JP3873481B2 - Centrifugal compressor with coolant jet nozzle - Google Patents

Centrifugal compressor with coolant jet nozzle Download PDF

Info

Publication number
JP3873481B2
JP3873481B2 JP29781698A JP29781698A JP3873481B2 JP 3873481 B2 JP3873481 B2 JP 3873481B2 JP 29781698 A JP29781698 A JP 29781698A JP 29781698 A JP29781698 A JP 29781698A JP 3873481 B2 JP3873481 B2 JP 3873481B2
Authority
JP
Japan
Prior art keywords
injection nozzle
centrifugal compressor
coolant
working gas
impeller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29781698A
Other languages
Japanese (ja)
Other versions
JP2000120595A (en
Inventor
哲也 桑野
博美 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP29781698A priority Critical patent/JP3873481B2/en
Publication of JP2000120595A publication Critical patent/JP2000120595A/en
Application granted granted Critical
Publication of JP3873481B2 publication Critical patent/JP3873481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5846Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling by injection

Abstract

PROBLEM TO BE SOLVED: To accelerate mixing of working gas and injection fluid, and suppress the generation of erosion or vibration in a multistage centrifugal compressor equipped with a cooling fluid injection nozzle. SOLUTION: With the centrifugal compressor, plural impellers 12 are arranged in the axial direction of a rotary shaft 11. In this case, a corner part 26a is formed at a maximum diameter part of a return passage for introducing the flow of working gas coming from the front stage impeller to the next stage impeller. Then a fluid inlet 51 from which cooling fluid to be mixed with working gas is injected, is formed at the corner part, and a cooling fluid injection nozzle 52 is attached to the fluid inlet. Since the cooling fluid is injected from the nozzle 52 to a working gas flow-stagnation part, turning of the injection fluid in the circumferential direction is improved, and turbulence of the working gas can be prevented.

Description

【0001】
【発明の属する技術分野】
本発明は化学プラント等で使用される多段遠心圧縮機に係り、特に蒸発可能な液体を圧縮機内に注入する冷却液噴射ノズル付き遠心圧縮機に関する。
【0002】
【従来の技術】
遠心圧縮機で高圧を必要とするときは、単段の圧力比をそれ程大きくすることができないので、一本の軸に多数の羽根車を取付けた多段遠心圧縮機が用いられる。特にエチレンプラントのように数10気圧までもの圧力を必要とするときは、圧縮機自体を多段に構成し、各圧縮機を数段ないし10数段にしている。このような多段の遠心圧縮機に作動ガスを流すと、ガスの種類によっては圧縮中に発生する熱により化学反応を起こし別の物質になったり、ガス中に含まれる不純物と反応してスラッジと呼ばれる汚れを発生することがある。
【0003】
先に述べたエチレンプラント用の遠心圧縮機では、作動ガスのナフタが140°C程度まで加熱されると、化学反応が促進されナフタが生じる。このスラッジは回転体である羽根車に付着したり、シール部に侵入して摩擦の原因になったりする。そこで、圧縮中の作動ガスの温度上昇を低減するため、圧縮中の作動ガスに直接液を注入し、この液が加熱により蒸発する際に作動ガスから熱を奪う蒸発潜熱を利用する方法が広く用いられている。この液の種類としては、水を用いることが多い。
【0004】
一方、圧縮により作動ガスが温度上昇するが、この温度上昇がスラッジ発生の温度になる前に、圧縮ガスを圧縮機外に取り出し、冷却した後に圧縮機に戻す方法も考えられる。しかしながらこの方法では、長期間運転した結果、圧縮機の性能が徐々に低下し、作動ガスの温度上昇が設計範囲を超えてしまうという不具合を生じる。この不具合を避けるために設計温度を低く設定すると、機械が大型化し、コスト高になる。そのため、運転当初はスラッジが発生しない温度に設定し、しかも液噴射を併用している。
【0005】
このような液噴射の例が、米国特許第2786626号に記載されている。この公報に記載の多段の遠心圧縮機では、前段の羽根車から流出した作動ガスを後段の羽根車に導く戻り流路の頂部から作動ガスに液冷媒を注入している。
【0006】
また、特公昭58−135400号公報や特開平7−127600号公報には同じく段間の流路に水を噴射する水噴射ノズルを設けている。特に特公昭58−135400号の場合には、羽根車下流で最も流速の大きいディフューザ入口付近に、特開平7−127600号公報ではさらに上流側の羽根車の心板と対向する静止壁面にノズルを配置している。さらに、特開平10−18976号公報には水噴射ノズルから噴射される水量を制御する方法が記載されている。
【0007】
【発明が解決しようとする課題】
液噴射を伴う多段遠心圧縮機において、作動ガスの温度を制御するためには噴射する液を制御する必要がある。ところで、圧縮機の段間から噴射ノズルを用いて液噴射するときには、作動ガスの流れが周方向に一様化されていないので、必ずしも液噴射の効果が生じない恐れがある。これは、戻り流路において圧縮機に流入した作動ガスを次段の羽根車流路へ分配するためである。そして、流れの非一様化は部分的な作動ガス温度の上昇を引き起こし、スラッジの発生の原因となる。また、液噴射ノズルから噴出される液の非一様性が強すぎると、周方向に不均一な流れとなり、噴射された液の粒子が羽根車に流入するときに羽根車を加振し、不安定振動を引き起こす恐れがある。
【0008】
周方向の噴射液の一様性を増すために、噴射液量を増やして噴射液の粒子を周方向に確実に拡散させると、噴射位置より下流の流路で、蒸発しきれずに残った液粒子によりエロージョンを引き起こす恐れがある。噴射液の一様性を増す他の方法として、噴射液の噴射速度を増す方法も考えられるが、この場合には噴射液の流れが作動ガスの流れに影響を及ぼし、圧縮機の流体性能を低下させる恐れがある。
【0009】
つまり、上記米国特許第278662号公報に記載の遠心圧縮機では、曲率の大きい区間を作動ガスが流れざるをえないが、この曲率が大きい区間では遠心作用により作動ガスが外周側壁面に偏って流れる。このため、戻り流路の頂部から液噴射しようとしても、噴射が困難である。また、作動ガスの流れに対して、斜めまたは垂直方向から噴射液を噴射せざるをえず、作動ガスと噴射液の流れに混合損失を生じる。これらは騒音や振動の原因となり得、特に噴射位置を周方向1箇所しか取れない場合にはその悪影響が甚だしい。
【0010】
また、特公昭58−135400号公報に記載の遠心圧縮機では、側板側ディフューザ壁面に噴射ノズルを設けている。ディフューザ部では作動ガスの流速がので、液噴射時に作動ガスと噴射液の混合損失が大きくなる。また、ディフューザに羽根付きディフューザを用いるとエロージョンを生じる恐れがあるので、実質的には羽根無しディフューザしか用いることができない。
【0011】
さらに、特開平7−127600号公報に記載の遠心圧縮機では、ディフューザ羽根を有する羽根付きディフューザでの液噴射を可能としているが、圧縮機外から液噴射位置までの液噴射路の距離が長く、構造が複雑である。なお、運転時間の経過と共に液噴射路に汚れが発生するので、運転中であってもメンテナンスできることが必要であるが、この構造では運転中のメンテナンスが困難である。
【0012】
特開平10−18976号公報に記載の遠心圧縮機では、段間及び吸込み配管に液噴射ノズルを設けている。吸込み配管で液噴射することにより周方向の噴射液の流れは改善されるが、段間の噴射ノズルは上記米国特許第2786626号公報に記載のものと同様であり、段間からの噴射液の流れの改善が依然必要とされている。
【0013】
本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は、液噴射を伴う多段遠心圧縮機において、効率的に噴射液を作動ガスに混合させることにある。本発明の他の目的は、簡単な構造の液噴射システムを実現することにある。本発明のさらに他の目的は、エロージョンや振動を生じない信頼性の高い液噴射システムを実現することにある。本発明のさらに他の目的は、安価な液噴射システムを提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するための本発明の第1の特徴は、回転軸に複数の羽根車が装着され、前段の羽根車を出た作動ガスの流れを後段の羽根車に導く戻り流路が形成された多段の遠心圧縮機において、前記戻り流路の最大径位置に角部を形成し、この角部から冷却液を噴射する冷却液噴射ノズルを設けたものである。
【0015】
上記目的を達成するための本発明の第2の特徴は、回転軸と、この回転軸に装着された複数の羽根車と、この回転軸を回転自在に支承する軸受手段と、前段の羽根車を出た作動ガスの流れを後段の羽根車に導く複数の戻り流路を形成する複数のインナーケーシング及びダイヤフラムと、これら各部材を収納するケーシングとを備えた遠心圧縮機において、少なくとも1つの前記戻り流路は、軸方向に平行な円筒面が形成された前記ケーシングと、一方の面が回転軸に垂直な面を有するインナーケーシングとからなる角部を有し、この戻り流路の角部に開口し、冷却液噴射ノズルが取付けられる取付け孔を前記ケーシングに形成したものである。
【0016】
そして、開口は、ダイヤフラムの最大径位置より後段側に形成されている;開口は、ダイヤフラムの最大径位置より前段側に形成され、冷却液噴射ノズルの噴射方向がほぼ軸方向である;冷却液噴射ノズルから噴射される冷却液が水であり、その温度が作動ガスの吸込み温度以上140°C以下である;冷却液噴射ノズルを周方向複数箇所に設けてある;初段羽根車の吸込み側に冷却液噴射ノズルを設けたものである。
【0019】
そして、上記何れの特徴においても、作動ガスは、エチレン製造用のナフサであることが望ましい。
【0020】
【発明の実施の形態】
以下、本発明のいくつかの実施例を図面を用いて説明する。図1および図2は、本発明に係る液噴射ノズルを備えた多段遠心圧縮機の一実施例を縦断面図で示したものであり、図1はその全体図、図2は液噴射部の拡大図である。
【0021】
図1では4段の羽根車を有する例えばエチレンプラント用の多段遠心圧縮機では、回転軸11がケーシング21内に軸受41a,41bにより回転自在に支持されて収納されている。この回転軸11の軸方向には、複数の羽根車12が取付けられている。羽根車12の下流には、圧力回復のためのディフューザベーンを備えたディフューザ22が羽根車の半径方向外方に形成されており、このディフューザのさらに下流には次段の羽根車へ作動ガスを導くために、半径方向外方に向かった流れを半径方向内側へ戻す戻り流路24が形成されている。
【0022】
戻り流路24には、次段羽根車への作動ガスの流れを一様化するために、リターンベーン25が形成されている。なお、戻り流路24のさらに半径方向外方はケーシング21で覆われており、このケーシング21が戻り流路24を区画している。つまり、戻り流路24は、半径方向外方に延びる部分と、円弧状のリターンベンド部26と、半径方向内方に延びる部分と、リターンベンド部26の肩部に位置する角部26aとを備えている。この角部26aは、以下に詳述するように、液噴射ノズルを取付けるために本発明において、新たに設けられたものである。角部21aに対向するケーシング2の壁面には、冷却液を噴射するための液噴射口51が形成されており、この液噴射口には液噴射ノズル52が取付けられている。
【0023】
羽根車を出た作動ガスは、ディフューザ部で圧力回復して昇圧した後、主流61は流路にほぼ沿って流れる。一方、戻り流路24のリターンベンド部26は曲がり流路のため、主流から剥離した流れが渦を発生し、後流62を形成する。この後流62は、角部26aの存在により、安定して角部24aに滞留する。
【0024】
この淀んだ後流62に液噴射ノズル52から冷却液を噴射し、滞留している後流62を主流61とともに流す。この際、冷却液は周方向の旋回流となりながら、主流61と混合する。したがって、液噴射時に作動ガスと冷却液の混合損失を低減できる。しかも、主流61の運動量に比べて噴射液の運動量がはるかに小さいから、主流は液噴射によって流れ方向や流れ速度を変化させられることがない。そのため、圧縮機の流体性能を低下させることがない。また、角部26aに滞留する後流62は主流方向の速度成分をほとんど有していないが、周方向速度成分を有しているので、液噴射手段を周方向にそれ程多くしなくとも周方向全体に冷却液を供給できる。なお、本発明者の実験的研究によれば、液噴射手段を周方向に1個のみ取付けただけでも、従来のものに比べて周方向への冷却液の回り込みが改善された。
【0025】
この周方向流れの様子を、図3及び図4を用いて説明する。図3は戻り流路24のリターンベンド26部中央に冷却液噴射ノズルを設けた場合であり、図4は戻り流路24のリターンベンド26部角部に冷却液噴射ノズルを設けた場合である。図3において、噴射された冷却液の粒子63は、噴射口の近傍に存在する主流と比較的短時間で混合し、作動ガスの主流61に沿ってリターンベーン25が設けられた流路へと運ばれる。作動ガスの主流の旋回速度成分は半径方向速度成分に比べて小さいから、冷却液噴射ノズル52の近傍のリターンベーン25をガイドとして、リターンベーン25間に形成される2〜3個のリターンチャンネルのみに流入する。このため、冷却液噴射ノズル52が設けられた位置から遠く離れた位置、例えば周方向反対側へは冷却液を供給できず、この部分を流れる作動ガスは冷却液との混合が無いまま、次段の羽根車12に流入する。したがって、作動ガスの冷却効果が少なく、また作動ガスの温度が周方向に不均一な分布となり、振動騒音の発生の一因となる。
【0026】
一方、図4に示した戻り流路24の角部に冷却液噴射ノズルを設けた場合には、主流側まで噴射された一部の冷却液粒子を除いて、大部分の液粒子63は角部に滞留する周方向速度成分が大部分である淀み部の流れ62aに引きずられて周方向に旋回する。なお、一部の液粒子は角部を形成する垂直壁に衝突して跳ね返り、その後淀み部の流れ62aに合流する。噴射された液粒子63は、旋回を続けている間に主流に引きずられるように徐々に半径方向内側へ向かう。その結果、リターンベーン25間に形成されるリターンチャンネルのほとんどに冷却液を供給できる。このようにリターンベンド部に作動ガスの淀み部を設けることにより、液粒子の周方向分布が一様化され、次段の羽根車12へ流入する作動ガスの温度分布も改善される。これにより、作動ガスの冷却効果が高めれられ、スラッジの発生を抑制できるとともに、不安定振動や騒音の発生を低減できる。
【0027】
次に、この角部の製造方法について説明する。ケーシング21を円筒形に製作し、この円筒形のケーシング21に嵌め合い部を有するインナーケーシング27を取付ける。インナーケーシング27の前面側は、戻り流路24の戻り部を形成しており、その外径側が回転軸11に対して垂直な平面となっている。インナーケーシング27の背面側は、戻り流路24の半径方向外方への流れ部を形成しており、円弧状または滑らかな曲線状に形成される。連続する2段のインナーケーシング27間には、ダイヤフラム28が配置されている。
【0028】
ダイヤフラム28の前面側には、羽根付きディフューザのディフューザベーン23が、背面側には戻り流路24のリターンベーン25が形成されている。これらディフューザベーン23及びリターンベーン25は、予めNC加工等により製作し、ダイヤフラム28に溶接してもよいし、ダイヤフラム28と一体加工してもよい。ダイヤフラム28の最外径部は、戻り流路形状に合わせて円弧状または滑らかな曲線状に形成される。
【0029】
ダイヤフラム28の内径側にはステージラビリンス32を、インナーケーシング27の内径側にはインペララビリンス31を取付ける。インペララビリンス31は、各羽根車12の吸込み側のベルマウス部に対向して設けられており、非接触型のラビリンスシールからなる。また、ステージラビリンス32は、各羽根車12の背面側に設けられ、これもラビリンスシールからなる。これらインペララビリンス31及びステージラビリンス32と羽根車12の間には微少な隙間が形成されている。このシール手段は、羽根車で圧縮された作動ガスの吸込み側への漏れや圧縮前の作動ガスの羽根車吐出側への漏れ等を防止する。
【0030】
リターンベンド26部を構成するインナーケーシング27の前面側外径部を平面形状としたので、形状が簡単になるとともに複雑な円固形状の加工が不要となり、加工工数の低減による原価低減が可能になる。さらにリターンベンド26部に角部26aを形成したので、冷却液噴射ノズルの軸方向位置に加工誤差が生じても、戻り流路の半径方向位置への影響が無いので、確実に冷却液を周方向全体にわたって供給できる。
【0031】
本実施例では、冷却液噴射ノズル52を段間の全ての戻り流路部に設けているが、最も高温となる段間のみに設けたり、吸込みに近い段間にのみ設けてもよい。また、吸い込み部での冷却液噴射と組合わせてもよい。さらに、2つの段間またはそれ以上の段間に設けてもよいことは言うまでもない。また、冷却液噴射ノズルを周方向複数箇所に設ければさらに周方向の冷却液の分布の均一化が可能となる。さらにまた、前段の羽根車を出た流れが後段の羽根車に流入する軌跡を考慮して前段の冷却液噴射ノズルと後段の冷却液噴射ノズルの周方向位置を変化させれば、さらに冷却液の周方向分布を均一化できる。
【0032】
本実施例では冷却液噴射ノズル52の軸方向位置を、戻り流路のほぼ中間位置にしているが、ダイヤフラム28の最大径部より下流側であれば、本発明の効果は得られる。また、冷却液噴射ノズル52をケーシング21の半径方向から導いているが、半径方向に対して傾いた方向から導いてもよい。つまり、作動ガスの淀み部に冷却液が噴射されれば本発明の効果が得られるものである。なお、冷却液噴射ノズル52の先端はスラッジの発生により汚染されることがあるので、冷却液噴射ノズル52を運転中であっても交換できる構造にすることが望ましい。
【0033】
本発明の他の実施例を図5に示す。この実施例では、上記実施例とは冷却液噴射ノズル52の軸方向位置が相違している。そのため、戻り流路の角部を半径方向外向き流れ部に形成している。さらに、冷却液の噴射方向を軸方向としている。本実施例では、作動ガスの主流61の方向と冷却液の噴射方向がリターンベンド26の最大径部でほぼ一致するので、主流との混合が促進される。しかも、角部には作動ガスの流れの淀み部が形成されるから、周方向への冷却液の回り込みもよい。そして、噴射位置からリターンチャンネルまでの距離を長く取れるので、冷却液粒子63は周方向に拡散され、冷却性能が向上する。
【0034】
図6に、本発明のさらに他の実施例を示す。本実施例では、段間から冷却液を噴射する他に、吸込配管からも冷却液を噴射している。吸込み配管から冷却液を噴射すると、冷却液の周方向分布は格段に改善される。しかしながら、この場合には冷却液量が増えると初段の羽根車にエロージョンを発生する恐れがある。そこで、吸込配管から供給する冷却液量をエロージョンを起こす恐れのある液量以下とし、不足分を段間から供給する。本実施例によれば、冷却液の周方向分布を均一化できるとともに、エロージョンの発生を抑制できる。
【0035】
なお、上記何れの実施例においても、冷却液としては水を用いることができ、またその供給源での温度は、標準的な吸込温度である30°C以上140°Cの間であれば冷却源として利用できる。これは噴射液が作動ガスにより加熱蒸発したときに、蒸発潜熱により温度低下するためである。
【0036】
以上述べたように上記各実施例によれば、液噴射ノズル付きの多段遠心圧縮機において、段間に設けられたリターンベンド部の角部に噴射ノズルを取付けたので、戻り流路の形状を簡素化でき、安価に遠心圧縮機を提供できる。また、角部から液噴射するので、噴射液と作動ガスの混合による損失を低減できる。さらに、噴射液の周方向の回り込みをよくしたので、周方向にわたる噴射液と作動ガスの混合の均一性が改善され、スラッジの発生を抑止できる。また、噴射液の噴出速度が小さいので、作動ガスの流れに悪影響を与えず、流体効率が高い遠心圧縮機を提供できる。さらにまた、噴射液の量を過度に増やす必要が無い。
【0037】
【発明の効果】
以上述べたように本発明によれば、液噴射ノズル付きの多段遠心圧縮機において、段間に設けられたリターンベンド部の角部に噴射ノズルを取付けたので、エロージョンや振動の発生を防止でき、信頼性の高い遠心圧縮機を提供できる。
【図面の簡単な説明】
【図1】本発明に係る液噴射ノズルを備えた多段遠心圧縮機の一実施例の縦断面図である。
【図2】図1の部分詳細断面図である。
【図3】液噴射ノズルからの噴射液の作用を説明する図である。
【図4】液噴射ノズルからの噴射液の作用を説明する図である。
【図5】本発明の他の実施例に係る液噴射ノズル部の拡大断面図である。
【図6】本発明に係る液噴射ノズルを備えた多段遠心圧縮機のさらに他の実施例の縦断面図である。
【符号の説明】
11…回転軸、12…羽根車、12a…羽根車側版、
12b…芯板、13…次段羽根車、21…ケーシング、
22…ディフューザ、
22a…羽根車芯板側ディフューザ壁、
22b…羽根車側板側ディフューザ壁、
23…ディフューザベーン、
24…戻り流路、25…リターンベーン、
26…リターンベンド、
26a…リターンベンド角部、
27…インナーケーシング、
28…ダイヤフラム、
31…インペララビリンス、
32…ステージラビリンス、
51…液体入口、52…冷却液噴射ノズル、
61…主流、62…後流、
62a…淀み部の流れ、63…液粒子。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multistage centrifugal compressor used in a chemical plant or the like, and more particularly to a centrifugal compressor with a cooling liquid injection nozzle that injects an evaporable liquid into the compressor.
[0002]
[Prior art]
When high pressure is required in a centrifugal compressor, the single-stage pressure ratio cannot be increased so much, so a multi-stage centrifugal compressor having a large number of impellers attached to one shaft is used. In particular, when a pressure as high as several tens of atmospheres is required as in an ethylene plant, the compressor itself is configured in multiple stages, and each compressor has several stages to 10 or more stages. When working gas flows through such a multistage centrifugal compressor, depending on the type of gas, a chemical reaction occurs due to the heat generated during compression, resulting in another substance, or reacting with impurities contained in the gas and sludge. It may cause a stain called.
[0003]
In the above-described centrifugal compressor for an ethylene plant, when the naphtha of the working gas is heated to about 140 ° C., the chemical reaction is promoted and naphtha is generated. This sludge adheres to the impeller, which is a rotating body, or enters the seal portion and causes friction. Therefore, in order to reduce the temperature rise of the working gas during compression, there is a wide range of methods that utilize the latent heat of vaporization that draws heat from the working gas when the liquid evaporates by heating when the liquid is directly injected into the working gas during compression. It is used. As the type of this liquid, water is often used.
[0004]
On the other hand, the temperature of the working gas rises due to compression. Before this temperature rise reaches the temperature at which sludge is generated, a method of taking the compressed gas out of the compressor, cooling it, and returning it to the compressor is also conceivable. However, in this method, as a result of operating for a long period of time, the performance of the compressor is gradually lowered, and the temperature rise of the working gas exceeds the design range. If the design temperature is set low to avoid this problem, the machine becomes large and expensive. Therefore, at the beginning of operation, the temperature is set so that sludge is not generated, and liquid injection is used in combination.
[0005]
An example of such a liquid jet is described in US Pat. No. 2,786,626. In the multistage centrifugal compressor described in this publication, liquid refrigerant is injected into the working gas from the top of the return flow path that guides the working gas flowing out from the preceding impeller to the following impeller.
[0006]
Japanese Patent Publication No. 58-135400 and Japanese Patent Application Laid-Open No. 7-127600 are also provided with water injection nozzles for injecting water into the flow path between the stages. In particular, in the case of Japanese Patent Publication No. 58-135400, a nozzle is placed near the diffuser inlet having the largest flow velocity downstream of the impeller, and in a stationary wall surface facing the core plate of the further upstream impeller in Japanese Patent Laid-Open No. 7-127600. It is arranged. Furthermore, Japanese Patent Application Laid-Open No. 10-18976 describes a method for controlling the amount of water ejected from a water ejection nozzle.
[0007]
[Problems to be solved by the invention]
In a multistage centrifugal compressor with liquid injection, it is necessary to control the liquid to be injected in order to control the temperature of the working gas. By the way, when liquid injection is performed between the stages of the compressor using the injection nozzle, the flow of the working gas is not uniform in the circumferential direction, and thus there is a possibility that the liquid injection effect does not necessarily occur. This is because the working gas flowing into the compressor in the return flow path is distributed to the next stage impeller flow path. The non-uniform flow causes a partial increase in the working gas temperature and causes sludge. Further, if the non-uniformity of the liquid ejected from the liquid ejection nozzle is too strong, the flow becomes uneven in the circumferential direction, and the impeller is vibrated when the particles of the ejected liquid flow into the impeller, May cause unstable vibration.
[0008]
In order to increase the uniformity of the jet liquid in the circumferential direction, if the quantity of the jet liquid is increased and the particles of the jet liquid are reliably diffused in the circumferential direction, the liquid remaining without being evaporated in the flow path downstream from the jet position Particles can cause erosion. As another method of increasing the uniformity of the propellant, a method of increasing the jet speed of the propellant can be considered, but in this case, the flow of the propellant affects the flow of the working gas, and the fluid performance of the compressor is reduced. There is a risk of lowering.
[0009]
That is, in the centrifugal compressor described in the above-mentioned U.S. Pat. No. 2,786,622, the working gas must flow through a section with a large curvature, but in the section with a large curvature, the working gas is biased toward the outer peripheral side wall surface by centrifugal action. Flowing. For this reason, even if it is going to inject liquid from the top part of a return channel, injection is difficult. Further, the injection liquid must be injected obliquely or vertically with respect to the flow of the working gas, resulting in a mixing loss in the flow of the working gas and the injection liquid. These can cause noise and vibration, and particularly when the injection position can be taken only at one place in the circumferential direction, the adverse effect is significant.
[0010]
Moreover, in the centrifugal compressor described in Japanese Examined Patent Publication No. 58-135400, an injection nozzle is provided on the side plate side diffuser wall surface. Since the working gas has a flow velocity in the diffuser portion, the mixing loss of the working gas and the injected liquid increases during the liquid injection. Further, if a diffuser with blades is used as the diffuser, erosion may occur, so that only a diffuser without blades can be used.
[0011]
Furthermore, in the centrifugal compressor described in JP-A-7-127600, liquid injection is possible with a vaned diffuser having diffuser blades, but the distance of the liquid injection path from the outside of the compressor to the liquid injection position is long. The structure is complicated. It should be noted that since the dirt is generated in the liquid jet passage as the operation time elapses, it is necessary to perform maintenance even during operation, but with this structure, maintenance during operation is difficult.
[0012]
In the centrifugal compressor described in Japanese Patent Laid-Open No. 10-18976, liquid injection nozzles are provided between the stages and the suction pipe. Although the flow of the jet liquid in the circumferential direction is improved by jetting the liquid through the suction pipe, the jet nozzle between stages is the same as that described in the above-mentioned US Pat. No. 2,786,626, and the jet liquid from the stage is There is still a need for improved flow.
[0013]
The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to efficiently mix an injection liquid with a working gas in a multistage centrifugal compressor that involves liquid injection. Another object of the present invention is to realize a liquid ejection system having a simple structure. Still another object of the present invention is to realize a highly reliable liquid ejection system that does not cause erosion or vibration. Still another object of the present invention is to provide an inexpensive liquid ejection system.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the first feature of the present invention is that a plurality of impellers are mounted on a rotating shaft, and a return flow path is formed for guiding the flow of the working gas exiting the front impeller to the rear impeller. In the multistage centrifugal compressor, a corner portion is formed at the maximum diameter position of the return flow path, and a coolant injection nozzle for injecting the coolant from the corner portion is provided.
[0015]
In order to achieve the above object, the second feature of the present invention is that a rotating shaft, a plurality of impellers mounted on the rotating shaft, bearing means for rotatably supporting the rotating shaft, and an impeller at the front stage In the centrifugal compressor comprising a plurality of inner casings and diaphragms that form a plurality of return flow paths for guiding the flow of the working gas that has exited to a subsequent impeller, and a casing that houses these members, at least one of the above-described centrifugal compressors The return flow path has a corner portion formed by the casing formed with a cylindrical surface parallel to the axial direction and an inner casing having one surface perpendicular to the rotation axis. A mounting hole is formed in the casing for mounting the coolant spray nozzle.
[0016]
The opening is formed on the downstream side of the maximum diameter position of the diaphragm; the opening is formed on the upstream side of the maximum diameter position of the diaphragm, and the injection direction of the cooling liquid injection nozzle is substantially axial; The coolant sprayed from the spray nozzle is water, and its temperature is not less than the suction temperature of the working gas and not more than 140 ° C .; the coolant spray nozzles are provided at a plurality of locations in the circumferential direction; on the suction side of the first stage impeller A coolant injection nozzle is provided.
[0019]
In any of the above features, the working gas is preferably a naphtha for producing ethylene.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, some embodiments of the present invention will be described with reference to the drawings. 1 and 2 are longitudinal sectional views showing an embodiment of a multistage centrifugal compressor provided with a liquid injection nozzle according to the present invention. FIG. 1 is an overall view thereof, and FIG. It is an enlarged view.
[0021]
In FIG. 1, in a multistage centrifugal compressor for an ethylene plant having four stages of impellers, for example, the rotating shaft 11 is rotatably supported and accommodated in a casing 21 by bearings 41a and 41b. A plurality of impellers 12 are attached in the axial direction of the rotating shaft 11. A diffuser 22 having a diffuser vane for pressure recovery is formed downstream of the impeller 12 in the radial direction of the impeller, and the working gas is further downstream of the diffuser to the next impeller. In order to guide, a return flow path 24 is formed to return the radially outward flow back radially inward.
[0022]
A return vane 25 is formed in the return flow path 24 in order to make the flow of working gas to the next stage impeller uniform. The return channel 24 is further radially outwardly covered with a casing 21, and the casing 21 defines the return channel 24. That is, the return flow path 24 includes a portion extending radially outward, an arc-shaped return bend portion 26, a portion extending radially inward, and a corner portion 26 a located on the shoulder of the return bend portion 26. I have. As will be described in detail below, the corner portion 26a is newly provided in the present invention in order to attach the liquid injection nozzle. A liquid injection port 51 for injecting a coolant is formed on the wall surface of the casing 2 facing the corner portion 21a, and a liquid injection nozzle 52 is attached to the liquid injection port.
[0023]
After the working gas exiting the impeller recovers its pressure in the diffuser section and is boosted, the main flow 61 flows substantially along the flow path. On the other hand, since the return bend portion 26 of the return flow path 24 is a curved flow path, the flow separated from the main flow generates a vortex and forms a wake 62. The wake 62 stays in the corner 24a stably due to the presence of the corner 26a.
[0024]
Cooling liquid is jetted from the liquid jet nozzle 52 into the stagnant wake 62, and the staying wake 62 is flowed together with the main stream 61. At this time, the cooling liquid is mixed with the main flow 61 while being turned in the circumferential direction. Therefore, the mixing loss of the working gas and the cooling liquid can be reduced during the liquid injection. Moreover, since the momentum of the jet liquid is much smaller than the momentum of the main flow 61, the flow direction and the flow speed of the main flow are not changed by the liquid jet. Therefore, the fluid performance of the compressor is not deteriorated. Further, the wake 62 staying in the corner portion 26a has almost no velocity component in the main flow direction, but has a circumferential velocity component, so that the circumferential direction can be obtained without increasing the liquid ejecting means in the circumferential direction. Coolant can be supplied to the whole. According to an experimental study by the present inventor, even when only one liquid ejecting means is attached in the circumferential direction, the circulation of the cooling liquid in the circumferential direction is improved as compared with the conventional one.
[0025]
The state of this circumferential flow will be described with reference to FIGS. FIG. 3 shows a case where the coolant injection nozzle is provided at the center of the return bend 26 part of the return flow path 24, and FIG. 4 shows a case where the coolant injection nozzle is provided at the corner of the return bend 26 part of the return flow path 24. . In FIG. 3, the jetted coolant particles 63 are mixed with the main flow existing in the vicinity of the jet nozzle in a relatively short time, and are moved along the main flow 61 of the working gas to the flow path provided with the return vane 25. Carried. Since the swirl velocity component of the main flow of the working gas is smaller than the radial velocity component, only the two or three return channels formed between the return vanes 25 using the return vane 25 in the vicinity of the coolant injection nozzle 52 as a guide. Flow into. For this reason, the coolant cannot be supplied to a position far from the position where the coolant spray nozzle 52 is provided, for example, on the opposite side in the circumferential direction, and the working gas flowing through this portion is not mixed with the coolant, and the next It flows into the stage impeller 12. Accordingly, the cooling effect of the working gas is small, and the temperature of the working gas is unevenly distributed in the circumferential direction, which causes generation of vibration noise.
[0026]
On the other hand, when the coolant injection nozzle is provided at the corner of the return channel 24 shown in FIG. 4, most of the liquid particles 63 are corners except for some of the coolant particles injected up to the main flow side. The circumferential speed component staying in the part is dragged by the flow 62a of the stagnation part where the majority is swirled in the circumferential direction. Some liquid particles collide with the vertical walls forming the corners and bounce off, and then join the stagnation part flow 62a. The ejected liquid particles 63 gradually move inward in the radial direction so as to be dragged by the mainstream while continuing to turn. As a result, the coolant can be supplied to most of the return channels formed between the return vanes 25. By providing the working gas stagnation portion in the return bend portion in this manner, the circumferential distribution of the liquid particles is made uniform, and the temperature distribution of the working gas flowing into the next stage impeller 12 is also improved. Thereby, the cooling effect of the working gas is enhanced, generation of sludge can be suppressed, and generation of unstable vibration and noise can be reduced.
[0027]
Next, the manufacturing method of this corner | angular part is demonstrated. The casing 21 is manufactured in a cylindrical shape, and an inner casing 27 having a fitting portion is attached to the cylindrical casing 21. A front surface side of the inner casing 27 forms a return portion of the return flow path 24, and an outer diameter side thereof is a plane perpendicular to the rotation shaft 11. The back surface side of the inner casing 27 forms a flow portion radially outward of the return flow path 24, and is formed in an arc shape or a smooth curved shape. A diaphragm 28 is disposed between two successive inner casings 27.
[0028]
A diffuser vane 23 of a diffuser with vanes is formed on the front side of the diaphragm 28, and a return vane 25 of the return flow path 24 is formed on the back side. The diffuser vane 23 and the return vane 25 may be manufactured in advance by NC processing or the like, and may be welded to the diaphragm 28 or may be integrally processed with the diaphragm 28. The outermost diameter portion of the diaphragm 28 is formed in an arc shape or a smooth curved shape according to the shape of the return flow path.
[0029]
A stage labyrinth 32 is attached to the inner diameter side of the diaphragm 28, and an impeller labyrinth 31 is attached to the inner diameter side of the inner casing 27. The impeller labyrinth 31 is provided so as to face the bell mouth portion on the suction side of each impeller 12 and is composed of a non-contact type labyrinth seal. Moreover, the stage labyrinth 32 is provided in the back side of each impeller 12, and this also consists of a labyrinth seal. A minute gap is formed between the impeller labyrinth 31 and the stage labyrinth 32 and the impeller 12. This sealing means prevents leakage of working gas compressed by the impeller to the suction side, leakage of working gas before compression to the discharge side of the impeller, and the like.
[0030]
Since the outer diameter part on the front side of the inner casing 27 constituting the return bend 26 part has a flat shape, the shape becomes simple and complicated circular solid processing is unnecessary, and the cost can be reduced by reducing the number of processing steps. Become. Furthermore, since the corner 26a is formed in the return bend 26, even if a machining error occurs in the axial position of the coolant injection nozzle, there is no effect on the radial position of the return flow path. Can be supplied in all directions.
[0031]
In the present embodiment, the cooling liquid injection nozzles 52 are provided in all the return flow paths between the stages, but may be provided only between the stages at the highest temperature or only between the stages close to the suction. Moreover, you may combine with the cooling fluid injection in a suction part. Furthermore, it goes without saying that it may be provided between two or more stages. Further, if the coolant injection nozzles are provided at a plurality of locations in the circumferential direction, the distribution of the coolant in the circumferential direction can be made more uniform. Furthermore, if the circumferential direction positions of the front-stage cooling liquid injection nozzle and the rear-stage cooling liquid injection nozzle are changed in consideration of the trajectory of the flow exiting the front-stage impeller and flowing into the rear-stage impeller, further cooling liquid can be obtained. The distribution in the circumferential direction can be made uniform.
[0032]
In the present embodiment, the axial position of the coolant injection nozzle 52 is set at an almost intermediate position of the return flow path, but the effect of the present invention can be obtained as long as it is downstream of the maximum diameter portion of the diaphragm 28. Further, although the coolant injection nozzle 52 is guided from the radial direction of the casing 21, it may be guided from a direction inclined with respect to the radial direction. That is, the effect of the present invention can be obtained if the coolant is injected into the stagnation part of the working gas. Since the tip of the coolant injection nozzle 52 may be contaminated by sludge, it is desirable to have a structure that allows the coolant injection nozzle 52 to be replaced even during operation.
[0033]
Another embodiment of the present invention is shown in FIG. In this embodiment, the position of the coolant injection nozzle 52 in the axial direction is different from the above embodiment. Therefore, the corner portion of the return channel is formed in the radially outward flow portion. Furthermore, the jet direction of the coolant is the axial direction. In the present embodiment, since the direction of the main flow 61 of the working gas and the injection direction of the coolant substantially coincide with each other at the maximum diameter portion of the return bend 26, mixing with the main flow is promoted. In addition, since the stagnation part of the working gas flow is formed at the corner part, the coolant may circulate in the circumferential direction. And since the distance from an injection position to a return channel can be taken long, the cooling fluid particle 63 is spread | diffused in the circumferential direction, and cooling performance improves.
[0034]
FIG. 6 shows still another embodiment of the present invention. In this embodiment, in addition to injecting the coolant from between the stages, the coolant is also injected from the suction pipe. When the coolant is injected from the suction pipe, the circumferential distribution of the coolant is remarkably improved. However, in this case, if the amount of the coolant increases, erosion may occur in the first stage impeller. Therefore, the amount of the cooling liquid supplied from the suction pipe is set to be less than the amount of liquid that may cause erosion, and the shortage is supplied from between the stages. According to the present embodiment, the circumferential distribution of the coolant can be made uniform and the occurrence of erosion can be suppressed.
[0035]
In any of the above embodiments, water can be used as the cooling liquid, and the cooling at the supply source is between 30 ° C. and 140 ° C. which is the standard suction temperature. Available as a source. This is because when the spray liquid is heated and evaporated by the working gas, the temperature is lowered by the latent heat of vaporization.
[0036]
As described above, according to each of the above embodiments, in the multistage centrifugal compressor with a liquid injection nozzle, the injection nozzle is attached to the corner of the return bend provided between the stages. A centrifugal compressor can be provided at low cost. Further, since the liquid is ejected from the corner portion, it is possible to reduce the loss due to the mixture of the propellant and the working gas. Furthermore, since the wraparound of the spray liquid in the circumferential direction is improved, the uniformity of the mixture of the spray liquid and the working gas over the circumferential direction is improved, and the generation of sludge can be suppressed. Further, since the jetting speed of the jet liquid is small, it is possible to provide a centrifugal compressor having high fluid efficiency without adversely affecting the flow of the working gas. Furthermore, it is not necessary to increase the amount of the spray liquid excessively.
[0037]
【The invention's effect】
As described above, according to the present invention, in the multistage centrifugal compressor with a liquid injection nozzle, since the injection nozzle is attached to the corner portion of the return bend portion provided between the stages, the occurrence of erosion and vibration can be prevented. Can provide a highly reliable centrifugal compressor.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an embodiment of a multistage centrifugal compressor provided with a liquid jet nozzle according to the present invention.
FIG. 2 is a partial detailed sectional view of FIG. 1;
FIG. 3 is a diagram for explaining the action of a spray liquid from a liquid spray nozzle.
FIG. 4 is a diagram for explaining the action of a jet liquid from a liquid jet nozzle.
FIG. 5 is an enlarged cross-sectional view of a liquid jet nozzle portion according to another embodiment of the present invention.
FIG. 6 is a longitudinal sectional view of still another embodiment of a multistage centrifugal compressor provided with a liquid injection nozzle according to the present invention.
[Explanation of symbols]
11 ... Rotating shaft, 12 ... Impeller, 12a ... Impeller side version,
12b ... Core plate, 13 ... Next stage impeller, 21 ... Casing,
22 ... Diffuser,
22a ... impeller core plate side diffuser wall,
22b ... impeller side plate side diffuser wall,
23 ... Diffuser vane,
24 ... return channel, 25 ... return vane,
26 ... Return bend,
26a ... return bend corner,
27 ... Inner casing,
28 ... Diaphragm,
31 ... Imperial labyrinth,
32 ... Stage labyrinth,
51 ... Liquid inlet, 52 ... Coolant injection nozzle,
61 ... Mainstream, 62 ... Backstream,
62a ... Flow of the stagnation part, 63 ... Liquid particles.

Claims (8)

回転軸に複数の羽根車が装着され、前段の羽根車を出た作動ガスの流れを後段の羽根車に導く戻り流路が形成された多段の遠心圧縮機において、前記戻り流路の最大径位置に角部を形成し、この角部から冷却液を噴射する冷却液噴射ノズルを設けたことを特徴とする冷却液噴射ノズル付き遠心圧縮機。  In a multistage centrifugal compressor in which a plurality of impellers are mounted on a rotating shaft and a return flow path is formed to guide the flow of working gas exiting the preceding impeller to the subsequent impeller, the maximum diameter of the return flow path A centrifugal compressor with a coolant injection nozzle, characterized in that a corner portion is formed at a position, and a coolant injection nozzle for injecting coolant from the corner portion is provided. 回転軸と、この回転軸に装着された複数の羽根車と、この回転軸を回転自在に支承する軸受手段と、前段の羽根車を出た作動ガスの流れを後段の羽根車に導く複数の戻り流路を形成する複数のインナーケーシング及びダイヤフラムと、これら各部材を収納するケーシングとを備えた遠心圧縮機において、少なくとも1つの前記戻り流路は、軸方向に平行な円筒面が形成された前記ケーシングと、一方の面が回転軸に垂直な面を有するインナーケーシングとからなる角部を有し、この戻り流路の角部に開口し、冷却液噴射ノズルが取付けられる取付け孔を前記ケーシングに形成したことを特徴とする冷却液噴射ノズル付き遠心圧縮機。  A rotating shaft, a plurality of impellers mounted on the rotating shaft, bearing means for rotatably supporting the rotating shaft, and a plurality of guides for guiding the flow of working gas exiting the preceding impeller to the following impeller In a centrifugal compressor including a plurality of inner casings and diaphragms that form a return flow path, and a casing that houses these members, at least one of the return flow paths has a cylindrical surface parallel to the axial direction. The casing has a corner portion made of an inner casing having a surface perpendicular to the rotation axis, and has a mounting hole that opens at a corner portion of the return flow path to which the coolant injection nozzle is attached. A centrifugal compressor equipped with a coolant injection nozzle. 前記開口は、前記ダイヤフラムの最大径位置より後段側に形成されていることを特徴とする請求項2に記載の冷却液噴射ノズル付き遠心圧縮機。  3. The centrifugal compressor with a coolant injection nozzle according to claim 2, wherein the opening is formed on the rear stage side from the maximum diameter position of the diaphragm. 前記開口は、前記ダイヤフラムの最大径位置より前段側に形成され、前記冷却液噴射ノズルの噴射方向がほぼ軸方向であることを特徴とする請求項2に記載の冷却液噴射ノズル付き遠心圧縮機。  3. The centrifugal compressor with a coolant injection nozzle according to claim 2, wherein the opening is formed on the upstream side of the maximum diameter position of the diaphragm, and an injection direction of the coolant injection nozzle is substantially an axial direction. . 前記冷却液噴射ノズルから噴射される冷却液が水であり、その温度が作動ガスの吸込み温度以上140℃以下であることを特徴とする請求項2ないし4のいずれか1項に記載の冷却液噴射ノズル付き遠心圧縮機。  5. The coolant according to claim 2, wherein the coolant sprayed from the coolant spray nozzle is water, and the temperature thereof is not less than the suction temperature of the working gas and not more than 140 ° C. 5. Centrifugal compressor with injection nozzle. 前記冷却液噴射ノズルを周方向複数箇所に設けたことを特徴とする請求項3または4に記載の冷却液噴射ノズル付き遠心圧縮機。  The centrifugal compressor with a coolant injection nozzle according to claim 3 or 4, wherein the coolant injection nozzle is provided at a plurality of locations in the circumferential direction. 初段羽根車の吸込み側に前記冷却液噴射ノズルを設けたことを特徴とする請求項3または4に記載の冷却液噴射ノズル付き遠心圧縮機。  The centrifugal compressor with a coolant injection nozzle according to claim 3 or 4, wherein the coolant injection nozzle is provided on the suction side of the first stage impeller. 前記作動ガスは、エチレン製造用のナフサであることを特徴とする請求項1ないしのいずれか1項に記載の冷却液噴射ノズル付き遠心圧縮機。The centrifugal compressor with a coolant injection nozzle according to any one of claims 1 to 7 , wherein the working gas is a naphtha for producing ethylene.
JP29781698A 1998-10-20 1998-10-20 Centrifugal compressor with coolant jet nozzle Expired - Fee Related JP3873481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29781698A JP3873481B2 (en) 1998-10-20 1998-10-20 Centrifugal compressor with coolant jet nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29781698A JP3873481B2 (en) 1998-10-20 1998-10-20 Centrifugal compressor with coolant jet nozzle

Publications (2)

Publication Number Publication Date
JP2000120595A JP2000120595A (en) 2000-04-25
JP3873481B2 true JP3873481B2 (en) 2007-01-24

Family

ID=17851542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29781698A Expired - Fee Related JP3873481B2 (en) 1998-10-20 1998-10-20 Centrifugal compressor with coolant jet nozzle

Country Status (1)

Country Link
JP (1) JP3873481B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180306202A1 (en) * 2015-10-15 2018-10-25 Gree Electric Appliances, Inc. Of Zhuhai Centrifugal compressor gas-supplementing structure and compressor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004052483A1 (en) * 2004-10-28 2006-05-11 Man Turbo Ag Device for injecting water or steam into the working fluid of a gas turbine plant
CN100455819C (en) * 2005-12-23 2009-01-28 财团法人工业技术研究院 Compressor jet flow path structure
JP4940755B2 (en) * 2006-05-17 2012-05-30 株式会社日立プラントテクノロジー Single-shaft multistage centrifugal compressor
US8156757B2 (en) 2006-10-06 2012-04-17 Aff-Mcquay Inc. High capacity chiller compressor
JP4980699B2 (en) * 2006-12-01 2012-07-18 三菱重工コンプレッサ株式会社 Centrifugal compressor
WO2009114820A2 (en) 2008-03-13 2009-09-17 Aaf-Mcquay Inc. High capacity chiller compressor
JP2010127245A (en) * 2008-11-28 2010-06-10 Mitsubishi Heavy Ind Ltd Centrifugal compressor
JP5307680B2 (en) * 2009-10-01 2013-10-02 三菱重工業株式会社 Centrifugal compressor
JP2011111990A (en) * 2009-11-27 2011-06-09 Mitsubishi Heavy Ind Ltd Centrifugal compressor
CN103016409A (en) * 2012-12-24 2013-04-03 烟台蓝德空调工业有限责任公司 Novel interstage air supplementing device of multi-stage compression centrifugal type refrigeration compressor
CN107044451B (en) * 2016-10-28 2019-11-22 沈阳透平机械股份有限公司 Compressor fills the water oiling device and its application method
EP3441621A1 (en) * 2017-08-10 2019-02-13 Siemens Aktiengesellschaft Turbocompressor with injection of liquefied process gas in the flow path
JP6963471B2 (en) * 2017-11-09 2021-11-10 三菱重工コンプレッサ株式会社 Rotating machine
JP6961482B2 (en) * 2017-12-27 2021-11-05 三菱重工コンプレッサ株式会社 Centrifugal compressor and manufacturing method of centrifugal compressor
CN108953174A (en) * 2018-07-02 2018-12-07 西安交通大学 The two-stage refrigeration centrifugal compressor of intermediate hydrojet
JP7108515B2 (en) * 2018-10-25 2022-07-28 三菱重工コンプレッサ株式会社 compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180306202A1 (en) * 2015-10-15 2018-10-25 Gree Electric Appliances, Inc. Of Zhuhai Centrifugal compressor gas-supplementing structure and compressor
US10544799B2 (en) * 2015-10-15 2020-01-28 Gree Electric Appliances, Inc. Of Zhuhai Centrifugal compressor gas-supplementing structure and compressor

Also Published As

Publication number Publication date
JP2000120595A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
JP3873481B2 (en) Centrifugal compressor with coolant jet nozzle
US6837676B2 (en) Gas turbine
EP0349635B1 (en) Turbine combustor with tangential fuel injection and bender jets
US10794395B2 (en) Pipe diffuser of centrifugal compressor
JP2008045553A (en) Gas turbine engine, method of processing contaminated air in turbo machine, and method of manufacturing turbo machine
US7553122B2 (en) Self-aspirated flow control system for centrifugal compressors
WO2010061512A1 (en) Centrifugal compressor
JPH0988893A (en) Centrifugal fluid machinery
CN105782117B (en) A kind of centrifugal compressor expands stabilization device
JPH07127600A (en) Centrifugal compressor
US20140356128A1 (en) Method and device for stabilizing a compressor current
US11098730B2 (en) Deswirler assembly for a centrifugal compressor
CA2968260A1 (en) Vane diffuser and method for controlling a compressor having same
JP2008190487A (en) Centrifugal type fluid machine
US10316697B2 (en) Steam turbine exhaust chamber cooling device and steam turbine
US10962016B2 (en) Active surge control in centrifugal compressors using microjet injection
JP6602685B2 (en) Steam turbine exhaust chamber cooling device, steam turbine
JP2008202415A (en) Centrifugal compressor
JP2006200489A (en) Centrifugal fluid machine and its suction casing
JP2005233152A (en) Jet pump
JP2002039093A (en) Fluid machine
US20220389931A1 (en) Centrifugal compressor
US11754285B2 (en) Combustor for gas turbine engine including plurality of projections extending toward a compressed air chamber
CN216044605U (en) Centrifugal impeller, compressor and air conditioner
JP2000303995A (en) Turbo machine restraining blade inlet re-circulating flow and blade rotating stall

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060510

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees