WO2010060388A1 - 一种基于碳纤维-玻璃纤维复合编织网的融雪、化冰方法 - Google Patents

一种基于碳纤维-玻璃纤维复合编织网的融雪、化冰方法 Download PDF

Info

Publication number
WO2010060388A1
WO2010060388A1 PCT/CN2009/075201 CN2009075201W WO2010060388A1 WO 2010060388 A1 WO2010060388 A1 WO 2010060388A1 CN 2009075201 W CN2009075201 W CN 2009075201W WO 2010060388 A1 WO2010060388 A1 WO 2010060388A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
snow
ice
heated
woven mesh
Prior art date
Application number
PCT/CN2009/075201
Other languages
English (en)
French (fr)
Inventor
宋世德
徐世烺
尉文婷
王晓娜
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US13/131,593 priority Critical patent/US20120132634A1/en
Publication of WO2010060388A1 publication Critical patent/WO2010060388A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/24Methods or arrangements for preventing slipperiness or protecting against influences of the weather
    • E01C11/26Permanently installed heating or blowing devices ; Mounting thereof
    • E01C11/265Embedded electrical heating elements ; Mounting thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/342Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/026Heaters specially adapted for floor heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/02Heaters specially designed for de-icing or protection against icing

Definitions

  • the invention belongs to the field of transportation and disaster prevention, and is a solution for eliminating disaster caused by snow and icing, and relates to a snow melting and ice-making method based on carbon fiber-glass fiber composite woven mesh. .
  • Snow and ice on winter roads have many unchanging effects on people's travel: For urban roads, road speed is slow, traffic is congested, and accidents occur frequently; for highways, speed limit due to poor road conditions When the snow and ice are severely smashed, the highway will be partially or completely closed for safety.
  • snow and ice will bring safety hazards to the take-off and landing of the aircraft, resulting in the aircraft not being able to take off and land normally, resulting in flights. Delays, the serious consequences of the closure of the airport. Therefore, snow and ice not only bring safety hazards to transportation, but also affect the social economy and people's lives. We must take effective measures and remove snow and ice from the above-mentioned key facilities to ensure transportation. Smooth.
  • the method of removing snow and ice from snow melting agent can cause damage to the road surface and the environment in the same time, which consumes a lot of manpower and material resources.
  • the method of combining large-scale mechanical snow removal and artificial shoveling snow is also spent in the process of cleaning and transportation.
  • a large amount of manpower, material and financial resources, slow removal speed, low efficiency, and manual and mechanical snow removal methods also have a certain degree of mechanical damage to the road surface. Therefore, for snow and ice area, when the demand is tight, the above There are certain deficiencies in the method.
  • the heating cable is buried under the road surface, and the heat generated after the electric current can eliminate the snow and ice on the road surface.
  • the metal heating body for heating has poor corrosion resistance, and the durability problem under repeated and impact loads also needs in-depth research.
  • this method consumes a large amount of metal resources, and the installation is inconvenient due to the large quality.
  • the technical problem to be solved by the present invention is to provide an electric heating snow melting and ice making system for a key facility such as an airport runway, a highway, an urban main road and a bridge based on a carbon fiber-glass fiber composite woven mesh, which can be heated.
  • the surface of the body provides uniform heating, and the best snow melting effect is obtained under the condition of ensuring low energy consumption, and the heating body can be blocked and strengthened by the fiber woven mesh to prolong the service life.
  • the system is mainly composed of a carbon fiber-glass fiber composite woven mesh, an electrical insulating layer, a heat conducting layer, a heat insulating layer, a digital PID temperature control system, a heating power source with overcurrent and overvoltage protection, etc., wherein the heat conducting layer can be composed of The building material of the body to be heated is constructed.
  • the carbon fiber glass fiber composite woven mesh is formed by cross-weaving a warp-aligned carbon fiber bundle and a weft-aligned glass fiber bundle, wherein the carbon fiber bundle is a heating body in the present invention.
  • the temperature measuring element measures the temperature of the surface layer of the body to be heated, and the wind speed on the surface of the body to be heated, the snow and icing thickness on the surface of the body to be heated, the air temperature on the surface of the body to be heated, and the snow melting on the surface of the body to be heated.
  • the digital PID temperature control system is automatically or manually input as a control parameter.
  • the digital PID temperature control system optimizes the control parameters of the system according to the above related information, adjusts the working current of the controllable power source, and controls the carbon fiber-glass fiber composite weaving. The heating power of the net.
  • the carbon fiber-glass fiber composite woven mesh snow melting and icing method proposed by the present invention has light weight and high tensile strength compared with the technique of using a heating cable. Long life, corrosion resistance, fatigue resistance, low cost, etc. Compared with the laying process of heating cable, it can effectively reduce the difficulty of on-site construction, speed up the construction progress, and ensure the equal spacing of the heating body to achieve uniform heating; Compared with carbon fiber conductive concrete technology, the electrical conductivity and heating power are basically not affected by the pavement base. The temperature, compactness, moisture content and cracking of the concrete, the heating power is stable and the reliability is high.
  • the sand-treated carbon fiber-glass fiber composite woven mesh can prevent cracking and strengthening of the heating body by the fiber bundles distributed in the warp and weft directions, and prolong the service life of the body to be heated. Therefore, the snow melting and ice-making method based on the carbon fiber-glass fiber composite woven mesh provided by the invention has the advantages of light weight, quick construction, uniform heating, rapid performance, stable performance, long service life, low cost and low energy consumption, and can prevent cracking. Reinforcement is the ideal snowmelt and ice technology for airport runways, highways, urban trunk roads and bridges.
  • Figure 1 is an electric heating snow melting and ice making automatic control system based on carbon fiber-glass fiber composite woven mesh
  • Figure 2 is a schematic view of a carbon fiber-glass fiber composite woven mesh.
  • Figure 3 is a schematic cross-sectional view of a carbon fiber-glass fiber composite woven mesh subjected to electrical insulation and sand adhesion treatment.
  • Figure 4 is a schematic diagram of the connection of carbon fiber bundles in a heating system.
  • Figure 5 is a temperature profile of a heating plate.
  • Figure 6 is a graph of the heating resistivity of the heating plate.
  • Figure 1 shows an automatic heating and snow melting and ice control system based on a carbon fiber-glass fiber composite woven mesh.
  • the construction method of the carbon fiber-glass fiber composite woven mesh is as follows: First, the heat insulation layer 3 is disposed on the base layer 2 of the body to be heated, and the thickness is controlled to be 10 to 30 mm to reduce the heat loss transmitted downward; above the heat insulation layer 3 Laying the thermal conductive layer 4, the thickness is about 5 ⁇ 10mm, it is generally desirable that the material of the layer has a large thermal conductivity; then the carbon fiber-glass fiber composite woven mesh 1 which is electrically insulated and sand-treated is laid flat, in a composite woven mesh.
  • the warp direction carbon fiber bundle heating body 9 is parallel to the short side of the body to be heated, and the electrical contacts 6 on both sides of the carbon fiber bundle heating body in the woven mesh are connected by series and parallel by using conductive silver glue and electric wires.
  • the lead wire is connected to the high-power controllable power source 7 with protection function; the heat conductive layer 4 is laid on the fiber woven mesh, and the temperature measuring component 5 is installed on the surface layer of different parts of the heat conductive layer 4, in order to improve the heat conduction speed and reduce the system work
  • the thickness of the heat conductive layer 4 can be controlled to be 20 to 50 mm.
  • the carbon fiber-glass fiber composite woven mesh used is a cross-weaving of a carbon fiber bundle 9 equidistantly arranged in the warp direction and a glass fiber bundle 10 arranged at an equal interval in the weft direction, the size of the mesh and the cross section of the carbon fiber bundle. Dimensions can be tailored to the nature of the building materials on site and the requirements for melting snow.
  • the surface of the carbon fiber-glass fiber composite woven mesh 1 is electrically insulated by epoxy resin, and adhered to the surface of the epoxy resin layer 11 to form a sand-bonding layer 12 having strong adhesion to the base material, which is to be heated. To the role of cracking, toughening and reinforcement.
  • the temperature measuring element 5 measures the temperature of the surface layer of the body to be heated, and the parameters such as the wind speed of the road surface, the snow and ice thickness, the air temperature, and the expected time of the snow melting ice are used as the digital PID temperature control system 8
  • the control parameter input system, the digital PID temperature control system 8 optimizes and adjusts the PID control parameters according to the above parameters, adjusts the working current of the high-power controllable power source 7, thereby controlling the heating power of the carbon fiber-glass fiber composite woven mesh 1, and changing the road surface.
  • Working temperature to achieve the purpose of melting snow, ice.
  • the carbon fiber-glass fiber composite woven mesh used is a cross-weaving of a carbon fiber bundle 9 arranged equidistantly in a warp direction and a glass fiber bundle 10 arranged at an equal interval in the weft direction, the size of the mesh and the cross section of the carbon fiber bundle.
  • Dimensions can be customized according to the nature of the materials built on site: siteonsite.verisign.com/services/WorldIntellectualPropertyOrga nization WIPOCustomerCA/digitalidCenter.htm and the requirements for melting snow.
  • the surface of the carbon fiber-glass fiber composite woven mesh 1 is electrically insulated by epoxy resin, and adhered to the surface of the epoxy resin layer 11 to form a sand-bonding layer 12 having strong adhesion to the base material, which is to be heated. To the role of cracking, toughening and reinforcement.
  • the heating plate consists of three layers: first a 30 mm concrete layer, then a treated carbon fiber-glass fiber composite woven mesh with a mesh size of 10 mm x 10 mm, and finally a 10 mm thick concrete layer.
  • the 30mm thick foam board is used to thermally insulate the entire perimeter and bottom of the board, and the temperature sensor is placed in the middle of the heating plate.
  • the average resistance of the carbon fiber bundle in the test piece is 24.5 ohms. If all the carbon fiber bundles are connected in parallel to the heating source, the total heating resistance is about 0.74 ohms, and the total tantalum is 784. 06 ohms. Therefore, by changing the wiring form of the carbon fiber bundle, the heating resistance of the entire board can be adjusted between 0.74 and 784.06 ohms.
  • the temperature measuring element 5 measures the temperature of the surface layer of the body to be heated, and the parameters such as the wind speed of the road surface, the thickness of the snow and the icing, the temperature of the air, and the expected time of the snow melting ice are used as the digital PID temperature control system 8
  • the control parameter input system, the digital PID temperature control system 8 optimizes and adjusts the PID control parameters according to the above parameters, adjusts the working current of the high-power controllable power source 7, thereby controlling the heating power of the carbon fiber-glass fiber composite woven mesh 1, and changing the road surface.
  • Working temperature to achieve the purpose of melting snow, ice.

Abstract

本发明公开了一种基于碳纤维 - 玻璃纤维复合编织网的融雪、化冰方法,属于交通运输和灾害防治领域。其特征是在待加热体的基础层上依次铺设隔热层、导热层、经电绝缘和粘沙处理的碳纤维 - 玻璃纤维复合编织网和导热层,并在待加热体的表层埋设测温元件;采用导电银胶和导线将碳纤维束加热体通过串并联的方式连接到具有保护功能的可控电源;数字 PID 温度控制系统根据待加热体表层温度、表面的风速、积雪和结冰厚度、空气温度和对融雪化冰的期望时间优化调整系统的控制参数,调节发热功率。本发明的有益效果是该方法具有施工速度快、加热均匀迅速、性能稳定、寿命长、成本低等优点,并起阻裂加固作用,是用于路面、桥梁等设施的理想融雪、化冰方法。

Description

说明书
Title of Invention:一种基于碳纤维―玻璃纤维复合编织网的融雪、 化冰方法
[1] 一种基于碳纤维-玻璃纤维复合编织网的融雪、 化冰方法
[2] 技术领域
[3] 本发明属于交通运输和灾害防治领域, 是一种消除积雪和结冰给交通运输带来 灾害的解决方法, 涉及到一种基于碳纤维-玻璃纤维复合编织网的融雪、 化冰 方法。
[4] 背景技术
[5] 冬天路面的积雪和结冰对人民出行造成诸多不变的影响: 对于城市道路, 由于 路滑车辆行速缓慢, 交通拥堵, 事故频发; 对于高速公路, 由于路况差而限速 , 当积雪、 结冰严重吋, 为了安全起见, 就会部分或者全部封闭高速公路; 对 于机场, 积雪、 结冰给飞机的起降带来安全隐患, 导致飞机无法正常起降, 造 成航班延误, 机场临吋关闭的严重后果。 因此积雪和结冰不仅给交通运输带来 安全隐患, 更多的是对社会经济和人民生活的影响, 必须釆取有效的方法及吋 清除上述关键设施的积雪和结冰, 保障交通运输顺畅。 釆用融雪剂的除雪、 化 冰方法在耗费大量人力、 物力的同吋, 对路面和环境都会产生破坏作用; 釆用 大型机械除雪和人工铲雪相结合的方法同样在清理和运输过程中耗费了大量的 人力、 物力和财力, 清除速度慢, 效率低下, 并且人工和机械除雪方式对路面 也有一定程度的机械损伤, 因此对于积雪和结冰面积大, 吋间要求紧迫的情况 下, 上述方法存在一定的不足。
[6] 将加热电缆埋设在路面下, 通电后产生热量可以消除路面的积雪和化冰, 但加 热用的金属加热体耐腐蚀性差, 在反复、 冲击荷载下耐久性问题也需要深入的 研究, 另外, 该方法耗费了大量的金属资源, 同吋由于质量较大安装不便。 釆 用碳纤维导电混凝土和石墨导电混凝土等技术进行融雪、 化冰的研究也较多, 取得了一定的科研成果, 但是导电混凝土的导电率和加热功率容易受到路面基 体的温度、 密实度和含水率的影响, 如果导电混凝土开裂, 则会导致加热功率 的大幅度波动, 因此该方法加热功率的稳定性和可靠性较差。
[7] 发明内容
[8] 本发明要解决的技术问题是提供一种基于碳纤维-玻璃纤维复合编织网的机场 跑道、 高速公路、 城市主干道路和桥梁等关键设施的电加热融雪、 化冰系统, 能够对待加热体表面提供均匀加热, 在保证低能耗的情况下得到最佳的融雪化 冰效果, 并能通过纤维编织网对待加热体起到阻裂、 加固作用, 延长使用寿命
[9] 本发明的技术方案是:
[10] 本系统主要由碳纤维-玻璃纤维复合编织网、 电绝缘层、 导热层、 隔热层、 数 字 PID温度控制系统、 具有过流过压保护的加热电源等部分组成, 其中导热层可 以由待加热体的建筑材料构成。 碳纤维 玻璃纤维复合编织网由经向排列的碳 纤维束和纬向排列的玻璃纤维束交叉编织而成, 其中碳纤维束是本发明中的加 热体。
[11] 在待加热体的基础层上设置隔热层, 然后铺设导热层; 将经过电绝缘和粘沙处 理的碳纤维 -玻璃纤维复合编织网平整摊铺, 复合编织网中的经向碳纤维束加 热体与待加热体的短边平行, 在复合编织网上铺设导热层, 在其表层埋设多个 测温元件; 通过导电银胶和导线将碳纤维束加热体两端的电接点串联和并联在 一起, 并将引出导线连接到具有过流、 过压和过热保护功能的可控电源上。
[12] 测温元件实吋测量待加热体表层的温度, 并与待加热体表面的风速、 待加热体 表面的积雪和结冰厚度、 待加热体表面的空气温度和对待加热体表面融雪化冰 的期望吋间, 作为控制参量自动或手动输入数字 PID温度控制系统, 数字 PID温 度控制系统根据上述相关信息优化调整系统的控制参数, 调节可控电源工作电 流, 控制碳纤维 -玻璃纤维复合编织网的发热功率。
[13] 本发明的效果和益处是, 釆用本发明提出的基于碳纤维一玻璃纤维复合编织网 融雪、 化冰方法, 与釆用加热电缆的技术相比, 具有重量轻、 抗拉强度高、 寿 命长、 耐腐蚀、 耐疲劳、 成本低等优点; 与加热电缆的铺设工艺相比, 能够有 效降低现场施工的难度, 加快施工进度, 并能保证加热体的等间距, 实现加热 均匀; 与釆用碳纤维导电混凝土技术相比, 导电率和加热功率基本不受路面基 体的温度、 密实度、 含水率以及混凝土开裂的影响, 加热功率稳定, 可靠性高 。 经粘沙处理的碳纤维 -玻璃纤维复合编织网能够通过经向和纬向分布的纤维 束对待加热体起到阻裂、 加固作用, 延长待加热体的使用寿命。 因此, 本发明 提出的基于碳纤维-玻璃纤维复合编织网的融雪、 化冰方法具有重量轻、 施工 快捷、 加热均匀迅速、 性能稳定、 寿命长、 成本低和低能耗等优点, 并能起阻 裂、 加固作用, 是用于机场跑道、 高速公路、 城市主干道和桥梁等设施的理想 融雪、 化冰技术。
[14] 附图说明
[15] 附图 1是基于碳纤维一玻璃纤维复合编织网的电加热融雪、 化冰自动控制系统 [ 16] 附图 2是碳纤维 -玻璃纤维复合编织网的示意图。
[17] 附图 3是经电绝缘、 粘沙处理的碳纤维-玻璃纤维复合编织网的截面示意图。
[18] 附图 4是加热系统中碳纤维束连接原理图。
[19] 附图 5是加热板的温度曲线。
[20] 附图 6是加热板的加热电阻率曲线。
[21] 图中: 1碳纤维一玻璃纤维复合编织网; 2基础层; 3隔热层; 4导热层; 5测温 元件; 6碳纤维束加热体两侧的电接点; 7具有保护功能的大功率可控电源; 8数 字 PID温度控制系统; 9碳纤维束; 10玻璃纤维束; 11电绝缘环氧树脂层; 12粘 沙层。
[22] 具体实施方式
[23] 以下结合技术方案和附图详细叙述说明本发明的最佳实施例。
[24] 附图 1给出了基于碳纤维一玻璃纤维复合编织网的电加热融雪、 化冰自动控制 系统。 碳纤维-玻璃纤维复合编织网的施工方式为: 首先在待加热体基础层 2上 设置隔热层 3, 厚度控制在 10〜30mm, 以减少向下传输的热量损失; 在隔热层 3 之上铺设导热层 4, 厚度在 5〜10mm左右, 通常希望该层材料具有较大的导热系 数; 然后将经过电绝缘、 粘沙处理的碳纤维-玻璃纤维复合编织网 1平整摊铺, 复合编织网中的经向碳纤维束加热体 9与待加热体短边平行, 釆用导电银胶和电 线将编织网中碳纤维束加热体两侧的电接点 6通过串联和并联的方式连接起来, 将引出的导线连接到具有保护功能的大功率可控电源 7上; 在纤维编织网上铺设 导热层 4, 并在导热层 4不同部位的表层安装测温元件 5, 为了提高热传导速度, 降低系统功耗, 可将导热层 4的厚度控制在 20〜50mm。
[25] 所釆用的碳纤维 -玻璃纤维复合编织网是由经向等间距排列的碳纤维束 9和纬 向等间距排列的玻璃纤维束 10交叉编织而成, 网格的大小和碳纤维束的截面尺 寸可以根据现场建筑材料的性质和对融雪化冰的要求定制。 碳纤维-玻璃纤维 复合编织网 1的表面釆用环氧树脂进行电绝缘处理, 并在环氧树脂层 11的表面粘 沙, 形成与基体材料粘结力强的粘沙层 12, 对待加热体起到阻裂、 增韧和加固 的作用。
[26] 测温元件 5实吋测量待加热体表层的温度, 并与路面的风速、 积雪和结冰厚度 、 空气温度、 融雪化冰的期望吋间等参量作为数字 PID温度控制系统 8的控制参 数输入系统, 数字 PID温度控制系统 8根据上述参数, 优化调整 PID的控制参数, 调节大功率可控电源 7的工作电流, 从而控制碳纤维-玻璃纤维复合编织网 1的 发热功率, 改变路面的工作温度, 达到融雪、 化冰目的。
[27] 所釆用的碳纤维 -玻璃纤维复合编织网是由经向等间距排列的碳纤维束 9和纬 向等间距排列的玻璃纤维束 10交叉编织而成, 网格的大小和碳纤维束的截面尺 寸可以艮据现场建 https:〃onsite.verisign.com/services/WorldIntellectualPropertyOrga nizationWIPOCustomerCA/digitalidCenter.htm筑材料的性质和对融雪化冰的要求 定制。 碳纤维-玻璃纤维复合编织网 1的表面釆用环氧树脂进行电绝缘处理, 并 在环氧树脂层 11的表面粘沙, 形成与基体材料粘结力强的粘沙层 12, 对待加热 体起到阻裂、 增韧和加固的作用。
[28] 釆用 400x400x40 mm的碳纤维 -玻璃纤维复合编织网加热板对系统的加热性能 进行考核。 加热板由三层构成: 首先是 30mm的混凝土层, 然后是网格尺寸为 10 mmxlOmm的经过处理的碳纤维-玻璃纤维复合编织网, 最后是 10mm厚的混凝 土层。 此外, 釆用 30mm厚的泡沫板对整个板的四周和底部进行热绝缘处理, 温 度传感器则被布放在加热板的中间。
[29] 试件中碳纤维束的平均电阻为 24.5欧姆, 如果将所有的碳纤维束釆用并联形式 连接到加热电源, 则总的加热电阻约为 0.74欧姆, 而全部釆用串联形式则为 784. 06欧姆。 因此, 通过改变碳纤维束的接线形式, 整个板的加热电阻可以在 0.74〜 784.06欧姆之间调节。
[30] 实验中, 将碳纤维束通过串并联结合的方式连接到 24V/15A的直流电源, 如图 4 所示。 为了保证环境温度不变, 将整个加热板置于冰箱中。 当环境温度为零下 1 6.6度吋, 通过本系统可以使试件的表面温度在 150分钟的吋间内上升到 71.5度, 平均加热速率为 0.59°C/min, 如图 5所示。 图 6是升温过程中整个加热板的电阻率 变化曲线, 可以看出, 电阻率从 9.95Ω·ΟΏ下降到 9.75Ω·ΟΏ, 最大降幅为 2.01 % , 这表明本系统在较大的温度范围内具有稳定的加热电阻。
[31] 测温元件 5实吋测量待加热体表层的温度, 并与路面的风速、 积雪和结冰厚度 、 空气温度、 融雪化冰的期望吋间等参量作为数字 PID温度控制系统 8的控制参 数输入系统, 数字 PID温度控制系统 8根据上述参数, 优化调整 PID的控制参数, 调节大功率可控电源 7的工作电流, 从而控制碳纤维-玻璃纤维复合编织网 1的 发热功率, 改变路面的工作温度, 达到融雪、 化冰目的。

Claims

权利要求书
[Claim 1] 1 . 一种基于碳纤维-玻璃纤维复合编织网的融雪、 化冰方法
, 是釆用碳纤维-玻璃纤维复合编织网, 通过电加热的方式实 现融雪和化冰, 其特征在于: 在待加热体的基础层 (2) 上 设置隔热层 (3) 和导热层 (4) , 然后将经过电绝缘和粘沙 处理的碳纤维-玻璃纤维复合编织网 (1 ) 平整摊铺, 复合编 织网中的经向碳纤维束加热体 (9) 与待加热体短边平行, 纬向玻璃纤维束 (10) 与长边方向平行, 在其上铺设导热层 (4) , 并在其表层安装测温元件 (5) ; 釆用导电银胶和导 线将编织网中碳纤维束加热体的电接点通过串并联的方式连 接到带保护功能的大功率可控电源 (7) 上; 数字 PID温度控 制系统 (8) 根据待加热体表层温度、 待加热体表面的风速 、 积雪和结冰厚度、 空气温度和对融雪化冰的期望吋间优化 调整系统的 PID控制参数。
PCT/CN2009/075201 2008-11-29 2009-11-29 一种基于碳纤维-玻璃纤维复合编织网的融雪、化冰方法 WO2010060388A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/131,593 US20120132634A1 (en) 2008-11-29 2009-11-29 Deicing method based on carbon/glass fiber hybrid textile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810229274.2A CN101413240A (zh) 2008-11-29 2008-11-29 一种基于碳纤维-玻璃纤维复合编织网的融雪、化冰方法
CNCN200810229274.2 2008-11-29

Publications (1)

Publication Number Publication Date
WO2010060388A1 true WO2010060388A1 (zh) 2010-06-03

Family

ID=40593958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075201 WO2010060388A1 (zh) 2008-11-29 2009-11-29 一种基于碳纤维-玻璃纤维复合编织网的融雪、化冰方法

Country Status (3)

Country Link
US (1) US20120132634A1 (zh)
CN (1) CN101413240A (zh)
WO (1) WO2010060388A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012012516A1 (en) * 2010-07-20 2012-01-26 University Of Houston Self-heating concrete using carbon nanofiber paper
CN109440579A (zh) * 2018-11-05 2019-03-08 潘永红 一种沥青路面电热融冰化雪的施工技术方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413240A (zh) * 2008-11-29 2009-04-22 大连理工大学 一种基于碳纤维-玻璃纤维复合编织网的融雪、化冰方法
CN101851988A (zh) * 2010-05-18 2010-10-06 刘树伟 天沟融雪板
CN103911934A (zh) * 2013-01-07 2014-07-09 葛以兵 融雪装置
US9271335B1 (en) * 2013-02-03 2016-02-23 Vickie Lamb Snow blanket
CN105297625B (zh) * 2014-03-05 2017-01-04 安徽建筑大学 应用于融冰雪桥面的复合功能层的施工方法
CA2887271A1 (en) * 2014-04-08 2015-10-08 Lampman Wildlife Management Services Ltd. Wildlife exclusion composition and assembly
CN104005317B (zh) * 2014-05-15 2016-08-31 江苏绿材谷新材料科技发展有限公司 一种可用于路面融雪化冰的导电加热复合筋及其制备方法
US10167550B2 (en) 2014-06-03 2019-01-01 Aurora Flight Sciences Corporation Multi-functional composite structures
US10368401B2 (en) * 2014-06-03 2019-07-30 Aurora Flight Sciences Corporation Multi-functional composite structures
US10285219B2 (en) 2014-09-25 2019-05-07 Aurora Flight Sciences Corporation Electrical curing of composite structures
CN105178136A (zh) * 2015-06-25 2015-12-23 浙江佳中木业有限公司 一种防冻路体的施工方法
CN105040548B (zh) * 2015-06-25 2017-03-29 浙江佳中木业有限公司 一种具有御寒功能的路体施工方法
CN104894944B (zh) * 2015-06-25 2017-05-31 浙江佳中木业有限公司 一种防冻路面
CN104975549B (zh) * 2015-06-25 2017-05-31 浙江佳中木业有限公司 一种具有御寒防冻功能的路体
CN104963419B (zh) * 2015-07-13 2017-05-03 浙江佳中木业有限公司 一种保温加热板结构
CN105002803B (zh) * 2015-08-04 2017-06-13 武汉理工大学 一种碳纤维加热膜智能融冰方法及装置
CN106284022B (zh) * 2016-08-30 2018-10-02 长安大学 一种用于铺设碳纤维带的装置
CN106949022A (zh) * 2017-05-11 2017-07-14 刘中威 可修复的电热融冰风力发电机转子叶片及其制备方法
CN107130496B (zh) * 2017-05-18 2022-05-31 长安大学 一种基于压电发电的融雪毯
CN109162165A (zh) * 2018-10-22 2019-01-08 湖北工业大学 人行横道融雪化冰系统和人行横道融雪化冰的控制方法
CN111778804A (zh) * 2020-07-15 2020-10-16 吉林大学 一种主动融雪化冰的桥梁铺装结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069963A (ja) * 1997-08-05 1998-03-10 Arisawa Mfg Co Ltd 面状発熱体、面状発熱体の製造方法、面状発熱体の使用方法及び面状発熱体を用いた発熱装置
KR20060031029A (ko) * 2004-10-07 2006-04-12 김원기 도로 포장면 융설 및 보강자재, 그 제조방법 및 이를이용한 도로 포장면의 융설 및 보강방법
CN2773151Y (zh) * 2005-02-06 2006-04-19 董陆长 路面和桥梁冬季除雪防滑电磁感应加热装置
CN101235621A (zh) * 2007-12-25 2008-08-06 大连理工大学 水泥混凝土桥面融雪化冰的电热法
CN101413240A (zh) * 2008-11-29 2009-04-22 大连理工大学 一种基于碳纤维-玻璃纤维复合编织网的融雪、化冰方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888472A (en) * 1988-05-12 1989-12-19 David G. Stitz Radiant heating panels
JP3894035B2 (ja) * 2001-07-04 2007-03-14 東レ株式会社 炭素繊維強化基材、それからなるプリフォームおよび複合材料
US7318473B2 (en) * 2005-03-07 2008-01-15 Halliburton Energy Services, Inc. Methods relating to maintaining the structural integrity of deviated well bores

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1069963A (ja) * 1997-08-05 1998-03-10 Arisawa Mfg Co Ltd 面状発熱体、面状発熱体の製造方法、面状発熱体の使用方法及び面状発熱体を用いた発熱装置
KR20060031029A (ko) * 2004-10-07 2006-04-12 김원기 도로 포장면 융설 및 보강자재, 그 제조방법 및 이를이용한 도로 포장면의 융설 및 보강방법
CN2773151Y (zh) * 2005-02-06 2006-04-19 董陆长 路面和桥梁冬季除雪防滑电磁感应加热装置
CN101235621A (zh) * 2007-12-25 2008-08-06 大连理工大学 水泥混凝土桥面融雪化冰的电热法
CN101413240A (zh) * 2008-11-29 2009-04-22 大连理工大学 一种基于碳纤维-玻璃纤维复合编织网的融雪、化冰方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012012516A1 (en) * 2010-07-20 2012-01-26 University Of Houston Self-heating concrete using carbon nanofiber paper
US9775196B2 (en) 2010-07-20 2017-09-26 University Of Houston Self-heating concrete using carbon nanofiber paper
CN109440579A (zh) * 2018-11-05 2019-03-08 潘永红 一种沥青路面电热融冰化雪的施工技术方法

Also Published As

Publication number Publication date
US20120132634A1 (en) 2012-05-31
CN101413240A (zh) 2009-04-22

Similar Documents

Publication Publication Date Title
WO2010060388A1 (zh) 一种基于碳纤维-玻璃纤维复合编织网的融雪、化冰方法
CN101235621A (zh) 水泥混凝土桥面融雪化冰的电热法
CN204491356U (zh) 具有电热功能的碳纤维复合土工格栅
CN111021180A (zh) 一种用于融雪化冰的路面铺装结构及使用方法
CN106638225A (zh) 融雪化冰系统
CN108951356A (zh) 公路太阳能供电石墨烯加热膜融雪系统及有该系统的公路
KR20150009795A (ko) 포장도로의 융설장치 및 그의 설치방법
CN102869132A (zh) 建筑物板面及道路铺面板电热结构
CN104631276A (zh) 具有电热功能的碳纤维复合土工格栅
Yang et al. Prefabricated flexible conductive composite overlay for active deicing and snow melting
CN104868427B (zh) 一种除冰装置及包含除冰装置的斜拉索
CN109180073B (zh) 橡胶改性功能梯度混凝土快速除冰路面及除冰方法
CN104746393A (zh) 一种钢轨道梁防冰雪装置
CN203904797U (zh) 智能环保型防冻路桥面结构
CN101988283A (zh) 公路除凝冰和冰雪以及消雾灾害设施
CN205115953U (zh) 一种用于沥青桥面铺装融雪除冰的装置
CN209276942U (zh) 一种暖气防冻公路装置
CN102635049A (zh) 一种复合编织网的融雪、化冰方法
TWI352767B (zh)
CN205874971U (zh) 一种功能型桥面铺装结构
CN202047335U (zh) 一种路面用电热网带
CN1946253A (zh) 碳纤维复合材料制作的公路、机场电加热专用电缆
CN209958170U (zh) 耦合光伏的碳纤维远红外发热融雪化冰系统
CN204252137U (zh) 大坝石墨导电混凝土温控保护装置
Joey Intersection-pavement de-icing: comprehensive review and the state of the practice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13131593

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09828648

Country of ref document: EP

Kind code of ref document: A1