WO2010061512A1 - Centrifugal compressor - Google Patents

Centrifugal compressor Download PDF

Info

Publication number
WO2010061512A1
WO2010061512A1 PCT/JP2009/005046 JP2009005046W WO2010061512A1 WO 2010061512 A1 WO2010061512 A1 WO 2010061512A1 JP 2009005046 W JP2009005046 W JP 2009005046W WO 2010061512 A1 WO2010061512 A1 WO 2010061512A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning liquid
impeller
casing
centrifugal compressor
injection
Prior art date
Application number
PCT/JP2009/005046
Other languages
French (fr)
Japanese (ja)
Inventor
堀江茂斉
得山伸一郎
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2010061512A1 publication Critical patent/WO2010061512A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/705Adding liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5846Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling by injection

Definitions

  • the present invention relates to a centrifugal compressor. This application claims priority based on Japanese Patent Application No. 2008-305138 for which it applied to Japan on November 28, 2008, and uses the content here.
  • centrifugal compressor used in various plants and the like injects a cleaning liquid into a flow path.
  • dirt and thermal reaction products adhering / depositing on the flow path are removed, so that the performance deteriorated by the adhering matter / deposit can be recovered.
  • cleaning liquid drive power can be reduced and generation
  • a rotating shaft supported in a casing a plurality of impellers that rotate together with the rotating shaft, a diffuser having a diffuser vane that is a downstream portion of the impeller, and a diffuser
  • a liquid injection nozzle for ejecting evaporable liquid into the gas flow path is provided on the casing wall on the core plate side of at least one stage of the impeller.
  • a centrifugal compressor is disclosed.
  • the liquid injection nozzle is provided on the casing wall surface on the core plate side of the impeller, the cleaning liquid that has flowed out from the outermost peripheral portion of the impeller to the flow path radially outward is impeller in the axial direction.
  • the distribution of the cleaning liquid is not uniform because the vehicle is biased toward the large diameter side rather than the small diameter side.
  • the distribution of the cleaning liquid is not uniform, it is not economical because it is necessary to inject cleaning liquid more than necessary without completely removing dirt and the like adhering to and accumulated in the flow path. There is a problem that the mixing ratio of the cleaning liquid increases.
  • the present invention has the following objects. (1) Distribute the cleaning liquid uniformly in the flow path. (2) It uniformly removes and suppresses dirt and thermal reaction products adhering / depositing on the flow path, and obtains a cooling effect uniformly. (3) The mixing ratio of the cleaning liquid to the fluid is reduced using the minimum necessary cleaning liquid.
  • the present invention employs the following means. That is, the present invention provides a casing, a rotating shaft supported in the casing, an impeller provided on the rotating shaft for compressing a fluid, and a cleaning liquid is injected into a flow path formed by the impeller and the casing.
  • a centrifugal compressor including a cleaning liquid ejecting apparatus, wherein the liquid ejecting apparatus ejects the cleaning liquid from a plurality of locations in a circumferential direction toward a gap between the small diameter portion of the casing and the impeller;
  • a second injection unit that injects the cleaning liquid from a plurality of locations in the circumferential direction from the upstream side to the downstream side of the fluid compressed by the impeller.
  • the first injection unit that injects the cleaning liquid from a plurality of locations in the circumferential direction toward the gap between the small diameter portion of the casing and the impeller, and the periphery of the fluid compressed by the impeller from the upstream side toward the downstream side. Since the second ejection unit that ejects the cleaning liquid from a plurality of locations in the direction is provided, the cleaning liquid can be uniformly distributed in the flow path. That is, since the first injection unit directly injects the cleaning liquid immediately before the impeller entrance, in the axial direction, the ratio of the cleaning liquid reaching from the impeller entrance to the outermost peripheral portion (outlet) of the impeller increases, and the cleaning liquid is transferred to the entire impeller. And can be distributed downstream.
  • the second injection unit injects the cleaning liquid from the upstream side to the downstream side of the fluid compressed by the impeller, the cleaning liquid flows in the axial direction without colliding or adhering to the casing.
  • cleaning liquid colliding with a casing is suppressed, and a washing
  • the cleaning liquid can be spread over the entire impeller in the circumferential direction. Therefore, the cleaning liquid can be uniformly distributed with respect to the flow path.
  • the first injection unit may include a radial injection body that injects the cleaning liquid in a radial direction toward the gap.
  • the cleaning liquid piping can be configured to be short, and the small-diameter portion of the casing and the impeller can be configured with a simple configuration.
  • the cleaning liquid can be sprayed toward the gap. Furthermore, since the refinement of particles by shearing proceeds at the bent portion of the impeller inlet, the generation of erosion can be suppressed and the flow of the fluid can be easily accompanied.
  • the tip position of the first injection part is arranged in the radial direction and is biased toward the outer peripheral side of the impeller, and the first injection part injects the cleaning liquid in the axial direction toward the gap.
  • the distal end position of the first injection unit is arranged in the radial direction so as to be biased toward the outer peripheral side of the impeller, and the first injection unit includes the axial injection body that injects the cleaning liquid in the axial direction. Therefore, the cleaning liquid can easily reach the outer peripheral side of the impeller regardless of the inertia in the axial direction when the fluid passes through the impeller.
  • the second injection unit may include an oblique injection body that injects the cleaning liquid in a direction obliquely intersecting with the fluid that flows radially outward from the outermost peripheral portion of the impeller.
  • the second injection unit includes the oblique direction injection body that injects the cleaning liquid in a direction obliquely intersecting with the fluid that flows radially outward from the outermost peripheral portion of the impeller.
  • the cleaning liquid can be directly sprayed in the vicinity of the impeller outlet where the temperature rises rapidly and there are many thermal reaction products. Thereby, a cleaning effect and a cooling effect can be heightened efficiently.
  • a plurality of the impellers are provided in the axial direction, and the casing has a return bend portion that directs the fluid that flows radially outward from the upstream impeller toward the downstream impeller adjacent to the upstream impeller.
  • the second injection unit is provided on the downstream side of the return bend unit, and returns bend injection that injects the cleaning liquid radially inward.
  • the second injection part is provided on the downstream side of the return bend part and includes the return bend injection body that injects the cleaning liquid radially inward, so that the cleaning liquid does not collide or adhere to the casing. It flows to the flow path that goes radially inward. Thereby, generation
  • At least one of the first injection unit and the second injection unit may spray the cleaning liquid. According to this configuration, since at least one of the first injection unit and the second injection unit sprays the cleaning liquid, it is possible to further enhance the effect of suppressing the occurrence of erosion.
  • the casing a rotating shaft supported in the casing, a plurality of impellers provided on the rotating shaft for compressing fluid, and the plurality of impellers in a flow path formed by the plurality of impellers and the casing.
  • the centrifugal compressor includes a plurality of injectors that are provided on the upstream side of each of the nozzles and injects the cleaning liquid, and a control unit that adjusts the injection amount of each of the injectors, and the control unit is located on the upstream side Each of the injection amounts may be gradually decreased toward the injector located downstream from the injector.
  • the control unit gradually decreases each injection amount from the injection body located on the upstream side toward the injection body located on the downstream side, so that the temperature rise of the fluid is large and the thermal reaction is generated.
  • a large amount of cleaning liquid is injected to the upstream side where there are many objects, and a small amount of cleaning liquid is injected to the downstream side where the temperature rise is small. Accordingly, since the cleaning liquid is ejected according to the required amount of the cleaning liquid in each part of the flow path, the mixing ratio of the cleaning liquid to the fluid can be reduced without using the cleaning liquid unnecessarily.
  • the control unit may limit the total amount of the cleaning liquid ejected from each of the ejectors to a predetermined ratio with respect to the amount of the fluid. According to this configuration, since the control unit limits the total amount of the cleaning liquid to a predetermined ratio with respect to the amount of fluid, the mixing ratio of the cleaning liquid to the fluid is limited to a predetermined range to obtain a fluid having a desired quality. Can do.
  • the cleaning liquid can be uniformly distributed in the flow path. Further, it is possible to uniformly remove and suppress dirt and thermal reaction products adhering / depositing on the flow path, and to obtain a uniform cooling effect. Furthermore, the mixing ratio of the cleaning liquid to the fluid can be reduced by using the minimum necessary cleaning liquid.
  • centrifugal compressor A concerning a first embodiment of the present invention. It is principal part sectional drawing of the centrifugal compressor A which concerns on 1st embodiment of this invention. It is an II line (II-II line, III-III line) sectional view of centrifugal compressor A concerning a first embodiment of the present invention. It is principal part sectional drawing which shows the 1st modification of the centrifugal compressor A which concerns on 1st embodiment of this invention. It is principal part sectional drawing which shows the 2nd modification of the centrifugal compressor A which concerns on 1st embodiment of this invention. It is a schematic structure sectional view of centrifugal compressor B concerning a first embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a centrifugal compressor A according to the first embodiment of the present invention.
  • the centrifugal compressor A is used for compression of an ethylene raw material gas E, and includes a casing 1 in which intake ports 2A and 2B and an outlet 3 of the ethylene raw material gas E are formed,
  • the shaft is supported by the bearings 4A and 4B, the rotating shaft 5 is inserted through the casing 1, the plurality of impellers 6 attached to the rotating shaft 5, and the ethylene raw material composed of the plurality of impellers 6 and the casing 1.
  • a cleaning liquid spraying device 20 that sprays the cleaning liquid W is provided in the flow path of the gas E.
  • the centrifugal compressor A is a type in which the arrangement type of the impellers 6 is referred to as a rear arrangement. Specifically, the three impellers 6 are arranged on one end side of the rotating shaft 5 and the small diameter side is directed to one end side. Three impellers 6 are arranged on the other end side in the axial direction with the small diameter side facing the other end. That is, the centrifugal compressor A compresses the ethylene raw material gas E sucked from the suction ports 2A and 2B formed at both ends of the casing 1 at one end side and the other end side inside the casing 1, 1 is discharged from a discharge port 3 formed at the center of 1.
  • the casing 1 has an internal space in which the diameter reduction and the diameter increase are repeated from the introduction portions 1 a and 1 b communicating with the suction ports 2 A and 2 B to the discharge portion 1 c communicating with the discharge port 3, respectively.
  • the rotating shaft 5 and the impeller 6 are accommodated in this internal space.
  • the casing 1 forms two compression flow paths R for the ethylene raw material gas E together with the impeller 6 on both sides in the axial direction.
  • the compression flow path R will be described later.
  • FIG. 2 is a cross-sectional view of a main part of the centrifugal compressor A.
  • the impeller 6 has a plurality of blades 6b formed on a hub 6a formed so as to gradually increase in diameter as it advances to one side in the axial direction, and the shurad 6c is joined so as to cover the outer peripheral portion of the blade 6b in the circumferential direction. It has been configured.
  • the compression flow path R compresses the ethylene raw material gas E in three stages, and includes a suction passage 11, a compression passage 12, a diffuser passage 13, a return bend passage 14, and a return passage 15.
  • the suction passage 11 is defined by a gap between each impeller 6 (hub 6a) and the small diameter portion 1d of the casing 1 and communicates with the compression passage 12.
  • the compression passage 12 is defined by the blade mounting surface of the hub 6a and the inner wall surface of the shurad 6c.
  • the diffuser passage 13 is defined by a diffuser front wall 13 a of the casing 1 and a diffuser rear wall 13 b of a partition wall member 1 e attached to the casing 1.
  • the 1st step and the 2nd step are connected to the return bend channel
  • the return bend passage 14 is defined by the inversion passage wall 14a of the casing 1 and the outer peripheral end wall 14b of the partition wall member 1e.
  • the return bend passage 14 communicates with the return passage 15.
  • the return passage 15 is defined by a downstream side wall 15a of the partition wall member 1e and an upstream side wall 15b formed integrally with the casing 1 and extending toward the inner peripheral side.
  • the first-stage return passage 15 is divided by return vanes 15c.
  • the return passage 15 communicates with the second and third suction passages 11.
  • the ethylene source gas E passes through the compression flow path R through the first-stage suction passage 11, the compression passage 12, the diffuser passage 13, the return bend passage 14, the return passage 15, and the second stage from the introduction portion 1 b.
  • the suction passage 11, the compression passage 12, the diffuser passage 13, the return bend passage 14, the return passage 15, the third-stage suction passage 11, the compression passage 12, the diffuser passage 13, and the discharge portion 1c are sequentially flowed and compressed.
  • the cleaning liquid spraying device 20 sprays the cleaning liquid W onto the compression flow path R, and includes a first spraying part 21 and a second spraying part 22.
  • the first spray unit 21 includes four radial spray bodies 21 a arranged in the introduction unit 1 b.
  • the four radial spray bodies 21a are annularly arranged at equal intervals around the axis P, and each of the cleaning liquids W is directed radially inward from the radially outward toward the first-stage suction passage 11. Spray. More specifically, each radial spray body 21a sprays at an injection angle of about 115 degrees in a cross section orthogonal to the axis P so that a part of the radial spray body 21a overlaps with the adjacent radial spray body 21a.
  • the radial spray body 21a includes a pipe that penetrates the casing 1 and a nozzle that can spray the cleaning liquid W.
  • the second spray section 22 includes a return bend spray body 22a embedded in a reversing passage wall 14a constituting the first and second stage return bend passages 14. As shown in FIG. 3, four return bend spray bodies 22a are annularly arranged at equal intervals on the downstream side (exit side) of the first-stage and second-stage reversing passage walls 14a.
  • the return bend spray body 22a is composed of a pipe penetrating the casing 1 and a nozzle capable of spraying the cleaning liquid W, like the radial spray body 21a.
  • the return bend spray body 22a is directed from the upstream side to the downstream side of the ethylene raw material gas E, in other words, toward the ethylene raw material gas E whose flow direction is changed radially inward through the return bend passage 14.
  • the direction of the nozzle is set so as to spray the cleaning liquid W.
  • the cleaning liquid spraying device 20 having such a configuration is filled with a solvent that dissolves the polymer produced as the temperature of the ethylene raw material gas E increases as the cleaning liquid W.
  • the centrifugal compressor A is driven, and the ethylene raw material gas E is sequentially compressed through the compression flow path R. That is, when the ethylene raw material gas E passes through the compression passage 12 (impeller 6), the velocity energy and the pressure energy increase. When the ethylene raw material gas E passes through the diffuser passage 13 thereafter, the velocity energy is converted into pressure energy and pressure. Will increase. At this time, the range of pressure increase of the ethylene source gas E is the largest in the first stage and the smallest in the third stage.
  • the temperature of the ethylene raw material gas E rises with the pressure increase in each stage. That is, the temperature increase range of the ethylene source gas E is the largest in the first stage and the smallest in the third stage.
  • a polymer is generated from the ethylene source gas E and adheres to the casing 1 and the impeller 6. At this time, the degree of polymer adhesion is the highest in the first stage, and the diffuser passage 13 (especially the inlet side) is the highest in each stage.
  • the flow rate and pressure of the ethylene raw material gas E discharged from the discharge port 3 decrease.
  • the cleaning liquid spray device 20 sprays the cleaning liquid W from the first spray body 21 and the second spray section 22 onto the compression flow path R. Most of the sprayed cleaning liquid W is atomized and accompanies the flow of the ethylene raw material gas E.
  • the cleaning liquid W sprayed radially inward from the radial spray body 21a of the first spray body 21 flows into the first-stage suction passage 11 from the introduction portion 1b, the ethylene raw material As the gas E flows, the flow direction is changed from the radial direction to the axial direction. At this time, the liquid cleaning liquid W is refined by shearing, and reaches the compression passage 12, the diffuser passage 13, and the return bend passage 14.
  • the radial spray bodies 21 are annularly arranged at equal intervals and spray the cleaning liquid W, the cleaning liquid W spreads in the circumferential direction. In this way, the cleaning liquid W that reaches the compression passage 12 and the diffuser passage 13 dissolves and removes the deposited polymer and flows downstream.
  • the cleaning liquid W sprayed from the return bend spray body 22a of the second spray section 22 is accompanied by the ethylene source gas E that has changed its flow direction radially inward through the return bend passage 14, and the partition member 1e It flows downstream without colliding or adhering to the outer peripheral end wall 14b. Then, the air flows into the second-stage and third-stage compression passages 12 (impellers 6) through the return passages 15, and flows into the second-stage and third-stage diffuser passages 13, respectively. Moreover, since the return bend spray bodies 22a are annularly arranged at equal intervals and spray the cleaning liquid W, the cleaning liquid W is distributed in the circumferential direction. In this way, the cleaning liquid W that has spread over the return path 15, the second stage, the third stage compression path 12, and the second stage, third stage diffuser path 13 is used to remove the deposited polymer. It dissolves and removes and flows downstream.
  • the centrifugal compressor A from which the accumulated polymer has been removed recovers the flow rate and pressure of the ethylene raw material gas E discharged from the discharge port 3. Thereafter, the centrifugal compressor A stops spraying the cleaning liquid W of the cleaning liquid spraying device 20 and continues stable operation.
  • the first spraying portion 21 that sprays the cleaning liquid W from a plurality of locations in the circumferential direction toward the gap between the small diameter portion 1 d of the casing 1 and the impeller 6, and the impeller 6 Since the compressed ethylene raw material gas E is provided with the second spraying portion 22 that sprays the cleaning liquid W from a plurality of locations in the circumferential direction from the upstream side to the downstream side, the cleaning liquid W is uniformly distributed with respect to the compression flow path R. Can be made. That is, since the first spray portion 21 sprays the cleaning liquid W directly immediately before the impeller 6, the ratio of the cleaning liquid W reaching the compression passage 12, the diffuser passage 13, and the return bend passage 14 in the axial direction increases. The cleaning liquid W can be distributed to the compression passage 12, the diffuser passage 13, and the return bend passage 14.
  • the cleaning liquid W in the axial direction is the outer peripheral end wall 14b of the partition wall member 1e. It flows downstream without colliding or adhering to. As a result, the occurrence of erosion due to the collision of the cleaning liquid W with the casing 1 is suppressed, and the second and third stage compression passages 12 (impeller 6) and the first stage are connected via the return passage 15 of the impeller 6.
  • the cleaning liquid W can be efficiently distributed to the second-stage and third-stage diffuser passages 13.
  • the 1st spray part 21 and the 2nd spray part 22 spray the washing
  • the first spray portion 21 includes the axial spray body 21a that sprays the cleaning liquid W in the radial direction, the piping of the cleaning liquid W can be configured to be short, and the small-diameter portion 1d of the casing 1 and the impeller can be configured with a simple configuration. It becomes possible to spray the cleaning liquid W toward the gap with 6. Furthermore, since the refinement of particles by shearing proceeds at the bend of the impeller inlet, the generation of erosion can be suppressed and the flow of the ethylene source gas E can be easily accompanied.
  • first spraying part 21 and the second spraying part 22 spray the cleaning liquid W, the effect of suppressing the occurrence of erosion can be further enhanced.
  • FIG. 4 is a cross-sectional view of a main part showing a first modification of the centrifugal compressor A.
  • the configuration of the first spray unit 21 is changed to the axial spray body 21b instead of the radial spray body 21a described above.
  • the four axial spray bodies 21b are annularly arranged at four equal intervals around the axis P in the introduction portion 1b, and spray the cleaning liquid W in the axial direction toward the first suction passage 11 respectively. More specifically, each axial spray body 21 b has a pipe extending to a position overlapping the impeller 6 in the radial direction, and sprays the cleaning liquid W in the axial direction toward the suction passage 11.
  • the tip positions of the axial spray bodies 21b are arranged in the radial direction so as to be biased toward the outer peripheral side of the impeller.
  • the first spray unit 21 since the first spray unit 21 includes the axial spray body that sprays the cleaning liquid in the axial direction, the fluid is also applied to the outer peripheral side of the impeller regardless of the inertia toward the axial direction when the fluid passes through the impeller.
  • the cleaning liquid can be easily reached. That is, when the ethylene raw material gas E passes from the suction passage 11 through the compression passage 12, a gas flow is formed that is directed radially outward. On the other hand, if the cleaning liquid W accompanies the ethylene source gas E, inertia acts in the axial direction.
  • the cleaning liquid W is a gas that goes outward in the radial direction.
  • the cleaning liquid W can easily reach the outer peripheral side of the compression passage 12 without mixing with the flow and drifting in the axial direction.
  • the first spraying part 21 sprays the cleaning liquid W directly toward the gap between the small diameter part 1d of the casing 1 and the impeller 6 immediately before the impeller 6, in the axial direction, the compression passage 12, the diffuser passage 13, and The ratio of the cleaning liquid W that reaches the return bend passage 14 increases, and the cleaning liquid W can be distributed to the compression passage 12, the diffuser passage 13, and the return bend passage 14.
  • FIG. 5 is a cross-sectional view of a main part showing a second modification of the centrifugal compressor A.
  • the configuration of the second spray unit 22 is changed to the oblique spray body 22b instead of the return bend spray body 22a described above.
  • the oblique spray bodies 22b are annularly arranged at four equal intervals around the axis P on each diffuser front wall 13a, and each of the oblique spray bodies 22b is inclined obliquely from the upstream side to the downstream side of the ethylene raw material gas E flowing through the diffuser passage 13.
  • the cleaning liquid W is sprayed in the intersecting direction.
  • FIG. 6 is a schematic cross-sectional view of a centrifugal compressor B according to the second embodiment of the present invention.
  • the centrifugal compressor B includes a centrifugal compressor body 40 having the same configuration as the centrifugal compressor A described above, and a flow rate controller (control unit) 50 that adjusts the spray amount of the cleaning liquid W. Yes.
  • Each radial spray body 21a and each return bend spray body 22a are connected to the same cleaning liquid tank T via a pipe, and each has an electric valve 51 and a pressure sensor 52 for detecting the original pressure of the nozzle. Is provided.
  • the cleaning liquid W is pumped from the cleaning liquid tank T to the pipes of the radial spray bodies 21a and the return bend spray bodies 22a.
  • the pressure exceeding the pressure of the ethylene raw material gas E in the most downstream part is set for this pumping.
  • the flow controller 50 starts and stops the supply of the cleaning liquid W to the compression flow path R based on a pressure sensor (not shown) provided at the discharge port 3, and sets the detected value of the nozzle original pressure of each pressure sensor 52. Based on this, each motor-operated valve 51 is opened and closed to control the flow rate of the cleaning liquid W.
  • the flow controller 50 stores the ratio of the flow rate of the cleaning liquid W supplied to the first-stage radial spray body 21a, the second-stage return bend spray body 22a, and the third-stage return bend spray body 22a. is doing. This ratio decreases in the order of the first-stage radial spray body 21a, the second-stage return bend spray body 22a, and the third-stage return bend spray body 22a. Further, the flow rate controller 50 is configured such that the total amount of the cleaning liquid W supplied to the compression flow path R per unit time is a predetermined ratio (3 by weight) with respect to the ethylene raw material gas E discharged from the discharge port 3. %), The total amount per unit time of the cleaning liquid W supplied to the compression flow path R is stored.
  • cleaning method of the compression flow path R in the centrifugal compressor B is demonstrated.
  • the pressure of the ethylene raw material gas E discharged from the discharge port 3 decreases due to adhesion of the thermal decomposition product.
  • a detected value indicating this pressure is input to the flow rate controller 50 from a pressure sensor (not shown) provided at the discharge port 3.
  • the flow rate controller 50 opens and closes each motor-operated valve 51 so that the cleaning liquid W supplied to the stored compression flow path R is within the range of the total amount per unit time, so that the cleaning liquid W is supplied to the compression flow path R. Supply.
  • the flow rate of the cleaning liquid W is controlled based on the detected value of the nozzle original pressure of each pressure sensor 52, the first-stage radial spray body 21 a, the second-stage return bend spray body 22 a, Control is performed so that the cleaning liquid W supplied to the third-stage return bend spray body 22a has a predetermined ratio.
  • the cleaning liquid W is controlled to increase in the order of the first-stage radial spray body 21a, the second-stage return bend spray body 22a, and the third-stage return bend spray body 22a.
  • the adhesion amount of the polymer generated by the temperature rise of the ethylene source gas E is the largest in the first stage and decreases in the order of the second stage and the third stage. That is, a large amount of the cleaning liquid W is supplied to the first stage where the adhesion amount of the polymer is the largest, and a small amount is supplied in the order of the second stage and the third stage.
  • the cleaning liquid W with respect to the ethylene source gas E per unit time discharged from the discharge port 3 is within a predetermined ratio (3% by weight) or less.
  • the flow rate controller 50 closes the motor-operated valve 52 based on the detection value of a pressure sensor (not shown) provided at the discharge port 3 and stops the supply of the cleaning liquid W to the compression flow path R. Thereafter, the centrifugal compressor B continues to operate stably.
  • the flow rate controller 50 includes the first-stage radial spray body 21a, the second-stage return bend spray body 22a, and the third-stage return bend spray body. Since the spray amount of the cleaning liquid W is gradually reduced in the order of 22a, a large amount of the cleaning liquid W is sprayed on the upstream side where the temperature increase range of the ethylene raw material gas E is large and the thermal reaction product is large, and the downstream side where the temperature increase range is small A small amount of cleaning liquid W is sprayed on Accordingly, since the cleaning liquid W is sprayed according to the required amount of the cleaning liquid W in each part of the flow path of the ethylene raw material gas E, the mixing ratio of the cleaning liquid W to the ethylene raw material gas E without using the cleaning liquid W unnecessarily.
  • the flow controller 50 limits the total amount of the cleaning liquid W to a predetermined ratio with respect to the amount of the ethylene raw material gas E, the mixing ratio of the cleaning liquid W to the ethylene raw material gas E is limited to a predetermined range to achieve a desired quality. Ethylene raw material gas E can be obtained.
  • the pressure of each compression stage may be detected, and the cleaning liquid W may be supplied only to the stage where the pressure has decreased.
  • the pressure sensor is provided at the discharge port 3, but the cleaning liquid W may be supplied to the compression flow path R at regular intervals without providing the pressure sensor.
  • the operation procedure shown in the above-described embodiment various shapes and combinations of the constituent members, and the like are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
  • the solvent is used for the cleaning liquid W, but water may be used instead.
  • the present invention is applied to the centrifugal compressors arranged in the back side.
  • the present invention can also be applied to a type in which the directions of the impellers are unified in the axial direction.
  • the cleaning liquid W is sprayed from four locations in the circumferential direction. However, if there are two or more, the effect of the present invention can be sufficiently achieved.
  • the cleaning liquid can be uniformly distributed in the flow path. Further, it is possible to uniformly remove and suppress dirt and thermal reaction products adhering / depositing on the flow path, and to obtain a uniform cooling effect. Furthermore, the mixing ratio of the cleaning liquid to the fluid can be reduced by using the minimum necessary cleaning liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A centrifugal compressor provided with a casing, a rotating shaft supported in the casing, an impeller provided to the rotating shaft and compressing a fluid, and a cleaning liquid ejecting device for ejecting a cleaning liquid into a flow path formed by the impeller and the casing.  The liquid ejecting device is provided with a first ejecting section for ejecting the cleaning liquid from circumferentially spaced points toward the gap between a small-diameter section of the casing and the impeller, and also with a second ejecting section for ejecting the cleaning liquid from circumferentially spaced points from the upstream side of the fluid, which has been compressed by the impeller, toward the downstream side.

Description

遠心圧縮機Centrifugal compressor
 本発明は遠心圧縮機に関する。
 本願は、2008年11月28日に日本国に出願された特願2008-305138号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a centrifugal compressor.
This application claims priority based on Japanese Patent Application No. 2008-305138 for which it applied to Japan on November 28, 2008, and uses the content here.
 周知のように、各種プラント等に用いられる遠心圧縮機の一種として、流路に洗浄液を噴射するものがある。この種の遠心圧縮機では、流路に付着・堆積した汚れや熱反応生成物が除去されるために、上記付着物・堆積物によって低下した性能を回復させることができる。また、洗浄液の気化によってガス温度が低下するために、駆動動力を低減させることができ、上記熱反応生成物の発生を抑止することができる。 As is well known, one type of centrifugal compressor used in various plants and the like injects a cleaning liquid into a flow path. In this type of centrifugal compressor, dirt and thermal reaction products adhering / depositing on the flow path are removed, so that the performance deteriorated by the adhering matter / deposit can be recovered. Moreover, since gas temperature falls by vaporization of a washing | cleaning liquid, drive power can be reduced and generation | occurrence | production of the said thermal reaction product can be suppressed.
 例えば、下記特許文献1には、ケーシング内に支持された回転軸と、この回転軸とともに回転する複数の羽根車と、この羽根車の下流部となるディフューザベーンを有したディフューザと、このディフューザからのガス流を次段羽根車へ流入させるリターン流路とを有し、蒸発可能な液体をガス流路に噴出する液注入ノズルを、少なくとも1段の羽根車の芯板側のケーシング壁面に設けた遠心式圧縮機が開示されている。 For example, in Patent Document 1 below, a rotating shaft supported in a casing, a plurality of impellers that rotate together with the rotating shaft, a diffuser having a diffuser vane that is a downstream portion of the impeller, and a diffuser A liquid injection nozzle for ejecting evaporable liquid into the gas flow path is provided on the casing wall on the core plate side of at least one stage of the impeller. A centrifugal compressor is disclosed.
特許第2918773号公報Japanese Patent No. 2918773
 しかしながら、従来の技術では、羽根車の芯板側のケーシング壁面に液注入ノズルを設けるために、羽根車の最外周部から径方向外方に向かう流路に流出した洗浄液が、軸方向において羽根車の小径側よりも大径側に偏ってしまい、洗浄液の分布が均一ならないという問題があった。
 また、上記洗浄液の分布が均一とならないために、流路に付着・堆積した汚れ等の除去し切れずに、必要以上の洗浄液を注入しなければならず、不経済であり、また、ガスに対する洗浄液の混合比が増大してしまうという問題があった。
However, in the prior art, since the liquid injection nozzle is provided on the casing wall surface on the core plate side of the impeller, the cleaning liquid that has flowed out from the outermost peripheral portion of the impeller to the flow path radially outward is impeller in the axial direction. There is a problem that the distribution of the cleaning liquid is not uniform because the vehicle is biased toward the large diameter side rather than the small diameter side.
In addition, since the distribution of the cleaning liquid is not uniform, it is not economical because it is necessary to inject cleaning liquid more than necessary without completely removing dirt and the like adhering to and accumulated in the flow path. There is a problem that the mixing ratio of the cleaning liquid increases.
 本発明は、上記問題点に鑑み、以下のことを目的とする。
(1)流路に対して洗浄液を均一に分布させる。
(2)流路に付着・堆積する汚れや熱反応生成物を均一に除去・抑制すると共に、冷却効果を均一的に得る。
(3)必要最低限の洗浄液を用いて、流体に対する洗浄液の混合比を低減させる。
In view of the above problems, the present invention has the following objects.
(1) Distribute the cleaning liquid uniformly in the flow path.
(2) It uniformly removes and suppresses dirt and thermal reaction products adhering / depositing on the flow path, and obtains a cooling effect uniformly.
(3) The mixing ratio of the cleaning liquid to the fluid is reduced using the minimum necessary cleaning liquid.
 上記目的を達成するために、本発明は以下の手段を採用している。
 すなわち、本発明は、ケーシングと、このケーシング内に支持された回転軸と、この回転軸に設けられて流体を圧縮するインペラと、このインペラと前記ケーシングとが形成する流路に洗浄液を噴射する洗浄液噴射装置とを備える遠心圧縮機であって、前記液体噴射装置は、前記ケーシングの小径部と前記インペラとの隙間に向けて周方向における複数箇所から前記洗浄液を噴射する第一噴射部と、前記インペラに圧縮された流体の上流側から下流側に向けて周方向における複数箇所から前記洗浄液を噴射する第二噴射部とを備える。
In order to achieve the above object, the present invention employs the following means.
That is, the present invention provides a casing, a rotating shaft supported in the casing, an impeller provided on the rotating shaft for compressing a fluid, and a cleaning liquid is injected into a flow path formed by the impeller and the casing. A centrifugal compressor including a cleaning liquid ejecting apparatus, wherein the liquid ejecting apparatus ejects the cleaning liquid from a plurality of locations in a circumferential direction toward a gap between the small diameter portion of the casing and the impeller; A second injection unit that injects the cleaning liquid from a plurality of locations in the circumferential direction from the upstream side to the downstream side of the fluid compressed by the impeller.
 この構成によれば、ケーシングの小径部とインペラとの隙間に向けて周方向における複数箇所から洗浄液を噴射する第一噴射部と、インペラに圧縮された流体の上流側から下流側に向けて周方向における複数箇所から洗浄液を噴射する第二噴射部とを備えるので、流路に対して洗浄液を均一に分布させることができる。
 すなわち、第一噴射部がインペラの入口直前で直接的に洗浄液を噴射するので、軸方向において、インペラの入り口からインペラ最外周部(出口)まで到達する洗浄液の割合が多くなり、洗浄液をインペラ全体及び下流側に行き渡らせることができる。
 一方、第二噴射部がインペラに圧縮された流体の上流側から下流側に向けて洗浄液を噴射するので、軸方向において、洗浄液がケーシングに衝突・付着せずに下流側に流れていく。これにより、洗浄液がケーシングに衝突することによるエロージョンの発生が抑制されると共にインペラの下流側において効率的に洗浄液を行き渡らせることができる。
 さらに、第一噴射部及び第二噴射部が複数箇所から洗浄液を噴射するので、周方向において、インペラ全体に洗浄液を行き渡らせることができる。
 従って、流路に対して洗浄液を均一に分布することができる。
 よって、流路に付着・堆積する汚れや熱反応生成物を均一に除去・抑制することができると共に、冷却効果を均一的に得ることができる。また、流路に対して洗浄液を均一に分布させることができるので、不必要に洗浄液を用いることなく、ガスに対する洗浄液の混合比を低減させることができる。
According to this configuration, the first injection unit that injects the cleaning liquid from a plurality of locations in the circumferential direction toward the gap between the small diameter portion of the casing and the impeller, and the periphery of the fluid compressed by the impeller from the upstream side toward the downstream side. Since the second ejection unit that ejects the cleaning liquid from a plurality of locations in the direction is provided, the cleaning liquid can be uniformly distributed in the flow path.
That is, since the first injection unit directly injects the cleaning liquid immediately before the impeller entrance, in the axial direction, the ratio of the cleaning liquid reaching from the impeller entrance to the outermost peripheral portion (outlet) of the impeller increases, and the cleaning liquid is transferred to the entire impeller. And can be distributed downstream.
On the other hand, since the second injection unit injects the cleaning liquid from the upstream side to the downstream side of the fluid compressed by the impeller, the cleaning liquid flows in the axial direction without colliding or adhering to the casing. Thereby, generation | occurrence | production of the erosion by the washing | cleaning liquid colliding with a casing is suppressed, and a washing | cleaning liquid can be efficiently spread | distributed in the downstream of an impeller.
Furthermore, since the first injection unit and the second injection unit inject the cleaning liquid from a plurality of locations, the cleaning liquid can be spread over the entire impeller in the circumferential direction.
Therefore, the cleaning liquid can be uniformly distributed with respect to the flow path.
Therefore, dirt and thermal reaction products adhering to and depositing on the flow path can be removed and suppressed uniformly, and a cooling effect can be obtained uniformly. In addition, since the cleaning liquid can be uniformly distributed in the flow path, the mixing ratio of the cleaning liquid to the gas can be reduced without using the cleaning liquid unnecessarily.
 また、前記第一噴射部は、前記隙間に向けて径方向に前記洗浄液を噴射する径方向噴射体を備えてもよい。
 この構成によれば、第一噴射部が、径方向に洗浄液を噴射する径方向噴射体を備えるので、洗浄液の配管を短く構成することができ、簡素な構成でケーシングの小径部とインペラとの隙間に向けて洗浄液を噴射することが可能になる。さらに、インペラ入口の曲がり部で剪断による粒子の微細化が進むので、エロージョンの発生を抑制することができると共に、流体の流れに随伴し易くすることができる。
The first injection unit may include a radial injection body that injects the cleaning liquid in a radial direction toward the gap.
According to this configuration, since the first injection unit includes the radial injection body that injects the cleaning liquid in the radial direction, the cleaning liquid piping can be configured to be short, and the small-diameter portion of the casing and the impeller can be configured with a simple configuration. The cleaning liquid can be sprayed toward the gap. Furthermore, since the refinement of particles by shearing proceeds at the bent portion of the impeller inlet, the generation of erosion can be suppressed and the flow of the fluid can be easily accompanied.
 また、前記第一噴射部の先端位置は径方向で前記インペラの外周側に偏って配置されており、前記第一噴射部は、前記隙間に向けて軸方向に前記洗浄液を噴射する軸方向噴射体を備えてもよい。
 この構成によれば、第一噴射部の先端位置は径方向で前記インペラの外周側に偏って配置されており、前記第一噴射部が、軸方向に洗浄液を噴射する軸方向噴射体を備えるので、流体がインペラを通過する際に軸方向に向かう慣性に関わらず、インペラ外周側にも洗浄液を到達し易くすることができる。
In addition, the tip position of the first injection part is arranged in the radial direction and is biased toward the outer peripheral side of the impeller, and the first injection part injects the cleaning liquid in the axial direction toward the gap. You may have a body.
According to this configuration, the distal end position of the first injection unit is arranged in the radial direction so as to be biased toward the outer peripheral side of the impeller, and the first injection unit includes the axial injection body that injects the cleaning liquid in the axial direction. Therefore, the cleaning liquid can easily reach the outer peripheral side of the impeller regardless of the inertia in the axial direction when the fluid passes through the impeller.
 また、前記第二噴射部は、前記インペラの最外周部から径方向外方に向けて流れる前記流体と斜めに交差する方向に前記洗浄液を噴射する斜方向噴射体を備えてもよい。
 この構成によれば、第二噴射部が、インペラの最外周部から径方向外方に向けて流れる前記流体と斜めに交差する方向に前記洗浄液を噴射する斜方向噴射体を備えるので、流体の昇温が激しく熱反応生成物が多いインペラ出口近傍に直接的に洗浄液を噴射することができる。これにより、洗浄効果及び冷却効果を効率的に高めることができる。
The second injection unit may include an oblique injection body that injects the cleaning liquid in a direction obliquely intersecting with the fluid that flows radially outward from the outermost peripheral portion of the impeller.
According to this configuration, the second injection unit includes the oblique direction injection body that injects the cleaning liquid in a direction obliquely intersecting with the fluid that flows radially outward from the outermost peripheral portion of the impeller. The cleaning liquid can be directly sprayed in the vicinity of the impeller outlet where the temperature rises rapidly and there are many thermal reaction products. Thereby, a cleaning effect and a cooling effect can be heightened efficiently.
 また、前記インペラが軸方向に複数設けられ、前記ケーシングには、上流側のインペラから径方向外方に向けて流れる前記流体を該上流側のインペラと隣接する下流側のインペラに向けるリターンベンド部が形成されて、前記流体が多段で圧縮される構成とされ、前記第二噴射部は、前記リターンベンド部の下流側に設けられ、径方向内方に向けて前記洗浄液を噴射するリターンベンド噴射体を備えてもよい。
 この構成によれば、第二噴射部が、リターンベンド部の下流側に設けられ、径方向内方に向けて洗浄液を噴射するリターンベンド噴射体を備えるので、洗浄液がケーシングに衝突・付着せずに径方向内方に向かう流路に流れていく。これにより、洗浄液がケーシングに衝突することによるエロージョンの発生が抑制されると共に径方向内方に向かう流路において効率的に洗浄液を行き渡らせることができる。
A plurality of the impellers are provided in the axial direction, and the casing has a return bend portion that directs the fluid that flows radially outward from the upstream impeller toward the downstream impeller adjacent to the upstream impeller. Is formed, and the fluid is compressed in multiple stages, and the second injection unit is provided on the downstream side of the return bend unit, and returns bend injection that injects the cleaning liquid radially inward. You may have a body.
According to this configuration, the second injection part is provided on the downstream side of the return bend part and includes the return bend injection body that injects the cleaning liquid radially inward, so that the cleaning liquid does not collide or adhere to the casing. It flows to the flow path that goes radially inward. Thereby, generation | occurrence | production of the erosion by the washing | cleaning liquid colliding with a casing is suppressed, and a washing | cleaning liquid can be efficiently spread | circulated in the flow path which goes to radial inside.
 また、第一噴射部及び第二噴射部のうち少なくとも一方は、前記洗浄液を噴霧してもよい。
 この構成によれば、第一噴射部及び第二噴射部のうち少なくとも一方が洗浄液を噴霧するので、エロージョンの発生の抑制効果をより高めることができる。
Further, at least one of the first injection unit and the second injection unit may spray the cleaning liquid.
According to this configuration, since at least one of the first injection unit and the second injection unit sprays the cleaning liquid, it is possible to further enhance the effect of suppressing the occurrence of erosion.
 また、ケーシングと、このケーシング内に支持された回転軸と、この回転軸に設けられて流体を圧縮する複数のインペラと、これら複数のインペラと前記ケーシングとが形成する流路において前記複数のインペラの各上流側に設けられて洗浄液を噴射する複数の噴射体と、これら噴射体の各噴射量を調整する制御部とを備える遠心圧縮機であって、前記制御部は、上流側に位置する前記噴射体から下流側へ位置する前記噴射体に向けて前記各噴射量を次第に減少させてもよい。
 この構成によれば、制御部が、上流側に位置する前記噴射体から下流側へ位置する前記噴射体に向けて各噴射量を次第に減少させるので、流体の昇温の幅が大きく熱反応生成物が多い上流側に洗浄液を多く噴射すると共に、昇温の幅が小さい下流側に洗浄液を少なく噴射する。これにより、流路の各部分の洗浄液の必要量に応じて、洗浄液を噴射するので、不必要に洗浄液を用いることなく、流体に対する洗浄液の混合比を低減させることができる。
The casing, a rotating shaft supported in the casing, a plurality of impellers provided on the rotating shaft for compressing fluid, and the plurality of impellers in a flow path formed by the plurality of impellers and the casing. The centrifugal compressor includes a plurality of injectors that are provided on the upstream side of each of the nozzles and injects the cleaning liquid, and a control unit that adjusts the injection amount of each of the injectors, and the control unit is located on the upstream side Each of the injection amounts may be gradually decreased toward the injector located downstream from the injector.
According to this configuration, the control unit gradually decreases each injection amount from the injection body located on the upstream side toward the injection body located on the downstream side, so that the temperature rise of the fluid is large and the thermal reaction is generated. A large amount of cleaning liquid is injected to the upstream side where there are many objects, and a small amount of cleaning liquid is injected to the downstream side where the temperature rise is small. Accordingly, since the cleaning liquid is ejected according to the required amount of the cleaning liquid in each part of the flow path, the mixing ratio of the cleaning liquid to the fluid can be reduced without using the cleaning liquid unnecessarily.
 また、前記制御部は、前記各噴射体から噴射される前記洗浄液の総量を、前記流体の量に対して所定の比率に制限してもよい。
 この構成によれば、前記制御部が洗浄液の総量を流体の量に対して所定の比率に制限するので、流体に対する洗浄液の混合比を所定の範囲に制限して所望の品質の流体を得ることができる。
The control unit may limit the total amount of the cleaning liquid ejected from each of the ejectors to a predetermined ratio with respect to the amount of the fluid.
According to this configuration, since the control unit limits the total amount of the cleaning liquid to a predetermined ratio with respect to the amount of fluid, the mixing ratio of the cleaning liquid to the fluid is limited to a predetermined range to obtain a fluid having a desired quality. Can do.
 本願発明によれば、流路に対して洗浄液を均一に分布することができる。また、流路に付着・堆積する汚れや熱反応生成物を均一に除去・抑制することができると共に、冷却効果を均一的に得ることができる。さらに、必要最低限の洗浄液を用いて、流体に対する洗浄液の混合比を低減させることができる。 According to the present invention, the cleaning liquid can be uniformly distributed in the flow path. Further, it is possible to uniformly remove and suppress dirt and thermal reaction products adhering / depositing on the flow path, and to obtain a uniform cooling effect. Furthermore, the mixing ratio of the cleaning liquid to the fluid can be reduced by using the minimum necessary cleaning liquid.
本発明の第一実施形態に係る遠心圧縮機Aの概略構成断面図である。It is a schematic structure sectional view of centrifugal compressor A concerning a first embodiment of the present invention. 本発明の第一実施形態に係る遠心圧縮機Aの要部断面図である。It is principal part sectional drawing of the centrifugal compressor A which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る遠心圧縮機AのI-I線(II-II線、III-III線)断面図である。It is an II line (II-II line, III-III line) sectional view of centrifugal compressor A concerning a first embodiment of the present invention. 本発明の第一実施形態に係る遠心圧縮機Aの第一の変形例を示す要部断面図である。It is principal part sectional drawing which shows the 1st modification of the centrifugal compressor A which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る遠心圧縮機Aの第二の変形例を示す要部断面図である。It is principal part sectional drawing which shows the 2nd modification of the centrifugal compressor A which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る遠心圧縮機Bの概略構成断面図である。It is a schematic structure sectional view of centrifugal compressor B concerning a first embodiment of the present invention.
 以下、図面を参照し、本発明の実施の形態について説明する。
(第一実施形態)
 図1は、本発明の第一実施形態に係る遠心圧縮機Aの概略構成断面図である。
図1に示すように、遠心圧縮機Aは、エチレン原料ガスEの圧縮に用いられるものであり、エチレン原料ガスEの吸込口2A,2Bと排出口3とが形成されたケーシング1と、両端部が軸受4A,4Bに支持されてケーシング1内を挿通する回転軸5と、この回転軸5に取付られた複数のインペラ6と、これら複数のインペラ6とケーシング1とで構成されるエチレン原料ガスEの流路に洗浄液Wを噴霧する洗浄液噴霧装置20とを備えている。
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
FIG. 1 is a schematic cross-sectional view of a centrifugal compressor A according to the first embodiment of the present invention.
As shown in FIG. 1, the centrifugal compressor A is used for compression of an ethylene raw material gas E, and includes a casing 1 in which intake ports 2A and 2B and an outlet 3 of the ethylene raw material gas E are formed, The shaft is supported by the bearings 4A and 4B, the rotating shaft 5 is inserted through the casing 1, the plurality of impellers 6 attached to the rotating shaft 5, and the ethylene raw material composed of the plurality of impellers 6 and the casing 1. A cleaning liquid spraying device 20 that sprays the cleaning liquid W is provided in the flow path of the gas E.
 この遠心圧縮機Aは、インペラ6の配列の型が背面配列と称される型のものであり、具体的には、回転軸5の一端側に三つのインペラ6が小径側を一端に向けると共に、他端側に三つのインペラ6が小径側を他端に向けて、それぞれ軸方向に配列されている。
 すなわち、この遠心圧縮機Aは、ケーシング1の両端側に形成された吸込口2A,2Bから吸い込んだエチレン原料ガスEを、ケーシング1の内部における一端側と他端側とで圧縮して、ケーシング1の中央に形成された排出口3から排出する。
The centrifugal compressor A is a type in which the arrangement type of the impellers 6 is referred to as a rear arrangement. Specifically, the three impellers 6 are arranged on one end side of the rotating shaft 5 and the small diameter side is directed to one end side. Three impellers 6 are arranged on the other end side in the axial direction with the small diameter side facing the other end.
That is, the centrifugal compressor A compresses the ethylene raw material gas E sucked from the suction ports 2A and 2B formed at both ends of the casing 1 at one end side and the other end side inside the casing 1, 1 is discharged from a discharge port 3 formed at the center of 1.
 ケーシング1は、図1に示すように、吸込口2A,2Bにそれぞれ連通する導入部1a,1bから排出口3にそれぞれ連通する排出部1cまで、縮径及び増径を繰り返す内部空間を有しており、この内部空間に回転軸5とインペラ6とを収容している。このケーシング1は、軸方向の両側において、それぞれインペラ6と共に、エチレン原料ガスEの圧縮流路Rを二つ形成している。この圧縮流路Rについては、後述する。 As shown in FIG. 1, the casing 1 has an internal space in which the diameter reduction and the diameter increase are repeated from the introduction portions 1 a and 1 b communicating with the suction ports 2 A and 2 B to the discharge portion 1 c communicating with the discharge port 3, respectively. The rotating shaft 5 and the impeller 6 are accommodated in this internal space. The casing 1 forms two compression flow paths R for the ethylene raw material gas E together with the impeller 6 on both sides in the axial direction. The compression flow path R will be described later.
 図2は、遠心圧縮機Aの要部断面図である。なお、以下の説明では、二つの圧縮流路Rのうち一方のものについて説明するが、他方のものも同様の構成をしている。
 インペラ6は、軸方向の一方側に進むにつれて漸次に径が大きくなるように形成されたハブ6aに羽根6bが複数形成され、この羽根6bの外周部を周方向に覆うようにシュウラド6cが接合された構成となっている。
FIG. 2 is a cross-sectional view of a main part of the centrifugal compressor A. In the following description, one of the two compression channels R will be described, but the other has the same configuration.
The impeller 6 has a plurality of blades 6b formed on a hub 6a formed so as to gradually increase in diameter as it advances to one side in the axial direction, and the shurad 6c is joined so as to cover the outer peripheral portion of the blade 6b in the circumferential direction. It has been configured.
 圧縮流路Rは、エチレン原料ガスEを三段に圧縮するものであり、吸込通路11、圧縮通路12、ディフューザ通路13、リターンベンド通路14、戻り通路15を備えている。 The compression flow path R compresses the ethylene raw material gas E in three stages, and includes a suction passage 11, a compression passage 12, a diffuser passage 13, a return bend passage 14, and a return passage 15.
 吸込通路11は、各インペラ6(ハブ6a)とケーシング1の小径部1dとの隙間で画成されて、圧縮通路12と連通している。なお、第一段目(軸端側)におけるインペラ6の上流側の吸込通路11は、導入部1aに連通している。 The suction passage 11 is defined by a gap between each impeller 6 (hub 6a) and the small diameter portion 1d of the casing 1 and communicates with the compression passage 12. The suction passage 11 on the upstream side of the impeller 6 in the first stage (shaft end side) communicates with the introduction portion 1a.
 圧縮通路12は、ハブ6aの羽根取り付け面とシュウラド6cの内壁面によって画成されている。
 ディフューザ通路13は、ケーシング1のディフューザ前壁13aと、ケーシング1に取付けられている隔壁部材1eのディフューザ後壁13bとにより画成されている。このディフューザ通路13は、第一段目及び第二段目のものがリターンベンド通路14に連通しており、第三段目のものが排出部1c(図1参照)に連通している。
The compression passage 12 is defined by the blade mounting surface of the hub 6a and the inner wall surface of the shurad 6c.
The diffuser passage 13 is defined by a diffuser front wall 13 a of the casing 1 and a diffuser rear wall 13 b of a partition wall member 1 e attached to the casing 1. As for this diffuser channel | path 13, the 1st step and the 2nd step are connected to the return bend channel | path 14, and the 3rd step is connected to the discharge part 1c (refer FIG. 1).
 リターンベンド通路14は、ケーシング1の反転通路壁14aと隔壁部材1eの外周端部壁14bにより画成されている。このリターンベンド通路14は、戻り通路15に連通している。 The return bend passage 14 is defined by the inversion passage wall 14a of the casing 1 and the outer peripheral end wall 14b of the partition wall member 1e. The return bend passage 14 communicates with the return passage 15.
 戻り通路15は、隔壁部材1eの下流側側壁15aと、ケーシング1に一体に形成されて内周側に延伸する上流側側壁15bとで画成されている。なお、第一段目の戻り通路15は、リターンベーン15cで分割されている。この戻り通路15は、第二段目、第三段目の吸込通路11に連通している。 The return passage 15 is defined by a downstream side wall 15a of the partition wall member 1e and an upstream side wall 15b formed integrally with the casing 1 and extending toward the inner peripheral side. The first-stage return passage 15 is divided by return vanes 15c. The return passage 15 communicates with the second and third suction passages 11.
 このような構成により、エチレン原料ガスEが圧縮流路Rを、導入部1bから第一段目の吸込通路11、圧縮通路12、ディフューザ通路13、リターンベンド通路14、戻り通路15、第二段目の吸込通路11、圧縮通路12、ディフューザ通路13、リターンベンド通路14、戻り通路15、第三段目の吸込通路11、圧縮通路12、ディフューザ通路13、排出部1cの順に流れて、圧縮される。 With such a configuration, the ethylene source gas E passes through the compression flow path R through the first-stage suction passage 11, the compression passage 12, the diffuser passage 13, the return bend passage 14, the return passage 15, and the second stage from the introduction portion 1 b. The suction passage 11, the compression passage 12, the diffuser passage 13, the return bend passage 14, the return passage 15, the third-stage suction passage 11, the compression passage 12, the diffuser passage 13, and the discharge portion 1c are sequentially flowed and compressed. The
 図1に示すように、洗浄液噴霧装置20は、圧縮流路Rに洗浄液Wを噴霧するものであり、第一噴霧部21と第二噴霧部22とを備えている。 As shown in FIG. 1, the cleaning liquid spraying device 20 sprays the cleaning liquid W onto the compression flow path R, and includes a first spraying part 21 and a second spraying part 22.
 第一噴霧部21は、図3に示すように、導入部1bに配設された四つの径方向噴霧体21aからなる。
 四つの径方向噴霧体21aは、軸線Pを中心にして等間隔環状配置されたものであり、それぞれ第一段目の吸込通路11に向けて径方向外方から内方に向けて洗浄液Wを噴霧する。より具体的には、各径方向噴霧体21aは、軸線Pに直交する断面において、約115度の噴射角で、隣接する径方向噴霧体21aと一部が重複するように噴霧する。
 径方向噴霧体21aは、ケーシング1を貫通する配管と洗浄液Wを噴霧可能なノズルとから構成されている。
As shown in FIG. 3, the first spray unit 21 includes four radial spray bodies 21 a arranged in the introduction unit 1 b.
The four radial spray bodies 21a are annularly arranged at equal intervals around the axis P, and each of the cleaning liquids W is directed radially inward from the radially outward toward the first-stage suction passage 11. Spray. More specifically, each radial spray body 21a sprays at an injection angle of about 115 degrees in a cross section orthogonal to the axis P so that a part of the radial spray body 21a overlaps with the adjacent radial spray body 21a.
The radial spray body 21a includes a pipe that penetrates the casing 1 and a nozzle that can spray the cleaning liquid W.
 第二噴霧部22は、第一段目及び第二段目のリターンベンド通路14を構成する反転通路壁14aに埋設されたリターンベンド噴霧体22aからなる。
 リターンベンド噴霧体22aは、図3に示すように、第一段目及び第二段目の反転通路壁14aの下流側(出口側)において、それぞれ四つずつ等間隔環状配置されている。
The second spray section 22 includes a return bend spray body 22a embedded in a reversing passage wall 14a constituting the first and second stage return bend passages 14.
As shown in FIG. 3, four return bend spray bodies 22a are annularly arranged at equal intervals on the downstream side (exit side) of the first-stage and second-stage reversing passage walls 14a.
 このリターンベンド噴霧体22aは、径方向噴霧体21aと同様に、ケーシング1を貫通する配管と洗浄液Wを噴霧可能なノズルとから構成されている。リターンベンド噴霧体22aは、エチレン原料ガスEの上流側から下流側に向けて、換言すれば、リターンベンド通路14を経て径方向内方側に流れの向きを変えたエチレン原料ガスEに向けて、洗浄液Wを噴霧するようにノズルの向きが設定されている。 The return bend spray body 22a is composed of a pipe penetrating the casing 1 and a nozzle capable of spraying the cleaning liquid W, like the radial spray body 21a. The return bend spray body 22a is directed from the upstream side to the downstream side of the ethylene raw material gas E, in other words, toward the ethylene raw material gas E whose flow direction is changed radially inward through the return bend passage 14. The direction of the nozzle is set so as to spray the cleaning liquid W.
 このような構成の洗浄液噴霧装置20には、洗浄液Wとして、エチレン原料ガスEの昇温に伴って生成されるポリマーを溶かす溶剤が充填されている。 The cleaning liquid spraying device 20 having such a configuration is filled with a solvent that dissolves the polymer produced as the temperature of the ethylene raw material gas E increases as the cleaning liquid W.
 次に、上述した構成の遠心圧縮機Aの洗浄方法について説明する。
 まず、遠心圧縮機Aを駆動し、圧縮流路Rを介して、エチレン原料ガスEが順次圧縮されていく。すなわち、エチレン原料ガスEが圧縮通路12(インペラ6)を通過すると速度エネルギと圧力エネルギが増加し、この後にエチレン原料ガスEがディフューザ通路13を通過すると上記速度エネルギが圧力エネルギに変換されて圧力が増加していく。この際、エチレン原料ガスEの昇圧の幅は、第一段目が最も大きく、第三段目が最も小さい。
Next, a method for cleaning the centrifugal compressor A having the above-described configuration will be described.
First, the centrifugal compressor A is driven, and the ethylene raw material gas E is sequentially compressed through the compression flow path R. That is, when the ethylene raw material gas E passes through the compression passage 12 (impeller 6), the velocity energy and the pressure energy increase. When the ethylene raw material gas E passes through the diffuser passage 13 thereafter, the velocity energy is converted into pressure energy and pressure. Will increase. At this time, the range of pressure increase of the ethylene source gas E is the largest in the first stage and the smallest in the third stage.
 上記各段における昇圧に伴って、エチレン原料ガスEの温度が上昇する。つまり、エチレン原料ガスEの昇温の幅は、第一段目が最も大きく、第三段目が最も小さくなる。
 このエチレン原料ガスEの昇温に伴って、エチレン原料ガスEからポリマーが生成されてケーシング1やインペラ6に付着していく。この際、ポリマーの付着の程度は、第一段目が最も多く、各段においてディフューザ通路13(特に入口側)が最も多くなる。
 このポリマーの堆積に伴って、排出口3から排出されるエチレン原料ガスEの流量及び圧力が低下する。
The temperature of the ethylene raw material gas E rises with the pressure increase in each stage. That is, the temperature increase range of the ethylene source gas E is the largest in the first stage and the smallest in the third stage.
As the ethylene source gas E rises in temperature, a polymer is generated from the ethylene source gas E and adheres to the casing 1 and the impeller 6. At this time, the degree of polymer adhesion is the highest in the first stage, and the diffuser passage 13 (especially the inlet side) is the highest in each stage.
As the polymer accumulates, the flow rate and pressure of the ethylene raw material gas E discharged from the discharge port 3 decrease.
 上記ポリマーを除去するために、洗浄液噴霧装置20が第一噴霧体21と第二噴霧部22とから圧縮流路Rに洗浄液Wを噴霧する。この噴霧された洗浄液Wは、その大部分が微粒化され、エチレン原料ガスEの流れに随伴する。 In order to remove the polymer, the cleaning liquid spray device 20 sprays the cleaning liquid W from the first spray body 21 and the second spray section 22 onto the compression flow path R. Most of the sprayed cleaning liquid W is atomized and accompanies the flow of the ethylene raw material gas E.
 より具体的には、第一噴霧体21の径方向噴霧体21aから径方向内方に噴霧された洗浄液Wは、導入部1bから第一段目の吸込通路11に流入する際に、エチレン原料ガスEの流れに随伴して、径方向から軸方向に流れの向きを変える。この際、液相状態の洗浄液Wは、剪断によって粒子の微細化が進み、圧縮通路12、ディフューザ通路13及びリターンベンド通路14まで行き渡る。また、径方向噴霧体21が等間隔環状配置されてそれぞれ洗浄液Wを噴霧するために、周方向に洗浄液Wが行き渡る。このようにして、圧縮通路12及びディフューザ通路13まで行き渡った洗浄液Wは、堆積したポリマーを溶解除去して下流側に流れていく。 More specifically, when the cleaning liquid W sprayed radially inward from the radial spray body 21a of the first spray body 21 flows into the first-stage suction passage 11 from the introduction portion 1b, the ethylene raw material As the gas E flows, the flow direction is changed from the radial direction to the axial direction. At this time, the liquid cleaning liquid W is refined by shearing, and reaches the compression passage 12, the diffuser passage 13, and the return bend passage 14. In addition, since the radial spray bodies 21 are annularly arranged at equal intervals and spray the cleaning liquid W, the cleaning liquid W spreads in the circumferential direction. In this way, the cleaning liquid W that reaches the compression passage 12 and the diffuser passage 13 dissolves and removes the deposited polymer and flows downstream.
 第二噴霧部22のリターンベンド噴霧体22aから噴霧された洗浄液Wは、リターンベンド通路14を経て径方向内方側に流れの向きを変えたエチレン原料ガスEに随伴して、隔壁部材1eの外周端部壁14bに衝突・付着することなく下流側に流れていく。
 そして、それぞれ戻り通路15を介して、第二段目、第三段目の圧縮通路12(インペラ6)に流入し、第二段目、第三段目のディフューザ通路13に流入していく。また、リターンベンド噴霧体22aが等間隔環状配置されてそれぞれ洗浄液Wを噴霧するために、周方向において、洗浄液Wが行き渡る。このようにして、戻り通路15、第二段目、第三段目の圧縮通路12及び第二段目、第三段目のディフューザ通路13に洗浄液Wが行き渡った洗浄液Wは、堆積したポリマーを溶解除去して下流側に流れていく。
The cleaning liquid W sprayed from the return bend spray body 22a of the second spray section 22 is accompanied by the ethylene source gas E that has changed its flow direction radially inward through the return bend passage 14, and the partition member 1e It flows downstream without colliding or adhering to the outer peripheral end wall 14b.
Then, the air flows into the second-stage and third-stage compression passages 12 (impellers 6) through the return passages 15, and flows into the second-stage and third-stage diffuser passages 13, respectively. Moreover, since the return bend spray bodies 22a are annularly arranged at equal intervals and spray the cleaning liquid W, the cleaning liquid W is distributed in the circumferential direction. In this way, the cleaning liquid W that has spread over the return path 15, the second stage, the third stage compression path 12, and the second stage, third stage diffuser path 13 is used to remove the deposited polymer. It dissolves and removes and flows downstream.
 堆積したポリマーが除去された遠心圧縮機Aは、排出口3から排出されるエチレン原料ガスEの流量及び圧力が回復する。その後、遠心圧縮機Aは、洗浄液噴霧装置20の洗浄液Wの噴霧を停止して、安定した稼働を続行する。 The centrifugal compressor A from which the accumulated polymer has been removed recovers the flow rate and pressure of the ethylene raw material gas E discharged from the discharge port 3. Thereafter, the centrifugal compressor A stops spraying the cleaning liquid W of the cleaning liquid spraying device 20 and continues stable operation.
 以上説明したように、遠心圧縮機Aによれば、ケーシング1の小径部1dとインペラ6との隙間に向けて周方向における複数箇所から洗浄液Wを噴霧する第一噴霧部21と、インペラ6に圧縮されたエチレン原料ガスEの上流側から下流側に向けて周方向における複数箇所から洗浄液Wを噴霧する第二噴霧部22とを備えるので、圧縮流路Rに対して洗浄液Wを均一に分布させることができる。
 すなわち、第一噴霧部21がインペラ6の直前で直接的に洗浄液Wを噴霧するので、軸方向において、圧縮通路12、ディフューザ通路13及びリターンベンド通路14まで到達する洗浄液Wの割合が多くなり、洗浄液Wを、圧縮通路12、ディフューザ通路13及びリターンベンド通路14に行き渡らせることができる。
As described above, according to the centrifugal compressor A, the first spraying portion 21 that sprays the cleaning liquid W from a plurality of locations in the circumferential direction toward the gap between the small diameter portion 1 d of the casing 1 and the impeller 6, and the impeller 6 Since the compressed ethylene raw material gas E is provided with the second spraying portion 22 that sprays the cleaning liquid W from a plurality of locations in the circumferential direction from the upstream side to the downstream side, the cleaning liquid W is uniformly distributed with respect to the compression flow path R. Can be made.
That is, since the first spray portion 21 sprays the cleaning liquid W directly immediately before the impeller 6, the ratio of the cleaning liquid W reaching the compression passage 12, the diffuser passage 13, and the return bend passage 14 in the axial direction increases. The cleaning liquid W can be distributed to the compression passage 12, the diffuser passage 13, and the return bend passage 14.
 一方、第二噴霧部22がインペラ6に圧縮されたエチレン原料ガスEの上流側から下流側に向けて洗浄液Wを噴霧するので、軸方向において、洗浄液Wが隔壁部材1eの外周端部壁14bに衝突・付着せずに下流側に流れていく。これにより、洗浄液Wがケーシング1に衝突することによるエロージョンの発生が抑制されると共にインペラ6の戻り通路15を介して、第二段目、第三段目の圧縮通路12(インペラ6)、第二段目、第三段目のディフューザ通路13に効率的に洗浄液Wを行き渡らせることができる。
 さらに、第一噴霧部21及び第二噴霧部22が周方向において等間隔に洗浄液Wを噴霧するので、インペラ全体に洗浄液を行き渡らせることができる。
 従って、圧縮流路Rに対して洗浄液Wを均一に行き渡らせることができる。
 よって、圧縮流路Rに付着・堆積する汚れや熱反応生成物を均一に除去・抑制することができる。さらに、冷却効果を均一的に得ることもできる。また、圧縮流路Rに対して洗浄液Wを均一に分布させることができるので、不必要に洗浄液Wを用いることなく、ガスに対する洗浄液Wの混合比を低減させることができる。
On the other hand, since the second spray part 22 sprays the cleaning liquid W from the upstream side to the downstream side of the ethylene raw material gas E compressed by the impeller 6, the cleaning liquid W in the axial direction is the outer peripheral end wall 14b of the partition wall member 1e. It flows downstream without colliding or adhering to. As a result, the occurrence of erosion due to the collision of the cleaning liquid W with the casing 1 is suppressed, and the second and third stage compression passages 12 (impeller 6) and the first stage are connected via the return passage 15 of the impeller 6. The cleaning liquid W can be efficiently distributed to the second-stage and third-stage diffuser passages 13.
Furthermore, since the 1st spray part 21 and the 2nd spray part 22 spray the washing | cleaning liquid W at equal intervals in the circumferential direction, a washing | cleaning liquid can be spread over the whole impeller.
Therefore, the cleaning liquid W can be uniformly distributed to the compression flow path R.
Therefore, dirt and thermal reaction products adhering to and accumulating in the compression flow path R can be uniformly removed and suppressed. Furthermore, the cooling effect can be obtained uniformly. Further, since the cleaning liquid W can be uniformly distributed in the compression flow path R, the mixing ratio of the cleaning liquid W to the gas can be reduced without using the cleaning liquid W unnecessarily.
 また、第一噴霧部21が、径方向に洗浄液Wを噴霧する軸方向噴霧体21aを備えるので、洗浄液Wの配管を短く構成することができ、簡素な構成でケーシング1の小径部1dとインペラ6との隙間に向けて洗浄液Wを噴霧することが可能になる。さらに、インペラ入口の曲がり部で剪断による粒子の微細化が進むので、エロージョンの発生を抑制することができると共に、エチレン原料ガスEの流れに随伴し易くすることができる。 Further, since the first spray portion 21 includes the axial spray body 21a that sprays the cleaning liquid W in the radial direction, the piping of the cleaning liquid W can be configured to be short, and the small-diameter portion 1d of the casing 1 and the impeller can be configured with a simple configuration. It becomes possible to spray the cleaning liquid W toward the gap with 6. Furthermore, since the refinement of particles by shearing proceeds at the bend of the impeller inlet, the generation of erosion can be suppressed and the flow of the ethylene source gas E can be easily accompanied.
 また、第一噴霧部21及び第二噴霧部22が洗浄液Wを噴霧するので、エロージョンの発生の抑制効果をより高めることができる。 Moreover, since the first spraying part 21 and the second spraying part 22 spray the cleaning liquid W, the effect of suppressing the occurrence of erosion can be further enhanced.
 続いて、上述した第一実施形態の変形例(第一の変形例、第二の変形例)について、図を用いて説明する。なお、以下の説明において、図1から図3に示すものと同様の構成要素については、同一の符合を付し、説明を省略する。 Subsequently, modified examples (first modified example, second modified example) of the above-described first embodiment will be described with reference to the drawings. In the following description, the same components as those shown in FIGS. 1 to 3 are given the same reference numerals, and the description thereof is omitted.
 図4は、遠心圧縮機Aの第一の変形例を示す要部断面図である。
 この第一の変形例は、図4に示すように、第一噴霧部21の構成を上述した径方向噴霧体21aに代えて、軸方向噴霧体21bに変更したものである。
 軸方向噴霧体21bは、導入部1bに軸線Pを中心にして四つ等間隔環状配置設されており、それぞれ一段目の吸込通路11に向けて軸方向に洗浄液Wを噴霧する。
 より具体的には、各軸方向噴霧体21bは、径方向において、インペラ6と重なる位置まで配管が延設されており、吸込通路11に向けて軸方向に洗浄液Wを噴霧する。ここで、各軸方向噴霧体21bの先端位置は、径方向でインペラの外周側に偏って配置されている。
FIG. 4 is a cross-sectional view of a main part showing a first modification of the centrifugal compressor A.
In the first modification, as shown in FIG. 4, the configuration of the first spray unit 21 is changed to the axial spray body 21b instead of the radial spray body 21a described above.
The four axial spray bodies 21b are annularly arranged at four equal intervals around the axis P in the introduction portion 1b, and spray the cleaning liquid W in the axial direction toward the first suction passage 11 respectively.
More specifically, each axial spray body 21 b has a pipe extending to a position overlapping the impeller 6 in the radial direction, and sprays the cleaning liquid W in the axial direction toward the suction passage 11. Here, the tip positions of the axial spray bodies 21b are arranged in the radial direction so as to be biased toward the outer peripheral side of the impeller.
 この構成によれば、第一噴霧部21が、軸方向に洗浄液を噴霧する軸方向噴霧体を備えるので、流体がインペラを通過する際に軸方向に向かう慣性に関わらず、インペラ外周側にも洗浄液を到達し易くすることができる。
 すなわち、エチレン原料ガスEが吸込通路11から圧縮通路12を通過する際に径方向外方に向かうガス流れが形成される。一方、このエチレン原料ガスEに洗浄液Wが随伴していると軸方向に慣性が働く。
 しかしながら、この構成によれば、軸方向に洗浄液Wを噴霧する軸方向噴霧体21bが径方向でインペラの外周側に偏って配置されているので、洗浄液Wは前記径方向の外方に向かうガス流れと混合し、軸方向に偏流することなく圧縮通路12の外周側にも洗浄液Wを到達し易くすることができる。すなわち、第一噴霧部21がインペラ6の直前でケーシング1の小径部1dとインペラ6との隙間に向けて直接的に洗浄液Wを噴霧するので、軸方向において、圧縮通路12、ディフューザ通路13及びリターンベンド通路14まで到達する洗浄液Wの割合が多くなり、洗浄液Wを、圧縮通路12、ディフューザ通路13及びリターンベンド通路14に行き渡らせることができる。
According to this configuration, since the first spray unit 21 includes the axial spray body that sprays the cleaning liquid in the axial direction, the fluid is also applied to the outer peripheral side of the impeller regardless of the inertia toward the axial direction when the fluid passes through the impeller. The cleaning liquid can be easily reached.
That is, when the ethylene raw material gas E passes from the suction passage 11 through the compression passage 12, a gas flow is formed that is directed radially outward. On the other hand, if the cleaning liquid W accompanies the ethylene source gas E, inertia acts in the axial direction.
However, according to this configuration, since the axial spray body 21b that sprays the cleaning liquid W in the axial direction is arranged in the radial direction and biased toward the outer periphery of the impeller, the cleaning liquid W is a gas that goes outward in the radial direction. The cleaning liquid W can easily reach the outer peripheral side of the compression passage 12 without mixing with the flow and drifting in the axial direction. That is, since the first spraying part 21 sprays the cleaning liquid W directly toward the gap between the small diameter part 1d of the casing 1 and the impeller 6 immediately before the impeller 6, in the axial direction, the compression passage 12, the diffuser passage 13, and The ratio of the cleaning liquid W that reaches the return bend passage 14 increases, and the cleaning liquid W can be distributed to the compression passage 12, the diffuser passage 13, and the return bend passage 14.
 続いて、上述した第一実施形態の第二の変形例について、説明する。
 図5は、遠心圧縮機Aの第二の変形例を示す要部断面図である。
 この第二の変形例は、第二噴霧部22の構成を上述したリターンベンド噴霧体22aに代えて、斜方向噴霧体22bに変更したものである。
Then, the 2nd modification of 1st embodiment mentioned above is demonstrated.
FIG. 5 is a cross-sectional view of a main part showing a second modification of the centrifugal compressor A.
In the second modification, the configuration of the second spray unit 22 is changed to the oblique spray body 22b instead of the return bend spray body 22a described above.
 斜方向噴霧体22bは、各ディフューザ前壁13aに軸線Pを中心にして四つ等間隔環状配置されており、それぞれディフューザ通路13を流れるエチレン原料ガスEの上流側から下流側に向けて斜めに交差する方向に洗浄液Wを噴霧する。 The oblique spray bodies 22b are annularly arranged at four equal intervals around the axis P on each diffuser front wall 13a, and each of the oblique spray bodies 22b is inclined obliquely from the upstream side to the downstream side of the ethylene raw material gas E flowing through the diffuser passage 13. The cleaning liquid W is sprayed in the intersecting direction.
 この構成によれば、エチレン原料ガスEの昇温が激しくポリマーの生成が多い圧縮通路12の出口近傍(ディフューザ通路13の入口近傍)に直接的に洗浄液Wを噴霧することができる。これにより、洗浄効果及び冷却効果を効率的に高めることができる。 According to this configuration, it is possible to spray the cleaning liquid W directly in the vicinity of the outlet of the compression passage 12 (in the vicinity of the inlet of the diffuser passage 13) where the temperature of the ethylene raw material gas E is so high that a large amount of polymer is generated. Thereby, a cleaning effect and a cooling effect can be heightened efficiently.
 なお、上記の構成に代えて、第一噴霧部21に径方向噴霧体21a及び軸方向噴霧体21bを同時に備えても良い。同様に、第二噴霧部22にリターンベンド噴霧体22aと斜方向噴霧体22bとを同時に備えてもよい。 In addition, it may replace with said structure and you may equip the 1st spraying part 21 with the radial direction spray body 21a and the axial direction spray body 21b simultaneously. Similarly, you may equip the 2nd spraying part 22 with the return bend spray body 22a and the diagonal spray body 22b simultaneously.
(第二実施形態)
 次に、本発明の第二実施形態について説明する。
 図6は、本発明の第二実施形態に係る遠心圧縮機Bの概略構成断面図である。
 図6に示すように、遠心圧縮機Bは、上述した遠心圧縮機Aと同様の構成の遠心圧縮機本体40と、洗浄液Wの噴霧量を調整する流量コントローラ(制御部)50とを備えている。
(Second embodiment)
Next, a second embodiment of the present invention will be described.
FIG. 6 is a schematic cross-sectional view of a centrifugal compressor B according to the second embodiment of the present invention.
As illustrated in FIG. 6, the centrifugal compressor B includes a centrifugal compressor body 40 having the same configuration as the centrifugal compressor A described above, and a flow rate controller (control unit) 50 that adjusts the spray amount of the cleaning liquid W. Yes.
 各径方向噴霧体21aと、各リターンベンド噴霧体22aは、同一の洗浄液タンクTに配管を介して接続されており、それぞれに電動弁51と、ノズルの元圧を検出する圧力センサ52とが設けられている。
 また、各径方向噴霧体21a及び各リターンベンド噴霧体22aの配管には、洗浄液タンクTから洗浄液Wが圧送されている。なお、この圧送には、最下流部におけるエチレン原料ガスEの圧力を上回る圧力が設定されている。
Each radial spray body 21a and each return bend spray body 22a are connected to the same cleaning liquid tank T via a pipe, and each has an electric valve 51 and a pressure sensor 52 for detecting the original pressure of the nozzle. Is provided.
The cleaning liquid W is pumped from the cleaning liquid tank T to the pipes of the radial spray bodies 21a and the return bend spray bodies 22a. In addition, the pressure exceeding the pressure of the ethylene raw material gas E in the most downstream part is set for this pumping.
 流量コントローラ50は、排出口3に設けられた圧力センサ(不図示)に基づいて、圧縮流路Rに洗浄液Wの供給を開始・停止すると共に、各圧力センサ52のノズル元圧の検出値に基づいて、各電動弁51の開閉を行い洗浄液Wの流量を制御する。 The flow controller 50 starts and stops the supply of the cleaning liquid W to the compression flow path R based on a pressure sensor (not shown) provided at the discharge port 3, and sets the detected value of the nozzle original pressure of each pressure sensor 52. Based on this, each motor-operated valve 51 is opened and closed to control the flow rate of the cleaning liquid W.
 この流量コントローラ50は、第一段目の径方向噴霧体21a、第二段目のリターンベンド噴霧体22a、第三段目のリターンベンド噴霧体22aに供給される洗浄液Wの流量の割合を記憶している。この割合は、第一段目の径方向噴霧体21a、第二段目のリターンベンド噴霧体22a、第三段目のリターンベンド噴霧体22aの順に小さくなるようになっている。
 さらに、流量コントローラ50は、圧縮流路Rに供給する洗浄液Wの単位時間当たりの総量が、排出口3から排出される単位時間当たりのエチレン原料ガスEに対して所定の割合(重量比で3%)以下となるように、圧縮流路Rに供給する洗浄液Wの単位時間当たりの総量を記憶している。
The flow controller 50 stores the ratio of the flow rate of the cleaning liquid W supplied to the first-stage radial spray body 21a, the second-stage return bend spray body 22a, and the third-stage return bend spray body 22a. is doing. This ratio decreases in the order of the first-stage radial spray body 21a, the second-stage return bend spray body 22a, and the third-stage return bend spray body 22a.
Further, the flow rate controller 50 is configured such that the total amount of the cleaning liquid W supplied to the compression flow path R per unit time is a predetermined ratio (3 by weight) with respect to the ethylene raw material gas E discharged from the discharge port 3. %), The total amount per unit time of the cleaning liquid W supplied to the compression flow path R is stored.
 続いて、遠心圧縮機Bにおける圧縮流路Rの洗浄方法について説明する。
 まず、圧縮流路Rにエチレン原料ガスEが連続して流れると、排出口3から排出されるエチレン原料ガスEの圧力が熱分解生成物の付着により低下する。そうすると、排出口3に設けられた圧力センサ(不図示)から、この圧力を指し示す検出値が流量コントローラ50に入力される。
Then, the washing | cleaning method of the compression flow path R in the centrifugal compressor B is demonstrated.
First, when the ethylene raw material gas E continuously flows in the compression flow path R, the pressure of the ethylene raw material gas E discharged from the discharge port 3 decreases due to adhesion of the thermal decomposition product. Then, a detected value indicating this pressure is input to the flow rate controller 50 from a pressure sensor (not shown) provided at the discharge port 3.
 流量コントローラ50は、記憶している圧縮流路Rに供給する洗浄液Wの単位時間当たりの総量の範囲内になるように、各電動弁51の開閉を行って、洗浄液Wを圧縮流路Rに供給する。この際、各圧力センサ52のノズル元圧の検出値に基づいて、洗浄液Wの流量を制御すると共に、第一段目の径方向噴霧体21a、第二段目のリターンベンド噴霧体22a、第三段目のリターンベンド噴霧体22aに供給される洗浄液Wが所定の割合となるように制御する。具体的には、第一段目の径方向噴霧体21a、第二段目のリターンベンド噴霧体22a、第三段目のリターンベンド噴霧体22aの順に、洗浄液Wが多くなるように制御する。 The flow rate controller 50 opens and closes each motor-operated valve 51 so that the cleaning liquid W supplied to the stored compression flow path R is within the range of the total amount per unit time, so that the cleaning liquid W is supplied to the compression flow path R. Supply. At this time, the flow rate of the cleaning liquid W is controlled based on the detected value of the nozzle original pressure of each pressure sensor 52, the first-stage radial spray body 21 a, the second-stage return bend spray body 22 a, Control is performed so that the cleaning liquid W supplied to the third-stage return bend spray body 22a has a predetermined ratio. Specifically, the cleaning liquid W is controlled to increase in the order of the first-stage radial spray body 21a, the second-stage return bend spray body 22a, and the third-stage return bend spray body 22a.
 つまり、エチレン原料ガスEの昇温により生成したポリマーの付着量は、上述したように、第一段目が最も多く、第二段目、第三段目の順に少なくなる。すなわちポリマーの付着量が最も多い第一段目に洗浄液Wが多く供給され、第二段目、第三段目の順に次第に少なく供給される。
 この一連の動作において、排出口3から排出される単位時間当たりのエチレン原料ガスEに対する洗浄液Wは、所定の割合(重量比で3%)以下の範囲内に収まっている。
That is, as described above, the adhesion amount of the polymer generated by the temperature rise of the ethylene source gas E is the largest in the first stage and decreases in the order of the second stage and the third stage. That is, a large amount of the cleaning liquid W is supplied to the first stage where the adhesion amount of the polymer is the largest, and a small amount is supplied in the order of the second stage and the third stage.
In this series of operations, the cleaning liquid W with respect to the ethylene source gas E per unit time discharged from the discharge port 3 is within a predetermined ratio (3% by weight) or less.
 ポリマーが溶解して、下流側に流れると排出口3から排出されるエチレン原料ガスEの圧力が回復する。そうすると、排出口3に設けられた圧力センサ(不図示)の検出値に基づいて流量コントローラ50が電動弁52を閉塞し、圧縮流路Rに洗浄液Wの供給を停止する。
 その後、遠心圧縮機Bは、安定した稼働を続行する。
When the polymer is dissolved and flows downstream, the pressure of the ethylene raw material gas E discharged from the discharge port 3 is recovered. Then, the flow rate controller 50 closes the motor-operated valve 52 based on the detection value of a pressure sensor (not shown) provided at the discharge port 3 and stops the supply of the cleaning liquid W to the compression flow path R.
Thereafter, the centrifugal compressor B continues to operate stably.
 以上説明したように、遠心圧縮機Bによれば、流量コントローラ50が、第一段目の径方向噴霧体21a、第二段目のリターンベンド噴霧体22a、第三段目のリターンベンド噴霧体22aの順に洗浄液Wの噴霧量を次第に減少させるので、エチレン原料ガスEの昇温の幅が大きく熱反応生成物が多い上流側に洗浄液Wを多く噴霧すると共に、昇温の幅が小さい下流側に洗浄液Wを少なく噴霧する。これにより、エチレン原料ガスEの流路の各部分の洗浄液Wの必要量に応じて、洗浄液Wを噴霧するので、不必要に洗浄液Wを用いることなく、エチレン原料ガスEに対する洗浄液Wの混合比を低減させることができる。
 また、流量コントローラ50が洗浄液Wの総量をエチレン原料ガスEの量に対して所定の比率に制限するので、エチレン原料ガスEに対する洗浄液Wの混合比を所定の範囲に制限して所望の品質のエチレン原料ガスEを得ることができる。
As described above, according to the centrifugal compressor B, the flow rate controller 50 includes the first-stage radial spray body 21a, the second-stage return bend spray body 22a, and the third-stage return bend spray body. Since the spray amount of the cleaning liquid W is gradually reduced in the order of 22a, a large amount of the cleaning liquid W is sprayed on the upstream side where the temperature increase range of the ethylene raw material gas E is large and the thermal reaction product is large, and the downstream side where the temperature increase range is small A small amount of cleaning liquid W is sprayed on Accordingly, since the cleaning liquid W is sprayed according to the required amount of the cleaning liquid W in each part of the flow path of the ethylene raw material gas E, the mixing ratio of the cleaning liquid W to the ethylene raw material gas E without using the cleaning liquid W unnecessarily. Can be reduced.
In addition, since the flow controller 50 limits the total amount of the cleaning liquid W to a predetermined ratio with respect to the amount of the ethylene raw material gas E, the mixing ratio of the cleaning liquid W to the ethylene raw material gas E is limited to a predetermined range to achieve a desired quality. Ethylene raw material gas E can be obtained.
 なお、上述した構成に代えて、各圧縮段の圧力を検出して、圧力が低下した段のみに洗浄液Wを供給する構成にしてもよい。
 また、上述した構成に代えて、排出口3に圧力センサを設けたが、この圧力センサを設けずに一定時間毎に洗浄液Wを圧縮流路Rに供給する構成にしてもよい。
Instead of the above-described configuration, the pressure of each compression stage may be detected, and the cleaning liquid W may be supplied only to the stage where the pressure has decreased.
Further, in place of the above-described configuration, the pressure sensor is provided at the discharge port 3, but the cleaning liquid W may be supplied to the compression flow path R at regular intervals without providing the pressure sensor.
 なお、上述した実施の形態において示した動作手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、上述した実施の形態では、洗浄液Wに溶剤を用いたが、これに代えて水を用いてもよい。このようにすることで、冷却効果を増大させることができる。
 また、上述した実施の形態では、背面配列の遠心圧縮機に本発明を適用したが、インペラの向きを軸方向に統一させた型のものにも本発明を適用できるのは、当然である。
 また、上述した実施の形態では、洗浄液Wを周方向の四箇所から噴霧する構成としたが、二つ以上であれば本発明の効果を十分に達成することができる。
Note that the operation procedure shown in the above-described embodiment, various shapes and combinations of the constituent members, and the like are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
For example, in the above-described embodiment, the solvent is used for the cleaning liquid W, but water may be used instead. By doing in this way, a cooling effect can be increased.
In the above-described embodiment, the present invention is applied to the centrifugal compressors arranged in the back side. However, the present invention can also be applied to a type in which the directions of the impellers are unified in the axial direction.
In the above-described embodiment, the cleaning liquid W is sprayed from four locations in the circumferential direction. However, if there are two or more, the effect of the present invention can be sufficiently achieved.
  本願発明によれば、流路に対して洗浄液を均一に分布することができる。また、流路に付着・堆積する汚れや熱反応生成物を均一に除去・抑制することができると共に、冷却効果を均一的に得ることができる。さらに、必要最低限の洗浄液を用いて、流体に対する洗浄液の混合比を低減させることができる。 According to the present invention, the cleaning liquid can be uniformly distributed in the flow path. Further, it is possible to uniformly remove and suppress dirt and thermal reaction products adhering / depositing on the flow path, and to obtain a uniform cooling effect. Furthermore, the mixing ratio of the cleaning liquid to the fluid can be reduced by using the minimum necessary cleaning liquid.
1…ケーシング
1d…小径部
5…回転軸
6…インペラ
14…リターンベンド通路(リターンベンド部)
20…洗浄液噴霧装置(洗浄液噴射装置)
21…第一噴霧部(第一噴射部)
21a…径方向噴霧体(径方向噴射体)
21b…軸方向噴霧体(軸方向噴射体)
22…第二噴霧部(第二噴射部)
22a…リターンベンド噴霧体(リターンベンド噴射体)
22b…斜方向噴霧体(斜方向噴霧体)
50…流量コントローラ(制御部)
A,B…遠心圧縮機
E…エチレン原料ガス(流体)
P…軸線
R…圧縮流路(流路)
W…洗浄液
DESCRIPTION OF SYMBOLS 1 ... Casing 1d ... Small diameter part 5 ... Rotating shaft 6 ... Impeller 14 ... Return bend channel | path (return bend part)
20 ... Cleaning fluid spraying device (cleaning fluid spraying device)
21 ... 1st spraying part (1st injection part)
21a: Radial spray body (radial spray body)
21b ... Axial spray body (axial spray body)
22 ... 2nd spraying part (2nd injection part)
22a ... return bend spray body (return bend spray body)
22b ... Oblique spray body (oblique spray body)
50 ... Flow controller (control unit)
A, B ... Centrifugal compressor E ... Ethylene feed gas (fluid)
P ... Axis R ... Compression flow path (flow path)
W ... Cleaning fluid

Claims (8)

  1.  ケーシングと、このケーシング内に支持された回転軸と、この回転軸に設けられて流体を圧縮するインペラと、このインペラと前記ケーシングとが形成する流路に洗浄液を噴射する洗浄液噴射装置とを備える遠心圧縮機であって、
     前記液体噴射装置は、前記ケーシングの小径部と前記インペラとの隙間に向けて周方向における複数箇所から前記洗浄液を噴射する第一噴射部と、
     前記インペラに圧縮された流体の上流側から下流側に向けて周方向における複数箇所から前記洗浄液を噴射する第二噴射部とを備える遠心圧縮機。
    A casing, a rotating shaft supported in the casing, an impeller provided on the rotating shaft for compressing fluid, and a cleaning liquid ejecting apparatus for injecting a cleaning liquid into a flow path formed by the impeller and the casing. A centrifugal compressor,
    The liquid ejection device includes a first ejection unit that ejects the cleaning liquid from a plurality of locations in a circumferential direction toward a gap between the small diameter portion of the casing and the impeller.
    A centrifugal compressor comprising: a second injection unit that injects the cleaning liquid from a plurality of locations in the circumferential direction from the upstream side to the downstream side of the fluid compressed by the impeller.
  2.  前記第一噴射部は、前記隙間に向けて径方向に前記洗浄液を噴射する径方向噴射体を備える請求項1に記載の遠心圧縮機。 The centrifugal compressor according to claim 1, wherein the first injection unit includes a radial injection body that injects the cleaning liquid in a radial direction toward the gap.
  3.  前記第一噴射部の先端位置は径方向で前記インペラの外周側に偏って配置されており、前記第一噴射部は、前記隙間に向けて軸方向に前記洗浄液を噴射する軸方向噴射体を備える請求項1又は2に記載の遠心圧縮機。 The tip position of the first injection unit is radially arranged in the outer peripheral side of the impeller, and the first injection unit is an axial injection unit that injects the cleaning liquid in the axial direction toward the gap. The centrifugal compressor according to claim 1 or 2 provided.
  4.  前記第二噴射部は、前記インペラの最外周部から径方向外方に向けて流れる前記流体と斜めに交差する方向に前記洗浄液を噴射する斜方向噴射体を備える請求項1に記載の遠心圧縮機。 2. The centrifugal compression according to claim 1, wherein the second injection unit includes an oblique injection body that injects the cleaning liquid in a direction obliquely intersecting with the fluid that flows radially outward from the outermost peripheral portion of the impeller. Machine.
  5.  前記インペラが軸方向に複数設けられ、
     前記ケーシングには、上流側のインペラから径方向外方に向けて流れる前記流体を該上流側のインペラと隣接する下流側のインペラに向けるリターンベンド部が形成されて、前記流体が多段で圧縮される構成とされ、
     前記第二噴射部は、前記リターンベンド部の下流側に設けられ、径方向内方に向けて前記洗浄液を噴射するリターンベンド噴射体を備える請求項1に記載の遠心圧縮機。
    A plurality of the impellers are provided in the axial direction;
    The casing is formed with a return bend portion for directing the fluid flowing radially outward from the upstream impeller to the downstream impeller adjacent to the upstream impeller, and the fluid is compressed in multiple stages. And
    2. The centrifugal compressor according to claim 1, wherein the second injection unit includes a return bend injection body that is provided on a downstream side of the return bend unit and injects the cleaning liquid inward in a radial direction.
  6.  第一噴射部及び第二噴射部のうち少なくとも一方は、前記洗浄液を噴霧する請求項1に記載の遠心圧縮機。 The centrifugal compressor according to claim 1, wherein at least one of the first injection unit and the second injection unit sprays the cleaning liquid.
  7.  ケーシングと、このケーシング内に支持された回転軸と、この回転軸に設けられて流体を圧縮する複数のインペラと、これら複数のインペラと前記ケーシングとが形成する流路において前記複数のインペラの各上流側に設けられて洗浄液を噴射する複数の噴射体と、これら噴射体の各噴射量を調整する制御部とを備える遠心圧縮機であって、
     前記制御部は、上流側に位置する前記噴射体から下流側へ位置する前記噴射体に向けて前記各噴射量を次第に減少させる遠心圧縮機。
    Each of the plurality of impellers in a casing, a rotating shaft supported in the casing, a plurality of impellers provided on the rotating shaft to compress fluid, and a flow path formed by the plurality of impellers and the casing A centrifugal compressor provided with a plurality of injectors provided on the upstream side for injecting a cleaning liquid, and a control unit for adjusting each injection amount of these injectors,
    The said control part is a centrifugal compressor which reduces each said injection quantity gradually toward the said injection body located downstream from the said injection body located in an upstream.
  8.  前記制御部は、前記各噴射体から噴射される前記洗浄液の総量を、前記流体の量に対して所定の比率に制限する請求項7に記載の遠心圧縮機。
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
    The centrifugal compressor according to claim 7, wherein the control unit limits a total amount of the cleaning liquid ejected from each of the ejectors to a predetermined ratio with respect to the amount of the fluid.















PCT/JP2009/005046 2008-11-28 2009-09-30 Centrifugal compressor WO2010061512A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008305138A JP2010127245A (en) 2008-11-28 2008-11-28 Centrifugal compressor
JP2008-305138 2008-11-28

Publications (1)

Publication Number Publication Date
WO2010061512A1 true WO2010061512A1 (en) 2010-06-03

Family

ID=42225404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005046 WO2010061512A1 (en) 2008-11-28 2009-09-30 Centrifugal compressor

Country Status (2)

Country Link
JP (1) JP2010127245A (en)
WO (1) WO2010061512A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102410257A (en) * 2011-12-02 2012-04-11 杭州求是透平机制造有限公司 Semi internal cooling type centrifugal compressor
CN102410258A (en) * 2011-12-02 2012-04-11 杭州求是透平机制造有限公司 Full internal cooling type centrifugal compressor
CN103603828A (en) * 2013-12-01 2014-02-26 湖北双剑鼓风机股份有限公司 Draught fan partition plate
EP2530332A4 (en) * 2010-01-27 2018-06-13 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor and cleaning method
EP3406914A4 (en) * 2016-02-29 2019-02-27 Mitsubishi Heavy Industries Compressor Corporation Centrifugal rotating machine
US11421709B2 (en) 2020-09-08 2022-08-23 Honeywell International Inc. Systems for interstage particle separation in multistage radial compressors of turbine engines
US20220389931A1 (en) * 2021-06-04 2022-12-08 Mitsubishi Heavy Industries Compressor Corporation Centrifugal compressor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105782118B (en) * 2014-12-22 2017-12-15 沈阳透平机械股份有限公司 Two-way variable cross-section exhaust volute chamber structure built in centrifugal compressor
JPWO2016157434A1 (en) * 2015-03-31 2018-01-25 三菱重工コンプレッサ株式会社 Inspection method for rotating machine, rotating machine
RU186516U1 (en) * 2018-10-22 2019-01-22 Общество с ограниченной ответственностью "Искра-Нефтегаз Компрессор" DEVICE FOR RINSING THE FLOWING PART OF A CENTRIFUGAL COMPRESSOR
RU186513U1 (en) * 2018-10-22 2019-01-22 Общество с ограниченной ответственностью "Искра-Нефтегаз Компрессор" DEVICE FOR RINSING THE FLOWING PART OF A CENTRIFUGAL COMPRESSOR
JP7341854B2 (en) * 2019-10-25 2023-09-11 三菱重工コンプレッサ株式会社 Charge gas compressor train for ethylene plant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549049U (en) * 1978-09-27 1980-03-31
JPS58135400A (en) * 1982-01-04 1983-08-11 ゼネラル・エレクトリツク・カンパニイ Evaporable liquid injection type centrifugal compressor
JPH08338397A (en) * 1995-06-14 1996-12-24 Hitachi Ltd Impeller washing device of single-shaft multistage centrifugal compressor
JP2918773B2 (en) * 1993-11-08 1999-07-12 株式会社日立製作所 Centrifugal compressor
JP2000110793A (en) * 1998-10-01 2000-04-18 Hitachi Ltd Gas temperature control method in compressor and compressor
JP2000120595A (en) * 1998-10-20 2000-04-25 Hitachi Ltd Centrifugal compressor with cooling fluid injection nozzle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2280845A (en) * 1938-01-29 1942-04-28 Humphrey F Parker Air compressor system
JPH1018976A (en) * 1996-07-04 1998-01-20 Mitsubishi Heavy Ind Ltd Gas temperature controller for compressor
JP3537797B2 (en) * 2001-10-26 2004-06-14 川崎重工業株式会社 Water injection method for centrifugal compressor and centrifugal compressor having water injection function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549049U (en) * 1978-09-27 1980-03-31
JPS58135400A (en) * 1982-01-04 1983-08-11 ゼネラル・エレクトリツク・カンパニイ Evaporable liquid injection type centrifugal compressor
JP2918773B2 (en) * 1993-11-08 1999-07-12 株式会社日立製作所 Centrifugal compressor
JPH08338397A (en) * 1995-06-14 1996-12-24 Hitachi Ltd Impeller washing device of single-shaft multistage centrifugal compressor
JP2000110793A (en) * 1998-10-01 2000-04-18 Hitachi Ltd Gas temperature control method in compressor and compressor
JP2000120595A (en) * 1998-10-20 2000-04-25 Hitachi Ltd Centrifugal compressor with cooling fluid injection nozzle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530332A4 (en) * 2010-01-27 2018-06-13 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor and cleaning method
CN102410257A (en) * 2011-12-02 2012-04-11 杭州求是透平机制造有限公司 Semi internal cooling type centrifugal compressor
CN102410258A (en) * 2011-12-02 2012-04-11 杭州求是透平机制造有限公司 Full internal cooling type centrifugal compressor
CN103603828A (en) * 2013-12-01 2014-02-26 湖北双剑鼓风机股份有限公司 Draught fan partition plate
EP3406914A4 (en) * 2016-02-29 2019-02-27 Mitsubishi Heavy Industries Compressor Corporation Centrifugal rotating machine
US10844863B2 (en) 2016-02-29 2020-11-24 Mitsubishi Heavy Industries Compressor Corporation Centrifugal rotary machine
US11421709B2 (en) 2020-09-08 2022-08-23 Honeywell International Inc. Systems for interstage particle separation in multistage radial compressors of turbine engines
US20220389931A1 (en) * 2021-06-04 2022-12-08 Mitsubishi Heavy Industries Compressor Corporation Centrifugal compressor

Also Published As

Publication number Publication date
JP2010127245A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
WO2010061512A1 (en) Centrifugal compressor
JP5675121B2 (en) Centrifugal compressor and cleaning method
EP3211186B1 (en) System and method for cleaning a gas turbine engine and related wash stand
KR101564858B1 (en) Centrifugal fluid machine
JP2011111990A (en) Centrifugal compressor
CN207162655U (en) A kind of automatically cleaning range hood
CN108006763B (en) Self-cleaning range hood
SE525924C2 (en) Nozzle and method for cleaning gas turbine compressors
JP2012236185A (en) Rotary spray apparatus
JP3873481B2 (en) Centrifugal compressor with coolant jet nozzle
JP5575308B2 (en) Centrifugal compressor
JP5869044B2 (en) Centrifugal compressor
JP5461143B2 (en) Centrifugal compressor
US20140356128A1 (en) Method and device for stabilizing a compressor current
JP2008190487A (en) Centrifugal type fluid machine
JP5307680B2 (en) Centrifugal compressor
JP5536261B2 (en) Centrifugal compressor
CN207377818U (en) Type variable electric pump
CN207493906U (en) A kind of nozzle arrangements and application have the cleaning assemblies and range hood of the structure
JP7108515B2 (en) compressor
CN219210325U (en) Ejector
KR102579575B1 (en) Method for cleaning stator aerodynamic components and turbomachinery with nozzles
US9074533B2 (en) System for injecting a fluid, compressor and turbomachine
JP2022186266A (en) centrifugal compressor
KR20220080538A (en) jet pump to improve suction performance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09828762

Country of ref document: EP

Kind code of ref document: A1