WO2010057903A1 - Procédé de géoréférencement d’images optiques d’exploration à distance - Google Patents

Procédé de géoréférencement d’images optiques d’exploration à distance Download PDF

Info

Publication number
WO2010057903A1
WO2010057903A1 PCT/EP2009/065361 EP2009065361W WO2010057903A1 WO 2010057903 A1 WO2010057903 A1 WO 2010057903A1 EP 2009065361 W EP2009065361 W EP 2009065361W WO 2010057903 A1 WO2010057903 A1 WO 2010057903A1
Authority
WO
WIPO (PCT)
Prior art keywords
sar
remote sensing
optical
image
optical remote
Prior art date
Application number
PCT/EP2009/065361
Other languages
German (de)
English (en)
Inventor
Richard Bamler
Peter Reinartz
Sahil Suri
Original Assignee
Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V. filed Critical Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V.
Priority to EP09756476.9A priority Critical patent/EP2225533B1/fr
Priority to US13/130,906 priority patent/US8891066B2/en
Publication of WO2010057903A1 publication Critical patent/WO2010057903A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9027Pattern recognition for feature extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder

Definitions

  • the invention relates to a method for the georeferencing of optical remote sensors.
  • Geo-referencing of remote sensing image data taken from the satellite or other platforms Is the assignment of 3-D geo-coordinates to each pixel. Only after a georeferencing can these image data be projected into arbitrary geometries, graphically interpreted and, e.g. in geographic information systems, with geodesists of other origins or with images taken with a different imaging geometry. Even temporal changes in the earth's surface can only be detected automatically by remote sensing images if the image data of a time series has been registered accurately with respect to each other, and best in absolute coordinates. For complete automation of processing chains, the accuracy of georeferencing should be better than the spatial resolution of image data. Accurate georeferencing is therefore an essential step in the processing of remote sensing image data.
  • Electro-optical cameras provide images (hereinafter referred to as “optical images”) in the visible and infrared spectral range. Each recorded pixel (pixel) of the camera represents two angles and the position of the instrument along its fiug path (hereinafter referred to as "native optical coordinate system"). Direct georeferencing follows the forward section of the so-called line-of-sight vector with a digital surface model (DOM). Accuracy depends not only on the knowledge of the inner orientation of the camera, but also on the measurements of the position and orientation of the camera in the room measured on board the platform and available for processing. While the inner orientation by calibration and the position are measured very accurately by GPS measurements, these angles can only be determined with standard instruments with an accuracy which corresponds at best to a georeferencing accuracy of the order of 10 m.
  • Satellite operators supply this orientation information integrated as coefficients of a polynomial, the so-called RPCs (Rational Poiynomial Coefficients). In the best case, this achieves the same results as with the direct georeferencing method and therefore remains within the same accuracy range. Improvements can only be achieved by the introduction of ground control information (3D points) of which the location is known exactly and which can also be determined in the image. This ultimately achieves accuracies that are in the range of half the pixel size,
  • Synthetic Aperture Radar (SAR) instruments use an active microwave imaging technique that provides images independent of sunlight and clouds. Each pixel represents a distance to the instrument, the so-called “Range” and a position of the instrument along its Fiugpfads, the so-called. "Azimuf'-coordinate (hereinafter" native
  • Angle of view can not be distinguished with a SAR Georefere ⁇ zierung is done by the intersection of a sphere from the radius of the given range, one rotationally symmetrical about the instantaneous velocity (in fixed coordinates) of the instrument Cone mantle, which represents the Doppler frequency of the processing algorithm, as well as the DOM of the imaged region.
  • the data was processed to a Doppler frequency of zero, the Conical jacket then becomes the plane perpendicular to the instantaneous instrument speed.
  • the accuracy depends, on the one hand, on the location of the instrument at each time, and, on the other hand, on the accuracy of the direction of the velocity vector. Both sizes can be measured with high precision using modern GNSS instruments on board the platform.
  • the object of the invention is to increase the georeferencing accuracy of optical remote sensing images.
  • the invention proposes a method for georeferencing optical remote sensing, in which a provided with an electro-optical recording device optical remote sensing BÜd the relevant Erdoberfest Scheme is provided, or an already recorded optical image is used, the optical remote sensing BÜd with the georeferenced existing orbit and orientation information and a digital surface mode of the relevant surface area, - is provided with a SAR device taken SAR image of the relevant surface area, or an already recorded SAR image is used, the SAR image with the georeferenced optical image and georeferenced SAR image automatically or manually (ie supported) homologous regions are selected which in both images correspond to the same objects on the earth's surface, - the relative offset of the homologous regions in the optical remote sensing bulkhead and the SAR image is determined,
  • Orientation correction parameters of the electro-optical recording device are determined based on the relative offset and the optical image with the help of the determined-skorrekturparame- ter again and finally georeferenced.
  • the essential feature of the invention is the high georeferencing accuracy of SAR images, as it will be available for the first time with TerraSAR-X, but will also be found in future SAR systems, for automatic or to use manual correction of georeferencing optical Büd schemes.
  • the method according to the invention is one which functions independently of previous georeferencing of optical images and leads to highly accurate georeferencing of optical image data by manual or automated image processing.
  • the accuracy of the DOM is critical to the accuracy of the process. Beside this
  • Step + SAR images from an optical stereo camera are used, from which the DOM required for georeferencing can be derived at the same time.
  • Optics + InSAR In this variant, an interferometric SAR (InSAR) is used, e.g. TanDEM-X, which supplies a DOM next to the SAR image.
  • InSAR interferometric SAR
  • This coordinate system in which both the SAR data and (in a next unit) the optical data are projected, may, for example, be an orthographic map projection or also the native SAR or native optical coordinate system.
  • Unit for georeferencing an optical image and projection into a common (or "the above-mentioned) coordinate system This unit uses established methods such as those for orthorectification of image data. It is necessary to obtain a preliminary approximation of georeferencing. Also for this unit a DOM is necessary as well as the measured parameters of the inner and outer orientation or the above mentioned RPCs.
  • This unit consists of a method for the determination of pixels in the optical and SAR data corresponding to the same areas or objects of the earth's surface. These may be, for example, roads / paths or fields / meadows. Areas with buildings and forest areas should be excluded for the selection of homologous features, since here the different geometric imaging properties of optics and woodland SAR cause strong local geometric and radiometric distortions. Furthermore, heavily relief terrain should be excluded, since the available DOMs are often inaccurate. If the DOM contains local information about its accuracy, areas of low accuracy can be identified and excluded. The
  • Identification of homologous features preferably takes place automatically, but can also be carried out manually.
  • Unit for measuring the relative offset of homologous features in SAR and optical image The result is a parallax field in the common coordinate system.
  • methods should be used here which are robust to different radiometric properties of the objects in the SAR and optical image.
  • the preferred method is to maximize the so-called Mutual Information.
  • Feature based methods ie those that are e.g. working on edge images are also usable.
  • this unit can also be integrated into the unit for the selection of homologous features.
  • orientation correction parameters are estimated from the measured paraxial field. These are above all the observation angles, or the correction of the RPC polynomial coefficients, since the position of the camera is usually known very precisely by GPS measurements.
  • the orientation information of the optical image is corrected and thus the improved georeferencing into the finally desired coordinate system is performed. If the determined orientation errors exceed a limit to be established, the entire process is repeated.
  • the inventive method in the variants "Stereo + SAR” and “Optik + InSAR” is almost identical to that described in Figure 1. Das DOM inki. However, local precision mask is calculated in a first step from the stereo optical data or from the interferometric SAR data in a known manner.
  • the applicability of the method according to the invention is limited to areas in which SAR images are present in sufficient quality as stated above. For areas in cities and in areas where only forest occurs, the accuracy is significantly reduced. However, relatively few and small areas in an image suffice to determine the orientation angles with the required accuracies.
  • the method according to the invention can be used in other areas of georeferencing of high-resolution optical images.
  • the value and quality increase compared to a common product without this exact georeferencing is significant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Image Processing (AREA)

Abstract

L'invention concerne un procédé de géoréférencement d'images optiques d'exploration à distance d'une zone de la surface terrestre selon lequel le géoréférencement est corrigé sur la base d'une image SAR qui est géoréférencée.
PCT/EP2009/065361 2008-11-24 2009-11-18 Procédé de géoréférencement d’images optiques d’exploration à distance WO2010057903A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09756476.9A EP2225533B1 (fr) 2008-11-24 2009-11-18 Procédé de géoréférencement d'images optiques d'exploration à distance
US13/130,906 US8891066B2 (en) 2008-11-24 2009-11-18 Method for geo-referencing of optical remote sensing images

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008058769 2008-11-24
DE102008058769.9 2008-11-24

Publications (1)

Publication Number Publication Date
WO2010057903A1 true WO2010057903A1 (fr) 2010-05-27

Family

ID=41571660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/065361 WO2010057903A1 (fr) 2008-11-24 2009-11-18 Procédé de géoréférencement d’images optiques d’exploration à distance

Country Status (3)

Country Link
US (1) US8891066B2 (fr)
EP (1) EP2225533B1 (fr)
WO (1) WO2010057903A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016123286A1 (de) * 2016-12-01 2018-06-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Georeferenzierung von Luftbilddaten
DE102021129278B3 (de) 2021-11-10 2023-05-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Georeferenzierung von Bilddaten

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9957692B2 (en) * 2013-03-15 2018-05-01 Hexagon Technology Center Gmbh System and method for heavy equipment navigation and working edge positioning using an image acquisition device that provides distance information
US10254395B2 (en) * 2013-12-04 2019-04-09 Trimble Inc. System and methods for scanning with integrated radar detection and image capture
JP6207370B2 (ja) * 2013-12-10 2017-10-04 三菱電機株式会社 画像合成装置及び画像合成方法
US10230925B2 (en) 2014-06-13 2019-03-12 Urthecast Corp. Systems and methods for processing and providing terrestrial and/or space-based earth observation video
WO2016153914A1 (fr) 2015-03-25 2016-09-29 King Abdulaziz City Of Science And Technology Appareil et procédés pour radar à synthèse d'ouverture avec formation de faisceau numérique
US20180172824A1 (en) * 2015-06-16 2018-06-21 Urthecast Corp Systems and methods for enhancing synthetic aperture radar imagery
WO2017048339A1 (fr) * 2015-06-16 2017-03-23 King Abdulaziz City Of Science And Technology Systèmes et procédés pour la télédétection de la terre depuis l'espace
CA2990063A1 (fr) 2015-06-16 2017-03-16 King Abdulaziz City Of Science And Technology Ensemble antenne plane a reseau de phases efficace
EP3130943B1 (fr) * 2015-08-14 2022-03-09 Trimble Inc. Positionnement d'un système satellite de navigation impliquant la génération d'informations de correction troposphérique
US10955546B2 (en) 2015-11-25 2021-03-23 Urthecast Corp. Synthetic aperture radar imaging apparatus and methods
US11378682B2 (en) 2017-05-23 2022-07-05 Spacealpha Insights Corp. Synthetic aperture radar imaging apparatus and methods for moving targets
CA3064735C (fr) 2017-05-23 2022-06-21 Urthecast Corp. Appareil et procedes d'imagerie radar a synthese d'ouverture
CA3083033A1 (fr) 2017-11-22 2019-11-28 Urthecast Corp. Appareil formant radar a ouverture synthetique et procedes associes
IL257010B (en) * 2018-01-18 2021-10-31 Israel Aerospace Ind Ltd Camera-based automatic aircraft control for radar operation
JP7113673B2 (ja) * 2018-06-13 2022-08-05 株式会社安藤・間 動態監視システム、及び動態監視方法
US11073610B2 (en) * 2019-01-31 2021-07-27 International Business Machines Corporation Portable imager
FR3109629B1 (fr) * 2020-04-23 2022-03-25 Airbus Ds Geo Sa Procédé de calage géométrique d’images optiques
CN114419116B (zh) * 2022-01-11 2024-04-09 江苏省测绘研究所 一种基于网匹配的遥感影像配准方法及其系统
CN114964028B (zh) * 2022-05-24 2023-03-10 长安大学 一种综合遥感快速解译地震地表破裂带的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552787A (en) * 1995-10-10 1996-09-03 The United States Of America As Represented By The Secretary Of The Navy Measurement of topography using polarimetric synthetic aperture radar (SAR)
US6757445B1 (en) 2000-10-04 2004-06-29 Pixxures, Inc. Method and apparatus for producing digital orthophotos using sparse stereo configurations and external models

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5995681A (en) * 1997-06-03 1999-11-30 Harris Corporation Adjustment of sensor geometry model parameters using digital imagery co-registration process to reduce errors in digital imagery geolocation data
CN101501524B (zh) * 2006-08-03 2012-11-21 株式会社博思科 灾害对策支援方法
EP2067123B1 (fr) * 2006-09-19 2018-04-25 Telecom Italia S.p.A. Procédé de dérivation de modèles de terrain numériques à partir de modèles de surface numériques
US8385672B2 (en) * 2007-05-01 2013-02-26 Pictometry International Corp. System for detecting image abnormalities

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552787A (en) * 1995-10-10 1996-09-03 The United States Of America As Represented By The Secretary Of The Navy Measurement of topography using polarimetric synthetic aperture radar (SAR)
US6757445B1 (en) 2000-10-04 2004-06-29 Pixxures, Inc. Method and apparatus for producing digital orthophotos using sparse stereo configurations and external models

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016123286A1 (de) * 2016-12-01 2018-06-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Georeferenzierung von Luftbilddaten
DE102016123286B4 (de) 2016-12-01 2019-03-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Georeferenzierung von Luftbilddaten
EP3548842B1 (fr) * 2016-12-01 2020-12-16 Deutsches Zentrum für Luft- und Raumfahrt e.V. Procédé et dispositif pour geo-référence des données d'image aérienne au moyen des données d'image du radar à synthèse d'ouverture
US10877143B2 (en) 2016-12-01 2020-12-29 Deutsches Zentrum für Luft- und Raumfahrt e. V. Method and device for geo-referencing aerial image data with the aid of SAR image data
DE102021129278B3 (de) 2021-11-10 2023-05-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur Georeferenzierung von Bilddaten

Also Published As

Publication number Publication date
US20120127028A1 (en) 2012-05-24
US8891066B2 (en) 2014-11-18
EP2225533B1 (fr) 2014-03-26
EP2225533A1 (fr) 2010-09-08

Similar Documents

Publication Publication Date Title
EP2225533B1 (fr) Procédé de géoréférencement d'images optiques d'exploration à distance
DE102009030672B3 (de) Verfahren zur Bestimmung der geographischen Koordinaten von Bildpunkten in SAR Bildern
EP2787322B1 (fr) Référencement géodésique de nuages de points
AT509103B1 (de) Verfahren zur stützung der messgenauigkeit von gps/imu-systemen
DE69021354T2 (de) System zur Detektion eines Hindernisses.
EP2787321B1 (fr) Détermination de surface d'objets à l'aide de la détermination d'un seul point précis géodésique et du balayage
DE102013202393B4 (de) Bestimmen von Neigungswinkel und Neigungsrichtung unter Verwendung von Bildverarbeitung
DE19528465C2 (de) Verfahren und Vorrichtung zur schnellen Erfassung der Lage einer Zielmarke
DE102016117710B4 (de) Verfahren und fusionssystem zur bestimmung der geschwindigkeit eines zielobjektes
EP2201326B1 (fr) Procédé de détermination de distance
DE102014005181A1 (de) Positions- und Lagebestimmung von Objekten
DE112010000812T5 (de) Verfahren und Systeme zum Bestimmen von Winkeln und Orten von Punkten
EP3034995A1 (fr) Procédé de détermination d'un décalage d'orientation ou de position d'un appareil de mesure géodésique et appareil de mesure correspondant
DE102013211492B4 (de) Bestimmung eines Messfehlers
EP2527792A1 (fr) Procédé d'assistance au pilote pour l'atterrissage d'un aéronef en cas de visibilité réduite
DE10308525A1 (de) Vermessungssystem
CH695120A5 (de) Anordnung und Verfahren zur Bestimmung der räumlichen Koordinaten mindestens eines Objekpunktes.
EP2573512A2 (fr) Procédé et agencement de détermination de la position d'un point de mesure dans l'espace géométrique
DE102009040468A1 (de) Tragbare mobile Erfassungseinrichtung und Verfahren zur dreidimensionalen geometrischen Erfassung einer Umgebung
DE102014205640B4 (de) Vermessung mittels mobilem Gerät
DE102007054950B4 (de) Verfahren zur Stützung der selbsttätigen Navigation eines niedrig fliegenden Flugkörpers
DE102016119626A1 (de) Automatische dreidimensionale Geolokation von SAR-Targets und gleichzeitige Schätzung troposphärischer Ausbreitungsverzögerungen mittels zweier SAR-Bilder mit langer Apertur
WO2018099949A1 (fr) Procédé et dispositif de géo-rférencement de données d'images aériennes à l'aide de données d'image sar
DE102011100628A1 (de) Verfahren und Vorrichtung zur Bestimmung mindestens eines Kameraparameters
DE10329341B4 (de) Vermessungssystem

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009756476

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09756476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13130906

Country of ref document: US