WO2010059006A2 - MEMS CHIP FOR CHROMATIN IMMUNOPRECIPITATION (ChIP) AND CHIP METHOD USING SAME - Google Patents
MEMS CHIP FOR CHROMATIN IMMUNOPRECIPITATION (ChIP) AND CHIP METHOD USING SAME Download PDFInfo
- Publication number
- WO2010059006A2 WO2010059006A2 PCT/KR2009/006903 KR2009006903W WO2010059006A2 WO 2010059006 A2 WO2010059006 A2 WO 2010059006A2 KR 2009006903 W KR2009006903 W KR 2009006903W WO 2010059006 A2 WO2010059006 A2 WO 2010059006A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- chip
- sample
- microchip
- beads
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/536—Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
- G01N33/537—Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody
- G01N33/539—Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody involving precipitating reagent, e.g. ammonium sulfate
- G01N33/541—Double or second antibody, i.e. precipitating antibody
Definitions
- the present invention relates to a concentrated microchip for ChIP and a method of performing ChIP using the same. More specifically, the concentrated microchip for ChIP to perform a ChIP experiment by replacing the EP tube used in the existing ChIP experiment and a method of performing ChIP using the same. It is about.
- Functional genomics is being conducted as a research stage after the Human Genome Project. Functional genomics is the study of gene function and regulation in the cell or signaling system.
- DNA chip technology which is mainly used to study functional genomics, has the advantage of comparing the whole gene expression at the same time, but it has the disadvantage that the binding of transcription factor and promoter cannot be directly analyzed because only DNA and DNA binding are examined.
- the purpose of the ChIP technique is to regulate the expression of transcription factors that regulate gene expression by binding to a promoter, which is a specific sequence.
- ChIP technology 1) E.P. Inserting the cells into the tube and treating formaldehyde to bind the DNA and the DNA binding protein, 2) inserting the cell lysate into the cells and cutting the DNA into fragments of 200 to 1 kb using a sonicator, 3 ) Put the ChIP binding solution in the lysate containing the DNA fragment and remove the protein and DNA that binds to the beads nonspecifically by adding agarose beads or Sepharose beads, 4) the specific protein ( Example: Add an antibody of acetylated histone H3) and react overnight (DNA and DNA-binding protein, the antibody of the protein binds), 5) Add agarose or Sepharose beads fixed with protein A or G Reaction step (DNA and DNA binding protein, antibody of the protein, agarose or Sepharose beads all bound), 6) high salt, low salt, lithium chloride immune complex washing buffer and TE buffer Washing the beads (washing DNA, protein, etc.
- step 5 7) separating the washed beads from the DNA-protein-antibody from the beads, 8) Dissociating DNA and protein by treating sodium chloride and protease (K), 9) purely separating DNA using phenol / chloroform, and 10) PCR using specific gene primers.
- the PCR procedure was performed using the ChIP technique, or, in place of the step 7), 7-1) processing and boiling the SDS sample buffer in the washed beads, followed by Western blot.
- the conventional E.P. ChIP technology using the tube has the advantage of easy identification of transcription factors, etc., but it requires a large amount of sample, the experiment time is very long and complex, the fluctuation of the experimental results is severe, and should be performed at about -4 °C temperature Experimental conditions such as this was very difficult.
- the present invention has been made to solve the above problems, the object of the present invention is to provide a conventional E.P. It is possible to provide a concentrated microchip for ChIP that can perform ChIP experiments at room temperature while reducing experiment time and reducing the experiment time.
- Another object of the present invention is to provide a concentrated microchip for ChIP capable of detecting two or more types of target DNA or proteins at a time in the ChIP technique.
- Still another object of the present invention is to provide a method of performing ChIP using ChIP-enriched microchips, which simplify the experimental conditions and the like by using the ChIP-enriched microchips of the present invention.
- the present invention is an injection port to which a sample containing a protein combined with DNA and antibodies to achieve the above technical problem;
- a chamber in communication with the inlet and having a plurality of beads in which a specific protein for binding the antibody is fixed to a surface thereof;
- a DNA enrichment MEMs chip for ChIP Chromatin immunoprecipitation
- the specific protein is preferably protein A or protein G
- the beads may use agarose beads or Sepharose beads, the average diameter of the beads may be used 45 ⁇ 165 ⁇ m.
- the beads may be provided with 6 ⁇ g / 30 ⁇ l ⁇ 12 ⁇ g / 30 ⁇ l.
- the fine chip is preferably installed on the outer periphery of the chamber and the sample is discharged, and may further include a discharge path in communication with the discharge port, more preferably, is installed between the discharge path and the chamber and the bead It is also possible to further include a discharge hole having a smaller passage.
- a cover for sealing the chamber may be combined, in which case the cover may use glass or transparent plastic.
- the injection port is a sample containing two kinds of proteins, each of which is coupled to different DNA and antibody;
- a first chamber in communication with the inlet and having a plurality of beads fixed therein, the first specific protein being bound to the antibody;
- a second chamber connected to the first chamber by a partition wall and having a plurality of beads coated therein with a second specific protein binding to the antibody;
- a first discharge passage connected to a portion of an outer circumference of the second chamber so that the sample introduced into the first chamber is supplied to the second chamber;
- a second discharge passage connected to an outer circumference of the second chamber while being spaced apart from the first discharge passage; And an outlet for discharging the sample introduced into the second chamber.
- the partition wall preferably further includes a discharge hole provided between the first discharge path and the first chamber and the second discharge path and the second chamber and having a passage smaller than the bead, wherein the second chamber includes a sample.
- An auxiliary inlet for supplying the second chamber may be further provided.
- the first protein and the second protein is preferably a different kind of protein because it can bind to different antibodies preferably.
- first chamber and the second chamber may be detachable from each other.
- a partition wall having a discharge hole formed between the second chamber and the discharge port may be further provided so that the sample introduced into the second chamber may be discharged to the discharge port.
- ChIP performing method using a concentrated microchip for ChIP according to another aspect of the present invention, 1) adding formaldehyde to the cell to combine DNA and DNA binding protein, 2) destroying the cell and chopped the DNA Cutting, 3) preparing a sample by injecting an antibody binding to the DNA binding protein, 4) injecting the sample into the inlet of the concentrated microchip for ChIP of the present invention, and 5) Washing the beads therein, and 6) treating the washed beads with an elution buffer to elute the DNA.
- the DNA preferably refers to all DNA that binds to Acetylated Histone H3 such as GAPDH (glyceraldehyde-3-phosphate dehydrogenase), and in this case, the sample may preferably be added to 600 ⁇ 1000ul, more preferably 100ul of cell sonication sample (2.5X10 6 cells) and 900ul of IP dilution buffer may be added to step 4).
- GAPDH glycosylated Histone H3
- the sample may preferably be added to 600 ⁇ 1000ul, more preferably 100ul of cell sonication sample (2.5X10 6 cells) and 900ul of IP dilution buffer may be added to step 4).
- the sample may preferably be added @ ⁇ @ ⁇ l.
- Steps 4) to 6) may be preferably performed at 15 to 30 ° C., and the sample may be added to the inlet for 5 to 30 minutes in step 4).
- Step 5) is preferably a) 0.5 ml of low salt immune complex wash buffer b) 0.5 ml of high salt lmmune complex wash buffer, c) lithium chloride immune complex 0.5 ml of washing buffer (LiCl immune complex wash buffer) and d) 0.5 ml of TE buffer; washed sequentially, each washing time is 30 seconds to 2 minutes and the d) step may be performed twice.
- step 6 preferably, Western blot or PCR may be performed.
- DNA and protein when performing the ChIP experiment through the enriched microchip for ChIP of the present invention, DNA and protein can be detected as well as the number of beads used even when a small amount of sample is added as compared to using a conventional EP tube. It can be reduced to less than half, and the average of four days in the existing ChIP experiments can be reduced by up to 50% because the time of use of the chip of the present invention is reduced to about two days. In addition, it is possible to reduce the amount of expensive antibodies, reagents, samples, etc., thereby reducing the cost of experiments, and can easily perform the ChIP experiments using quantified reagents and materials, thereby ensuring consistency of experimental results. Furthermore, it is possible to produce a large amount by soft lithography and the like, and thus the manufacturing cost is low.
- FIG. 1 is a plan view of a concentrated microchip for ChIP according to an embodiment of the present invention.
- FIG. 2 is a plan view of a concentrated microchip for ChIP according to an embodiment of the present invention.
- FIG 3 is a plan view of a concentrated microchip for ChIP according to an embodiment of the present invention.
- Figure 4 is a perspective view of the concentrated microchips for ChIP without the cover according to an embodiment of the present invention.
- FIG. 5 is a perspective view of a concentrated microchip for ChIP in the state that the cover is attached according to an embodiment of the present invention.
- FIG. 6 is a cross-sectional view of a concentrated microchip for ChIP according to an embodiment of the present invention.
- a first embodiment of the DNA enrichment MEMs chip (ChIP) for Chromatin immunoprecipitation (ChIP) is an injection hole into which a sample containing a protein coupled with DNA and an antibody; A chamber in communication with the inlet and having a plurality of beads in which a specific protein for binding the antibody is fixed to a surface thereof; And a discharge port communicating with the chamber and formed at the other side of the injection hole so that the injected sample is discharged.
- the second embodiment includes an injection port into which a sample containing two kinds of proteins to which different DNA and antibodies are respectively bound is introduced;
- a first chamber in communication with the inlet and having a plurality of beads fixed therein, the first specific protein being bound to the antibody;
- a second chamber connected to the first chamber by a partition wall and having a plurality of beads coated therein with a second specific protein binding to the antibody;
- a first discharge passage connected to a portion of an outer circumference of the second chamber so that the sample introduced into the first chamber is supplied to the second chamber;
- a second discharge passage connected to an outer circumference of the second chamber while being spaced apart from the first discharge passage; And an outlet for discharging the sample introduced into the second chamber.
- ChIP performing method using a concentrated microchip for ChIP according to another aspect of the present invention, 1) adding formaldehyde to the cell to combine DNA and DNA binding protein, 2) destroying the cell and chopped the DNA Cutting, 3) preparing a sample by injecting an antibody binding to the DNA binding protein, 4) injecting the sample into the inlet of the concentrated microchip for ChIP of the present invention, and 5) Washing the beads therein, and 6) treating the washed beads with an elution buffer to elute the DNA.
- the enrichment microchips (enrichment MEMs chip) for ChIP is an injection hole into which a sample containing a protein coupled with DNA and antibodies; A chamber in communication with the inlet and having a plurality of beads in which a specific protein for binding the antibody is fixed to a surface thereof; And a discharge port communicating with the chamber and formed at the other side of the injection hole so that the injected sample is discharged. The problem of the tube was overcome.
- FIGS. 1 and 2 are plan views of the enriched microchips for ChIP according to the first embodiment of the present invention. More specifically, the present invention utilizes semiconductor processing techniques such as etching to form a structural shape on a silicon wafer, thereby providing PDMS. It can be manufactured by soft lithography method to form channels, chambers, barrier ribs, etc. of desired structure in the poured PDMS.
- semiconductor processing techniques such as etching to form a structural shape on a silicon wafer, thereby providing PDMS. It can be manufactured by soft lithography method to form channels, chambers, barrier ribs, etc. of desired structure in the poured PDMS.
- the injection port (2) into which the sample containing the protein bound to the DNA and the antibody is processed and communicated with the injection port (2), and a plurality of beads in which a specific protein to bind the antibody is fixed to the surface ( The chamber 3, in which 4) is located, and the chamber 3 are in communication with each other, and an outlet 6 formed on the other side of the injection port 2 is formed to discharge the injected sample.
- the injection hole 2 may be shaped to protrude outward as shown in FIG. 1, and may be shaped to be recessed inwardly as shown in FIG. 2.
- the sample injected into the inlet comprises a DNA-protein-antibody complex generated by binding a target DNA and a protein, then crushing the same, and adding an antibody capable of binding to the protein.
- Antibodies used in conventional ChIP experiments can be used.
- the chamber 3 in communication with the inlet 2 has a plurality of beads 4 fixed therein (coated) with a protein capable of binding to a specific antibody therein.
- the material of the beads 4 may be agarose or sepharose, and protein A or protein G capable of binding to a target antibody (an antibody of DNA-protein-antibody complex) in the sample on its surface is a conventional method. Is applied.
- the diameter of the beads 4 may be used 45 ⁇ 165 ⁇ m.
- the beads 4 may be provided with 6 ⁇ m / 30 ⁇ l ⁇ 12 ⁇ g / 30 ⁇ L and the number of beads (4) is only about half the number of beads used in the conventional ET tube reaction time This can drastically reduce.
- the microchip of the present invention is preferably installed on the outer periphery of the chamber 3 may further include a discharge path (7) for discharging the sample passed through the bead (4) and the discharge path (7) is an outlet In communication with (6), the sample may be discharged.
- a discharge hole 32 is formed between the chamber 4 and the discharge path 7 so that the sample can escape, but the beads cannot escape, and the discharge hole 32 is discharged from the chamber 3. It can be formed by installing a partition 8 of appropriate height between the furnaces 7.
- a cover 30 for sealing the chamber 3 may be combined, in which case the cover may be glass or transparent plastic.
- the partition 8 and the discharge hole 32 is also located between the chamber 3 and the reservoir 5, through which the sample passing through the bead 4 is collected in the reservoir 5, the outlet 6 It can be discharged to the outside through.
- the beads 4 are injected through the inlet 2 or the beads 30 are directly placed in the chamber 3 before the cover 30 is coupled to the chamber 3, and then the cover 30 is coupled. It can be injected by letting it.
- a fine pump or a fine syringe pump may be further provided around the outlet 6 to facilitate the passage of the sample.
- a sample containing a small amount of DNA introduced into the inlet 2 and a protein bound to the antibody reaches the chamber 3. Since the chamber 3 is filled with a plurality of beads 4, the sample flows on the surface of the beads 4. At this time, the fluid pressure by the sample is applied to the surface of the bead 4, since the bead 4 is filled in the chamber 3, a phenomenon in which the sample is subjected to a large pressure in the outflow possible direction occurs. At this time, in the present invention, although the bead 4 is pushed forward and both sides in the direction in which the sample flows out, the bead 4 is located between the chamber 3 and the discharge path 7 as shown in FIG.
- the discharge through the discharge hole 32 is a space between the partition wall 8 and the cover 6 and the diameter of the discharge hole 32 is smaller than the diameter of the bead 4, d2 bead (4) Is prevented from leaving the chamber (3). Therefore, the sample is able to go to the discharge passage 7 and the reservoir 5 through the discharge hole 32 formed in the partition 8 through the pores of the beads 4. Accordingly, the sample collected through the reservoir 6 is discharged to the outlet 6. Also, in this process, the beads 4 are distributed to the partition 8 on the outer circumferential side of the chamber 3 and the partition 8 between the chamber and the discharge port 6, so that the beads 4 are pushed to one side and excessive pressure is applied.
- the present invention is very small as the bead 4 is 45 ⁇ m ⁇ 165 ⁇ m or less, the surface area of the beads 4 is very large.
- a protein A or protein G which can selectively bind to the target antibody, is conjugated to a sufficiently large surface area of such beads 4.
- the present invention is a microchip having a very small size of the internal structure, so that a very small amount of the sample passes continuously, it is possible to efficiently obtain a sufficient reaction even if there are very few samples that pass through and react.
- the height of the partition wall 8 may be adjusted according to the diameter of the beads 4, and the number of beads 4 placed in the chamber 3 may also be adjusted.
- the present invention can repeatedly mass-produce a large number of concentrated microchips for ChIP by etching a plurality of structures on the silicon wafer.
- FIG. 3 is a plan view of a multi-enriched microchip for ChIP according to a second embodiment of the present invention.
- the same parts as those of the first embodiment in the configuration of the second embodiment will be replaced with the above description and described mainly on the differences.
- the multi-enriched microchip for ChIP is an injection hole into which a sample containing two kinds of proteins in which different DNA and the first second antibody are respectively coupled, is in communication with the injection hole, and Is connected to the first chamber (3 '), the first chamber (3') and the partition wall (8) in which a plurality of beads (4) in which the first specific protein binding to the antibody is fixed is located, A second chamber 10 in which a plurality of beads 11 coated with a second specific protein that binds an antibody are placed, and the sample introduced into the first chamber 3 ′ is supplied to the second chamber 10.
- the first chamber 7 connected to the outer circumferential portion of the first chamber 3 ′ and a portion of the outer circumferential portion of the second chamber 10, and the second chamber 10 spaced apart from the first discharge passage 7. And a second discharge passage 14 connected to an outer circumference of the) and a discharge port 13 for discharging the sample introduced into the second chamber 10.
- the feature of the second embodiment of the present invention is that two chambers 3 ', 10 are arranged in series, and the sample passing through the first chamber 3' passes through the second chamber 10 again. In one experiment, two types of DNA or proteins are detected.
- the injected sample passes through the beads 4 in the first chamber 3 ', and the antibody bound to the target DNA or protein binds to the protein applied to the beads 4. Subsequently, the remaining sample flows into the second chamber 10 through the first discharge path 7 in communication with the outer circumferential portion of the first chamber 3 ′ and a portion of the outer circumferential portion of the second chamber 10, or the first chamber It flows into the 2nd chamber 10 through the discharge hole 32 located in the partition 8 of the lower end of 3 '.
- the type of protein applied on the bead 11 is different from the beads 4 in the first chamber 3 '(coating a protein capable of binding another antibody) and the applied protein is first By selecting a protein that binds to a different type of antibody than the antibody reacted in the chamber 3 ', as a result, other types of DNA or protein that were not detected in the first chamber 3' can be detected.
- the remaining amount of the sample passing through the bead 11 in the second chamber 10 is collected in the reservoir 16 through the second discharge path 14 in communication with the outer circumferential portion of the second chamber 10, and then the discharge port. After being discharged to 13 or through a discharge hole 32 located in the partition 8 of the lower end of the second chamber 10, the reservoir 16 is collected and discharged to the discharge passage 13.
- the second chamber 10 may further include an auxiliary inlet 12 for directly supplying the sample and the beads 11 to the second chamber 10 as needed, and further, each chamber 3 '.
- the first chamber 3 'and the second chamber 10 may be formed to be easily attached to and detached from each other (not shown) in order to facilitate washing and dissociation.
- the detachable means all means used for detachable normal chamber may be used. Specifically, a magnetic material, a fastening part (such as a bolt), an interference fit, a bellows tape, and the like may be used, but are not limited thereto.
- a third embodiment of the present invention is a method of performing ChIP using a concentrated microchip for ChIP, comprising: 1) adding formaldehyde to a cell to bind DNA and a DNA binding protein, and 2) destroying the cell and slicing the DNA. Cutting, 3) preparing a sample by injecting an antibody binding to the DNA binding protein, 4) injecting the sample into the inlet of the concentrated microchip for ChIP of the present invention, and 5) Washing the beads therein, and 6) treating the washed beads with an elution buffer to elute the DNA.
- steps 1) and 2) are the same as those of the conventional ChIP method. That is, the target DNA or protein, preferably a transcription factor, or the like is combined with the addition of formaldehyde, and then the cells are destroyed and the DNA is crushed. At this time, the DNA portion bound to the protein remains uncut.
- step 3 an antibody capable of specifically binding to the protein is added to bind to the protein, thereby preparing a sample including the same.
- an antibody capable of specifically binding to the protein is added to bind to the protein, thereby preparing a sample including the same.
- the test time can be reduced by up to 50% since it is shortened by about 2 days.
- the sample may preferably be added to the cell sonication sample 100ul (2.5X10 6 cells) and 500 ⁇ 1,000 ⁇ l IP dilution buffer.
- the sample is injected into the inlet of the concentrated microchip for ChIP of the present invention, in which case the sample may be introduced into the inlet for 5 to 30 minutes, but is not limited thereto.
- the time can be adjusted accordingly.
- the washing method is preferably a) 0.5 ml of low salt immune complex wash buffer b) 0.5 ml of high salt lmmune complex wash buffer, c) washing of lithium chloride immune complex 0.5 ml of buffer (LiCl immune complex wash buffer) and d) 0.5 ml of TE buffer; washed sequentially, each washing time is 30 seconds to 2 minutes and the d) step may be performed twice.
- the low salt immune complex washing buffer and the high salt immune complex washing buffer are buffers used in a conventional ChIP experiment.
- the low salt immune complex washing buffer is 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris.
- -A washing buffer consisting of HCl, pH 8.1, 150 mM NaCl can be used.
- the high salt immune complex washing buffer may be a washing buffer consisting of 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1, 500 mM NaCl, and 3) Lithium chloride immune complex washing buffer Is a washing buffer consisting of 0.25M LiCl, 1% IGEPAL CA630, 1% deoxycholic acid (sodium salt), 1mM EDTA, 10mM Tris, pH 8.1, 4) TE buffer is 10mM Tris-HCl, pH 8.0, A buffer consisting of 1 mM EDTA can be used.
- ChIP washing 500 ⁇ l of the washing solution is added to each step, followed by centrifugation after stirring for 3 ⁇ 5 minutes.
- the ChIP-enriched microchip of the present invention is added to 250 ⁇ l of the washing solution step by step in step 5), and the washing is completed within 1 minute.
- the ChIP-enriched microchips which are complicated in the experimental procedures such as stirring and centrifugation, are simply passed through the solution, and the washing step is completed.
- the conventional ChIP method generates a lot of impurities (other precipitates other than proteins), while the ChIP-enriched microchips show less impurities. This is superior to the usual ChIP method.
- step 6 the washed beads are treated with an elution buffer to elute the DNA to detect desired DNA and protein.
- the type of eluent used may be an eluent used in a conventional ChIP experiment.
- step 6) is performed in the state that beads are contained in the ChIP enrichment chip. Specifically, after washing the beads in the channel, the histone complex attached to the beads is eluted to obtain a final solution sample.
- step 6 Western blot or PCR may be performed to determine the sequence and characteristics of the detected DNA or protein in detail.
- Cells (293 cells, 293F cells, HeLa cells) were treated with formaldehyde at a concentration of 1% to cross-link DNA with histones and DNA binding proteins. Thereafter, the cells were dispensed by 5 ⁇ 10 6 cells, and 100 ⁇ l (1 mM) of lysis buffer (SDS lysis buffer: 1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH8.1) was added and the cells were disrupted.
- SDS lysis buffer 1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH8.1
- Example 1 1 ⁇ g / 30 ⁇ l to 12 ⁇ g / 60 ⁇ l of the size of 45 ⁇ m to 165 ⁇ m treated with protein A was added to the chamber of the DNA-enriched microchip for ChIP shown in FIG. 1 and incubated for 30 minutes. Thereafter, the sample prepared in Example 1 was flowed into the inlet of the microchip for 15 minutes.
- low salt immune complex washing buffer 0.5 ml, one wash, at room temp, 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1, 150 mM NaCl
- high salt immune complex Washing buffer 0.5ml, one wash, at room temp, 0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl, pH 8.1, 500mM NaCl
- Lithium chloride immune complex washing buffer 0.5ml , one wash, at room temp, 0.25M LiCl, 1% IGEPAL CA630, 1% deoxycholic acid (sodium salt), 1mM EDTA, 10mM Tris, pH 8.14
- TE buffer 0.5ml, two washes, at room temp , 10 mM Tris-HCl, pH 8.0, 1 mM EDTA
- the target DNA (chromatin) was reacted by flowing 250ul elution buffer (1% SDS, 0.1M NaHCO 3 ) to the protein A beads / antibody / DNA (chromatin) complex inside the washed DEMc chip for 1 minute. Eluted.
- the transfer set was then set, filled with transfer buffer (48mM Tris base, 39mM Glycine, 20% MeOH, 0.0375% SDS), and the protein in the gel was transferred to PVDF membrane at 100V for 1 hour. Then, the membrane was placed in 5% skim milk-TBST and reacted for 1 hour.
- transfer buffer 48mM Tris base, 39mM Glycine, 20% MeOH, 0.0375% SDS
- Figure 7 is an electrophoresis picture showing the results of the Western blot. Specifically, from the left side of the photograph, (1) a normal ChIP western blot positive sample, (2) a normal ChIP western blot negative sample, (3) a ChIP concentrated microchip western blot positive sample, and (4) a ChIP concentrated microchip western blot negative Samples were followed by (5) Whole cell extract and (6) Anti-acetyl H3 histone IgG.
- the confirmation of the target protein Acetylated-histone H3 (17.3KDa) can determine whether the desired histone + DNA complex is included.
- the histone band did not appear in the sample without the antibody, and the sample with the antibody showed the desired band in both the conventional ChIP method and the ChIP-enriched microchip. This can be confirmed by western blot whether the protein A beads and histone antibodies have correctly captured the desired DNA + histone complex. It was able to capture exactly the same amount as the Tube method.
- Example 2 10 ⁇ l of 5M NaCl was added to a sample and heated at 65 ° C. for 4 hours to release Histone-DNA crosslink.
- DNA was extracted by phenol / chloroform extraction and ethanol precipitation.
- a primer of the GAPDH gene of the following sequence ( Product Size: 166 bp) was prepared in advance and PCR was performed.
- GAPDH For: 5 ⁇ -TACTAGCGGTTTTACGGGCG-3 ⁇
- lane 1 is a DNA size marker 50Kb ladder
- lane 2 is a conventional ChIP PCR negative sample (using an EP tube)
- lane 3 is a conventional ChIP PCR positive sample using an EP tube
- lane 4 is a ChIP of the present invention.
- Concentrated microchip negative sample, 5 lanes are 5. ChIP concentrated microchip positive sample.
- the target gene described above used the intracellular GAPDH gene and a band was formed at the size of 166 bp.
- a typical ChIP negative sample is a sample without an antibody
- a typical ChIP positive sample is a sample with an antibody.
- the present invention is a conventional E.P. It is a very useful invention for the bio industry because it can replace the ChIP technology using a tube and can perform experiments with a small amount of sample, reduce the experiment time, and perform the ChIP experiment at room temperature with little variation of the experimental results.
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Wood Science & Technology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The present invention relates to an MEMS chip for chromatin immunoprecipitation (ChIP) which replaces conventional EP tubes used for ChIP experiments and which performs ChIP experiments, and to a ChIP method using same. The MEMS chip for ChIP comprises: an injection port through which a sample including a protein that is bound with DNA and antibody is introduced; a chamber communicated with the injection port, and having a plurality of beads positioned on the inner surface thereof, wherein a specific protein that binds with the antibody is fixed to the beads; and a discharge port communicated with the chamber, and formed on the other side of the injection port so as to discharge the introduced sample. Accordingly, the MEMS chip of ChIP can replace the conventional ChIP technology that uses EP tubes, and thus can carry out experiments with a small quantity of sample, with less amount of experimentation time, and have less fluctuation in experimental results, and also can carry out ChIP experiments even at room temperature.
Description
본 발명은 ChIP용 농축 미세칩 및 이를 이용한 ChIP 수행방법에 관한 것으로 보다 상세하게는 기존의 ChIP 실험에 사용되던 E.P.튜브를 대체하여 ChIP 실험을 수행하기 위한 ChIP용 농축 미세칩 및 이를 이용한 ChIP 수행방법에 관한 것이다.The present invention relates to a concentrated microchip for ChIP and a method of performing ChIP using the same. More specifically, the concentrated microchip for ChIP to perform a ChIP experiment by replacing the EP tube used in the existing ChIP experiment and a method of performing ChIP using the same. It is about.
휴먼 게놈 프로젝트 이후 연구단계로 functional genomics가 진행되고 있는데, functional genomics란 유전자의 기능과 조절기작을 세포나 신호전달체계 전체에서 연구하는 것이다.Functional genomics is being conducted as a research stage after the Human Genome Project. Functional genomics is the study of gene function and regulation in the cell or signaling system.
이러한 functional genomics 분야를 연구하기 위해 유전자가 조절되는데 가장 중요한 역할을 수행하는 전사인자(transcription factor)와 DNA 프로모터 부분 의 결합을 검출하는 것이 중요하다. Functional genomics 분야를 연구하는데 주로 사용되는 DNA 칩 기술은 전체 유전자 발현을 동시에 비교할 수 있다는 장점을 가지나, DNA와 DNA의 결합만을 검사하므로 전사인자와 프로모터의 결합을 바로 분석 할 수 없다는 단점이 있다.To study this field of functional genomics, it is important to detect the binding of the transcription factor and DNA promoter moiety that play the most important role in gene regulation. DNA chip technology, which is mainly used to study functional genomics, has the advantage of comparing the whole gene expression at the same time, but it has the disadvantage that the binding of transcription factor and promoter cannot be directly analyzed because only DNA and DNA binding are examined.
이러한 문제점을 해결하기 위해 최근 세포 생물학 분야에서는 ChIP(CHROMATIN IMMUNOPRECIPITATION) 기술을 이용하여 전사인자와 promoter를 결합시키고 이것을 DNA 칩에 적용시켜 특정 전사인자에 의해 어떻게 유전자의 발현이 조절되는지 확인하는 방법이 사용되고 있다.In order to solve this problem, recently, in the field of cell biology, a method of combining a transcription factor and a promoter using CHIP (CHROMATIN IMMUNOPRECIPITATION) technology and applying it to a DNA chip to determine how gene expression is regulated by a specific transcription factor is used. have.
상기 ChIP 기술의 목적은 유전자 발현을 조절하는 전사인자들은 특정한 서열인 프로모터에 결합하여 발현을 조절하는데, 이 조절부위를 세포 전체 단위로 알아보는 것이다.The purpose of the ChIP technique is to regulate the expression of transcription factors that regulate gene expression by binding to a promoter, which is a specific sequence.
이러한 ChIP 기술을 구체적으로 설명하면, 1) E.P. 튜브에 세포를 넣은 후 포름알데히드로 처리하여 DNA와 DNA결합단백질을 결합시키는 단계, 2) 세포에 세포 용해액을 넣고 음파처리기(sonicator)를 이용하여 DNA를 200~1kb의 절편으로 자르는 단계, 3) DNA 절편이 있는 용해액에 ChIP 결합액을 넣고 아가로즈 비드 또는 세파로즈 비드를 넣어 비특이적으로 비드에 결합하는 단백질과 DNA를 제거하는 단계, 4) 상기 3)의 과정을 거친 용액에 특정 단백질(예 : acetylated histone H3)의 항체를 넣고 하룻밤 동안 반응시키는 단계 (DNA와 DNA결합단백질, 그 단백질의 항체가 모두 결합하는 단계), 5) 단백질 A 또는 G가 고정된 아가로즈 또는 세파로즈 비드를 넣고 반응시키는 단계 (DNA와 DNA결합단백질, 그 단백질의 항체, 아가로즈 또는 세파로즈 비드가 모두 결합하는 단계), 6) 고염, 저염, 염화리튬 면역 복합체 세척 버퍼와 TE 버퍼로 상기 비드를 세척하는 단계 (상기 5)의 결합에 참여하지 않은 DNA, 단백질 등을 세척하는 단계), 7)세척된 비드를 용리액을 처리하여 DNA-단백질-항체를 비드로부터 분리하는 단계, 8)염화나트륨과 프로테아제(protease K)를 처리하여 DNA와 단백질의 결합을 해리시키는 단계, 9) 페놀/클로로포름을 이용하여 DNA를 순수하게 분리하는 단계 및 10) 특정 유전자의 프라이머를 이용하여 PCR하는 단계를 통해 ChIP 기술을 이용하여 PCR 과정을 수행하거나, 상기 7)단계를 대신하여 7-1) 세척된 비드에 SDS 샘플 버퍼를 처리하고 끓여서 웨스턴 블롯(western blot)하는 단계로 이루어졌다.In detail, such ChIP technology, 1) E.P. Inserting the cells into the tube and treating formaldehyde to bind the DNA and the DNA binding protein, 2) inserting the cell lysate into the cells and cutting the DNA into fragments of 200 to 1 kb using a sonicator, 3 ) Put the ChIP binding solution in the lysate containing the DNA fragment and remove the protein and DNA that binds to the beads nonspecifically by adding agarose beads or Sepharose beads, 4) the specific protein ( Example: Add an antibody of acetylated histone H3) and react overnight (DNA and DNA-binding protein, the antibody of the protein binds), 5) Add agarose or Sepharose beads fixed with protein A or G Reaction step (DNA and DNA binding protein, antibody of the protein, agarose or Sepharose beads all bound), 6) high salt, low salt, lithium chloride immune complex washing buffer and TE buffer Washing the beads (washing DNA, protein, etc. not involved in the binding of step 5), 7) separating the washed beads from the DNA-protein-antibody from the beads, 8) Dissociating DNA and protein by treating sodium chloride and protease (K), 9) purely separating DNA using phenol / chloroform, and 10) PCR using specific gene primers. The PCR procedure was performed using the ChIP technique, or, in place of the step 7), 7-1) processing and boiling the SDS sample buffer in the washed beads, followed by Western blot.
결국, 종래의 E.P. 튜브를 이용한 ChIP 기술은 전사인자 등의 확인이 용이하다는 장점이 있으나, 시료의 양이 많이 필요하고, 실험시간이 매우 길고 복잡하며, 실험결과의 변동이 심하고, -4℃ 정도에서 수행되어야 하므로 온도 등의 실험조건이 매우 까다로운 단점이 있었다.In the end, the conventional E.P. ChIP technology using the tube has the advantage of easy identification of transcription factors, etc., but it requires a large amount of sample, the experiment time is very long and complex, the fluctuation of the experimental results is severe, and should be performed at about -4 ℃ temperature Experimental conditions such as this was very difficult.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 종래의 E.P. 튜브를 이용한 ChIP 기술을 대체하여 적은 시료의 양으로 실험이 가능하고 실험시간이 줄어들며, 실험결과의 변동이 적으면서도, 상온에서도 ChIP 실험을 수행할 수 있는 ChIP용 농축 미세칩을 제공하는 것이다. The present invention has been made to solve the above problems, the object of the present invention is to provide a conventional E.P. It is possible to provide a concentrated microchip for ChIP that can perform ChIP experiments at room temperature while reducing experiment time and reducing the experiment time.
본 발명의 다른 목적은 ChIP 기술에 있어서, 한번에 2종류 이상의 타겟 DNA 또는 단백질의 검출이 가능한 ChIP용 농축 미세칩을 제공하는 것이다. Another object of the present invention is to provide a concentrated microchip for ChIP capable of detecting two or more types of target DNA or proteins at a time in the ChIP technique.
본 발명의 또 다른 목적은 본 발명의 ChIP용 농축 미세칩을 이용하여 실험조건 등을 간소화한 ChIP용 농축 미세칩을 이용한 ChIP 수행방법을 제공하는 것이다.Still another object of the present invention is to provide a method of performing ChIP using ChIP-enriched microchips, which simplify the experimental conditions and the like by using the ChIP-enriched microchips of the present invention.
본 발명은 상술한 기술적 과제를 달성하기 위하여 DNA 및 항체와 결합된 단백질을 포함하는 시료가 투입되는 주입구; 상기 주입구와 연통되고, 내부에는 표면에 상기 항체와 결합하는 특정 단백질이 고정된 복수개의 비드가 위치되는 챔버; 및 상기 챔버와 연통되며, 상기 투입된 시료가 배출되도록 상기 주입구의 타측에 형성된 배출구를 포함하는 ChIP(Chromatin immunoprecipitation)용 농축 미세칩(DNA enrichment MEMs chip)을 제공한다.The present invention is an injection port to which a sample containing a protein combined with DNA and antibodies to achieve the above technical problem; A chamber in communication with the inlet and having a plurality of beads in which a specific protein for binding the antibody is fixed to a surface thereof; And a DNA enrichment MEMs chip for ChIP (Chromatin immunoprecipitation), which is in communication with the chamber and includes an outlet formed at the other side of the injection port to discharge the injected sample.
상기 특정 단백질은 바람직하게는 단백질 A 또는 단백질 G이며, 상기 비드는 아가로즈 비드 또는 세파로즈 비드를 사용할 수 있으며, 비드의 평균직경은 45 ~ 165 ㎛를 사용할 수 있다. 또한 상기 비드는 6㎍/30㎕ ~ 12㎍/30㎕가 구비될 수 있다.The specific protein is preferably protein A or protein G, the beads may use agarose beads or Sepharose beads, the average diameter of the beads may be used 45 ~ 165 ㎛. In addition, the beads may be provided with 6μg / 30μl ~ 12μg / 30μl.
상기 미세칩은 바람직하게는 챔버의 외주부에 설치되어 상기 시료가 배출되고, 상기 배출구와 연통되는 배출로를 더 포함할 수 있으며, 보다 바람직하게는 , 상기 배출로와 상기 챔버 사이에 설치되고 상기 비드보다 작은 통로를 갖는 배출홀을 더 포함하는 것도 가능하다.The fine chip is preferably installed on the outer periphery of the chamber and the sample is discharged, and may further include a discharge path in communication with the discharge port, more preferably, is installed between the discharge path and the chamber and the bead It is also possible to further include a discharge hole having a smaller passage.
나아가, 상기 챔버를 밀폐시키는 커버가 결합될 수 있으며, 이 경우 상기 커버는 유리 또는 투명 플라스틱을 사용할 수 있다.Furthermore, a cover for sealing the chamber may be combined, in which case the cover may use glass or transparent plastic.
또한 본 발명의 다른 특징에 따른 ChIP용 다중 농축 미세칩은, 서로 다른 DNA 및 항체가 각각 결합된 2종의 단백질을 포함하는 시료가 투입되는 주입구; 상기 주입구와 연통되고, 내부에는 상기 항체와 결합하는 제1특정단백질이 고정된 복수개의 비드가 위치되는 제1챔버; 상기 제1챔버와 격벽으로 연결되고, 내부에는 상기 항체와 결합하는 제2특정단백질이 도포된 복수개의 비드가 위치되는 제2챔버; 상기 제1챔버로 투입된 상기 시료가 상기 제2챔버로 공급되도록 상기 제2챔버의 외주부 일부에 연결되는 제1배출로; 상기 제1배출로와 이격된 상태로 상기 제2챔버의 외주부에 연결되는 제2배출로; 및 상기 제2챔버 내부로 투입된 상기 시료를 배출시키는 배출구;를 포함한다.In addition, the multi-enriched microchip for ChIP according to another aspect of the present invention, the injection port is a sample containing two kinds of proteins, each of which is coupled to different DNA and antibody; A first chamber in communication with the inlet and having a plurality of beads fixed therein, the first specific protein being bound to the antibody; A second chamber connected to the first chamber by a partition wall and having a plurality of beads coated therein with a second specific protein binding to the antibody; A first discharge passage connected to a portion of an outer circumference of the second chamber so that the sample introduced into the first chamber is supplied to the second chamber; A second discharge passage connected to an outer circumference of the second chamber while being spaced apart from the first discharge passage; And an outlet for discharging the sample introduced into the second chamber.
상기 격벽은, 바람직하게는 상기 제1배출로와 상기 제1챔버 및 제2배출로와 제2챔버 사이에 설치되고 상기 비드보다 작은 통로를 갖는 배출홀을 더 포함하며, 상기 제2챔버는 시료를 상기 제2챔버로 공급하는 보조주입구가 더 구비될 수 있다.The partition wall preferably further includes a discharge hole provided between the first discharge path and the first chamber and the second discharge path and the second chamber and having a passage smaller than the bead, wherein the second chamber includes a sample. An auxiliary inlet for supplying the second chamber may be further provided.
한편, 상기 제1단백질과 제2단백질은 바람직하게는 서로 상이한 항체에 결합할 수 있으므로 서로 상이한 종류의 단백질인 것이 바람직하다.On the other hand, the first protein and the second protein is preferably a different kind of protein because it can bind to different antibodies preferably.
나아가, 상기 제1챔버와 상기 제2챔버는 서로 탈착될 수 있다.Further, the first chamber and the second chamber may be detachable from each other.
또한, 바람직하게는 상기 제2챔버로 투입된 상기 시료가 상기 배출구로 배출될 수 있도록 제2챔버와 배출구 사이에 배출홀이 형성된 격벽을 더 구비할 수 있다.Further, preferably, a partition wall having a discharge hole formed between the second chamber and the discharge port may be further provided so that the sample introduced into the second chamber may be discharged to the discharge port.
본 발명의 또 다른 특징에 따른 ChIP용 농축 미세칩을 이용한 ChIP 수행방법은, 1) 세포에 포름알데히드를 첨가하여 DNA와 DNA 결합단백질을 결합시키는 단계, 2) 상기 세포를 파괴하고 상기 DNA를 잘게 절단하는 단계, 3) 상기 DNA 결합단백질과 결합하는 항체를 투입하여 시료를 제작하는 단계, 4) 상기 본 발명의 ChIP용 농축 미세칩의 주입구에 상기 시료를 투입하는 단계, 5) 상기 미세칩의 내부의 비드를 세척하는 단계, 및 6) 상기 세척된 비드를 용리액(elution buffer)으로 처리하여 상기 DNA를 용출하는 단계를 포함한다.ChIP performing method using a concentrated microchip for ChIP according to another aspect of the present invention, 1) adding formaldehyde to the cell to combine DNA and DNA binding protein, 2) destroying the cell and chopped the DNA Cutting, 3) preparing a sample by injecting an antibody binding to the DNA binding protein, 4) injecting the sample into the inlet of the concentrated microchip for ChIP of the present invention, and 5) Washing the beads therein, and 6) treating the washed beads with an elution buffer to elute the DNA.
이 경우 상기 DNA는 바람직하게는 GAPDH (glyceraldehyde-3-phosphate dehydrogenase) 등 Acetylated Histone H3와 결합하는 모든 DNA를 말하며, 이 때 상기 시료는 바람직하게는 600 ~ 1000ul를 첨가할 수 있고, 보다 바람직하게는 Cell sonication sample 100ul(2.5X106cells)과 IP dilution buffer 900ul를 상기 4) 단계에 투입할 수 있다.In this case, the DNA preferably refers to all DNA that binds to Acetylated Histone H3 such as GAPDH (glyceraldehyde-3-phosphate dehydrogenase), and in this case, the sample may preferably be added to 600 ~ 1000ul, more preferably 100ul of cell sonication sample (2.5X10 6 cells) and 900ul of IP dilution buffer may be added to step 4).
이며, 이 때 상기 시료는 바람직하게는 @ ~ @㎕를 투입할 수 있다.In this case, the sample may preferably be added @ ~ @ μl.
상기 4) ~ 6)단계는 바람직하게는 15 ~ 30℃에서 수행될 수 있으며, 상기 4)단계에서 상기 시료를 5 ~ 30분간 상기 주입구에 투입할 수 있다.Steps 4) to 6) may be preferably performed at 15 to 30 ° C., and the sample may be added to the inlet for 5 to 30 minutes in step 4).
상기 5)단계는, 바람직하게는 a) 저염 면역 복합체 세척버퍼(low salt immune complex wash buffer) 0.5㎖ b) 고염 면역 복합체 세척버퍼(High salt lmmune complex wash buffer) 0.5㎖, c) 염화리튬 면역 복합체 세척버퍼(LiCl immune complex wash buffer) 0.5㎖ 및 d) TE 버퍼 0.5㎖;로 순차적으로 세척하되, 각각의 세척시간은 30초 ~ 2분이고 상기 d)단계는 2회 수행될 수 있다.Step 5) is preferably a) 0.5 ml of low salt immune complex wash buffer b) 0.5 ml of high salt lmmune complex wash buffer, c) lithium chloride immune complex 0.5 ml of washing buffer (LiCl immune complex wash buffer) and d) 0.5 ml of TE buffer; washed sequentially, each washing time is 30 seconds to 2 minutes and the d) step may be performed twice.
상기 6)단계 이후, 바람직하게는 웨스턴 블랏을 수행하거나 PCR을 수행할 수 있다.After step 6), preferably, Western blot or PCR may be performed.
본 발명은 이러한 본 발명의 ChIP용 농축 미세칩을 통해 ChIP 실험을 수행하는 경우 종래의 E.P.튜브를 이용할 때에 비하여 적은 시료를 투입하는 경우에도 DNA 및 단백질의 검출이 가능할 뿐 아니라, 사용되는 비드의 수를 절반 이하로 줄일 수 있으며, 기존 ChIP 실험 시 평균 4일이 소요되던 것이 본 발명의 칩을 사용하면 2일 정도로 단축되므로 최대 50%실험시간을 저감할 수 있다. 또한 고가의 항체, 시약, 샘플 등의 양을 줄일 수 있으므로 실험비용을 절감할 수 있으며, 정량화된 시약과 재료를 사용하여 간편하게 ChIP 실험을 수행할 수 있으므로 실험결과 일관성을 담보할 수 있다. 나아가 소프트 리소그래피 등에 의하여 다량 생산이 가능한 것이어서 제작비용이 저렴하다.In the present invention, when performing the ChIP experiment through the enriched microchip for ChIP of the present invention, DNA and protein can be detected as well as the number of beads used even when a small amount of sample is added as compared to using a conventional EP tube. It can be reduced to less than half, and the average of four days in the existing ChIP experiments can be reduced by up to 50% because the time of use of the chip of the present invention is reduced to about two days. In addition, it is possible to reduce the amount of expensive antibodies, reagents, samples, etc., thereby reducing the cost of experiments, and can easily perform the ChIP experiments using quantified reagents and materials, thereby ensuring consistency of experimental results. Furthermore, it is possible to produce a large amount by soft lithography and the like, and thus the manufacturing cost is low.
도 1은 본 발명의 바람직한 일실시예에 따른 ChIP용 농축 미세칩의 평면도이다.1 is a plan view of a concentrated microchip for ChIP according to an embodiment of the present invention.
도 2는 본 발명의 바람직한 일실시예에 따른 ChIP용 농축 미세칩의 평면도이다.2 is a plan view of a concentrated microchip for ChIP according to an embodiment of the present invention.
도 3은 본 발명의 바람직한 일실시예에 따른 ChIP용 농축 미세칩의 평면도이다.3 is a plan view of a concentrated microchip for ChIP according to an embodiment of the present invention.
도 4는 본 발명의 바람직한 일실시예에 따른 커버가 없는 상태의 ChIP용 농축 미세칩의 사시도이다.Figure 4 is a perspective view of the concentrated microchips for ChIP without the cover according to an embodiment of the present invention.
도 5는 본 발명의 바람직한 일실시예에 따른 커버가 부착된 상태의 ChIP용 농축 미세칩의 사시도이다. 5 is a perspective view of a concentrated microchip for ChIP in the state that the cover is attached according to an embodiment of the present invention.
도 6은 본 발명의 바람직한 일실시예에 따른 ChIP용 농축 미세칩의 단면도이다.6 is a cross-sectional view of a concentrated microchip for ChIP according to an embodiment of the present invention.
*도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
2, 2', 12 : 주입구3 : 챔버3' : 제1챔버2, 2 ', 12: injection hole 3: chamber 3': first chamber
4, 11: 비드5, 16 : 저장소6, 13 : 배출구4, 11: bead 5, 16: reservoir 6, 13 outlet
7 : 배출로8 : 격벽10 : 제2챔버7: discharge path 8: bulkhead 10: second chamber
14 : 제2배출로15 : 제2격벽30 : 글라스14 second discharge path 15 second partition 30 glass
32 : 배출홀32: discharge hole
ChIP(Chromatin immunoprecipitation)용 농축 미세칩(DNA enrichment MEMs chip)의 제1실시예는 DNA 및 항체와 결합된 단백질을 포함하는 시료가 투입되는 주입구; 상기 주입구와 연통되고, 내부에는 표면에 상기 항체와 결합하는 특정 단백질이 고정된 복수개의 비드가 위치되는 챔버; 및 상기 챔버와 연통되며, 상기 투입된 시료가 배출되도록 상기 주입구의 타측에 형성된 배출구를 포함한다.A first embodiment of the DNA enrichment MEMs chip (ChIP) for Chromatin immunoprecipitation (ChIP) is an injection hole into which a sample containing a protein coupled with DNA and an antibody; A chamber in communication with the inlet and having a plurality of beads in which a specific protein for binding the antibody is fixed to a surface thereof; And a discharge port communicating with the chamber and formed at the other side of the injection hole so that the injected sample is discharged.
제2실시예는 서로 다른 DNA 및 항체가 각각 결합된 2종의 단백질을 포함하는 시료가 투입되는 주입구; 상기 주입구와 연통되고, 내부에는 상기 항체와 결합하는 제1특정단백질이 고정된 복수개의 비드가 위치되는 제1챔버; 상기 제1챔버와 격벽으로 연결되고, 내부에는 상기 항체와 결합하는 제2특정단백질이 도포된 복수개의 비드가 위치되는 제2챔버; 상기 제1챔버로 투입된 상기 시료가 상기 제2챔버로 공급되도록 상기 제2챔버의 외주부 일부에 연결되는 제1배출로; 상기 제1배출로와 이격된 상태로 상기 제2챔버의 외주부에 연결되는 제2배출로; 및 상기 제2챔버 내부로 투입된 상기 시료를 배출시키는 배출구;를 포함한다.The second embodiment includes an injection port into which a sample containing two kinds of proteins to which different DNA and antibodies are respectively bound is introduced; A first chamber in communication with the inlet and having a plurality of beads fixed therein, the first specific protein being bound to the antibody; A second chamber connected to the first chamber by a partition wall and having a plurality of beads coated therein with a second specific protein binding to the antibody; A first discharge passage connected to a portion of an outer circumference of the second chamber so that the sample introduced into the first chamber is supplied to the second chamber; A second discharge passage connected to an outer circumference of the second chamber while being spaced apart from the first discharge passage; And an outlet for discharging the sample introduced into the second chamber.
본 발명의 또 다른 특징에 따른 ChIP용 농축 미세칩을 이용한 ChIP 수행방법은, 1) 세포에 포름알데히드를 첨가하여 DNA와 DNA 결합단백질을 결합시키는 단계, 2) 상기 세포를 파괴하고 상기 DNA를 잘게 절단하는 단계, 3) 상기 DNA 결합단백질과 결합하는 항체를 투입하여 시료를 제작하는 단계, 4) 상기 본 발명의 ChIP용 농축 미세칩의 주입구에 상기 시료를 투입하는 단계, 5) 상기 미세칩의 내부의 비드를 세척하는 단계, 및 6) 상기 세척된 비드를 용리액(elution buffer)으로 처리하여 상기 DNA를 용출하는 단계를 포함한다.ChIP performing method using a concentrated microchip for ChIP according to another aspect of the present invention, 1) adding formaldehyde to the cell to combine DNA and DNA binding protein, 2) destroying the cell and chopped the DNA Cutting, 3) preparing a sample by injecting an antibody binding to the DNA binding protein, 4) injecting the sample into the inlet of the concentrated microchip for ChIP of the present invention, and 5) Washing the beads therein, and 6) treating the washed beads with an elution buffer to elute the DNA.
이하, 본 발명을 첨부된 도면을 참조하여 보다 상세히 설명한다.Hereinafter, with reference to the accompanying drawings the present invention will be described in more detail.
종래의 E.P. 튜브를 이용한 ChIP 기술은 전사인자의 확인이 용이하다는 장점이 있으나, 시료의 양이 많이 필요하고, 실험시간이 매우 길고 복잡하며, 실험결과의 변동이 심하고, -4℃ 정도에서 수행되어야 하므로 온도 등의 실험조건이 매우 까다로운 단점이 있었다.Conventional E.P. ChIP technology using tubes has the advantage of easy identification of transcription factors, but requires a large amount of sample, the experiment time is very long and complicated, the fluctuation of the experimental results is severe, and should be performed at about -4 ℃ temperature, etc. The experimental condition of was very difficult.
이에 본 발명의 1실시예에 따른 ChIP용 농축 미세칩(enrichment MEMs chip)은 DNA 및 항체와 결합된 단백질을 포함하는 시료가 투입되는 주입구; 상기 주입구와 연통되고, 내부에는 표면에 상기 항체와 결합하는 특정 단백질이 고정된 복수개의 비드가 위치되는 챔버; 및 상기 챔버와 연통되며, 상기 투입된 시료가 배출되도록 상기 주입구의 타측에 형성된 배출구를 포함하여 상술한 종래의 E.P. 튜브의 문제점을 극복하였다.Therefore, the enrichment microchips (enrichment MEMs chip) for ChIP according to an embodiment of the present invention is an injection hole into which a sample containing a protein coupled with DNA and antibodies; A chamber in communication with the inlet and having a plurality of beads in which a specific protein for binding the antibody is fixed to a surface thereof; And a discharge port communicating with the chamber and formed at the other side of the injection hole so that the injected sample is discharged. The problem of the tube was overcome.
구체적으로 도 1 ~ 2는 본 발명의 제1실시예에 따른 ChIP용 농축 미세칩의 평면도로서 보다 구체적으로 본 발명은 에칭 등 반도체 가공 기술을 활용하여 실리콘 웨이퍼 상에 구조 형상을 만들고, 이에 PDMS를 부어 PDMS에 원하는 구조의 채널, 챔버, 격벽 등이 형성되도록 하는 소프트 리소그래피(Soft Lithography) 방법으로 제작 가능하다.Specifically, FIGS. 1 and 2 are plan views of the enriched microchips for ChIP according to the first embodiment of the present invention. More specifically, the present invention utilizes semiconductor processing techniques such as etching to form a structural shape on a silicon wafer, thereby providing PDMS. It can be manufactured by soft lithography method to form channels, chambers, barrier ribs, etc. of desired structure in the poured PDMS.
이와 같이 가공하여 DNA 및 항체와 결합된 단백질을 포함하는 시료가 투입되는 주입구(2), 상기 주입구(2)와 연통되고, 내부에는 표면에 상기 항체와 결합하는 특정 단백질이 고정된 복수개의 비드(4)가 위치되는 챔버(3), 및 상기 챔버(3)와 연통되며, 상기 투입된 시료가 배출되도록 상기 주입구(2)의 타측에 형성된 배출구(6)를 형성한다.The injection port (2) into which the sample containing the protein bound to the DNA and the antibody is processed and communicated with the injection port (2), and a plurality of beads in which a specific protein to bind the antibody is fixed to the surface ( The chamber 3, in which 4) is located, and the chamber 3 are in communication with each other, and an outlet 6 formed on the other side of the injection port 2 is formed to discharge the injected sample.
상기 주입구(2)는 도 1과 같이 외부로 돌출되는 형상일 수 있고, 도 2와 같이 내부로 오목하게 함입되는 형상일 수 있다. 또한 상기 주입구에 주입되는 시료는 타겟 DNA와 단백질을 결합시킨 후, 이를 분쇄하고, 상기 단백질에 결합할 수 있는 항체를 첨가하여 생성된 DNA-단백질-항체 복합체를 포함하며, 이 때 사용 가능한 항체는 통상의 ChIP 실험에서 사용되는 항체를 사용할 수 있다.The injection hole 2 may be shaped to protrude outward as shown in FIG. 1, and may be shaped to be recessed inwardly as shown in FIG. 2. In addition, the sample injected into the inlet comprises a DNA-protein-antibody complex generated by binding a target DNA and a protein, then crushing the same, and adding an antibody capable of binding to the protein. Antibodies used in conventional ChIP experiments can be used.
상기 주입구(2)와 연통된 챔버(3)는 그 내부에 특정 항체와 결합할 수 있는 단백질이 고정된(도포된) 복수개의 비드(4)를 구비한다. 상기 비드(4)의 재질은 아가로즈 또는 세파로즈를 사용할 수 있으며, 그 표면에 상기 시료내의 타겟 항체(DNA-단백질-항체 복합체의 항체)와 결합할 수 있는 단백질 A 또는 단백질 G가 통상의 방법으로 도포된다. 상기 비드(4)의 직경은 45 ~ 165 ㎛를 사용할 수 있다. 또한 상기 비드(4)는 6㎍/30㎕ ~ 12㎍/30㎕개가 구비될 수 있으며 이러한 비드(4)의 개수는 종래의 E.T.튜브에서 사용되던 비드의 개수에 비하여 절반 정도에 불과하므로 반응시간을 획기적으로 저감할 수 있는 것이다.The chamber 3 in communication with the inlet 2 has a plurality of beads 4 fixed therein (coated) with a protein capable of binding to a specific antibody therein. The material of the beads 4 may be agarose or sepharose, and protein A or protein G capable of binding to a target antibody (an antibody of DNA-protein-antibody complex) in the sample on its surface is a conventional method. Is applied. The diameter of the beads 4 may be used 45 ~ 165 ㎛. In addition, the beads 4 may be provided with 6㎛ / 30μl ~ 12㎍ / 30μL and the number of beads (4) is only about half the number of beads used in the conventional ET tube reaction time This can drastically reduce.
한편 본 발명의 미세칩은 바람직하게는 챔버(3)의 외주부에 설치되어 비드(4)를 통과한 시료가 배출하기 위한 배출로(7)를 더 포함할 수 있으며 상기 배출로(7)는 배출구(6)와 연통되어 시료가 배출될 수 있다. 또한 상기 챔버(4)와 배출로(7) 사이에 시료는 빠져나갈 수 있지만 비드는 빠져나갈 수 없을 정도의 배출홀(32)이 형성되며, 이러한 배출홀(32)은 챔버(3)와 배출로(7) 사이에 적절한 높이의 격벽(8)을 설치하는 것을 통해 형성될 수 있다. 나아가, 상기 챔버(3)를 밀폐시키는 커버(30)가 결합될 수 있으며, 이 경우 상기 커버는 유리 또는 투명 플라스틱을 사용할 수 있다.On the other hand, the microchip of the present invention is preferably installed on the outer periphery of the chamber 3 may further include a discharge path (7) for discharging the sample passed through the bead (4) and the discharge path (7) is an outlet In communication with (6), the sample may be discharged. In addition, a discharge hole 32 is formed between the chamber 4 and the discharge path 7 so that the sample can escape, but the beads cannot escape, and the discharge hole 32 is discharged from the chamber 3. It can be formed by installing a partition 8 of appropriate height between the furnaces 7. Furthermore, a cover 30 for sealing the chamber 3 may be combined, in which case the cover may be glass or transparent plastic.
한편, 상기 격벽(8) 및 배출홀(32)은 챔버(3)와 저장소(5) 사이에도 위치하며 이를 통해 비드(4)를 통과한 시료가 저장소(5)에 집결된 후 배출구(6)를 통해 외부로 배출될 수 있는 것이다. 또한 본 발명에서 비드(4)는 주입구(2)를 통해 주입되거나 커버(30)를 챔버(3)에 결합시키기 전에 직접 비드(4)를 챔버(3)에 위치시킨 후 커버(30)를 결합시키는 것을 통해 주입할 수 있다.On the other hand, the partition 8 and the discharge hole 32 is also located between the chamber 3 and the reservoir 5, through which the sample passing through the bead 4 is collected in the reservoir 5, the outlet 6 It can be discharged to the outside through. Also, in the present invention, the beads 4 are injected through the inlet 2 or the beads 30 are directly placed in the chamber 3 before the cover 30 is coupled to the chamber 3, and then the cover 30 is coupled. It can be injected by letting it.
나아가, 배출구(6) 주변에는 시료의 통과를 용이하게 하기 위하여 미세 펌프 또는 미세 실린지 펌프(미도시) 등이 더 구비되는 것도 가능하다.In addition, a fine pump or a fine syringe pump (not shown) may be further provided around the outlet 6 to facilitate the passage of the sample.
다음, 상술한 본 발명의 1실시예에 따른 ChIP용 농축 미세칩의 작동을 설명한다. 먼저 상기 주입구(2)로 투입된 미소량의 DNA 및 항체와 결합된 단백질을 포함하는 시료가 챔버(3)에 도달한다. 이러한 챔버(3)에는 다수의 비드(4)로 채워져 있으므로, 시료는 비드(4)의 표면을 타고 흐르게 된다. 이때, 비드(4)의 표면에는 시료에 의한 유체 압력이 가하여 지며, 비드(4)가 챔버(3) 내부에 채워져 있으므로 시료가 유출 가능한 방향으로 큰 압력을 받게 되는 현상이 발생된다. 이때, 본 발명에서는 비드(4)가 시료가 유출되는 방향인 전방과 양측방으로 밀려나게 되는 것이기는 하나, 비드(4)는 도 6과 같이 챔버(3)와 배출로(7) 사이에 위치하는 격벽(8)과 커버(6) 사이의 공간인 배출홀(32)을 통해 배출되며 상기 배출홀(32)의 직경인 d1이 비드(4)의 직경인 d2보다 작으므로, 비드(4)가 챔버(3)에서 이탈됨을 방지할 수 있게 된다. 그러므로 시료는 비드(4)의 공극 사이를 통하여 격벽(8)에 형성된 배출홀(32)을 통해 배출로(7) 및 저장소(5)로 갈 수 있게 되는 것이다. 이에 따라 저장소(6)를 거쳐서 모아진 시료는 배출구(6)로 배출되는 것이다. 또한, 이러한 과정에서 비드(4)가 챔버(3)의 외주부측의 격벽(8)과 챔버와 배출구(6) 사이의 격벽(8)으로 분산되므로, 비드(4)가 한쪽으로 몰리면서 과도한 압력을 받아 변형, 손상되거나 비드(4)의 밀집에 의하여 배출이 어렵게 되는 경우가 방지되는 것이어서, 안정적이고 효과적인 반응 유도가 가능하게 되는 것이다. 아울러, 이러한 과정에서 본 발명은 비드(4)가 45㎛ ~ 165㎛ 이하로서 매우 작으므로 비드(4)의 표면적은 매우 넓게 되는 것이다. 본 발명은 이러한 비드(4)의 충분히 넓은 표면적에 상기 타겟 항체와 선별적으로 결합될 수 있는 단백질 A 또는 단백질 G가 접합된다.Next, the operation of the concentrated microchip for ChIP according to the embodiment of the present invention described above will be described. First, a sample containing a small amount of DNA introduced into the inlet 2 and a protein bound to the antibody reaches the chamber 3. Since the chamber 3 is filled with a plurality of beads 4, the sample flows on the surface of the beads 4. At this time, the fluid pressure by the sample is applied to the surface of the bead 4, since the bead 4 is filled in the chamber 3, a phenomenon in which the sample is subjected to a large pressure in the outflow possible direction occurs. At this time, in the present invention, although the bead 4 is pushed forward and both sides in the direction in which the sample flows out, the bead 4 is located between the chamber 3 and the discharge path 7 as shown in FIG. Since the discharge through the discharge hole 32 is a space between the partition wall 8 and the cover 6 and the diameter of the discharge hole 32 is smaller than the diameter of the bead 4, d2 bead (4) Is prevented from leaving the chamber (3). Therefore, the sample is able to go to the discharge passage 7 and the reservoir 5 through the discharge hole 32 formed in the partition 8 through the pores of the beads 4. Accordingly, the sample collected through the reservoir 6 is discharged to the outlet 6. Also, in this process, the beads 4 are distributed to the partition 8 on the outer circumferential side of the chamber 3 and the partition 8 between the chamber and the discharge port 6, so that the beads 4 are pushed to one side and excessive pressure is applied. It is to be prevented from being deformed, damaged or difficult to discharge due to the compactness of the beads 4, so that stable and effective reaction induction is possible. In addition, in this process, the present invention is very small as the bead 4 is 45㎛ ~ 165㎛ or less, the surface area of the beads 4 is very large. In the present invention, a protein A or protein G, which can selectively bind to the target antibody, is conjugated to a sufficiently large surface area of such beads 4.
따라서, 비드(4)의 표면과 접촉한 후 전술한 바와 같은 과정으로 배출되는 시료의 특정 항체는 모두 비드(4)의 표면에 도포된 단백질 A 또는 G와 결합할 수 있게 되는 것이며, 이에 따라 시료의 특정 단백질이 항체와 효과적으로 반응하면서 신속하게 포집되어 고정화된 후 배출될 수 있는 것이다. 이후 상기 비드(4)에 결합된 DNA-단백질-항체 복합체를 적절하게 수세 및 해리하여 원하는 DNA 또는 단백질을 검출할 수 있다.Therefore, all of the specific antibodies of the sample which come into contact with the surface of the bead 4 and then are discharged by the above-described process will be able to bind to the protein A or G applied to the surface of the bead 4, and thus the sample. Certain proteins can be quickly captured, immobilized and then released while effectively reacting with the antibody. Thereafter, the DNA-protein-antibody complex bound to the beads 4 may be washed with water and dissociated appropriately to detect a desired DNA or protein.
본 발명은 내부 구조물의 크기가 매우 작은 마이크로 칩이며, 이를 극소량의 시료가 연속 통과하도록 한 구조이므로, 이를 통과하고 반응하는 시료가 매우 적은 경우에도 효율적으로 충분한 반응을 얻을 수 있게 된다. 아울러, 본 발명에서는 비드(4)의 직경에 따라서 격벽의(8)의 높이가 조절될 수 있고, 챔버(3)에 넣는 비드(4)의 숫자도 조절될 수 있다. 아울러, 본 발명에서는 실리콘 웨이퍼에 구조물을 다수 식각하여 많은 수의 ChIP용 농축 미세칩을 반복적으로 양산할 수 있다.The present invention is a microchip having a very small size of the internal structure, so that a very small amount of the sample passes continuously, it is possible to efficiently obtain a sufficient reaction even if there are very few samples that pass through and react. In addition, in the present invention, the height of the partition wall 8 may be adjusted according to the diameter of the beads 4, and the number of beads 4 placed in the chamber 3 may also be adjusted. In addition, the present invention can repeatedly mass-produce a large number of concentrated microchips for ChIP by etching a plurality of structures on the silicon wafer.
도 3은 본 발명의 제2 실시예에 따른 ChIP용 다중 농축 미세칩의 평면도이다. 제2 실시예의 구성 중 제1 실시예와 동일한 부분은 상술한 설명으로 대체하고 차이점을 중심으로 설명한다.3 is a plan view of a multi-enriched microchip for ChIP according to a second embodiment of the present invention. The same parts as those of the first embodiment in the configuration of the second embodiment will be replaced with the above description and described mainly on the differences.
본 발명의 제2 실시예에 따른 ChIP용 다중 농축 미세칩은, 서로 다른 DNA와 제1제2항체가 각각 결합된 2종의 단백질을 포함하는 시료가 투입되는 주입구, 상기 주입구와 연통되고, 내부에는 상기 항체와 결합하는 제1특정단백질이 고정된 복수개의 비드(4)가 위치되는 제1챔버(3'), 상기 제1챔버(3’)와 격벽(8)으로 연결되고, 내부에는 상기 항체와 결합하는 제2특정단백질이 도포된 복수개의 비드(11)가 위치되는 제2챔버(10), 상기 제1챔버(3’)로 투입된 상기 시료가 상기 제2챔버(10)로 공급되도록 상기 제1챔버(3’)의 외주부 및 제2챔버(10)의 외주부 일부에 연결되는 제1배출로(7), 상기 제1배출로(7)와 이격된 상태로 상기 제2챔버(10)의 외주부에 연결되는 제2배출로(14), 및 상기 제2챔버(10) 내부로 투입된 상기 시료를 배출시키는 배출구(13)를 포함한다.The multi-enriched microchip for ChIP according to the second embodiment of the present invention is an injection hole into which a sample containing two kinds of proteins in which different DNA and the first second antibody are respectively coupled, is in communication with the injection hole, and Is connected to the first chamber (3 '), the first chamber (3') and the partition wall (8) in which a plurality of beads (4) in which the first specific protein binding to the antibody is fixed is located, A second chamber 10 in which a plurality of beads 11 coated with a second specific protein that binds an antibody are placed, and the sample introduced into the first chamber 3 ′ is supplied to the second chamber 10. The first chamber 7 connected to the outer circumferential portion of the first chamber 3 ′ and a portion of the outer circumferential portion of the second chamber 10, and the second chamber 10 spaced apart from the first discharge passage 7. And a second discharge passage 14 connected to an outer circumference of the) and a discharge port 13 for discharging the sample introduced into the second chamber 10.
다시 말해, 본 발명의 제2 실시예의 특징은 챔버 2개(3’, 10)를 직렬로 배치하고, 제1챔버(3’)를 통과한 시료가 다시 제2챔버(10)를 통과하도록 하여, 1번의 실험으로 2종류의 DNA 또는 단백질을 검출하도록 하는 것이다.In other words, the feature of the second embodiment of the present invention is that two chambers 3 ', 10 are arranged in series, and the sample passing through the first chamber 3' passes through the second chamber 10 again. In one experiment, two types of DNA or proteins are detected.
투입된 시료는 제1챔버(3') 내의 비드(4)를 통과하며, 이 때 타켓 DNA 또는 단백질과 결합된 항체가 비드(4)에 도포된 단백질과 결합하게 된다. 그 뒤 남은 시료는 제1챔버(3’)의 외주부 및 제2챔버(10)의 외주부의 일부와 연통된 제1배출로(7)를 통해 제2챔버(10) 내로 유입되거나, 제1챔버(3’)의 하단의 격벽(8)에 위치하는 배출홀(32)을 통과하여 제2챔버(10)내로 유입된다.The injected sample passes through the beads 4 in the first chamber 3 ', and the antibody bound to the target DNA or protein binds to the protein applied to the beads 4. Subsequently, the remaining sample flows into the second chamber 10 through the first discharge path 7 in communication with the outer circumferential portion of the first chamber 3 ′ and a portion of the outer circumferential portion of the second chamber 10, or the first chamber It flows into the 2nd chamber 10 through the discharge hole 32 located in the partition 8 of the lower end of 3 '.
제1챔버(3’)를 통해 제2챔버(10) 내로 유입된 시료는 제2챔버(10) 내의 비드(11)를 통과하게 되며, 이 때 제2챔버(10) 내의 비드(11)는 그 크기 및 재질은 제1챔버(3') 내의 비드(4)와 동일하다. 그러나 상기 비드(11) 상에 도포되는 단백질의 종류를 제1챔버(3’) 내의 비드(4)와 다르게 하고(또 다른 항체와 결합할 수 있는 단백질을 도포하고) 상기 도포된 단백질은 제1챔버(3’)에서 반응한 항체와는 다른 종류의 항체와 결합하는 단백질을 선택하여, 결과적으로 제1챔버(3’)에서는 검출하지 못했던 다른 종류의 DNA 또는 단백질을 검출할 수 있는 것이다.The sample introduced into the second chamber 10 through the first chamber 3 'passes through the bead 11 in the second chamber 10, at which time the bead 11 in the second chamber 10 Its size and material are the same as the beads 4 in the first chamber 3 '. However, the type of protein applied on the bead 11 is different from the beads 4 in the first chamber 3 '(coating a protein capable of binding another antibody) and the applied protein is first By selecting a protein that binds to a different type of antibody than the antibody reacted in the chamber 3 ', as a result, other types of DNA or protein that were not detected in the first chamber 3' can be detected.
그 뒤 제2챔버(10) 내의 비드(11)를 통과한 잔량의 시료는 제2챔버(10)의 외주부와 연통된 제2배출로(14)를 통해 저장소(16)로 집결된 후, 배출구(13)로 배출되거나, 제2챔버(10)의 하단의 격벽(8)에 위치하는 배출홀(32)을 통과하여 저장소로(16) 집결된 후, 배출로(13)로 배출된다.Then, the remaining amount of the sample passing through the bead 11 in the second chamber 10 is collected in the reservoir 16 through the second discharge path 14 in communication with the outer circumferential portion of the second chamber 10, and then the discharge port. After being discharged to 13 or through a discharge hole 32 located in the partition 8 of the lower end of the second chamber 10, the reservoir 16 is collected and discharged to the discharge passage 13.
한편 상기 제2챔버(10)는 필요에 따라 시료 및 비드(11)를 상기 제2챔버(10)로 직접 공급하는 보조주입구(12)가 더 구비될 수 있으며, 나아가, 각각의 챔버(3’, 10)의 세척 및 해리 등을 용이하게 하기 위하여 상기 제1챔버(3’)와 상기 제2챔버(10)는 서로 탈부착이 용이하도록 형성될 수 있다(미도시). 상기 탈부착 수단은 통상의 챔버의 탈부착에 사용되는 수단들이 모두 사용될 수 있으며, 구체적으로 자성체, 체결부(볼트 등), 억지끼움, 벨크로우즈테이프 등을 사용할 수 있으나 이에 한정되지는 않는다.Meanwhile, the second chamber 10 may further include an auxiliary inlet 12 for directly supplying the sample and the beads 11 to the second chamber 10 as needed, and further, each chamber 3 '. , The first chamber 3 'and the second chamber 10 may be formed to be easily attached to and detached from each other (not shown) in order to facilitate washing and dissociation. As the detachable means, all means used for detachable normal chamber may be used. Specifically, a magnetic material, a fastening part (such as a bolt), an interference fit, a bellows tape, and the like may be used, but are not limited thereto.
본 발명의 제3실시예는 ChIP용 농축 미세칩을 이용한 ChIP 수행방법으로서, 1) 세포에 포름알데히드를 첨가하여 DNA와 DNA 결합단백질을 결합시키는 단계, 2) 상기 세포를 파괴하고 상기 DNA를 잘게 절단하는 단계, 3) 상기 DNA 결합단백질과 결합하는 항체를 투입하여 시료를 제작하는 단계, 4) 상기 본 발명의 ChIP용 농축 미세칩의 주입구에 상기 시료를 투입하는 단계, 5) 상기 미세칩의 내부의 비드를 세척하는 단계, 및 6) 상기 세척된 비드를 용리액(elution buffer)으로 처리하여 상기 DNA를 용출하는 단계를 포함한다.A third embodiment of the present invention is a method of performing ChIP using a concentrated microchip for ChIP, comprising: 1) adding formaldehyde to a cell to bind DNA and a DNA binding protein, and 2) destroying the cell and slicing the DNA. Cutting, 3) preparing a sample by injecting an antibody binding to the DNA binding protein, 4) injecting the sample into the inlet of the concentrated microchip for ChIP of the present invention, and 5) Washing the beads therein, and 6) treating the washed beads with an elution buffer to elute the DNA.
이를 구체적으로 설명하면, 상기 1) 단계와 2)단계까지는 통상의 ChIP 수행방법과 동일하다. 즉, 타겟 DNA 또는 단백질, 바람직하게는 전사인자 등을 포름알데히드를 첨가하여 결합시킨 후, 세포를 파괴하고 DNA를 잘게 부순다. 이 때, 단백질과 결합된 DNA 부분은 절단되지 않고 남아 있게 된다.In detail, steps 1) and 2) are the same as those of the conventional ChIP method. That is, the target DNA or protein, preferably a transcription factor, or the like is combined with the addition of formaldehyde, and then the cells are destroyed and the DNA is crushed. At this time, the DNA portion bound to the protein remains uncut.
그 뒤, 3)단계로서 상기 단백질과 특정하게 결합할 수 있는 항체를 투입하여 단백질과 결합시킨 후 이를 포함하는 시료를 제조한다. 이를 통해 종래의 E.P.튜브를 이용할 때에 비하여 적은 시료를 투입하는 경우에도 DNA 및 단백질의 검출이 가능할 뿐 아니라, 사용되는 비드의 수를 절반 이하로 줄일 수 있으며, 기존 ChIP 실험 시 평균 4일이 소요되던 것이 본 발명의 칩을 사용하면 2일 정도로 단축되므로 최대 50%실험시간을 저감할 수 있다. 또한 고가의 항체, 시약, 샘플 등의 양을 줄일 수 있으므로 실험비용을 절감할 수 있으며, 정량화된 시약과 재료를 사용하여 간편하게 ChIP 실험을 수행할 수 있으므로 실험결과 일관성을 담보할 수 있다. 나아가 소프트 리소그래피 등에 의하여 다량 생산이 가능한 것이어서 제작비용이 저렴하다.Thereafter, in step 3), an antibody capable of specifically binding to the protein is added to bind to the protein, thereby preparing a sample including the same. This makes it possible to detect DNA and protein even when using fewer samples than when using conventional EP tubes, and to reduce the number of beads used to less than half. If the chip of the present invention is used, the test time can be reduced by up to 50% since it is shortened by about 2 days. In addition, it is possible to reduce the amount of expensive antibodies, reagents, samples, etc., thereby reducing the cost of experiments, and can easily perform the ChIP experiments using quantified reagents and materials, thereby ensuring consistency of experimental results. Furthermore, it is possible to produce a large amount by soft lithography and the like, and thus the manufacturing cost is low.
이 때 상기 시료는 바람직하게는 Cell sonication sample 100ul(2.5X106cells)및 IP dilution buffer를 500 ~1,000㎕ 를 투입할 수 있다.At this time, the sample may preferably be added to the cell sonication sample 100ul (2.5X10 6 cells) and 500 ~ 1,000μl IP dilution buffer.
그 뒤 4)단계로서 상기 본 발명의 ChIP용 농축 미세칩의 주입구에 상기 시료를 주입하게 되며, 이때, 상기 시료를 5 ~ 30분간 상기 주입구에 투입할 수 있으나 이에 한정되는 것은 아니며, 실험조건에 따라 적절히 시간을 조절할 수 있다.Thereafter, as the step 4), the sample is injected into the inlet of the concentrated microchip for ChIP of the present invention, in which case the sample may be introduced into the inlet for 5 to 30 minutes, but is not limited thereto. The time can be adjusted accordingly.
시료를 주입한 뒤, 잔량의 시료가 ChIP용 농축 미세칩에 구비된 배출구를 통해 빠져 나가면, 5)단계로서 상기 미세칩의 내부의 비드를 세척한다. 이 때 세척방법은 바람직하게는 a) 저염 면역 복합체 세척버퍼(low salt immune complex wash buffer) 0.5㎖ b) 고염 면역 복합체 세척버퍼(High salt lmmune complex wash buffer) 0.5㎖, c) 염화리튬 면역 복합체 세척버퍼(LiCl immune complex wash buffer) 0.5㎖ 및 d) TE 버퍼 0.5㎖;로 순차적으로 세척하되, 각각의 세척시간은 30초 ~ 2분이고 상기 d)단계는 2회 수행될 수 있다. 이 중 상기 저염 면역 복합체 세척버퍼 및 고염 면역 복합체 세척버퍼는 통상의 ChIP 실험에서 사용되는 버퍼들로서 구체적으로 1) 저염 면역 복합체 세척버퍼는 0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl, pH 8.1, 150mM NaCl로 구성되는 세척버퍼를 사용할 수 있으며. 2) 고염 면역 복합체 세척버퍼는 0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl, pH 8.1, 500mM NaCl로 구성되는 세척버퍼를 사용할 수 있고, 3) 염화리튬 면역 복합체 세척버퍼는 0.25M LiCl, 1% IGEPAL CA630, 1% deoxycholic acid (sodium salt), 1mM EDTA, 10mM Tris, pH 8.1로 구성되는 세척버퍼를 사용할 수 있으며, 4) TE 버퍼는 10mM Tris-HCl, pH 8.0, 1mM EDTA로 구성되는 버퍼를 사용할 수 있다.After injecting the sample, if the remaining amount of the sample exits through the outlet provided in the concentrated microchips for ChIP, as in step 5) to wash the beads inside the microchips. At this time, the washing method is preferably a) 0.5 ml of low salt immune complex wash buffer b) 0.5 ml of high salt lmmune complex wash buffer, c) washing of lithium chloride immune complex 0.5 ml of buffer (LiCl immune complex wash buffer) and d) 0.5 ml of TE buffer; washed sequentially, each washing time is 30 seconds to 2 minutes and the d) step may be performed twice. Among them, the low salt immune complex washing buffer and the high salt immune complex washing buffer are buffers used in a conventional ChIP experiment. Specifically, 1) the low salt immune complex washing buffer is 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris. -A washing buffer consisting of HCl, pH 8.1, 150 mM NaCl can be used. 2) The high salt immune complex washing buffer may be a washing buffer consisting of 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1, 500 mM NaCl, and 3) Lithium chloride immune complex washing buffer Is a washing buffer consisting of 0.25M LiCl, 1% IGEPAL CA630, 1% deoxycholic acid (sodium salt), 1mM EDTA, 10mM Tris, pH 8.1, 4) TE buffer is 10mM Tris-HCl, pH 8.0, A buffer consisting of 1 mM EDTA can be used.
한편, 통상의 ChIP 세척은 각 단계별로 세척액 500㎕를 넣고 3분~5분 동안 휘젓기를 한 후에 원심분리를 하게 되나. 본 발명의 ChIP 농축 미세칩은 상기 5)단계에서 단계별로 세척액 250㎕를 넣고 1분 이내로 흘려주면 세척이 완료된다.On the other hand, in the general ChIP washing, 500μl of the washing solution is added to each step, followed by centrifugation after stirring for 3 ~ 5 minutes. The ChIP-enriched microchip of the present invention is added to 250 μl of the washing solution step by step in step 5), and the washing is completed within 1 minute.
또한, 통상의 ChIP 방법은 각 단계별로 휘젓기와 원심분리 등의 실험절차가 복잡한 방면 ChIP 농축 미세칩은 그냥 용액을 흘려주는 것으로 세척단계가 완료된다.In addition, in the conventional ChIP method, the ChIP-enriched microchips, which are complicated in the experimental procedures such as stirring and centrifugation, are simply passed through the solution, and the washing step is completed.
나아가 세척단계가 끝나고 비드에 붙어있는 히스톤 복합체를 추출하고 순수 DNA를 추출하는 과정에서 통상의 ChIP 방법은 불순물이 (단백질 외에 기타 침전물) 많이 발생하는 반면 ChIP 농축 미세칩은 불순물이 적게 나타나므로 세척효율이 통상의 ChIP 방법보다 우수하다.Furthermore, in the process of extracting the histone complexes attached to the beads and extracting the pure DNA after the washing step, the conventional ChIP method generates a lot of impurities (other precipitates other than proteins), while the ChIP-enriched microchips show less impurities. This is superior to the usual ChIP method.
그 뒤 6) 단계로서 상기 세척된 비드를 용리액(elution buffer)으로 처리하여 상기 DNA 등을 용출하여 원하는 DNA 및 단백질을 검출한다. 이 때 사용되는 용리액의 종류 등은 통상의 ChIP 실험에서 사용되는 용리액을 사용할 수 있다. 이때 상기 6)단계는 ChIP 농축 칩 내부에 비드가 들어있는 상태에서 진행하게 된다. 구체적으로 채널 내부의 비드를 세척한 후 비드에 붙어있는 히스톤 복합체를 용출하여 최종 용액 샘플을 얻게 된다.Thereafter, in step 6), the washed beads are treated with an elution buffer to elute the DNA to detect desired DNA and protein. At this time, the type of eluent used may be an eluent used in a conventional ChIP experiment. At this time, step 6) is performed in the state that beads are contained in the ChIP enrichment chip. Specifically, after washing the beads in the channel, the histone complex attached to the beads is eluted to obtain a final solution sample.
상기 6)단계 이후, 바람직하게는 웨스턴 블랏을 수행하거나 PCR 등을 수행하여 검출된 DNA 또는 단백질의 서열 및 특성을 상세히 파악할 수 있는 것이다.After step 6), preferably, Western blot or PCR may be performed to determine the sequence and characteristics of the detected DNA or protein in detail.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 본 실시예는 가장 바람직한 실시형태를 통하여 본 발명을 보다 구체적으로 설명하기 위함이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. This example is intended to explain the present invention more specifically through the most preferred embodiments, and the scope of the present invention is not limited to these examples.
<실시예 1 : 시료의 제작>Example 1 Preparation of Sample
세포(293세포, 293F세포, HeLa세포)에 포름알데히드를 1%의 농도로 처리하여 DNA와 히스톤 및 DNA 결합 단백질을 교차 결합시켰다. 그 뒤 세포를 5x106 세포씩 분주한 후 용해버퍼(SDS lysis buffer: 1% SDS, 10mM EDTA, 50mM Tris-HCl, pH8.1)를 100ul(1mM)넣고 세포를 파쇄하였다.Cells (293 cells, 293F cells, HeLa cells) were treated with formaldehyde at a concentration of 1% to cross-link DNA with histones and DNA binding proteins. Thereafter, the cells were dispensed by 5 × 10 6 cells, and 100 μl (1 mM) of lysis buffer (SDS lysis buffer: 1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH8.1) was added and the cells were disrupted.
그 뒤 상기 시료에 DNA 결합 단백질과 결합할 수 있는 항체(Anti-acetyl-Histon H3 (Lys18))를 2.5㎕ 넣은 후 3시간 동안 반응시켰다.Thereafter, 2.5 μl of an antibody (Anti-acetyl-Histon H3 (Lys18)) capable of binding to a DNA binding protein was added to the sample, followed by reaction for 3 hours.
<실시예 2 : ChIP 수행><Example 2: performing ChIP>
도 1에 도시된 ChIP용 DNA 농축 미세칩의 챔버 내에 protein A 로 처리된 45㎛~165㎛ 크기의 6㎍/30㎕ ~ 12㎍/60㎕를 넣고 30분 동안 인큐베이션을 실시하였다. 그 뒤 실시예 1에서 제조된 시료를 미세칩의 주입구에 15분간 흘려주었다.1 μg / 30 μl to 12 μg / 60 μl of the size of 45 μm to 165 μm treated with protein A was added to the chamber of the DNA-enriched microchip for ChIP shown in FIG. 1 and incubated for 30 minutes. Thereafter, the sample prepared in Example 1 was flowed into the inlet of the microchip for 15 minutes.
잔량의 시료가 배출구를 통해 모두 배출된 후 먼저, DEMc 칩 내부의 단백질 A 비드/항체/DNA(크로마틴) 복합체를 하기 1 ~ 4의 단계별로 1분간 흘려주면서 세척하였다.After all of the remaining sample was discharged through the outlet, first, the protein A beads / antibody / DNA (chromatin) complex inside the DEMc chip was washed while flowing for 1 minute in the following steps 1 to 4.
(1) 저염 면역 복합체 세척버퍼 (0.5ml, one wash, at room temp, 0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl, pH 8.1, 150mM NaCl), 2) 고염 면역 복합체 세척버퍼(0.5ml, one wash, at room temp, 0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl, pH 8.1, 500mM NaCl), 3) 염화리튬 면역 복합체 세척버퍼(0.5ml, one wash, at room temp, 0.25M LiCl, 1% IGEPAL CA630, 1% deoxycholic acid (sodium salt), 1mM EDTA, 10mM Tris, pH 8.14), 4) TE 버퍼(0.5ml, two washes, at room temp, 10mM Tris-HCl, pH 8.0, 1mM EDTA)(1) low salt immune complex washing buffer (0.5 ml, one wash, at room temp, 0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1, 150 mM NaCl), 2) high salt immune complex Washing buffer (0.5ml, one wash, at room temp, 0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl, pH 8.1, 500mM NaCl), 3) Lithium chloride immune complex washing buffer (0.5ml , one wash, at room temp, 0.25M LiCl, 1% IGEPAL CA630, 1% deoxycholic acid (sodium salt), 1mM EDTA, 10mM Tris, pH 8.14), 4) TE buffer (0.5ml, two washes, at room temp , 10 mM Tris-HCl, pH 8.0, 1 mM EDTA)
세척이 끝난 DEMc 칩 내부의 단백질 A 비드/항체/DNA(크로마틴) 복합체에 250ul 용출버퍼(1% SDS, 0.1M NaHCO3)를 1분 동안 흘려주어 반응시켜 목표로 하는 DNA(크로마틴)을 용출하였다.The target DNA (chromatin) was reacted by flowing 250ul elution buffer (1% SDS, 0.1M NaHCO 3 ) to the protein A beads / antibody / DNA (chromatin) complex inside the washed DEMc chip for 1 minute. Eluted.
<실시예 3 : 웨스턴 블롯 수행>Example 3 Perform Western Blot
(1) 먼저, 15% SDS 폴리아크릴아미드 겔을 이용하여, 100V, 1시간 동안 동작하였다. 세척이 끝난 상기 실시예 2를 통해 제조된 샘플 또는 WCE(Whole cell extract)에 2X SDS sample buffer를 넣고 10분 동안 가열한 후 스핀다운시켜 상등액만 사용하였다. 세척이 끝난 샘플은 20㎕ 로딩하고 WCE는 10㎕ 로딩한다. 그 뒤 IgG 0.5㎕에 1X sample buffer 50㎕를 넣고 10분간 가열하여 10㎕로 로딩하였다.(1) First, using 15% SDS polyacrylamide gel, it was operated for 100V, 1 hour. After washing, the 2X SDS sample buffer was added to the sample prepared through Example 2 or the whole cell extract (WCE), heated for 10 minutes, and then spin-down to use only the supernatant. The washed sample is loaded with 20 µl and WCE is loaded with 10 µl. Then, 50 μl of 1X sample buffer was added to 0.5 μl of IgG, and heated for 10 minutes to load 10 μl.
그 뒤 트랜스퍼 세트를 셋팅하고 transfer buffer(48mM Tris base, 39mM Glycine, 20% MeOH, 0.0375% SDS)를 채운 후 100V로 1시간 동안 젤에 있는 단백질을 PVDF membrane으로 트랜스퍼하였다. 그 뒤 membrane을 5% skim milk-TBST에 넣고 1시간 동안 반응 시켰다.The transfer set was then set, filled with transfer buffer (48mM Tris base, 39mM Glycine, 20% MeOH, 0.0375% SDS), and the protein in the gel was transferred to PVDF membrane at 100V for 1 hour. Then, the membrane was placed in 5% skim milk-TBST and reacted for 1 hour.
그 뒤 5% skim milk-TBST(10mM Tris-Cl(pH 7.4), 150mM NaCl, 0.05% Tween)에 1:3000으로 1'항체(앞에서 사용된 것과 같은 Ab)를 넣고 2시간 배양한 후, TBST로 15min씩 3번 씻어주었다. 그 뒤 5% skim milk-TBST에 1:3000으로 1'항체b(Anti-rabbit IgG)를 넣고 1시간 배양한 후, TBST로 15min씩 3번 씻어주었다. 그 뒤 Membrane에 TMB 용액을 넣어 발색이 될 때까지 배양하여 검출하였다.Then, incubated for 2 hours with 1 'antibody (Ab as used previously) at 1: 3000 in 5% skim milk-TBST (10 mM Tris-Cl (pH 7.4), 150 mM NaCl, 0.05% Tween). Rinse 3 times with 15min each. Then, 1 'antibody b (Anti-rabbit IgG) was added at 1: 3000 to 5% skim milk-TBST, and then incubated for 1 hour, and washed 3 times with TBST. Thereafter, TMB solution was added to Membrane and cultured until color development was detected.
도 7은 웨스턴 블롯의 수행결과를 나타내는 전기영동 사진이다. 구체적으로 사진의 좌측으로부터 (1) 통상의 ChIP western blot positive 샘플, (2) 통상의 ChIP western blot negative 샘플, (3) ChIP 농축 미세칩 western blot positive 샘플, (4) ChIP 농축 미세칩 western blot negative 샘플, (5) Whole cell extract, (6) Anti-acetyl H3 histone IgG의 순으로 구성된다.Figure 7 is an electrophoresis picture showing the results of the Western blot. Specifically, from the left side of the photograph, (1) a normal ChIP western blot positive sample, (2) a normal ChIP western blot negative sample, (3) a ChIP concentrated microchip western blot positive sample, and (4) a ChIP concentrated microchip western blot negative Samples were followed by (5) Whole cell extract and (6) Anti-acetyl H3 histone IgG.
그 결과, 표적 단백질인 Acetylated-histone H3(17.3KDa)의 확인을 통해서 원하는 히스톤+DNA 복합체가 포함되어 있는 지 여부를 확인할 수 있다. 위의 실험결과 항체를 넣지 않은 샘플(negative)에서 히스톤 밴드가 나타나지 않았으며, 항체를 넣은 샘플(positive) 에서는 통상의 ChIP 방법과 ChIP 농축 미세칩 둘 다 원하는 밴드가 나타났다. 이를 통해 Protein A 비드 및 히스톤 항체를 통해서 원하는 DNA+히스톤 복합체를 정확히 붙잡았는지 western blot을 통해서 확인 할 수 있으며, 기존의 Tube 방법에서와 같이 ChIP 농축 칩에서도 표적 DNA+히스톤 복합체를 소량의 비드와 히스톤 항체를 이용해 Tube 방법과 같은 양으로 정확히 붙잡을 수 있었다.As a result, the confirmation of the target protein Acetylated-histone H3 (17.3KDa) can determine whether the desired histone + DNA complex is included. As a result of the above experiment, the histone band did not appear in the sample without the antibody, and the sample with the antibody showed the desired band in both the conventional ChIP method and the ChIP-enriched microchip. This can be confirmed by western blot whether the protein A beads and histone antibodies have correctly captured the desired DNA + histone complex. It was able to capture exactly the same amount as the Tube method.
<실시예 4 : PCR 수행>Example 4 PCR
(1) 실시예 2 샘플에 5M NaCl 10㎕를 넣고 65℃, 4시간 가열하여 Histone-DNA crosslink를 풀어주었다.(1) Example 2 10 μl of 5M NaCl was added to a sample and heated at 65 ° C. for 4 hours to release Histone-DNA crosslink.
(2) 0.5M EDTA 5㎕, 1M Tris-HCl pH 6.5 10㎕, 10mg/ml Proteinase K 1㎕를 넣고 1시간 동안 45℃에서 반응시켰다.(2) 5 μl of 0.5 M EDTA, 10 μl of 1M Tris-HCl pH 6.5, and 1 μl of 10 mg / ml Proteinase K were reacted at 45 ° C. for 1 hour.
(3) 페놀/클로로폼 추출과 에탄올 precipitation에 의해 DNA를 추출하였다. (3) DNA was extracted by phenol / chloroform extraction and ethanol precipitation.
(4) 하기 서열의 GAPDH 유전자의 프라이머(Product Size: 166 bp)를 미리 제작하여 PCR을 수행하였다.(4) A primer of the GAPDH gene of the following sequence ( Product Size: 166 bp) was prepared in advance and PCR was performed.
GAPDH For: 5´-TACTAGCGGTTTTACGGGCG-3´GAPDH For: 5´-TACTAGCGGTTTTACGGGCG-3´
GAPDH Rev: 5´-TCGAACAGGAGGAGCAGAGAGCGA-3´GAPDH Rev: 5´-TCGAACAGGAGGAGCAGAGAGCGA-3´
(5) 2.5% 아가로즈 겔 전기영동를 수행하여 GAPDH가 맞는지 확인하였다.(5) 2.5% agarose gel electrophoresis was performed to confirm that GAPDH was correct.
도 8은 상술한 방법을 통해 실시된 전기영동 결과이다. 상기 도 8에서 1레인은DNA size marker 50Kb ladder이고, 2레인은 통상의 ChIP PCR negative 샘플(E.P튜브 사용), 3레인은 통상의 ChIP PCR positive 샘플E.P튜브 사용), 4레인은 본 발명의 ChIP 농축 미세칩 negative 샘플이고, 5레인은 5. ChIP 농축 미세칩 positive 샘플이다.8 is an electrophoresis result carried out through the above-described method. In FIG. 8, lane 1 is a DNA size marker 50Kb ladder, lane 2 is a conventional ChIP PCR negative sample (using an EP tube), lane 3 is a conventional ChIP PCR positive sample using an EP tube, and lane 4 is a ChIP of the present invention. Concentrated microchip negative sample, 5 lanes are 5. ChIP concentrated microchip positive sample.
상술한 표적 유전자는 세포내의 GAPDH 유전자를 사용했으며 166bp 크기에서 밴드가 형성된다. 통상의 ChIP negative 샘플은 항체를 넣지 않은 샘플이며, 통상의 ChIP positive 샘플은 항체를 넣은 샘플이다.The target gene described above used the intracellular GAPDH gene and a band was formed at the size of 166 bp. A typical ChIP negative sample is a sample without an antibody, and a typical ChIP positive sample is a sample with an antibody.
위의 전기영동 결과 통상의 ChIP positive 샘플과 ChIP 농축 미세칩 positive 샘플에서 166bp 크기의 GAPDH gene 밴드가 나타났으며, 따라서 ChIP 농축 미세칩을 이용하여 통상의 ChIP 칩 방식과 동일한 실험결과를 얻을 수 있다.The electrophoresis resulted in a GAPDH gene band of 166bp size in the conventional ChIP positive sample and the ChIP enriched microchip positive sample. Thus, the same experimental results as the conventional ChIP chip method can be obtained using the ChIP enriched microchip. .
본 발명은 종래의 E.P. 튜브를 이용한 ChIP 기술을 대체하여 적은 시료의 양으로 실험이 가능하고 실험시간이 줄어들며, 실험결과의 변동이 적으면서도, 상온에서도 ChIP 실험을 수행할 수 있어 바이오 산업에 매우 유용한 발명이다.The present invention is a conventional E.P. It is a very useful invention for the bio industry because it can replace the ChIP technology using a tube and can perform experiments with a small amount of sample, reduce the experiment time, and perform the ChIP experiment at room temperature with little variation of the experimental results.
Claims (25)
- DNA 및 항체와 결합된 단백질을 포함하는 시료가 투입되는 주입구;상기 주입구와 연통되고, 내부에는 표면에 상기 항체와 결합하는 특정 단백질이 고정된 복수개의 비드가 위치되는 챔버; 및상기 챔버와 연통되며, 상기 투입된 시료가 배출되도록 상기 주입구의 타측에 형성된 배출구;를 포함하는 것을 특징으로 하는 ChIP(Chromatin immunoprecipitation)용 농축 미세칩(MEMs chip).An injection port into which a sample including DNA and a protein bound to the antibody is injected; a chamber in communication with the injection port, and having a plurality of beads in which a specific protein to bind the antibody is fixed to a surface thereof; And a discharge port communicating with the chamber and formed at the other side of the injection hole so that the injected sample is discharged. 5. The concentrated microchip for ChIP (Chromatin immunoprecipitation) comprising a.
- 제1항에 있어서,상기 특정 단백질은 단백질 A 또는 단백질 G인 것을 특징으로 하는 ChIP용 농축 미세칩.The concentrated microchip for ChIP according to claim 1, wherein the specific protein is Protein A or Protein G.
- 제1항에 있어서, 상기 비드는 아가로즈 비드 또는 세파로즈 비드인 것을 특징으로 하는 ChIP용 농축 미세칩.The concentrated microchip for ChIP according to claim 1, wherein the beads are agarose beads or sepharose beads.
- 제1항에 있어서, 상기 비드의 직경은 45㎛ ~ 165 ㎛인 것을 특징으로 하는 ChIP용 농축 미세칩.The concentrated microchip for ChIP according to claim 1, wherein the beads have a diameter of 45 µm to 165 µm.
- 제1항에 있어서, 상기 챔버의 외주부에 설치되어 상기 시료가 배출되고, 상기 배출구와 연통되는 배출로를 더 포함하는 것을 특징으로 하는 ChIP용 농축 미세칩.The concentrated microchip of ChIP according to claim 1, further comprising a discharge path installed at an outer circumference of the chamber to discharge the sample and communicate with the discharge port.
- 제5항에 있어서, 상기 배출로와 상기 챔버 사이에 설치되고 상기 비드보다 작은 통로를 갖는 배출홀을 더 포함하는 것을 특징으로 하는 ChIP용 농축 미세칩.6. The concentrated microchip of ChIP according to claim 5, further comprising a discharge hole installed between the discharge path and the chamber and having a passage smaller than the bead.
- 제1항에 있어서, 상기 챔버를 밀폐시키는 커버가 결합되는 것을 특징으로 하는 ChIP용 농축 미세칩.The concentrated microchip for ChIP according to claim 1, wherein a cover for sealing the chamber is coupled.
- 제7항에 있어서, 상기 커버는 유리 또는 투명 플라스틱인 것을 특징으로 하는 ChIP용 농축 미세칩.8. The concentrated microchip as claimed in claim 7, wherein the cover is glass or transparent plastic.
- 제1항에 있어서, 상기 비드는 6㎍/30㎕ ~ 12㎍/30㎕인 것을 특징으로 하는 ChIP용 농축 미세칩.The concentrated microchip for ChIP according to claim 1, wherein the beads are 6 µg / 30 µl to 12 µg / 30 µl.
- 서로 다른 DNA 및 항체가 각각 결합된 2종의 단백질을 포함하는 시료가 투입되는 주입구;상기 주입구와 연통되고, 내부에는 상기 항체와 결합하는 제1특정단백질이 고정된 복수개의 비드가 위치되는 제1챔버;상기 제1챔버와 격벽으로 연결되고, 내부에는 상기 항체와 결합하는 제2특정단백질이 도포된 복수개의 비드가 위치되는 제2챔버;상기 제1챔버로 투입된 상기 시료가 상기 제2챔버로 공급되도록 상기 제2챔버의 외주부 일부에 연결되는 제1배출로;상기 제1배출로와 이격된 상태로 상기 제2챔버의 외주부에 연결되는 제2배출로; 및상기 제2챔버 내부로 투입된 상기 시료를 배출시키는 배출구;를 포함하는 것을 특징으로 하는 ChIP용 다중 농축 미세칩.An injection port into which a sample including two proteins in which different DNAs and antibodies are respectively bound is injected; a first port in which a plurality of beads in communication with the injection port are fixed, and a first specific protein to which the antibody binds is fixed is located A second chamber connected to the first chamber by a partition wall and having a plurality of beads coated with a second specific protein to bind the antibody therein; the sample introduced into the first chamber is transferred to the second chamber A first discharge path connected to a portion of an outer circumference of the second chamber to be supplied; a second discharge path connected to an outer circumference of the second chamber while being spaced apart from the first discharge path; And a discharge hole for discharging the sample introduced into the second chamber.
- 제10항에 있어서, 상기 제1배출로와 상기 제1챔버 및 제2배출로와 제2챔버 사이에 설치되고 상기 비드보다 작은 통로를 갖는 배출홀을 더 포함하는 것을 특징으로 하는 ChIP용 다중 농축 미세칩.The multi-enrichment for ChIP according to claim 10, further comprising a discharge hole installed between the first discharge path and the first chamber and the second discharge path and the second chamber and having a passage smaller than the bead. Fine chip.
- 제10항에 있어서, 상기 격벽은, 상기 제1챔버로 투입된 상기 시료가 상기 제2챔버로 배출되도록 배출홀이 형성되는 것을 특징으로 하는 ChIP용 다중 농축 미세칩.The multi-enriched microchip for ChIP according to claim 10, wherein the partition wall has a discharge hole so that the sample introduced into the first chamber is discharged to the second chamber.
- 제10항에 있어서, 상기 제2챔버는 시료를 상기 제2챔버로 공급하는 보조주입구가 더 구비된 것을 특징으로 하는 ChIP용 다중 농축 미세칩.The multi-concentrated microchip for ChIP according to claim 10, wherein the second chamber further comprises an auxiliary inlet for supplying a sample to the second chamber.
- 제10항에 있어서, 상기 제1특정단백질과 제2특정단백질은 각각 상이한 종류의 항체와 결합하는 것을 특징으로 하는 ChIP용 다중 농축 미세칩.The multi-enriched microchip for ChIP according to claim 10, wherein the first specific protein and the second specific protein bind to different kinds of antibodies, respectively.
- 제10항에 있어서, 상기 제1챔버와 상기 제2챔버는 탈착되는 것을 특징으로 하는 ChIP용 다중 농축 미세칩.11. The multi-enriched microchip for ChIP according to claim 10, wherein the first chamber and the second chamber are detachable.
- 제10항에 있어서, 상기 2종 이상의 단백질에 결합된 항체는 서로 상이한 것을 특징으로 하는 ChIP용 다중 농축 미세칩.The multi-enriched microchip for ChIP according to claim 10, wherein the antibodies bound to the two or more proteins are different from each other.
- 제10항에 있어서, 상기 ChIP용 다중 농축 미세칩은, 상기 제2챔버로 투입된 상기 시료가 상기 배출구로 배출될 수 있도록 제2챔버와 배출구 사이에 배출홀이 형성된 격벽을 더 구비하는 것을 특징으로 하는 ChIP용 다중 농축 미세칩.The method of claim 10, wherein the multi-enriched microchip for ChIP, characterized in that it further comprises a partition formed with a discharge hole between the second chamber and the discharge port so that the sample introduced into the second chamber can be discharged to the discharge port. Multi-enriched microchip for ChIP.
- 1) 세포에 포름알데히드를 첨가하여 DNA와 DNA 결합단백질을 결합시키는 단계;2) 상기 세포를 파괴하고 상기 DNA를 잘게 절단하는 단계;3) 상기 DNA 결합단백질과 결합하는 항체를 투입하여 시료를 제작하는 단계;4) 상기 제1항 내지 제14항 중 어느 한 항의 ChIP용 농축 미세칩의 주입구에 상기 시료를 투입하는 단계;5) 상기 미세칩의 내부의 비드를 세척하는 단계; 및6) 상기 세척된 비드를 용리액(elution buffer)으로 처리하여 상기 DNA를 용출하는 단계를 포함하는 것을 특징으로 하는 ChIP용 농축 미세칩을 이용한 ChIP 수행방법.1) adding formaldehyde to the cell to bind DNA and DNA binding protein; 2) destroying the cell and cutting the DNA finely; 3) preparing a sample by adding an antibody binding to the DNA binding protein. 4) injecting the sample into the inlet of the concentrated microchip for ChIP of any one of claims 1 to 14; 5) washing the beads inside the microchip; And 6) eluting the DNA by treating the washed beads with an elution buffer.
- 제18항에 있어서,상기 DNA는 전사인자 또는 아세틸화 히스톤(Acetylated Histone) H3와 결합할 수 있는 DNA인 것을 특징으로 하는 ChIP용 농축 미세칩을 이용한 ChIP 수행방법.The method of claim 18, wherein the DNA is a DNA capable of binding to a transcription factor or an acetylated histone H3. 19.
- 제18항에 있어서, 상기 시료는 600 ~ 1000㎕를 투입하는 것을 특징으로 하는 ChIP용 농축 미세칩을 이용한 ChIP 수행방법.19. The method of claim 18, wherein the sample is injecting 600 ~ 1000μL ChIP enriched microchips.
- 제18항에 있어서, 상기 4) ~ 6)단계는 15 ~ 30℃에서 수행되는 것을 특징으로 하는 농축 미세칩을 이용한 ChIP 수행방법.19. The method of claim 18, wherein steps 4) to 6) are performed at 15 to 30 ° C.
- 제18항에 있어서, 상기 4)단계에서 상기 시료를 5 ~ 30분간 상기 주입구에 투입하는 것을 특징으로 하는 농축 미세칩을 이용한 ChIP 수행방법.19. The method of claim 18, wherein the sample is added to the inlet for 5 to 30 minutes in the step 4).
- 제18항에 있어서, 상기 5)단계는,a) 저염 면역 복합체 세척버퍼(low salt immune complex wash buffer) 0.5㎖ b) 고염 면역 복합체 세척버퍼(High salt lmmune complex wash buffer) 0.5㎖, c) 염화리튬 면역 복합체 세척버퍼(LiCl immune complex wash buffer) 0.5㎖ 및 d) TE 버퍼 0.5㎖;로 순차적으로 세척하되, 각각의 세척시간은 30초 ~ 2분이고,상기 d)단계는 2회 수행되는 것을 특징으로 하는 농축 미세칩을 이용한 ChIP 수행방법.The method of claim 18, wherein step 5) comprises: a) 0.5 ml of low salt immune complex wash buffer b) 0.5 ml of high salt lmmune complex wash buffer, c) chloride Washing sequentially with a lithium immune complex wash buffer (LiCl immune complex wash buffer) 0.5ml and d) 0.5ml TE buffer; each washing time is 30 seconds to 2 minutes, step d) is characterized in that is performed twice ChIP performing method using concentrated microchips.
- 제18항에 있어서, 상기 6)단계 이후, 웨스턴 블랏을 수행하는 것을 특징으로 하는 농축 미세칩을 이용한 ChIP 수행방법.19. The method of claim 18, wherein after the step 6), Western blot is performed.
- 제18항에 있어서, 상기 6)단계 이후, 용출된 DNA에 대하여 PCR을 수행하는 것을 특징으로 하는 농축 미세칩을 이용한 ChIP 수행방법.19. The method according to claim 18, wherein after step 6), PCR is performed on the eluted DNA.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080116730A KR20100058057A (en) | 2008-11-24 | 2008-11-24 | Dna enrichment mems chip for chromatin immunoprecipitation and chip method of using thereof |
KR10-2008-0116730 | 2008-11-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010059006A2 true WO2010059006A2 (en) | 2010-05-27 |
WO2010059006A3 WO2010059006A3 (en) | 2010-09-30 |
Family
ID=42198696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/006903 WO2010059006A2 (en) | 2008-11-24 | 2009-11-23 | MEMS CHIP FOR CHROMATIN IMMUNOPRECIPITATION (ChIP) AND CHIP METHOD USING SAME |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20100058057A (en) |
WO (1) | WO2010059006A2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100901995B1 (en) * | 2007-10-25 | 2009-06-11 | 주식회사 서린바이오사이언스 | DNA ENRICHMENT MEMs CHIP FOR CHROMATIN IMMUNOPRECIPITATION AND ChIP METHOD OF USING THEREOF |
-
2008
- 2008-11-24 KR KR1020080116730A patent/KR20100058057A/en active IP Right Grant
-
2009
- 2009-11-23 WO PCT/KR2009/006903 patent/WO2010059006A2/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100901995B1 (en) * | 2007-10-25 | 2009-06-11 | 주식회사 서린바이오사이언스 | DNA ENRICHMENT MEMs CHIP FOR CHROMATIN IMMUNOPRECIPITATION AND ChIP METHOD OF USING THEREOF |
Non-Patent Citations (4)
Title |
---|
BUCK, M. J. ET AL.: 'ChIP-Chip: Consideration for the Design, Analysis, and Application of Genome-Wide Chromatin Immunoprecipitation Experiments' GENOMICS vol. 83, no. 3, March 2004, pages 349 - 360 * |
'Miniaturized Systems for Chemistry and Life Sciences, 12th International Conference', October 2008 article OH, H. J. ET AL.: 'Microfluidic Device for DNA Enrichment and the Application of Chromatin Immunoprecipitation', pages 1075 - 1077 * |
PARK, P. J. ET AL.: 'Epigenetics Meets Nxxt-Generation Sequencing' EPIGENETICS vol. 3, no. 6, 22 November 2008, pages 318 - 321 * |
PONZIELLI, R. ET AL.: 'Optimization of Experimental Design Parameters for High- Throughput Chromatin Immunoprecipitation Studies' NUCLEIC ACID RES. vol. 36, no. 21, 21 October 2008, page E144 * |
Also Published As
Publication number | Publication date |
---|---|
WO2010059006A3 (en) | 2010-09-30 |
KR20100058057A (en) | 2010-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wen et al. | Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain | |
WO2012047015A2 (en) | Multiplex microfluidic device for selecting nucleic acid aptamers, and high throughput selection method for nucleic acid aptamers using same | |
WO2010137903A2 (en) | Method for screening for a drug candidate substance which inhibits target protein-protein interaction for developing a novel concept drug | |
WO2019153851A1 (en) | Fusion protein, kit and chip-seq detection method | |
CN106546674A (en) | With the method and its special purpose device of a small amount of sample fast enriching, separation, identification and quantitative endogenous transcription factor and its compound | |
AU2021228763A1 (en) | Activity based host cell protein profiling | |
KR100901995B1 (en) | DNA ENRICHMENT MEMs CHIP FOR CHROMATIN IMMUNOPRECIPITATION AND ChIP METHOD OF USING THEREOF | |
WO2010059006A2 (en) | MEMS CHIP FOR CHROMATIN IMMUNOPRECIPITATION (ChIP) AND CHIP METHOD USING SAME | |
WO2023146117A1 (en) | Kit for analyzing interactomes, and method for analyzing interactomes by using same | |
US20200408775A1 (en) | Apparatus and method for multiplexed protein quantification | |
WO2019221537A1 (en) | Method for detecting mycoplasma using mitochondrial dna as internal control sample | |
WO2022102885A1 (en) | Technique for diagnosing stress associated with atopic dermatitis using exosome-derived mirnas | |
WO2022146083A1 (en) | Antibody-bound nanowire for exosome separation, and exosome separation method using same | |
CN116041473A (en) | Method for efficiently enriching chromatin open area binding protein and application thereof | |
WO2018048194A1 (en) | Composition and method for improving sensitivity and specificity of detection of nucleic acids using dcas9 protein and grna binding to target nucleic acid sequence | |
WO2013042917A2 (en) | Enzyme treatment apparatus for proteins using a hollow fiber membrane, and on-line proteomics method using same | |
WO2021071219A1 (en) | Biomarker for diagnosis of neurodegenerative disease | |
WO2021029565A1 (en) | Method for screening binding inhibiting substance of api5 and fgf2 | |
WO2020166980A2 (en) | Extraction apparatus, extraction method, and fluidic chip for extracting target material | |
WO2017051939A1 (en) | Method for extracting and amplifying nucleic acid using magnetic particles | |
CN113866332A (en) | Non-labeled proteomics detection method and device | |
WO2022114917A1 (en) | Method for isolating nucleic acid using binding buffer including compound having low or intermediate dielectric constant | |
WO2020046069A1 (en) | Peptide specifically degraded by pepsin and reflux laryngopharyngitis diagnosing kit comprising same | |
WO2017200249A1 (en) | Nucleic acid extraction method using solid subject | |
WO2022075775A1 (en) | Marker for predicting responsiveness of pancreatic cancer patient to treatment with anticancer agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09827771 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09827771 Country of ref document: EP Kind code of ref document: A2 |