WO2010060341A1 - 增强ue省电性能的方法和ue - Google Patents

增强ue省电性能的方法和ue Download PDF

Info

Publication number
WO2010060341A1
WO2010060341A1 PCT/CN2009/074767 CN2009074767W WO2010060341A1 WO 2010060341 A1 WO2010060341 A1 WO 2010060341A1 CN 2009074767 W CN2009074767 W CN 2009074767W WO 2010060341 A1 WO2010060341 A1 WO 2010060341A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
downlink
downlink data
timer
time
Prior art date
Application number
PCT/CN2009/074767
Other languages
English (en)
French (fr)
Inventor
李国庆
谌丽
高卓
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US13/127,210 priority Critical patent/US8675530B2/en
Priority to EP09828601.6A priority patent/EP2355602B1/en
Priority to MX2011004621A priority patent/MX2011004621A/es
Priority to KR1020117012793A priority patent/KR101254954B1/ko
Priority to JP2011533523A priority patent/JP5253581B2/ja
Publication of WO2010060341A1 publication Critical patent/WO2010060341A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for enhancing power saving performance of a UE.
  • a DRX (Discontinuous Receive) mechanism is introduced, that is, when the UE is in the connected state, the continuous listening eNB is not required (Evolved Node).
  • B the control channel of the evolved base station, but the intermittent intercept control channel.
  • FIG. 1 is a schematic diagram of the principle of DRX in a prior art LTE system (Long Term Evolution).
  • the On Duration indicates the time period during which the UE listens to the control channel, during which the UE's RF channel is turned on and continuously monitors the control channel; except for the time other than the open period, the UE is in the Sleep state. Its RF link will be turned off to save power.
  • the open period is periodically (Cycle), and the specific period is implemented by the eNB configuration. While the UE is saving power, in order to avoid excessive communication delay between the eNB and the UE, the concept of long cycle and short cycle is introduced. In short cycles, the opening period occurs more frequently than the long period. While configuring the long period, you can choose to configure the short period to shorten the time that the UE listens to the control channel and reduce the data transmission delay.
  • LTE has designed a variety of timers, and combined with the HARQ (Hybrid Automatic Repeat Request) process, the operation process in the DRX state is given.
  • the related timers include:
  • Inactivity Timer When the UE receives the control signaling of the initial transmission of HARQ during the opening period, the UE turns on the change timer. Before the timer expires, the UE continuously monitors the control channel. If the UE receives the control signaling of the initial transmission of HARQ before the inactivity timer expires, the inactivity timer will be terminated and restarted.
  • RTT Timer round trip timer
  • the UE turns on the retransmission timer. If the data in the corresponding HARQ process is successfully decoded after the previous HARQ transmission, the UE does not start the retransmission timer after the RTT timer expires.
  • Retransmission Timer During the retransmission timer, the UE listens to the control channel and waits for retransmission of the corresponding HARQ process.
  • FIG. 2 is a schematic diagram of the action process of each timer in the prior art DRX process.
  • the On duration Timer is first turned on.
  • the eNB schedules the DL initial transmission at time t1, and then the inactivity timer starts, and the HARQ RTT timer is turned on.
  • the inactivity timer expires at t2.
  • the HARQ RTT timer expires.
  • the retransmission timer is started.
  • the eNB schedules the first retransmission, so the retransmission timer is stopped and the RTT timer is started.
  • the RTT timer expires, and the first retransmission at time t4 is still unsuccessful (UE feedback NACK), and the retransmission timer starts.
  • the eNB schedules a second retransmission, the retransmission timer is stopped, and the RTT timer is started. Since the second retransmission is successful (UE feedback acknowledgement ACK), the retransmission timer will not be started after the RTT timer expires.
  • the RTT timer can increase the time the UE is in the sleep state, such as the time periods T1 and T2 in Figure 2.
  • the UE can be controlled to sleep between transmissions, so that the UE enters the listening state at a reasonable time.
  • a disadvantage of the prior art is that the time set for the RTT timer in the LTE system is 8 ms, which is equal to the minimum transmission time interval of the FDD (Frequency Division Duplex) system. Since the eNB can only schedule retransmissions after a minimum transmission time interval of 8 ms, the 8 ms RTT timer is a relatively optimized design for the FDD system. However, for the TDD (Time Division Duplex) system, there is a big problem. Since the downlink minimum transmission time interval of the TDD system is related to the UL/DL configuration and the subframe number in which the downlink transmission occurs, the RTT timer is fixed to 8 ms, which is not all applicable to the TDD system, and the UE is inevitably increased. Power consumption is detrimental to the power saving performance of the UE. Summary of the invention
  • the object of the present invention is to solve at least one of the above technical drawbacks, and in particular to solve the problem in the prior art that the power consumption of the UE increases due to the RTT timer being a fixed value.
  • the present invention provides a method for enhancing power saving performance of a UE, including the following steps:
  • the user equipment UE receives downlink data sent by an evolved base station eNB; and the UE starts a corresponding RTT according to the received downlink data.
  • a timer the timing of the RTT timer is determined by the UE according to a UL uplink/DL downlink configuration and a subframe number of a downlink subframe that carries the downlink data; the UE is discontinuous according to the RTT timer Receive DRX process for control.
  • Another aspect of the present invention further provides a UE, including a downlink data receiving module, a timer starting module, and a DRX process control module, where the downlink data receiving module is configured to receive downlink data sent by an eNB; And activating, by using the downlink data received by the downlink data receiving module, a corresponding RTT timer, where the timing of the RTT timer is configured according to an uplink/downlink UL/DL configuration and a downlink subframe that carries the downlink data.
  • the frame number is determined; the DRX process control module is configured to control the DRX process according to the RTT timer.
  • the present invention further provides a method for enhancing the power saving performance of the UE, including the following steps: the UE receives the downlink data sent by the eNB; when the UE determines that the downlink data transmission is unsuccessful, the UE feeds back the denied response to the eNB. NACK, the UE starts the RTT timer; the UE controls the DRX process according to the RTT timer, and starts the retransmission timer after the RTT timer expires.
  • the present invention further provides a UE, including a downlink data receiving module, a determining module, a feedback module, and a DRX process control module, where the downlink data receiving module is configured to receive downlink data sent by an eNB, and the determining module is configured to determine Determining whether the downlink data transmission is successful; the feedback module is configured to: when the determining module determines that the downlink data transmission is successful, feed back an acknowledgement ACK to the eNB, and determine, by the determining module, that the downlink data transmission is not Upon successful, the eNB sends a negative acknowledgement NACK to the eNB, and starts the RTT timer.
  • the DRX process control module controls the DRX process according to the RTT timer, and starts the retransmission timer after the RTT timer expires. .
  • the invention can effectively provide the UE in the TDD system by redefining the RTT timer Power saving performance.
  • FIG. 1 is a schematic diagram of a principle of a DRX in a prior art LTE system
  • FIG. 3 is a downlink retransmission scheduling sequence of the LTE system
  • FIG. 4 is a schematic structural diagram of a TDD frame
  • FIG. 5 is a schematic diagram of a method for enhancing power saving performance of a UE according to Embodiment 1 of the present invention.
  • FIG. 6 is a structural diagram of a UE according to Embodiment 1 of the present invention.
  • FIG. 7 is a flowchart of a method for enhancing power saving performance of a UE according to Embodiment 2 of the present invention.
  • FIG. 8 is a structural diagram of a UE according to Embodiment 2 of the present invention. detailed description
  • the embodiment of the present invention combines the characteristics of the TDD frame structure, and sets different RTT timers according to different subframe numbers and UL/DL configurations in which downlink transmission occurs, thereby effectively enhancing the power saving performance of the UE.
  • FIG. 3 is a schematic diagram of a downlink retransmission scheduling delay requirement of an LTE system.
  • the minimum transmission interval is tl+t2+t3, where tl is the downlink data transmission time+UE data processing delay; t2 is the UE transmission feedback time+eNB data processing delay; t3 is the delay caused by the frame structure ( T3 is unique to TDD systems, and t3 is 0 for FDD systems.
  • the downlink data transmission time and the UE transmission feedback time are fixed to 1 subframe, that is, 1 ms; the eNB and the UE processing delay are both fixed to 3 ms.
  • FIG 4 is a schematic diagram of the structure of the TDD frame.
  • each radio frame consists of two half-frames, each of which is 5 ms long.
  • Each field consists of 8 slots, each of which is 0.5 ms long; and three special slots, DwPTS, GP and UpPTS.
  • the lengths of DwPTS and UpPTS are configurable and require a total length of DwPTS, GP, and UpPTS equal to lms.
  • Subframe 1 and subframe 6 contain DwPTS, GP, and UpPTS, and all other subframes contain two adjacent slots, where the first subframe consists of the first sum + ⁇ slots. Among them, subframe 0 and subframe 5 and DwPTS are always reserved for downlink transmission.
  • Table 1 Time slot ratio configuration in TDD
  • Table 2 below is a specification of the timing relationship of the uplink feedback direction of the downlink transmission, where the number in Table 2 indicates that the uplink subframe can feed back the transmission of the downlink subframe before the subframe.
  • subframe 2 of UL-DL configuration 2 has a corresponding number in Table 2 (8, 7, 6, 4), indicating that downlink transmissions before (8, 7, 6, 4) subframes are in the uplink subframe.
  • Feedback is made that the downlink transmissions occurring in subframes 4, 5, 6, 8 of the previous radio frame are all fed back in subframe 2. Provisions for upstream feedback of downlink transmissions
  • the minimum transmission time interval of the TDD system can be: downlink data transmission time (1ms) + feedback delay for downlink transmission (number in Table 2) + eNB data processing delay (3ms) + to the nearest downlink subframe The upstream subframe of the previous interval.
  • the feedback delay for the downlink transmission ie, the number in Table 2) already includes the UE sending feedback time (1ms).
  • the above-mentioned "uplink subframe to the nearest downlink subframe pre-interval" is determined by the structure in which the TDD uplink and downlink subframes alternately appear. If the eNB processes the UE feedback and organizes the retransmission packet, it is just the uplink sub-frame. For the frame, the eNB must wait for the downlink subframe to perform retransmission scheduling.
  • the eNB side processing delay is 3 ms as an example.
  • the HARQ RTT timer is considered to be 8ms, the number of DL subframes that the UE needs to monitor more in various configurations is shown in Table 4: Table 4: 8ms HARQ RTT timer, the number of DL subframes that the UE needs to monitor.
  • the present invention proposes two methods of redefining the RTT timer, which will be described below in the manner of a specific embodiment.
  • the time when the UE starts the RTT timer is the same as that in the prior art, and the RTT timer is started after receiving the downlink data sent by the eNB, except that the timing time of the RTT timer in this embodiment is not fixed. (8ms), the UE needs to determine the timing of the corresponding HARQ RTT timer according to the subframe number of the downlink subframe carrying the downlink data and the UL/DL configuration. Further, for the TDD system, since the retransmission timer started after the HARQ RTT timer is counted in the downlink subframe, the uplink subframe immediately following the HARQ RTT timer is not considered. Number (t3).
  • the timing of the HARQ RTT timer of the TDD system is tl+t2, even if the HARQ RTT timer expires immediately after the uplink subframe, because the UE does not listen to the downlink scheduling and transmission in the uplink subframe, so it does not affect the DRX. performance.
  • the UE determines the HARQ RTT timer according to the UL/DL configuration and the subframe number of the downlink subframe carrying the downlink data. Timing time.
  • Table 5 HARQ RTT Timer at the Base Station Side Processing Delay of 3ms (TDD System)
  • the HARQ RTT timer table associated with the DL subframe of Table 5 is used.
  • the UE searches for the corresponding HARQ RTT timer according to the location and UL/DL configuration of the DL transmission. value.
  • the method for enhancing power saving performance of a UE according to Embodiment 1 of the present invention includes the following steps:
  • Step S501 The UE receives downlink data sent by the eNB.
  • Step S502 The UE starts a corresponding HARQ RTT timer according to the received downlink data.
  • the timing of the HARQ RTT timer is determined by the UE according to the UL/DL configuration and the subframe number of the downlink subframe carrying the downlink data.
  • the timing time is determined to be k+4 subframes according to the uplink/downlink configuration and the subframe number of the downlink subframe that carries the uplink data, where k represents downlink data transmission and related hybrid automatic retransmission feedback transmission. The interval between.
  • the k subframes may include the transmission time of the downlink data (for example, 1 subframe), and the maximum data processing delay of the user equipment (for example, 3 subframes), and waiting time (because the uplink and downlink subframes in the TDD system do not appear at the same time, so it is necessary to wait for the subframe in the appropriate direction, where the user equipment needs to wait for the uplink subframe to send HARQ feedback), 4 subframes
  • the transmission delay of the relevant hybrid automatic retransmission feedback for example, 1 subframe
  • the maximum data processing delay of the evolved base station for example, 3 subframes
  • the timing of the HARQ RTT timer is the sum of the downlink data transmission time, the UE data processing delay, the UE transmission feedback time, and the eNB data processing delay. More specifically, it can be determined according to the UL/DL configuration and the subframe number lookup table 5 of the downlink subframe carrying the downlink data.
  • Step S503 The UE controls the DRX process according to the HARQ RTT timer.
  • FIG. 6 is a structural diagram of a UE according to Embodiment 1 of the present invention.
  • the UE 600 includes a downlink data receiving module 610, a timer starting module 620, and a DRX process control module 630.
  • the downlink data receiving module 610 is configured to receive downlink data sent by the eNB.
  • the timer starting module 620 is configured to start a corresponding HARQ RTT timer according to the downlink data received by the downlink data receiving module 610, where the timing of the HARQ RTT timer is based on the UL/DL configuration and the subframe number of the downlink subframe carrying the downlink data. determine.
  • the DRX Process Control Module 630 is used to control the DRX process based on the HARQ RTT timer.
  • the timer starting module determines, according to the uplink/downlink configuration and a subframe number of a downlink subframe that carries the uplink data, a timing time of k+4 subframes, where k sub-subframes
  • the frame may include the transmission time of the downlink data (for example, 1 subframe), the maximum data processing delay of the user equipment (for example, 3 subframes), and the waiting time (because the uplink and downlink subframes in the TDD system do not appear at the same time,
  • the subframe needs to wait for the appropriate direction, where the user equipment needs to wait for the uplink subframe to send the HARQ feedback, and the four subframes may include the transmission delay of the relevant hybrid automatic retransmission feedback (for example, 1 subframe) and the evolution of the user equipment.
  • the maximum data processing delay of the base station for example, 3 subframes).
  • the timing of the HARQ RTT timer is the sum of the downlink data transmission time, the UE data processing delay, the UE transmission feedback time, and the eNB data processing delay. More specifically, when the data processing delay of e NB 3ms, HARQ RTT timer time of the timer and the bearer configuration table query sub-frame number of the downlink data in a downlink subframe 5 is determined according to UL / DL.
  • the UE starts the HARQ RTT timer while feeding back the NACK to the eNB. Therefore, the timing of the HARQ RTT timer may not be included in this embodiment. Tl. In this way, since the HARQ RTT timer is only started when the received data is unsuccessful, after the HARQ RTT timer expires, the retransmission timer must be started to receive the subsequent retransmission schedule.
  • the HARQ RTT timer can take the same value for the FDD system and the TDD system, for example, 4 ms.
  • a flowchart of a method for enhancing power saving performance of a UE according to Embodiment 2 of the present invention includes the following steps.
  • Step S701 The UE receives downlink data sent by the eNB.
  • Step S702 When the UE determines that the downlink data transmission is unsuccessful, the UE feeds back the acknowledgment NACK to the eNB, and the UE starts the HARQ RTT timer.
  • the time of the round trip timer is k + 4 subframes, where k represents the interval between downlink data transmission and associated hybrid automatic repeat transmission feedback.
  • k subframes may include transmission time of downlink data (for example, 1 subframe), maximum data processing delay of the user equipment (for example, 3 subframes), and waiting time (because the uplink and downlink subframes in the TDD system do not appear at the same time) Therefore, it is necessary to wait for a subframe in a suitable direction, where the user equipment needs to wait for an uplink subframe to transmit HARQ feedback), and the four subframes include a transmission delay (for example, 1 subframe) in which the user equipment sends the relevant hybrid automatic retransmission feedback and The maximum data processing delay of the evolved base station (for example, 3 subframes).
  • the timing of the HARQ RTT timer is the sum of the UE transmitting the feedback time and the eNB data processing delay. More specifically, when the eNB data processing delay is 3 ms, the HARQ RTT timer has a timing of 4 ms.
  • Step S703 The UE controls the DRX process according to the HARQ RTT timer, and starts a retransmission timer after the HARQ RTT timer expires.
  • the structural diagram of the UE according to the second embodiment of the present invention includes a downlink data receiving module 810, a determining module 820, a feedback module 830, and a DRX process control module 840.
  • the downlink data receiving module 810 is configured to receive downlink data sent by the eNB.
  • the determining module 820 is used for judging Whether the downlink data transmission is successful.
  • the feedback module 830 is configured to: when the determining module 820 determines that the downlink data transmission is successful, feed back an acknowledgement ACK to the eNB, and when the determining module 820 determines that the downlink data transmission is unsuccessful, the UE sends a negative acknowledgement NACK to the eNB, and starts the HARQ RTT timer.
  • the DRX process control module 840 controls the DRX process according to the HARQ RTT timer, and starts the retransmission timer after the HARQ RTT timer expires.
  • the time of the round trip timer is k + 4 subframes, where k represents the interval between downlink data transmission and associated hybrid automatic repeat transmission feedback.
  • k subframes may include transmission time of downlink data (for example, 1 subframe), maximum data processing delay of the user equipment (for example, 3 subframes), and waiting time (because the uplink and downlink subframes in the TDD system do not appear at the same time) Therefore, it is necessary to wait for a subframe in a suitable direction, where the user equipment needs to wait for an uplink subframe to transmit HARQ feedback), and the four subframes include a transmission delay (for example, 1 subframe) in which the user equipment sends the relevant hybrid automatic retransmission feedback and The maximum data processing delay of the evolved base station (for example, 3 subframes).
  • the timing of the HARQ RTT timer is the sum of the UE transmitting the feedback time and the eNB data processing delay. Specifically, when the data processing delay of the eNB is 3 ms, the timing of the RTT timer is 4 ms.
  • the invention can effectively provide the power saving performance of the UE in the TDD system by redefining the RTT timer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

增强 UE省电性能的方法和 UE 技术领域
本发明涉及通信技术领域, 特别涉及一种增强 UE省电性能的方法和
UE。
背景技术
为了节省 UE ( User Equipment, 用户设备 ) 的能量, 增加 UE待机的 时间, 引入了 DRX ( Discontinuous Receive, 非连续接收)机制, 即在 UE 处于连接状态下时, 不需要连续的监听 eNB ( Evolved Node B, 演进基站) 的控制信道, 而是间断的监听控制信道。
图 1为现有技术 LTE系统( Long Term Evolution, 长期演进) 中 DRX 的原理示意图。 其中, On Duration (打开期间)表示 UE监听控制信道的 时间段, 在该期间内 UE 的射频通道打开, 并连续监听控制信道; 除去打 开期间之外的其它时间, UE处于 Sleep (休眠) 状态, 其射频链路将被关 闭, 以达到省电的目的。 打开期间都是周期性地出现(Cycle ) , 具体周期 由 eNB配置实现。 在达到 UE省电的同时, 为了避免 eNB和 UE之间的通 信时延过大, 引入了长周期 (long cycle ) 和短周期 ( short cycle ) 的概念。 在短周期中, 打开期间出现的比长周期更加频繁。 在配置长周期的同时, 可以选择配置短周期, 以缩短 UE监听控制信道的时间, 减少数据传输时 延。
为了具体实现 DRX 操作, LTE 设计了多种定时器, 并结合 HARQ ( Hybrid Automatic Repeat Request, 混合自动重传)过程, 给出了 DRX状 态下的操作过程, 相关定时器包括:
1、 Inactivity Timer (非活动定时器) : 当 UE在打开期间收到 HARQ 初始传输的控制信令时打开改定时器, 在该定时器超时之前, UE连续监听 控制信道。 如果在非活动定时器超时前, UE收到 HARQ初始传输的控制 信令, 将终止并重新启动非活动定时器。 2、 RTT Timer (往返时间定时器) : 仅适用于 DL (下行) 。 UE如果 收到了 HARQ重传的控制信令, 将打开此定时器。 如果对应 HARQ进程中 的数据在前一次 HARQ传输后仍然解码不成功, 在 RTT定时器超时后, UE打开重传定时器。 如果对应 HARQ进程中的数据在前一次 HARQ传输 后解码成功, 在 RTT定时器超时后, UE不启动重传定时器。
3、 Retransmission Timer (重传定时器) : 在重传定时器期间, UE监 听控制信道, 等待对应 HARQ进程的重传。
图 2为现有技术 DRX过程中各定时器的作用过程的示意图。如图 2所 示, 首先打开 On duration Timer (打开期间定时器) , 在打开期间定时器 运行期间, eNB在 tl时刻调度了 DL初始传输, 于是非活动定时器启动, 同时 HARQ RTT定时器打开。 t2时刻非活动定时器首先超时。 t3时刻 HARQ RTT定时器超时, 此时由于 tl时刻初始传输没有成功 (UE反馈否认应答 NACK ) , 于是启动重传定时器。 在 t4时刻, eNB调度了第一次重传, 于 是重传定时器被停止, 同时启动 RTT定时器。 在 t6时刻, RTT定时器超 时, 并且 t4时刻的第一次重传还是没有成功 (UE反馈 NACK ) , 于是重 传定时器启动。 t7时刻, eNB调度了第二次重传, 重传定时器被停止, 同 时启动 RTT定时器。 由于第二次重传成功 (UE反馈确认应答 ACK ) , 于 是 RTT定时器超时后, 也不会启动重传定时器。
从图 2和上述过程可以看出, RTT定时器能够增加 UE处于 sleep (休 眠)状态的时间, 如图 2中的时间段 T1和 T2。 通过对 RTT定时器的设定 能够控制 UE在两次传输之间睡眠, 使 UE在合理的时刻进入监听状态。
现有技术存在的缺点是,目前 LTE系统中对 RTT定时器设置的时间为 8ms, 即等于 FDD ( Frequency Division Duplex, 频分双工) 系统的最小传 输时间间隔。 因为 eNB只可能在 8ms的最小传输时间间隔后调度重传, 因 此 8ms的 RTT定时器对于 FDD系统是一种比较优化的设计。 但对于 TDD ( Time Division Duplex, 时分双工) 系统来说, 却存在较大的问题。 由于 TDD 系统的下行最小传输时间间隔与 UL/DL配置和发生下行传输的子帧 号都有关系, 因此将 RTT定时器固定为 8ms, 对 TDD系统来说不是全部 适用的, 必然会增加 UE的耗电, 对 UE的节电性能不利。 发明内容
本发明的目的旨在至少解决上述技术缺陷之一, 特别是解决现有技术 中由于 RTT定时器为固定值而引起 UE耗电增加的问题。
为达到上述目的, 本发明一方面提出一种增强 UE省电性能的方法, 包括以下步骤: 用户设备 UE接收演进基站 eNB发送的下行数据; 所述 UE 根据接收的所述下行数据启动相应的 RTT定时器, 所述 RTT定时器的定 时时间由所述 UE根据 UL上行 /DL下行配置和承载所述下行数据的下行子 帧的子帧号确定; 所述 UE根据所述 RTT定时器对非连续接收 DRX过程 进行控制。
本发明另一方面还提出一种 UE, 包括下行数据接收模块、 定时器启动 模块和 DRX过程控制模块, 所述下行数据接收模块, 用于接收 eNB发送 的下行数据; 所述定时器启动模块, 用于根据所述下行数据接收模块接收 的所述下行数据启动相应的 RTT定时器, 所述 RTT定时器的定时时间根 据上行 /下行 UL/DL配置和承载所述下行数据的下行子帧的子帧号确定;所 述 DRX过程控制模块, 用于根据所述 RTT定时器对 DRX过程进行控制。
本发明还提出一种增强 UE省电性能的方法, 包括以下步骤: UE接收 eNB发送的下行数据; 在所述 UE判断所述下行数据传输不成功时, 所述 UE向所述 eNB反馈否认应答 NACK, 同时所述 UE启动 RTT定时器; 所 述 UE根据所述 RTT定时器对 DRX过程进行控制, 在所述 RTT定时器超 时后启动重传定时器。
本发明还提出一种 UE, 包括下行数据接收模块、 判断模块、 反馈模块 和 DRX过程控制模块, 所述下行数据接收模块, 用于接收 eNB发送的下 行数据; 所述判断模块, 用于判断所述下行数据传输是否成功; 所述反馈 模块, 用于在所述判断模块判断所述下行数据传输成功时, 向所述 eNB反 馈确认应答 ACK, 且在所述判断模块判断所述下行数据传输不成功时, 向 所述 eNB反馈否认应答 NACK , 同时启动 RTT定时器; 所述 DRX过程控 制模块, 根据所述 RTT定时器对 DRX过程进行控制, 在所述 RTT定时器 超时后启动重传定时器。
本发明通过对 RTT定时器的重新定义能够有效地提供 TDD系统中 UE 的节电性能。
本发明附加的方面和优点将在下面的描述中部分给出, 部分将从下面 的描述中变得明显, 或通过本发明的实践了解到。 附图说明
本发明上述的和 /或附加的方面和优点从下面结合附图对实施例的描 述中将变得明显和容易理解, 其中:
图 1为现有技术 LTE系统中 DRX的原理示意图;
图 2为现有技术 DRX过程中各定时器的作用过程;
图 3为 LTE系统下行重传调度时序;
图 4为 TDD帧结构示意图;
图 5为本发明实施例一的增强 UE省电性能的方法;
图 6为本发明实施例一的 UE的结构图;
图 7为本发明实施例二的增强 UE省电性能的方法流程图;
图 8为本发明实施例二的 UE的结构图。 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其 中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功 能的元件。 下面通过参考附图描述的实施例是示例性的, 仅用于解释本发 明, 而不能解释为对本发明的限制。
本发明的实施例结合 TDD帧结构的特点,根据发生下行传输的子帧号 和 UL/DL配置的不同设置不同的 RTT定时器,从而能够有效增强 UE的节 电性。
为了对本发明有更清楚和更全面的理解,以下将结合 TDD帧结构的特 点对 RTT定时器的设定进行介绍。
LTE 系统是基于调度的系统, 上下行传输资源都由基站侧调度并通过 调度命令通知终端。 在调度过程中, 必须充分考虑基站和终端的处理时延, 才能达到有效调度。 图 3为 LTE系统下行重传调度时延要求的示意图。 如 图 3所示, 最小传输间隔 = tl+ t2+ t3 , 其中, tl为下行数据传输时间 +UE 数据处理时延; t2为 UE发送反馈时间 +eNB数据处理时延; t3为帧结构造 成的时延( t3为 TDD系统所特有, 对于 FDD系统来说 t3为 0 ) 。 其中, 下行数据传输时间和 UE发送反馈时间固定为 1个子帧, 即 1ms; eNB和 UE处理时延都固定为 3ms。 这样, 对 FDD系统来说, 根据以上公式, 最 小传输时间间隔为 tl+ t2=l+3+l+3=8ms。
图 4为 TDD帧结构示意图。 如图 4所示, 每一个无线帧由两个半帧 ( half-frame ) 构成, 每一个半帧长度为 5ms。 每一个半帧包括 8 个时隙 ( slot ) ,每一个的长度为 0.5ms;以及三个特殊时隙, DwPTS、 GP和 UpPTS。 DwPTS和 UpPTS的长度是可配置的, 并且要求 DwPTS、 GP以及 UpPTS 的总长度等于 lms。 子帧 1和子帧 6中包含有 DwPTS、 GP以及 UpPTS , 所有其他子帧包含两个相邻的时隙, 其中第 个子帧由第 个和 · + ι个时隙 构成。 其中, 子帧 0和子帧 5以及 DwPTS永远预留为下行传输。
目前规范确定支持的时隙比例配置如下表 1所示。 表 1: TDD中的时隙比例配置
Figure imgf000007_0001
如下表 2为对下行传输的上行反馈方向定时关系的规定, 其中表 2中 的数字表示该上行子帧可以对多少个子帧之前的下行子帧承载的传输进行 反馈。 例如 UL-DL配置 2的子帧 2在表 2中对应的数字是(8, 7, 6, 4 ) , 表示 (8 , 7 , 6, 4 ) 个子帧之前的下行传输都在该上行子帧进行反馈, 即 上一个无线帧的子帧 4, 5 , 6, 8发生的下行传输都在子帧 2反馈。 对下行传输的上行方向反馈的规定
Figure imgf000008_0001
这样, TDD系统的最小传输时间间隔可为: 下行数据传输时间 ( 1ms ) +对下行传输的反馈延时(表 2中的数字 ) +eNB数据处理时延 ( 3ms ) +到 最近的下行子帧前间隔的上行子帧。 对下行传输的反馈时延(即表 2 中的 数字) 已经包括了 UE发送反馈时间 (1ms ) 。 其中, 上述 "到最近的下行 子帧前间隔的上行子帧"是由 TDD上下行子帧交替出现的结构决定的, 如 果 eNB处理完 UE反馈并组织好重传数据包的时刻恰好是上行子帧,则 eNB 必须要等到下行子帧才能进行重传调度。
以 eNB侧处理时延 3ms为例进行介绍, 下行最小传输时间间隔如表 3 所示, 配置 5 因为协议中还未最终确定反馈关系, 所以其下行最小传输时 间间隔还不能确定。 举例来说, UL/DL配置 1下, 下行子帧 9发送的下行 传输在上行子帧 3反馈, 经过 3ms后, eNB在子帧 7的时刻就可以调度重 传了, 但因为子帧 7是上行子帧, 则必须再经历到最近的下行子帧前间隔 的上行子帧, 即子帧 7、 8 (共 2ms )后, 在下行子帧 9才能调度重传, 因 此最小传输时间间隔 =1+4+3+2=10ms。 表 3 : eNB侧处理时延 3ms时的下行最小传输时间间隔 ( TDD ) 子帧号
0 1 2 3 4 5 6 7 8 9
UL/DL 0 10 10 - - - 10 10 - - - 配置
1 11 10 - - 10 11 10 - - 10 2 11 10 - 8 12 11 10 - 8 12
3 8 15 - - - 11 10 10 9 9
4 16 15 - - 12 11 11 10 9 8
5 16 15 13 12 11 10 9 8 17
6 11 14 - - - 11 13 - - 10 如果考虑 HARQ RTT定时器为 8ms, 则在各种配置下, UE需要多监 听的 DL子帧个数如表 4中所示: 表 4: 釆用 8ms HARQ RTT定时器, UE需要多监听的 DL子帧个数
Figure imgf000009_0001
从上表 4中可以看出釆用单一的 8ms的 RTT定时器将会增加 TDD系 统中 UE的能量消耗。
针对图 3中最小传输间隔的示意图, 本发明提出了两种重新定义 RTT 定时器的方法, 以下将以具体实施例的方式对其进行介绍。
实施例一
在该实施例中, UE启动 RTT定时器的时间与现有技术的相同, 在收 到 eNB发送的下行数据之后启动 RTT定时器,其区别在于该实施例中 RTT 定时器的定时时间不是固定的 (8ms ) , UE需要根据承载下行数据的下行 子帧的子帧号和 UL/DL配置确定其对应的 HARQ RTT定时器的定时时间。 进一步地, 对于 TDD系统来说, 因为 HARQ RTT定时器之后启动的重传 定时器是以下行子帧计数的, 不考虑 HARQ RTT定时器后紧随的上行子帧 个数( t3 ) 。 因此 TDD系统的 HARQ RTT定时器的定时时间 = tl+ t2, 即 使 HARQ RTT定时器超时后紧随的是上行子帧, 因为 UE在上行子帧本来 就不监听下行调度和传输, 所以也不影响 DRX性能。
更为具体地, 作为本发明的一个实施例, 当 eNB数据处理时延为 3ms 时, UE根据 UL/DL配置和承载下行数据的下行子帧的子帧号查询下表 5 确定 HARQ RTT定时器的定时时间。
表 5: 基站侧处理时延 3ms时的 HARQ RTT定时器 ( TDD系统)
Figure imgf000010_0001
这样釆用表 5的 DL子帧相关的 HARQ RTT定时器表格, UE在需要 启动 HARQ RTT定时器时,根据 DL传输发生的位置和 UL/DL配置在表中 查找相应的 HARQ RTT定时器的取值。
如图 5所示, 为本发明实施例一的增强 UE省电性能的方法, 包括以 下步骤:
步骤 S501 , UE接收 eNB发送的下行数据。
步骤 S502, UE根据接收的下行数据启动相应的 HARQ RTT定时器, HARQ RTT定时器的定时时间由 UE根据 UL/DL配置和承载下行数据的下 行子帧的子帧号确定。
其中, 可以根据所述上行 /下行配置和承载所述上行数据的下行子帧的 子帧号确定出定时时间为 k+4个子帧, 其中, k表示下行数据传输和相关 混合自动重传反馈传输之间的间隔。 进一步地, k 个子帧可以包括下行数 据的传输时间 (例如为 1 个子帧) 、 用户设备最大数据处理时延(例如为 3个子帧) 、 以及等待时间 (因为 TDD系统中的上行和下行子帧不同时出 现, 因此需要等待合适方向的子帧, 此处用户设备需要等待上行子帧来发 送 HARQ反馈) , 4个子帧可以包括用户设备发送相关混合自动重传反馈 的传输时延(例如为 1 个子帧) 和演进基站最大数据处理时延(例如为 3 个子帧) 。
进一步地, HARQ RTT 定时器的定时时间为下行数据传输时间、 UE 数据处理时延、 UE发送反馈时间和 eNB数据处理时延之和。 更为具体地, 可根据 UL/DL配置和承载下行数据的下行子帧的子帧号查询表 5确定。
步骤 S503 , UE根据 HARQ RTT定时器对 DRX过程进行控制。
如图 6所示, 为本发明实施例一的 UE的结构图, 该 UE 600包括下行 数据接收模块 610、 定时器启动模块 620和 DRX过程控制模块 630。 下行 数据接收模块 610用于接收 eNB发送的下行数据。 定时器启动模块 620用 于根据下行数据接收模块 610接收的下行数据启动相应的 HARQ RTT定时 器, 该 HARQ RTT定时器的定时时间根据 UL/DL配置和承载下行数据的 下行子帧的子帧号确定。 DRX过程控制模块 630用于根据 HARQ RTT定 时器对 DRX过程进行控制。
作为本发明的一个实施例, 所述定时器启动模块根据所述上行 /下行配 置和承载所述上行数据的下行子帧的子帧号确定的定时时间为 k+4 个子 帧, 其中, k个子帧可以包括下行数据的传输时间 (例如为 1 个子帧) 、 用户设备最大数据处理时延(例如为 3个子帧)、以及等待时间(因为 TDD 系统中的上行和下行子帧不同时出现, 因此需要等待合适方向的子帧, 此 处用户设备需要等待上行子帧来发送 HARQ反馈) , 4个子帧可以包括用 户设备发送相关混合自动重传反馈的传输时延(例如为 1 个子帧) 和演进 基站最大数据处理时延(例如为 3个子帧) 。
作为本发明的一个实施例, HARQ RTT定时器的定时时间为下行数据 传输时间、 UE数据处理时延、 UE发送反馈时间和 eNB数据处理时延之和。 更为具体地, 当所述 eNB数据处理时延为 3ms时, HARQ RTT定时器的定 时时间根据 UL/DL配置和承载所述下行数据的下行子帧的子帧号查询表 5 确定。 实施例二
该实施例相对于现有技术和实施例一的不同在于, 该实施例中 UE在 向 eNB反馈 NACK的同时启动 HARQ RTT定时器, 因此在该实施例中 HARQ RTT定时器的定时时间可不再包括 tl。这样由于 HARQ RTT定时器 仅在接收数据不成功时启动, 因此在 HARQ RTT定时器超时后, 必须启动 重传定时器, 以接收后续的重传调度。 作为本发明的一个具体实施例, HARQ RTT定时器对于 FDD系统和 TDD系统来说可以取相同的值, 如可 选为 4ms。
如图 7所示, 为本发明实施例二的增强 UE省电性能的方法流程图, 包括以下步骤。
步骤 S701 , UE接收 eNB发送的下行数据。
步骤 S702, 在 UE判断下行数据传输不成功时, UE向 eNB反馈否认 应答 NACK, 同时 UE启动 HARQ RTT定时器。
作为本发明的一个实施例, 所述往返时间定时器的定时时间为 k+4个 子帧, 其中, k表示下行数据传输和相关混合自动重传反馈传输之间的间 隔。 k个子帧可以包括下行数据的传输时间 (例如为 1 个子帧) 、 用户设 备最大数据处理时延(例如为 3个子帧) 、 以及等待时间 (因为 TDD系统 中的上行和下行子帧不同时出现, 因此需要等待合适方向的子帧, 此处用 户设备需要等待上行子帧来发送 HARQ反馈) , 4个子帧包括用户设备发 送相关混合自动重传反馈的传输时延(例如为 1个子帧) 和演进基站最大 数据处理时延(例如为 3个子帧) 。
作为本发明的一个实施例, HARQ RTT定时器的定时时间为 UE发送 反馈时间和 eNB数据处理时延之和。 更为具体地, 当 eNB数据处理时延为 3 ms时, HARQ RTT定时器的定时时间为 4ms。
步骤 S703 , UE根据 HARQ RTT定时器对 DRX过程进行控制, 在所 述 HARQ RTT定时器超时后启动重传定时器。
如图 8所示, 为本发明实施例二的 UE的结构图, 包括下行数据接收 模块 810、 判断模块 820、 反馈模块 830和 DRX过程控制模块 840。 下行 数据接收模块 810用于接收 eNB发送的下行数据。 判断模块 820用于判断 下行数据传输是否成功。 反馈模块 830用于在判断模块 820判断下行数据 传输成功时, 向 eNB反馈确认应答 ACK, 且在判断模块 820判断下行数据 传输不成功时, 向 eNB反馈否认应答 NACK, 同时启动 HARQ RTT定时 器。 DRX过程控制模块 840根据 HARQ RTT定时器对 DRX过程进行控制, 在 HARQ RTT定时器超时后启动重传定时器。
作为本发明的一个实施例, 所述往返时间定时器的定时时间为 k+4个 子帧, 其中, k表示下行数据传输和相关混合自动重传反馈传输之间的间 隔。 k个子帧可以包括下行数据的传输时间 (例如为 1 个子帧) 、 用户设 备最大数据处理时延(例如为 3个子帧) 、 以及等待时间 (因为 TDD系统 中的上行和下行子帧不同时出现, 因此需要等待合适方向的子帧, 此处用 户设备需要等待上行子帧来发送 HARQ反馈) , 4个子帧包括用户设备发 送相关混合自动重传反馈的传输时延(例如为 1个子帧) 和演进基站最大 数据处理时延(例如为 3个子帧) 。
作为本发明的一个实施例, HARQ RTT定时器的定时时间为 UE发送 反馈时间和 eNB数据处理时延之和。 具体地, 当所述 eNB数据处理时延为 3ms时, 所述 RTT定时器的定时时间为 4ms。
本发明通过对 RTT定时器的重新定义能够有效地提供 TDD系统中 UE 的节电性能。
尽管已经示出和描述了本发明的实施例, 对于本领域的普通技术人员 而言, 可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例 进行多种变化、 修改、 替换和变型, 本发明的范围由所附权利要求及其等 同限定。

Claims

权利要求书
1、 一种增强用户设备省电性能的方法, 其特征在于, 包括以下步骤: 用户设备接收演进基站发送的下行数据;
所述用户设备根据接收的所述下行数据启动相应的往返时间定时器, 所述往返时间定时器的定时时间由所述用户设备根据上行 /下行配置和承 载所述下行数据的下行子帧的子帧号确定;
所述用户设备根据所述往返时间定时器对非连续接收过程进行控制。
2、 如权利要求 1所述的增强用户设备省电性能的方法, 其特征在于, 根据所述上行 /下行配置和承载所述上行数据的下行子帧的子帧号确定的 定时时间为 k+4个子帧, 其中, k表示下行数据传输和相关混合自动重传 反馈传输之间的间隔。
3、 如权利要求 2所述的增强用户设备省电性能的方法, 其特征在于, k 个子帧包括下行数据的传输时间、 用户设备最大数据处理时延、 以及等 待时间, 4 个子帧包括用户设备发送相关混合自动重传反馈的传输时延和 演进基站最大数据处理时延。
4、 如权利要求 1所述的增强用户设备省电性能的方法, 其特征在于, 所述往返时间定时器的定时时间为下行数据传输时间、 用户设备数据处理 时延、 用户设备发送反馈时间和演进基站数据处理时延之和。
5、 如权利要求 3或 4所述的增强用户设备省电性能的方法, 其特征在 于, 当所述演进基站数据处理时延为 3ms时, 所述用户设备根据上行 /下行 配置和承载所述下行数据的下行子帧的子帧号确定所述往返时间定时器的 定时时间包括:
所述用户设备根据上行 /下行配置和承载所述下行数据的下行子帧的 子帧号
0 1 2 3 4 5 6 7 8 9
0 8 10 - - - 8 10 - - -
1 11 10 - - 8 11 10 - - 8
2 11 10 - 8 12 11 10 - 8 12
UL上行 /DL下行
3 8 15 - - - 11 10 10 9 9 配置
4 16 15 - - 12 11 11 10 9 8
5 16 15 - 13 12 11 10 9 8 17
6 11 11 - - - 11 11 - - 9
6、 一种用户设备, 其特征在于, 包括下行数据接收模块、 定时器启动 模块和 DRX过程控制模块,
所述下行数据接收模块, 用于接收演进基站发送的下行数据; 所述定时器启动模块, 用于根据所述下行数据接收模块接收的所述下 行数据启动相应的往返时间定时器, 所述往返时间定时器的定时时间根据 上行 /下行配置和承载所述下行数据的下行子帧的子帧号确定;
所述非连续接收过程控制模块, 用于根据所述往返时间定时器对非连 续接收过程进行控制。
7、 如权利要求 6所述的用户设备, 其特征在于, 所述定时器启动模块 根据所述上行 /下行配置和承载所述上行数据的下行子帧的子帧号确定的 定时时间为 k+4个子帧, 其中, k表示下行数据传输和相关混合自动重传 反馈传输之间的间隔。
8、 如权利要求 7所述的用户设备, 其特征在于, k个子帧包括下行数 据的传输时间、 用户设备最大数据处理时延、 以及等待时间, 4 个子帧包 括用户设备发送相关混合自动重传反馈的传输时延和演进基站设备最大数 据处理时延。
9、 如权利要求 6所述的用户设备, 其特征在于, 所述往返时间定时器 的定时时间为下行数据传输时间、 用户设备数据处理时延、 用户设备发送 反馈时间和演进基站数据处理时延之和。
10、 如权利要求 8或 9所述的用户设备, 其特征在于, 当所述演进基 配置和承载所述下行数据的下行子帧的子帧号查询下表确定 ,
Figure imgf000016_0001
11、 一种增强用户设备省电性能的方法, 其特征在于, 包括以下步骤: 用户设备接收演进基站发送的下行数据;
在所述用户设备判断所述下行数据传输不成功时, 所述用户设备向所 述演进基站反馈否认应答, 同时所述用户设备启动往返时间定时器;
所述用户设备根据所述往返时间定时器对非连续接收过程进行控制, 在所述往返时间定时器超时后启动重传定时器。
12、如权利要求 11所述的增强用户设备省电性能的方法,其特征在于, 所述往返时间定时器的定时时间为 k+4个子帧, 其中, k表示下行数据传 输和相关混合自动重传反馈传输之间的间隔。
13、如权利要求 12所述的增强用户设备省电性能的方法,其特征在于, k 个子帧包括下行数据的传输时间、 用户设备最大数据处理时延、 以及等 待时间, 4 个子帧包括用户设备发送相关混合自动重传反馈的传输时延和 演进基站设备最大数据处理时延。
14、如权利要求 11所述的增强用户设备省电性能的方法,其特征在于, 所述往返时间定时器的定时时间为用户设备发送反馈时间和演进基站数据 处理时延之和。
15、如权利要求 14所述的增强用户设备省电性能的方法,其特征在于, 当所述演进基站数据处理时延为 3ms时, 所述往返时间定时器的定时时间 为 4ms。
16、 一种用户设备, 其特征在于, 包括下行数据接收模块、 判断模块、 反馈模块和非连续接收过程控制模块,
所述下行数据接收模块, 用于接收演进基站发送的下行数据; 所述判断模块, 用于判断所述下行数据传输是否成功;
所述反馈模块, 用于在所述判断模块判断所述下行数据传输成功时, 向所述演进基站反馈确认应答, 且在所述判断模块判断所述下行数据传输 不成功时, 向所述演进基站反馈否认应答, 同时启动往返时间定时器; 所述非连续接收过程控制模块, 根据所述往返时间定时器对非连续接 收过程进行控制, 在所述往返时间定时器超时后启动重传定时器。
17、 如权利要求 16所述的用户设备, 其特征在于, 所述往返时间定时 器的定时时间为 k+4个子帧, 其中, k表示下行数据传输和相关混合自动 重传反馈传输之间的间隔。
18、 如权利要求 17所述的用户设备, 其特征在于, k个子帧包括下行 数据的传输时间、 用户设备最大数据处理时延、 以及等待时间, 4 个子帧 包括用户设备发送相关混合自动重传反馈的传输时延和演进基站设备最大 数据处理时延。
19、 如权利要求 16所述的用户设备, 其特征在于, 所述往返时间定时 器的定时时间为用户设备发送反馈时间和演进基站数据处理时延之和。
20、 如权利要求 19所述的用户设备, 其特征在于, 当所述演进基站数 据处理时延为 3ms时, 所述往返时间定时器的定时时间为 4ms。
PCT/CN2009/074767 2008-11-03 2009-11-03 增强ue省电性能的方法和ue WO2010060341A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/127,210 US8675530B2 (en) 2008-11-03 2009-11-03 Method for enhancing power saving performance of user equipment
EP09828601.6A EP2355602B1 (en) 2008-11-03 2009-11-03 Method for enhancing power saving performance of user equipment and the ue
MX2011004621A MX2011004621A (es) 2008-11-03 2009-11-03 Metodo para mejorar el desempeño de ahorro de energia de usuario (ue) y ue.
KR1020117012793A KR101254954B1 (ko) 2008-11-03 2009-11-03 Ue 전력 절약 성능을 향상시키기 위한 방법과 ue
JP2011533523A JP5253581B2 (ja) 2008-11-03 2009-11-03 Ueの省電力性能を強化する方法およびue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810225699.6A CN101730207B (zh) 2008-11-03 2008-11-03 增强ue省电性能的方法和ue
CN200810225699.6 2008-11-03

Publications (1)

Publication Number Publication Date
WO2010060341A1 true WO2010060341A1 (zh) 2010-06-03

Family

ID=42225247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074767 WO2010060341A1 (zh) 2008-11-03 2009-11-03 增强ue省电性能的方法和ue

Country Status (7)

Country Link
US (1) US8675530B2 (zh)
EP (1) EP2355602B1 (zh)
JP (1) JP5253581B2 (zh)
KR (1) KR101254954B1 (zh)
CN (1) CN101730207B (zh)
MX (1) MX2011004621A (zh)
WO (1) WO2010060341A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014114272A1 (en) * 2013-01-28 2014-07-31 Qualcomm Incorporated Method and apparatus for utilizing a reconfiguration timer for updating tdd configuration
JP2016181900A (ja) * 2013-09-17 2016-10-13 インテル アイピー コーポレーション 装置、プログラム、ユーザ機器(ue)、装置およびコンピュータ可読記録媒体
CN107046455A (zh) * 2016-02-05 2017-08-15 上海贝尔股份有限公司 基于频分双工的无线通信网络中的harq处理
US10009164B2 (en) 2013-01-28 2018-06-26 Qualcomm Incorporated Method and apparatus for utilizing a reconfiguration timer for updating TDD configuration

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101699904A (zh) * 2009-10-27 2010-04-28 华为技术有限公司 一种节能方法及系统
KR20110052418A (ko) 2009-11-11 2011-05-18 삼성전자주식회사 이동통신 시스템에서 불연속 수신을 수행하는 방법 및 장치
CN102948222B (zh) * 2010-06-18 2016-08-03 富士通株式会社 不连续接收模式中的通信方法和通信终端
CN102316562B (zh) * 2010-07-02 2014-04-02 电信科学技术研究院 一种多载波系统及其非连续接收方法及装置
CN102612119B (zh) * 2011-01-19 2014-12-10 华为技术有限公司 一种处理方法、通信方法及装置
US8886132B2 (en) * 2011-03-08 2014-11-11 Skype Controlling power saving mode in radio
US8797924B2 (en) * 2011-05-06 2014-08-05 Innovative Sonic Corporation Method and apparatus to improve discontinuous reception (DRX) operation for TDD (time division duplex) and FDD (frequency division duplex) mode in carrier aggregation (CA)
EP3522673A1 (en) 2011-08-12 2019-08-07 Telefonaktiebolaget LM Ericsson (publ) Deciding whether to send uplink control signaling based on the active time status of a user equipment configured with discontinuous reception (drx)
AU2012319347B2 (en) 2011-10-04 2017-01-12 Samsung Electronics Co., Ltd. A system and a method of configuring radio access network parameters for a user equipment connected to a wireless network system
KR101283127B1 (ko) 2011-10-18 2013-07-05 현대자동차주식회사 하이브리드 차량의 엔진운영방법
WO2013066053A1 (en) * 2011-10-31 2013-05-10 Samsung Electronics Co., Ltd. Method and system for employing discontinuous reception configurations in a wireless network environment
US9161304B2 (en) * 2011-12-14 2015-10-13 Transpacific Ip Management Group Ltd. Power management based on discontinuous reception cycles in a mobile communication system
DE112013000242B4 (de) 2012-10-28 2019-10-17 Lg Electronics Inc. Betrieb mit verschiedenen Zeitgebern in einem drahtlosen Kommunikationssystem
JP6102324B2 (ja) * 2013-02-20 2017-03-29 株式会社デンソー 通信システム
US20160044641A1 (en) * 2013-04-03 2016-02-11 Broadcom Corporation Handling downlink semi-persistent scheduling retransmission in wireless networks
CN105453689A (zh) * 2013-08-06 2016-03-30 联发科技股份有限公司 自适应tdd系统中drx以及harq运作
CN105409317A (zh) * 2013-08-06 2016-03-16 联发科技股份有限公司 自适应tdd系统中drx以及harq运作
WO2015017978A1 (en) 2013-08-06 2015-02-12 Mediatek Inc. Drx operations in adaptive tdd systems
US10218457B2 (en) * 2015-08-24 2019-02-26 Qualcomm Incorporated Techniques for improving feedback processes based on a latency between a transmission time interval (TTI) and a feedback opportunity
CN110351898B (zh) * 2018-04-04 2023-06-30 华为技术有限公司 非连续接收的通信方法、装置、通信设备和通信系统
US11956788B2 (en) * 2018-07-30 2024-04-09 Qualcomm Incorporated Expiration periods for low latency communications
US20230319951A1 (en) * 2020-08-29 2023-10-05 Huawei Technologies Co., Ltd. Discontinuous Reception DRX Method and Apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030028837A1 (en) * 2001-07-20 2003-02-06 Samsung Electronics Co., Ltd Method for driving retransmission timer in mobile telecommunications system using radio link protocol
CN101222309A (zh) * 2008-01-25 2008-07-16 中兴通讯股份有限公司 Lte tdd系统上行harq进程的配置方法和装置
WO2008097965A2 (en) * 2007-02-05 2008-08-14 Qualcomm Incorporated Flexible dtx and drx in a wireless communication system
CN101483884A (zh) * 2008-01-10 2009-07-15 华硕电脑股份有限公司 改善非连续接收功能的方法及其相关通讯装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4542150B2 (ja) * 2005-07-08 2010-09-08 富士通株式会社 送信装置、受信装置、情報通信方法
US8085694B2 (en) * 2008-03-21 2011-12-27 Sunplus Mmobile Inc. Method for avoiding unnecessary excessive stay of short cycle in discontinuous reception mechanism
US8489950B2 (en) * 2008-08-06 2013-07-16 Nokia Siemens Networks Oy Discontinuous reception retransmission timer and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030028837A1 (en) * 2001-07-20 2003-02-06 Samsung Electronics Co., Ltd Method for driving retransmission timer in mobile telecommunications system using radio link protocol
WO2008097965A2 (en) * 2007-02-05 2008-08-14 Qualcomm Incorporated Flexible dtx and drx in a wireless communication system
CN101483884A (zh) * 2008-01-10 2009-07-15 华硕电脑股份有限公司 改善非连续接收功能的方法及其相关通讯装置
CN101222309A (zh) * 2008-01-25 2008-07-16 中兴通讯股份有限公司 Lte tdd系统上行harq进程的配置方法和装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014114272A1 (en) * 2013-01-28 2014-07-31 Qualcomm Incorporated Method and apparatus for utilizing a reconfiguration timer for updating tdd configuration
US10009164B2 (en) 2013-01-28 2018-06-26 Qualcomm Incorporated Method and apparatus for utilizing a reconfiguration timer for updating TDD configuration
JP2016181900A (ja) * 2013-09-17 2016-10-13 インテル アイピー コーポレーション 装置、プログラム、ユーザ機器(ue)、装置およびコンピュータ可読記録媒体
US9867078B2 (en) 2013-09-17 2018-01-09 Intel IP Corporation DRX operation for UL/DL reconfiguration
US10306509B2 (en) 2013-09-17 2019-05-28 Intel IP Corporation DRX operation for UL/DL reconfiguration
CN107046455A (zh) * 2016-02-05 2017-08-15 上海贝尔股份有限公司 基于频分双工的无线通信网络中的harq处理
CN107046455B (zh) * 2016-02-05 2019-12-03 上海诺基亚贝尔股份有限公司 无线通信网络的用户设备中分配用户设备harq时间的装置及方法

Also Published As

Publication number Publication date
KR101254954B1 (ko) 2013-04-16
KR20110106291A (ko) 2011-09-28
US8675530B2 (en) 2014-03-18
MX2011004621A (es) 2011-06-24
EP2355602A4 (en) 2013-08-07
CN101730207B (zh) 2015-04-15
JP2012507891A (ja) 2012-03-29
CN101730207A (zh) 2010-06-09
JP5253581B2 (ja) 2013-07-31
EP2355602B1 (en) 2018-08-22
US20110268003A1 (en) 2011-11-03
EP2355602A1 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
WO2010060341A1 (zh) 增强ue省电性能的方法和ue
US10849184B2 (en) Method and apparatus for discontinuous reception of connected terminal in a mobile communication system
US10362626B2 (en) Method and apparatus for handling DRX (discontinuous reception) operation in a wireless communication system
JP5876585B2 (ja) 無線通信システムにおいて様々なタイマーによる動作
EP2079181B1 (en) Method and corresponding communications device for improving discontinuous reception functionality in wireless communications
US20160366682A1 (en) Method and apparatus for using a configured resource in a wireless communication system
EP1845668A1 (en) Method and apparatus for discontinuously receiving packet in a mobile communication system
WO2010078831A1 (zh) 移动通信终端接收下行数据的控制方法和移动通信终端
WO2013020417A1 (zh) 一种非连续接收方法及系统
WO2021159870A1 (zh) 非连续接收定时器管理方法及终端
KR20120113687A (ko) 이동통신 단말기의 배터리 소모 개선 방법 및 장치
WO2010105552A1 (zh) 多载波系统中非连续监听控制信道的方法及装置
WO2012100731A1 (zh) 载波聚合系统中的定时器维护方法和设备
WO2010060261A1 (zh) 移动通信终端接收下行数据的控制方法和移动通信终端
WO2010075706A1 (zh) 基于时分双工系统的混合自动重传请求的实现方法和装置
WO2011069368A1 (zh) 一种多载波上的不连续接收的优化方法和演进基站
WO2010054535A1 (zh) 移动通信终端接收下行数据的控制方法和移动通信终端
EP2921022A1 (en) Drx and harq operations in adaptive tdd systems
WO2008131640A1 (fr) Procédé d'entrée dans un état de réception discontinue d'un équipement utilisateur
WO2011120449A1 (zh) 载波去激活的方法和设备
CN113939045A (zh) 无线通信系统中处置经配置上行链路准予集束的drx计时器的方法和设备
CN101741524A (zh) 一种确定最小重传时间间隔的方法、系统和装置
WO2021197472A1 (zh) 边链路监听方法、设备及存储介质
WO2009152673A1 (zh) 上行混合自动重传请求的实现方法和系统
WO2022151060A1 (zh) 数据接收方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828601

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011533523

Country of ref document: JP

Ref document number: MX/A/2011/004621

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009828601

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117012793

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4197/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13127210

Country of ref document: US