydraulic transfer film) was obtained in the same manner as in Example 1 except that the water-soluble PVA (X) film obtained in the same manner as in Example 4 was used as a single layer, and was subjected to various evaluations. The film absorbed moisture, and stretched in the direction of the apparatus during drying after printing, resulting in severe pattern displacement. Moreover, moisture adhered to the roll end face and blocked, and cutting occurred frequently during feeding. The results are shown in Tables 1-3.
  • Comparative Example 2 A printed matter (hydraulic transfer film) was obtained in the same manner as in Comparative Example 1 except that the humidity during printing was 46% RH, and subjected to various evaluations. Although the elongation of the film has been greatly improved, there is still some pattern misalignment, which is a problem level in applications where high definition is required. The results are shown in Tables 1-3.
  • Comparative Example 3 A printed matter (hydraulic transfer film) was obtained in the same manner as in Comparative Example 1 except that the printing speed was 80 m / min and the drying temperature after printing was 90 ° C., and subjected to various evaluations. The film absorbed moisture, and stretched in the direction of the apparatus during drying after printing, resulting in severe pattern displacement. The results are shown in Tables 1-3.
  • [Reference Example 1] Enclose the gravure roll and the pan under the gravure roll with a plastic film so as not to contact the hydraulic transfer base film during printing, and supply dry air from the gas cylinder at a flow rate that does not cause the hydraulic transfer base film to vibrate.
  • a printed matter (hydraulic transfer film) was obtained in the same manner as in Comparative Example 1 except that the moisture absorption of the ink during printing was suppressed, and was subjected to various evaluations. After printing, the moisture content in the ink remaining on the pan under the gravure roll was measured with a Karl Fischer moisture meter and found to be 0.2% by weight. The results are shown in Tables 1-3.
  • Example 10 Instead of using a water-soluble PVA (X) film in a single layer, a printed material (hydraulic transfer film) was used in the same manner as in Reference Example 1 except that a multilayer base film for hydraulic transfer obtained in the same manner as in Example 1 was used. And obtained for various evaluations. After printing, the moisture content in the ink remaining on the pan under the gravure roll was measured with a Karl Fischer moisture meter and found to be 0.2% by weight. The results are shown in Tables 1-3.
  • a hydraulic transfer film with little film elongation and sagging and no occurrence of multicolor pattern displacement can be obtained.
  • the hydraulic transfer film is useful for transfer that requires high-precision and high-definition printing, particularly for transfer of curved structures.

Landscapes

  • Decoration By Transfer Pictures (AREA)
  • Laminated Bodies (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)

Abstract

Disclosed is a method for producing a hydraulic transfer film, wherein a highly accurate and fine print can be made on a base film using a water-containing ink at a high speed. Specifically disclosed is a method for producing a hydraulic transfer film, wherein a print is made, using a water-containing ink, on a water-soluble polyvinyl alcohol (X) layer of a multilayer base film for hydraulic transfer, said multilayer base film comprising the water-soluble polyvinyl alcohol (X) layer and a moisture-resistant resin (Y) layer.  The moisture-resistant resin (Y) is preferably composed of at least one resin selected from a group consisting of polyester resins and polyolefin resins.

Description

水圧転写フィルムの製造方法Method for producing hydraulic transfer film
 本発明は、水圧転写フィルムの製造方法に関する。 The present invention relates to a method for producing a hydraulic transfer film.
 凹凸のある立体面や曲面を有する構造体に文字や絵柄を印刷する方法として、水溶性ポリビニルアルコールフィルム(以下、ポリビニルアルコールフィルムをPVAフィルムと略記することがあり、その原料であるポリビニルアルコールをPVAと略記することがある)をベースフィルムとし、その片面に印刷を施して得た水圧転写フィルムを、印刷面を上にして水面に浮かべ、その上方から構造体を押しつけることにより、水圧を利用して印刷面を構造体表面に転写する水圧転写方法が知られている。しかしながら、PVA単層のベースフィルムは、柄を印刷する際に雰囲気中の水分を吸収して伸びが発生し、多色の柄ズレの原因となることがあった。この現象は、環境の温度および湿度を下げることにより軽減されるが、温度、湿度を下げすぎるとフィルムが脆くなり切断するという別の問題が表面化した。そのため、PVA単層のベースフィルムを用いた場合、高精度の印刷は困難であった。 As a method for printing characters and patterns on a structure having a three-dimensional surface or curved surface with unevenness, a water-soluble polyvinyl alcohol film (hereinafter, polyvinyl alcohol film may be abbreviated as PVA film, and the raw material polyvinyl alcohol is PVA). The water pressure transfer film obtained by printing on one side of the base film is floated on the water surface with the printing surface up, and the structure is pressed from above to utilize the water pressure. There is known a hydraulic transfer method for transferring a printing surface to a structure surface. However, the PVA single-layer base film absorbs moisture in the atmosphere when printing the pattern and generates elongation, which may cause multicolor pattern shift. This phenomenon can be alleviated by lowering the temperature and humidity of the environment. However, when the temperature and humidity are lowered too much, another problem that the film becomes brittle and cuts is brought to the surface. Therefore, when a PVA single-layer base film is used, high-precision printing is difficult.
 ところで、環境への影響が少ないことなどの理由から水分を含むインクの使用が好まれることがあるが、水分を含むインクで印刷をする場合においては、当該インクに含まれる水分によりPVA単層のベースフィルムが膨潤するため、乾燥前にフィルムに伸びが発生して、雰囲気中の水分を吸収した場合と同様の問題(多色の柄ズレ)に至るという欠点があった。また、印刷後のインクの乾燥において、伸びの発生を抑制するために低温度で乾燥する必要があり、そのため印刷速度を上げられないという問題もあった。さらに、PVA単層のベースフィルムを印刷に供する段階においては、多くの場合、ロール状に巻かれたベースフィルム(フィルムロール)が使用されるが、環境の水分が当該フィルムロールの端面に付着してベースフィルム同士が溶着(ブロッキング)し、巻き出し時にベースフィルムが切断するという問題もあった。 By the way, the use of ink containing water may be preferred for reasons such as having little influence on the environment. However, when printing with ink containing water, the PVA single layer is formed by the water contained in the ink. Since the base film swells, the film is stretched before drying, resulting in the same problem (multicolor pattern misalignment) as when moisture in the atmosphere is absorbed. Further, in drying the ink after printing, it is necessary to dry at a low temperature in order to suppress the occurrence of elongation, and thus there is a problem that the printing speed cannot be increased. Furthermore, in the stage where the PVA single layer base film is used for printing, a base film wound in a roll shape (film roll) is often used, but environmental moisture adheres to the end face of the film roll. In addition, the base films are welded together (blocking), and the base film is cut when unwound.
 水溶性PVAフィルムにPVAを分散剤とする樹脂微粒子エマルジョンを塗布し、その上に印刷を施した多層水圧転写フィルムも知られている(特許文献1)。しかしながら、この水圧転写フィルムでも、後述する比較例から明らかなように、同様の欠点がある。 A multilayer hydraulic transfer film in which a resin fine particle emulsion containing PVA as a dispersant is applied to a water-soluble PVA film and printed thereon is also known (Patent Document 1). However, this hydraulic transfer film has the same drawbacks as is apparent from the comparative examples described later.
特開2004-18776号公報JP 2004-18776 A
 本発明は、上記した従来技術の問題を解決したもので、水分を含むインクを用いてベースフィルム上に、高精度、高精彩な印刷を高速で行うことができる水圧転写フィルムの製造方法を提供することを目的とする。 The present invention solves the above-mentioned problems of the prior art, and provides a method for producing a hydraulic transfer film capable of performing high-precision, high-definition printing at high speed on a base film using ink containing moisture. The purpose is to do.
 本発明者らは、上記の目的を達成すべく鋭意検討を重ねた結果、水溶性PVA(X)層および耐湿性樹脂(Y)層を含む水圧転写用多層ベースフィルムを用いることにより上記目的が達成されることを見出し、当該知見に基づいてさらに検討を重ねて本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors have achieved the above object by using a multilayer base film for hydraulic transfer including a water-soluble PVA (X) layer and a moisture resistant resin (Y) layer. As a result, the present invention was completed through further studies based on the findings.
 すなわち、本発明は、水溶性PVA(X)層および耐湿性樹脂(Y)層を含む水圧転写用多層ベースフィルムの水溶性PVA(X)層上に、水分を含むインクを用いて印刷する、水圧転写フィルムの製造方法に関する。 That is, the present invention prints on a water-soluble PVA (X) layer of a multilayer base film for hydraulic transfer including a water-soluble PVA (X) layer and a moisture-resistant resin (Y) layer using an ink containing moisture. The present invention relates to a method for producing a hydraulic transfer film.
 上記の水圧転写フィルムの製造方法において、前記水溶性PVA(X)層が架橋剤を0.01~3重量%含有することが好ましい。ここで、該架橋剤はホウ素化合物であることがより好ましい。 In the above method for producing a hydraulic transfer film, it is preferable that the water-soluble PVA (X) layer contains 0.01 to 3% by weight of a crosslinking agent. Here, the crosslinking agent is more preferably a boron compound.
 上記の水圧転写フィルムの製造方法において、前記耐湿性樹脂(Y)は、ポリエステル樹脂およびポリオレフィン樹脂からなる群より選ばれる少なくとも1種の樹脂であることが好ましい。 In the method for producing a hydraulic transfer film, the moisture resistant resin (Y) is preferably at least one resin selected from the group consisting of a polyester resin and a polyolefin resin.
 上記の水圧転写フィルムの製造方法において、20℃、65%RHにおける前記水溶性PVA(X)層と前記耐湿性樹脂(Y)層との90°層間接着力(JIS K6854-3)が0.001~0.1N/cmであることが好ましい。 In the above method for producing a hydraulic transfer film, the 90 ° interlayer adhesive strength (JIS K6854-3) between the water-soluble PVA (X) layer and the moisture-resistant resin (Y) layer at 20 ° C. and 65% RH is 0. It is preferably 001 to 0.1 N / cm.
 上記の水圧転写フィルムの製造方法において、前記印刷はインクジェット方式により行われることが好ましい。 In the method for producing a hydraulic transfer film, the printing is preferably performed by an ink jet method.
 上記の水圧転写フィルムの製造方法において、前記水分を含むインクの水分率は0.5~80重量%であることが好ましい。 In the above method for producing a hydraulic transfer film, the water content of the ink containing water is preferably 0.5 to 80% by weight.
 本発明の製造方法によれば、上記の水圧転写用多層ベースフィルムを使用して、水分を含むインクでグラビア法により印刷をした場合、高温高湿度下で印刷してもフィルムの伸び、タルミが少ないので、多色の柄ズレの発生がなく、従来よりも高精度に印刷をすることができる。また、環境の温度および湿度を厳しく制御する必要がなく、運転コストを下げることができる。しかも、印刷後も高温で乾燥することができるため、印刷速度を上げることができる。さらに、水分を含むインクでインクジェット法により印刷をした場合も、フィルムの伸び、タルミが少なく、寸法安定性が良好であるため、多色の柄ズレの発生がなく、高精彩な印刷が可能である。また、水分によるベースフィルム同士のブロッキングもほとんど発生しないため、巻き出し時のベースフィルムの切断によるロスが少なく、またロールの長巻きも可能となる。
 そして、本発明の製造方法により得られた水圧転写フィルムは、転写するために水面に浮かべたときに、カールがほとんど発生しないので、ロスが少なく、また印刷面の変形も少ない。
According to the production method of the present invention, when the above-mentioned multilayer base film for hydraulic transfer is used and the gravure method is used for printing with water-containing ink, the film stretches and talmi is not affected even when printed at high temperature and high humidity. Since there are few, there is no generation | occurrence | production of a multicolored pattern shift and it can print with higher precision than before. Moreover, it is not necessary to strictly control the temperature and humidity of the environment, and the operating cost can be reduced. Moreover, since printing can be performed at a high temperature even after printing, the printing speed can be increased. In addition, even when printing with ink containing water, the film has little stretch and tarnish, and has good dimensional stability, so there is no occurrence of misalignment of multiple colors and high-definition printing is possible. is there. Further, since blocking between the base films due to moisture hardly occurs, loss due to cutting of the base film at the time of unwinding is small, and long roll winding is also possible.
The hydraulic transfer film obtained by the production method of the present invention hardly causes curling when it floats on the water surface for transfer, so that there is little loss and deformation of the printing surface is small.
 以下に本発明をさらに詳細に説明する。
 本発明において使用される水圧転写用多層ベースフィルムが水溶性PVA(X)層(X層)と耐湿性樹脂(Y)層(Y層)とを有することは、本発明の目的達成のために特に重要であるので、この点についてまず述べる。
The present invention is described in further detail below.
In order to achieve the object of the present invention, the multilayer base film for hydraulic transfer used in the present invention has a water-soluble PVA (X) layer (X layer) and a moisture-resistant resin (Y) layer (Y layer). Since this is particularly important, this point will be described first.
 本発明においてX層に使用されるPVAは、水溶性であることが重要である。ここで水溶性とは、20℃の水中における完溶時間が500秒以下、好適には300秒以下であることを意味する。完溶時間の下限については特に制限はないが、好適には1秒以上、より好適には2秒以上である。PVAの完溶時間は、具体的には後述する実施例に記載された方法により求めることができる。PVAの水溶性は、けん化度、重合度、コモノマー等による変性度等を適宜選択することにより、調整することができる。 It is important that the PVA used for the X layer in the present invention is water-soluble. Here, the term “water-soluble” means that the complete dissolution time in water at 20 ° C. is 500 seconds or shorter, preferably 300 seconds or shorter. Although there is no restriction | limiting in particular about the minimum of complete dissolution time, Preferably it is 1 second or more, More preferably, it is 2 seconds or more. Specifically, the complete dissolution time of PVA can be determined by the method described in Examples described later. The water solubility of PVA can be adjusted by appropriately selecting the degree of saponification, the degree of polymerization, the degree of modification with a comonomer, and the like.
 本発明においてX層に使用されるPVAのけん化度は、好適には75~99モル%、より好適には80~97モル%である。また重合度は、好適には300~2500、より好適には400~2400である。ここで、PVAのけん化度は、けん化によりビニルアルコール単位に変換され得る単位の中で、実際にビニルアルコール単位にけん化されている単位の割合を示し、JIS K6726に準じて測定される。また、重合度(Po)は、JIS K6726に準じて測定される値であり、PVAを再けん化し、精製した後、30℃の水中で測定した極限粘度[η](単位:dl/g)から次式(I)により求められる。
 
   Po = ([η]×10/8.29)(1/0.62)  (I)
 
In the present invention, the degree of saponification of the PVA used for the X layer is preferably 75 to 99 mol%, more preferably 80 to 97 mol%. The degree of polymerization is preferably 300 to 2500, and more preferably 400 to 2400. Here, the saponification degree of PVA indicates the proportion of units that are actually saponified to vinyl alcohol units among the units that can be converted into vinyl alcohol units by saponification, and is measured according to JIS K6726. The degree of polymerization (Po) is a value measured according to JIS K6726. After re-saponifying and purifying PVA, the intrinsic viscosity [η] measured in water at 30 ° C. (unit: dl / g) From the following equation (I).

Po = ([η] × 10 3 /8.29) (1 / 0.62) (I)
 PVAは、ビニルエステル系モノマーを重合し、得られるビニルエステル系重合体をけん化することにより製造することができる。ビニルエステル系モノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル等を挙げることができ、これらのなかでも酢酸ビニルが好ましい。 PVA can be produced by polymerizing a vinyl ester monomer and saponifying the resulting vinyl ester polymer. Examples of vinyl ester monomers include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatate, and the like. Of these, vinyl acetate is preferred.
 ビニルエステル系モノマーを重合させる際に、必要に応じて、共重合可能な他のモノマーを、発明の効果を損なわない範囲内で共重合させることもできる。このようなビニルエステル系モノマーと共重合可能な他のモノマーとしては、例えば、エチレン、プロピレン、1-ブテン、イソブテン等の炭素数2~30のオレフィン類;アクリル酸およびその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルへキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル類;メタクリル酸およびその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルへキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロピルジメチルアミンおよびその塩、N-メチロールアクリルアミドおよびその誘導体等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロピルジメチルアミンおよびその塩、N-メチロールメタクリルアミドおよびその誘導体等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル類;アクリロニトリル、メタクリロニトリル等のニトリル類;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル類;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸およびその塩またはそのエステル;イタコン酸およびその塩またはそのエステル;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニル;ジヒドロキシブテン誘導体;ビニルエチルカーボネート;3,4-ジアセトキシ-1-ブテン、3,4-ジエトキシ-1-ブテン等が挙げられる。 When the vinyl ester monomer is polymerized, if necessary, another copolymerizable monomer can be copolymerized within a range not impairing the effects of the invention. Other monomers copolymerizable with such vinyl ester monomers include, for example, olefins having 2 to 30 carbon atoms such as ethylene, propylene, 1-butene and isobutene; acrylic acid and salts thereof; methyl acrylate, Ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate, etc. Methacrylic acid and its salts; methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodemethacrylate And methacrylic acid esters such as octadecyl methacrylate; acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetone acrylamide, acrylamidopropyldimethylamine and salts thereof, N-methylolacrylamide and derivatives thereof Methacrylamide derivatives such as methacrylamide, N-methyl methacrylamide, N-ethyl methacrylamide, methacrylamide propyl dimethylamine and salts thereof, N-methylol methacrylamide and derivatives thereof; methyl vinyl ether, ethyl vinyl ether, n -Propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl Vinyl ethers such as nyl ether, dodecyl vinyl ether and stearyl vinyl ether; Nitriles such as acrylonitrile and methacrylonitrile; Vinyl halides such as vinyl chloride, vinylidene chloride, vinyl fluoride and vinylidene fluoride; Allyl such as allyl acetate and allyl chloride Compound; maleic acid and its salt or ester thereof; itaconic acid and its salt or ester thereof; vinylsilyl compound such as vinyltrimethoxysilane; isopropenyl acetate; dihydroxybutene derivative; vinyl ethyl carbonate; 3,4-diacetoxy-1-butene 3,4-diethoxy-1-butene and the like.
 また、上記した以外に好適な共重合可能な他のモノマーとしては、下記式(II)で示される単量体、N-ビニル-2-ピロリドン類、N-ビニル-2-カプロラクタム類等のN-ビニルアミド類が挙げられる。
 
   CH=CH-N(R)-C(=O)-R  (II)
 
(式中、Rは水素原子または炭素数1~3のアルキル基を表し、Rは水素原子または炭素数1~5のアルキル基を表す。)
 上記式(II)において、Rで表される炭素数1~3のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基を挙げることができ、また、Rで表される炭素数1~5のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソペンチル基等を挙げることができる。上記式(II)で示される単量体としては、N-ビニルホルムアミド、N-ビニルアセトアミド、N-メチル-N-ビニルホルムアミド、N-メチル-N-ビニルアセトアミド等を例示することができる。また、N-ビニル-2-ピロリドン類としては、N-ビニル-2-ピロリドン、N-ビニル-3-プロピル-2-ピロリドン、N-ビニル-5,5-ジメチル-2-ピロリドン、N-ビニル-3,5-ジメチル-2-ピロリドン等を例示することができる。
Other suitable copolymerizable monomers other than those described above include monomers represented by the following formula (II), N-vinyl-2-pyrrolidones, N-vinyl-2-caprolactams and the like. -Vinylamides.

CH 2 ═CH—N (R 1 ) —C (═O) —R 2 (II)

(In the formula, R 1 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 2 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.)
In the above formula (II), examples of the alkyl group having 1 to 3 carbon atoms represented by R 1 include a methyl group, an ethyl group, a propyl group, and an isopropyl group, and the carbon represented by R 2 Examples of the alkyl group of 1 to 5 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, t-butyl group, pentyl group, isopentyl group and the like. Examples of the monomer represented by the formula (II) include N-vinylformamide, N-vinylacetamide, N-methyl-N-vinylformamide, N-methyl-N-vinylacetamide and the like. Examples of N-vinyl-2-pyrrolidones include N-vinyl-2-pyrrolidone, N-vinyl-3-propyl-2-pyrrolidone, N-vinyl-5,5-dimethyl-2-pyrrolidone, and N-vinyl. Examples include -3,5-dimethyl-2-pyrrolidone and the like.
 さらに好適な共重合可能な他のモノマーとしては、スルホン酸基含有単量体が挙げられる。スルホン酸基含有単量体は、分子内にスルホン酸基またはその塩を含有し、ビニルエステルと共重合可能なものを使用することができる。具体例としては、2-アクリルアミド-2-メチルプロパンスルホン酸、2-アクリルアミド-1-メチルプロパンスルホン酸、2-メタクリルアミド-2-メチルプロパンスルホン酸およびそれらのアルカリ金属塩;エチレンスルホン酸、アリルスルホン酸、メタアクリルスルホン酸等のオレフィンスルホン酸およびそれらのアルカリ金属塩が挙げられる。これらの中でも、ビニルエステルと共重合させる際の反応性やけん化時の安定性等の点から、2-アクリルアミド-2-メチルプロパンスルホン酸およびそのアルカリ金属塩が好ましい。ここでアルカリ金属としては、Na、K、Li等が挙げられる。 Further preferred other copolymerizable monomers include sulfonic acid group-containing monomers. As the sulfonic acid group-containing monomer, one containing a sulfonic acid group or a salt thereof in the molecule and copolymerizable with a vinyl ester can be used. Specific examples include 2-acrylamido-2-methylpropanesulfonic acid, 2-acrylamido-1-methylpropanesulfonic acid, 2-methacrylamide-2-methylpropanesulfonic acid and alkali metal salts thereof; ethylenesulfonic acid, allyl Examples thereof include olefin sulfonic acids such as sulfonic acid and methacryl sulfonic acid, and alkali metal salts thereof. Among these, 2-acrylamido-2-methylpropanesulfonic acid and alkali metal salts thereof are preferable from the viewpoints of reactivity when copolymerized with vinyl ester and stability during saponification. Here, examples of the alkali metal include Na, K, and Li.
 これらの共重合可能な他のモノマーの共重合比率は、好適には15モル%以下であり、より好適には10モル%以下である。下限値については好適には0.01モル%以上であり、より好適には0.05モル%以上である。 The copolymerization ratio of these other copolymerizable monomers is preferably 15 mol% or less, and more preferably 10 mol% or less. About a lower limit, it is 0.01 mol% or more suitably, and is 0.05 mol% or more more suitably.
 これらのPVAは単独で用いてもよいし、2種以上をブレンドして用いてもよい。特に、けん化度が3モル%以上異なる2種以上のPVAのブレンド物を用いることにより、溶解挙動のコントロールが容易となり、最適な溶解粘性をより長時間維持できる利点があるため好ましい。 These PVA may be used alone or in combination of two or more. In particular, it is preferable to use a blend of two or more types of PVA having a degree of saponification of 3 mol% or more, because it has an advantage that the dissolution behavior can be easily controlled and the optimum dissolution viscosity can be maintained for a longer time.
 また、本発明においてX層に使用されるPVAに、PVA以外の水溶性樹脂をブレンドすると、溶解挙動の調整の他、インクとの親和性、水圧転写時のまとわりつき性を改善できるため好ましい。ここで、水溶性樹脂としては、デンプン、セルロース等の多糖類;水溶性アクリル系樹脂が例示される。デンプンとしては、とうもろこしデンプン、ばれいしょデンプン等の天然デンプン;エーテル化デンプン、エステル化デンプン、架橋デンプン、グラフト化デンプン、培焼デキストリン、酵素変性デキストリン、アルファ化デンプン、酸化デンプン等の変性デンプンが好ましく、セルロースとしては、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルセルロース、ニトロセルロース、カチオン化セルロース、およびそのナトリウム塩等の金属塩が好ましい。また、水溶性アクリル系樹脂としては、ポリアクリルアミド、ポリアクリル酸、およびそのナトリウム塩等の金属塩が挙げられる。これらの中でも、多糖類、特にセルロースが、本発明の目的達成のためにはより好ましい。水溶性樹脂の添加量に特に制限はなく、水溶液の粘度が後述する層の形成に適していればよい。具体的には、1重量%の水溶液をB型粘度計で20℃で測定したときの粘度が1~10000mPa・sであるものが好ましい。 In addition, blending a water-soluble resin other than PVA with the PVA used for the X layer in the present invention is preferable because it can improve the affinity with the ink and the clinging property during hydraulic transfer in addition to the adjustment of the dissolution behavior. Here, examples of the water-soluble resin include polysaccharides such as starch and cellulose; and water-soluble acrylic resins. As the starch, natural starch such as corn starch and potato starch; etherified starch, esterified starch, cross-linked starch, grafted starch, baked dextrin, enzyme-modified dextrin, pregelatinized starch, oxidized starch and the like are preferable, As the cellulose, metal salts such as carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl cellulose, nitrocellulose, cationized cellulose, and sodium salts thereof are preferable. Moreover, as water-soluble acrylic resin, metal salts, such as polyacrylamide, polyacrylic acid, and its sodium salt, are mentioned. Among these, polysaccharides, particularly cellulose, is more preferable for achieving the object of the present invention. There is no restriction | limiting in particular in the addition amount of water-soluble resin, The viscosity of aqueous solution should just be suitable for formation of the layer mentioned later. Specifically, a 1% by weight aqueous solution having a viscosity of 1 to 10,000 mPa · s when measured with a B-type viscometer at 20 ° C. is preferable.
 本発明において、水溶性PVA(X)層が架橋剤を含有することが、転写性を向上させ、より高精彩な印刷をすることができることから好ましい。架橋剤の含有量は、0.01~3重量%であることが好ましく、0.03~2.5重量%がより好ましい。ここで、架橋剤の含有量とは、下記式(III)により計算される値である。
 
   架橋剤の含有量(重量%) = (X層中の架橋剤の重量/X層の重量)×100  (III)
 
In the present invention, it is preferable that the water-soluble PVA (X) layer contains a cross-linking agent because transferability can be improved and higher-definition printing can be performed. The content of the crosslinking agent is preferably 0.01 to 3% by weight, and more preferably 0.03 to 2.5% by weight. Here, the content of the crosslinking agent is a value calculated by the following formula (III).

Content of crosslinking agent (% by weight) = (weight of crosslinking agent in X layer / weight of X layer) × 100 (III)
 架橋剤としては、PVAと架橋反応を起こすものであれば特に制限はなく、中でもホウ素化合物が好ましい。ここで、ホウ素化合物としては、ホウ酸;カルシウム塩、亜鉛塩、コバルト塩、アンモニウム塩、カリウム塩、リチウム塩、ホウ砂等のホウ酸塩等が挙げられる。これらの中でも、ホウ酸およびホウ砂が好ましい。 The crosslinking agent is not particularly limited as long as it causes a crosslinking reaction with PVA, and among them, a boron compound is preferable. Examples of the boron compound include boric acid; borate salts such as calcium salt, zinc salt, cobalt salt, ammonium salt, potassium salt, lithium salt, and borax. Among these, boric acid and borax are preferable.
 また、本発明において、水溶性PVA(X)層が可塑剤を含有することも、フィルムの強度の点、および、X層の表面を平滑にし、かつ若干の柔軟性を付与することにより高精彩な印刷が可能となる点から好ましい。可塑剤の含有量は、1~30重量%が好ましく、2~25重量%がより好ましい。ここで、可塑剤の含有量とは、下記式(IV)により計算される値である。
 
   可塑剤の含有量(重量%) = (X層中の可塑剤の重量/X層の重量)×100  (IV)
 
In the present invention, the water-soluble PVA (X) layer also contains a plasticizer. The high strength of the film is due to the strength of the film and the smoothness of the surface of the X layer and the provision of some flexibility. This is preferable from the viewpoint of enabling easy printing. The plasticizer content is preferably 1 to 30% by weight, more preferably 2 to 25% by weight. Here, the plasticizer content is a value calculated by the following formula (IV).

Content of plasticizer (% by weight) = (weight of plasticizer in X layer / weight of X layer) × 100 (IV)
 可塑剤としては、多価アルコールが好ましく、例えば、エチレングリコール、グリセリン、ジグリセリン、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン等を挙げることができ、これらの1種または2種以上を混合して使用することができる。これらの中でも、エチレングリコール、グリセリンおよびジグリセリンが好ましい。 The plasticizer is preferably a polyhydric alcohol, and examples thereof include ethylene glycol, glycerin, diglycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, trimethylolpropane, and the like, one or two of these. A mixture of seeds or more can be used. Among these, ethylene glycol, glycerin and diglycerin are preferable.
 水溶性PVA(X)層が界面活性剤を含有することも、製膜性、転写適性の点、より高精彩な印刷が可能となる点、および転写時の水面の膨潤性を制御する点から好適である。界面活性剤の配合量は、X層の原料となるPVAに対して0.01~7重量%であることが好ましく、0.02~5重量%がより好ましい。 The water-soluble PVA (X) layer also contains a surfactant from the viewpoint of film-forming property, transferability, higher-definition printing, and control of water surface swelling during transfer. Is preferred. The compounding amount of the surfactant is preferably 0.01 to 7% by weight, more preferably 0.02 to 5% by weight with respect to PVA as a raw material for the X layer.
 界面活性剤の種類としては、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン系界面活性剤、両性界面活性剤が挙げられる。
 アニオン性界面活性剤としては、例えば、ラウリン酸カリウム等のカルボン酸型;オクチルサルフェート等の硫酸エステル型;ドデシルベンゼンスルホネート、アルキルベンゼンスルホン酸ナトリウム等のスルホン酸型;ポリオキシエチレンラウリルエーテルリン酸エステルモノエタノールアミン塩、オクチルリン酸エステルカリウム塩、ラウリルリン酸エステルカリウム塩、ステアリルリン酸エステルカリウム塩、オクチルエーテルリン酸エステルカリウム塩、ドデシルリン酸エステルナトリウム塩、テトラデシルリン酸エステルナトリウム塩、ジオクチルリン酸エステルナトリウム塩、トリオクチルリン酸エステルナトリウム塩、ポリオキシエチレンアリールフェニルエーテルリン酸エステルカリウム塩、ポリオキシエチレンアリールフェニルエーテルリン酸エステルアミン塩などが挙げられる。
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル等のアルキルエーテル型;ポリオキシエチレンオクチルフェニルエーテル等のアルキルフェニルエーテル型;ポリオキシエチレンラウレート等のアルキルエステル型;ポリオキシエチレンラウリルアミノエーテル等のアルキルアミン型;ポリオキシエチレンラウリン酸アミド等のアルキルアミド型;ポリオキシエチレンポリオキシプロピレンエーテル等のポリプロピレングリコールエーテル型;オレイン酸ジエタノールアミド等のアルカノールアミド型;ポリオキシアルキレンアリルフェニルエーテル等のアリルフェニルエーテル型などが挙げられる。
 カチオン系界面活性剤としては、例えば、ラウリルアミン塩酸塩等のアミン類;ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩類;ラウリルピリジニウムクロライド等のピリジニウム塩などが挙げられる。
 さらに、両性界面活性剤としては、例えば、N-アルキル-N,N-ジメチルアンモニウムベタインなどが挙げられる。
 界面活性剤は1種または2種以上を組み合わせて使用することができる。
Examples of the surfactant include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant.
Examples of the anionic surfactant include carboxylic acid types such as potassium laurate; sulfate ester types such as octyl sulfate; sulfonic acid types such as dodecylbenzenesulfonate and sodium alkylbenzenesulfonate; polyoxyethylene lauryl ether phosphate mono Ethanolamine salt, octyl phosphate potassium salt, lauryl phosphate potassium salt, stearyl phosphate potassium salt, octyl ether phosphate potassium salt, dodecyl phosphate sodium salt, tetradecyl phosphate sodium salt, dioctyl phosphate Ester sodium salt, Trioctyl phosphate sodium salt, Polyoxyethylene aryl phenyl ether phosphate potassium salt, Polyoxyethylene aryl ester Such as alkenyl ether phosphate amine salts.
Examples of nonionic surfactants include alkyl ether types such as polyoxyethylene oleyl ether and polyoxyethylene lauryl ether; alkylphenyl ether types such as polyoxyethylene octylphenyl ether; alkyl ester types such as polyoxyethylene laurate. An alkylamine type such as polyoxyethylene lauryl amino ether; an alkylamide type such as polyoxyethylene lauric acid amide; a polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether; an alkanolamide type such as oleic acid diethanolamide; Examples include allyl phenyl ether type such as oxyalkylene allyl phenyl ether.
Examples of the cationic surfactant include amines such as laurylamine hydrochloride; quaternary ammonium salts such as lauryltrimethylammonium chloride; and pyridinium salts such as laurylpyridinium chloride.
Further, examples of the amphoteric surfactant include N-alkyl-N, N-dimethylammonium betaine.
Surfactant can be used 1 type or in combination of 2 or more types.
 また、印刷適性を向上させる目的で、水溶性PVA(X)層にデンプン、シリカ等のスリップ剤を含有させることも好適である。この場合のスリップ剤の添加量としては、X層の重量に対して0.1~10重量%が好ましく、0.5~5重量%がより好ましい。 Also, for the purpose of improving printability, it is also preferable that a water-soluble PVA (X) layer contains a slip agent such as starch or silica. In this case, the addition amount of the slip agent is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight, based on the weight of the X layer.
 上記した架橋剤、可塑剤、界面活性剤等は、PVAフィルム(X層)を製造する際に、またはPVAコーティング液を製造する際に、予め配合して使用することができる。 The above-mentioned cross-linking agent, plasticizer, surfactant and the like can be mixed and used in advance when the PVA film (X layer) is manufactured or when the PVA coating solution is manufactured.
 本発明においてY層に使用される耐湿性樹脂は、フィルムの状態で、20℃、60%RHの雰囲気下に24時間放置したとき、および、60℃、90%RHの雰囲気下に24時間放置したときの、縦および横の長さの変化率がいずれも5%以下、好適には3%以下であることが重要である。耐湿性樹脂の長さの変化率は、具体的には後述する実施例に記載された方法により求めることができる。 In the present invention, the moisture-resistant resin used for the Y layer is left in a film state in an atmosphere of 20 ° C. and 60% RH for 24 hours and in an atmosphere of 60 ° C. and 90% RH for 24 hours. It is important that the rate of change of the vertical and horizontal lengths is 5% or less, preferably 3% or less. Specifically, the rate of change in the length of the moisture-resistant resin can be determined by the method described in Examples described later.
 耐湿性樹脂としては、例えば、ポリエステル樹脂、ポリオレフィン樹脂、ポリアミド樹脂、アクリル樹脂(ポリアクリル酸エステル、ポリメタクリル酸エステル等)、ハロゲン樹脂(ポリ塩化ビニル、ポリ塩化ビニリデン等)などが挙げられる。これらの中でも、ポリエステル樹脂およびポリオレフィン樹脂が好ましく、ポリエステル樹脂がより好ましい。ポリエステル樹脂としては、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等が挙げられ、これらの中でもポリエチレンテレフタレートが好ましい。また、ポリオレフィン樹脂としては、ポリプロピレン、ポリエチレン、エチレン共重合体(エチレン-プロピレン共重合体、アイオノマー等)などが挙げられ、これらの中でもポリプロピレンが好ましい。製膜時の熱劣化の防止、未溶融物の発生防止、耐水性向上、耐破断性向上、スリップ性向上、強度向上、さらには延伸性向上等のために、これらの樹脂をブロック、グラフトまたはランダム共重合体とすること、あるいは、これらの樹脂に可塑剤、酸化防止剤、結晶化剤、スリップ剤等の添加剤を加えることも好ましい。 Examples of moisture resistant resins include polyester resins, polyolefin resins, polyamide resins, acrylic resins (polyacrylic acid esters, polymethacrylic acid esters, etc.), halogen resins (polyvinyl chloride, polyvinylidene chloride, etc.), and the like. Among these, a polyester resin and a polyolefin resin are preferable, and a polyester resin is more preferable. Examples of the polyester resin include polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, and polybutylene terephthalate. Among these, polyethylene terephthalate is preferable. Examples of the polyolefin resin include polypropylene, polyethylene, ethylene copolymers (ethylene-propylene copolymer, ionomer, etc.), and among these, polypropylene is preferable. These resins are blocked, grafted or grafted to prevent thermal deterioration during film formation, to prevent the occurrence of unmelted materials, to improve water resistance, to improve fracture resistance, to improve slip properties, to improve strength, and to improve stretchability. It is also preferable to use random copolymers or to add additives such as plasticizers, antioxidants, crystallization agents, slip agents, etc. to these resins.
 Y層は、無延伸フィルムであってもよいが、耐水性の点から延伸フィルムが好ましく、二軸延伸フィルムがより好ましい。二軸延伸の方法としては、逐次二軸延伸、同時二軸延伸のいずれも採用できる。延伸倍率は樹脂の種類によって異なるが、ポリエステル樹脂の場合は、縦方向、横方向にそれぞれ3倍程度延伸することが好ましい。 The Y layer may be an unstretched film, but a stretched film is preferable from the viewpoint of water resistance, and a biaxially stretched film is more preferable. As the biaxial stretching method, either sequential biaxial stretching or simultaneous biaxial stretching can be employed. Although a draw ratio changes with kinds of resin, in the case of a polyester resin, it is preferable to extend about 3 times in a vertical direction and a horizontal direction, respectively.
 本発明において使用される水圧転写用多層ベースフィルムは、水溶性PVA(X)層および耐湿性樹脂(Y)層を含む多層構造とすることにより、高温多湿下での印刷でも、水分を含む印刷でも、またインクジェット方式の印刷でも、高精彩の印刷が可能である。ここで多層構造とは、X層/Y層の2層構造、X層/Z層/Y層の3層構造、またはそれ以上の多層構造を意味する。水圧転写用多層ベースフィルムが3層以上の多層構造を有する場合、水圧転写用多層ベースフィルム全体の厚みに対する、X層およびY層の厚みの合計の占める割合は80%以上であることが好ましい。3層構造の場合、上記のZ層の例としては、水溶性PVA(X)層、PVA以外の水溶性樹脂層、難溶性PVA層(前述の完溶時間が500秒超)、耐湿性樹脂(Y)層等が挙げられる。発明の効果を阻害しない限り、各層間には接着層が存在していてもよい。これらの構造の中でも、生産性の点からX層/Y層の2層構造が好ましい。 The multi-layer base film for hydraulic transfer used in the present invention has a multilayer structure including a water-soluble PVA (X) layer and a moisture-resistant resin (Y) layer, so that even in printing under high temperature and high humidity, printing including moisture is performed. However, high-definition printing is possible by ink-jet printing. Here, the multilayer structure means a two-layer structure of X layer / Y layer, a three-layer structure of X layer / Z layer / Y layer, or a multilayer structure of more than that. When the multilayer base film for hydraulic transfer has a multilayer structure of three or more layers, the ratio of the total thickness of the X layer and the Y layer to the total thickness of the multilayer base film for hydraulic transfer is preferably 80% or more. In the case of a three-layer structure, examples of the Z layer include a water-soluble PVA (X) layer, a water-soluble resin layer other than PVA, a hardly soluble PVA layer (the aforementioned complete dissolution time exceeds 500 seconds), and a moisture-resistant resin. (Y) layer etc. are mentioned. As long as the effects of the invention are not impaired, an adhesive layer may exist between the respective layers. Among these structures, a two-layer structure of X layer / Y layer is preferable from the viewpoint of productivity.
 X層とY層との層間接着力は、20℃、65%RHの雰囲気下における90°剥離方法(JIS K 6854-3)で測定される90°層間接着力として、0.001~0.1N/cmであることが好ましく、0.005~0.05N/cmがより好ましい。層間接着力が0.001N/cm未満の場合、印刷中に印刷張力や吸湿により層間剥離が発生するおそれがある。また層間接着力が0.1N/cmを超える場合、水圧転写時のX層の剥離が困難になるおそれがある。層間接着力を調整するために、例えば、Y層に予めコロナ処理等を行って層間接着力を高めておくこともできるし、X層とY層の層間に接着剤を使用することもできる。使用する接着剤としては、水圧転写後に容易に水に溶解する水溶性接着剤が、転写後の外観が良好であるので好ましい。水溶性接着剤としては、PVA系接着剤、デンプン系接着剤、これらに接着力制御のためのシリカ等の無機物を0.5~40重量部添加したものが好適に使用される。なお、水圧転写用多層ベースフィルムが3層以上の多層構造を有する場合、上記のX層とY層との層間接着力は、X層を含む水溶性の層と、Y層を含む耐湿性の層との層間接着力を意味する。 The interlayer adhesion between the X layer and the Y layer is 0.001 to 0.00 as the 90 ° interlayer adhesion measured by the 90 ° peeling method (JIS K 6854-3) in an atmosphere of 20 ° C. and 65% RH. It is preferably 1 N / cm, more preferably 0.005 to 0.05 N / cm. When the interlayer adhesion is less than 0.001 N / cm, there is a possibility that delamination may occur during printing due to printing tension or moisture absorption. Further, when the interlayer adhesive strength exceeds 0.1 N / cm, it may be difficult to peel off the X layer during hydraulic transfer. In order to adjust the interlayer adhesion, for example, corona treatment or the like may be performed on the Y layer in advance to increase the interlayer adhesion, or an adhesive may be used between the X layer and the Y layer. As the adhesive to be used, a water-soluble adhesive that is easily dissolved in water after hydraulic transfer is preferable because the appearance after transfer is good. As the water-soluble adhesive, a PVA-based adhesive, a starch-based adhesive, and those obtained by adding 0.5 to 40 parts by weight of an inorganic substance such as silica for controlling the adhesive force are preferably used. When the multilayer base film for hydraulic transfer has a multilayer structure of three or more layers, the interlayer adhesive force between the X layer and the Y layer is a water-soluble layer including the X layer and a moisture-resistant layer including the Y layer. It means the interlaminar adhesion strength with the layer.
 X層およびY層の厚みは、それぞれがフィルムの場合は、それぞれ10~90μmが好ましく、15~80μmがより好ましく、20~50μmがさらにより好ましい。X層がコーティング層の場合は、X層の厚みは10~70μmが好ましく、15~50μmがより好ましく、20~40μmがさらにより好ましい。また、水圧転写用多層ベースフィルム全体の厚みは、10~120μmが好ましく、30~45μmがより好ましい。 The thickness of each of the X layer and the Y layer is preferably 10 to 90 μm, more preferably 15 to 80 μm, and even more preferably 20 to 50 μm when each is a film. When the X layer is a coating layer, the thickness of the X layer is preferably 10 to 70 μm, more preferably 15 to 50 μm, and even more preferably 20 to 40 μm. The total thickness of the hydraulic transfer multilayer base film is preferably 10 to 120 μm, more preferably 30 to 45 μm.
 本発明において使用される水圧転写用多層ベースフィルムにおいて、印刷面であるX層の外面のJIS B0601で測定した表面粗さ(Ra)は、0.1~5.0であることが好ましく、0.2~3.0がより好ましい。表面粗さ(Ra)が0.1未満の場合、滑り性が悪く印刷加工時に摩擦により不具合を生じることがある。表面粗さ(Ra)が5.0を超える場合、印刷面の凹凸が顕著になり、外観が損なわれることがある。 In the multilayer base film for hydraulic transfer used in the present invention, the surface roughness (Ra) measured by JIS B0601 on the outer surface of the X layer, which is the printing surface, is preferably 0.1 to 5.0. 2 to 3.0 is more preferable. If the surface roughness (Ra) is less than 0.1, the slipperiness is poor and a problem may occur due to friction during printing. When surface roughness (Ra) exceeds 5.0, the unevenness | corrugation of a printing surface becomes remarkable and an external appearance may be impaired.
 また、X層の水分率は、フィルムの強度および柔軟性の点から、0.5~10重量%であることが好ましく、1~8重量%がより好ましい。X層の水分率が0.5重量%未満の場合、フィルムが裂けやすくなるおそれがあり、逆に10重量%を超える場合、印刷時にフィルムが伸びて多色柄が抜けるおそれがある。X層の水分率は、後述するPVAフィルムまたはPVAコーティング液を製造する際の水の量、製膜またはコーティング後の乾燥条件等を適宜調整することにより、決定することができる。 Further, the moisture content of the X layer is preferably 0.5 to 10% by weight, more preferably 1 to 8% by weight from the viewpoint of the strength and flexibility of the film. If the moisture content of the X layer is less than 0.5% by weight, the film may be easily torn, whereas if it exceeds 10% by weight, the film may be stretched during printing and the multicolor pattern may be lost. The moisture content of the X layer can be determined by appropriately adjusting the amount of water at the time of producing a PVA film or PVA coating liquid described later, the drying conditions after film formation or coating, and the like.
 本発明において使用される水圧転写用多層ベースフィルムの製造方法に特に制限はなく、水溶性PVA(X)フィルムおよび耐湿性樹脂(Y)フィルムを別々に製膜した後でラミネートする方法、耐湿性樹脂(Y)フィルムに水溶性PVA(X)のコーティング液をコートする方法、X層とY層とを共押出する方法等が挙げられる。これらの中でも、耐湿性樹脂(Y)フィルムに水溶性PVA(X)のコーティング液をコートする方法が、コスト面および性能面から好ましい。一方、別々に製膜した後でラミネートする方法は、各層の厚みおよび品質を制御し、高品質を追求する場合は有効である。 There is no particular limitation on the method for producing the hydraulic transfer multilayer base film used in the present invention, and a method of laminating the water-soluble PVA (X) film and the moisture-resistant resin (Y) film separately, and moisture resistance. Examples thereof include a method of coating a resin (Y) film with a water-soluble PVA (X) coating solution, a method of co-extruding the X layer and the Y layer, and the like. Among these, a method of coating a moisture-resistant resin (Y) film with a water-soluble PVA (X) coating solution is preferable from the viewpoint of cost and performance. On the other hand, the method of laminating after forming the films separately is effective when the thickness and quality of each layer are controlled and high quality is pursued.
 耐湿性樹脂(Y)フィルムに水溶性PVA(X)のコーティング液をコートする方法としては、PVAの濃度が5~40重量%になるように溶剤に溶解し、これを通常のコーティング方法、例えば、グラビアロールコーティング、マイヤーバーコーティング、リバースロールコーティング、エアーナイフコーティング、スプレーコーティング等によってコートする方法や、コーティング液を高粘度に保持したまま、一般的な溶融押出法と同様にダイスから押出す方法などが挙げられる。コーティングする工程、条件は特に制限されないが、耐湿性樹脂(Y)フィルムロールを繰り出し装置から連続的に繰り出し、ベルトまたはロール上に導いた後、上に例示したような方法でコーティングを行い、その後、熱風乾燥、熱ロール乾燥、遠赤外線乾燥等の公知の手段で乾燥または固化する方法が挙げられる。その際、耐湿性樹脂(Y)フィルムの物性を損なわないために、コート液の温度、量、乾燥または固化の温度、タイミング等を調整することは重要である。乾燥条件としては、温度30~120℃、時間3~500秒が好ましい。 As a method of coating a moisture-resistant resin (Y) film with a water-soluble PVA (X) coating solution, the PVA concentration is dissolved in a solvent so as to be 5 to 40% by weight, and this is dissolved in a usual coating method, for example, Coating by gravure roll coating, Meyer bar coating, reverse roll coating, air knife coating, spray coating, etc., or extruding from a die in the same way as a general melt extrusion method while keeping the coating solution at a high viscosity Etc. The coating process and conditions are not particularly limited, but the moisture-resistant resin (Y) film roll is continuously fed out from the feeding device, guided onto the belt or roll, and then coated by the method exemplified above, and thereafter And a method of drying or solidifying by known means such as hot air drying, hot roll drying, and far infrared drying. At that time, in order not to impair the physical properties of the moisture-resistant resin (Y) film, it is important to adjust the temperature, amount, drying or solidifying temperature, timing and the like of the coating liquid. As drying conditions, a temperature of 30 to 120 ° C. and a time of 3 to 500 seconds are preferable.
 PVAの溶剤としては、水が代表的であるが、メタノール、エタノール、プロパノ-ル、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の有機溶剤を使用することもできる。これらの有機溶剤を使用する場合は、水と併用するのが好ましい。特にコーティングの際は、水と、メタノール、エタノールおよび/またはプロパノールとを混合することにより乾燥時間を短縮できコート前のフィルムの変質を低減できるため好ましい。 A typical solvent for PVA is water, but organic solvents such as methanol, ethanol, propanol, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone can also be used. When using these organic solvents, it is preferable to use together with water. In particular, when coating, mixing water with methanol, ethanol and / or propanol is preferable because drying time can be shortened and deterioration of the film before coating can be reduced.
 水溶性PVA(X)フィルムおよび耐湿性樹脂(Y)フィルムをラミネートする方法としては、一般的に使用される方法が採用できるが、例えば、通常のフィルムラミネータを用い、熱ロールを110℃に加熱し、フィルムへの張力をいずれも5kg/mとして、40m/分の速度で加工することにより貼り合わせることができる。フィルムへの張力が大きすぎると、貼り合わせ後に残存応力を発生し、印刷適性が低下するおそれがあるので注意を要する。このとき、貼り合わせ前に水溶性PVA(X)フィルムを加湿するなどして、水分率を2~5重量%とすることが好ましい。水溶性PVA(X)フィルムの水分率が2重量%未満の場合、層間接着力が不足するおそれがある。一方、水分率が5重量%を超える場合、フィルムにタルミが発生するおそれがある。 As a method for laminating a water-soluble PVA (X) film and a moisture-resistant resin (Y) film, a generally used method can be adopted. For example, a normal film laminator is used and a heat roll is heated to 110 ° C. The film can be bonded by processing at a speed of 40 m / min, with the tension on the film being 5 kg / m. If the tension on the film is too large, residual stress is generated after bonding, and printability may be deteriorated. At this time, the water content is preferably 2 to 5% by weight by humidifying the water-soluble PVA (X) film before bonding. When the water content of the water-soluble PVA (X) film is less than 2% by weight, the interlayer adhesion may be insufficient. On the other hand, when the moisture content exceeds 5% by weight, there is a risk that tarmi may occur in the film.
 ラミネートの前段階として、水溶性PVA(X)フィルムを製造する方法としては、例えば、PVA溶液を使用して、流延製膜法、溶液コーティング法、湿式製膜法(貧溶媒中へ吐出する方法)、ゲル製膜法(PVA水溶液を一旦冷却ゲル化した後、溶媒を抽出除去する方法)、およびこれらの組み合わせによる方法、可塑剤を含むPVAを溶融して行う溶融押出製膜法等が挙げられる。これらの中でも、流延製膜法、溶液コーティング法および溶融押出製膜法が好ましい。PVAの溶剤としては、前述のものが使用できる。 As a method for producing a water-soluble PVA (X) film as a pre-lamination step, for example, using a PVA solution, a casting film forming method, a solution coating method, a wet film forming method (discharging into a poor solvent) Method), a gel film forming method (a method in which an aqueous solution of PVA is once cooled and gelled, and then a solvent is extracted and removed), a method using a combination thereof, a melt extrusion film forming method in which PVA containing a plasticizer is melted, Can be mentioned. Among these, the casting film forming method, the solution coating method, and the melt extrusion film forming method are preferable. As the PVA solvent, those mentioned above can be used.
 このようにして得られた多層フィルムは、そのまま水圧転写用多層ベースフィルムとすることも、あるいは必要に応じ、乾燥工程の前後で一軸または二軸の延伸を行って水圧転写用多層ベースフィルムとすることもできる。延伸条件としては、温度は20~120℃が好ましく、また延伸倍率は1.05~5倍が好ましく、1.1~3倍がより好ましい。さらに必要であれば、延伸後にフィルムを熱固定して残存応力を低下させることもできる。 The multilayer film thus obtained can be used as it is as a multilayer base film for hydraulic transfer, or, if necessary, can be uniaxially or biaxially stretched before and after the drying step to form a multilayer base film for hydraulic transfer. You can also As stretching conditions, the temperature is preferably 20 to 120 ° C., and the stretching ratio is preferably 1.05 to 5 times, more preferably 1.1 to 3 times. Furthermore, if necessary, the residual stress can be reduced by heat fixing the film after stretching.
 上記の水圧転写用多層ベースフィルムのX層上に、必要に応じてエンボス加工を施し、乾燥後に非水溶性(水面上で3分以内にインク総量(乾燥後)の80質量%以上が溶解しない)となるインクを用いて、絵模様、文字等を印刷することにより水圧転写フィルムを製造することができる。印刷方法としては、インクジェット印刷、グラビア印刷、スクリーン印刷、オフセット印刷、ロールコート等が挙げられる。 The X layer of the above-mentioned multilayer base film for hydraulic transfer is embossed as necessary, and after drying, water-insoluble (80% by mass or more of the total amount of ink (after drying) does not dissolve within 3 minutes on the water surface) A hydraulic transfer film can be manufactured by printing a picture pattern, a character, etc. using the ink which becomes. Examples of the printing method include inkjet printing, gravure printing, screen printing, offset printing, roll coating, and the like.
 上記の印刷方法の中でも、インクジェット印刷(インクジェット方式による印刷)も好適に採用される。インクジェット印刷によれば、製版を作製することなく、コンピュータ等で作成した柄を直接印刷することが可能であり、水圧転写フィルムの製造においてコスト的に有利である上に、製造期間も大幅に短縮できる。 Among the above printing methods, ink jet printing (printing by an ink jet method) is also preferably employed. Ink-jet printing makes it possible to directly print a pattern created by a computer or the like without producing a plate, which is advantageous in terms of cost in the production of a hydraulic transfer film and greatly shortens the production period. it can.
 上記の印刷において使用されるインクは水分を含む。インクの水分率は必ずしも限定されるものではないが、本発明の効果がより顕著に奏されることから0.5~80重量%であることが好ましく、1~75重量%であることがより好ましい。インクの水分率が80重量%を超えると、転写のために水圧転写フィルムから耐湿性樹脂(Y)層を剥離した後水面に浮かべたときに生じるカールの程度が大きくなり印刷面に変形が生じる可能性が高まる傾向がある。 The ink used in the above printing contains moisture. Although the moisture content of the ink is not necessarily limited, it is preferably 0.5 to 80% by weight and more preferably 1 to 75% by weight because the effects of the present invention are more remarkable. preferable. If the moisture content of the ink exceeds 80% by weight, the degree of curling that occurs when the moisture-resistant resin (Y) layer is peeled off from the hydraulic transfer film for transfer and then floats on the water surface increases, and the printed surface is deformed. There is a tendency to increase the possibility.
 印刷時の環境としては、常温(例えば、5~40℃)で、湿度20~90%RHであることが好ましく、30~80%RHがより好ましく、40~75%RHがさらにより好ましい。また、乾燥温度としては、30~100℃が好ましく、50~90℃がより好ましい。 The printing environment is preferably normal temperature (eg, 5 to 40 ° C.) and humidity of 20 to 90% RH, more preferably 30 to 80% RH, and even more preferably 40 to 75% RH. The drying temperature is preferably 30 to 100 ° C., more preferably 50 to 90 ° C.
 上記の水圧転写用多層ベースフィルムを用いれば、印刷工程での張力および乾燥工程での熱による水圧転写フィルムの寸法変化が小さくなり、また、従来のPVA単層のベースフィルムを用いた水圧転写フィルムに比べて耐水性が格段に向上する。このため、印刷時の多色の柄ズレを起こすことなく印刷速度を大幅に増加させることができる。また、高温での乾燥が必要なインクも使用することができる。さらに、従来のPVA単層のベースフィルムは吸湿や温度上昇によりフィルムの伸び、タルミ、ブロッキングが発生することが多く、保管中、輸送中、印刷工程での温度、湿度管理に細かい注意が必要であったが、上記の水圧転写用多層ベースフィルムを使用するとこの問題も大幅に改善され、管理範囲を大幅に緩めることができる。 If the above-mentioned multilayer base film for hydraulic transfer is used, the dimensional change of the hydraulic transfer film due to the tension in the printing process and the heat in the drying process is reduced, and the hydraulic transfer film using the conventional PVA single layer base film Compared with, water resistance is significantly improved. For this reason, it is possible to greatly increase the printing speed without causing multicolor pattern misalignment during printing. Ink that needs to be dried at a high temperature can also be used. In addition, conventional PVA single-layer base films often experience film elongation, tarmi, and blocking due to moisture absorption and temperature rise, requiring careful attention to temperature and humidity control during storage, transportation, and printing processes. However, when the above-mentioned multilayer base film for hydraulic transfer is used, this problem is greatly improved, and the management range can be greatly relaxed.
 上記の水圧転写フィルムから耐湿性樹脂(Y)層を剥離した後、印刷層を上にして水面に浮かべ、印刷面にインクの活性剤をスプレーして、上方から被転写体を押し付け、印刷層を被転写体の表面に充分固着させ、次いで水等によって水溶性PVA(X)層を除去し、乾燥した後、アクリル樹脂等の保護膜塗装を施して、表面に印刷された製品が得られる。インクの活性剤は、耐湿性樹脂(Y)層を剥離する前にスプレーまたはコートしてもよい。 After peeling off the moisture-resistant resin (Y) layer from the hydraulic transfer film, the printed layer is floated on the water surface, the ink activator is sprayed on the printed surface, and the transferred object is pressed from above, and the printed layer Is sufficiently fixed to the surface of the transfer object, then the water-soluble PVA (X) layer is removed with water or the like, dried, and then coated with a protective film such as an acrylic resin to obtain a product printed on the surface. . The ink activator may be sprayed or coated before the moisture resistant resin (Y) layer is peeled off.
 このとき、水圧転写フィルムの水溶性PVA(X)層は、インクの乾燥時に耐湿性樹脂(Y)層の上でテンションを掛けられることなく乾燥されるので、耐湿性樹脂(Y)層を剥離した後の水溶性PVA(X)層は、寸法変化が少なく、水面に浮べた際にもカールが少ない。具体的には、後述する実施例に記載された方法により決定される最大カール長さが好適には0.2~9cm、より好適には0.4~8cm、さらにより好適には0.5~8cmとなる。最大カール長さが上記の上限を超えないときは、転写有効面積が減少してロスすることがなく、また上記の下限未満でないときは、浮かべたフィルムのわずかなカールによって周辺の膨張が抑えられ、印刷ボケが少なくなるので好ましい。また、印刷前の水圧転写用多層ベースフィルムについても、上記の最大カール長さを満足することが好ましい。 At this time, the water-soluble PVA (X) layer of the hydraulic transfer film is dried without applying tension on the moisture-resistant resin (Y) layer when the ink is dried, so that the moisture-resistant resin (Y) layer is peeled off. The water-soluble PVA (X) layer after undergoing little dimensional change has little curl when it floats on the water surface. Specifically, the maximum curl length determined by the method described in Examples described later is preferably 0.2 to 9 cm, more preferably 0.4 to 8 cm, and even more preferably 0.5. ~ 8cm. When the maximum curl length does not exceed the above upper limit, the effective transfer area is not reduced and lost, and when it is not less than the above lower limit, the surrounding film is suppressed by slight curling of the floated film. This is preferable because printing blur is reduced. Moreover, it is preferable that the above-mentioned maximum curl length is also satisfied for the multilayer base film for hydraulic transfer before printing.
 被転写体としては、表面が平坦な構造体、表面が曲面となっている構造体(曲面構造体)などが挙げられるが、本発明の製造方法により得られる水圧転写フィルムは、高精彩印刷が要求される転写、とくに曲面構造体の転写に極めて有用である。ここで、曲面とは、球面、起伏面、凹凸のある立体面等を意味する。構造体の具体例としては、木版、合板、パーティクルボード等の木質基材、各種プラスチック成形品、パルプセメント、スレート板、ガラス繊維補強セメント、コンクリート板等のセメント製品、石膏ボード、珪酸カルシウム板、珪酸マグネシウム等の無機質製品、鉄、スチール、銅、アルミニウム、合金等の金属製品、ガラス製品などが挙げられる。 Examples of the material to be transferred include a structure having a flat surface and a structure having a curved surface (curved surface structure). The hydraulic transfer film obtained by the production method of the present invention is capable of high-definition printing. It is extremely useful for required transfer, especially for transfer of curved structures. Here, the curved surface means a spherical surface, an undulating surface, a three-dimensional surface with unevenness, or the like. Specific examples of structures include wood base materials such as wood plates, plywood and particle boards, various plastic molded products, pulp cement, slate boards, cement products such as glass fiber reinforced cement, concrete boards, gypsum boards, calcium silicate boards, Examples include inorganic products such as magnesium silicate, metal products such as iron, steel, copper, aluminum, and alloys, and glass products.
 以下に本発明を実施例等により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and the like, but the present invention is not limited to these examples.
[耐湿性樹脂の長さの変化率の測定法]
・開放時変化率
 長手方向と垂直方向(幅方向)に20cm×20cmの大きさの耐湿性樹脂フィルムを、任意の位置から切り出す。このサンプルを金網上で60℃、90%RHの雰囲気下に24時間放置し、長手方向と幅方向(長手方向に垂直な方向)の寸法変化を測定する。同じ測定を5回繰り返し、平均を開放時変化率とする。
・加重時変化率
 同様に切り出した耐湿性樹脂フィルムの長手方向の上辺と下辺をそれぞれ1cm織り込んで(フィルムは長手方向18cm、幅方向20cmとなる)、長さ25cmの金属棒(重量は10g)を通した後、セロハンテープで固定する。一方の金属棒の両端に紐をつけて上から吊るし、他方の金属棒の両端に紐を介して500gの重りを吊るしてフィルムに荷重をかける。上記の雰囲気下に放置し、その後、加重を取りはらってフィルムの長手方向と幅方向の寸法変化を測定する。同じ測定を5回繰り返し、平均を加重時変化率とする。
[Measurement method of rate of change of length of moisture-resistant resin]
-Change rate at the time of opening A moisture-resistant resin film having a size of 20 cm x 20 cm is cut out from an arbitrary position in the vertical direction (width direction) with respect to the longitudinal direction. This sample is left on a wire mesh in an atmosphere of 60 ° C. and 90% RH for 24 hours, and the dimensional change in the longitudinal direction and the width direction (direction perpendicular to the longitudinal direction) is measured. The same measurement is repeated 5 times, and the average is the rate of change at the time of opening.
-Rate of change under load In the same way, weave 1 cm each of the upper and lower sides of the moisture-resistant resin film cut out (the film has a length of 18 cm and a width of 20 cm), and a 25 cm long metal rod (weight is 10 g) After passing, fix with cellophane tape. A string is attached to both ends of one metal rod and hung from above, and a weight of 500 g is suspended from both ends of the other metal rod via a string to apply a load to the film. The film is left in the above atmosphere, and then the load is applied to measure the dimensional change in the longitudinal direction and the width direction of the film. The same measurement is repeated 5 times, and the average is the rate of change at weight.
[水溶性PVAの完溶時間の測定法]
 500mlのガラスビーカーにイオン交換水325mlを入れて水温を20℃に保持する。サンプルとなる水溶性PVAフィルムを20℃、65%RHに調温調湿した後、3.5cm×4cmの大きさに切り出し、窓枠の大きさが2.3cm×3.4cmのスライドマウントに挟んで固定する。上記のガラスビーカーの水を、マグネチックスターラを用いて長さが5cmの回転子で280回転/分の速度で撹拌しながら、ビーカーの中央にスライドマウントに挟んだフィルムをすばやく浸漬し、観察を行う。水中に浸漬したフィルムは時間の経過と共にスライドマウント上で溶解するか、または破れた後、スライドマウントから外れ、水中を浮遊しながら徐々に溶解し、肉眼では見えなくなる。フィルムを浸漬した直後から肉眼で見えなくなるまでの時間を計測して、これを完溶時間とする。
[Measurement method of complete dissolution time of water-soluble PVA]
Ion exchange water 325 ml is put into a 500 ml glass beaker and the water temperature is kept at 20 ° C. After adjusting the temperature of the water-soluble PVA film as a sample to 20 ° C. and 65% RH, the sample was cut into a size of 3.5 cm × 4 cm to form a slide mount having a window frame size of 2.3 cm × 3.4 cm. Fix it with a pinch. While stirring the water in the glass beaker with a magnetic stirrer at a speed of 280 rpm with a 5 cm long rotor, quickly immerse the film sandwiched between the slide mounts in the center of the beaker for observation. Do. The film immersed in water dissolves on the slide mount over time or tears, then comes off the slide mount, gradually dissolves while floating in water, and becomes invisible to the naked eye. The time from immediately after immersing the film until it disappears with the naked eye is measured, and this is defined as the complete dissolution time.
[PVA層の水分率の測定法]
 PVA層の水分率Hは、ヤマト科学(株)製真空乾燥機DP33および日立工機(株)製真空ポンプVR16LPを用い、試料を1Pa以下の減圧下、50℃で4時間の乾燥を行ったときの、フィルムの乾燥前の重量M0および乾燥後の重量Mdから、下記式(V)により算出した。
 
   H = [(M0 - Md) / M0] × 100  (V)
 
[Measurement method of moisture content of PVA layer]
The moisture content H of the PVA layer was measured by using a vacuum dryer DP33 manufactured by Yamato Scientific Co., Ltd. and a vacuum pump VR16LP manufactured by Hitachi Koki Co., Ltd. for 4 hours at 50 ° C. under a reduced pressure of 1 Pa or less. From the weight M0 before drying of the film and the weight Md after drying, it was calculated by the following formula (V).

H = [(M0−Md) / M0] × 100 (V)
[実施例1]
 けん化度88モル%、重合度1700のPVA(A)15重量部、グリセリン0.65重量部を含有する、PVA濃度15重量%の水溶液(X液)を20℃に調整した後、リップ幅96cm、開度0.3mmのコンマコーターに注入し、ライン速度1m/分で走行する二軸延伸ポリエチレンテレフタレート(PET)フィルム(東洋紡績株式会社製PETフィルムE5100、厚み25μm、幅100cm、片面コロナ処理、長手方向および幅方向の長さの開放時変化率および加重時変化率は、いずれも1%以下)のコロナ処理面上に連続的に流延し、120℃の熱風をあてながら5分間乾燥して、PETフィルム幅100cm、コート幅96cm、長さ1000mの水圧転写用多層ベースフィルムを得た。この多層ベースフィルムから剥離した水溶性PVA(X)層の完溶時間は24秒、アンリツ社製接触型連続厚み計で測定した厚みは30μmであった。また、水溶性PVA(X)層の水分率は3.1重量%、グリセリン含有量は4.0重量%、20℃、65%RHで90°剥離方法(JIS K 6854-3)により測定した、水溶性PVA(X)層とPET(Y)層との層間接着力(90°層間接着力)は0.024N/cm、JIS B0601により測定した、水溶性PVA(X)層の外面の表面粗さ(Ra)は0.5であった。これらの結果を表1および2に記す。
[Example 1]
An aqueous solution (solution X) containing 15 parts by weight of PVA (A) having a degree of saponification of 88 mol% and a degree of polymerization of 1700 and 0.65 parts by weight of glycerin was adjusted to 20 ° C., and then the lip width was 96 cm. , Biaxially stretched polyethylene terephthalate (PET) film (PET film E5100 manufactured by Toyobo Co., Ltd., thickness 25 μm, width 100 cm, single-sided corona treatment, injected into a comma coater with an opening of 0.3 mm and running at a line speed of 1 m / min. Continuously cast on the corona-treated surface of the length in the longitudinal direction and in the width direction when the open rate and the change rate under load are both 1% or less) and dry for 5 minutes while applying hot air at 120 ° C. Thus, a multilayer base film for hydraulic transfer having a PET film width of 100 cm, a coat width of 96 cm, and a length of 1000 m was obtained. The complete dissolution time of the water-soluble PVA (X) layer peeled from the multilayer base film was 24 seconds, and the thickness measured with an Anritsu contact-type continuous thickness meter was 30 μm. In addition, the water content of the water-soluble PVA (X) layer was measured by a 90 ° peeling method (JIS K 6854-3) at 3.1% by weight, glycerin content at 4.0% by weight, 20 ° C. and 65% RH. The interlayer adhesion (90 ° interlayer adhesion) between the water-soluble PVA (X) layer and the PET (Y) layer is 0.024 N / cm, and the surface of the outer surface of the water-soluble PVA (X) layer measured according to JIS B0601 The roughness (Ra) was 0.5. These results are shown in Tables 1 and 2.
 染料と硫酸バリウムの混合物70重量%、アルキッド樹脂とニトロセルロースの混合物30重量%からなる建材用インキ(ア)を3色使用し、20℃、72%RHの雰囲気下で上記の水圧転写用多層ベースフィルムの水溶性PVA(X)層に木目をグラビア印刷した。印刷層の厚みは各2μmとし、巻き出し張力は1kg/m、印刷速度は40m/分とした。印刷後は、多層フィルムを60℃の熱風で加熱された1mの乾燥ゾーンで乾燥し、巻き取り張力5kg/mで巻き取った。印刷後、グラビアロール下のパンに残ったインク中の水分率をカールフィッシャー水分計で測定したところ、2.3重量%であった。得られた印刷物(水圧転写フィルム)を、以下に示す各種評価に供した。 Three layers of ink for building materials (A) consisting of 70% by weight of a mixture of dye and barium sulfate and 30% by weight of a mixture of alkyd resin and nitrocellulose, and the above-mentioned multilayer for hydraulic transfer in an atmosphere of 20 ° C. and 72% RH Gravure printing was performed on the water-soluble PVA (X) layer of the base film. The thickness of the printing layer was 2 μm each, the unwinding tension was 1 kg / m, and the printing speed was 40 m / min. After printing, the multilayer film was dried in a 1 m drying zone heated with hot air at 60 ° C. and wound up at a winding tension of 5 kg / m. After printing, the moisture content in the ink remaining in the pan under the gravure roll was measured with a Karl Fischer moisture meter and found to be 2.3% by weight. The obtained printed matter (hydraulic transfer film) was subjected to various evaluations shown below.
印刷適性評価
1.ピッチズレ
 上記の印刷物について、各色のピッチズレを以下の基準により判定した。
極小・・各色のズレが0.1mm未満
小 ・・各色のズレが0.1mm以上、0.3mm未満
大 ・・各色のズレが0.3mm以上
Evaluation of printability Pitch deviation The above-mentioned printed matter was determined based on the following criteria for the pitch deviation of each color.
Extremely small · · Misalignment of each color is less than 0.1mm · · Misalignment of each color is 0.1mm or more and less than 0.3mm · · Deviation of each color is 0.3mm or more
2.印刷抜け
 上記の印刷物について、印刷抜けを以下の基準により判定した。
なし・・50cm×50cm内に1mm以上の印刷抜けがない
あり・・50cm×50cm内に1mm以上の印刷抜けがある
2. Printing failure The printing failure of the above printed matter was determined according to the following criteria.
There is a 1mm 2 or more print missing without There is no 1mm 2 or more print missing in ·· 50cm × 50cm in ·· 50cm × 50cm in
3.切断回数
 上記の印刷工程でフィルムを1000m印刷する間に、フィルム、特にフィルム端面の密着によって発生したフィルム切断(機械の変動によるフィルム切断は考慮しない)の回数を切断回数とした。
3. Number of cuttings The number of times of film cutting (not considering film cutting due to machine fluctuations) generated by the adhesion of the film, particularly the film end face, during the 1000 m printing of the film in the above printing process was defined as the number of cuttings.
4.最大カール長さ
 30℃、80%RHに調湿した上記の印刷物から、製膜方向に43cm、幅方向に22cm(元のフィルムの中央と切り出す試験片の中央が一致する)の長方形の試験片を切り出し、印刷がされた水溶性PVA(X)層を剥離して、その水溶性PVA(X)フィルムの短辺(22cmの辺)の両端部を各1cmずつ印刷面側に折り込んで細長い筒状の部分を作り、その中に直径2mmの鉄棒を挿入してフィルムの折り込み部分でくるみ、紙テープで固定した。一方、35cm×50cm×5.5cmのバットに、上記の鉄棒2本を35cm間隔で渡して固定できるように、バットの長辺上の淵に鉄棒がはまる窪みを2対設けた。このバットにイオン交換水5Lを注ぎ、ホットプレート上に置いて水温を30±1℃に調整した。次に、フィルムの印刷面を上にして、両端に鉄棒を挿入したフィルムの一方の鉄棒をバットの窪みにはめ込み、もう一方の鉄棒を、フィルムが水面に接触するように他方の窪みにはめ込んだ。このとき、フィルムが泡を噛んだり、フィルム端部が水中に沈み込むことのないように注意した。水に浮かべてフィルムにカールを生じさせ、10秒経過後、フィルムの膨潤が始まる前に、フィルム中央部の最もカールが進行している部分の幅を測定した。同様の測定を5回行って平均値を取り、その値を元のフィルム幅22cmから差し引いて最大カール長さとした。
4). A rectangular test piece of 43 cm in the film forming direction and 22 cm in the width direction (the center of the original film coincides with the center of the cut out specimen) from the above-mentioned printed matter adjusted to a maximum curl length of 30 ° C. and 80% RH. And the printed water-soluble PVA (X) layer is peeled off, and both ends of the short side (22 cm side) of the water-soluble PVA (X) film are folded by 1 cm each on the printing surface side to form an elongated cylinder. A 2 mm diameter iron rod was inserted into the shape, wrapped in the folded portion of the film, and fixed with paper tape. On the other hand, two pairs of recesses in which the iron bars fit into the heels on the long sides of the bat were provided so that the above-mentioned two iron bars could be passed and fixed to a 35 cm × 50 cm × 5.5 cm bat at intervals of 35 cm. 5 L of ion exchange water was poured into this vat and placed on a hot plate to adjust the water temperature to 30 ± 1 ° C. Next, with the printing surface of the film facing up, insert one iron rod of the film with the iron rod inserted into both ends into the dent of the bat, and the other iron rod into the other depression so that the film contacts the water surface. . At this time, care was taken so that the film did not bite bubbles and the film edge did not sink into water. The film was floated on water, and the film was curled. After 10 seconds, before the film began to swell, the width of the most curled portion at the center of the film was measured. The same measurement was performed 5 times, the average value was taken, and the value was subtracted from the original film width of 22 cm to obtain the maximum curl length.
 以上の各種評価の結果を表3に記す。 The results of the above various evaluations are shown in Table 3.
[実施例2]
 印刷速度を80m/分、印刷後の乾燥温度を90℃としたこと以外は実施例1と同様にして印刷物(水圧転写フィルム)を得て、各種評価に供した。結果を表1~3に記す。
[Example 2]
A printed matter (hydraulic transfer film) was obtained in the same manner as in Example 1 except that the printing speed was 80 m / min and the drying temperature after printing was 90 ° C., and subjected to various evaluations. The results are shown in Tables 1-3.
[実施例3]
 実施例1で得られた水圧転写用多層ベースフィルムから、製膜方向に43cm、幅方向に22cm(元のフィルムの中央と切り出すフィルムの中央が一致する)の長方形の多層フィルムを切り出した。キヤノン製インクジェットプリンターPIXUS MX850を用い、コンピュータを介して製作した同様な柄を、切り出した多層フィルムに印刷した。印刷後10秒以内に、60℃の熱風で10秒間乾燥した。フィルムの伸び、タルミ等の外観上の異常は見られなかった。印刷後、インクカートリッジ内に残ったインク中の水分率をカールフィッシャー水分計で測定したところ、4種類のインクごとに異なるが、65~72重量%の範囲内であった。得られた印刷物(水圧転写フィルム)を、実施例1と同様にして各種評価に供した。結果を表1~3に記す。
[Example 3]
From the hydraulic transfer multilayer base film obtained in Example 1, a rectangular multilayer film of 43 cm in the film forming direction and 22 cm in the width direction (the center of the original film coincides with the center of the film to be cut out) was cut out. Using a Canon inkjet printer PIXUS MX850, a similar pattern produced via a computer was printed on the cut multilayer film. Within 10 seconds after printing, it was dried with hot air at 60 ° C. for 10 seconds. No abnormalities in the appearance such as film elongation and tarmi were observed. After printing, the moisture content in the ink remaining in the ink cartridge was measured with a Karl Fischer moisture meter, and it was in the range of 65 to 72% by weight, although it was different for each of the four types of ink. The obtained printed matter (hydraulic transfer film) was subjected to various evaluations in the same manner as in Example 1. The results are shown in Tables 1-3.
[実施例4]
 実施例1で使用したX液をコンベアベルト上に流延し、ベルト上で120℃の熱風をあてながら5分間乾燥して厚み31μm、幅97cm、長さ1050mの水溶性PVA(X)フィルムを得た。実施例1と同様にして評価したところ、この水溶性PVA(X)フィルムの完溶時間は21秒、水分率は2.9重量%、グリセリン含有量は4.0重量%であった。
[Example 4]
The solution X used in Example 1 was cast on a conveyor belt and dried for 5 minutes while applying hot air of 120 ° C. on the belt to obtain a water-soluble PVA (X) film having a thickness of 31 μm, a width of 97 cm, and a length of 1050 m. Obtained. When evaluated in the same manner as in Example 1, the water-soluble PVA (X) film had a complete dissolution time of 21 seconds, a moisture content of 2.9% by weight, and a glycerin content of 4.0% by weight.
 20℃、45%RHの雰囲気下で、この水溶性PVA(X)フィルムと実施例1で使用したPETフィルムとを水溶性PVA(X)フィルムがPETフィルムのコロナ処理面と接するように重ね、80℃に加熱した金属ロールとゴムロールの間を40m/分の速度で通過させて水圧転写用多層ベースフィルムを得た。実施例1と同様にして評価したところ、水溶性PVA(X)層とPET(Y)層との層間接着力(90°層間接着力)は0.009N/cm、水溶性PVA(X)層の外面の表面粗さ(Ra)は0.4であった。これらの結果を表1および2に記す。
 続いて、実施例1と同様にして、この水圧転写用多層ベースフィルムから印刷物(水圧転写フィルム)を得て、各種評価に供した。結果を表3に記す。
Under an atmosphere of 20 ° C. and 45% RH, the water-soluble PVA (X) film and the PET film used in Example 1 were stacked so that the water-soluble PVA (X) film was in contact with the corona-treated surface of the PET film. A multilayer base film for hydraulic transfer was obtained by passing between a metal roll and a rubber roll heated to 80 ° C. at a speed of 40 m / min. When evaluated in the same manner as in Example 1, the interlayer adhesion (90 ° interlayer adhesion) between the water-soluble PVA (X) layer and the PET (Y) layer was 0.009 N / cm, and the water-soluble PVA (X) layer The surface roughness (Ra) of the outer surface was 0.4. These results are shown in Tables 1 and 2.
Subsequently, in the same manner as in Example 1, a printed matter (hydraulic transfer film) was obtained from this hydraulic transfer multilayer base film and subjected to various evaluations. The results are shown in Table 3.
[実施例5]
 実施例1のX液100重量部にホウ酸を0.15重量部添加したものを使用したこと以外は実施例1と同様にして、水圧転写用多層ベースフィルムを得た。実施例1と同様にして評価したところ、水溶性PVA(X)層の完溶時間は28秒、厚みは29μm、水分率は3.0重量%、グリセリン含有量は4.0重量%、水溶性PVA(X)層とPET(Y)層との層間接着力(90°層間接着力)は0.031N/cm、水溶性PVA(X)層の外面の表面粗さ(Ra)は0.6であった。これらの結果を表1および2に記す。
 続いて、実施例1と同様にして、この水圧転写用多層ベースフィルムから印刷物(水圧転写フィルム)を得て、各種評価に供した。結果を表3に記す。
[Example 5]
A multilayer base film for hydraulic transfer was obtained in the same manner as in Example 1 except that 0.15 part by weight of boric acid was added to 100 parts by weight of the X solution of Example 1. When evaluated in the same manner as in Example 1, the complete dissolution time of the water-soluble PVA (X) layer was 28 seconds, the thickness was 29 μm, the moisture content was 3.0% by weight, the glycerin content was 4.0% by weight, The interlayer adhesive strength (90 ° interlayer adhesive strength) between the water-soluble PVA (X) layer and the PET (Y) layer is 0.031 N / cm, and the surface roughness (Ra) of the outer surface of the water-soluble PVA (X) layer is 0. 6. These results are shown in Tables 1 and 2.
Subsequently, in the same manner as in Example 1, a printed matter (hydraulic transfer film) was obtained from this hydraulic transfer multilayer base film and subjected to various evaluations. The results are shown in Table 3.
[実施例6]
 実施例1のX液に、平均粒子径6.6μmのシリカ(東ソー株式会社製「NIPGEL0063」)を、濃度が0.3重量%となるように添加したものを使用したこと以外は実施例1と同様にして、水圧転写用多層ベースフィルムを得た。実施例1と同様にして評価したところ、水溶性PVA(X)層の完溶時間は26秒、厚みは31μm、水分率は2.8重量%、グリセリン含有量は4.0重量%、水溶性PVA(X)層とPET(Y)層との層間接着力(90°層間接着力)は0.017N/cm、水溶性PVA(X)層の外面の表面粗さ(Ra)は1.1であった。これらの結果を表1および2に記す。
 続いて、実施例1と同様にして、この水圧転写用多層ベースフィルムから印刷物(水圧転写フィルム)を得て、各種評価に供した。結果を表3に記す。
[Example 6]
Example 1 except that silica having an average particle size of 6.6 μm (“NIPGEL0063” manufactured by Tosoh Corporation) was added to the solution X of Example 1 so that the concentration was 0.3% by weight. In the same manner as above, a multilayer base film for hydraulic transfer was obtained. When evaluated in the same manner as in Example 1, the complete dissolution time of the water-soluble PVA (X) layer was 26 seconds, the thickness was 31 μm, the moisture content was 2.8% by weight, the glycerin content was 4.0% by weight, The interlayer adhesive strength (90 ° interlayer adhesive strength) between the water-soluble PVA (X) layer and the PET (Y) layer is 0.017 N / cm, and the surface roughness (Ra) of the outer surface of the water-soluble PVA (X) layer is 1. 1 These results are shown in Tables 1 and 2.
Subsequently, in the same manner as in Example 1, a printed matter (hydraulic transfer film) was obtained from this hydraulic transfer multilayer base film and subjected to various evaluations. The results are shown in Table 3.
[実施例7]
 二軸延伸PETフィルムの代わりに、二軸延伸ポリプロピレンフィルム(東セロ株式会社製PPフィルムOP U-1、厚み20μm、幅100cm、片面コロナ処理、長手方向および幅方向の長さの開放時変化率および加重時変化率は、いずれも1%以下)を使用したこと以外は実施例1と同様にして、水圧転写用多層ベースフィルムを得た。実施例1と同様にして評価したところ、水溶性PVA(X)層の完溶時間は24秒、厚みは30μm、水分率は3.1重量%、グリセリン含有量は4.0重量%、水溶性PVA(X)層とPP(Y)層との層間接着力(90°層間接着力)は0.016N/cm、水溶性PVA(X)層の外面の表面粗さ(Ra)は0.5であった。これらの結果を表1および2に記す。
 続いて、実施例1と同様にして、この水圧転写用多層ベースフィルムから印刷物(水圧転写フィルム)を得て、各種評価に供した。結果を表3に記す。
[Example 7]
Instead of the biaxially stretched PET film, a biaxially stretched polypropylene film (PP film OP U-1, manufactured by Tosero Co., Ltd., thickness 20 μm, width 100 cm, single-sided corona treatment, rate of change in length in the longitudinal direction and width direction when opened, and A multi-layer base film for hydraulic transfer was obtained in the same manner as in Example 1 except that the rate of change under load was 1% or less. When evaluated in the same manner as in Example 1, the complete dissolution time of the water-soluble PVA (X) layer was 24 seconds, the thickness was 30 μm, the moisture content was 3.1% by weight, the glycerin content was 4.0% by weight, The interlayer adhesive force (90 ° interlayer adhesive force) between the water-soluble PVA (X) layer and the PP (Y) layer is 0.016 N / cm, and the surface roughness (Ra) of the outer surface of the water-soluble PVA (X) layer is 0. It was 5. These results are shown in Tables 1 and 2.
Subsequently, in the same manner as in Example 1, a printed matter (hydraulic transfer film) was obtained from this hydraulic transfer multilayer base film and subjected to various evaluations. The results are shown in Table 3.
[実施例8]
 PVA(A)の代わりに、けん化度91モル%、重合度1700のPVA(B)を使用したこと以外は実施例1と同様にして、水圧転写用多層ベースフィルムを得た。実施例1と同様にして評価したところ、水溶性PVA(X)層の完溶時間は43秒、厚みは28μm、水分率は3.4重量%、グリセリン含有量は4.0重量%、水溶性PVA(X)層とPET(Y)層との層間接着力(90°層間接着力)は0.018N/cm、水溶性PVA(X)層の外面の表面粗さ(Ra)は0.4であった。これらの結果を表1および2に記す。
 続いて、実施例1と同様にして、この水圧転写用多層ベースフィルムから印刷物(水圧転写フィルム)を得て、各種評価に供した。結果を表3に記す。
[Example 8]
A multilayer base film for hydraulic transfer was obtained in the same manner as in Example 1 except that PVA (B) having a saponification degree of 91 mol% and a polymerization degree of 1700 was used instead of PVA (A). When evaluated in the same manner as in Example 1, the complete dissolution time of the water-soluble PVA (X) layer was 43 seconds, the thickness was 28 μm, the moisture content was 3.4% by weight, the glycerin content was 4.0% by weight, The interlayer adhesive strength (90 ° interlayer adhesive strength) between the water-soluble PVA (X) layer and the PET (Y) layer is 0.018 N / cm, and the surface roughness (Ra) of the outer surface of the water-soluble PVA (X) layer is 0. 0. 4. These results are shown in Tables 1 and 2.
Subsequently, in the same manner as in Example 1, a printed matter (hydraulic transfer film) was obtained from this hydraulic transfer multilayer base film and subjected to various evaluations. The results are shown in Table 3.
[実施例9]
 実施例3で使用したインクカートリッジを開封し、各インクを取り出した。それぞれのインク100重量部に脱イオン水100重量部を加え、よくかき混ぜた後、あふれないように注意しながらインクカートリッジに戻した。このインクカートリッジを使用したこと以外は実施例3と同様にして印刷物(水圧転写フィルム)を得て、各種評価に供した。印刷後、インクカートリッジ内に残ったインク中の水分率をカールフィッシャー水分計で測定したところ、4種類のインクごとに異なるが、81~84重量%の範囲内であった。結果を表1~3に記す。
[Example 9]
The ink cartridge used in Example 3 was opened, and each ink was taken out. After adding 100 parts by weight of deionized water to 100 parts by weight of each ink and stirring well, the ink cartridge was returned to the ink cartridge, taking care not to overflow. A printed matter (hydraulic transfer film) was obtained in the same manner as in Example 3 except that this ink cartridge was used, and was subjected to various evaluations. After printing, the moisture content in the ink remaining in the ink cartridge was measured with a Karl Fischer moisture meter, and it was in the range of 81 to 84% by weight, although it was different for each of the four types of ink. The results are shown in Tables 1-3.
[比較例1]
 実施例4と同様にして得られた水溶性PVA(X)フィルムを単層で使用したこと以外は実施例1と同様にして印刷物(水圧転写フィルム)を得て、各種評価に供した。フィルムは吸湿しており、印刷後の乾燥の際に装置方向に伸びて、激しい柄ズレが発生した。また、ロール端面に水分が付着してブロッキングし、繰り出し時に切断が多発した。結果を表1~3に記す。
[Comparative Example 1]
A printed matter (hydraulic transfer film) was obtained in the same manner as in Example 1 except that the water-soluble PVA (X) film obtained in the same manner as in Example 4 was used as a single layer, and was subjected to various evaluations. The film absorbed moisture, and stretched in the direction of the apparatus during drying after printing, resulting in severe pattern displacement. Moreover, moisture adhered to the roll end face and blocked, and cutting occurred frequently during feeding. The results are shown in Tables 1-3.
[比較例2]
 印刷時の湿度を46%RHとしたこと以外は比較例1と同様にして印刷物(水圧転写フィルム)を得て、各種評価に供した。フィルムの伸びは大幅に改善したが、依然として柄ズレが多少発生し、高精彩が要求される用途では問題となるレベルであった。結果を表1~3に記す。
[Comparative Example 2]
A printed matter (hydraulic transfer film) was obtained in the same manner as in Comparative Example 1 except that the humidity during printing was 46% RH, and subjected to various evaluations. Although the elongation of the film has been greatly improved, there is still some pattern misalignment, which is a problem level in applications where high definition is required. The results are shown in Tables 1-3.
[比較例3]
 印刷速度を80m/分、印刷後の乾燥温度を90℃としたこと以外は比較例1と同様にして印刷物(水圧転写フィルム)を得て、各種評価に供した。フィルムは吸湿しており、印刷後の乾燥の際に装置方向に伸びて、激しい柄ズレが発生した。結果を表1~3に記す。
[Comparative Example 3]
A printed matter (hydraulic transfer film) was obtained in the same manner as in Comparative Example 1 except that the printing speed was 80 m / min and the drying temperature after printing was 90 ° C., and subjected to various evaluations. The film absorbed moisture, and stretched in the direction of the apparatus during drying after printing, resulting in severe pattern displacement. The results are shown in Tables 1-3.
[比較例4]
 実施例4と同様にして得られた水溶性PVA(X)フィルムから、製膜方向に43cm、幅方向に22cm(元のフィルムの中央と切り出すフィルムの中央が一致する)の長方形のフィルムを切り出し、同じサイズの普通紙に、シワが入らないよう四辺をテープで固定し、実施例3と同様にして印刷した。得られた印刷物(水圧転写フィルム)を、実施例1と同様にして各種評価に供した。フィルムは部分的に伸びが観察され、その部分では激しい印刷抜け、ズレが見られた。また、乾燥により激しい波打が発生した。結果を表1~3に記す。
[Comparative Example 4]
From the water-soluble PVA (X) film obtained in the same manner as in Example 4, a rectangular film having a size of 43 cm in the film forming direction and 22 cm in the width direction (the center of the original film and the center of the film to be cut out) are cut out. The four sides of the same size plain paper were fixed with tape so as not to get wrinkled, and printed in the same manner as in Example 3. The obtained printed matter (hydraulic transfer film) was subjected to various evaluations in the same manner as in Example 1. The film was partially stretched, and severe printing loss and misalignment were observed in that portion. In addition, severe undulation occurred due to drying. The results are shown in Tables 1-3.
[比較例5]
 実施例4と同様にして得られた水溶性PVA(X)フィルムに、平均粒子径0.8μmのスチレン-メタクリル酸メチル共重合体(スチレン/メタクリル酸メチル=50/50、重量比)を分散質とし、けん化度88モル%、重合度1750のPVAを分散剤とする樹脂エマルジョン(スチレン-メタクリル酸メチル共重合体の濃度1重量%、バインダーとしてのけん化度88モル%、重合度1750のPVAの濃度1重量%、合計固形分濃度2重量%)をコートし、80℃に加熱した金属ロールとゴムロールの間を40m/分の速度で通過させて水圧転写用多層ベースフィルムを得た。樹脂エマルジョン層の厚みは1.8μmであった。これらの結果を表1および2に記す。
 続いて、実施例1と同様にして、この水圧転写用多層ベースフィルムから印刷物(水圧転写フィルム)を得て、各種評価に供した。結果を表3に記す。
[Comparative Example 5]
In a water-soluble PVA (X) film obtained in the same manner as in Example 4, a styrene-methyl methacrylate copolymer (styrene / methyl methacrylate = 50/50, weight ratio) having an average particle diameter of 0.8 μm was dispersed. PVA having a saponification degree of 88 mol% and a polymerization degree of 1750 PVA as a dispersant (concentration of 1% by weight of styrene-methyl methacrylate copolymer, a saponification degree of 88 mol% as a binder and a polymerization degree of 1750 PVA) 1% by weight, total solid content concentration 2% by weight) and passed between a metal roll heated to 80 ° C. and a rubber roll at a speed of 40 m / min to obtain a multilayer base film for hydraulic transfer. The thickness of the resin emulsion layer was 1.8 μm. These results are shown in Tables 1 and 2.
Subsequently, in the same manner as in Example 1, a printed matter (hydraulic transfer film) was obtained from this hydraulic transfer multilayer base film and subjected to various evaluations. The results are shown in Table 3.
[参考例1]
 印刷時にグラビアロールおよびグラビアロール下のパンの周りを水圧転写用ベースフィルムに接触しないようにしながらプラスチックフィルムで囲い、その中に水圧転写用ベースフィルムが振動しない程度の流量でガスボンベより乾燥エアーを供給して印刷中のインクの吸湿を抑制したこと以外は比較例1と同様にして印刷物(水圧転写フィルム)を得て、各種評価に供した。印刷後、グラビアロール下のパンに残ったインク中の水分率をカールフィッシャー水分計で測定したところ、0.2重量%であった。結果を表1~3に記す。
[Reference Example 1]
Enclose the gravure roll and the pan under the gravure roll with a plastic film so as not to contact the hydraulic transfer base film during printing, and supply dry air from the gas cylinder at a flow rate that does not cause the hydraulic transfer base film to vibrate. A printed matter (hydraulic transfer film) was obtained in the same manner as in Comparative Example 1 except that the moisture absorption of the ink during printing was suppressed, and was subjected to various evaluations. After printing, the moisture content in the ink remaining on the pan under the gravure roll was measured with a Karl Fischer moisture meter and found to be 0.2% by weight. The results are shown in Tables 1-3.
[実施例10]
 水溶性PVA(X)フィルムを単層で使用する代わりに、実施例1と同様にして得られた水圧転写用多層ベースフィルムを使用したこと以外は参考例1と同様にして印刷物(水圧転写フィルム)を得て、各種評価に供した。印刷後、グラビアロール下のパンに残ったインク中の水分率をカールフィッシャー水分計で測定したところ、0.2重量%であった。結果を表1~3に記す。
[Example 10]
Instead of using a water-soluble PVA (X) film in a single layer, a printed material (hydraulic transfer film) was used in the same manner as in Reference Example 1 except that a multilayer base film for hydraulic transfer obtained in the same manner as in Example 1 was used. And obtained for various evaluations. After printing, the moisture content in the ink remaining on the pan under the gravure roll was measured with a Karl Fischer moisture meter and found to be 0.2% by weight. The results are shown in Tables 1-3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の製造方法によれば、水分を含むインクを用いてグラビア印刷またはインクジェット印刷した場合であっても、フィルムの伸び、タルミが少なく、多色の柄ズレ発生がない水圧転写フィルムが得られる。当該水圧転写フィルムは、高精度、高精彩の印刷が要求される転写、とくに曲面構造体の転写に有用である。 According to the production method of the present invention, even when gravure printing or ink-jet printing is performed using an ink containing moisture, a hydraulic transfer film with little film elongation and sagging and no occurrence of multicolor pattern displacement can be obtained. . The hydraulic transfer film is useful for transfer that requires high-precision and high-definition printing, particularly for transfer of curved structures.

Claims (8)

  1.  水溶性ポリビニルアルコール(X)層および耐湿性樹脂(Y)層を含む水圧転写用多層ベースフィルムの水溶性ポリビニルアルコール(X)層上に、水分を含むインクを用いて印刷する、水圧転写フィルムの製造方法。 A hydraulic transfer film for printing using water-containing ink on a water-soluble polyvinyl alcohol (X) layer of a multilayer base film for hydraulic transfer including a water-soluble polyvinyl alcohol (X) layer and a moisture-resistant resin (Y) layer Production method.
  2.  前記水溶性ポリビニルアルコール(X)層が架橋剤を0.01~3重量%含有する、請求項1に記載の水圧転写フィルムの製造方法。 The method for producing a hydraulic transfer film according to claim 1, wherein the water-soluble polyvinyl alcohol (X) layer contains 0.01 to 3% by weight of a crosslinking agent.
  3.  前記架橋剤がホウ素化合物である、請求項2に記載の水圧転写フィルムの製造方法。 The method for producing a hydraulic transfer film according to claim 2, wherein the crosslinking agent is a boron compound.
  4.  前記耐湿性樹脂(Y)が、ポリエステル樹脂およびポリオレフィン樹脂からなる群より選ばれる少なくとも1種の樹脂である、請求項1~3のいずれか1項に記載の水圧転写フィルムの製造方法。 The method for producing a hydraulic transfer film according to any one of claims 1 to 3, wherein the moisture-resistant resin (Y) is at least one resin selected from the group consisting of a polyester resin and a polyolefin resin.
  5.  前記水溶性ポリビニルアルコール(X)層と前記耐湿性樹脂(Y)層との90°層間接着力(JIS K6854-3)が0.001~0.1N/cmである、請求項1~4のいずれか1項に記載の水圧転写フィルムの製造方法。 The 90 ° interlayer adhesive strength (JIS K6854-3) between the water-soluble polyvinyl alcohol (X) layer and the moisture-resistant resin (Y) layer is 0.001 to 0.1 N / cm. The manufacturing method of the hydraulic transfer film of any one of Claims 1.
  6.  前記印刷がインクジェット方式により行われる、請求項1~5のいずれか1項に記載の水圧転写フィルムの製造方法。 The method for producing a hydraulic transfer film according to any one of claims 1 to 5, wherein the printing is performed by an inkjet method.
  7.  前記水分を含むインクの水分率が0.5~80重量%である、請求項1~6のいずれか1項に記載の水圧転写フィルムの製造方法。 The method for producing a hydraulic transfer film according to any one of claims 1 to 6, wherein the water content of the ink containing water is 0.5 to 80% by weight.
  8.  水溶性ポリビニルアルコール(X)層および耐湿性樹脂(Y)層を含む水圧転写用多層ベースフィルムの水溶性ポリビニルアルコール(X)層上に、水分を含むインクが印刷されてなる水圧転写フィルム。 Water pressure transfer film in which water-containing ink is printed on the water-soluble polyvinyl alcohol (X) layer of the multilayer base film for water pressure transfer including the water-soluble polyvinyl alcohol (X) layer and the moisture-resistant resin (Y) layer.
PCT/JP2009/069706 2008-11-28 2009-11-20 Method for producing hydraulic transfer film WO2010061790A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010502100A JP5290274B2 (en) 2008-11-28 2009-11-20 Method for producing hydraulic transfer film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-304258 2008-11-28
JP2008304258 2008-11-28

Publications (1)

Publication Number Publication Date
WO2010061790A1 true WO2010061790A1 (en) 2010-06-03

Family

ID=42225666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069706 WO2010061790A1 (en) 2008-11-28 2009-11-20 Method for producing hydraulic transfer film

Country Status (3)

Country Link
JP (1) JP5290274B2 (en)
TW (1) TW201026515A (en)
WO (1) WO2010061790A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000896A (en) * 2011-06-10 2013-01-07 Dainippon Printing Co Ltd Transfer foil for manufacturing hydraulic transfer sheet, hydraulic transfer sheet, decorated molding, and method for manufacturing them
WO2013094424A1 (en) * 2011-12-21 2013-06-27 アイセロ化学株式会社 Film for hydraulic transfer
JP2013216063A (en) * 2012-04-12 2013-10-24 Sharp Corp Printer and printing method
JP2014080009A (en) * 2012-09-28 2014-05-08 Toppan Printing Co Ltd Ink-jet recording sheet
KR101402130B1 (en) 2012-05-10 2014-06-11 신애순 A hologram liquid pressure transfer film and process of manufacturing hologram liquid pressure transfer product
DE102013102915A1 (en) * 2013-03-21 2014-10-09 Knauf Gips Kg Process for the preparation of a decorative board equipped with a decor
JP2016036943A (en) * 2014-08-06 2016-03-22 日東電工株式会社 Method for producing laminate
WO2020138445A1 (en) * 2018-12-28 2020-07-02 株式会社クラレ Hydraulic transfer base film, and hydraulic transfer printing film
CN115058045A (en) * 2022-07-21 2022-09-16 石狮市锦源体育用品有限公司 Radium-shine pva water transfer printing membrane of stable form

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022104164A1 (en) 2022-02-22 2023-08-24 Forever Gmbh Transfer film, coating system and method for transferring images to substrates

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094894A (en) * 2001-09-26 2003-04-03 Kuraray Co Ltd Film for hydraulic transfer
JP2005212340A (en) * 2004-01-30 2005-08-11 Dainippon Ink & Chem Inc Manufacturing method for mat tone hydraulic transfer body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4302361B2 (en) * 2002-06-19 2009-07-22 株式会社クラレ Hydraulic transfer method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003094894A (en) * 2001-09-26 2003-04-03 Kuraray Co Ltd Film for hydraulic transfer
JP2005212340A (en) * 2004-01-30 2005-08-11 Dainippon Ink & Chem Inc Manufacturing method for mat tone hydraulic transfer body

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000896A (en) * 2011-06-10 2013-01-07 Dainippon Printing Co Ltd Transfer foil for manufacturing hydraulic transfer sheet, hydraulic transfer sheet, decorated molding, and method for manufacturing them
US8865276B2 (en) 2011-12-21 2014-10-21 Aicello Corporation Water-pressure transfer printing film
WO2013094424A1 (en) * 2011-12-21 2013-06-27 アイセロ化学株式会社 Film for hydraulic transfer
KR101385825B1 (en) 2011-12-21 2014-04-16 가부시키가이샤 아이세로 Water-pressure transfer printing film
JP2013216063A (en) * 2012-04-12 2013-10-24 Sharp Corp Printer and printing method
KR101402130B1 (en) 2012-05-10 2014-06-11 신애순 A hologram liquid pressure transfer film and process of manufacturing hologram liquid pressure transfer product
JP2014080009A (en) * 2012-09-28 2014-05-08 Toppan Printing Co Ltd Ink-jet recording sheet
DE102013102915A1 (en) * 2013-03-21 2014-10-09 Knauf Gips Kg Process for the preparation of a decorative board equipped with a decor
JP2016036943A (en) * 2014-08-06 2016-03-22 日東電工株式会社 Method for producing laminate
WO2020138445A1 (en) * 2018-12-28 2020-07-02 株式会社クラレ Hydraulic transfer base film, and hydraulic transfer printing film
JPWO2020138445A1 (en) * 2018-12-28 2021-11-11 株式会社クラレ Base film for hydraulic transfer and printing film for hydraulic transfer
JP7240423B2 (en) 2018-12-28 2023-03-15 株式会社クラレ Hydraulic transfer base film and Hydraulic transfer printing film
CN115058045A (en) * 2022-07-21 2022-09-16 石狮市锦源体育用品有限公司 Radium-shine pva water transfer printing membrane of stable form

Also Published As

Publication number Publication date
JP5290274B2 (en) 2013-09-18
TW201026515A (en) 2010-07-16
JPWO2010061790A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP5290274B2 (en) Method for producing hydraulic transfer film
US8927061B2 (en) Method of hydraulic transfer and hydraulic transfer base film
JP5406711B2 (en) Roll of water-soluble polyvinyl alcohol film and storage method thereof
JP5442878B2 (en) Hydraulic transfer film
JP7240423B2 (en) Hydraulic transfer base film and Hydraulic transfer printing film
JP4053479B2 (en) Production method of hydraulic transfer base film and hydraulic transfer printing sheet
WO2013146145A1 (en) Base film for hydraulic transfer
JP5179283B2 (en) Base film for hydraulic transfer printing
KR102504426B1 (en) Hydraulic transfer printing base film
JP6360106B2 (en) Method for producing a film for hydraulic transfer
JP4034249B2 (en) Production method of printing sheet for hydraulic transfer
JP2014043036A (en) Method for producing polyvinyl alcohol film
JP5595118B2 (en) Base film for transfer printing
JP6170430B2 (en) Base film for hydraulic transfer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010502100

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09829038

Country of ref document: EP

Kind code of ref document: A1