WO2010058277A2 - Procédé et système de liquéfaction - Google Patents

Procédé et système de liquéfaction Download PDF

Info

Publication number
WO2010058277A2
WO2010058277A2 PCT/IB2009/007519 IB2009007519W WO2010058277A2 WO 2010058277 A2 WO2010058277 A2 WO 2010058277A2 IB 2009007519 W IB2009007519 W IB 2009007519W WO 2010058277 A2 WO2010058277 A2 WO 2010058277A2
Authority
WO
WIPO (PCT)
Prior art keywords
stream
gaseous refrigerant
heat exchanger
expander
refrigerant stream
Prior art date
Application number
PCT/IB2009/007519
Other languages
English (en)
Other versions
WO2010058277A3 (fr
Inventor
Adam Adrian Brostow
Mark Julian Roberts
Original Assignee
Air Products And Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42170935&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010058277(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP09760300.5A priority Critical patent/EP2366085B1/fr
Priority to JP2011543838A priority patent/JP5684723B2/ja
Priority to AU2009318882A priority patent/AU2009318882B2/en
Priority to RU2011124891/06A priority patent/RU2505762C2/ru
Priority to CA2740188A priority patent/CA2740188C/fr
Application filed by Air Products And Chemicals, Inc. filed Critical Air Products And Chemicals, Inc.
Priority to EP13156856.0A priority patent/EP2600088B1/fr
Priority to KR1020117013423A priority patent/KR101307663B1/ko
Priority to KR1020137010936A priority patent/KR101363210B1/ko
Priority to CN2009801459553A priority patent/CN102334001B/zh
Priority to BRPI0921495-0A priority patent/BRPI0921495B1/pt
Publication of WO2010058277A2 publication Critical patent/WO2010058277A2/fr
Publication of WO2010058277A3 publication Critical patent/WO2010058277A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/009Hydrocarbons with four or more carbon atoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0095Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0097Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0205Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0263Details of the cold heat exchange system using different types of heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0267Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using flash gas as heat sink
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0284Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0294Multiple compressor casings/strings in parallel, e.g. split arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/32Compression of the product stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Definitions

  • Liquefaction methods and systems where refrigeration is generated by expanding gaseous refrigerant in a reverse-Brayton cycle are known. These methods and systems typically employ two expanders where the gaseous refrigerant is expanded to substantially the same pressure within tolerance of the pressure drop through equipment. Some systems also include more than two expanders with the cold expander discharge pressure being higher than the discharge pressures of the remaining expanders. These methods and systems have potentially simple compression systems because there are no streams introduced between compression stages, and simple heat exchangers because there are less passages and headers. Further some methods and systems use an open-loop system that utilizes the liquefied fluid as a refrigerant.
  • Embodiments of the present invention satisfy this need in the art by providing a safe, efficient, and reliable system and process for liquefaction, and specifically for natural gas liquefaction.
  • a method for liquefaction is disclosed using a closed loop refrigeration system, the method comprising the steps of (a) compressing a gaseous refrigerant stream in at least one compressor; (b) cooling the compressed gaseous refrigerant stream in a first heat exchanger; (c) expanding at least a first portion of the cooled, compressed gaseous refrigerant stream from the first heat exchanger in a first expander to provide a first expanded gaseous refrigerant stream; and (d) cooling and substantially liquefying a feed gas stream to form a substantially liquefied feed gas stream in a second heat exchanger through indirect heat exchange against at least a first portion of the first expanded gaseous refrigerant stream from the first expander, wherein the first expanded gaseous refrigerant stream exiting the first expander is substantially vapor.
  • a method of liquefaction is disclosed using a closed loop refrigeration system, the method comprising the steps of: (a) compressing a gaseous refrigerant stream in a low pressure compressor; (b) further compressing the compressed gaseous refrigerant stream in a high pressure compressor; (c) cooling the compressed gaseous refrigerant stream in a first heat exchanger; (d) expanding at least a first portion of the cooled, compressed gaseous refrigerant stream from the first heat exchanger in a first expander to provide a first expanded gaseous refrigerant stream, wherein the first expanded gaseous refrigerant stream from the first expander provides cooling to a second heat exchanger and the first heat exchanger; (e) cooling and substantially liquefying a feed gas stream through indirect heat exchange against the first expanded gaseous refrigerant stream from the first expander in the second heat exchanger and the first heat exchanger; and (f) subcooling the cooled and substantially liquefied feed gas stream through indirect
  • a closed loop system for liquefaction comprising: a refrigeration circuit, the refrigeration circuit comprising: a first heat exchanger; a second heat exchanger fluidly coupled to the first heat exchanger; a first expander fluidly coupled to the first heat exchanger and adapted to accept a stream of refrigerant from the first heat exchanger; a second expander fluidly coupled to the second heat exchanger and adapted to accept a stream of refrigerant from the second heat exchanger; and a third heat exchanger fluidly coupled to the first expander and adapted to accept a first expanded gaseous refrigerant stream from the first expander and a feed gas stream, wherein the first expanded gaseous refrigerant stream from the first expander and the second expanded gaseous refrigerant stream from the second expander are substantially a vapor stream.
  • substantially used herein in the context of a liquid or vapor phase means that the relevant stream has a liquid or vapor content respectively of at least 80 mol %, preferably at least 90 mol %, especially at least 95 mol % and can be entirely liquid or vapor.
  • the statement that "the first expanded gaseous refrigerant stream exiting the first expander is substantially vapor" means that the stream is at least 80 mol % vapor and could be 100 mol % vapor.
  • a method of liquefaction of a gaseous feed is disclosed using a closed-loop vapor expansion cycle having at least two expanders, wherein the discharge pressure of a second expander is lower than the discharge pressure of a first expander, and wherein the first expander provides at least a portion of the refrigeration required to liquefy the gaseous feed.
  • Figure 1 is a flow chart illustrating an exemplary gas liquefaction system and method involving aspects of the present invention
  • Figure 2 is a flow chart illustrating an exemplary gas liquefaction system and method involving aspects of the present invention
  • Figure 3 is a flow chart illustrating an exemplary gas liquefaction system and method involving aspects of the present invention
  • Figure 4 is a flow chart illustrating an exemplary gas liquefaction system and method involving aspects of the present invention
  • Figure 5 is a flow chart illustrating an exemplary gas liquefaction system and method involving aspects of the present invention
  • Figure 6 is a flow chart illustrating an exemplary precooling refrigeration system and method involving aspects of the present invention
  • Figure 7a is graphical illustration of the cooling curves in accordance with an embodiment of the present invention
  • Figure 7b is graphical illustration of the cooling curves in accordance with an embodiment of the present invention
  • Figure 7c is graphical illustration of the cooling curves in accordance with an embodiment of the present invention
  • Figure 8 is a flow chart illustrating an exemplary gas liquefaction system and method involving aspects of the present invention
  • Figure 9 is a flow chart illustrating an exemplary gas liquefaction system and method involving aspects of the present invention.
  • Figure 10 is a flow chart illustrating an exemplary gas liquefaction system and method involving aspects of the present invention.
  • Figure 11 is a flow chart illustrating an exemplary gas liquefaction system and method involving aspects of the present invention.
  • the liquefaction process may use two expanders and the gaseous refrigerant streams exiting the two expanders may be substantially vapor at the discharge of each expander.
  • the term "expander” may hereby be used to describe a device such as a centrifugal turbine or a reciprocating expander that expands gas while producing external work.
  • the process may be substantially isentropic and is often called work expansion or reversible adiabatic expansion and different from isenthalpic (Joule-Thompson) throttling through a valve.
  • the cold expander's discharge pressure may be lower than the warm(est) expander's discharge pressure to achieve colder temperatures.
  • the gaseous refrigerant from the discharge of the cold expander may be used to subcool the liquefied product.
  • the refrigerant from the discharge of the warm(est) expander may be used for liquefaction. Use of two different pressures may better match the cooling curve of natural gas liquefaction (i.e., precooling, liquefaction, and subcooling), for example.
  • the gaseous refrigerant stream from the discharge of the warm(est) expander may be introduced between the stages of the gaseous refrigerant compressor.
  • the feed gas stream and/or gaseous refrigerant may be precooled by another refrigerant such as propane, for example, in a closed-loop compression cycle.
  • the feed gas stream and/or gaseous refrigerant may also be precooled by a gaseous refrigerant from a third expander, for example.
  • the gaseous refrigerant stream from the discharge of the warm(est) expander may be compressed to the final discharge pressure in a separate compressor with a suction pressure higher than that of the compressor used to compress the gas originating from the discharge of the cold expander.
  • the feed gas stream and/or refrigerant may be precooled, for example, by the vaporizing liquid refrigerant such as CO 2 , methane, propane, butane, iso-butane, propylene, ethane, ethylene, R22, HFC refrigerants, including, but not limited to, R410A, R134A, R507, R23, or combinations thereof, for example.
  • the vaporizing liquid refrigerant such as CO 2 , methane, propane, butane, iso-butane, propylene, ethane, ethylene, R22, HFC refrigerants, including, but not limited to, R410A, R134A, R507, R23, or combinations thereof, for example.
  • Environmentally friendly fluorinated hydrocarbons and their mixtures may be preferred for off-shore or floating applications.
  • CO 2 may be used as refrigerant.
  • CO 2 precooling minimizes the physical footprint, especially for offshore Floating Production Storage and Offloading (
  • the liquid refrigerant may be vaporized at different pressures in a series of heat exchangers, compressed in a multistage compressor, condensed, and throttled to appropriate pressures to be revaporized. With a proper seal system, the compressor's suction pressure may be kept at vacuum to allow for cooling to lower temperatures. Alternatively, the feed gas stream and/or gaseous refrigerant may be precooled by expanding the same gaseous refrigerant in a third expander.
  • the feed gas stream may be cooled by indirect heat exchange with the gaseous refrigerant in the first set of heat exchangers comprising at least one exchanger in which the gas is not cooled.
  • the gaseous refrigerant may be cooled in the second set of heat exchangers comprising at least one exchanger.
  • the first set of heat exchangers may comprise wound-coil heat exchangers, for example.
  • the second set of heat exchangers may comprise plate-and-fin brazed aluminum (core) type heat exchangers, for example.
  • the feed gas stream may be cooled in a heat exchanger from which a portion of the gaseous refrigerant may be withdrawn at an intermediate point, preferable between the precooling and liquefaction sections.
  • Gaseous refrigerant may be precooled by vaporizing liquid refrigerant in a heat exchanger belonging to the second set of heat exchangers.
  • Such refrigerant may be a fluorinated hydrocarbon or CO 2 , for example.
  • the feed gas stream may be precooled against vaporizing liquid refrigerant in a serious of kettles or shell-and-tube heat exchanges.
  • a portion of gaseous refrigerant may also be cooled in multi-stream heat exchanger belonging to the second set of heat exchangers.
  • Another portion of gaseous refrigerant may be cooled to about the same temperature against vaporizing liquid refrigerant in a serious of kettles or shell-and-tube heat exchanges which may be separate or combined with the heat exchangers used for precooling the feed gas stream.
  • a feed gas stream 100 may be cooled and liquefied against a warming gaseous refrigerant stream 154 of nitrogen, for example, in a heat exchanger 110.
  • the feed gas stream 100 may be natural gas, for example. While the liquefaction system and method disclosed herein may be used for liquefaction of gases other than natural gas and thus, the feed gas stream 100 may be a gas other than natural gas, the remaining exemplary embodiments will refer to the feed gas stream 100 as a natural gas stream for illustrative purposes.
  • a portion (stream 156) of the partially warmed stream 154 may be withdrawn from the heat exchanger 110 to balance the precooling (warm) section of the heat exchanger 110 that requires less refrigeration.
  • Gaseous refrigerant stream 158 may leave the warm end of heat exchanger 110, for example, to be recycled.
  • Substantially liquefied natural gas (LNG) stream 102 exiting the cold end of the heat exchanger 110 may be subcooled in subcooler exchanger 112 against warming gaseous refrigerant stream 172 and, after exiting the cold end of subcooler exchanger 112, recovered as liquefied natural gas product 104, for example.
  • Gaseous refrigerant stream 174 may leave the warm end of subcooler exchanger 112.
  • Gaseous low-pressure refrigerant stream 140 may be compressed in the low- pressure refrigerant compressor 130.
  • the resulting stream 142 may be combined with streams 158 and 166 and may enter the high-pressure refrigerant compressor 132 as stream 144.
  • the low pressure refrigerant compressor 130 and the high-pressure refrigerant compressor 132 may include aftercoolers and intercoolers that cool against an ambient heat sink.
  • the heat sink may be, for example, cooling water from a water tower, sea water, fresh water, or air. Intercoolers and aftercoolers are not shown for simplicity.
  • High-pressure refrigerant stream 146 from the discharge of high-pressure refrigerant compressor 132 may be cooled in heat exchanger 114.
  • the resulting stream 148 may be split into streams 150 and 168.
  • Stream 150 may be expanded in expander 136 to produce stream 152.
  • Expander 136 may be a vapor expander, for example.
  • a vapor expander is any expander where the discharge is substantially vapor (i.e., where the discharge stream is at least 80% vapor).
  • Stream 152 may be distributed between heat exchanger 110 (above-mentioned stream 154) and heat exchanger 116 as stream 160.
  • Stream 160 may be warmed in heat exchanger 116.
  • Resulting stream 162 may be combined with stream 156 from heat exchanger 110.
  • Resulting stream 164 may be further warmed in heat exchanger 114 to produce stream 166.
  • Stream 168 may be cooled in heat exchanger 116.
  • the resulting stream 170 may be expanded in expander 138 to produce the above-mentioned stream 172 which may then be warmed in subcooler exchanger 112.
  • Expander 138 may be a vapor expander, for example.
  • the resulting stream 174 may be further warmed in heat exchanger 116 to produce stream 176.
  • Stream 176 may be further warmed in heat exchanger 114 to produce stream 140.
  • Heat exchanger 114 may be cooled with refrigeration system 120 that comprises at least one stage of vaporizing liquid refrigerant such as, CO 2 , methane, propane, butane, iso-butane, propylene, ethane, ethylene, R22, HFC refrigerants, including, but not limited to, R410A, R134A, R507, R23, or combinations thereof, for example.
  • liquid refrigerant such as, CO 2 , methane, propane, butane, iso-butane, propylene, ethane, ethylene, R22, HFC refrigerants, including, but not limited to, R410A, R134A, R507, R23, or combinations thereof, for example.
  • FPSO Floating Production Storage and Offloading
  • Other refrigeration cycles using gaseous refrigerant may also be employed.
  • Heat exchangers 114, 116 may be combined into one exchanger, for example. Heat exchangers 114, 116 may also be plate-and-fin brazed aluminum (core) type heat exchangers, for example.
  • core plate-and-fin brazed aluminum
  • Heat exchangers 110, 112 may be combined or mounted on top of one another, for example.
  • Heat exchangers 110, 112 may be of plate-and-fin brazed aluminum (core) type heat exchangers, for example.
  • Heat exchangers 110, 112 may also be wound coil type heat exchangers that assure better safety, durability, and reliability, for example.
  • Robust type heat exchanges may be used to cool natural gas, for example, because the cooling of natural gas involves a phase change that may cause more significant thermal stresses on the heat exchangers.
  • Wound coil heat exchangers may be used because they are generally less susceptible to thermal stresses during phase change, contain leaks better than core type heat exchangers, and are generally impervious to mercury corrosion. Wound coil heat exchangers also may offer lower refrigerant pressure drop on the shell side, for example.
  • Refrigerant compressors 132, 134 may be driven by electric motors or directly driven by one or more gas turbine drivers, for example. Electricity can be derived from a gas turbine and/or a steam turbine with a generator, for example. Part of the compression duty of refrigerant compressors 132, 134 may be derived from expanders 136, 138. This usually means that at least one stage of sequential compression, or, in the case of a single-stage compression, the entire compressor or compressors in parallel are directly or indirectly driven by expanders. Direct drive usually means a common shaft while indirect drive involves use of a gear box, for example.
  • stream 146 from the discharge of high-pressure refrigerant compressor 132 is divided into two streams
  • Stream 246 is cooled in heat exchanger 214 to produce stream 248 which is divided into streams 168 and 250.
  • Stream 247 bypasses heat exchanger 214 and is cooled in refrigeration system 220 that comprises at least one stage of vaporizing liquid refrigerant. Vaporization may take place in kettles, for example, such as shell-and-tube heat exchangers with boiling refrigerant on the shell side as illustrated in Figure 6.
  • Resulting stream 249 is combined with stream 250 to form stream 150 that enters expander 136.
  • natural gas feed stream 100 may be precooled in the refrigeration system 320 that comprises at least one stage of vaporizing liquid refrigerant.
  • the resulting stream 301 may be liquefied in heat exchanger 310 to produce substantially liquid stream 102.
  • Gaseous refrigerant from 310, stream 356, may be combined with stream 162, like stream 156 in Figures 1 and 2.
  • Refrigeration systems 320 and 220 may be combined into one refrigeration system, for example, with the liquid refrigerant boiling on the shell side of the series of heat exchangers and both natural gas and vapor refrigerant streams cooled in tube circuits, for example.
  • the refrigerant compressor and condenser are preferably common to both systems as illustrated in Figure 6.
  • stream 146 may be divided into two streams 446, 447.
  • Stream 446 may be cooled in heat exchanger 214 to produce stream 448.
  • Stream 447 may bypass heat exchanger 214 and may be expanded in expander 434.
  • Resulting stream 449 may be combined with streams 156 and 162 to form stream 464 that may enter heat exchanger 214 in the same manner as stream 164 in Figures 1 and 2.
  • the expansion may be accomplished in a sequential manner.
  • Stream 548 may be combined with stream 249 to produce stream 150 which may be expanded in expander 136.
  • a portion of stream 160 may be partially warmed in heat exchanger 116 (stream 570) and may be expanded in expander 138. Therefore, the inlet pressure to expander 138 may be close to the discharge pressure of expander 136.
  • Stream 166 may be introduced between the stages of the gaseous refrigerant compressors or may be combined with stream 158 to produce stream 544 which is compressed in a separate compressor 532 to produce stream 546. In that case, stream 140 may be compressed in compressor 530 to produce stream 542 at the same pressure as stream 546. The choice of configuration may depend on compressor fit and the associated costs.
  • Combined streams 542 and 546 may be split into stream 547 and 247.
  • Stream 547 may be cooled in heat exchanger 214 to produce stream 548, and as illustrated in Figure 2, stream 247 may bypass heat exchanger 214 and may be cooled in refrigeration system 220.
  • the subcooled product 104 may be throttled to a lower pressure in valve 590
  • the resulting stream 506 may be partially vapor.
  • Valve 590 may be replaced with a hydraulic turbine, for example.
  • Stream 506 may be separated into liquid product 508 and flash vapor 580 in phase separator 592.
  • Stream 580 may be cold-compressed in compressor 594 to produce stream 582 that may be at a temperature close to the temperature of streams 160 and 174.
  • stream 580 may also be warmed up in subcooler exchanger 112 or in a separate heat exchanger against a portion of stream 102.
  • Stream 582 may be warmed in heat exchanger 116 to produce stream 584 which may be further warmed in heat exchanger 214 to produce stream 586.
  • Stream 586 may be typically compressed to a higher pressure and used as fuel for one or more generator(s), steam turbine(s), gas turbine(s), or electrical motor(s) for power generation, for example.
  • Figure 6 illustrates an exemplary embodiment of the precooling refrigeration system depicted in Figures 1-3 and 5.
  • Stream 630 which may be a gaseous refrigerant and/or a natural gas feed, may be cooled in heat exchange system 620 (corresponding to systems 120, 220, and 320 on previous figures) to yield stream 632.
  • the gaseous refrigerant may be compressed in refrigerant compressor 600.
  • Resulting stream 602 may be totally condensed in condenser 604.
  • Liquid stream 606 may be throttled in valve 607 and partially vaporized in the high-pressure evaporator of heat exchange system 620 to produce two-phase stream 608, which may then be separated in phase separator 609.
  • the vapor portion 610 may be introduced between the stages of 600 as a high-pressure stream.
  • the liquid portion 611 may be throttled in valve 612 and partially vaporized in the medium-pressure evaporator of heat exchange system 620 to produce two-phase stream 613, which may then be separated in phase separator 614.
  • the vapor portion 615 may be introduced between the stages of 600 as a medium-pressure stream.
  • the liquid portion 616 may be throttled in valve 617, totally vaporized in the low-pressure evaporator of heat exchange system 620, and introduced between the stages of 600 as a low-pressure stream 617. Therefore, refrigeration may be supplied at three temperature levels corresponding to the three evaporator pressures. It also possible to have more or less than three evaporators and temperature/pressure levels.
  • Stream 602 may be supercritical at a pressure higher than the critical pressure, for example. It may then be cooled in condenser 604 without phase change to produce a dense fluid 606. Supercritical stream 606 may become a partial liquid after being throttled.
  • Figures 7a-7c illustrate graphical plots of the cooling curves for the exemplary embodiment illustrated in Figure. 1.
  • Figure 7a illustrates the combined heat exchangers 114, 116.
  • Figure 7b represents heat exchanger 110. As one can see, withdrawing stream 156 significantly improves the efficiency of the exchanger.
  • Figure 7c illustrates the subcooler exchanger 112.
  • a system may be used similar to Figure 1 , however, the gaseous refrigerant may provide refrigeration at only one pressure level.
  • the discharge pressure of Expander 138 may be substantially the same as expander 136.
  • Stream 152 may be split into streams 860 and 854, for example.
  • Stream 854 may be introduced to the shell side of combined liquefier/subcooler exchanger 810 at an intermediate location corresponding to the transition between the liquefying and subcooling sections. There it may mix with warmed-up stream 172.
  • Stream 856 may be withdrawn at an intermediate location within heat exchanger 810 corresponding to the transition between the precooling and liquefying sections, for example. Heat exchanger 810, therefore, may be well balanced, with most refrigerant used in the middle liquefying section.
  • Stream 860 may be warmed up in heat exchanger 116 to produce stream 862.
  • Stream 862 may be combined with stream 856 to produce stream 864.
  • Stream 864 may be warmed up in heat exchanger 114 to form stream 840, combined with stream 858 from the warm end of heat exchanger 810, and introduced to the suction of refrigerant compressor 830.
  • Compressor 830 may have multiple stages, for example. Again, intercoolers and aftercoolers are not shown for simplicity.
  • a system may be used similar to Figure 1 , however, the liquefier heat exchanger 110 and heat exchangers 116 and 114 may be combined into heat exchangers 916 and 914. Heat exchangers 914 and 916 may also be combined. Subcooler exchanger 112 may be combined with heat exchanger 916. All three exchangers 914, 916, and 112 can be combined into a single heat exchanger, for example.
  • the feed gas stream 100 may be cooled in the heat exchanger 914 to form stream 901.
  • Stream 901 may be further cooled in heat exchanger 916 to form a substantially liquefied gas stream 102.
  • a system may be used similar to Figure 8, however, a third expander 434 may be included as in
  • the additional expander 434 may replace the refrigeration system 120 in providing the refrigeration for precooling the gaseous refrigerant, in this case stream 447.
  • a system may be used similar to Figure 8, however, the cold expander 138 has been eliminated together with the top section of the liquefier heat exchanger 810.
  • Pre-cooled gaseous refrigerant stream 1148 is expanded in a single expander 1136.
  • Resulting expanded stream 1154 is used to liquefy the natural gas feed 100, for example, in the liquefier heat exchanger 810.
  • This exemplary embodiment is particularly useful for producing liquid natural gas at warm temperature ranges. These temperature ranges may include, for example, -215°F (-137 0 C) to -80 0 F (-62 0 C).
  • pre-cooling system 120 in Figure 1 may be replaced with an additional expander as in Figure 10, or may be external to the exchanger 114 as in Figure 2. If two expanders are used, one for precooling, one for liquefaction, they may be discharge at two different pressures with the higher-pressure stream from the warm (pre-cooling) expander introduced between the low-pressure refrigerant compressor and the high-pressure refrigerant compressor as in Figure 1.
  • #1 A method of liquefaction using a closed loop refrigeration system, the method comprising the steps of:
  • #9 The method of #8, wherein the natural gas liquefaction occurs on a Floating Production Storage and Offloading (FPSO) vessel.
  • FPSO Floating Production Storage and Offloading
  • the method of #2 further comprising extracting a portion of the gaseous refrigerant stream descending the second heat exchanger from an intermediate location of the second heat exchanger, heating the extracted portion of the gaseous refrigerant stream in the first heat exchanger, and combining the warmed gaseous refrigerant stream with the compressed gaseous refrigerant stream exiting the low pressure compressor between steps (a)(1) and (a)(2) of #3.
  • #14 The method of #1 , wherein the first heat exchanger and the third heat exchanger are a single heat exchanger.
  • #15. The method of #1 , wherein the second heat exchanger and the subcooler exchanger are a single heat exchanger.
  • the method of #3 further comprising splitting the compressed gaseous refrigerant stream exiting the high pressure compressor, expanding a first portion of the compressed gaseous refrigerant stream exiting the at least one compressor in a third expander, warming the expanded first portion of the compressed gaseous refrigerant stream in the first heat exchanger, and then combining the warmed, expanded first portion of the compressed gaseous refrigerant stream with the compressed gaseous refrigerant stream exiting the low pressure compressor between steps (a)(1) and (a)(2) of #3, and cooling the second portion of the compressed gaseous refrigerant stream exiting the high pressure compressor in the first heat exchanger in step (b) of #1.
  • the method of #4 further comprising splitting the compressed gaseous refrigerant stream exiting the high pressure compressor, expanding a first portion of the compressed gaseous refrigerant stream exiting the high pressure compressor in a third expander, warming the expanded first portion of the compressed gaseous refrigerant stream in the first heat exchanger, and then combining the warmed, expanded first portion of the compressed gaseous refrigerant stream with the compressed gaseous refrigerant stream exiting the low pressure compressor between steps (a)(1) and (a)(2) of #3, and cooling the second portion of the compressed gaseous refrigerant stream exiting the high pressure compressor in the first heat exchanger in step (b) of #1. #23.
  • the method of #2 further comprising throttling the subcooled liquefied feed gas stream, separating the throttled subcooled liquefied feed gas stream in a phase separator into a liquid product and a flash vapor, wherein the flash vapor can be further compressed, warmed, and used as fuel for energy production.
  • the method of #1 further comprising storing the cooled and substantially liquefied feed gas stream in a high-pressure storage tank.
  • a method of liquefaction using a closed loop refrigeration system comprising the steps of:
  • a closed loop system for liquefaction comprising: a refrigeration circuit, the refrigeration circuit comprising: a first heat exchanger; a second heat exchanger fluidly coupled to the first heat exchanger; a first expander fluidly coupled to the first heat exchanger and adapted to accept a stream of refrigerant from the first heat exchanger; a second expander fluidly coupled to the second heat exchanger and adapted to accept a stream of refrigerant from the second heat exchanger; and a third heat exchanger fluidly coupled to the first expander and adapted to accept a first expanded gaseous refrigerant stream from the first expander and a feed gas stream, wherein the first expanded gaseous refrigerant stream from the first expander and the second expanded gaseous refrigerant stream from the second expander are substantially a vapor stream.
  • a low pressure refrigerant compressor fluidly coupled to the first heat exchanger; and (b) a high pressure refrigerant compressor fluidly coupled to the first heat exchanger and the low pressure refrigerant compressor adapted for acceptance of a refrigerant stream from the first heat exchanger and the low pressure refrigerant compressor.
  • the system of #28 further comprising a third expander fluidly coupled to the high pressure refrigerant compressor and adapted for accepting a portion of a compressed gaseous refrigerant stream from the high pressure refrigerant compressor.
  • the system of #27 further comprising: a valve fluidly coupled to the subcooler exchanger adapted for acceptance of the feed gas stream from the subcooler exchanger; a phase separator fluidly coupled to the valve and adapted for separation of the feed gas stream into a liquid product and a flash vapor.
  • #43 further comprising: a first low pressure refrigerant compressor fluidly coupled to the first heat exchanger; and a second low pressure refrigerant compressor fluidly coupled to the third heat exchanger. #44.
  • #46 The method of #44, wherein a resultant expanded stream from the second expander is warmed to near ambient temperature, compressed, and combined with a warmed resultant expanded stream from the first expander.
  • #47 The method of #46, wherein the combined streams from the first expander and the second expander are further compressed and then cooled for further expansion.
  • #48 The method of #44, wherein a resultant expanded stream from the first expander is split such that a first portion of the resultant expanded stream is used to cool the gaseous feed through indirect heat exchange and a second portion of the resultant expanded stream is used to provide cooling in a heat exchanger.
  • Resulting stream 301 was cooled in the liquefier heat exchanger 310 to -136 F (-93"C) at which point the stream 102 was all liquid. It was then subcooled in the subcooler exchanger 112 to -261 F (-163 0 C) providing resulting stream 104.
  • Gaseous nitrogen 146 from the discharge of high-pressure refrigerant compressor 132 was at 104 ° F (40°C) and 1 ,200 psia (8.27 MPa). Stream 146 was then split into 21 ,495 Ibmol/h (9,750 kgmol/h) going to refrigeration system 220 and 196,230 Ibmol/h (89,008 kgmol/h) going to combined heat exchangers 214, 116.
  • Stream 150 resulting from combining streams 249 and 250 entered expander 136 at -49 ° F (-45 0 C) and a flow rate of 164,634 Ibmol/h (74,677 kgmol/h). It was expanded to about 475 psia (3.28 MPa) at -141 ° F (-96 0 C) (stream 152) and divided into stream 154 entering liquefier heat exchanger 310 at 141 ,326 Ibmol/h (64,104 kgmol/h) and stream 160 entering combined heat exchangers 214, 116.
  • Stream 356 left liquefier heat exchanger 310 at -54.4 ° F (-48°C). It was then combined with stream 162, warmed up in combined heat exchangers 214, 116 to 97.5 F (36.4°C), and introduced between the low pressure refrigerant compressor 130 and high pressure refrigerant compressor 132 at a flow rate of 164,634 Ibmol/h (74,677 kgmol/h) (stream 166).
  • Stream 170 entered expander 138 at -136 ° F (-93 0 C) and a flow rate of 53,091 Ibmol/h (24,082 kgmol/h). Stream 170 was expanded to about 192 psia (1.32 MPa) at -165 ° F (-109 0 C) (stream 172) and then entered subcooler exchanger 112.
  • Stream 174 left subcooler exchanger 112 at about -140 ° F (-96°C). Stream 174 was then warmed up in combined heat exchangers 214, 116 to 97.5 ° F (36.4°C) and entered the suction of the low pressure refrigerant compressor 130 (stream 140).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Selon l’invention, un gaz d’alimentation est liquéfié en utilisant un système de réfrigération en boucle fermée dans lequel un courant de réfrigérant gazeux comprimé refroidi (150) est dilaté (136) pour créer un premier courant de réfrigérant gazeux dilaté (154) qui est sensiblement composé de vapeur et qui est utilisé pour refroidir et liquéfier sensiblement un courant de gaz d’alimentation (100) par l’intermédiaire d’un échange de chaleur indirect (110). Le courant de gaz d’alimentation sensiblement liquéfié (102) est de préférence sous-refroidi par l’intermédiaire d’un échange de chaleur indirect (112) avec un deuxième courant de réfrigérant gazeux dilaté (172) qui est lui aussi de préférence sensiblement composé de vapeur et qui peut être constitué par un courant de réfrigérant gazeux comprimé refroidi (170) ou par une partie du premier courant de réfrigérant gazeux dilaté (152). Une charge de refroidissement du courant de réfrigérant gazeux comprimé (146) est assurée par une partie (160) du premier courant de réfrigérant gazeux dilaté (152), par le réfrigérant gazeux (156) partiellement chauffé par ledit échange de chaleur (110) avec un gaz d’alimentation, et/ou par le deuxième courant de réfrigérant gazeux dilaté (174) chauffé par ledit sous-refroidissement (112).
PCT/IB2009/007519 2008-11-18 2009-11-16 Procédé et système de liquéfaction WO2010058277A2 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BRPI0921495-0A BRPI0921495B1 (pt) 2008-11-18 2009-11-16 método de liquefação usando um sistema de refrigeração de circuito fechado, e sistema de circuito fechado para liquefação de uma corrente de gás alimentada por um método
JP2011543838A JP5684723B2 (ja) 2008-11-18 2009-11-16 液化方法及び液化装置
AU2009318882A AU2009318882B2 (en) 2008-11-18 2009-11-16 Liquefaction method and system
RU2011124891/06A RU2505762C2 (ru) 2008-11-18 2009-11-16 Способ и система сжижения
CA2740188A CA2740188C (fr) 2008-11-18 2009-11-16 Procede et systeme de liquefaction
EP09760300.5A EP2366085B1 (fr) 2008-11-18 2009-11-16 Procédé et système de liquéfaction
EP13156856.0A EP2600088B1 (fr) 2008-11-18 2009-11-16 Installation et procédé de liquéfaction
KR1020117013423A KR101307663B1 (ko) 2008-11-18 2009-11-16 액화 방법 및 액화 시스템
KR1020137010936A KR101363210B1 (ko) 2008-11-18 2009-11-16 액화 방법 및 액화 시스템
CN2009801459553A CN102334001B (zh) 2008-11-18 2009-11-16 液化方法和系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/272,909 US8464551B2 (en) 2008-11-18 2008-11-18 Liquefaction method and system
US12/272,909 2008-11-18

Publications (2)

Publication Number Publication Date
WO2010058277A2 true WO2010058277A2 (fr) 2010-05-27
WO2010058277A3 WO2010058277A3 (fr) 2011-10-13

Family

ID=42170935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/007519 WO2010058277A2 (fr) 2008-11-18 2009-11-16 Procédé et système de liquéfaction

Country Status (14)

Country Link
US (2) US8464551B2 (fr)
EP (2) EP2600088B1 (fr)
JP (2) JP5684723B2 (fr)
KR (2) KR101363210B1 (fr)
CN (2) CN103591767B (fr)
AU (1) AU2009318882B2 (fr)
BR (1) BRPI0921495B1 (fr)
CA (1) CA2740188C (fr)
MY (1) MY161470A (fr)
PE (1) PE20120190A1 (fr)
RU (1) RU2505762C2 (fr)
SG (1) SG195581A1 (fr)
TW (1) TWI388788B (fr)
WO (1) WO2010058277A2 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8957037B2 (en) 2009-05-18 2015-02-17 Curna, Inc. Treatment of reprogramming factor related diseases by inhibition of natural antisense transcript to a reprogramming factor
US8987225B2 (en) 2010-11-23 2015-03-24 Curna, Inc. Treatment of NANOG related diseases by inhibition of natural antisense transcript to NANOG
US8993533B2 (en) 2010-10-06 2015-03-31 Curna, Inc. Treatment of sialidase 4 (NEU4) related diseases by inhibition of natural antisense transcript to NEU4
US9394542B2 (en) 2010-07-14 2016-07-19 Curna, Inc. Treatment of discs large homolog (DLG) related diseases by inhibition of natural antisense transcript to DLG
US9441877B2 (en) 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
US10663221B2 (en) 2015-07-08 2020-05-26 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US12000653B2 (en) 2015-04-10 2024-06-04 Chart Energy & Chemicals, Inc. System and method for removing freezing components from a feed gas

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2459484B (en) * 2008-04-23 2012-05-16 Statoilhydro Asa Dual nitrogen expansion process
FR2977014B1 (fr) * 2011-06-24 2016-04-15 Saipem Sa Procede de liquefaction de gaz naturel avec un melange de gaz refrigerant.
FR2977015B1 (fr) * 2011-06-24 2015-07-03 Saipem Sa Procede de liquefaction de gaz naturel a triple circuit ferme de gaz refrigerant
KR101153103B1 (ko) * 2011-10-11 2012-06-04 한국가스공사연구개발원 이산화탄소 재액화 공정
US20130269386A1 (en) 2012-04-11 2013-10-17 Air Products And Chemicals, Inc. Natural Gas Liquefaction With Feed Water Removal
US20150285553A1 (en) * 2012-11-16 2015-10-08 Russell H. Oelfke Liquefaction of Natural Gas
WO2014088810A1 (fr) 2012-12-04 2014-06-12 Conocophillips Company Utilisation de réfrigérants de composé hydrofluoro-oléfine, xénon ou iodo à faible potentiel de réchauffement de la planète, à faible potentiel d'appauvrissement de la couche d'ozone, à faible combustibilité dans un traitement de gaz naturel liquéfié (lng)
CA3140415A1 (fr) 2013-03-15 2014-09-18 Chart Energy & Chemicals, Inc. Procede et systeme refrigerant mixte
NO3001128T3 (fr) * 2013-05-20 2018-12-08
US9696086B2 (en) * 2014-01-28 2017-07-04 Dresser-Rand Company System and method for the production of liquefied natural gas
CN106164612A (zh) * 2014-01-28 2016-11-23 斯塔瑞特公司 改进的用于制造液化气体的克劳德法
DE102014012316A1 (de) * 2014-08-19 2016-02-25 Linde Aktiengesellschaft Verfahren zum Abkühlen einer Kohlenwasserstoff-reichen Fraktion
NO20141176A1 (no) 2014-09-30 2016-03-31 Global Lng Services As Fremgangsmåte og anlegg for fremstilling av LNG
TWI707115B (zh) * 2015-04-10 2020-10-11 美商圖表能源與化學有限公司 混合製冷劑液化系統和方法
US9863697B2 (en) 2015-04-24 2018-01-09 Air Products And Chemicals, Inc. Integrated methane refrigeration system for liquefying natural gas
ES2693423T3 (es) * 2016-01-18 2018-12-11 Cryostar Sas Sistema para suministrar gas comprimido a varios dispositivos alimentados con gas
US10359228B2 (en) 2016-05-20 2019-07-23 Air Products And Chemicals, Inc. Liquefaction method and system
CN106642985B (zh) * 2016-12-01 2019-07-02 中国寰球工程有限公司 一种用于浮式天然气液化装置的快速开车系统及其开车方法
US10544986B2 (en) * 2017-03-29 2020-01-28 Air Products And Chemicals, Inc. Parallel compression in LNG plants using a double flow compressor
US20190162468A1 (en) 2017-11-27 2019-05-30 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream
US20190162469A1 (en) * 2017-11-27 2019-05-30 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream
FR3069237B1 (fr) * 2017-07-19 2019-08-23 Gaztransport Et Technigaz Dispositif de production et de distribution d'azote, en particulier pour un navire de transport de gaz liquefie
CA3075987A1 (fr) 2017-09-29 2019-04-04 Exxonmobil Upstream Research Company Liquefaction de gaz naturel par un processus d'expansion a haute pression
EP3688390A1 (fr) * 2017-09-29 2020-08-05 ExxonMobil Upstream Research Company Liquéfaction de gaz naturel au moyen d'un procédé de détente à haute pression
RU2736122C1 (ru) * 2017-11-14 2020-11-11 ДжГК Корпорейшн Устройство для сжижения природного газа и способ проектирования устройства для сжижения природного газа
JP7229230B2 (ja) 2018-03-27 2023-02-27 大陽日酸株式会社 天然ガス液化装置および天然ガス液化方法
US10788261B2 (en) 2018-04-27 2020-09-29 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream using a gas phase refrigerant
US10866022B2 (en) 2018-04-27 2020-12-15 Air Products And Chemicals, Inc. Method and system for cooling a hydrocarbon stream using a gas phase refrigerant
KR20240033112A (ko) 2018-06-01 2024-03-12 스틸헤드 엘엔지 (에이에스엘엔지) 엘티디. 액화 장치, 방법, 및 시스템
US11815309B2 (en) * 2018-11-07 2023-11-14 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Integration of hydrogen liquefaction with gas processing units
JP7141342B2 (ja) * 2019-01-31 2022-09-22 大陽日酸株式会社 極低温流体循環式冷却システム及び極低温流体循環式冷却方法
GB2582763A (en) * 2019-04-01 2020-10-07 Linde Ag Method and device for the recovery of waste energy from refrigerant compression systems used in gas liquefaction processes
WO2020245510A1 (fr) 2019-06-04 2020-12-10 Total Se Installation pour produire du gnl à partir de gaz naturel, support flottant intégrant une telle installation, et procédé correspondant
FR3108969B1 (fr) * 2020-04-07 2022-07-15 Air Liquide Installation agile d’une unité de liquéfaction d’hydrocarbures

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1501730A1 (de) * 1966-05-27 1969-10-30 Linde Ag Verfahren und Vorrichtung zum Verfluessigen von Erdgas
US5768912A (en) * 1994-04-05 1998-06-23 Dubar; Christopher Alfred Liquefaction process
WO2001069149A1 (fr) * 2000-03-15 2001-09-20 Den Norske Stats Oljeselskap A.S. Procede de liquefaction de gaz naturel
DE10147047A1 (de) * 2000-11-20 2002-07-04 Linde Ag Zwei-oder Drei-Turbinen-Kreislauf zur Erzeugung eines Flüssigkeitsprodukts
DE10108905A1 (de) * 2001-02-23 2002-09-05 Linde Ag Verfahren zum Verflüssigen eines wenigstens zweikomponentigen Gasgemisches
US20050056051A1 (en) * 2003-09-17 2005-03-17 Roberts Mark Julian Hybrid gas liquefaction cycle with multiple expanders
WO2005071333A1 (fr) * 2004-01-23 2005-08-04 Hamworthy Kse Gas Systems As Systeme et procede de reliquefaction de vaporisat
FR2873192A1 (fr) * 2005-08-04 2006-01-20 Air Liquide Procede de liquifaction d'un gaz
DE102006039889A1 (de) * 2006-08-25 2008-02-28 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2009017414A1 (fr) * 2007-06-22 2009-02-05 Kanfa Aragon As Procédé et système pour la production de gnl
WO2009072900A1 (fr) * 2007-12-06 2009-06-11 Kanfa Aragon As Procédé et système permettant de réguler la capacité de refroidissement d'un système de refroidissement sur la base d'un processus d'expansion gazeuse
WO2009130466A2 (fr) * 2008-04-23 2009-10-29 Statoilhydro Asa Procédé de détente double d'azote
WO2011018686A2 (fr) * 2009-08-13 2011-02-17 Air Products And Chemicals, Inc. Commande de la composition d'un réfrigérant

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1096697A (en) * 1966-09-27 1967-12-29 Int Research & Dev Co Ltd Process for liquefying natural gas
US3677019A (en) * 1969-08-01 1972-07-18 Union Carbide Corp Gas liquefaction process and apparatus
US3792590A (en) * 1970-12-21 1974-02-19 Airco Inc Liquefaction of natural gas
US4155729A (en) * 1977-10-20 1979-05-22 Phillips Petroleum Company Liquid flash between expanders in gas separation
US4525185A (en) * 1983-10-25 1985-06-25 Air Products And Chemicals, Inc. Dual mixed refrigerant natural gas liquefaction with staged compression
US4846862A (en) * 1988-09-06 1989-07-11 Air Products And Chemicals, Inc. Reliquefaction of boil-off from liquefied natural gas
US5141543A (en) * 1991-04-26 1992-08-25 Air Products And Chemicals, Inc. Use of liquefied natural gas (LNG) coupled with a cold expander to produce liquid nitrogen
JP3284575B2 (ja) * 1992-03-17 2002-05-20 松下電器産業株式会社 コーナーピンクッション歪補正回路とテレビジョン受像機
JP3320934B2 (ja) * 1994-12-09 2002-09-03 株式会社神戸製鋼所 ガスの液化方法
RU2141084C1 (ru) * 1995-10-05 1999-11-10 Би Эйч Пи Петролеум ПТИ. Лтд. Установка для сжижения
US6446465B1 (en) * 1997-12-11 2002-09-10 Bhp Petroleum Pty, Ltd. Liquefaction process and apparatus
US6460721B2 (en) * 1999-03-23 2002-10-08 Exxonmobil Upstream Research Company Systems and methods for producing and storing pressurized liquefied natural gas
US6308531B1 (en) * 1999-10-12 2001-10-30 Air Products And Chemicals, Inc. Hybrid cycle for the production of liquefied natural gas
FR2803851B1 (fr) 2000-01-19 2006-09-29 Inst Francais Du Petrole Procede de liquefaction partielle d'un fluide contenant des hydrocarbures tel que du gaz naturel
US6293106B1 (en) * 2000-05-18 2001-09-25 Praxair Technology, Inc. Magnetic refrigeration system with multicomponent refrigerant fluid forecooling
US6889522B2 (en) * 2002-06-06 2005-05-10 Abb Lummus Global, Randall Gas Technologies LNG floating production, storage, and offloading scheme
FR2841330B1 (fr) * 2002-06-21 2005-01-28 Inst Francais Du Petrole Liquefaction de gaz naturel avec recyclage de gaz naturel
US6945075B2 (en) * 2002-10-23 2005-09-20 Elkcorp Natural gas liquefaction
US6742357B1 (en) * 2003-03-18 2004-06-01 Air Products And Chemicals, Inc. Integrated multiple-loop refrigeration process for gas liquefaction
US7204100B2 (en) * 2004-05-04 2007-04-17 Ortloff Engineers, Ltd. Natural gas liquefaction
AU2005262611B2 (en) * 2004-06-23 2010-11-04 Exxonmobil Upstream Research Company Mixed refrigerant liquefaction process
NO20051315L (no) * 2005-03-14 2006-09-15 Hamworthy Kse Gas Systems As System og metode for kjoling av en BOG strom
EP1790926A1 (fr) * 2005-11-24 2007-05-30 Shell Internationale Researchmaatschappij B.V. Procédé et dispositif de refroidissement d'un courant, en particulier d'un courant d'hydrocarbures comme du gaz naturel
CN101443616B (zh) * 2006-05-15 2012-06-20 国际壳牌研究有限公司 液化烃物流的方法和设备
US20080141711A1 (en) * 2006-12-18 2008-06-19 Mark Julian Roberts Hybrid cycle liquefaction of natural gas with propane pre-cooling

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1501730A1 (de) * 1966-05-27 1969-10-30 Linde Ag Verfahren und Vorrichtung zum Verfluessigen von Erdgas
US5768912A (en) * 1994-04-05 1998-06-23 Dubar; Christopher Alfred Liquefaction process
WO2001069149A1 (fr) * 2000-03-15 2001-09-20 Den Norske Stats Oljeselskap A.S. Procede de liquefaction de gaz naturel
DE10147047A1 (de) * 2000-11-20 2002-07-04 Linde Ag Zwei-oder Drei-Turbinen-Kreislauf zur Erzeugung eines Flüssigkeitsprodukts
DE10108905A1 (de) * 2001-02-23 2002-09-05 Linde Ag Verfahren zum Verflüssigen eines wenigstens zweikomponentigen Gasgemisches
US20050056051A1 (en) * 2003-09-17 2005-03-17 Roberts Mark Julian Hybrid gas liquefaction cycle with multiple expanders
WO2005071333A1 (fr) * 2004-01-23 2005-08-04 Hamworthy Kse Gas Systems As Systeme et procede de reliquefaction de vaporisat
FR2873192A1 (fr) * 2005-08-04 2006-01-20 Air Liquide Procede de liquifaction d'un gaz
DE102006039889A1 (de) * 2006-08-25 2008-02-28 Linde Ag Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
WO2009017414A1 (fr) * 2007-06-22 2009-02-05 Kanfa Aragon As Procédé et système pour la production de gnl
WO2009072900A1 (fr) * 2007-12-06 2009-06-11 Kanfa Aragon As Procédé et système permettant de réguler la capacité de refroidissement d'un système de refroidissement sur la base d'un processus d'expansion gazeuse
WO2009130466A2 (fr) * 2008-04-23 2009-10-29 Statoilhydro Asa Procédé de détente double d'azote
WO2011018686A2 (fr) * 2009-08-13 2011-02-17 Air Products And Chemicals, Inc. Commande de la composition d'un réfrigérant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VINK K J ET AL: "COMPARISON OF BASELOAD LIQUEFACTION PROCESSES//COMPARISON DES PROCEDES DE LIQUEFACTION DES USINES DE GRANDE CAPACITE", INTERNATIONAL CONFERENCE AND EXHIBITION ON LIQUEFIED NATURAL GAS, XX, XX, no. 12TH, 4 May 1998 (1998-05-04), pages 3.6/1-15, XP009081893, *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8957037B2 (en) 2009-05-18 2015-02-17 Curna, Inc. Treatment of reprogramming factor related diseases by inhibition of natural antisense transcript to a reprogramming factor
US9441877B2 (en) 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
US10502483B2 (en) 2010-03-17 2019-12-10 Chart Energy & Chemicals, Inc. Integrated pre-cooled mixed refrigerant system and method
US9394542B2 (en) 2010-07-14 2016-07-19 Curna, Inc. Treatment of discs large homolog (DLG) related diseases by inhibition of natural antisense transcript to DLG
US8993533B2 (en) 2010-10-06 2015-03-31 Curna, Inc. Treatment of sialidase 4 (NEU4) related diseases by inhibition of natural antisense transcript to NEU4
US8987225B2 (en) 2010-11-23 2015-03-24 Curna, Inc. Treatment of NANOG related diseases by inhibition of natural antisense transcript to NANOG
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US12000653B2 (en) 2015-04-10 2024-06-04 Chart Energy & Chemicals, Inc. System and method for removing freezing components from a feed gas
US10663221B2 (en) 2015-07-08 2020-05-26 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408676B2 (en) 2015-07-08 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method

Also Published As

Publication number Publication date
RU2011124891A (ru) 2012-12-27
JP5647299B2 (ja) 2014-12-24
EP2366085A2 (fr) 2011-09-21
EP2600088B1 (fr) 2021-01-20
KR20130051511A (ko) 2013-05-20
CA2740188C (fr) 2014-09-23
TW201022611A (en) 2010-06-16
BRPI0921495A2 (pt) 2016-01-19
AU2009318882A1 (en) 2010-05-27
AU2009318882B2 (en) 2013-06-06
CN103591767B (zh) 2016-06-01
PE20120190A1 (es) 2012-03-30
EP2366085B1 (fr) 2019-01-16
KR20110083740A (ko) 2011-07-20
JP5684723B2 (ja) 2015-03-18
EP2600088A3 (fr) 2018-03-28
US8656733B2 (en) 2014-02-25
BRPI0921495B1 (pt) 2020-11-03
CN102334001A (zh) 2012-01-25
JP2013242138A (ja) 2013-12-05
SG195581A1 (en) 2013-12-30
WO2010058277A3 (fr) 2011-10-13
JP2012509457A (ja) 2012-04-19
KR101363210B1 (ko) 2014-02-12
US20100122551A1 (en) 2010-05-20
TWI388788B (zh) 2013-03-11
RU2505762C2 (ru) 2014-01-27
US20130174603A1 (en) 2013-07-11
CN103591767A (zh) 2014-02-19
US8464551B2 (en) 2013-06-18
EP2600088A2 (fr) 2013-06-05
CA2740188A1 (fr) 2010-05-27
CN102334001B (zh) 2013-12-25
MY161470A (en) 2017-04-14
KR101307663B1 (ko) 2013-09-12

Similar Documents

Publication Publication Date Title
CA2740188C (fr) Procede et systeme de liquefaction
AU2019202814B2 (en) Method and system for cooling a hydrocarbon stream using a gas phase refrigerant
CA3040865C (fr) Procede et systeme de refroidissement d'un flux d'hydrocarbures a l'aide d'un refrigerant en phase gazeuse
AU2013202933B2 (en) Liquefaction method and system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145955.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09760300

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2740188

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: DZP2011000272

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 000957-2011

Country of ref document: PE

WWE Wipo information: entry into national phase

Ref document number: 2009318882

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2011543838

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009318882

Country of ref document: AU

Date of ref document: 20091116

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117013423

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4082/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009760300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011124891

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0921495

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110503