WO2010060979A1 - Dispositif de brumisation muni de moyens de desinfection et un procede de desinfection associe - Google Patents

Dispositif de brumisation muni de moyens de desinfection et un procede de desinfection associe Download PDF

Info

Publication number
WO2010060979A1
WO2010060979A1 PCT/EP2009/065947 EP2009065947W WO2010060979A1 WO 2010060979 A1 WO2010060979 A1 WO 2010060979A1 EP 2009065947 W EP2009065947 W EP 2009065947W WO 2010060979 A1 WO2010060979 A1 WO 2010060979A1
Authority
WO
WIPO (PCT)
Prior art keywords
misting
water
disinfection
reactor
photocatalysis
Prior art date
Application number
PCT/EP2009/065947
Other languages
English (en)
Inventor
Gilles Delattre
François JANY
Original Assignee
DELATTRE INDUSTRIE DEVELOPPEMENT en abrégé DID
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DELATTRE INDUSTRIE DEVELOPPEMENT en abrégé DID filed Critical DELATTRE INDUSTRIE DEVELOPPEMENT en abrégé DID
Publication of WO2010060979A1 publication Critical patent/WO2010060979A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • A61L9/205Ultraviolet radiation using a photocatalyst or photosensitiser
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K1/00Housing animals; Equipment therefor
    • A01K1/0047Air-conditioning, e.g. ventilation, of animal housings
    • A01K1/0082Water misting or cooling systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/22Phase substances, e.g. smokes, aerosols or sprayed or atomised substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/322Lamp arrangement
    • C02F2201/3223Single elongated lamp located on the central axis of a turbular reactor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F2006/006Air-humidification, e.g. cooling by humidification with water treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/70Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in livestock or poultry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/70Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in livestock or poultry
    • Y02A40/76Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in livestock or poultry using renewable energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/54Free-cooling systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/50Livestock or poultry management

Definitions

  • the present invention relates to a misting device provided with disinfection means and an associated disinfection method.
  • the present invention will find its application particularly for misting or liquid spraying installations intended for the lowering of air temperature, the regulation of hygrometry, to create a decorative mist or for the control of olfactory pollution. etc.
  • misting or spraying systems use nozzles to diffuse into a gas, air in general, droplets of a liquid, mainly water.
  • These misting plants generally disperse water intermittently and pipes remain filled with water even when not used for long periods.
  • These pipes are usually stainless steel or black nylon and often oriented in full sun which leads to an increase in the temperature of the water contained inside, promoting the development of bacteria and other pathogens.
  • these facilities require regular maintenance and upkeep to ensure their safety.
  • the interviews are sometimes not carried out in time in particular because the current devices and processes require the addition of maintenance products and therefore the shutdown of the device for a certain period.
  • the present invention proposes for this purpose a misting device conventionally comprising means for producing misting and misting means and which typically comprises disinfection means by photocatalysis in water.
  • this device is associated with a method of disinfecting said device comprising a disinfection step by photocatalysis in water.
  • Photocatalysis allows disinfection of the misting system without the need for disinfectant. There is therefore no risk for users of the misting device. Indeed, the products of photocatalysis are neutral. Moreover, the use of photocatalysis has a significant economic advantage since no product has to be added to ensure disinfection. In addition, the photocatalysis integrated in a misting device is simple to use because, the photocatalysis being nontoxic, the misting device does not need to be rinsed or stopped to be disinfected.
  • the device according to the invention comprises means for purging the device.
  • the water can be evacuated and it does not stagnate, which limits the risks of development of pathogens.
  • the misting device comprises disinfection means such as a photocatalyst reactor which can be managed and controlled by management and control means so as to automate the disinfection steps.
  • disinfection means such as a photocatalyst reactor which can be managed and controlled by management and control means so as to automate the disinfection steps.
  • the present invention relates to a misting device comprising a means for producing misting and a water misting means characterized in that it comprises disinfection means equipped with a reactor of photocatalysis in water.
  • the device is such that:
  • the photocatalyst reactor in water comprises at least one ultraviolet lamp C,
  • the disinfection means are configured to produce hydrogen peroxide (H2O2) intended to circulate in the misting device,
  • the device comprises means for purging the device
  • the purge means comprise an air compressor
  • the device comprises rinsing means
  • the rinsing means comprise a draining solenoid valve; the device comprises filtration means,
  • the device comprises control and management means
  • the wavelength of the ultraviolet lamp C is 254 nanometers
  • the photocatalyst reactor in water comprises titanium dioxide (TiO 2) as catalyst; the water-photocatalyst reactor further comprises zinc oxide as catalyst.
  • the present invention further relates to a method of disinfecting a misting device characterized in that it comprises a disinfection step by means of photocatalysis in water.
  • the process is such that:
  • the device comprises a step of purging the device by means of purging the disinfection step comprises a hydrogen peroxide production phase (H2O2) intended to circulate in the misting device
  • H2O2 hydrogen peroxide production phase
  • the disinfection step includes disinfection by ultraviolet - C.
  • the accompanying drawings are given by way of example and are not limiting of the invention. They represent only one embodiment of the invention and will make it easy to understand.
  • Figure 1 is a block diagram of the device.
  • Figure 2 is a schematic of the photocatalyst reactor.
  • the device according to the invention comprises all the means necessary for spraying or misting a liquid, preferably water, in a gas such as air.
  • the device preferably comprises misting production means 1, such as a high-pressure pump and misting means 2, for example, ramps provided with misting nozzles and in particular at least one ramp provided with several nozzles. misting.
  • misting production means such as a high-pressure pump and misting means 2, for example, ramps provided with misting nozzles and in particular at least one ramp provided with several nozzles. misting.
  • the high-pressure nozzles diffuse the water through a hole of diameter advantageously between 0.2 millimeters and 0.5 millimeters.
  • the water passes a pressure of 50 bar at atmospheric pressure.
  • Misting is the formation of a haze or fog, that is, fine droplets of water, or other liquids, suspended in the air.
  • Misting is understood to mean the various existing techniques such as nebulization, high-pressure misting, atomization, spraying, etc. These different techniques differ only in the diameter of the droplets generated which varies from a few millimeters to a few micrometers.
  • the misting device mentioned above comprises disinfection means integrated into the circuit of the device.
  • the disinfection means comprise a photocatalyst reactor in water 3.
  • Photocatalysis is an electrochemical process that occurs on the surface of a catalyst by the intervention of ultraviolet radiation including the action of photons.
  • the polluting particles are adsorbed on the surface of the catalyst to be oxidized. It is the photons emitted by the ultraviolet lamp that excite the catalyst and create oxidation-reduction sites on the surface of it. This process causes the breaking of chemical bonds of biological pollutants that are degraded into water and carbon dioxide.
  • the photocatalyst reactor in water 3 is a usually cylindrical stainless steel tube 9 containing one or more ultraviolet lamps 10, a quartz sheath 11 and a coating, the catalyst 12.
  • This device is called a “radial irradiation reactor” ". It is an annular reactor with internal dipstick.
  • the ultraviolet lamp 10 is preferably placed in a quartz tube 11 thus isolating it from the water passing through the reactor. This lamp can be easily replaced during maintenance operations.
  • the quartz tube 11 insulates the ultraviolet lamp 10 from the external water flow. Its inner and outer surfaces are smooth and perfectly transparent to let the ultraviolet rays to the inside wall of the stainless steel chamber.
  • the stainless steel chamber is a long cylinder (or a tube) having a water inlet 13 at one end and an outlet 14 at the other end. It ensures the circulation of water from one side to the other of the cylinder on a thin blade.
  • An even layer of catalyst 12 is disposed on the inner surface of the stainless steel tube 9. This surface is directly irradiated by the ultraviolet light emitted by the lamp, and it ensures the process of photocatalysis.
  • the catalyst 12 most used in photocatalysis is titanium dioxide semiconductor (TiO 2 ). It is the most active material for pollutant degradation and has many advantages in being nontoxic, very stable and inexpensive. According to a preferred embodiment, it is possible to use a nonwoven paper coated with a catalyst, especially titanium dioxide (UO2).
  • the adhesion of the titanium dioxide to the paper is provided by a silicic binder mixed with the titanium dioxide suspension and deposited on the paper.
  • the binder is made of colloidal silica fibers which grip the fibers of the paper and thus allow the particles of titanium dioxide to stick to the fibrous media.
  • the catalyst-coated paper 12 is then held firmly in the stainless steel tube of the reactor.
  • the support of the catalyst 12 may comprise baffles or be in the form of a helix to increase the contact surface between the water and the catalyst 12, but also to create turbulence during the circulation of the water and thus to provide a surface and a contact time between the fluid and the catalyst 12 increased.
  • catalysts such as activated carbon or zinc oxide, zinc sulphide, cadmium sulphide, zinc oxide combined with titanium dioxide (ZnO / T, ⁇ 2) and the like. .
  • the water photocatalyst reactor 3 comprises C 10 ultraviolet lamps.
  • C ultraviolet rays have a direct germicidal effect on pathogens.
  • the power of the lamp determines, on the one hand, the immediate germicidal effect on the bacteria that can pass through the reactor and, on the other hand, the amount of irradiation produced on the surface of the catalyst.
  • the energy required to have a 99.9% germicidal effect on pseudomonas aeruginosa type bacteria is 10500 microwatts / s / cm 2 and on legionella pneumophila bacteria the power is 3800 microwatts / s / cm 2 .
  • the power of the lamp is determined to obtain at the end of the life of the lamp sufficiently germicidal power to destroy bacteria and pathogens that may be present in the water.
  • This power is also a function of the thickness of the water layer present in the reactor, the length of the reactor, the speed of the water and the transmittance of the water.
  • the wavelength of the lamp is preferably between 100 and 280 nanometers, more precisely 254 nanometers.
  • the water is freed from organic pollutants and pathogens by a single device.
  • Photocatalysis allows the production of OH ° radicals with high oxidizing power and particularly unstable.
  • the photocatalyst reactor in water 3 was the site of production of hydrogen peroxide (H2O2).
  • Hydrogen peroxide (H2O2), or hydrogen peroxide has powerful redox properties. It is therefore very advantageous because it makes it possible to increase the effects of photocatalysis by degrading many pollutants and / or pathogens, without the addition of a toxic product.
  • hydrogen peroxide is a liquid with a relatively long lifetime (a few seconds to a few minutes), it is diffused downstream of the photocatalyst reactor in water 3 in the misting device circuit. It disinfects the rest of the device. Hydrogen peroxide has the advantage of reacting very quickly with possible pollutants to disintegrate into non-toxic products, hydrogen and water. The disinfection is fast and safe for users located under the misting means. In operation, the misting liquid circulates in the misting device to the misting means, the nozzles, in a few seconds at most a few minutes. Thus, the hydrogen peroxide remains active until the nozzles for total disinfection of the device.
  • the misting device is configured to combine the three reactions mentioned above:
  • the photocatalyst water reactor 3 is preferably placed upstream of the misting production means 1 and the misting means 2.
  • the water circulating in the misting device is disinfected at its entrance which limits the risk of pathogens development in the device downstream.
  • the photocatalyst reactor in water 3 is placed downstream of the filtration means 6.
  • the filtration means 6 make it possible to filter a first portion of the pollutants and / or pathogens as a function of the size of the filter.
  • the device advantageously comprises means for controlling and managing disinfection means.
  • These control and management means 7 make it possible to control the disinfection cycles, in particular their duration, their frequency as a function of several parameters coming from the misting production means 1, the misting means 2, the quantity of water flowing in the device, its quality and the size of the device including its circuit etc.
  • These control and management means 7 allow automated use of the misting device which limits the risk of forgetfulness or misuse of the disinfection means. The health risks are therefore very limited.
  • the device comprises purge means for purging the device of the circulating water. This avoids any risk of stagnant water, especially in the misting means 2 which often have a high temperature due to exposure to the sun.
  • the purge means are mainly an air compressor 4. They can be controlled by the control and management means 7.
  • the air compressor 4 injects air into the device replacing the water discharged by the means of misting 2 with air.
  • the device is advantageously provided with rinsing means.
  • the rinsing means comprise a draining solenoid valve 5 and a water solenoid valve 15.
  • the rinsing means make it possible to rinse the device mainly before use.
  • the water remained in particular in the misting production means 1 can not be purged, is removed by the solenoid valve of drain 5 and replaced by water disinfected by the photocatalyst reactor 3.
  • the combination of disinfection means, purging means and rinsing means leads to a misting installation that is healthy and without health risk for users.
  • the invention also relates to a method for disinfecting the device described above.
  • the device according to the invention allows a quick and simple disinfection process mainly consisting of a disinfection step by photocatalysis in water. It was found that with a single step of photocatalysis in water combining, according to the embodiments, three reactions, the disinfection of the misting device was very satisfactory. The process is therefore simple and quick to implement. The fact that with a single step, one can effectively disinfect a misting device, allows to perform more often the disinfection and therefore the health risks are limited.
  • the duration of the disinfection step is between a few minutes and continuous operation.
  • this disinfection step is associated with a purge step.
  • This purge step is intended to purge the misting device and more particularly the misting means 2, the main pathogen development seats.
  • the purge step is carried out for example by an air compressor 4 injecting air into the device, the water being evacuated by the misting means 2.
  • the purge step can be combined with the disinfection step for a prolonged shutdown of the misting device and the device is disinfected and purged to limit any risk of pathogen development.
  • Restarting the misting device can be done quickly and safely by performing a short rinsing step.
  • the disinfection step disinfects the circulating water and also the device while the purge step limits the risk of pathogen development especially during a prolonged stop.
  • the method according to the invention further comprises during the disinfection step a hydrogen peroxide production phase which is intended to circulate in the water circulating in the misting device and / or a phase of ultraviolet disinfection C.
  • the disinfection process can be performed punctually or continuously during the use of the misting device being not harmful to users.
  • the different stages and phases of the disinfection process are preferably managed and controlled by the control and management means 7.
  • Disinfection means as well as other means such as purging, rinsing, filtration 6 and control and management means 7 may be integrated with misting devices comprising means for producing misting 1 and means for misting 2 already installed.
  • the water photocatalyst reactor 3 is integrated with the misting device on a branch branch of the circuit so that it is used only during the disinfection steps.
  • Step 1 Start the photocatalyst reactor with the closed water solenoid valve. There is no water circulation. The water present in the photocatalyst reactor is disinfected in particular by the production of hydrogen peroxide (H 2 O 2 ).
  • Step 2 Switching on the rinsing means: opening of the draining solenoid valve 5 and opening of the water solenoid valve 15.
  • the disinfected water containing the hydrogen peroxide circulates in the device discharging the remaining water in the misting production means 1. Disinfection of the device downstream of the photocatalyst reactor 3 is the rinsing step.
  • Step 3 Stop the rinsing means. Closing of the drain solenoid valve 5.
  • Step 4 Start-up of the misting production means 1 and / or the misting means 2. Clean, disinfected and non-stagnant water can be sent into the ramps misting means for misting
  • T1 is short (a few minutes): wait for the possible restart of the fogging. Return to step 4.
  • T1 is long (a few tens of minutes to a few hours): move to the next step (step 6).
  • Step 6 Start-up of the purge means preferably with compressed air to drain the misting means advantageously 2
  • Step 7 Stopping the photocatalyst reactor.
  • the method and more particularly the sequencing of the steps being controlled by the control and management means 7, the purge step is advantageously performed as often as possible.
  • Table 1 measurement of the concentration of hydrogen peroxide in parts per million (ppm) when the fogging fluid, water, circulates in the photocatalyst reactor or when it is not circulating in the reactor; the liquid stagnates for a determined time.
  • the catalyst was selected from several media.
  • the ultra violet lamp was selected from several media.
  • C used emits at a wavelength of 254 nanometers for a power of 95 watts.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hydrology & Water Resources (AREA)
  • Epidemiology (AREA)
  • Environmental Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Water Treatments (AREA)
  • Catalysts (AREA)

Abstract

La présente invention concerne un dispositif de brumisation comprenant un moyen de production de brumisation (1 ) et un moyen de brumisation (2) d'eau caractérisé par le fait qu'il comprend des moyens de désinfection comprenant un réacteur de photocatalyse dans l'eau (3). La présente invention concerne en outre un procédé de désinfection comprenant une étape de désinfection par photocatalyse. Elle trouvera son application dans tous les systèmes de pulvérisation/brumisation d'eau pour abaisser la température de l'air, traiter les nuisances olfactives...

Description

"Dispositif de brumisation muni de moyens de désinfection et un procédé de désinfection associé"
La présente invention concerne un dispositif de brumisation muni de moyens de désinfection et un procédé de désinfection associé.
La présente invention trouvera son application notamment pour des installations de brumisation ou de pulvérisation de liquide destinées à l'abaissement de température de l'air, à la régulation de l'hygrométrie, pour créer un brouillard décoratif ou encore pour la maîtrise des pollutions olfactives etc.
La plupart des installations de brumisation ou de pulvérisation utilisent des buses pour diffuser dans un gaz, de l'air en général, des gouttelettes d'un liquide, principalement de l'eau. Ces installations de brumisation diffusent de l'eau généralement par intermittence et des tuyaux restent remplis d'eau même en cas de non utilisation pendant de longues périodes. Ces tuyaux sont généralement en inox ou en nylon noir et souvent orientés en plein soleil ce qui conduit à une augmentation de la température de l'eau contenue à l'intérieur, favorisant le développement de bactéries et autres pathogènes. Par conséquent, ces installations requièrent un entretien et une maintenance régulière pour assurer leur sécurité sanitaire. Les entretiens ne sont parfois pas réalisés à temps notamment car les dispositifs et procédés actuels nécessitent l'ajout de produits d'entretien et donc l'arrêt du dispositif pendant une certaine durée.
Ainsi, des risques sanitaires existent et ces appareils peuvent fonctionner en diffusant des bactéries et pathogènes.
Il existe donc le besoin de proposer des installations de brumisation telles que décrites ci-dessus présentant un risque sanitaire limité. La présente invention propose à cet effet un dispositif de brumisation comprenant classiquement des moyens de production de brumisation et des moyens de brumisation et qui comprend de manière caractéristique des moyens de désinfection par photocatalyse dans l'eau.
Selon l'invention, ce dispositif est associé à un procédé de désinfection dudit dispositif comprenant une étape de désinfection par photocatalyse dans l'eau.
L'utilisation de la photocatalyse dans l'eau dans un dispositif de brumisation permet la désinfection de l'eau circulant ainsi que du dispositif.
La photocatalyse permet une désinfection du système de brumisation sans nécessiter d'ajout de produit désinfectant. Il n'y a donc pas de risque pour les utilisateurs du dispositif de brumisation. En effet, les produits de la photocatalyse sont neutres. Par ailleurs, l'utilisation de la photocatalyse présente un avantage économique important puisque aucun produit ne doit être ajouté pour assurer la désinfection. De plus, la photocatalyse intégrée dans un dispositif de brumisation est d'utilisation simple car, la photocatalyse étant non toxique, le dispositif de brumisation ne doit pas nécessairement être rincé, ni arrêté pour être désinfecté.
Préférentiellement, le dispositif selon l'invention comprend des moyens de purge du dispositif. Ainsi, l'eau peut être évacuée et elle ne stagne pas, ce qui limite les risques de développement de pathogènes.
Suivant un mode de réalisation avantageux, le dispositif de brumisation comprend des moyens de désinfection tel qu'un réacteur de photocatalyse qui peut être géré et contrôlé par des moyens de gestion et de contrôle de sorte à automatiser les étapes de désinfection.
D'autres buts et avantages apparaîtront au cours de la description qui suit d'un mode préféré de réalisation de l'invention qui n'en est cependant pas limitatif.
Il convient tout d'abord de rappeler que la présente invention concerne un dispositif de brumisation comprenant un moyen de production de brumisation et un moyen de brumisation d'eau caractérisé par le fait qu'il comprend des moyens de désinfection dotés d'un réacteur de photocatalyse dans l'eau. Selon des variantes préférées de l'invention mais non limitatives, le dispositif est tel que :
- le réacteur de photocatalyse dans l'eau comprend au moins une lampe à ultraviolets C,
- les moyens de désinfection sont configurés pour produire du peroxyde d'hydrogène (H2O2) destiné à circuler dans le dispositif de brumisation,
- le dispositif comprend des moyens de purge du dispositif,
- les moyens de purge comprennent un compresseur d'air,
- le dispositif comprend des moyens de rinçage,
- les moyens de rinçage comprennent une électrovanne de vidange, - le dispositif comprend des moyens de filtration,
- le dispositif comprend des moyens de contrôle et de gestion,
- la longueur d'onde de la lampe à ultraviolet C est 254 nanomètres,
- le réacteur de photocatalyse dans l'eau comprend du dioxyde de titane (Tiθ2) comme catalyseur, - le réacteur de photocatalyse dans l'eau comprend en outre de l'oxyde de zinc comme catalyseur.
La présente invention concerne en outre un procédé de désinfection d'un dispositif de brumisation caractérisé par le fait qu'il comprend une étape de désinfection par des moyens de photocatalyse dans l'eau. Selon des variantes préférées mais non limitatives de l'invention, le procédé est tel que :
- il comprend une étape de rinçage du dispositif,
- il comprend une étape de purge du dispositif par des moyens de purge - l'étape de désinfection comprend une phase de production de peroxyde d'hydrogène (H2O2) destiné à circuler dans le dispositif de brumisation
- l'étape de désinfection comprend la désinfection par des ultraviolets - C. Les dessins ci-joints sont donnés à titre d'exemple et ne sont pas limitatifs de l'invention. Ils représentent seulement un mode de réalisation de l'invention et permettront de la comprendre aisément.
La figure 1 est un schéma de principe du dispositif. La figure 2 est un schéma du réacteur de photocatalyse. Le dispositif selon l'invention comprend l'ensemble des moyens nécessaires à la pulvérisation ou brumisation d'un liquide, préférentiellement de l'eau, dans un gaz tel que de l'air.
Ainsi le dispositif comprend préférentiellement des moyens de production de brumisation 1 , tels qu'une pompe à haute pression et des moyens de brumisation 2 à titre d'exemple, des rampes munies de buses de brumisation et notamment au moins une rampe munie de plusieurs buses de brumisation.
Les buses hautes pressions diffusent l'eau par un orifice de diamètre avantageusement compris entre 0,2 millimètre et 0,5 millimètre.
Dans le cas d'une buse avec diamètre 0,2 millimètre sous une haute pression de l'ordre de 50 bars, le débit est de 0,08 litre / minute. De même : - 0,3 millimètre : 0,11 litre / minute
- 0,4 millimètre : 0,15 litre / minute
- 0,5 millimètre : 0,20 litre / minute
De plus, il y a une détente en sortie de buse, l'eau passe d'une pression de 50 bars à la pression atmosphérique.
La brumisation est la formation d'une brume ou d'un brouillard c'est à dire de fines gouttelettes d'eau, ou d'autres liquides, en suspension dans l'air.
On entend par brumisation les différentes techniques existantes telles que la nébulisation, la brumisation haute pression, l'atomisation, la pulvérisation etc. Ces différentes techniques se différencient uniquement par le diamètre des gouttelettes générées qui varie de quelques millimètres à quelques micromètres. De manière caractéristique, le dispositif de brumisation cité ci-dessus comprend des moyens de désinfection intégrés dans le circuit du dispositif. Les moyens de désinfection comprennent un réacteur de photocatalyse dans l'eau 3.
La photocatalyse est un processus électrochimique qui se produit à la surface d'un catalyseur par l'intervention d'un rayonnement ultraviolet notamment par l'action des photons. Les particules polluantes sont adsorbées à la surface du catalyseur pour être oxydées. Ce sont les photons émis par la lampe à ultraviolets qui excitent le catalyseur et créent des sites d'oxydoréduction à la surface de celui-ci. Ce processus provoque la cassure des liaisons chimiques des polluants biologiques qui sont dégradés en eau et dioxyde de carbone.
Le réacteur de photocatalyse dans l'eau 3 est un tube en inox 9 habituellement cylindrique contenant une ou plusieurs lampes à ultraviolets 10, une gaine de quartz 11 ainsi qu'un revêtement, le catalyseur 12. Ce dispositif est appelé "réacteur à irradiation radiale". Il s'agit d'un réacteur annulaire à lampe plongeante interne.
La lampe à ultraviolets 10 est disposée préférentiellement dans un tube de quartz 11 l'isolant ainsi de l'eau traversant le réacteur. Cette lampe peut être aisément remplacée lors d'opérations de maintenance. Le tube de quartz 11 assure l'isolation de la lampe à ultraviolets 10 du flux d'eau extérieur. Ses surfaces intérieure et extérieure sont lisses et parfaitement transparentes pour laisser passer les rayons ultraviolets jusqu'à la paroi intérieure de la chambre inox.
La chambre inox est un cylindre long (ou encore un tube) comportant une admission d'eau 13 à une extrémité et une évacuation 14 sur l'autre extrémité. Elle assure la circulation de l'eau d'un côté à l'autre du cylindre sur une lame mince. Une couche régulière de catalyseur 12 est disposée sur la surface intérieure du tube inox 9. Cette surface est directement irradiée par les ultraviolets émis par la lampe, et elle assure le processus de photocatalyse. Le catalyseur 12 le plus utilisé en photocatalyse est le semi-conducteur de dioxyde de titane (TiO2). C'est le matériau le plus actif pour la dégradation de polluants et il présente de plus de nombreux avantages en étant non toxique, très stable et peu coûteux. Selon un mode de réalisation préféré, on peut utiliser un papier non tissé enduit de catalyseur notamment de dioxyde de titane (UO2). L'adhésion du dioxyde de titane au papier est assurée par un liant silicique mélangé à la suspension de dioxyde de titane et déposé sur le papier. Le liant est constitué de fibres de silice colloïdale qui gainent les fibres du papier et permettent ainsi l'accroche des particules du dioxyde de titane sur le média fibreux. Le papier enduit de catalyseur 12 est ensuite maintenu fixement dans le tube inox du réacteur.
Le support du catalyseur 12 peut comporter des chicanes ou être en forme d'hélice pour augmenter la surface de contact entre l'eau et le catalyseur 12 mais aussi pour créer des turbulences lors de la circulation de l'eau et procurer ainsi une surface et un temps de contact entre le fluide et le catalyseur 12 augmentés.
D'autres catalyseurs peuvent être utilisés tel que du charbon actif ou de l'oxyde de zinc, du sulfure de zinc , du sulfure de cadmium, de l'oxyde de zinc combiné à du dioxyde de titane (ZnO/T,θ2) etc.
Le réacteur de photocatalyse dans l'eau 3 selon un mode de réalisation de l'invention comprend des lampes à ultraviolets C 10. Les ultraviolets C ont un effet germicide direct sur les pathogènes. La puissance de la lampe détermine d'une part l'effet germicide immédiat sur les bactéries pouvant traverser le réacteur et d'autre part la quantité d'irradiation produite sur la surface du catalyseur. L'énergie nécessaire pour avoir un effet germicide à 99,9% sur des bactéries du type pseudomonas aeruginosa est de 10500 microwatts/s/cm2 et sur des bactéries du type legionella pneumophila la puissance est de 3800 microwatts/s/cm2. La puissance de la lampe est donc déterminée pour obtenir en fin de vie de la lampe une puissance suffisamment germicide pour détruire les bactéries et pathogènes éventuellement présents dans l'eau. Cette puissance est aussi fonction de l'épaisseur de la lame d'eau présente dans le réacteur, de la longueur du réacteur, de la vitesse de l'eau et de la transmittance de l'eau.
La longueur d'onde de la lampe est préférentiellement comprise entre 100 et 280 nanomètres, plus précisément 254 nanomètres. Ainsi dans le réacteur de photocatalyse dans l'eau 3, l'eau est débarrassée des polluants organiques et des pathogènes par un simple appareil.
La photocatalyse permet la production de radicaux OH° à fort pouvoir oxydant et particulièrement instables.
De plus, le déposant s'est aperçu que le réacteur de photocatalyse dans l'eau 3 était le siège de la production de peroxyde d'hydrogène (H2O2). Le peroxyde d'hydrogène (H2O2), ou eau oxygénée, possède de puissantes propriétés d'oxydoréduction. Il est donc très avantageux car il permet d'augmenter les effets de la photocatalyse en dégradant de nombreux polluants et/ou pathogènes, sans ajout de produit toxique.
Le peroxyde d'hydrogène étant un liquide, à durée de vie relativement longue (quelques secondes à quelques minutes), il est diffusé en aval du réacteur de photocatalyse dans l'eau 3 dans le circuit du dispositif de brumisation. Il désinfecte ainsi le reste du dispositif. Le peroxyde d'hydrogène présente l'avantage de réagir très rapidement avec les éventuels polluants pour se désintégrer en produits non toxiques, l'hydrogène et l'eau. La désinfection est donc rapide et sans risque pour les utilisateurs situés sous les moyens de brumisation. En fonctionnement, le liquide de brumisation circule dans le dispositif de brumisation jusqu'aux moyens de brumisation, les buses, en quelques secondes tout au plus quelques minutes. Donc, le peroxyde d'hydrogène reste actif jusqu'aux buses pour une désinfection totale du dispositif.
Selon un mode de réalisation très avantageux, le dispositif de brumisation est configuré pour associer les trois réactions citées ci-dessus :
- la photocatalyse,
- l'effet germicide des ultraviolets C ;
- la production de peroxyde d'hydrogène.
La synergie de ces trois réactions permet un traitement efficace du dispositif de brumisation.
Comme représenté en figure 1 , le réacteur de photocatalyse dans l'eau 3 est placé préférentiellement en amont des moyen de production de brumisation 1 et des moyens de brumisation 2. Ainsi, l'eau circulant dans le dispositif de brumisation est désinfectée à son entrée ce qui limite les risques de développement des pathogènes dans le dispositif situé en aval.
Avantageusement, le réacteur de photocatalyse dans l'eau 3 est placé en aval des moyens de filtration 6. Les moyens de filtration 6 permettent de filtrer une première partie des polluants et/ou pathogènes en fonction de la taille du filtre.
Le dispositif comprend avantageusement des moyens de contrôle et de gestion 7 des moyens de désinfection. Ces moyens de contrôle et de gestion 7 permettent de contrôler les cycles de désinfection, notamment leur durée, leur fréquence en fonction de plusieurs paramètres issus des moyens de production de brumisation 1 , des moyens de brumisation 2, de la quantité d'eau circulant dans le dispositif, de sa qualité et de la taille du dispositif notamment de son circuit etc. Ces moyens de contrôle et de gestion 7 permettent une utilisation automatisée du dispositif de brumisation qui limite les risques d'oubli ou de mauvaise utilisation des moyens de désinfection. Les risques sanitaires sont donc très limités.
Le dispositif comprend des moyens de purge destinés à purger le dispositif de l'eau circulant. Ceci permet d'éviter tout risque d'eau stagnante, notamment dans les moyens de brumisation 2 qui ont souvent une température élevée du fait de l'exposition au soleil.
Les moyens de purge sont principalement un compresseur d'air 4. Ils peuvent être contrôlés par les moyens de contrôle et de gestion 7. Le compresseur d'air 4 injecte de l'air dans le dispositif remplaçant l'eau évacuée par les moyens de brumisation 2 par de l'air.
Le dispositif est avantageusement muni de moyens de rinçage. Les moyens de rinçage comprennent une électrovanne de vidange 5 et une électrovanne d'eau 15. Les moyens de rinçage permettent de rincer le dispositif principalement avant utilisation. L'eau restée notamment dans le moyens de production de brumisation 1 ne pouvant être purgée, est évacuée par l'électrovanne de vidange 5 et remplacée par de l'eau désinfectée par le réacteur de photocatalyse 3.
La combinaison des moyens de désinfection, des moyens de purge et des moyens de rinçage conduit à une installation de brumisation qui est saine et sans risque sanitaire pour les utilisateurs.
L'invention concerne aussi un procédé de désinfection du dispositif décrit ci-dessus. Le dispositif selon l'invention permet un procédé de désinfection simple et rapide consistant principalement en une étape de désinfection par photocatalyse dans l'eau. On a pu s'apercevoir qu'avec une seule étape de photocatalyse dans l'eau combinant, selon les modes de réalisation, trois réactions, la désinfection du dispositif de brumisation était très satisfaisante. Le procédé est donc simple et rapide à mettre en œuvre. Le fait qu'avec une étape unique, on puisse désinfecter efficacement un dispositif de brumisation, permet de réaliser plus souvent la désinfection et donc les risques sanitaires sont limités.
A titre d'exemple uniquement, la durée de l'étape de désinfection est comprise entre quelques minutes et un fonctionnement continu.
Selon un mode de réalisation, cette étape de désinfection est associée à une étape de purge. Cette étape de purge a pour but de purger le dispositif de brumisation et plus particulièrement les moyens de brumisation 2, principaux sièges de développement des pathogènes. L'étape de purge est réalisée par exemple par un compresseur d'air 4 injectant de l'air dans le dispositif, l'eau s'évacuant par les moyens de brumisation 2.
L'étape de purge peut être combinée à l'étape de désinfection en vue d'un arrêt prolongé du dispositif de brumisation ainsi le dispositif est désinfecté, puis purgé pour limiter tout risque de développement de pathogènes.
La remise en marche du dispositif de brumisation pourra être réalisé rapidement et sans risque en réalisant une courte étape de rinçage.
Comme expliqué précédemment, l'étape de désinfection permet de désinfecter l'eau circulant et aussi le dispositif tandis que l'étape de purge limite les risques de développement de pathogènes notamment lors d'un arrêt prolongé. Le procédé selon l'invention comprend en outre lors de l'étape de désinfection une phase de production de peroxyde d'hydrogène qui est destiné à circuler dans l'eau circulant dans le dispositif de brumisation et/ou une phase de désinfection par ultraviolets C.
Ces deux phases peuvent être combinées à l'étape de désinfection par photocatalyse. Le procédé de désinfection peut être réalisé de manière ponctuelle ou en continu lors de l'utilisation du dispositif de brumisation étant non nocif pour les utilisateurs.
Les différentes étapes et phases du procédé de désinfection sont préférentiellement gérées et contrôlées par les moyens de contrôle et de gestion 7.
Les moyens de désinfection, ainsi que les autres moyens tels que les moyens de purge, de rinçage, de filtration 6 et de contrôle et de gestion 7 peuvent être intégrés à des dispositifs de brumisation comprenant des moyens de production de brumisation 1 et des moyens de brumisation 2 déjà installés. Selon cette possibilité non représentée, le réacteur de photocatalyse dans l'eau 3 est intégré au dispositif de brumisation sur une branche de dérivation du circuit de sorte à n'être utilisé que lors des étapes de désinfection.
A titre d'exemple, le procédé selon l'invention est du type :
Etape 1 : Mise en route du réacteur de photocatalyse, avec l'électrovanne d'eau 15 fermée. Il n'y a pas de circulation d'eau. L'eau présente dans le réacteur de photocatalyse est désinfectée notamment par la production de peroxyde d'hydrogène (H2O2).
Etape 2 : Mise en route des moyens de rinçage : ouverture de l'électrovanne de vidange 5 et ouverture de l'électrovanne d'eau 15. L'eau désinfectée qui contient le peroxyde d'hydrogène circule dans le dispositif évacuant l'eau restée dans les moyens de production de brumisation 1. Il y a désinfection du dispositif en aval du réacteur de photocatalyse 3. C'est l'étape de rinçage.
Etape 3 : Arrêt des moyens de rinçage. Fermeture de l'électrovanne de vidange 5. Etape 4 : Mise en route des moyens de production de brumisation 1 et/ou des moyens de brumisation 2. De l'eau propre, désinfectée et n'ayant pas stagné peut être envoyée dans les rampes de brumisation des moyens de brumisation
2. Etape 5 : Arrêt de la brumisation pendant un temps t = T1.
Si T1 est court (quelques minutes) : attente pour le redémarrage éventuel de la brumisation. Retour à l'étape 4.
Si T1 est long (quelques dizaines de minutes à quelques heures) : passage à l'étape suivante (étape 6).
Etape 6 : Mise en route des moyens de purge préférentiellement à l'air comprimé pour vidanger avantageusement les moyens de brumisation 2
(rampes de brumisation), sans circulation d'eau.
Etape 7 : Arrêt du réacteur de photocatalyse. Le procédé et plus particulièrement l'enchaînement des étapes étant contrôlés par les moyens de contrôle et de gestion 7, l'étape de purge est avantageusement effectuée le plus souvent possible.
Le demandeur a effectué plusieurs tests présentés ci-après : Tableau 1 : mesure de la concentration en peroxyde d'hydrogène en partie par million (ppm) lorsque le liquide de brumisation, l'eau, est en circulation dans le réacteur de photocatalyse ou lorsqu'il n'est pas en circulation dans le réacteur ; le liquide stagne pendant un temps déterminé.
Le catalyseur a été choisi parmi plusieurs médias. La lampe à ultra violet
C utilisée émet à une longueur d'ondes de 254 nanomètres pour une puissance de 95 watts.
Figure imgf000012_0001
Résultats inférieurs au seuil de quantification (<0,05ppm)
FEUILLE DE REMPLACEMENT (RÈGLE 26) Le demandeur s'est aperçu que l'utilisation de TjO2 comme catalyseur dans le réacteur de photocatalyse 3 selon l'invention permet une production de peroxyde d'oxygène (H2O2) satisfaisante pour obtenir un effet de désinfection lorsque le liquide de brumisation stagne dans ledit réacteur. A contrario, si le réacteur de photocatalyse 3 selon l'invention comprend ZnO/ T1O2 comme catalyseur alors la production de peroxyde d'hydrogène est plus rapide.
FEUILLE DE REMPLACEMENT (RÈGLE 26) REFERENCES
1. Moyen de production de brumisation
2. Moyen de brumisation 3. Réacteur de photocatalyse dans l'eau
4. Compresseur d'air
5. Electrovanne de vidange
6. Moyens de filtration
7. Moyens de contrôle et de gestion 8. Clapet anti-retour
9. Tube inox
10. Lampe à ultraviolets
11. Gaine de quartz
12. Catalyseur 13. Admission d'eau
14. Evacuation d'eau
15. Electrovanne d'eau

Claims

REVENDICATIONS
1. Dispositif de brumisation comprenant un moyen de production de brumisation (1 ) et un moyen de brumisation (2) d'eau caractérisé par le fait que les moyens de brumisation (2) comprennent des rampes munies de buses de brumisation et que le dispositif comprend des moyens de désinfection doté d'un réacteur de photocatalyse dans l'eau (3).
2. Dispositif selon la revendication 1 dans lequel le réacteur de photocatalyse dans l'eau (3) comprend au moins une lampe à ultraviolets C (10).
3. Dispositif selon la revendication précédente dans lequel la longueur d'onde de la lampe à ultraviolet C est 254 nanomètres.
4. Dispositif selon l'une quelconque des revendications 1 à 3 dans lequel les moyens de désinfection sont configurés pour produire du peroxyde d'hydrogène (H2O2) destiné à circuler dans le dispositif de brumisation.
5. Dispositif selon l'une quelconque des revendications 1 à 4 comprenant des moyens de purge du dispositif.
6. Dispositif selon la revendication 5 dans lequel les moyens de purge comprennent un compresseur d'air (4).
7. Dispositif selon l'une quelconque des revendications 1 à 6 comprenant des moyens de rinçage.
8. Dispositif selon l'une quelconque des revendications 1 à 7 comprenant des moyens de filtration (6).
9. Dispositif selon l'une quelconque des revendications précédentes comprenant des moyens de contrôle et de gestion (7).
10. Dispositif selon l'une quelconque des revendications précédentes dans lequel le réacteur de photocatalyse dans l'eau (3) comprend du dioxyde de titane (Tiθ2) comme catalyseur.
11. Dispositif selon la revendication précédente dans lequel le réacteur de photocatalyse dans l'eau (3) comprend en outre de l'oxyde de zinc comme catalyseur.
12. Procédé de désinfection d'un dispositif de brumisation selon l'une quelconque des revendications précédentes caractérisé par le fait qu'il comprend une étape de désinfection par des moyens de photocatalyse dans l'eau.
13. Procédé selon la revendication 12 comprenant une étape de rinçage du dispositif.
14. Procédé selon la revendication 12 ou 13 comprenant une étape de purge du dispositif par des moyens de purge.
15. Procédé selon l'une quelconque des revendication 12 à 14 dans lequel l'étape de désinfection comprend une phase de production de peroxyde d'hydrogène (H2O2) destiné à circuler dans le dispositif de brumisation.
16. Procédé selon une quelconque des revendications 12 à 15 dans lequel l'étape de désinfection comprend la désinfection par des ultraviolets C.
PCT/EP2009/065947 2008-11-28 2009-11-27 Dispositif de brumisation muni de moyens de desinfection et un procede de desinfection associe WO2010060979A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0858110A FR2939046B1 (fr) 2008-11-28 2008-11-28 Dispositif de brumisation muni de moyens de desinfection et un procede de desinfection associe
FR0858110 2008-11-28

Publications (1)

Publication Number Publication Date
WO2010060979A1 true WO2010060979A1 (fr) 2010-06-03

Family

ID=40750864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/065947 WO2010060979A1 (fr) 2008-11-28 2009-11-27 Dispositif de brumisation muni de moyens de desinfection et un procede de desinfection associe

Country Status (2)

Country Link
FR (1) FR2939046B1 (fr)
WO (1) WO2010060979A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182815A1 (fr) * 2012-06-07 2013-12-12 Aptar France Sas Distributeur de produit fluide
WO2020141312A1 (fr) * 2019-01-02 2020-07-09 Dyson Technology Limited Appareil de traitement d'air

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153412A (ja) * 1999-11-29 2001-06-08 Lf Laboratory Kk 超音波加湿器
US20020012615A1 (en) * 2000-06-20 2002-01-31 Jung-Sung Hwang Gas purifying system
WO2004108605A1 (fr) * 2003-06-04 2004-12-16 Jong-Seob Shim Dispositif de sterilisation par photocatalyse
KR20040107341A (ko) * 2003-06-12 2004-12-20 (주) 빛과환경 광촉매 적용 살균 가습기
WO2005014053A2 (fr) * 2003-06-16 2005-02-17 University Of Florida Desinfection d'air photoelectrochimique
US20050079124A1 (en) * 2003-08-06 2005-04-14 Sanderson William D. Apparatus and method for producing chlorine dioxide
KR20070017800A (ko) * 2005-08-08 2007-02-13 이바도 광촉매 리액터를 포함하는 살균형 가습기
KR20080007076A (ko) * 2007-01-23 2008-01-17 주식회사 현진기업 바이러스 및 세균제거용 친환경 소독장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153412A (ja) * 1999-11-29 2001-06-08 Lf Laboratory Kk 超音波加湿器
US20020012615A1 (en) * 2000-06-20 2002-01-31 Jung-Sung Hwang Gas purifying system
WO2004108605A1 (fr) * 2003-06-04 2004-12-16 Jong-Seob Shim Dispositif de sterilisation par photocatalyse
KR20040107341A (ko) * 2003-06-12 2004-12-20 (주) 빛과환경 광촉매 적용 살균 가습기
WO2005014053A2 (fr) * 2003-06-16 2005-02-17 University Of Florida Desinfection d'air photoelectrochimique
US20050079124A1 (en) * 2003-08-06 2005-04-14 Sanderson William D. Apparatus and method for producing chlorine dioxide
KR20070017800A (ko) * 2005-08-08 2007-02-13 이바도 광촉매 리액터를 포함하는 살균형 가습기
KR20080007076A (ko) * 2007-01-23 2008-01-17 주식회사 현진기업 바이러스 및 세균제거용 친환경 소독장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200152, Derwent World Patents Index; AN 2001-478393 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182815A1 (fr) * 2012-06-07 2013-12-12 Aptar France Sas Distributeur de produit fluide
FR2991602A1 (fr) * 2012-06-07 2013-12-13 Valois Sas Tete de distribution de produit fluide.
WO2020141312A1 (fr) * 2019-01-02 2020-07-09 Dyson Technology Limited Appareil de traitement d'air
WO2020141311A1 (fr) * 2019-01-02 2020-07-09 Dyson Technology Limited Appareil de traitement d'air

Also Published As

Publication number Publication date
FR2939046B1 (fr) 2011-01-21
FR2939046A1 (fr) 2010-06-04

Similar Documents

Publication Publication Date Title
EP2219686B1 (fr) Dispositif de sécurisation de liquide par rayonnements ultraviolets au point d&#39;utilisation et procédé de sécurisation de liquide
FR2729382A1 (fr) Reacteur d&#39;irradiation uv pour le traitement de liquides
FR2983471A1 (fr) Procede de traitement d&#39;effluents dans un lit de microbilles par plasma froid et photocatalyse
EP2131875A2 (fr) Procede de purification d&#39;air et appareil epurateur d&#39;air pour sa mise en oeuvre
EP1341595B1 (fr) Dispositif et procede d&#39;epuration d&#39;un effluent gazeux
WO2010060979A1 (fr) Dispositif de brumisation muni de moyens de desinfection et un procede de desinfection associe
FR2780718A1 (fr) Dispositif de controle de systemes de potabilisation d&#39;eau sans adjonction chimique
FR2976936A1 (fr) Systeme et procede de purification et de distribution d&#39;eau, avec barriere de separation eliminant la contamination bacterienne
EP1819369B1 (fr) Inactivation d&#39;agents biologiques disperses en milieu gazeux par un semi-conducteur photoactif
WO2011138569A1 (fr) Ensemble de purification d&#39;air par photocatalyse
WO2010037717A1 (fr) Dispositif, son utilisation et procede pour l&#39;elimination d&#39;un compose contenu dans un fluide
EP1167297B1 (fr) Procédé physico-chimique de traitement des eaux de piscine
JP2023014285A (ja) 水処理装置と水処理装置用紫外線ランプの検知装置
JP2004154742A (ja) 水処理装置および水処理方法
JP4093409B2 (ja) 流体浄化方法および流体浄化装置
CN210367061U (zh) 一种脉冲紫外流体消毒器及具有其的即开即用流体系统
FR2923733A1 (fr) Procede de filtration pour air et liquides, par photo catalyse et photolyse, traversant et lechant.
FR2915902A1 (fr) Dispositif de desinctisation.
FR3073752A1 (fr) Dispositif et procede de traitement par des ondes acoustiques
WO2020002515A1 (fr) Systeme de desinfection et de traitement d&#39;eau par irradiation ultraviolette
EP2785648B1 (fr) Dispositif et procede de traitement d&#39;eau
FR2906473A1 (fr) Decontamination d&#39;un milieu gazeux par un semi-conducteur photoactive.
WO2000020340A1 (fr) Appareil de traitement de l&#39;eau par filtration et irradiation
CA2739544A1 (fr) Systeme pour la sterilisation d&#39;un liquide a temperature elevee en mouvement, fabrication des systemes, utilisation des systemes et procedes de sterilisations correspondants
FR3114248A3 (fr) Table de traitement des polluants et autonettoyante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09759741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09759741

Country of ref document: EP

Kind code of ref document: A1