WO2010058164A1 - Slurry bubble column reactor - Google Patents
Slurry bubble column reactor Download PDFInfo
- Publication number
- WO2010058164A1 WO2010058164A1 PCT/GB2009/002698 GB2009002698W WO2010058164A1 WO 2010058164 A1 WO2010058164 A1 WO 2010058164A1 GB 2009002698 W GB2009002698 W GB 2009002698W WO 2010058164 A1 WO2010058164 A1 WO 2010058164A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reactor
- tube
- gas
- gas distributor
- slurry
- Prior art date
Links
- 239000002002 slurry Substances 0.000 title claims abstract description 41
- 239000003054 catalyst Substances 0.000 claims abstract description 16
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 8
- 239000000376 reactant Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 6
- 239000007791 liquid phase Substances 0.000 claims description 3
- 239000011949 solid catalyst Substances 0.000 claims description 3
- 230000000630 rising effect Effects 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- 238000010408 sweeping Methods 0.000 claims description 2
- 238000003786 synthesis reaction Methods 0.000 claims description 2
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000011010 flushing procedure Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 68
- 239000012530 fluid Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000012263 liquid product Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/20—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
- B01J8/22—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
- B01F23/23105—Arrangement or manipulation of the gas bubbling devices
- B01F23/2312—Diffusers
- B01F23/23121—Diffusers having injection means, e.g. nozzles with circumferential outlet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/40—Mixers using gas or liquid agitation, e.g. with air supply tubes
- B01F33/406—Mixers using gas or liquid agitation, e.g. with air supply tubes in receptacles with gas supply only at the bottom
- B01F33/4062—Mixers using gas or liquid agitation, e.g. with air supply tubes in receptacles with gas supply only at the bottom with means for modifying the gas pressure or for supplying gas at different pressures or in different volumes at different parts of the bottom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/2455—Stationary reactors without moving elements inside provoking a loop type movement of the reactants
- B01J19/246—Stationary reactors without moving elements inside provoking a loop type movement of the reactants internally, i.e. the mixture circulating inside the vessel such that the upward stream is separated physically from the downward stream(s)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/26—Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/1818—Feeding of the fluidising gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/20—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
- B01J8/22—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
- B01J8/224—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/20—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
- B01J8/22—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
- B01J8/224—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement
- B01J8/226—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement internally, i.e. the particles rotate within the vessel
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0405—Apparatus
- C07C1/041—Reactors
- C07C1/0415—Reactors with moving catalysts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
- C10G2/34—Apparatus, reactors
- C10G2/342—Apparatus, reactors with moving solid catalysts
- C10G2/344—Apparatus, reactors with moving solid catalysts according to the "fluidised-bed" technique
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00893—Feeding means for the reactants
- B01J2208/00911—Sparger-type feeding elements
Definitions
- the present invention relates to a gas distributor arrangement in a three phase reactor or slurry bubble column reactor (SBCR).
- SBCR slurry bubble column reactor
- SBCRs are employed to conduct many chemical reactions, particularly reactions in which the reactants are gaseous, the products include liquids, and a solid catalyst is required.
- the gaseous reactants are introduced into a slurry of finely divided catalyst in a liquid medium which may contain a liquid reaction product.
- the gas introduction is achieved using a gas distributor.
- a gas distributor for a slurry bubble column should satisfy some important requirements, which include:
- a slurry bubble column reactor comprising a reactor vessel having a gas outlet and a liquid outlet, and a gas distributor arrangement in the region of the bottom of the vessel when in its orientation for use, the gas distributor arrangement comprising an upper gas distributor, a lower gas distributor spaced from the upper distributor to a position nearer the bottom of the vessel and a tube open at both ends and with its longitudinal axis extending generally vertically when the vessel is in its orientation for use, the tube being arranged so that the upper gas distributor is located close to or in the vicinity of the upper open end of the tube, and the lower gas distributor is located at a level close to the lower end of the tube, whereby in use gas from the lower sparger rings rises into the tube, reduces the density of the slurry, and causes the slurry in the tube to rise.
- a difference in density is established between the slurry outside the tube and the slurry inside the tube by means of the gas from the lower distributor entering the tube, and this in turn causes slurry outside the tube to flow downwards thereby sweeping the inside wall of the vessel, and then upwards through the tube as the gas from the lower distributor is entrained.
- the system avoids difficulties associated with control of the gas nozzle pressures brought about by having a series of gas manifolds with their respective nozzles at difference heights at the bottom of the reactor, which will then have to overcome different hydrostatic pressures.
- Independent control of the pressure to the two gas distributors means that gas can be injected through the upper gas distributor at a lower pressure than through the lower gas distributor, if desired, or even through the lower gas distributor alone.
- the upper gas distributor comprises a manifold arrangement with a plurality of upper nozzles.
- the manifold arrangement may comprise one or more pipes each having a plurality of upper nozzles.
- the manifold arrangement comprises a plurality of generally circular or part-circular concentric pipes each having a plurality of upper nozzles arranged along its length.
- the concentric pipes are tubular toroids or toroid sections.
- the upper nozzles all lie in a common generally horizontal plane, with height variations typically ⁇ 100mm.
- the diameter of the openings of the upper gas nozzles is equal to or greater than 5 mm.
- the openings of the upper nozzles are arranged so that the principal axis of the jets of gas produced has an inclination of 90° or less below horizontal.
- the upper gas distributor is connected to an upper gas supply arrangement, which gives a supply pressure to each of the nozzles with a variation between nozzle supply pressure of less than 100% of the average nozzle pressure drop.
- the lower gas distributor comprises a manifold arrangement with a plurality of lower nozzles.
- the manifold arrangement comprises one or more pipes, each having a plurality of lower nozzles.
- the manifold arrangement comprises a plurality of generally circular or part- circular concentric pipes each having a plurality of lower nozzles arranged along its length.
- the concentric pipes are tubular toroids or toroid sections.
- the lower nozzles all lie in a common generally horizontal plane, with variations typically ⁇ 100mm.
- the diameter of the openings of the lower nozzle is equal to or greater than 5mm.
- the lower gas distributor is connected to a lower gas supply arrangement, which gives a supply pressure to each of the nozzles with a variation between nozzle supply pressure of less than 100% of the average nozzle pressure drop.
- the upper and lower gas distributors together cover from 30 to 100% of the cross-sectional area of the reactor , preferably from 40 to 80%.
- the lower gas distributor represents from 2 to 12% of the cross- sectional area of the reactor, preferably from 5 to 8%.
- the lower gas distributor is arranged to supply 4 to 20% of the gas flow to the reactor, preferably from 8 to 15%.
- the tube is cylindrical and arranged generally in the reactor with its longitudinal axis substantially vertical.
- the upper gas distributor is at a position between Im above the top of the tube and 50% of the tube length below the top of the tube.
- the lower gas distributor is between 0.3m beneath and 0.3m above the bottom of the tube.
- the cross-sectional area of this is sufficient so that the average slurry velocity through this gap is slower than 5 m/s to avoid erosion of reactor bottom and attrition of catalyst particles. The velocity should however be >0.5 m/s to avoid settling of catalyst at bottom.
- the reactor vessel is generally cylindrical but at the bottom, there is a curved portion extending from the main cylindrical wall, a part-conical portion extending from the curved position, and a curved base.
- the bottom of the tube is at substantially the position where the part-conical portion joins the curved base.
- the invention also extends to a method of conducting a chemical reaction involving gaseous reactants which comprises supplying the gaseous reactants to a reactor as described above, by way of the upper and lower gas distributors, in which method, the reactor contains a volume of slurry comprising a liquid phase and solid catalyst particles, and the catalyst particles are maintained in suspension in the slurry by rising gas bubbles from the gas distributors.
- the gas flowing through each individual nozzle exerts a dynamic pressure of less than 15 000 kg/m s 2 , more preferably less than 10,000 kg/ms 2 , for example a pressure in the range 200 to 8,000 kg/ms 2 .
- the method may be applied to a Fischer-Tropsch synthesis reaction, for example, one in which the reaction temperature is in the range 150 to 300 0 C, the reaction temperature is in the range 200 to 26O 0 C, and the reaction pressure is in the range 1 to 100 bar. Preferably, the temperature is in the range 210 to 25O 0 C and the pressure is preferably in the range 10 to 50 bar.
- the invention also extends to methods of operating the reactors according to the invention to carry out reactions, to the products of those reactions and to further methods comprising various post-processing operations and to the products of such further methods.
- Figure 1 is a schematic section of the bottom of a reactor vessel according to the invention.
- Figure 2 is a top plan view of a lower gas distributor
- Figure 3 is an amplified section through a part of the lower gas distributor
- Figure 4 is a top plan view of part of the upper gas distributor
- Figure 5 is a section through a simple nozzle
- Figure 6 is a section through an alternative form of nozzle.
- a slurry bubble column reactor comprises a vessel 11, an upper gas distributor or sparger 12, a lower gas distributor or sparger 13 and a tube 14.
- the vessel 11 is generally cylindrical and has a gas outlet at the top (not shown) and a liquid product outlet (not shown). At the bottom, the vessel 11 has a curved portion 15, a part conical section 16 and a curved base 17.
- the tube 14 is a cylinder, open at the top 18 and bottom 19.
- the upper sparger 12 will be described in greater detail below with reference to Figure 4 but includes a series of concentric tubular gas distribution rings 21 which surround the tube 14 and are located at a level just below and close to the open top 18 and just at the position where the curved portion 15 of the vessel meets the part-conical section 16.
- the lower sparger 13 will be described in greater detail below with reference to figures 2 and 3, but includes a series of concentric tubular gas distribution rings 22 which are located within the circumference of the tube 14 and at a level close to but beneath the open bottom 19.
- the lower sparger 13 includes a main gas feed pipe 23, three equispaced radially extending manifolds 24 connected to the feed pipe 23 and beneath the manifolds 24, the rings 22.
- the rings 22 are connected to the manifolds 24 by means of respective gas supply tubes 25. It will be appreciated that while three rings 22 are shown, there could be fewer or more, depending on various factors, such as the dimensions of the reactor and the rings themselves.
- the upper sparger 12 is shown in Figure 4. It consists of a main gas feed ring outside the reactor (not shown), three radically extending manifolds 26 connected to the main gas feed ring through the vessel wall 11, and beneath the manifolds 26, the rings 21.
- the rings 21 are connected to the manifolds 26 by means of respective gas supply tubes (not shown) in a similar fashion to the lower sparger 13. It will be appreciated that while seven rings 21 are shown in Figure 4, there could be fewer or more, depending on various factors, such as the dimensions of the reactor and the rings 21 themselves. It will also be appreciated that a gas feed ring arrangement similar to that used for the upper sparger 12 could be used for the lower sparger 13, in place of the main gas feed pipe 23.
- Each of the rings 21, 22 is formed with a series of nozzles which are generally equispaced along the ring 21, 22, and are also similarly spaced from the nozzles on adjacent rings.
- the nozzles are shown in more detail in Figures 5 and 6.
- Figure 5 shows a nozzle in the form of a simple hole 27 in a ring 21.
- Figure 6 shows an alternative nozzle in the form of a hole 28 in a ring 21 covered by a cowl 29 which has an aperture 31.
- the hole 27 or the aperture 31 faces downwards, 90° or less below the horizontal.
- the L/D-ratio for the nozzle should be >1, where L is the length of the nozzle and D is the diameter of the nozzle.
- the length L is the depth of the hole, i.e. the thickness of the ring wall.
- the reactant gas is conveyed to the upper and lower feed pipes and enters the upper manifolds 26 and the lower manifolds 24. It then enters the respective rings 21, 22 via the respective tubes, and is injected into the slurry in the reactor vessel 11 through the nozzles. In this way, each nozzle produces a downward gas jet into the slurry. The jets near the vessel bottom create motion of the slurry near the surface of the reactor vessel 11 to prevent the catalyst from settling and keep the catalyst in motion in that area.
- the two spargers can be designed without the need for a very narrow window for the distance between the reactor wall and the nozzles.
- Even with feeding gas only in the inner part of the reactor a sufficient slurry circulation can be maintained to avoid sedimentation of catalyst outside the tube.
- the pressure drop can be kept low over the spargers due to operation at low gas velocity in sparger nozzles, but still maintain even distribution of gas, thus reducing attrition of the catalyst.
- fable 1 below shows some examples for a reactor of 10 m ID.
- the slurry residence time below the top sparger outside tube should be as short as possible.
- Table 1 shows calculated cases for some variations of tube diameter, gap area, fraction of feed gas to the bottom sparger and bottom and top sparger coverage. The calculations are based on Bernoulli's equations for calculating the driving force for the circulation.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011543811A JP5734871B6 (en) | 2008-11-18 | 2009-11-10 | Slurry foam column reactor |
US13/130,041 US9039980B2 (en) | 2008-11-18 | 2009-11-10 | Slurry bubble column reactor |
AU2009317051A AU2009317051A1 (en) | 2008-11-18 | 2009-11-10 | Slurry bubble column reactor |
PL09756343T PL2367616T3 (en) | 2008-11-18 | 2009-11-18 | Slurry bubble column reactor |
EP09756343.1A EP2367616B1 (en) | 2008-11-18 | 2009-11-18 | Slurry bubble column reactor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0821094.0 | 2008-11-18 | ||
GB0821094.0A GB2465554B (en) | 2008-11-18 | 2008-11-18 | Slurry bubble column reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2010058164A1 true WO2010058164A1 (en) | 2010-05-27 |
WO2010058164A8 WO2010058164A8 (en) | 2015-07-02 |
Family
ID=40194840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2009/002698 WO2010058164A1 (en) | 2008-11-18 | 2009-11-18 | Slurry bubble column reactor |
Country Status (7)
Country | Link |
---|---|
US (1) | US9039980B2 (en) |
EP (1) | EP2367616B1 (en) |
KR (1) | KR101654804B1 (en) |
AU (1) | AU2009317051A1 (en) |
GB (1) | GB2465554B (en) |
PL (1) | PL2367616T3 (en) |
WO (1) | WO2010058164A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114225844A (en) * | 2021-11-11 | 2022-03-25 | 华南理工大学 | Multistage slurry bed reactor and working method thereof |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2444055B (en) * | 2006-11-23 | 2011-11-23 | Gtl F1 Ag | Gas to liquids plant with consecutive Fischer-Tropsch reactors and hydrogen make-up |
GB2466315B (en) | 2008-12-22 | 2013-01-09 | Gtl F1 Ag | Apparatus and method for conducting a Fischer-Tropsch synthesis reaction |
GB2471338B (en) | 2009-06-26 | 2014-12-24 | Gtl F1 Ag | Apparatus and process for three-phase reacton |
DE102009052670B4 (en) * | 2009-11-12 | 2017-10-05 | Sartorius Stedim Biotech Gmbh | Fumigation device for bioreactors |
NL2010005C2 (en) * | 2012-12-18 | 2014-06-23 | Pwn Technologies B V | Reactor vessel for suspending media particles in a fluid. |
JP2014136767A (en) * | 2013-01-17 | 2014-07-28 | Japan Oil Gas & Metals National Corp | Reaction apparatus for synthesizing hydrocarbon |
JP6145348B2 (en) * | 2013-07-30 | 2017-06-07 | 新日鉄住金エンジニアリング株式会社 | Reactor for hydrocarbon synthesis |
CN104722233A (en) * | 2013-08-23 | 2015-06-24 | 薛应东 | Stirrer |
EA033413B1 (en) * | 2015-08-19 | 2019-10-31 | Sasol Tech Pty Ltd | Method of operating a slurry bubble column reactor |
CN108698007B (en) | 2016-02-29 | 2022-02-08 | 环球油品公司 | Method for fluidizing spent catalyst |
US20230356166A1 (en) * | 2020-02-12 | 2023-11-09 | Hindustan Petroleum Corporation Limited | Gas distributor for bubble column reactor |
JP7362187B2 (en) | 2020-09-22 | 2023-10-17 | エルジー・ケム・リミテッド | Oligomer production equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005094979A1 (en) * | 2004-04-02 | 2005-10-13 | Statoil Asa | Slurry bubble column reactor |
WO2006097905A1 (en) * | 2005-03-17 | 2006-09-21 | Sasol Technology (Proprietary) Limited | Method of operating a three-phase slurry reactor |
WO2007086612A1 (en) * | 2006-01-30 | 2007-08-02 | Nippon Steel Engineering Co., Ltd. | Bubble column type hydrocarbon synthesis reactor |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1250222A (en) * | 1968-10-25 | 1971-10-20 | ||
GB1265770A (en) * | 1969-07-01 | 1972-03-08 | ||
JPS5254078A (en) * | 1975-10-30 | 1977-05-02 | Mitsubishi Gas Chem Co Inc | Method of incuvating microorganisms and appratus for the same |
US4166840A (en) * | 1975-12-24 | 1979-09-04 | Fisons Limited | Process for producing ammonium phosphate from ammonia and wet process phosphoric acid |
US4595145A (en) * | 1984-10-01 | 1986-06-17 | Texaco Inc. | Air distribution apparatus for a fluid catalytic cracking catalyst regenerator |
US4610851A (en) * | 1984-11-28 | 1986-09-09 | Colvert James H | Air distributor for FCCU catalyst regenerator |
US4624968A (en) | 1985-12-30 | 1986-11-25 | Exxon Research And Engineering Company | Multi-stage Fischer-Tropsch process |
US5166072A (en) * | 1986-06-26 | 1992-11-24 | Bayer Aktiengesellschaft | Apparatus for the cultivation of immobilized micro-organisms |
CA2105940C (en) | 1992-10-05 | 2001-12-25 | Robert M. Koros | Bubble column, tube side slurry process and apparatus |
NZ250750A (en) | 1993-01-27 | 1995-02-24 | Sasol Chem Ind Pty | Reacting gases in a slurry bed which contains a filtration zone to separate liquid product |
US5527473A (en) | 1993-07-15 | 1996-06-18 | Ackerman; Carl D. | Process for performing reactions in a liquid-solid catalyst slurry |
US5827903A (en) | 1996-01-31 | 1998-10-27 | The United States Of America As Represented By The Department Of Energy | Separation of catalyst from Fischer-Tropsch slurry |
ZA98586B (en) * | 1997-02-20 | 1999-07-23 | Sasol Tech Pty Ltd | "Hydrogenation of hydrocarbons". |
US6160026A (en) | 1997-09-24 | 2000-12-12 | Texaco Inc. | Process for optimizing hydrocarbon synthesis |
US6156809A (en) | 1999-04-21 | 2000-12-05 | Reema International Corp. | Multiple reactor system and method for fischer-tropsch synthesis |
GB0013793D0 (en) | 2000-06-06 | 2000-07-26 | Bp Amoco Plc | Process |
EP1328607A2 (en) | 2000-10-13 | 2003-07-23 | Bp Exploration Operating Company Limited | Fischer-tropsch synthesis process |
US20030050348A1 (en) | 2001-03-26 | 2003-03-13 | Kennedy Paul Edwin | Hydrocarbon conversion process using a plurality of synthesis gas sources |
CA2446288A1 (en) | 2001-05-25 | 2002-12-05 | Bp Exploration Operating Company Limited | Fischer-tropsch process |
US7060228B2 (en) | 2001-07-06 | 2006-06-13 | Institut Francais Du Petrole | Internal device for separating a mixture that comprises at least one gaseous phase and one liquid phase |
WO2003010117A2 (en) | 2001-07-25 | 2003-02-06 | Conocophillips Company | Optimizing the production rate of slurry bubble reactors by using large gas flow rates and moderate single pass conversion |
FR2832937B1 (en) | 2001-12-04 | 2004-01-16 | Technip France | METHOD AND DEVICE FOR CHEMICAL REACTION BETWEEN A GAS AND AT LEAST ONE COMPOUND IN SOLUTION, IMPLEMENTED IN THE PRESENCE OF A SOLID CATALYST |
AU2003260828A1 (en) | 2002-09-19 | 2004-04-08 | Sasol Technology (Proprietary) Limited | Hydrocarbon synthesis |
ITMI20030969A1 (en) | 2003-05-15 | 2004-11-16 | Enitecnologie Spa | PROCEDURE FOR THE CONTINUOUS PRODUCTION OF HYDROCARBONS FROM SYNTHESIS GAS IN SUSPENSION REACTORS AND FOR THE SEPARATION OF THE LIQUID PHASE PRODUCED FROM THE SOLID PHASE. |
GB2418626B (en) | 2003-07-15 | 2007-03-14 | Sasol Tech Pty Ltd | Process for separating a catalyst from a liquid |
US6992114B2 (en) | 2003-11-25 | 2006-01-31 | Chevron U.S.A. Inc. | Control of CO2 emissions from a Fischer-Tropsch facility by use of multiple reactors |
EP1720647B1 (en) * | 2004-03-08 | 2017-04-19 | Shell Internationale Research Maatschappij B.V. | Reactor with a gas distributor |
US7375143B2 (en) | 2004-11-22 | 2008-05-20 | Conocophillips Company | Catalyst recover from a slurry |
AU2006271760B2 (en) | 2005-07-20 | 2009-06-25 | Shell Internationale Research Maatschappij B.V. | Multi stage Fischer-Tropsch process |
AP2467A (en) | 2005-10-04 | 2012-09-17 | Statoil Hydro Asa | Filtration method and installation |
BRPI0619490B1 (en) | 2005-12-09 | 2016-05-24 | Shell Int Research | method for initiating a steady state process and process for producing hydrocarbons from synthesis gas |
GB2444055B (en) | 2006-11-23 | 2011-11-23 | Gtl F1 Ag | Gas to liquids plant with consecutive Fischer-Tropsch reactors and hydrogen make-up |
PL2158294T3 (en) | 2007-05-28 | 2019-07-31 | The Petroleum Oil And Gas Corporation Of South Africa (Pty) Ltd. | Removal of fine particles from a fischer tropsch stream |
US7905937B2 (en) | 2007-09-13 | 2011-03-15 | Koch-Glitch, LP | Two-stage mist eliminator and method |
CN101396647B (en) | 2007-09-29 | 2011-03-16 | 中科合成油技术有限公司 | Gas-liquid-solid three-phase suspended bed reactor for f-t synthesis and use thereof |
GB2466315B (en) | 2008-12-22 | 2013-01-09 | Gtl F1 Ag | Apparatus and method for conducting a Fischer-Tropsch synthesis reaction |
GB2471338B (en) | 2009-06-26 | 2014-12-24 | Gtl F1 Ag | Apparatus and process for three-phase reacton |
-
2008
- 2008-11-18 GB GB0821094.0A patent/GB2465554B/en active Active
-
2009
- 2009-11-10 AU AU2009317051A patent/AU2009317051A1/en not_active Abandoned
- 2009-11-10 US US13/130,041 patent/US9039980B2/en not_active Expired - Fee Related
- 2009-11-18 EP EP09756343.1A patent/EP2367616B1/en not_active Not-in-force
- 2009-11-18 PL PL09756343T patent/PL2367616T3/en unknown
- 2009-11-18 WO PCT/GB2009/002698 patent/WO2010058164A1/en active Application Filing
- 2009-11-18 KR KR1020117014095A patent/KR101654804B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005094979A1 (en) * | 2004-04-02 | 2005-10-13 | Statoil Asa | Slurry bubble column reactor |
WO2006097905A1 (en) * | 2005-03-17 | 2006-09-21 | Sasol Technology (Proprietary) Limited | Method of operating a three-phase slurry reactor |
WO2007086612A1 (en) * | 2006-01-30 | 2007-08-02 | Nippon Steel Engineering Co., Ltd. | Bubble column type hydrocarbon synthesis reactor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114225844A (en) * | 2021-11-11 | 2022-03-25 | 华南理工大学 | Multistage slurry bed reactor and working method thereof |
Also Published As
Publication number | Publication date |
---|---|
AU2009317051A1 (en) | 2010-05-27 |
GB0821094D0 (en) | 2008-12-24 |
WO2010058164A8 (en) | 2015-07-02 |
GB2465554A (en) | 2010-05-26 |
GB2465554B (en) | 2013-03-13 |
JP2012509175A (en) | 2012-04-19 |
KR101654804B1 (en) | 2016-09-06 |
EP2367616A1 (en) | 2011-09-28 |
KR20110106856A (en) | 2011-09-29 |
EP2367616B1 (en) | 2013-05-15 |
US9039980B2 (en) | 2015-05-26 |
JP5734871B2 (en) | 2015-06-17 |
PL2367616T3 (en) | 2013-12-31 |
US20110313062A1 (en) | 2011-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9039980B2 (en) | Slurry bubble column reactor | |
US10322393B2 (en) | Slurry phase apparatus | |
EP1735086B1 (en) | Method of conducting a chemical reaction in a slurry bubble column reactor | |
EP2055674B1 (en) | Apparatus for producing trichlorosilane and method for producing thrichlorosilane | |
JP5359082B2 (en) | Trichlorosilane production apparatus and trichlorosilane production method | |
EP2718406B1 (en) | Grid plate assembly for a hydroconversion reactor and use thereof | |
EP0197343B1 (en) | Back-mixed hydrotreating reactor | |
EP3218092B1 (en) | Reaction device with air-lift type internal circulation | |
US5723041A (en) | Process and apparatus for promoting annularly uniform flow | |
JP2007269655A (en) | Reaction method and reaction apparatus | |
RU2384603C1 (en) | Reaction system with bubble column type suspended layer for fischer-tropsch synthesis | |
EP2843028A1 (en) | Mixing device for mixing raw material and catalyst in fluid catalytic cracking device | |
RU2369432C2 (en) | Reactor for solid/fluid/gaseous substances | |
CN111790319B (en) | Slurry bed reactor, system and application thereof and Fischer-Tropsch synthesis method | |
JP5734871B6 (en) | Slurry foam column reactor | |
CN100594971C (en) | Method for generating liquid and optional gaseous products from gaseous reactant | |
SU1708829A1 (en) | Gas-lift bubbling apparatus | |
CN115582080A (en) | Particle collision disturbance type airlift loop reactor | |
KR20230125235A (en) | Hydroformylation Reaction Process | |
JP2016188296A (en) | Bubble tower type slurry bed reactor | |
CA2368788A1 (en) | Hydrocracking of heavy hydrocarbon oils with improved gas and liquid distribution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09756343 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009317051 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 981/MUMNP/2011 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2011543811 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2009317051 Country of ref document: AU Date of ref document: 20091110 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20117014095 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009756343 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13130041 Country of ref document: US |