WO2010058801A1 - Fe16N2を有する窒化鉄微粒子、及びその製造方法 - Google Patents

Fe16N2を有する窒化鉄微粒子、及びその製造方法 Download PDF

Info

Publication number
WO2010058801A1
WO2010058801A1 PCT/JP2009/069581 JP2009069581W WO2010058801A1 WO 2010058801 A1 WO2010058801 A1 WO 2010058801A1 JP 2009069581 W JP2009069581 W JP 2009069581W WO 2010058801 A1 WO2010058801 A1 WO 2010058801A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
carbonyl complex
ammonia
complex
dispersion
Prior art date
Application number
PCT/JP2009/069581
Other languages
English (en)
French (fr)
Inventor
煥友 呉
智 大森
晴彦 伊藤
研 高橋
智之 小川
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to JP2010518183A priority Critical patent/JPWO2010058801A1/ja
Publication of WO2010058801A1 publication Critical patent/WO2010058801A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/0622Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with iron, cobalt or nickel
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • H01F1/37Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles in a bonding agent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/28Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder dispersed or suspended in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids

Definitions

  • the present invention relates to iron nitride fine particles having Fe 16 N 2 and a method for producing the same.
  • the present invention relates to dispersions that can be used in the manufacturing method of the iron nitride particles having an Fe 16 N 2.
  • a magnetic powder suitable for a magnetic powder for example, a high density recording medium, a magnetic paint, a magnetic toner, a magnetic carrier, etc., iron nitride fine particles having Fe 16 N 2 are known.
  • ⁇ -Fe can be produced by reduction of iron oxyhydroxide or the like, and the produced ⁇ -Fe can be nitrogenated in the gas phase with ammonia or the like. It has been proposed (Patent Document 1 etc.).
  • JP2008-1035510 JP-A-5-286705 (particularly paragraphs 0014 to 0017)
  • iron nitride particles having Fe 16 N 2 having an average particle diameter of 100 nm or less are provided.
  • the liquid phase method for producing iron nitride particles can be expected to have high production efficiency, but has conventionally been considered only for the production of Fe 3 N having a relatively high degree of nitridation. Accordingly, the present invention provides a method for producing iron nitride particles having Fe 16 N 2 in the liquid phase, and complexes and dispersions that can be used as intermediates for such methods.
  • the iron complex is an iron ammonia carbonyl complex having an ammonia ligand and a carbonyl ligand, and in the dispersion provided in the step (a), an iron ammonia carbonyl complex by 13 C-NMR and The method according to ⁇ 4> above, wherein the peak integration ratio with the iron carbonyl complex (iron ammonia carbonyl complex / iron carbonyl complex) is 1 or more.
  • step (b) iron nitride particles having Fe 16 N 2 are generated without supplying a nitrogen-containing compound from the outside.
  • ⁇ 7> The method according to ⁇ 5> or ⁇ 6> above, wherein the peak of the iron ammonia carbonyl complex in 13 C-NMR is around 231 ppm.
  • ⁇ 8> The method according to any one of ⁇ 5> to ⁇ 7>, wherein the iron ammonia carbonyl complex has the formula Fe 3 (CO) 6 (NH 3 ) 6 .
  • Ammonia or an ammonia generating compound is introduced into an organic solvent containing an iron carbonyl complex or a single iron carbonyl complex, whereby a part of the carbonyl ligand of the iron carbonyl complex is exchanged with the ammonia ligand.
  • the iron nitride particles of the present invention have a large saturation magnetization value and can therefore be used in applications as magnetic powders. Moreover, according to the method of the present invention for producing iron nitride particles having Fe 16 N 2 , iron nitride particles having Fe 16 N 2 can be effectively produced. Still further, the complexes and dispersions of the invention can be used as intermediates for such inventive methods.
  • FIG. 1 is a diagram showing the results of 13 C-NMR analysis of the iron ammonia carbonyl complex obtained in Example 1.
  • FIG. 2 is a diagram showing the value of magnetization (300 K) measured for the iron nitride particles obtained in Examples and Comparative Examples.
  • the iron nitride fine particles of the present invention having Fe 16 N 2 may have an average particle diameter of 100 nm or less, 50 nm or less, or 10 nm or less, and particularly 5 nm or more and 10 nm or less.
  • the iron nitride fine particles of the present invention can have a saturation magnetization of 140 emu / g or more, 150 emu / g or more, 160 emu / g or more, or 170 emu / g or more.
  • ⁇ -Fe, Fe 3 O 4 , and Fe 3 N are considered as iron-based materials that may be contained in the iron nitride fine particles of the present invention together with Fe 16 N 2 .
  • the saturation magnetization values of these iron-based materials are as follows.
  • the iron nitride fine particles of the present invention can be produced by the method of the present invention for producing iron nitride particles having Fe 16 N 2 . Moreover, the iron nitride fine particles of the present invention can be used for applications as magnetic powder.
  • the method of the present invention for producing iron nitride particles having Fe 16 N 2 comprises (a) providing a dispersion in which an iron complex is dispersed in an organic solvent, and (b) from the iron complex, Fe 16 and generating an iron nitride particle having a N 2.
  • iron nitride particles having Fe 16 N 2 can be produced from an iron complex by selecting the reaction conditions and adjusting the degree of nitrogenation of the iron nitride particles.
  • iron nitride fine particles having an average particle diameter of 100 nm or less, 50 nm or less, or 10 nm or less, for example, 5 nm or more and 10 nm or less can be produced by selecting reaction conditions.
  • any organic solvent capable of dispersing and holding the iron complex to be used can be used.
  • this organic solvent for example, hydrocarbons, especially C 10 -C 30 hydrocarbons (eg C 10 -C 20 hydrocarbons), more particularly kerosene can be used.
  • Arbitrary iron complexes can be used as the iron complex contained in the dispersion provided in step (a), for example, iron having a carbonyl ligand, an ammonia ligand, and / or an amine ligand.
  • Complexes particularly iron ammonia carbonyl complexes having a combination of carbonyl and ammonia ligands, can be used.
  • a nitrogen-containing ligand and / or a nitrogen-containing compound supplied from the outside can be used as a nitrogen source.
  • the ligand having a nitrogen atom include an ammonia ligand or an amine ligand, particularly an ammonia ligand.
  • ammonia supplied from the outside as a nitrogen source, not only ammonia itself is directly supplied from the outside, but also an ammonia generating compound that generates ammonia is supplied from the outside to generate ammonia in the dispersion. You can also.
  • the dispersion provided in step (a) can further contain a surfactant in order to improve the dispersibility of the iron complex.
  • a surfactant for example, first to tertiary amines, especially primary amines having a primary amine, more particularly an alkyl group of C 10-C 30 having a hydrocarbon group of C 10 - C 30, More particularly, oleylamine can be mentioned.
  • the dispersion can be heated in order to promote the production of iron nitride particles having Fe 16 N 2 , for example, the dispersion is heated to 80 ° C. to 200 ° C., particularly 120 ° C. to 200 ° Can be heated to temperature.
  • an iron ammonia carbonyl complex having an ammonia ligand and a carbonyl ligand is used as the iron complex, and in step (a) In the provided dispersion, the integral ratio (iron ammonia carbonyl complex / iron carbonyl complex) of the peak of iron ammonia carbonyl complex and iron carbonyl complex by 13 C-NMR may be 1 or more.
  • this ratio may be 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 8 or more, or 10 or more, for example.
  • the peak integration ratio of iron ammonia carbonyl complex and iron carbonyl complex (iron ammonia carbonyl complex / iron carbonyl complex) by 13 C-NMR is relatively large. This means that the abundance ratio of is relatively large.
  • an ammonia ligand can be used as a nitrogen source in step (b), and therefore only a relatively small amount of nitrogen-containing compound is supplied from the outside.
  • iron nitride particles having Fe 16 N 2 can be obtained without supplying a nitrogen-containing compound from the outside.
  • the iron ammonia carbonyl complex may have the formula Fe 3 (CO) 6 (NH 3 ) 6 .
  • the formation of the iron ammonia carbonyl complex can be carried out under heating conditions. It can be carried out.
  • the conditions under which the produced iron ammonia carbonyl complex precipitates for example, the organic solvent containing the iron carbonyl complex, or the single iron carbonyl complex substantially contains the surfactant.
  • the iron carbonyl complex dissolves in an organic solvent such as kerosene, whereas the product iron ammonia carbonyl complex is insoluble in an organic solvent such as kerosene. Separation of the carbonyl complex is facilitated.
  • the produced iron ammonia carbonyl complex can be dispersed in an organic solvent using a surfactant.
  • the produced iron ammonia carbonyl complex is separated from other parts and optionally purified, dried, etc.
  • the dispersion used in step (a) can be obtained by redispersing in an organic solvent.
  • the peak integration ratio (iron ammonia carbonyl complex / iron carbonyl complex) between the iron ammonia carbonyl complex and the iron carbonyl complex by 13 C-NMR is made relatively large, that is, the iron ammonia carbonyl complex in the dispersion is A relatively large abundance can be easily achieved.
  • the iron ammonia carbonyl complex of the present invention has the formula Fe 3 (CO) 6 (NH 3 ) 6 .
  • Iron ammonia carbonyl complexes of the present invention can be used as intermediates for the preparation of iron nitride particles having an Fe 16 N 2, in particular the methods of the present invention for producing iron nitride particles having an Fe 16 N 2 Can be used as an intermediate for.
  • This dispersion of the present invention can be produced as described above with respect to the method of the present invention for producing iron nitride fine particles having Fe 16 N 2 .
  • the dispersion of the present invention has an integral ratio of peaks of iron ammonia carbonyl complex and iron carbonyl complex (iron ammonia carbonyl complex / iron carbonyl complex) by 13 C-NMR of 1 or more. It is a dispersion liquid dispersed in the inside.
  • this ratio may be 2 or more, 3 or more, 4 or more, 5 or more, 6 or more, 8 or more, or 10 or more, for example.
  • the dispersion of the present invention can be used as intermediates for the preparation of iron nitride particles having an Fe 16 N 2, in particular for the method of the present invention for producing the iron nitride particles having an Fe 16 N 2 It can be used as an intermediate.
  • This dispersion of the present invention can be produced as described above with respect to the method of the present invention for producing iron nitride fine particles having Fe 16 N 2 .
  • the saturation magnetization is expressed as the value of saturation magnetization (emu / g) per unit mass of iron contained in the iron nitride fine particles.
  • the value of the saturation magnetization was measured at 300 K using a SQUID (superconducting quantum interference device).
  • the mass of iron was calculated from the result of X-ray fluorescence analysis (XRF).
  • the saturation magnetization value obtained in this manner was divided by the value of the obtained iron mass to calculate the saturation magnetization (emu / g) per unit mass of iron contained in the iron nitride ultrafine particles.
  • the magnitude of the saturation magnetization of the iron nitride fine particles was measured as follows. That is, in a glove box in an argon atmosphere, a colloidal solution of iron nitride fine particles was washed with acetone and then redispersed in kerosene (30 mg). The sample was covered and used as a measurement sample. This measurement sample was set in a superconducting quantum interference device (SQUID) magnetometer (QUANTOM MPMS-5 manufactured by DESIGN), and the magnetization was measured at a measurement temperature (300 K). The measurement magnetic field range was ⁇ 46 to +46 kOe, and the measured value of magnetization at +46 kOe was the saturation magnetization.
  • SQUID superconducting quantum interference device
  • Example 1 ⁇ Formation of iron ammonia carbonyl complex>
  • an iron ammonia carbonyl complex was prepared by the reaction route outlined below: Fe (CO) 5 + NH 3 ⁇ iron ammonia carbonyl complex
  • an iron carbonyl complex of 4.8g (Fe (CO) 5) was added to kerosene 45ml as solvent. Thereafter, while the iron carbonyl complex-containing solution thus obtained was heated to a temperature of 110 ° C. for 4 hours, ammonia (NH 3 ) was supplied by bubbling in an amount of 100 ml / min to obtain an iron ammonia carbonyl complex. Was obtained as a precipitate. That is, while the iron carbonyl complex was dissolved in kerosene, the obtained iron ammonia carbonyl complex was insoluble in kerosene and deposited as a precipitate.
  • NH 3 ammonia
  • the obtained iron ammonia carbonyl complex was separated from kerosene as a solvent, and was subjected to centrifugal washing with 150 ml of hexane three times (hexane 50 ml ⁇ 3 times) in an argon atmosphere glove box to remove the iron carbonyl complex and dried As a result, an iron ammonia carbonyl complex was obtained as a powdery product.
  • the powdered product was subjected to FT-IR (Fourier transform infrared spectroscopy), and it was confirmed that the product had an ammonia ligand (NH 3 ). Further, GC-MS (gas chromatograph mass spectrometry) was performed, and it was confirmed that the product had an ammonia ligand (NH 3 ) and a carbonyl ligand (CO). Moreover, MS (mass spectrometry) was performed and it confirmed that the molecular weight of the product was about 438. From the results of these analyses, the product is considered to be an iron ammonia carbonyl complex having the formula Fe 3 (CO) 6 (NH 3 ) 6 (molecular weight (calculated value): 438).
  • Example 1 0.1 g of the powdery product (iron ammonia carbonyl complex) obtained in Example 1 was replaced with 10 ml of kerosene containing 0.12 g of oleylamine (as a surfactant). It was dispersed in (as a solvent) to obtain an iron ammonia carbonyl complex dispersion. Thereafter, the iron ammonia carbonyl complex dispersion thus obtained was heated to a temperature of 180 ° C. for 2 hours to produce iron nitride particles.
  • the saturation magnetization (300 K) of the obtained iron nitride particles was 166 emu / g (FIG. 2).
  • the value of the saturation magnetization of the iron nitride particles means that the iron nitride particles have Fe 16 N 2 .
  • the obtained iron nitride particles had a spherical shape with a particle diameter of about 9 nm.
  • the measurement result by the electron diffraction analysis about the obtained iron nitride particle is shown in the following Table 2.
  • Example 2 ⁇ Formation of iron ammonia carbonyl complex>
  • centrifugal washing of the iron ammonia carbonyl complex was performed three times (hexane 50 ml ⁇ 5 times) instead of three times (hexane 50 ml ⁇ 5 times).
  • the iron ammonia carbonyl complex was obtained as a powdery product.
  • the saturation magnetization (300 K) of the obtained iron nitride particles was 178 emu / g (FIG. 2).
  • the value of the saturation magnetization of the iron nitride particles means that the iron nitride particles have Fe 16 N 2 .
  • the obtained iron nitride particles had a spherical shape with a particle diameter of about 9 nm.
  • Example 3 ⁇ Formation of iron ammonia carbonyl complex>
  • centrifugal washing of the iron ammonia carbonyl complex was performed three times (hexane 50 ml ⁇ 3 times) instead of once (hexane 50 ml ⁇ 1 time), as in Example 1,
  • the iron ammonia carbonyl complex was obtained as a powdery product.
  • the integral ratio (iron ammonia carbonyl complex / iron carbonyl complex) of the peak between the iron ammonia carbonyl complex and the iron carbonyl complex by 13 C-NMR of the powdery product was about 3.
  • the saturation magnetization (300K) of the obtained iron nitride particles was 158 emu / g (FIG. 2).
  • the value of the saturation magnetization of the iron nitride particles means that the iron nitride particles have Fe 16 N 2 .
  • the obtained iron nitride particles had a spherical shape with a particle diameter of about 8 nm.
  • the integral ratio (iron ammonia carbonyl complex / iron carbonyl complex) of the iron ammonia carbonyl complex to the iron carbonyl complex by 13 C-NMR for the powdery product was about 0.4.
  • the saturation magnetization (300K) of the obtained iron nitride particles was 27 emu / g.
  • fibrous products and spherical iron nitride particles having a particle diameter of about 7 nm were observed.
  • the fibrous product is believed to be a product derived from the iron carbonyl complex species.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Compounds Of Iron (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

【課題】Fe16を有する窒化鉄粒子、液相においてFe16を有する窒化鉄粒子を製造する方法、並びにこのような方法のための中間体として用いることができる錯体及び分散液を提供する。 【解決手段】平均粒子径が100nm以下である、Fe16を有する窒化鉄微粒子とする。また、(a)有機溶媒中に鉄錯体が分散している分散液を提供すること、及び(b)前記鉄錯体から、Fe16を有する窒化鉄粒子を生成することを含む、Fe16を有する窒化鉄粒子の製造方法とする。また更に、この方法に用いることができる錯体及び分散液とする。

Description

Fe16N2を有する窒化鉄微粒子、及びその製造方法
 本発明は、Fe16を有する窒化鉄微粒子、及びその製造方法に関する。また本発明は、Fe16を有する窒化鉄微粒子の製造方法に用いることができる分散液に関する。
 磁性粉末、例えば高密度記録媒体、磁性塗料、磁性トナー、磁性キャリアー等に適した磁性粉末として、Fe16を有する窒化鉄微粒子が知られている。
 このようなFe16を有する窒化鉄微粒子の製造に関しては、オキシ水酸化鉄等の還元によってα-Feを生成し、生成されたα-Feをアンモニア等によって気相で窒素化することが提案されている(特許文献1等)。
 なお、液相において窒化鉄を合成するためには、鉄カルボニル錯体を原料として用い、この鉄カルボニル錯体を含有する有機溶媒に対してアンモニア等を導入することによって窒化鉄粒子を製造する方法が提案されている。このような液相法では、窒化鉄粒子を高い生産効率で得ることを期待できるものの、従来は比較的窒化の程度が大きいFeNのみが得られていた(特許文献2)。
特開2008-1035510 特開平5-286705(特に段落0014~0017)
 本発明では、平均粒子径が100nm以下のFe16を有する窒化鉄粒子を提供する。また、上記記載のように、窒化鉄粒子を製造する液相法では、高い生産効率を期待できるものの、従来は比較的窒化の程度が大きいFeNの生産のためにのみ考慮されていた。したがって本発明では、液相においてFe16を有する窒化鉄粒子を製造する方法、並びにこのような方法のための中間体として用いることができる錯体及び分散液を提供する。
 本願発明者らは、下記の本発明に想到した。
 〈1〉平均粒子径が100nm以下である、Fe16を有する窒化鉄微粒子。
 〈2〉飽和磁化が140emu/g以上である、上記〈1〉項に記載の窒化鉄微粒子。
 〈3〉平均粒子径が10nm以下である、上記〈1〉又は〈2〉項に記載の窒化鉄微粒子。
 〈4〉(a)有機溶媒中に鉄錯体が分散している分散液を提供すること、及び
 (b)上記鉄錯体から、Fe16を有する窒化鉄粒子を生成すること、
を含む、Fe16を有する窒化鉄粒子の製造方法。
 〈5〉上記鉄錯体が、アンモニア配位子及びカルボニル配位子を有する鉄アンモニアカルボニル錯体であり、且つ工程(a)で提供される上記分散液において、13C-NMRによる鉄アンモニアカルボニル錯体と鉄カルボニル錯体とのピークの積分比(鉄アンモニアカルボニル錯体/鉄カルボニル錯体)が、1以上である、上記〈4〉項に記載の方法。
 〈6〉工程(b)において、外部から窒素含有化合物を供給しないで、Fe16を有する窒化鉄粒子を生成する、上記〈5〉項に記載の方法。
 〈7〉13C-NMRにおける上記鉄アンモニアカルボニル錯体のピークが231ppm付近である、上記〈5〉又は〈6〉項に記載の方法。
 〈8〉上記鉄アンモニアカルボニル錯体が、式Fe(CO)(NHを有する、上記〈5〉~〈7〉項のいずれかに記載の方法。
 〈9〉鉄カルボニル錯体を含有する有機溶媒、又は単独の鉄カルボニル錯体に、アンモニア又はアンモニア発生化合物を導入し、それによって上記鉄カルボニル錯体のカルボニル配位子の一部をアンモニア配位子で交換して、上記鉄アンモニアカルボニル錯体を生成する、上記〈5〉~〈8〉項のいずれかに記載の方法。
 〈10〉生成した鉄アンモニアカルボニル錯体が沈殿する条件で、上記鉄アンモニアカルボニル錯体の生成を行う、上記〈9〉項に記載の方法。
 〈11〉生成した上記鉄アンモニアカルボニル錯体を他の部分から分離して、有機溶媒中に再分散させることによって、工程(a)で用いられる上記分散液を得る、上記〈9〉又は〈10〉項に記載の方法。
 〈12〉上記鉄アンモニアカルボニル錯体の生成において、鉄カルボニル錯体が有機溶媒中に分散している上記分散液、又は単独の上記鉄カルボニル錯体を、80℃~200℃の温度に加熱する、上記〈9〉~〈11〉項のいずれかに記載の方法。
 〈13〉工程(a)で提供される上記分散液が、第1~第3級アミンからなる群より選択される界面活性剤を更に含有している、上記〈1〉~〈12〉項のいずれかに記載の方法。
 〈14〉工程(b)において、上記分散液を80℃~200℃の温度に加熱する、上記〈1〉~〈13〉項のいずれかに記載の方法。
 〈15〉式Fe(CO)(NHを有する、鉄アンモニアカルボニル錯体。
 〈16〉Fe16を有する窒化鉄微粒子の製造に用いられる、上記〈15〉項に記載の鉄アンモニアカルボニル錯体。
 〈17〉13C-NMRによる鉄アンモニアカルボニル錯体と鉄カルボニル錯体とのピークの積分比(鉄アンモニアカルボニル錯体/鉄カルボニル錯体)が、1以上である、鉄アンモニアカルボニル錯体が有機溶媒中に分散している分散液。
 〈18〉Fe16を有する窒化鉄微粒子の製造に用いられる、上記〈17〉項に記載の分散液。
 本発明の窒化鉄粒子は、大きい飽和磁化の値を有し、したがって磁性粉末としての用途で使用することができる。また、Fe16を有する窒化鉄粒子を製造する本発明の方法によれば、Fe16を有する窒化鉄粒子を効果的に製造することができる。また更に、本発明の錯体及び分散液は、このような本発明の方法のための中間体として用いることができる。
図1は、実施例1で得られた鉄アンモニアカルボニル錯体についての13C-NMRによる分析結果を示す図である。 図2は、実施例及び比較例で得られた窒化鉄粒子について測定された磁化(300K)の値を示す図である。
 〈Fe16を有する本発明の窒化鉄微粒子〉
 Fe16を有する本発明の窒化鉄微粒子は、平均粒子径が、100nm以下、50nm以下、又は10nm以下であってよく、特に5nm以上10nm以下である。
 また、本発明の窒化鉄微粒子は、140emu/g以上、150emu/g以上、160emu/g以上、又は170emu/g以上の飽和磁化を有することができる。
 なお、本発明の窒化鉄微粒子にFe16と共に含有されている可能性がある鉄系材料としては、α-Fe、Fe、FeNが考えられる。ここで、これらの鉄系材料の飽和磁化の値は、以下の通りであることが知られている。
Figure JPOXMLDOC01-appb-T000001
 本発明の窒化鉄微粒子は、Fe16を有する窒化鉄粒子を製造する本発明の方法によって製造することができる。また、本発明の窒化鉄微粒子は、磁性粉末としての用途で使用することができる。
 〈Fe16を有する窒化鉄粒子を製造する本発明の方法〉
 Fe16を有する窒化鉄粒子を製造する本発明の方法は、(a)有機溶媒中に鉄錯体が分散している分散液を提供すること、及び(b)この鉄錯体から、Fe16を有する窒化鉄粒子を生成することを含む。
 この本発明の方法では、反応条件を選択して窒化鉄粒子の窒素化の程度を調節することによって、鉄錯体から、Fe16を有する窒化鉄粒子を生成することができる。また、この本発明の方法では、反応条件を選択して、平均粒子径が100nm以下、50nm以下、又は10nm以下、例えば5nm以上10nm以下の窒化鉄微粒子を製造することができる。
 工程(a)で提供される分散液に含有される有機溶媒としては、使用する鉄錯体を分散させて保持することができる任意の有機溶媒を用いることができる。この有機溶媒としては例えば、炭化水素、特にC10~C30の炭化水素(例えばC10~C20の炭化水素)、より特にケロシンを用いることができる。
 工程(a)で提供される分散液に含有される鉄錯体としては、任意の鉄錯体を用いることができ、例えばカルボニル配位子、アンモニア配位子、及び/又はアミン配位子を有する鉄錯体、特にカルボニル配位子及びアンモニア配位子の組み合わせを有する鉄アンモニアカルボニル錯体を用いることができる。
 工程(b)においては、窒素源として、窒素原子を有する配位子、及び/又は外部から供給される窒素含有化合物、例えばアンモニアを利用することができる。窒素原子を有する配位子としては、例えばアンモニア配位子又はアミン配位子、特にアンモニア配位子を挙げることができる。また、窒素源として外部から供給されるアンモニアを用いる場合、アンモニア自体を直接に外部から供給するだけでなく、アンモニアを発生させるアンモニア発生化合物を外部から供給して、分散液中においてアンモニアを発生させることもできる。
 工程(a)で提供される分散液は、鉄錯体の分散性を改良するために界面活性剤を更に含有することができる。この界面活性剤としては例えば、第1~第3級アミン、特にC10~C30の炭化水素基を有する第1級アミン、より特にC10~C30のアルキル基を有する第1級アミン、更により特にオレイルアミンを挙げることができる。
 工程(b)においては、Fe16を有する窒化鉄粒子の生成を促進するために、分散液を加熱することができ、例えば分散液を80℃~200℃、特に120℃~200℃の温度に加熱することができる。
 〈Fe16を有する窒化鉄粒子を製造する本発明の方法-鉄アンモニアカルボニル錯体を用いる態様〉
 Fe16を有する窒化鉄粒子を製造する本発明の方法の1つの態様では、鉄錯体として、アンモニア配位子及びカルボニル配位子を有する鉄アンモニアカルボニル錯体を用い、且つ工程(a)で提供される分散液において、13C-NMRによる鉄アンモニアカルボニル錯体と鉄カルボニル錯体とのピークの積分比(鉄アンモニアカルボニル錯体/鉄カルボニル錯体)が、1以上であってよい。ここでこの比は例えば、2以上、3以上、4以上、5以上、6以上、8以上、又は10以上であってよい。
 この態様でのように、13C-NMRによる鉄アンモニアカルボニル錯体と鉄カルボニル錯体とのピークの積分比(鉄アンモニアカルボニル錯体/鉄カルボニル錯体)が比較的大きいことは、分散液における鉄アンモニアカルボニル錯体の存在比が比較的大きいことを意味している。分散液における鉄アンモニアカルボニル錯体の存在比が十分に大きい場合、工程(b)において、窒素源として、アンモニア配位子を利用することができ、したがって外部から比較的少量の窒素含有化合物のみを供給して、又は外部から窒素含有化合物を供給しないで、Fe16を有する窒化鉄粒子を得ることができる。
 13C-NMRにおける鉄アンモニアカルボニル錯体のピークとしては、231ppm付近のピークを観察することができる。なお、13C-NMRにおける鉄カルボニル錯体のピークは、212ppm付近に現れる。なお、この鉄アンモニアカルボニル錯体は、式Fe(CO)(NHを有するものであってよい。
 〈Fe16を有する窒化鉄粒子を製造する本発明の方法-鉄アンモニアカルボニル錯体を用いる態様-鉄アンモニアカルボニル錯体の製造〉
 鉄アンモニアカルボニル錯体の製造のためには、鉄カルボニル錯体を含有する有機溶媒、又は単独の鉄カルボニル錯体に、アンモニア又はアンモニア発生化合物を導入し、それによって鉄カルボニル錯体のカルボニル配位子の一部をアンモニア配位子で交換することができる。
 鉄アンモニアカルボニル錯体の生成を促進するために、鉄アンモニアカルボニル錯体の生成を加熱条件で行うことができ、例えば鉄アンモニアカルボニル錯体の生成を80℃~200℃、特に120℃~200℃の温度で行うことができる。
 また、鉄アンモニアカルボニル錯体の生成においては、生成した鉄アンモニアカルボニル錯体が沈殿する条件、例えば鉄カルボニル錯体を含有する有機溶媒、又は単独の鉄カルボニル錯体が、界面活性剤を実質的に含有していない条件で行うことができる。鉄カルボニル錯体がケロシンのような有機溶媒に溶解するのに対して、生成物である鉄アンモニアカルボニル錯体はケロシンのような有機溶媒に対して不溶性であるので、この場合には、生成した鉄アンモニアカルボニル錯体の分離が容易になる。ただし、必要に応じて、界面活性剤を用いて、生成した鉄アンモニアカルボニル錯体を有機溶媒中に分散させることもできる。
 界面活性剤を含有する条件、及び界面活性剤を含有しない条件のいずれにおいて鉄アンモニアカルボニル錯体を生成する場合にも、生成した鉄アンモニアカルボニル錯体を他の部分から分離し、随意に精製、乾燥等を行った後で、有機溶媒中に再分散させることによって、工程(a)で用いられる分散液を得ることができる。この場合には、13C-NMRによる鉄アンモニアカルボニル錯体と鉄カルボニル錯体とのピークの積分比(鉄アンモニアカルボニル錯体/鉄カルボニル錯体)を比較的大きくすること、すなわち分散液における鉄アンモニアカルボニル錯体の存在比を比較的大きくすることが容易に達成できる。
 〈本発明の鉄アンモニアカルボニル錯体〉
 本発明の鉄アンモニアカルボニル錯体は、式Fe(CO)(NHを有する。
 この本発明の鉄アンモニアカルボニル錯体は、Fe16を有する窒化鉄微粒子の製造のための中間体として用いることができ、特にFe16を有する窒化鉄微粒子を製造する本発明の方法のための中間体として用いることができる。この本発明の分散液は、Fe16を有する窒化鉄微粒子を製造する本発明の方法に関して上記で説明したようにして、製造することができる。
 〈鉄カルボニル錯体が有機溶媒中に分散している本発明の分散液〉
 本発明の分散液は、13C-NMRによる鉄アンモニアカルボニル錯体と鉄カルボニル錯体とのピークの積分比(鉄アンモニアカルボニル錯体/鉄カルボニル錯体)が、1以上である、鉄アンモニアカルボニル錯体が有機溶媒中に分散している分散液である。ここで、この比は例えば、2以上、3以上、4以上、5以上、6以上、8以上、又は10以上であってよい。
 この本発明の分散液は、Fe16を有する窒化鉄微粒子の製造のための中間体として用いることができ、特にFe16を有する窒化鉄微粒子を製造する本発明の方法のための中間体として用いることができる。この本発明の分散液は、Fe16を有する窒化鉄微粒子を製造する本発明の方法に関して上記で説明したようにして、製造することができる。
 《飽和磁化の測定》
 以下の実施例において、飽和磁化は、窒化鉄微粒子中に含まれる鉄の単位質量あたりの飽和磁化の値(emu/g)として表している。ここで、この飽和磁化の値は、SQUID(超伝導量子干渉素子)を用いて300Kにおいて測定した。また、鉄の質量は、蛍光X線分析(XRF)の結果から算出した。このようにして得られた飽和磁化値を、得られた鉄の質量の値で割って、その窒化鉄超微粒子中に含まれる鉄の単位質量あたりの飽和磁化(emu/g)を算出した。
 具体的には、窒化鉄微粒子の飽和磁化の大きさは下記のようにして測定した。すなわち、アルゴン雰囲気のグローブボックス内において、窒化鉄微粒子のコロイド溶液をアセトンで洗浄後、ケロシンに再分散させ(30mg)、これを石英管(直径:5mm、内径:3mm)に入れ、エポキシ樹脂で蓋をして、測定サンプルとした。この測定サンプルを超伝導量子干渉素子(SQUID)磁束計(QUANTOM DESIGN社製MPMS-5)にセットし、測定温度(300K)において磁化の測定を行った。測定磁界範囲は-46~+46kOeとし、+46kOeでの磁化の測定値を飽和磁化とした。
 《実施例1》
 〈鉄アンモニアカルボニル錯体の生成〉
 この実施例では、下記に概略を示す反応経路で、鉄アンモニアカルボニル錯体を製造した:
 Fe(CO) + NH → 鉄アンモニアカルボニル錯体
 具体的にはこの実施例では、4.8gの鉄カルボニル錯体(Fe(CO))を、溶媒としての45mlのケロシンに加えて鉄カルボニル錯体含有溶液を得た。その後、このようにして得られた鉄カルボニル錯体含有溶液を、4時間にわたって110℃の温度に加熱しながら、アンモニア(NH)を100ml/分の量でバブリングによって供給して、鉄アンモニアカルボニル錯体を生成して沈殿物として得た。すなわち、鉄カルボニル錯体がケロシンに溶解するのに対して、得られた鉄アンモニアカルボニル錯体はケロシンに対して不溶性であり、沈殿物として析出した。
 得られた鉄アンモニアカルボニル錯体を溶媒としてのケロシンから分離し、アルゴン雰囲気のグローブボックス内において150mlのヘキサンで遠心洗浄を3回(ヘキサン50ml×3回)行って、鉄カルボニル錯体を除去し、乾燥して、鉄アンモニアカルボニル錯体を粉末状の生成物として得た。
 粉末状の生成物についてのFT-IR(フーリエ変換赤外分光分析)を行って、生成物がアンモニア配位子(NH)を有していることを確認した。また、GC-MS(ガスクロマトグラフ質量分析)を行って、生成物がアンモニア配位子(NH)及びカルボニル配位子(CO)を有していることを確認した。また、MS(質量分析)を行って、生成物の分子量が約438であることを確認した。これらの分析の結果からは、生成物が式Fe(CO)(NH(分子量(計算値):438)を有する鉄アンモニアカルボニル錯体であると考えられる。
 粉末状の生成物についての13C-NMRの結果を図1に示す。図1からは、得られた粉末状の生成物において、13C-NMRによる鉄アンモニアカルボニル錯体と鉄カルボニル錯体とのピークの積分比(鉄アンモニアカルボニル錯体/鉄カルボニル錯体)が、約8であることが理解される。
 〈窒化鉄粒子の生成〉
 上記のようにして得た粉末状の鉄アンモニアカルボニル錯体を用い、下記に概略を示す反応経路で、アンモニアの添加を行わずに、窒化鉄粒子を生成した:
 鉄アンモニアカルボニル錯体 + オレイルアミン(界面活性剤)
              + ケロシン(溶媒)
              → 窒化鉄粒子
 具体的にはこの実施例では、実施例1において得られた0.1gの粉末状の生成物(鉄アンモニアカルボニル錯体)を、0.12gのオレイルアミン(界面活性剤として)を含有する10mlのケロシン(溶媒として)に分散させて、鉄アンモニアカルボニル錯体分散液を得た。その後、このようにして得られた鉄アンモニアカルボニル錯体分散液を、2時間にわたって180℃の温度に加熱して、窒化鉄粒子を生成した。
 SQUIDによる測定によれば、得られた窒化鉄粒子の飽和磁化(300K)は、166emu/gであった(図2)。鉄系材料の飽和磁化の値に関する上記の表1によれば、この窒化鉄粒子の飽和磁化の値は、この窒化鉄粒子がFe16を有することを意味する。電子顕微鏡による観察によれば、得られた窒化鉄粒子は、粒子径約9nmの球形の形状を有していた。また、得られた窒化鉄粒子についての電子線回折分析による測定結果を、下記の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 《実施例2》
 〈鉄アンモニアカルボニル錯体の生成〉
 この実施例では、鉄アンモニアカルボニル錯体の遠心洗浄を、3回(ヘキサン50ml×3回)ではなく、5回(ヘキサン50ml×5回)行ったことを除いて、実施例1と同様にして、鉄アンモニアカルボニル錯体を粉末状の生成物として得た。
 粉末状の生成物についての13C-NMRでは、鉄アンモニアカルボニル錯体のピークのみが検出され、鉄カルボニル錯体のピークが検出されなかった。すなわち、粉末状の生成物の13C-NMRによる鉄アンモニアカルボニル錯体と鉄カルボニル錯体とのピークの積分比(鉄アンモニアカルボニル錯体/鉄カルボニル錯体)は、実質的に無限大(∞)であった。
 〈窒化鉄粒子の生成〉
 上記のようにして得た粉末状の鉄アンモニアカルボニル錯体から、実施例1と同様にして、窒化鉄粒子を生成した。
 SQUIDによる測定によれば、得られた窒化鉄粒子の飽和磁化(300K)は、178emu/gであった(図2)。鉄系材料の飽和磁化の値に関する上記の表1によれば、この窒化鉄粒子の飽和磁化の値は、この窒化鉄粒子がFe16を有することを意味する。電子顕微鏡による観察によれば、得られた窒化鉄粒子は、粒子径約9nmの球形の形状を有していた。
 《実施例3》
 〈鉄アンモニアカルボニル錯体の生成〉
 この実施例では、鉄アンモニアカルボニル錯体の遠心洗浄を、3回(ヘキサン50ml×3回)ではなく、1回(ヘキサン50ml×1回)行ったことを除いて、実施例1と同様にして、鉄アンモニアカルボニル錯体を粉末状の生成物として得た。
 粉末状の生成物の13C-NMRによる鉄アンモニアカルボニル錯体と鉄カルボニル錯体とのピークの積分比(鉄アンモニアカルボニル錯体/鉄カルボニル錯体)が、約3であった。
 〈窒化鉄粒子の生成〉
 上記のようにして得た粉末状の鉄アンモニアカルボニル錯体から、実施例1と同様にして、窒化鉄粒子を生成した。
 SQUIDによる測定によれば、得られた窒化鉄粒子の飽和磁化(300K)は、158emu/gであった(図2)。鉄系材料の飽和磁化の値に関する上記の表1によれば、この窒化鉄粒子の飽和磁化の値は、この窒化鉄粒子がFe16を有することを意味する。電子顕微鏡による観察によれば、得られた窒化鉄粒子は、粒子径約8nmの球形の形状を有していた。
 《比較例》
 〈鉄アンモニアカルボニル錯体の生成〉
 この実施例では、鉄アンモニアカルボニル錯体の遠心洗浄を行わなかったことを除いて、実施例1と同様にして、鉄アンモニアカルボニル錯体を粉末状の生成物として得た。
 粉末状の生成物についての13C-NMRによる鉄アンモニアカルボニル錯体と鉄カルボニル錯体とのピークの積分比(鉄アンモニアカルボニル錯体/鉄カルボニル錯体)は、約0.4であった。
 〈窒化鉄粒子の生成〉
 上記のようにして得た粉末状の鉄アンモニアカルボニル錯体から、実施例1と同様にして、窒化鉄粒子を生成した。
 SQUIDによる測定によれば、得られた窒化鉄粒子の飽和磁化(300K)は、27emu/gであった。電子顕微鏡による観察によれば、繊維状の生成物と粒径約7nmの球形の形状の窒化鉄粒子が観察された。繊維状の生成物は、鉄カルボニル錯体種由来の生成物であると考えられる。

Claims (18)

  1.  平均粒子径が100nm以下である、Fe16を有する窒化鉄微粒子。
  2.  飽和磁化が140emu/g以上である、請求項1に記載の窒化鉄微粒子。
  3.  平均粒子径が10nm以下である、請求項1又は2に記載の窒化鉄微粒子。
  4.  (a)有機溶媒中に鉄錯体が分散している分散液を提供すること、及び
     (b)前記鉄錯体から、Fe16を有する窒化鉄粒子を生成すること、
    を含む、Fe16を有する窒化鉄粒子の製造方法。
  5.  前記鉄錯体が、アンモニア配位子及びカルボニル配位子を有する鉄アンモニアカルボニル錯体であり、且つ工程(a)で提供される前記分散液において、13C-NMRによる鉄アンモニアカルボニル錯体と鉄カルボニル錯体とのピークの積分比(鉄アンモニアカルボニル錯体/鉄カルボニル錯体)が、1以上である、請求項4に記載の方法。
  6.  工程(b)において、外部から窒素含有化合物を供給しないで、Fe16を有する窒化鉄粒子を生成する、請求項5に記載の方法。
  7.  13C-NMRにおける前記鉄アンモニアカルボニル錯体のピークが231ppm付近である、請求項5又は6に記載の方法。
  8.  前記鉄アンモニアカルボニル錯体が、式Fe(CO)(NHを有する、請求項5~7のいずれかに記載の方法。
  9.  鉄カルボニル錯体を含有する有機溶媒、又は単独の鉄カルボニル錯体に、アンモニア又はアンモニア発生化合物を導入し、それによって前記鉄カルボニル錯体のカルボニル配位子の一部をアンモニア配位子で交換して、前記鉄アンモニアカルボニル錯体を生成する、請求項5~8のいずれかに記載の方法。
  10.  生成した鉄アンモニアカルボニル錯体が沈殿する条件で、前記鉄アンモニアカルボニル錯体の生成を行う、請求項9に記載の方法。
  11.  生成した前記鉄アンモニアカルボニル錯体を他の部分から分離して、有機溶媒中に再分散させることによって、工程(a)で用いられる前記分散液を得る、請求項9又は10に記載の方法。
  12.  前記鉄アンモニアカルボニル錯体の生成において、鉄カルボニル錯体が有機溶媒中に分散している前記分散液、又は単独の前記鉄カルボニル錯体を、80℃~200℃の温度に加熱する、請求項9~11のいずれかに記載の方法。
  13.  工程(a)で提供される前記分散液が、第1~第3級アミンからなる群より選択される界面活性剤を更に含有している、請求項1~12のいずれかに記載の方法。
  14.  工程(b)において、前記分散液を80℃~200℃の温度に加熱する、請求項1~13のいずれかに記載の方法。
  15.  式Fe(CO)(NHを有する、鉄アンモニアカルボニル錯体。
  16.  Fe16を有する窒化鉄微粒子の製造に用いられる、請求項15に記載の鉄アンモニアカルボニル錯体。
  17.  13C-NMRによる鉄アンモニアカルボニル錯体と鉄カルボニル錯体とのピークの積分比(鉄アンモニアカルボニル錯体/鉄カルボニル錯体)が、1以上である、鉄アンモニアカルボニル錯体が有機溶媒中に分散している分散液。
  18.  Fe16相を有する窒化鉄微粒子の製造に用いられる、請求項17に記載の分散液。
PCT/JP2009/069581 2008-11-18 2009-11-18 Fe16N2を有する窒化鉄微粒子、及びその製造方法 WO2010058801A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010518183A JPWO2010058801A1 (ja) 2008-11-18 2009-11-18 Fe16N2を有する窒化鉄微粒子、及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-294691 2008-11-18
JP2008294691 2008-11-18

Publications (1)

Publication Number Publication Date
WO2010058801A1 true WO2010058801A1 (ja) 2010-05-27

Family

ID=42198240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069581 WO2010058801A1 (ja) 2008-11-18 2009-11-18 Fe16N2を有する窒化鉄微粒子、及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2010058801A1 (ja)
WO (1) WO2010058801A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107601444A (zh) * 2017-10-24 2018-01-19 浙江理工大学 一种月季花状氮化铁磁性吸波材料及其制备方法
GB2531668B (en) * 2013-07-18 2020-05-13 Somar Corp Magnetic powder, magnetic-powder composition, magnetic powder composition molded product, and methods of producing same
US20220238263A1 (en) * 2020-02-21 2022-07-28 Niron Magnetics, Inc. Anisotropic iron nitride permanent magnets

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188704A (ja) * 1990-11-22 1992-07-07 Natl Res Inst For Metals 溶媒置換磁性流体の製造法
JPH06132110A (ja) * 1992-06-19 1994-05-13 Natl Res Inst For Metals 窒化金属磁性流体の製造法
JP2007036183A (ja) * 2005-06-21 2007-02-08 Fujifilm Holdings Corp 磁性粒子の製造方法、磁性粒子、磁気記録媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188704A (ja) * 1990-11-22 1992-07-07 Natl Res Inst For Metals 溶媒置換磁性流体の製造法
JPH06132110A (ja) * 1992-06-19 1994-05-13 Natl Res Inst For Metals 窒化金属磁性流体の製造法
JP2007036183A (ja) * 2005-06-21 2007-02-08 Fujifilm Holdings Corp 磁性粒子の製造方法、磁性粒子、磁気記録媒体

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2531668B (en) * 2013-07-18 2020-05-13 Somar Corp Magnetic powder, magnetic-powder composition, magnetic powder composition molded product, and methods of producing same
US11004582B2 (en) 2013-07-18 2021-05-11 Somar Corporation Molded product of magnetic powder composition comprising magnetic powder of surface-treated magnetite particles, and methods of producing thereof
CN107601444A (zh) * 2017-10-24 2018-01-19 浙江理工大学 一种月季花状氮化铁磁性吸波材料及其制备方法
US20220238263A1 (en) * 2020-02-21 2022-07-28 Niron Magnetics, Inc. Anisotropic iron nitride permanent magnets
US11830644B2 (en) * 2020-02-21 2023-11-28 Niron Magnetics, Inc. Anisotropic iron nitride permanent magnets

Also Published As

Publication number Publication date
JPWO2010058801A1 (ja) 2012-04-19

Similar Documents

Publication Publication Date Title
Salavati-Niasari et al. Preparation of cobalt nanoparticles from [bis (salicylidene) cobalt (II)]–oleylamine complex by thermal decomposition
Lai et al. Iron oxide nanoparticles decorated oleic acid for high colloidal stability
Asuha et al. Direct synthesis of Fe3O4 nanopowder by thermal decomposition of Fe–urea complex and its properties
CN105788840B (zh) 采用锰基络合阴离子元素试剂配合物(Mn-LAERC)合成铁磁性锰-铋纳米颗粒及由其形成块状MnBi磁体
Ye et al. Ternary cobalt–iron phosphide nanocrystals with controlled compositions, properties, and morphologies from nanorods and nanorice to split nanostructures
Oliveira et al. Ionic liquids as recycling solvents for the synthesis of magnetic nanoparticles
US7985398B2 (en) Preparation of iron or iron oxide nanoparticles
Bian et al. Growth mechanisms and size control of FePt nanoparticles synthesized using Fe (CO) x (x< 5)-oleylamine and platinum (II) acetylacetonate
Dumitrache et al. Parametric studies on iron–carbon composite nanoparticles synthesized by laser pyrolysis for increased passivation and high iron content
Shukla et al. Surfactant effects on the shapes of cobalt nanoparticles
Kamal et al. Synthesis of cobalt nanoparticles by a modified polyol process using cobalt hydrazine complex
Alikhanzadeh-Arani et al. Morphologies and magnetic properties of FeCo nanoparticles modulated by changing the types of ligands of Co
JP2012193409A (ja) 鉄微粒子、及びその製造方法
WO2010058801A1 (ja) Fe16N2を有する窒化鉄微粒子、及びその製造方法
Luo et al. Synthesis and characteristic of carbon-encapsulated ferronickel nanoparticles by detonation decomposition of doping with nitrate explosive precursors
Zamanpour et al. Process optimization and properties of magnetically hard cobalt carbide nanoparticles via modified polyol method
Nandwana et al. Magnetic hardening in ultrafine FePt nanoparticle assembled films
Dalavi et al. Observation of high coercive fields in chemically synthesized coated Fe-Pt nanostructures
Du et al. Synthesis and characterization of silica-encapsulated iron oxide nanoparticles
Ghasemzadeh et al. Preparation and catalytic study on a novel amino-functionalized silica-coated cobalt oxide nanocomposite for the synthesis of some indazoles
Xiao et al. Synthesis of FexN/BN magnetic nanocomposite via chemical processing
Zafiropoulou et al. Optimized synthesis and annealing conditions of L10 FePt nanoparticles
Sobhani et al. Synthesis of Co 2 P/Co nanocomposites using single source precursor by thermal decomposition method
Li et al. Catalytic synthesis and enhanced Curie temperature of ε-Fe3N@ C nanostructure synthesized in a tetraethylenepentamine solution
JP6406752B2 (ja) 窒化鉄粉末の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010518183

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827582

Country of ref document: EP

Kind code of ref document: A1