WO2010061702A1 - Method for producing fatty acid ester - Google Patents

Method for producing fatty acid ester Download PDF

Info

Publication number
WO2010061702A1
WO2010061702A1 PCT/JP2009/068197 JP2009068197W WO2010061702A1 WO 2010061702 A1 WO2010061702 A1 WO 2010061702A1 JP 2009068197 W JP2009068197 W JP 2009068197W WO 2010061702 A1 WO2010061702 A1 WO 2010061702A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
oil
acid ester
reaction
fats
Prior art date
Application number
PCT/JP2009/068197
Other languages
French (fr)
Japanese (ja)
Inventor
淳 安孫子
真 上山
Original Assignee
国立大学法人京都工芸繊維大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都工芸繊維大学 filed Critical 国立大学法人京都工芸繊維大学
Priority to JP2010540429A priority Critical patent/JPWO2010061702A1/en
Publication of WO2010061702A1 publication Critical patent/WO2010061702A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B13/00Recovery of fats, fatty oils or fatty acids from waste materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/74Recovery of fats, fatty oils, fatty acids or other fatty substances, e.g. lanolin or waxes

Definitions

  • the present invention relates to a method for producing a fatty acid ester by transesterification using fats and oils as a raw material.
  • Biodiesel fuel compared to conventional petroleum diesel fuel (light oil), (1) The exhaust gas when burned is about 75% cleaner, (2) 10-20% reduction in emissions of carbon monoxide, hydrocarbons, particulate matter, etc. (3) The exhaust gas does not contain sulfur oxides or sulfates, (4) It has many advantages such as high lubrication performance.
  • Biodiesel fuel uses natural fats and oils derived from animals and plants, so even if it is used as a fuel, it has zero load for carbon dioxide production and is an environmentally friendly fuel.
  • This fuel has the advantage that it can be used as it is without modification to any diesel engine.
  • waste edible oil that contributes to environmental pollution can also be used as a raw material, it is a biomass raw material that can double the environmental burden.
  • biodiesel fuel mixed with petroleum-based diesel fuel we have already started using 1 to 20% biodiesel fuel mixed with petroleum-based diesel fuel, and that alone reduces the load on the engine due to its high lubricity and is environmentally friendly. It has been reported that the burden on health and health has also been reduced.
  • Patent Document 1 a method using a composite oxide having a perovskite type structure such as CaTiO 3 and CaMnO 3 as a heterogeneous solid catalyst for direct production of biodiesel fuel (Patent Document 1), alcohol in a supercritical state
  • Patent Document 2 a method using alkaline earth metal oxide, hydroxide or carbonate in a subcritical state
  • Patent Document 3 a method using quick lime or bitter lime
  • Patent Document 4 a method using quick lime or bitter lime
  • calcium hydroxide or calcium oxide A method to be used (Patent Document 4) has been proposed.
  • these methods have problems such as requiring high temperature and high pressure, difficulty in regenerating the catalyst, expensive catalyst, and insufficient reaction rate.
  • Patent Document 6 Also known is a method (Patent Document 6) in which triglyceride and alcohol are reacted in the presence of a solid acid catalyst such as a composite metal compound, metal sulfate, heteropolyacid, synthetic zeolite, or ion exchange resin.
  • a solid acid catalyst such as a composite metal compound, metal sulfate, heteropolyacid, synthetic zeolite, or ion exchange resin.
  • the method of Patent Document 6 has an advantage that the fatty acid soap is not produced as a by-product without pretreatment of free fatty acids in fats and oils, but the activity of the acid catalyst for transesterification is lower than that of the alkali catalyst. There was a problem that the reaction rate was small and not practical.
  • the present invention eliminates the need for a catalyst separation process, and allows the fatty acid ester to be produced efficiently and at low cost by allowing the ester exchange reaction to proceed at a high reaction rate under mild conditions.
  • An object of the present invention is to provide a manufacturing method.
  • the method for producing a fatty acid ester according to the present invention is a method for producing a fatty acid ester by an ester exchange reaction between fats and oils and using an organic onium hydrogen sulfate as a catalyst. .
  • natural fats and oils synthetic fats and oils, synthetic triglycerides, synthetic triglycerides containing monoglycerides and / or diglycerides, modified products thereof, or waste oils and fats containing these can be used as fats and oils.
  • alcohol having 1 to 8 carbon atoms or methyl cellosolve can be used as the alcohol.
  • ammonium, nitrogen-containing heterocyclic compounds, or phosphonium hydrogen sulfate can be used as the organic onium hydrogen sulfate. More preferably, either dichloroanilinium hydrogensulfate or trichloroanilinium hydrogensulfate can be used.
  • a triflate salt having a fluorine-containing sulfonic acid as an anion is known as a conventional organic onium salt, but it is expensive because a fluorine-containing sulfonic acid is used.
  • the organic onium hydrogensulfate used as a catalyst in the present invention uses a hydrogensulfate anion as an anion, and therefore can be produced using sulfuric acid as a raw material, so that it is produced at a lower cost than a triflate salt. be able to. Thereby, manufacture of biodiesel oil can be performed at lower cost.
  • the organic onium hydrogen sulfate of the present invention has the same performance as the conventional triflate salt. That is, the organic onium hydrogen sulfate salt of the present invention is used by dissolving in alcohol, but at the time of reaction, its catalytic action is expressed at the two-layer interface between fat and alcohol and dissolved in the glycerin produced after the reaction. Therefore, after recovering fatty acid ester, glycerin, and alcohol by distillation, they can remain in the reaction vessel as a residue. Therefore, the following reaction can be performed by adding a new fat and alcohol to the reaction vessel. This eliminates the need for a catalyst separation step, unlike the conventional soaking alkali catalyst method.
  • fatty acid soap is not produced. Moreover, the production amount of fatty acid ester per time is large. Moreover, it is possible to use fats and oils at high concentration. Thereby, compared with the past, fatty acid ester can be manufactured more efficiently.
  • An organic onium cation is a cation generated by coordination bonding of a proton or another cation to a lone electron pair in a compound containing an element having a lone electron pair.
  • R 1 to R 4 are each independently a hydrogen atom, or a linear or branched aliphatic hydrocarbon group, alicyclic hydrocarbon group, aromatic hydrocarbon which may have a substituent. Represents a group or a heterocyclic group.
  • A represents a nitrogen atom or a phosphorus atom.
  • One to three of R 1 to R 4 may be a hydrogen atom.
  • X ⁇ represents a hydrogen sulfate anion.
  • Examples of the linear or branched aliphatic hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group.
  • Examples of the alicyclic hydrocarbon group include a cycloalkyl group.
  • Examples of the aromatic hydrocarbon group include an aryl group and an aralkyl group.
  • Examples of the heterocyclic group include nitrogen-containing monocyclic or condensed ring compounds.
  • Examples of the substituent such as the aliphatic hydrocarbon group include a halogen atom. Preferred is a fluorine atom.
  • organic onium cations include the following nitrogen cations.
  • Tetraalkylammonium such as triethylammonium, triethylammonium, ethyldimethylammonium, diethylmethylammonium, tetramethylammonium, tetraethylammonium, tetra-n-propylammonium, tetraisopropylammonium, tetra-n-butylammonium, anilinium, diphenylammonium, tetra Aromatic ammonium such as phenylammonium, alicyclic ammonium such as N, N-dimethylpyrrolidinium, N, N-dimethylpiperidinium, N, N-dimethylmorpholinium, pyridinium, pyrazolium, N-methylimidazolium And nitrogen-containing heterocyclic compounds such as N-methylpyridinium.
  • nitrogen-containing heterocyclic compounds may contain a substituent such as an alkyl group, an aralkyl group, a halogen group, or an alkoxy group.
  • a substituent such as an alkyl group, an aralkyl group, a halogen group, or an alkoxy group.
  • Anilinium, pyrazolium and N-methylimidazolium are preferred.
  • the anilinium is preferably a fluorine-substituted product or a chlorine-substituted product, specifically pentafluoroanilinium, dichloroanilinium or trichloroanilinium. More preferably, it is a chlorine substitution product, and is dichloroanilinium or trichloroanilinium.
  • the reason why the chlorine substitution product of anilinium is preferable is as follows.
  • the reaction solution is cooled after completion of the reaction, it is separated into an upper layer containing glycerin and methanol and a lower layer containing a fatty acid ester.
  • the organic onium salt is dissolved in the lower layer and both layers are in a cloudy state, thereby achieving two-layer separation. It took at least one day to complete.
  • the chlorine substitution product of anilinium is used, two-layer separation can be achieved in a short time of about 1 hour. Therefore, since recovery of the fatty acid ester from the reaction solution can be performed in a short time, the manufacturing cost can be further reduced.
  • a phosphorus cation examples thereof include triarylphosphonium, aryldialkylphosphonium, diarylalkylphosphonium, and trialkylphosphonium. Preferred is triarylphosphonium, specifically triphenylphosphonium.
  • the organic onium salt used in the present invention catalyzes the transesterification reaction as a Brensted acid, the smaller the pKa (the stronger the acidity), the better. Therefore, hydrogen sulfate ions are used as anions.
  • the organic onium salt of the present invention is not particularly limited as long as it is a combination of the above-described nitrogen cation or phosphorus cation and a hydrogen sulfate anion, but preferably comprises dichloroaniline (regardless of the substitution position) and a hydrogen sulfate anion. It is a trichloroanilinium hydrogensulfate composed of dichloroanilinium hydrogensulfate, trichloroaniline (regardless of the substitution position) and a hydrogensulfate anion.
  • dichloroanilinium hydrogensulfate and trichloroanilinium hydrogensulfate More preferred are dichloroanilinium hydrogensulfate and trichloroanilinium hydrogensulfate, and more preferred are 2,4-dichloroanilinium hydrogensulfate and 2,5-dichloroanilinium hydrogensulfate.
  • the catalyst concentration with respect to fats and oils is 0.1 to 30 mol%, more preferably 0.1 to 10 mol%.
  • the catalyst concentration affects the reaction temperature and reaction time, and can be appropriately selected within the above range. For example, when the catalyst is used at 10 mol% with respect to the fat and oil, methanol is used as the alcohol and the reaction temperature is 60 ° C., the conversion rate of the fat becomes 100% in 24 hours. %, When methanol is used as the alcohol and the reaction temperature is 130 ° C., the conversion of fats and oils becomes 100% in 4 hours. That is, since the reaction is a pseudo-primary reaction that completely depends on the amount of catalyst, the temperature and the time required for the reaction have an inversely proportional relationship.
  • the fats and oils used in the present invention are not particularly limited, and may be natural fats and oils, synthetic fats and oils, or a mixture thereof.
  • fats and oils components other than fats and oils may be mixed. Specifically, crude oil, heavy oil, light oil, mineral oil, essential oil, coal, fatty acid, sugar, metal powder, metal salt, protein, amino acid, hydrocarbon, cholesterol, flavor, pigment compound, enzyme, perfume, alcohol, fiber, Resins, rubbers, paints, cements, detergents, aromatic compounds, aliphatic compounds, soot, glass, earth and sand, nitrogen-containing compounds, sulfur-containing compounds, phosphorus-containing compounds, halogen-containing compounds, etc. It is not limited. These foreign components are preferably used after being removed by sedimentation, filtration, liquid separation or the like. In addition, about water
  • Alcohols used in the present invention are not particularly limited, but are alcohols having a saturated linear or branched aliphatic hydrocarbon skeleton. Preferred are alcohols having 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms. Furthermore, you may have a halogen atom and an ether group as a substituent. For example, methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, n-pentanol, methyl cellosolve and the like can be mentioned. These alcohols can be used alone or in admixture of two or more.
  • any one of methanol, ethanol and methyl cellosolve is used. This is because it is easily available and the availability of the resulting fatty acid ester is high.
  • alcohols act as a reaction substrate for subjecting fats and oils to alcoholysis (transesterification reaction), and also act as a solvent for adjusting the dilution and viscosity of fats and oils.
  • [4] Molar ratio of fats and oils and alcohols There is no particular limitation as long as the molar ratio of fats and fats and alcohols used as a reaction substrate (fats / alcohols) is 1/1 or more, but preferably 1 / 20 to 1/2, more preferably 1/15 to 1/3, and still more preferably 1/10 to 1/3.
  • the reaction becomes a secondary reaction, the time required for the completion of the reaction becomes long, and when the molar ratio of fats and oils to alcohols is large (for example, 1/10) ) The reaction becomes a false primary reaction, and the reaction can be completed in a short time.
  • fats and oils and alcohol should just exist as a mixture of both, and if sufficient stirring is made, it is not necessary to form a uniform phase in particular.
  • the molar ratio of fats and oils to alcohols is represented by the number of moles of alcohol per ester in the fats and oils.
  • the reaction temperature is from room temperature to 200 ° C, more preferably from 60 to 130 ° C.
  • the reaction is a secondary reaction or a pseudo-primary reaction depending on the molar ratio of fats and alcohols to be used. Therefore, the higher the reaction temperature, the faster the reaction rate can be obtained, but the reaction is preferably carried out at 60 to 130 ° C.
  • the reaction time depends on the reaction temperature and the amount of catalyst used. For example, when the reaction temperature is 60 ° C., 10 mol% of the catalyst is used with respect to the fat and oil, and methanol is used as the alcohol, the conversion rate of the fat and oil becomes 100% in 24 hours. On the other hand, when the reaction temperature is 130 ° C., 1 mol% of the catalyst is used with respect to the oil and fat, and when methanol is used as the alcohol, the conversion of the oil and fat becomes 100% in 4 hours. Therefore, the reaction time can be appropriately selected depending on the catalyst concentration and the reaction temperature.
  • the reaction pressure is not particularly limited. Although it is convenient in terms of operation to carry out under normal pressure, the pressure may be increased to about 1 to 10 atm if necessary. When using a low-boiling point alcohol, it is desirable to carry out the reaction under pressure in a sealed container in order to ensure a desired reaction temperature.
  • the type of reaction apparatus for carrying out the present invention is not particularly limited. Depending on the reaction method such as a batch method or a continuous method, the reaction can be performed using a stirring tank, a fluidized bed reactor, a shaking reactor, or the like.
  • alcohols and glycerin can be recovered by direct distillation after completion of the reaction, and a fatty acid ester can be recovered without using a phase separation operation.
  • the catalyst remains in the reaction vessel as a distillation residue. Thereby, new fats and oils and alcohols can be added and the next reaction can be performed, and the catalyst can be reused.
  • the catalyst can be purified by recrystallization and reused as necessary.
  • Example 1 Oil and fat (Nissin Food Formulation, 10.41 g), methanol (Wako Pure Chemical Grade 1, 30 ml), 2,4-dichloroanilinium hydrogensulfate catalyst [28.5 mg (1.14 mol%)] and stir bar It put into the reaction container (made by a pressure
  • the lower layer (hereinafter referred to as FAME) was separated and the residual methanol was removed using an evaporator, and then the yield and conversion were analyzed by NMR. Yield 8.49 g (85%), conversion 100%, glycerin content ⁇ 0.1%.
  • Example 2 The same procedure as in Example 1 was conducted, except that 26.2 mg (1.05 mol%) of 2,5-dichloroanilinium hydrogen sulfate was used. The two layers separated by standing for 1 hour. FAME was isolated and analyzed. Yield 6.35 g (63%), conversion 100%, glycerin content ⁇ 0.1%.
  • Example 3 The same procedure as in Example 1 was performed except that 2,4,6-trichloroanilinium hydrogen sulfate (33.0 mg, 1.15 mol%) was used. The two layers separated by standing for 1 hour. FAME was isolated and analyzed. Yield 5.03 g (50%), conversion 100%, glycerin content ⁇ 0.1%.
  • Example 4 The same procedure as in Example 1 was conducted except that 40.0 mg (1.00 mol%) of triphenylphosphonium hydrogen sulfate was used as the catalyst. The two layers separated by standing for 1 hour. FAME was isolated and analyzed. Yield 7.34 g (73%), conversion 100%, glycerin content ⁇ 0.1%.
  • Example 1 The same procedure as in Example 1 was conducted except that 2,5-dichloroanilinium triflate (21.0 mg, 1.05 mol%) was used as the catalyst. The two layers separated by standing for 1 hour. FAME was isolated and analyzed. Yield 7.13 g (71%), conversion 100%, glycerin content ⁇ 0.1%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fats And Perfumes (AREA)
  • Catalysts (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

A method for producing a fatty acid ester, wherein a fatty acid can be efficiently produced at low cost by having a transesterification reaction proceed at a high reaction rate under mild conditions without requiring a catalyst separation process.  In the method, wherein a fatty acid ester is produced by a transesterification reaction between an alcohol and a fat or oil, a hydrogen sulfate of an organic onium compound is used as a catalyst.  Since the hydrogen sulfate can produce a fatty acid ester more efficiently using sulfuric acid as a starting material, the production cost can be reduced when compared with the conventional triflate salts.

Description

脂肪酸エステルの製造方法Method for producing fatty acid ester
 本発明は油脂類を原料としてエステル交換反応により脂肪酸エステルを製造する方法に関する。 The present invention relates to a method for producing a fatty acid ester by transesterification using fats and oils as a raw material.
 油脂類とアルコール類とのエステル交換反応によって合成される脂肪酸エステルは、バイオディーゼル燃料として注目されている。バイオディーゼル燃料は、従来の石油系ディーゼル燃料(軽油)に比べて、
(1)燃焼した際の排ガスが75%程度クリーンになり、
(2)一酸化炭素や炭化水素、粒子状物質等の排出量が10~20%減少し、
(3)排出ガス中に硫黄酸化物や硫酸塩を含まず、
(4)潤滑性能が高い、など多くの利点を有している。
Fatty acid esters synthesized by transesterification reaction between fats and alcohols are attracting attention as biodiesel fuels. Biodiesel fuel, compared to conventional petroleum diesel fuel (light oil),
(1) The exhaust gas when burned is about 75% cleaner,
(2) 10-20% reduction in emissions of carbon monoxide, hydrocarbons, particulate matter, etc.
(3) The exhaust gas does not contain sulfur oxides or sulfates,
(4) It has many advantages such as high lubrication performance.
 バイオディーゼル燃料は、動植物由来の天然油脂を原料としているため、燃料として用いても、二酸化炭素生成については負荷ゼロとされ、環境にやさしい燃料である。この燃料は、どんなディーゼルエンジンにも改造する必要がなくそのまま使用することができる利点がある。また、環境汚染の一因となる廃食用油を原料として用いることもできるため、環境負荷を二重に減らすことができるバイオマス原料である。アメリカやヨーロッパでは、既に、石油系ディーゼル燃料に1~20%程度バイオディーゼル燃料を混合したものを使用しはじめており、それだけでも、高潤滑性のためにエンジンに与える負荷が軽減し、かつ、環境や健康に与える負荷も軽減していることが報告されている。 Biodiesel fuel uses natural fats and oils derived from animals and plants, so even if it is used as a fuel, it has zero load for carbon dioxide production and is an environmentally friendly fuel. This fuel has the advantage that it can be used as it is without modification to any diesel engine. Moreover, since waste edible oil that contributes to environmental pollution can also be used as a raw material, it is a biomass raw material that can double the environmental burden. In the United States and Europe, we have already started using 1 to 20% biodiesel fuel mixed with petroleum-based diesel fuel, and that alone reduces the load on the engine due to its high lubricity and is environmentally friendly. It has been reported that the burden on health and health has also been reduced.
 このようにあらゆる点で石油系ディーゼル燃料よりも優れたバイオディーゼル燃料を積極的に利用しようとする動きは、近年徐々に活発化しているが、石油系ディーゼル燃料の2~3倍という高コストであることが大きな問題となっている。これは、現在のバイオディーゼル燃料製造プロセスでは水酸化カリウムなどの均相アルカリ触媒が用いられ、アルカリ触媒は反応液に均一に溶解するため、製品化の際にこれらのアルカリ触媒を分離除去するためのコストが加わることによる。また、天然油脂には多量の遊離脂肪酸が含有されているのが一般的である。遊離脂肪酸が多量に含まれた状態でアルカリ触媒を使用すると脂肪酸石鹸が副生しアルカリ触媒が大量に必要になり、あるいは生成した脂肪酸石鹸により脂肪酸エステル層とグリセリン層との分離が困難になるという問題もある。そのため、触媒の分離プロセスが不要で、脂肪酸石鹸が生成することもない、活性の高い不均相固体触媒が検討されている。 In recent years, the movement to actively use biodiesel fuel, which is superior to petroleum diesel fuel in all respects, has been gradually increasing in recent years, but at a cost two to three times that of petroleum diesel fuel. There is a big problem. This is because the current biodiesel fuel production process uses a homogeneous alkali catalyst such as potassium hydroxide, and the alkaline catalyst dissolves uniformly in the reaction solution, so that these alkali catalysts are separated and removed during commercialization. Due to the additional cost. Natural fats and oils generally contain a large amount of free fatty acids. If an alkali catalyst is used with a large amount of free fatty acids, fatty acid soap is produced as a by-product and a large amount of alkali catalyst is required, or the fatty acid soap produced makes it difficult to separate the fatty acid ester layer from the glycerin layer. There is also a problem. Therefore, a highly active heterogeneous solid catalyst that does not require a catalyst separation process and does not produce fatty acid soap has been studied.
 例えば、バイオディーゼル燃料の製造を直接の目的とした不均相固体触媒として、CaTiO、CaMnOのようなペロブスカイト型構造を有する複合酸化物を用いる方法(特許文献1)、アルコールを超臨界状態もしくは亜臨界状態にして、アルカリ土類金属酸化物、水酸化物もしくは炭酸塩を用いる方法(特許文献2)、生石灰もしくは苦土石灰を用いる方法(特許文献3)、水酸化カルシウムもしくは酸化カルシウムを用いる方法(特許文献4)などが提案されている。しかしながら、これらの方法では、高温度・高圧力が必要である、触媒の再生が困難である、触媒が高価である、或いは反応速度が充分ではない等の問題があった。 For example, a method using a composite oxide having a perovskite type structure such as CaTiO 3 and CaMnO 3 as a heterogeneous solid catalyst for direct production of biodiesel fuel (Patent Document 1), alcohol in a supercritical state Alternatively, a method using alkaline earth metal oxide, hydroxide or carbonate in a subcritical state (Patent Document 2), a method using quick lime or bitter lime (Patent Document 3), calcium hydroxide or calcium oxide A method to be used (Patent Document 4) has been proposed. However, these methods have problems such as requiring high temperature and high pressure, difficulty in regenerating the catalyst, expensive catalyst, and insufficient reaction rate.
 一方、バイオディーゼル燃料の製造とは別に、古くから、トリグリセリドとアルコールから脂肪酸エステルを製造する方法が知られている。例えば、トリグリセリドにアルコール類および必要に応じて溶剤を加え、塩基性イオン交換樹脂(アニオン交換樹脂)と接触させる方法(特許文献5)が挙げられる。しかしながら、この方法においては、基質となるトリグリセリドはアルコールに対して希薄であることが好ましいとされ、また、イオン交換樹脂当たりの脂肪酸エステルの生成量が充分ではないという問題があった。 On the other hand, apart from the production of biodiesel fuel, a method for producing a fatty acid ester from triglyceride and alcohol has been known for a long time. For example, the method (patent document 5) which makes alcohol and the solvent as needed to a triglyceride, and makes it contact with basic ion exchange resin (anion exchange resin) is mentioned. However, in this method, the triglyceride serving as a substrate is preferably diluted with respect to alcohol, and there is a problem that the amount of fatty acid ester produced per ion exchange resin is not sufficient.
 また、トリグリセライドとアルコールとを、複合金属化合物、金属硫酸塩、ヘテロポリ酸、合成ゼオライト、イオン交換樹脂等の固体酸触媒の存在下で反応させる方法(特許文献6)が知られている。しかしながら、特許文献6の方法は、油脂中の遊離脂肪酸を前処理することなく、脂肪酸石鹸の副生が少ないという利点はあるが、酸触媒のエステル交換反応に対する活性がアルカリ触媒に比べて低いため、反応速度が小さく実用的ではないという問題があった。 Also known is a method (Patent Document 6) in which triglyceride and alcohol are reacted in the presence of a solid acid catalyst such as a composite metal compound, metal sulfate, heteropolyacid, synthetic zeolite, or ion exchange resin. However, the method of Patent Document 6 has an advantage that the fatty acid soap is not produced as a by-product without pretreatment of free fatty acids in fats and oils, but the activity of the acid catalyst for transesterification is lower than that of the alkali catalyst. There was a problem that the reaction rate was small and not practical.
特開2002-294277号公報JP 2002-294277 A 特開2002-308825号公報JP 2002-308825 A 特開2004-35873号公報JP 2004-35873 A 特開2001-271090号公報JP 2001-271090 A 特開昭62-218495号公報JP-A-62-218495 特開平6-313188号公報JP-A-6-313188
 しかしながら、従来の均相アルカリ触媒を用いる方法に代わる工業化可能な方法が見出されていないのが現状である。 However, at present, no industrially available method has been found in place of the conventional method using a soaking alkali catalyst.
 そこで、本発明は、触媒分離のプロセスが不要で、かつ温和な条件下、大きな反応速度によりエステル交換反応を進行させることにより効率的にかつ低コストで脂肪酸エステルを製造することの可能な脂肪酸エステルの製造方法を提供することを目的とした。 Therefore, the present invention eliminates the need for a catalyst separation process, and allows the fatty acid ester to be produced efficiently and at low cost by allowing the ester exchange reaction to proceed at a high reaction rate under mild conditions. An object of the present invention is to provide a manufacturing method.
 本発明者らは、上記の課題を解決すべく鋭意検討した結果、有機オニウムの硫酸水素塩を触媒として用いることにより、上記の課題を解決可能なことを見出して本発明を完成させたものである。すなわち、本発明の脂肪酸エステルの製造方法は、油脂類とアルコール類とのエステル交換反応による脂肪酸エステルの製造方法であって、有機オニウムの硫酸水素塩を触媒として用いることを特徴とするものである。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be solved by using an organic onium hydrogensulfate as a catalyst. is there. That is, the method for producing a fatty acid ester according to the present invention is a method for producing a fatty acid ester by an ester exchange reaction between fats and oils and using an organic onium hydrogen sulfate as a catalyst. .
 本発明においては、油脂類に天然油脂、合成油脂、合成トリグリセリド、モノグリセリド及び/又はジグリセリドを含む合成トリグリセリド、これらの変性物、又はこれらを含む廃品油脂類を用いることができる。 In the present invention, natural fats and oils, synthetic fats and oils, synthetic triglycerides, synthetic triglycerides containing monoglycerides and / or diglycerides, modified products thereof, or waste oils and fats containing these can be used as fats and oils.
 また、アルコール類には、炭素数1~8のアルコール又はメチルセロソルブを用いることができる。 In addition, alcohol having 1 to 8 carbon atoms or methyl cellosolve can be used as the alcohol.
 また、上記の有機オニウムの硫酸水素塩には、アンモニウム、含窒素複素環化合物、又はホスホニウムの硫酸水素塩を用いることができる。さらに好ましくは、ジクロロアニリニウム硫酸水素塩又はトリクロロアニリニウム硫酸水素塩のいずれかを用いることができる。 In addition, ammonium, nitrogen-containing heterocyclic compounds, or phosphonium hydrogen sulfate can be used as the organic onium hydrogen sulfate. More preferably, either dichloroanilinium hydrogensulfate or trichloroanilinium hydrogensulfate can be used.
 従来の有機オニウム塩としてフッ素含有スルホン酸をアニオンとするトリフラート塩が知られているが、フッ素含有スルホン酸を用いることから、高価であった。これに対し、本発明において触媒として用いる有機オニウムの硫酸水素塩は、アニオンに硫酸水素アニオンを用いることから、原料に硫酸を用いて製造することができるので、トリフラート塩に比べより安価に製造することができる。これにより、バイオディーゼル油の製造をより低コストで行うことができる。 A triflate salt having a fluorine-containing sulfonic acid as an anion is known as a conventional organic onium salt, but it is expensive because a fluorine-containing sulfonic acid is used. In contrast, the organic onium hydrogensulfate used as a catalyst in the present invention uses a hydrogensulfate anion as an anion, and therefore can be produced using sulfuric acid as a raw material, so that it is produced at a lower cost than a triflate salt. be able to. Thereby, manufacture of biodiesel oil can be performed at lower cost.
 また、本発明の有機オニウムの硫酸水素塩は、従来のトリフラート塩と同等の性能を有する。すなわち、本発明の有機オニウムの硫酸水素塩はアルコールに溶解させて用いるが、反応時には油脂とアルコールの2層界面でその触媒作用を発現させ、反応後には生成したグリセリンに溶解する。そのため、脂肪酸エステルやグリセリン、そしてアルコールを蒸留により回収した後、反応容器内に残渣として残留させることができる。そのため、反応容器に新たな油脂とアルコールを添加することにより、次の反応を行うことができる。これにより、従来の均相アルカリ触媒法と異なり、触媒分離の工程が不要となる。また、アルカリ触媒を用いないので、脂肪酸石鹸が生成しない。また、時間当たりの脂肪酸エステルの生成量が大きい。また、油脂類を高濃度で使用することが可能である。これにより、従来に比べ、より効率的に脂肪酸エステルを製造することができる。 In addition, the organic onium hydrogen sulfate of the present invention has the same performance as the conventional triflate salt. That is, the organic onium hydrogen sulfate salt of the present invention is used by dissolving in alcohol, but at the time of reaction, its catalytic action is expressed at the two-layer interface between fat and alcohol and dissolved in the glycerin produced after the reaction. Therefore, after recovering fatty acid ester, glycerin, and alcohol by distillation, they can remain in the reaction vessel as a residue. Therefore, the following reaction can be performed by adding a new fat and alcohol to the reaction vessel. This eliminates the need for a catalyst separation step, unlike the conventional soaking alkali catalyst method. Moreover, since an alkali catalyst is not used, fatty acid soap is not produced. Moreover, the production amount of fatty acid ester per time is large. Moreover, it is possible to use fats and oils at high concentration. Thereby, compared with the past, fatty acid ester can be manufactured more efficiently.
[1]触媒
 本発明で触媒として用いる有機オニウム塩は、有機オニウムカチオンと硫酸水素アニオン(X=HSO )とからなり、以下の(1)式で表される。
[1] Catalyst The organic onium salt used as a catalyst in the present invention comprises an organic onium cation and a hydrogen sulfate anion (X = HSO 4 ), and is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 有機オニウムカチオンとは、孤立電子対を有する元素を含む化合物において、孤立電子対にプロトン又は他の陽イオンが配位結合して生じるカチオンである。式中、R~Rは、それぞれ独立に水素原子、あるいは置換基を有しても良い直鎖状又は分岐鎖状の脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基又は複素環基を表す。Aは窒素原子又はリン原子を表す。また、R~Rのうちの1個ないし3個が水素原子であっても良い。また、Xは、硫酸水素アニオンを表す。 An organic onium cation is a cation generated by coordination bonding of a proton or another cation to a lone electron pair in a compound containing an element having a lone electron pair. In the formula, R 1 to R 4 are each independently a hydrogen atom, or a linear or branched aliphatic hydrocarbon group, alicyclic hydrocarbon group, aromatic hydrocarbon which may have a substituent. Represents a group or a heterocyclic group. A represents a nitrogen atom or a phosphorus atom. One to three of R 1 to R 4 may be a hydrogen atom. X represents a hydrogen sulfate anion.
 直鎖状又は分岐鎖状の脂肪族炭化水素基としては、アルキル基、アルケニル基、アルキニル基等を挙げることができる。脂環式炭化水素基としてはシクロアルキル基を挙げることができる。芳香族炭化水素基としては、アリール基やアラルキル基を挙げることができる。複素環基としては、含窒素の単環又は縮合環化合物を挙げることができる。また、上記脂肪族炭化水素基等の置換基としてはハロゲン原子を挙げることができる。好ましくはフッ素原子である。 Examples of the linear or branched aliphatic hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group. Examples of the alicyclic hydrocarbon group include a cycloalkyl group. Examples of the aromatic hydrocarbon group include an aryl group and an aralkyl group. Examples of the heterocyclic group include nitrogen-containing monocyclic or condensed ring compounds. Examples of the substituent such as the aliphatic hydrocarbon group include a halogen atom. Preferred is a fluorine atom.
 有機オニウムカチオンの具体例として、例えば以下の窒素カチオンを挙げることができる。トリエチルアンモニウム、トリエチルアンモニウム、エチルジメチルアンモニウム、ジエチルメチルアンモニウム、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラ-n-プロピルアンモニウム、テトライソプロピルアンモニウム、テトラ-n-ブチルアンモニウム等のテトラアルキルアンモニウム、アニリニウム、ジフェニルアンモニウム、テトラフェニルアンンモニウム等の芳香族アンモニウム、N,N-ジメチルピロリジウム、N,N-ジメチルピペリジニウム、N,N-ジメチルモルホリニウム等の脂環式アンモニウム、ピリジニウム、ピラゾリウム、N-メチルイミダゾリウム、N-メチルピリジニウム等の含窒素複素環化合物を挙げることができる。これらの含窒素複素環化合物には、アルキル基、アラルキル基、ハロゲン基、アルコキシ基などの置換基が含まれていても良い。好ましくはアニリニウム、ピラゾリウム、N-メチルイミダゾリウムである。さらに、アニリニウムは、フッ素置換体、または塩素置換体、具体的にはペンタフルオロアニリニウム、ジクロロアニリニウム又はトリクロロアニリニウムが好ましい。さらに好ましくは、塩素置換体であり、ジクロロアニリニウム又はトリクロロアニリニウムである。 Specific examples of organic onium cations include the following nitrogen cations. Tetraalkylammonium such as triethylammonium, triethylammonium, ethyldimethylammonium, diethylmethylammonium, tetramethylammonium, tetraethylammonium, tetra-n-propylammonium, tetraisopropylammonium, tetra-n-butylammonium, anilinium, diphenylammonium, tetra Aromatic ammonium such as phenylammonium, alicyclic ammonium such as N, N-dimethylpyrrolidinium, N, N-dimethylpiperidinium, N, N-dimethylmorpholinium, pyridinium, pyrazolium, N-methylimidazolium And nitrogen-containing heterocyclic compounds such as N-methylpyridinium. These nitrogen-containing heterocyclic compounds may contain a substituent such as an alkyl group, an aralkyl group, a halogen group, or an alkoxy group. Anilinium, pyrazolium and N-methylimidazolium are preferred. Furthermore, the anilinium is preferably a fluorine-substituted product or a chlorine-substituted product, specifically pentafluoroanilinium, dichloroanilinium or trichloroanilinium. More preferably, it is a chlorine substitution product, and is dichloroanilinium or trichloroanilinium.
 ここで、アニリニウムの塩素置換体が好ましい理由は以下の通りである。反応液は反応終了後冷却すると、グリセリンとメタノールを含む上層と脂肪酸エステルを含む下層とに分離する。本発明者らの知見によれば、有機オニウムにアニリニウムの塩素置換体以外のものを用いた場合には、有機オニウム塩が下層にも溶解し両層が白濁状態であり、二層分離を達成するには、少なくとも1日が必要であった。これに対し、アニリニウムの塩素置換体を用いた場合には、1時間程度の短時間で二層分離を達成することができる。そのため、反応溶液からの脂肪酸エステルの回収を短時間で行うことができるので、より一層の製造コストの低減が可能となる。 Here, the reason why the chlorine substitution product of anilinium is preferable is as follows. When the reaction solution is cooled after completion of the reaction, it is separated into an upper layer containing glycerin and methanol and a lower layer containing a fatty acid ester. According to the knowledge of the present inventors, when an organic onium other than the chlorine-substituted product of anilinium is used, the organic onium salt is dissolved in the lower layer and both layers are in a cloudy state, thereby achieving two-layer separation. It took at least one day to complete. On the other hand, when the chlorine substitution product of anilinium is used, two-layer separation can be achieved in a short time of about 1 hour. Therefore, since recovery of the fatty acid ester from the reaction solution can be performed in a short time, the manufacturing cost can be further reduced.
 また、リンカチオンについては、以下のものを挙げることができる。
 トリアリールホスホニウム、アリールジアルキルホスホニウム、ジアリールアルキルホスホニウム、トリアルキルホスホニウム等を挙げることができる。好ましくはトリアリールホスホニウム、具体的にはトリフェニルホスホニウムである。
Moreover, the following can be mentioned about a phosphorus cation.
Examples thereof include triarylphosphonium, aryldialkylphosphonium, diarylalkylphosphonium, and trialkylphosphonium. Preferred is triarylphosphonium, specifically triphenylphosphonium.
 本発明で用いる有機オニウム塩は、ブレンシュテッド酸としてエステル交換反応を触媒するため、そのpKaが小さいほど(酸性が強いほど)好ましい。そのため、アニオンには硫酸水素イオンを用いる。 Since the organic onium salt used in the present invention catalyzes the transesterification reaction as a Brensted acid, the smaller the pKa (the stronger the acidity), the better. Therefore, hydrogen sulfate ions are used as anions.
 本発明の有機オニウム塩は、上記の窒素カチオン又はリンカチオンと、硫酸水素アニオンとの組合せであれば特に限定されないが、好ましくは、ジクロロアニリン(置換位置は問わない)と硫酸水素アニオンとからなるジクロロアニリニウム硫酸水素塩、トリクロロアニリン(置換位置は問わない)と硫酸水素アニオンとからなるトリクロロアニリニウム硫酸水素塩である。より好ましくは、ジクロロアニリニウム硫酸水素塩、トリクロロアニリニウム硫酸水素塩、さらに好ましくは、2,4-ジクロロアニリニウム硫酸水素塩、2,5-ジクロロアニリニウム硫酸水素塩である。 The organic onium salt of the present invention is not particularly limited as long as it is a combination of the above-described nitrogen cation or phosphorus cation and a hydrogen sulfate anion, but preferably comprises dichloroaniline (regardless of the substitution position) and a hydrogen sulfate anion. It is a trichloroanilinium hydrogensulfate composed of dichloroanilinium hydrogensulfate, trichloroaniline (regardless of the substitution position) and a hydrogensulfate anion. More preferred are dichloroanilinium hydrogensulfate and trichloroanilinium hydrogensulfate, and more preferred are 2,4-dichloroanilinium hydrogensulfate and 2,5-dichloroanilinium hydrogensulfate.
 油脂に対する触媒濃度は、0.1~30モル%、より好ましくは0.1~10モル%である。触媒濃度は、反応温度と反応時間に影響を与えるので、上記の範囲内で適宜選定することができる。例えば、触媒を油脂に対して10モル%用い、アルコールとしてメタノールを用い、反応温度60℃で行った場合は24時間で油脂の転化率は100%となるが、触媒を油脂に対して1モル%用い、アルコールとしてメタノールを用い、反応温度130℃で行った場合は4時間で油脂の転化率は100%となる。すなわち、反応は完全に触媒量に依存した偽一次反応となるので、温度と反応に要する時間は反比例の関係になる。ここで、油脂の転化率とは、以下の式で定義されるものである。
       転化率=(1-反応後残存油脂量/反応前油脂量)×100
The catalyst concentration with respect to fats and oils is 0.1 to 30 mol%, more preferably 0.1 to 10 mol%. The catalyst concentration affects the reaction temperature and reaction time, and can be appropriately selected within the above range. For example, when the catalyst is used at 10 mol% with respect to the fat and oil, methanol is used as the alcohol and the reaction temperature is 60 ° C., the conversion rate of the fat becomes 100% in 24 hours. %, When methanol is used as the alcohol and the reaction temperature is 130 ° C., the conversion of fats and oils becomes 100% in 4 hours. That is, since the reaction is a pseudo-primary reaction that completely depends on the amount of catalyst, the temperature and the time required for the reaction have an inversely proportional relationship. Here, the conversion rate of fats and oils is defined by the following formula.
Conversion rate = (1−Residual oil amount after reaction / Amount of oil and fat before reaction) × 100
[2]反応基質
 本発明で使用される油脂類は特に限定されるものではなく、天然油脂でも合成油脂でも、これらの混合物でもよい。例えば、大豆油、ヤシ油、パーム油、パーム核油、トウモロコシ油、ラッカセイ油、ヒマワリ油、オリーブ油、サフラワー油、ココナッツ油、カシ油、アーモンド油、クログルミ油、アンズの仁油、ココアバター油、大風子油、紅花油、シナ脂、アマニ油、綿実油、ナタネ油、キリ油、ヒマシ油、綿実ステアリン、ゴマ油等の植物系油脂、ラード油、ニワトリ油、バター油、タラ肝油、鹿脂、イルカ脂、イワシ油、サバ油、馬脂、豚脂、骨油、羊脂、牛脚油、ネズミイルカ油、サメ油、マッコウクジラ油、鯨油、牛脂、牛骨脂などの動物系油脂、レストラン、食品工場、一般家庭などから廃棄される植物油等を例示できる。これらの油脂を単独あるいは混合した油脂、ジグリセリドやモノグリセリドを含む油脂、合成されたトリグリセリド、モノグリセリド及び/又はジグリセリドを含む合成トリグリセリド、これらの油脂類の一部を酸化、還元等の処理をして変性した変性油脂でもよい。または、これらの油脂を主成分とする油脂加工品も原料とすることができる。
[2] Reaction substrate The fats and oils used in the present invention are not particularly limited, and may be natural fats and oils, synthetic fats and oils, or a mixture thereof. For example, soybean oil, palm oil, palm oil, palm kernel oil, corn oil, peanut oil, sunflower oil, olive oil, safflower oil, coconut oil, oak oil, almond oil, black walnut oil, apricot oil, cocoa butter oil , Dairy oil, safflower oil, cinnamon oil, linseed oil, cottonseed oil, rapeseed oil, giraffe oil, castor oil, cottonseed stearin, sesame oil and other vegetable oils, lard oil, chicken oil, butter oil, cod liver oil, deer oil , Animal oils such as dolphin oil, sardine oil, mackerel oil, horse fat, pork fat, bone oil, sheep oil, cow leg oil, murine dolphin oil, shark oil, sperm whale oil, whale oil, beef fat, cow bone fat, Examples include vegetable oils discarded from restaurants, food factories, general households, and the like. Fats and oils containing these oils alone or mixed, fats and oils containing diglycerides and monoglycerides, synthesized triglycerides, synthetic triglycerides containing monoglycerides and / or diglycerides, and some of these fats and oils are modified by oxidation, reduction, etc. Modified oils and fats may be used. Or the fats and oils processed product which has these fats and oils as a main component can also be used as a raw material.
 油脂中には、油脂以外の成分が混入していてもよい。具体的には、原油、重油、軽油、鉱物油、精油、石炭、脂肪酸、糖類、金属粉、金属塩、タンパク質、アミノ酸、炭化水素、コレステロール、フレーバー、色素化合物、酵素、香料、アルコール、繊維、樹脂、ゴム、塗料、セメント、洗剤、芳香物化合物、脂肪族化合物、すす、ガラス、土砂、含窒素化合物、含硫黄化合物、含リン化合物、含ハロゲン化合物等を挙げることができるが、これには限定されない。これらの異物成分は、好ましくは沈降、濾過、分液などにより除去した後使用する。なお、廃油中に含有される可能性のある、水分、脂肪酸、糖類、アミノ酸、タンパク質については、本発明においては反応に影響を与えない。 In fats and oils, components other than fats and oils may be mixed. Specifically, crude oil, heavy oil, light oil, mineral oil, essential oil, coal, fatty acid, sugar, metal powder, metal salt, protein, amino acid, hydrocarbon, cholesterol, flavor, pigment compound, enzyme, perfume, alcohol, fiber, Resins, rubbers, paints, cements, detergents, aromatic compounds, aliphatic compounds, soot, glass, earth and sand, nitrogen-containing compounds, sulfur-containing compounds, phosphorus-containing compounds, halogen-containing compounds, etc. It is not limited. These foreign components are preferably used after being removed by sedimentation, filtration, liquid separation or the like. In addition, about water | moisture content, a fatty acid, saccharides, an amino acid, and protein which may be contained in waste oil, it does not affect reaction in this invention.
[3]アルコール類
 本発明に使用するアルコール類は特に限定されないが、飽和の直鎖または分岐鎖の脂肪族炭化水素骨格を有するアルコール類である。好ましくは炭素数1~8、さらに好ましくは炭素数1~5のアルコール類である。さらに置換基として、ハロゲン原子やエーテル基を有していても良い。例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、t-ブタノール、n-ペンタノール、メチルセロソルプなどを挙げることができる。これらのアルコール類を単独あるいは2種以上混合して使用することができる。好ましくは、メタノール、エタノール及びメチルセロソルプのいずれか1種である。入手が容易で、得られる脂肪酸エステルの利用性が高いからである。なお、本発明においてアルコール類は、油脂類を加アルコール分解(エステル交換反応)する反応基質として作用するほか、油脂類の希釈や粘度を調節するための溶媒としての作用も有する。
[3] Alcohols The alcohols used in the present invention are not particularly limited, but are alcohols having a saturated linear or branched aliphatic hydrocarbon skeleton. Preferred are alcohols having 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms. Furthermore, you may have a halogen atom and an ether group as a substituent. For example, methanol, ethanol, n-propanol, isopropanol, n-butanol, t-butanol, n-pentanol, methyl cellosolve and the like can be mentioned. These alcohols can be used alone or in admixture of two or more. Preferably, any one of methanol, ethanol and methyl cellosolve is used. This is because it is easily available and the availability of the resulting fatty acid ester is high. In the present invention, alcohols act as a reaction substrate for subjecting fats and oils to alcoholysis (transesterification reaction), and also act as a solvent for adjusting the dilution and viscosity of fats and oils.
[4]油脂類とアルコール類のモル比
 反応基質として使用する油脂類とアルコール類とのモル比(油脂類/アルコール類)は、1/1以上であれば特に制限はないが、好ましくは1/20~1/2、さらに好ましくは1/15~1/3、さらに好ましくは1/10~1/3の範囲である。油脂類対アルコール類のモル比が小さい時(例えば1/2)反応は2次反応となり、反応の完結に有する時間が長くなり、油脂類対アルコール類のモル比が大きい時(例えば1/10)反応は偽1次反応となり、反応を短時間で完結させることができる。なお、油脂類とアルコール類は、両者の混合物として存在して居ればよく、十分な攪拌がなされていれば、特に均一相を形成する必要はない。なお、本発明においては、特に断らない限り、油脂類とアルコール類とのモル比は、油脂中のエステル1個当りに対するアルコールのモル数で表す。
[4] Molar ratio of fats and oils and alcohols There is no particular limitation as long as the molar ratio of fats and fats and alcohols used as a reaction substrate (fats / alcohols) is 1/1 or more, but preferably 1 / 20 to 1/2, more preferably 1/15 to 1/3, and still more preferably 1/10 to 1/3. When the molar ratio of fats and alcohols is small (for example, 1/2), the reaction becomes a secondary reaction, the time required for the completion of the reaction becomes long, and when the molar ratio of fats and oils to alcohols is large (for example, 1/10) ) The reaction becomes a false primary reaction, and the reaction can be completed in a short time. In addition, fats and oils and alcohol should just exist as a mixture of both, and if sufficient stirring is made, it is not necessary to form a uniform phase in particular. In the present invention, unless otherwise specified, the molar ratio of fats and oils to alcohols is represented by the number of moles of alcohol per ester in the fats and oils.
[5]その他の反応条件
 反応温度としては、室温から200℃、より好ましくは60~130℃である。反応は使用する油脂類対アルコール類のモル比によって、2次反応または偽一次反応となるので、反応温度が高いほど速い反応速度が得られるが、60~130℃で行うのが好ましい。
[5] Other reaction conditions The reaction temperature is from room temperature to 200 ° C, more preferably from 60 to 130 ° C. The reaction is a secondary reaction or a pseudo-primary reaction depending on the molar ratio of fats and alcohols to be used. Therefore, the higher the reaction temperature, the faster the reaction rate can be obtained, but the reaction is preferably carried out at 60 to 130 ° C.
 反応時間(接触時間)は反応温度や触媒の使用量に左右される。例えば、反応温度を60℃として、触媒を油脂に対して10モル%用い、アルコールとしてメタノールを用いた場合、24時間で油脂の転化率は100%となる。一方、反応温度を130℃とした場合は触媒を油脂に対して1モル%用い、アルコールとしてメタノールを用いた場合4時間で油脂の転化率は100%となる。したがって、反応時間は、触媒濃度や反応温度により適宜選定することができる。 The reaction time (contact time) depends on the reaction temperature and the amount of catalyst used. For example, when the reaction temperature is 60 ° C., 10 mol% of the catalyst is used with respect to the fat and oil, and methanol is used as the alcohol, the conversion rate of the fat and oil becomes 100% in 24 hours. On the other hand, when the reaction temperature is 130 ° C., 1 mol% of the catalyst is used with respect to the oil and fat, and when methanol is used as the alcohol, the conversion of the oil and fat becomes 100% in 4 hours. Therefore, the reaction time can be appropriately selected depending on the catalyst concentration and the reaction temperature.
 反応圧力は特に制限されない。常圧下で実施するのが操作上簡便であるが、必要に応じて1~10気圧程度に加圧してもよい。低沸点のアルコールを用いる場合には、所望の反応温度を確保するため、密閉容器にて加圧下反応することが望ましい。 The reaction pressure is not particularly limited. Although it is convenient in terms of operation to carry out under normal pressure, the pressure may be increased to about 1 to 10 atm if necessary. When using a low-boiling point alcohol, it is desirable to carry out the reaction under pressure in a sealed container in order to ensure a desired reaction temperature.
 反応溶媒は特に必要とはしない。反応基質として使用するアルコール類が溶媒としての作用を兼ねるからである。 * No reaction solvent is required. This is because alcohols used as a reaction substrate also serve as a solvent.
 本発明を実施する反応装置の形式は特に限定されない。バッチ法、連続法などの反応方法に応じて、撹拌槽、流動層反応器、振とう型反応器等を用いて行うことができる。 The type of reaction apparatus for carrying out the present invention is not particularly limited. Depending on the reaction method such as a batch method or a continuous method, the reaction can be performed using a stirring tank, a fluidized bed reactor, a shaking reactor, or the like.
[6]後処理(分離、精製、触媒の再利用など)
 撹拌槽型反応器を使用した場合は、所定の温度まで冷却し、液相を脂肪酸エステル層(下層)とグリセリン層(上層)に成層分離する。遠心分離を利用することもできる。脂肪酸エステル層は、要すれば水洗浄、アルカリ洗浄、吸着剤処理等をして、更にアルコール類を除去して製品化することができる。吸着剤としては、活性炭、酸性白土、珪藻土などが使用できる。一方、グリセリン層は比重差によって分離でき、公知の方法にてグリセリンを回収することができる。
[6] Post-treatment (separation, purification, catalyst reuse, etc.)
When a stirred tank reactor is used, it is cooled to a predetermined temperature, and the liquid phase is separated into a fatty acid ester layer (lower layer) and a glycerin layer (upper layer). Centrifugation can also be used. If necessary, the fatty acid ester layer can be commercialized by washing with water, washing with alkali, treating with an adsorbent, and removing alcohols. As the adsorbent, activated carbon, acid clay, diatomaceous earth, or the like can be used. On the other hand, the glycerin layer can be separated by the difference in specific gravity, and glycerin can be recovered by a known method.
 また、分相操作によらなくとも、反応終了後直接蒸留により、アルコール類とグリセリンを回収し、さらに脂肪酸エステルを回収することができる。なお、触媒は蒸留残渣として反応容器内に残る。これにより、新しい油脂類およびアルコール類を添加して次の反応を行うことができ、触媒は再利用可能である。なお、触媒は必要に応じて再結晶により精製して再利用することができる。 Moreover, alcohols and glycerin can be recovered by direct distillation after completion of the reaction, and a fatty acid ester can be recovered without using a phase separation operation. The catalyst remains in the reaction vessel as a distillation residue. Thereby, new fats and oils and alcohols can be added and the next reaction can be performed, and the catalyst can be reused. The catalyst can be purified by recrystallization and reused as necessary.
 以下、実施例を用いて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
合成例1(2,4-ジクロロアニリニウム硫酸水素塩、2,5-ジクロロアニリニウム硫酸水素塩およびトリクロロアニリニウム硫酸水素塩の合成)
 ジクロロアニリニウム硫酸水素塩(2,4、2,5)、トリクロロアニリニウム硫酸水素塩(2,4,6)は、以下の文献に記載された方法により合成した。
Gurdip Singh, Jaya Srivastava, Jaspreet Kaur, Indian Journal of Chemical Technology, Vol 10, 510-518 (2003)
Synthesis Example 1 (Synthesis of 2,4-dichloroanilinium hydrogensulfate, 2,5-dichloroanilinium hydrogensulfate and trichloroanilinium hydrogensulfate)
Dichloroanilinium hydrogensulfate (2, 4, 2, 5) and trichloroanilinium hydrogensulfate (2, 4, 6) were synthesized by the methods described in the following documents.
Gurdip Singh, Jaya Srivastava, Jaspreet Kaur, Indian Journal of Chemical Technology, Vol 10, 510-518 (2003)
合成例2(トリフェニルホスホニウム硫酸水素塩の合成)
 トリフェニルホスフィン(13.2g、0.05mol)をジクロロメタン(30ml)に溶解し、氷冷下硫酸(98%、4.9g)を滴下した。30分攪拌した後、濃縮(~10ml)し酢酸エチル(50ml)を加えて硫酸水素塩を析出させた。沈殿物を濾取し乾燥した。収量13.7g(75%)。
(分析結果)
H-NMR(500MHz)δ7.65(6H, m)、7.80(3H, m)、7.93(6H, m)
13C-NMR(125MHz)δ119.0(d,J=69.8Hz)、129.9(d,J=12.5Hz)、134.4(d,J=9.4Hz)、134.6(d,J=3.4Hz)
融点 173℃
Synthesis Example 2 (Synthesis of triphenylphosphonium hydrogen sulfate)
Triphenylphosphine (13.2 g, 0.05 mol) was dissolved in dichloromethane (30 ml), and sulfuric acid (98%, 4.9 g) was added dropwise under ice cooling. After stirring for 30 minutes, the mixture was concentrated (˜10 ml) and ethyl acetate (50 ml) was added to precipitate hydrogen sulfate. The precipitate was collected by filtration and dried. Yield 13.7 g (75%).
(result of analysis)
1 H-NMR (500 MHz) δ 7.65 (6H, m), 7.80 (3H, m), 7.93 (6H, m)
13 C-NMR (125 MHz) δ 119.0 (d, J = 69.8 Hz), 129.9 (d, J = 12.5 Hz), 134.4 (d, J = 9.4 Hz), 134.6 ( d, J = 3.4 Hz)
Melting point 173 ° C
 分析(H-NMR(500MHz)スペクトル測定)
 BRUKERDRX500 spectrometer(ブルカー社製)を使用した。溶媒には標準化合物としてテトラメチルシラン(TMS)を0.03vol%含むCDC1を用いた。
Analysis (1 H-NMR (500MHz) spectrum measurement)
A BRUKERDRX500 spectrometer (manufactured by Bruker) was used. Using CDC1 3 containing 0.03Vol% tetramethylsilane (TMS) as the standard compound in a solvent.
実施例1.
 油脂(日清食用調合油、10.41g)、メタノール(和光純薬一級、30ml)、2,4-ジクロロアニリニウム硫酸水素塩触媒[28.5mg(1.14mol%)]および攪拌子を耐圧反応容器(耐圧工業社製)に入れ、系内を窒素置換した後密閉した。マグネチックスターラーで攪拌しながら、リボンヒーターで反応容器外部より加熱した。系内温度130℃で5時間反応させ、反応容器ごと流水で急冷した。内容物を分液ロートにあけ、一時間放置することにより2層が分離した。下層(以下、FAMEと呼ぶ。)を分離し、エバポレーターを用いて残留メタノールを除去した後、収率と転化率をNMRにより分析した。収率8.49g(85%)、転化率100%、グリセリン含量<0.1%であった。
Example 1.
Oil and fat (Nissin Food Formulation, 10.41 g), methanol (Wako Pure Chemical Grade 1, 30 ml), 2,4-dichloroanilinium hydrogensulfate catalyst [28.5 mg (1.14 mol%)] and stir bar It put into the reaction container (made by a pressure | voltage resistant industry company), and after the system inside was substituted with nitrogen, it sealed. While stirring with a magnetic stirrer, it was heated from outside the reaction vessel with a ribbon heater. The reaction was carried out at a system temperature of 130 ° C. for 5 hours, and the whole reaction vessel was quenched with running water. The contents were opened in a separatory funnel and left for 1 hour to separate the two layers. The lower layer (hereinafter referred to as FAME) was separated and the residual methanol was removed using an evaporator, and then the yield and conversion were analyzed by NMR. Yield 8.49 g (85%), conversion 100%, glycerin content <0.1%.
実施例2.
 2,5-ジクロロアニリニウム硫酸水素塩を、26.2mg(1.05mol%)用いた以外は実施例1と同様に行った。一時間放置することにより2層が分離した。FAMEを分離し、分析した。収率6.35g(63%)、転化率100%、グリセリン含量<0.1%であった。
Example 2
The same procedure as in Example 1 was conducted, except that 26.2 mg (1.05 mol%) of 2,5-dichloroanilinium hydrogen sulfate was used. The two layers separated by standing for 1 hour. FAME was isolated and analyzed. Yield 6.35 g (63%), conversion 100%, glycerin content <0.1%.
実施例3.
 2,4,6-トリクロロアニリニウム硫酸水素塩(33.0mg、1.15mol%)を用いた以外は実施例1と同様に行った。一時間放置することにより2層が分離した。FAMEを分離し、分析した。収率5.03g(50%)、転化率100%、グリセリン含量<0.1%であった。
Example 3 FIG.
The same procedure as in Example 1 was performed except that 2,4,6-trichloroanilinium hydrogen sulfate (33.0 mg, 1.15 mol%) was used. The two layers separated by standing for 1 hour. FAME was isolated and analyzed. Yield 5.03 g (50%), conversion 100%, glycerin content <0.1%.
実施例4.
 触媒に、トリフェニルホスホニウム硫酸水素塩40.0mg(1.00mol%)を用いた以外は、実施例1と同様に行った。一時間放置することにより2層が分離した。FAMEを分離し、分析した。収率7.34g(73%)、転化率100%、グリセリン含量<0.1%であった。
Example 4
The same procedure as in Example 1 was conducted except that 40.0 mg (1.00 mol%) of triphenylphosphonium hydrogen sulfate was used as the catalyst. The two layers separated by standing for 1 hour. FAME was isolated and analyzed. Yield 7.34 g (73%), conversion 100%, glycerin content <0.1%.
参考例1.
 触媒として2,5-ジクロロアニリニウムトリフラート(21.0mg、1.05mol%)を用いた以外は実施例1と同様に行った。一時間放置することにより2層が分離した。FAMEを分離し、分析した。収率7.13g(71%)、転化率100%、グリセリン含量<0.1%であった。
Reference Example 1
The same procedure as in Example 1 was conducted except that 2,5-dichloroanilinium triflate (21.0 mg, 1.05 mol%) was used as the catalyst. The two layers separated by standing for 1 hour. FAME was isolated and analyzed. Yield 7.13 g (71%), conversion 100%, glycerin content <0.1%.
 実施例1から4では、いずれも転化率が100%であり、参考例1に示した従来のトリフラート塩を触媒に用いた場合と同様の高い転化率が得られた。 In all of Examples 1 to 4, the conversion rate was 100%, and the same high conversion rate as that obtained when the conventional triflate salt shown in Reference Example 1 was used as a catalyst was obtained.

Claims (5)

  1.  油脂類とアルコール類とのエステル交換反応による脂肪酸エステルの製造方法であって、有機オニウムの硫酸水素塩を触媒として用いる脂肪酸エステルの製造方法。 A method for producing a fatty acid ester by a transesterification reaction between an oil and fat and an alcohol, wherein the method uses a hydrogen sulfate of organic onium as a catalyst.
  2.  上記油脂類が天然油脂、合成油脂、合成トリグリセリド、モノグリセリド及び/又はジグリセリドを含む合成トリグリセリド、これらの変性物、又はこれらを含む廃品油脂類である請求項1記載の脂肪酸エステルの製造方法。 The method for producing a fatty acid ester according to claim 1, wherein the fats and oils are natural fats and oils, synthetic fats and oils, synthetic triglycerides, synthetic triglycerides containing monoglycerides and / or diglycerides, modified products thereof, or waste oils and fats containing them.
  3.  上記アルコール類が炭素数1~8のアルコール又はメチルセロソルブである請求項1記載の脂肪酸エステルの製造方法。 The method for producing a fatty acid ester according to claim 1, wherein the alcohol is an alcohol having 1 to 8 carbon atoms or methyl cellosolve.
  4. 上記の有機オニウムの硫酸水素塩が、アンモニウム、含窒素複素環化合物、又はホスホニウムの硫酸水素塩である請求項1記載の脂肪酸エステルの製造方法。 2. The method for producing a fatty acid ester according to claim 1, wherein the organic onium hydrogen sulfate is ammonium, a nitrogen-containing heterocyclic compound, or a phosphonium hydrogen sulfate.
  5.  上記の有機オニウムの硫酸水素塩が、ジクロロアニリニウム硫酸水素塩又はトリクロロアニリニウム硫酸水素塩である請求項4記載の脂肪酸エステルの製造方法。 The method for producing a fatty acid ester according to claim 4, wherein the organic onium hydrogen sulfate is dichloroanilinium hydrogen sulfate or trichloroanilinium hydrogen sulfate.
PCT/JP2009/068197 2008-11-28 2009-10-22 Method for producing fatty acid ester WO2010061702A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010540429A JPWO2010061702A1 (en) 2008-11-28 2009-10-22 Method for producing fatty acid ester

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-303619 2008-11-28
JP2008303619 2008-11-28

Publications (1)

Publication Number Publication Date
WO2010061702A1 true WO2010061702A1 (en) 2010-06-03

Family

ID=42225582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068197 WO2010061702A1 (en) 2008-11-28 2009-10-22 Method for producing fatty acid ester

Country Status (2)

Country Link
JP (1) JPWO2010061702A1 (en)
WO (1) WO2010061702A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696248A (en) * 2005-07-08 2005-11-16 中国科学院过程工程研究所 Method for synthesizing biologic diesel oil based on ion liquid
WO2009114830A2 (en) * 2008-03-14 2009-09-17 University Of Hawaii Methods and compositions for extraction and transesterification of biomass components

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1696248A (en) * 2005-07-08 2005-11-16 中国科学院过程工程研究所 Method for synthesizing biologic diesel oil based on ion liquid
WO2009114830A2 (en) * 2008-03-14 2009-09-17 University Of Hawaii Methods and compositions for extraction and transesterification of biomass components

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 145, no. 16, 2006, Columbus, Ohio, US; abstract no. 316935N, page 1426; *
LI, HUAIPING: "Preparation of biodiesel from rapeseed oil catalyzed by ionic liquid [Hmim] HS04", ZHONGGUO YOUZHI, vol. 33, no. 4, April 2008 (2008-04-01), pages 57 - 59 *
WU, QIN: "Transesterification of Cottonseed Oil Catalyzed by Bronsted Acidic Ionic Liquids", IND. ENG. CHEM. RES., vol. 46, no. 24, 2007, pages 7955 - 7960 *

Also Published As

Publication number Publication date
JPWO2010061702A1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
US10526564B2 (en) System and methods for making bioproducts
Lotero et al. The catalysis of biodiesel synthesis
US7888520B2 (en) Process for the preparation of biodiesel
Shahbaz et al. Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst
US7582784B2 (en) Method for transesterification of triglycerides
Ghesti et al. Synthesis, characterization and reactivity of Lewis acid/surfactant cerium trisdodecylsulfate catalyst for transesterification and esterification reactions
Nakagaki et al. Use of anhydrous sodium molybdate as an efficient heterogeneous catalyst for soybean oil methanolysis
EP3010995B1 (en) Process for producing biodiesel and related products
JP2009513771A (en) Automotive fuel and fine chemicals obtained from crude tall oil
JP4219349B2 (en) Process for producing fatty acid alkyl ester and fuel
Zieba et al. Transesterification of triglycerides with methanol catalyzed by heterogeneous zinc hydroxy nitrate catalyst. Evaluation of variables affecting the activity and stability of catalyst.
Pastore et al. Recoverable and reusable aluminium solvated species used as a homogeneous catalyst for biodiesel production from brown grease
US20100175312A1 (en) Method for producing biodiesel material
JP4198663B2 (en) Method for producing fatty acid ester
EP2483225A1 (en) Process for the purification of crude alkaline glycerol
US9018425B2 (en) Use of sulfonic acid for recovering glycerol resulting from the triglyceride transesterification reaction
US20240124785A1 (en) Method for the removal of chlorine from fats, oils and greases
JPWO2006016492A1 (en) Method for producing composition for biodiesel fuel and apparatus for producing biodiesel fuel
US20130185991A1 (en) Process for Producing High-Yield Biodiesel Applying High Acidity Triglycerides with Generation of Glycerin 90% Free of Salts
JPWO2008149661A1 (en) Method for producing fatty acid ester
WO2010061702A1 (en) Method for producing fatty acid ester
Cai et al. SO 3 H and NH 2+ functional carbon-based solid acid catalyzed transesterification and biodiesel production
Banga et al. Optimization of parameters for purification of jatropha curcas based biodiesel using organic adsorbents
US20150197469A1 (en) Process of Crude Glycerin Purification Originated From Transesterifications With Alkaline Catalysis Without Using Acidification and Distillation Producing Purified Glycerin 96% and 99% Purity
JP4876111B2 (en) Adjustment method of fatty acid soap content

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828951

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2010540429

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09828951

Country of ref document: EP

Kind code of ref document: A1