WO2010057728A1 - Verfahren und vorrichtung zum betreiben eines fahrzeuges mit einem hybridantrieb - Google Patents

Verfahren und vorrichtung zum betreiben eines fahrzeuges mit einem hybridantrieb Download PDF

Info

Publication number
WO2010057728A1
WO2010057728A1 PCT/EP2009/063570 EP2009063570W WO2010057728A1 WO 2010057728 A1 WO2010057728 A1 WO 2010057728A1 EP 2009063570 W EP2009063570 W EP 2009063570W WO 2010057728 A1 WO2010057728 A1 WO 2010057728A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive unit
torque
vehicle
drive
coupling
Prior art date
Application number
PCT/EP2009/063570
Other languages
English (en)
French (fr)
Inventor
Markus Kretschmer
Kaspar Schmoll Genannt Eisenwerth
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2010057728A1 publication Critical patent/WO2010057728A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0208Clutch engagement state, e.g. engaged or disengaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to a method for operating a vehicle with a hybrid drive, in which a first drive unit provides a contribution to the drive of the vehicle, wherein a second drive unit is started by a coupling to the second drive unit and an apparatus for performing the method ,
  • Vehicles with a hybrid drive structure have an internal combustion engine and as a second drive unit usually an electric motor.
  • the drive torque can be applied during the driving operation of the hybrid vehicle of both drive units.
  • parallel hybrids In the so-called parallel hybrids is an electric drive on the shaft of an internal combustion engine. Electric drive and the internal combustion engine are connected to each other via a separating clutch, if both contribute to the propulsion of the vehicle. If the disconnect clutch is open, the electric drive drives the vehicle alone.
  • the internal combustion engine is started while the electric drive is running by closing the separating clutch.
  • This subsystem thus assumes the function of a starter in a conventional system.
  • the disconnect clutch is opened in order to decouple the drag torque of the internal combustion engine from the rest of the vehicle driveline, thereby achieving a higher driveline efficiency.
  • the separating clutch closes uncontrollably.
  • the internal combustion engine is accelerated from standstill within a very short time to the speed of the electric drive.
  • the inertia of the internal combustion engine delays the speed of the electric drive. With an engaged gear this leads to a deceleration of the wheels and thus of the vehicle.
  • Hybrid drive with the features of claim 1 has the advantage that unstable driving conditions, as they can occur in a sudden deceleration of the wheels are reliably prevented. If the second drive unit is unintentionally coupled, a torque build-up takes place immediately on the first drive unit, as a result of which the unstable driving situations, which can occur in particular on wet roads, are prevented.
  • a driving dynamics control becomes active, which attempts to stabilize the vehicle by means of targeted braking interventions on the individual wheels and the return of the engine torque.
  • the torque build-up of the first drive unit compensates for a torque loss caused by the coupling of the second drive unit.
  • the sudden loss of drive torque, which occurs due to the sudden start of the second drive unit is compensated because the first drive unit additionally generates as much torque as the loss torque of the second drive unit is large.
  • the torque build-up on the first drive unit takes place immediately after the occurrence of the loss torque of the second drive unit. Since an unstable state is a very time-critical process, the first drive unit intervenes very quickly. In a development, the torque build-up on the first drive unit always takes place when it is detected that the second drive unit has been coupled. As a result, an immediate response to the unintentional start of the second drive unit is possible. Thus, a delay of all wheels is reliably prevented, whereby the unstable driving state is avoided.
  • the coupling of the second drive unit is detected particularly quickly by monitoring the rotational speed of the second drive unit. Since the speed when the second drive unit is zero, a deviation of zero is immediately recognized as the start of the second drive unit and appropriate countermeasures can be initiated.
  • the coupling of the second drive unit is detected by means of actuation of a clutch actuator.
  • a clutch actuator is opened to circulate the hydraulic fluid to actuate the disconnect clutch.
  • Clutch actuator monitoring is not only very convenient but also very cost-effective solutions, since no additional components for monitoring are necessary, but the components used in the vehicle itself are used.
  • a time profile of the torque loss on an acceleration procedure on a wheel of the vehicle is evaluated.
  • the mass inertia of the drive train components, which are responsible for the temporal behavior of the torque loss of the second drive unit, is taken into account.
  • the time profile of the loss torque is stored in at least one map.
  • the map is designed speed and / or gear-dependent.
  • a first drive unit contributes to driving the vehicle, wherein a second drive unit is started by a coupling to the first drive unit.
  • a second drive unit is started by a coupling to the first drive unit.
  • means are provided which initiate a torque build-up on the first drive unit in case of unintentional coupling of the second drive unit.
  • the first drive unit and the second drive unit are connected to one another via a separating clutch, wherein the first drive unit starts the second drive unit after closing the separating clutch.
  • the sudden and uncontrolled closing of the separating clutch causes a relief of the rear axle of the vehicle, wherein the front axle of the vehicle is loaded to the same extent.
  • the loss of rear axle load reduces the traction potential at the rear wheels, which is corrected by the torque increase on the first drive unit.
  • a control unit of the first drive unit increases the torque of the first drive unit after detecting the unintentional closure of the disconnect clutch.
  • the torque loss occurring so suddenly by starting the second drive unit is compensated by the torque increase of the first drive unit.
  • control unit increases the torque of the first drive unit until a torque loss caused by the coupling of the second drive unit is compensated for by this. This means that the torque of the first drive unit increases by exactly the same value as the torque loss of the second drive unit. decreases power unit. Since this compensates for the traction potential at the rear wheels, dangerous driving situations are avoided. The driver thus does not perceive the braking of the wheels.
  • Figure 1 an embodiment of a drive train of a parallel hybrid vehicle
  • FIG. 3 shows a schematic flow diagram of an exemplary embodiment of the method according to the invention
  • Figure 4 Effects in a faulty closing of the separating clutch with simultaneous compensation by the electric motor.
  • FIG. 1 shows a drive train of a motor vehicle with a parallel hybrid, in which an electric motor 1 is arranged on the drive shaft 3 of an internal combustion engine 2. Between the electric motor 1 and the internal combustion engine 2, a separating clutch 4 is arranged, which decouples the internal combustion engine 2 of the electric motor 1 in the open state, so that a purely electric driving is possible. To the electric motor 1, a converter 5 connects, which in turn is connected to an automatic transmission 6. The automatic transmission 6 leads to an axle 7, which transmits the torque applied by the internal combustion engine 2 and / or the electric motor 1 to a wheel 8.
  • the electric motor 1 is controlled by a control unit 9 which is connected to a speed sensor 10, which is opposite to the drive shaft 3 of the internal combustion engine 2, to rotations of the drive shaft 3, through the Combustion engine 2 are caused to detect.
  • the controller 9 is connected to the transmission 6 to detect which gear is engaged.
  • a not shown on the vehicle axle 7 speed sensor provides the controller 9 information about the vehicle speed v Fz g.
  • the separating clutch 4 is arranged in a hydraulic system, by which it is hydraulically opened and closed. In the depressurized state, the separating clutch 4 is closed. In driving states in which purely electric driving is, the separating clutch 4 is opened. In the event of a fault, for example in the case of a sudden pressure loss in the hydraulic clutch system, it may happen that the separating clutch 4 closes uncontrollably. As a result, the internal combustion engine 2 is accelerated from standstill in a very short time to the rotational speed of the electric motor 1. The inertia of the internal combustion engine 2 delays the rotational speed of the electric motor 1. This causes a delay of the wheels 8 with an engaged gear, which also has a similar effect on a sudden emergency braking on the vehicle. In this case, driving situations may occur, in particular in the case of a wet roadway, in which the sudden loss of driving torque leads to an unstable driving state.
  • FIG. 2 The diagrams shown in Figure 2 show the vehicle reactions in a faulty closing of the separating clutch 4 at a vehicle speed V Fzg of about 50 km / h according to the prior art.
  • the clutch torque T Ko occurring when the clutch 4 closes is shown in FIG. 2 a.
  • This is also confirmed by the acceleration a Fzg shown in FIG. 2d.
  • An acceleration a Fzg which fluctuates periodically between positive (0.1) and negative (-0.2) values occurs when the separating clutch 4 closes unexpectedly.
  • the wheels of the rear axle HA require in this driving situation a necessary coefficient of friction ⁇ HA of about 0.3.
  • a maximum coefficient of friction of 1. 0 to 1. 1 prevails on a dry grip track surface, so that the vehicle remains track-stable on such an underground despite the fault caused by the faulty closing of the separating clutch 4.
  • the coefficient of friction of the road surface is reduced by rain, water in ruts or the like, there is the danger of skidding even at low vehicle speeds.
  • the control unit 9 monitors the movement of the drive shaft 3 of the internal combustion engine 2 with the aid of the rotational speed sensor 10. In purely electrical operation of the vehicle, the drive shaft 3 of the internal combustion engine 2 is detected. However, the control unit 9 detects a movement of the drive shaft 3 of the internal combustion engine 2. it is concluded that the separating clutch 4 has suddenly closed.
  • the control unit 9 accesses a stored in a memory map in which the inertia of the powertrain components (such as combustion engine 2, primary side clutch 4) in response to the unregulated
  • the mass inertias are also stored depending on speed and / or gear. Since the engaged gear and the vehicle speed are known from the current driving situation, the torque loss resulting from the acceleration of the internal combustion engine 2 is determined in block 103.
  • the torque T ELM necessary for the electric motor 1 is determined from the loss torque determined in this way, which torque is additionally supplied to the electric motor 1 in order to compensate for the loss torque of the internal combustion engine 2.
  • the electric motor 1 is piloted in block 105 by the control unit 9 in such a way that the additional torque T ELM of the electric motor 1 has exactly the same amount as the loss torque caused by the internal combustion engine 2. Both moments have opposite signs.
  • FIG. 4 shows the vehicle conditions during a faulty closing of the vehicle
  • Disconnect 4 with a simultaneous compensation caused by the internal combustion engine 2 loss torque by the electric motor 1.
  • the vehicle speed is here about 50 km / h.
  • the scale of Figure 4 has been increased compared to Figure 2 in order to still be able to represent the effects occurring.
  • the separating clutch 4 is closed at 23.5 s in this example ( Figure 4a).
  • the vehicle speed V Fzg suffers a brief break-in (FIG. 4c).
  • the time course of the signals for the vehicle acceleration acceleration Fzg and the necessary coefficients of friction ⁇ HA , ⁇ VA on the front axle VA and the rear axle HA shows a significantly improved vehicle behavior.
  • the required coefficient of friction ⁇ HA , U VA is reduced by approximately 50% compared to the previous example (FIG. 2). This means a significantly improved driving stability even on wet roads.
  • FIG. 4e shows the torque T ELM of the electric motor 1 necessary for compensation.
  • This torque T ELM is generated immediately after the closing of the separating clutch 4 for less than 1 s. This is sufficient for the improvement of the vehicle condition after the sudden closure of the disconnect clutch 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines Fahrzeugesmit einem Hybridantrieb, bei welchem ein erstes Antriebsaggregat (1) einen Beitrag zum Antrieb des Fahrzeuges liefert, wobei ein zweites Antriebsaggregat (2) durch eine Ankopplung an das erste Antriebsaggregat (1) gestartet wird. Um möglichst schnell auf das Schließen der Trennkupplung (4) reagieren zu können, erfolgt bei einer unbeabsichtigten Ankopplung des zweiten Antriebsaggregates (2) ein Momentenaufbau (TELM ) am ersten Antriebsaggregat (1).

Description

Beschreibung
Titel
Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges mit einem Hybridan- trieb
Stand der Technik
Die Erfindung betrifft ein Verfahren zum Betreiben eines Fahrzeuges mit einem Hybridantrieb, bei welchem ein erstes Antriebsaggregat einen Beitrag zum An- trieb des Fahrzeuges liefert, wobei ein zweites Antriebsaggregat durch eine An- kopplung an das zweite Antriebsaggregat gestartet wird sowie eine Vorrichtung zur Durchführung des Verfahrens.
Fahrzeuge mit einer hybriden Antriebsstruktur weisen einen Verbrennungsmotor und als zweites Antriebsaggregat meistens einen Elektromotor auf. So kann das Antriebsmoment während des Fahrbetriebes des Hybridfahrzeuges von beiden Antriebsaggregaten aufgebracht werden.
Bei den so genannten Parallelhybriden befindet sich ein elektrischer Antrieb auf der Welle eines Verbrennungsmotors. Elektrischer Antrieb und der Verbrennungsmotor sind dabei über eine Trennkupplung miteinander verbunden, wenn beide einen Beitrag zum Antrieb des Fahrzeuges leisten. Ist die Trennkupplung geöffnet, treibt der elektrische Antrieb das Fahrzeug allein an.
Bei solchen Fahrzeugen wird der Verbrennungsmotor bei laufendem elektrischem Antrieb durch Schließen der Trennkupplung gestartet. Dieses Teilsystem übernimmt also die Funktion eines Anlassers bei einem konventionellen System. Bei Fahrzuständen, in denen elektrisch gefahren oder regenerativ gebremst wird, ist die Trennkupplung geöffnet, um das Schleppmoment des Verbrennungsmotors vom restlichen Fahrzeugan- triebsstrang abzukoppeln, wodurch eine höhere Triebstrangeffizienz erreicht wird. Im Fehlerfall kann es vorkommen, dass die Trennkupplung unkontrolliert schließt. Als Folge davon wird der Verbrennungsmotor aus dem Stillstand binnen kürzester Zeit auf die Drehzahl des elektrischen Antriebes beschleunigt. Die Massenträgheit des Verbrennungsmotors verzögert dabei die Drehzahl des elektrischen Antriebes. Bei ei- nem eingelegten Gang führt dies zu einer Verzögerung der Räder und damit des Fahrzeuges.
Offenbarung der Erfindung
Das erfindungsgemäße Verfahren zum Betreiben eines Fahrzeuges mit einem
Hybridantrieb mit den Merkmalen des Anspruchs 1 weist dabei den Vorteil auf, dass instabile Fahrzustände, wie sie bei einer plötzlichen Verzögerung der Räder auftreten können, sicher verhindert werden. Bei einer unbeabsichtigten Ankopp- lung des zweiten Antriebsaggregates erfolgt sofort ein Momentenaufbau am ers- ten Antriebsaggregat, wodurch die instabilen Fahrsituationen, wie sie insbesondere bei nasser Fahrbahn auftreten können, unterbunden werden.
Üblicherweise wird in diesen Fahrsituationen eine Fahrdynamikregelung aktiv, die über gezielte Bremseingriffe an den einzelnen Rädern und Rücknahme des Verbrennungsmotormomentes versucht, dass Fahrzeug wieder zu stabilisieren.
Auf ein Eingreifen eines solchen Elektronischen Stabilisierungsprogramms (ESP) und somit einer weiteren Verzögerung aller Räder kann verzichtet werden.
Vorteilhafterweise kompensiert der Momentenaufbau des ersten Antriebsaggre- gates ein bei der Ankopplung des zweiten Antriebsaggregates durch dieses hervorgerufenes Verlustmoment. Der plötzliche Verlust an Antriebsdrehmoment, der durch den plötzlichen Start des zweiten Antriebsaggregates auftritt, wird ausgeglichen, da das erste Antriebsaggregat zusätzlich soviel Drehmoment erzeugt, wie das Verlustmoment des zweiten Antriebsaggregates groß ist.
In einer Ausgestaltung erfolgt der Momentenaufbau am ersten Antriebsaggregat unmittelbar nach Auftreten des Verlustmomentes des zweiten Antriebsaggregates. Da es sich bei einem instabilen Zustand um einen sehr zeitkritischen Vorgang handelt, erfolgt ein sehr schnelles Eingreifen des ersten Antriebsaggrega- tes. In einer Weiterbildung erfolgt der Momentenaufbau am ersten Antriebsaggregat immer dann, wenn erkannt wird, dass das zweite Antriebsaggregat angekoppelt wurde. Dadurch wird ein unmittelbares Reagieren auf den unbeabsichtigten Start des zweiten Antriebsaggregates möglich. Somit wird eine Verzögerung aller Rä- der zuverlässig verhindert, wodurch der instabile Fahrzustand vermieden wird.
Vorteilhafterweise wird die Ankopplung des zweiten Antriebsaggregates durch eine Überwachung der Drehzahl des zweiten Antriebsaggregates besonders schnell detektiert. Da die Drehzahl beim Stehen des zweiten Antriebsaggregates Null ist, wird eine Abweichung von Null sofort als Start des zweiten Antriebsaggregates erkannt und entsprechende Gegenmaßnahmen können eingeleitet werden.
Alternativ wird die Ankopplung des zweiten Antriebsaggregates anhand einer Be- tätigung eines Kupplungsaktuators erkannt. Dies wird insbesondere bei hydraulischen Kupplungssystemen möglich, wo der Kupplungsaktuator geöffnet wird, um die Hydraulikflüssigkeit zur Betätigung der Trennkupplung in Zirkulation zu versetzen.
Sowohl die Drehzahlüberwachung des zweiten Antriebsaggregates als auch die
Kupplungsaktuatorüberwachung sind nicht nur sehr komfortable sondern auch sehr kostengünstige Lösungen, da keine zusätzlichen Bauteile zur Überwachung notwendig sind, sondern die im Fahrzeug an sich vorhandenen Bauteile genutzt werden.
Um das Drehmoment, welches am ersten Antriebsaggregat zusätzlich aufgebaut werden soll, genau bestimmen zu können, wird ein zeitlicher Verlauf des Verlustmomentes an einem Beschleunigungsvorgang an einem Rad des Fahrzeuges bewertet. Dabei werden die Masseträgheiten der Antriebsstrangkomponen- ten berücksichtigt, die für das zeitliche Verhalten des Verlustmomentes des zweiten Antriebsaggregates verantwortlich sind.
In einer besonders einfachen Ausgestaltung wird der zeitliche Verlauf des Verlustmomentes in mindestens einem Kennfeld abgelegt. Somit kann mit Hilfe der in dem Kennfeld abgelegten Parameter das am ersten Antriebsaggregat aufzubauende Drehmoment genau bestimmt werden. In einer Weiterbildung ist das Kennfeld geschwindigkeits- und/oder gangabhängig ausgelegt. Somit kann für jede nur vorstellbare Fahrsituation das Verlustmoment des zweiten Antriebsaggregates genau abgelesen und das Drehmoment des ersten Antriebaggregates genau bestimmt werden.
In einer anderen Weiterbildung der Erfindung liefert bei einer Vorrichtung zum Betreiben eines Fahrzeuges mit einem Hybridantrieb ein erstes Antriebsaggregat einen Beitrag zum Antrieb des Fahrzeuges, wobei ein zweites Antriebsaggregat durch eine Ankopplung an das erste Antriebsaggregat gestartet wird. Um ein Ab- bremsen der Räder bei einem unkontrollierten Start des zweiten Antriebsaggregates zu unterbinden, sind Mittel vorhanden, die bei einer unbeabsichtigten Ankopplung des zweiten Antriebsaggregates ein Momentenaufbau am ersten Antriebsaggregat einleiten. Dies hat den Vorteil, dass instabile Fahrsituationen bei einer plötzlichen Verzögerung der Räder des Kraftfahrzeuges durch den Aufbau des Drehmomentes an dem ersten Antriebsaggregat verhindert werden.
In einer Ausgestaltung sind das erste Antriebsaggregat und das zweite Antriebsaggregat über eine Trennkupplung miteinander verbunden, wobei das erste Antriebsaggregat nach Schließen der Trennkupplung das zweite Antriebsaggregat startet. Das plötzliche und unkontrollierte Schließen der Trennkupplung verursacht eine Entlastung der Hinterachse des Fahrzeuges, wobei die Vorderachse des Fahrzeuges in gleichem Maße belastet wird. Durch den Verlust an Hinterachslast reduziert sich das Kraftschlusspotential an den Hinterrädern, was durch die Drehmomentenerhöhung am ersten Antriebsaggregat korrigiert wird.
Vorteilhafterweise erhöht ein Steuergerät des ersten Antriebsaggregates nach dem Erkennen der unbeabsichtigten Schließung der Trennkupplung das Drehmoment des ersten Antriebsaggregates. Das so plötzlich durch das Starten des zweiten Antriebsaggregates auftretende Verlustmoment wird durch die Drehmo- mentzunahme des ersten Antriebsaggregates kompensiert.
In einer besonders komfortablen Ausgestaltung erhöht das Steuergerät das Drehmoment des ersten Antriebsaggregates so weit bis ein bei der Ankopplung des zweiten Antriebsaggregates durch dieses hervorgerufenes Verlustmoment kompensiert wird. Das bedeutet, dass das Drehmoment des ersten Antriebsaggregates um genau den Wert zunimmt, wie das Verlustmoment des zweiten An- triebsaggregates abnimmt. Da dadurch das Kraftschlusspotential an den Hinterrädern kompensiert wird, unterbleiben gefährliche Fahrsituationen. Der Fahrzeugführer nimmt somit das Abbremsen der Räder nicht wahr.
Der Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
Es zeigt:
Figur 1 : ein Ausführungsbeispiel für einen Antriebsstrang eines Parallel- hybridfahrzeuges
Figur 2: Effekte bei einem fehlerhaften Schließen der Trennkupplung nach dem Stand der Technik
Figur 3: schematisches Ablaufdiagramm eines Ausführungsbeispieles des erfindungsgemäßen Verfahrens
Figur 4: Effekte bei einem fehlerhaften Schließen der Trennkupplung bei gleichzeitiger Kompensation durch den Elektromotor.
Gleiche Merkmale sind mit gleichen Bezugszeichen gekennzeichnet.
Figur 1 zeigt einen Antriebsstrang eines Kraftfahrzeuges mit einem Parallelhyb- rid, bei welchem ein Elektromotor 1 auf der Antriebswelle 3 eines Verbrennungsmotors 2 angeordnet ist. Zwischen den Elektromotor 1 und dem Verbrennungsmotor 2 ist eine Trennkupplung 4 angeordnet, welche im geöffneten Zustand den Verbrennungsmotor 2 von dem Elektromotor 1 abkoppelt, so das ein rein elektrisches Fahren möglich ist. An den Elektromotor 1 schließt sich ein Wandler 5 an, welcher wiederum mit einem automatischen Getriebe 6 verbunden ist. Das automatische Getriebe 6 führt auf eine Achse 7, die das von dem Verbrennungsmotor 2 und/oder dem Elektromotor 1 aufgebrachte Drehmoment auf ein Rad 8 überträgt.
Der Elektromotor 1 wird von einem Steuergerät 9 gesteuert, welches mit einem Drehzahlgeber 10 verbunden ist, der der Antriebswelle 3 des Verbrennungsmotors 2 gegenüberliegt, um Drehungen der Antriebswelle 3, die durch den Verbrennungsmotor 2 verursacht werden, zu detektieren. Darüber hinaus ist das Steuergerät 9 mit dem Getriebe 6 verbunden, um zu detektieren, welcher Gang eingelegt ist. Ein an der Fahrzeugachse 7 nicht weiter dargestellter Drehzahlsensor liefert dem Steuergerät 9 Informationen über die Fahrzeuggeschwindigkeit vFzg.
Die Trennkupplung 4 ist in einem Hydrauliksystem angeordnet, durch welches sie hydraulisch geöffnet und geschlossen wird. Im drucklosen Zustand ist die Trennkupplung 4 geschlossen. In Fahrzuständen, in denen rein elektrisch gefah- ren wird, ist die Trennkupplung 4 geöffnet. Im Fehlerfall, beispielsweise bei einem plötzlichen Druckverlust in dem hydraulischen Kupplungssystem, kann es vorkommen, dass die Trennkupplung 4 unkontrolliert schließt. Daraus resultierend wird der Verbrennungsmotor 2 aus dem Stillstand in kürzester Zeit auf die Drehzahl des Elektromotors 1 beschleunigt. Die Massenträgheit des Verbren- nungsmotors 2 verzögert dabei die Drehzahl des Elektromotors 1. Das zieht bei einem eingelegten Gang eine Verzögerung der Räder 8 nach sich, was sich ähnlich einer plötzlichen Vollbremsung auch auf das Fahrzeug auswirkt. Es können dabei, insbesondere bei einer nassen Fahrbahn, Fahrsituationen auftreten, bei denen der plötzliche Verlust an Antriebsdrehmoment zu einem instabilen Fahrzustand führt.
Durch die Verzögerung des Fahrzeuges wird die Hinterachse HA des Fahrzeuges entlastet, die Vorderachse VA dagegen im gleichen Maße belastet. Durch den Verlust an Hinterachslast reduziert sich das Kraftschlusspotential an den Hinterrädern, so dass bei einer Störung, wie sie durch Spurrillen, Seitenwind oder ähnlichem auftritt, die Hinterräder nicht mehr genügend Seitenführungskräfte aufbringen können.
Die Effekte, welche dabei auftreten, sollen anhand der Figur 2 näher erläutert werden. Die in Figur 2 dargestellten Diagramme zeigen die Fahrzeugreaktionen bei einem fehlerhaften Schließen der Trennkupplung 4 bei einer Fahrzeuggeschwindigkeit vFzg von ungefähr 50 km/h nach dem Stand der Technik. Das beim Schließen der Trennkupplung 4 auftretende Kupplungsmoment TKo ist in Figur 2a dargestellt. Wie anhand der Fahrzeuggeschwindigkeit in Figur 2c zu sehen ist, befindet sich das Fahrzeug im so genannten Schubbetrieb, also im Ausrollen. Bei der Zeit t = 23,5 s schließt die Trennkupplung 4 plötzlich, was zu heftigen Reaktionen der Räder 8 (Reibwert in Figur 2b) und des Fahrzeuges (Figur 2d) führt. Dies wird auch durch die in Figur 2d aufgezeigte Beschleunigung aFzg belegt. An dem Fahrzeug tritt eine periodisch zwischen positiven (0,1 ) und negativen Wer- ten (-0,2) schwankende Beschleunigung aFzg auf wenn die Trennkupplung 4 unerwartet schließt.
Insbesondere die Räder der Hinterachse HA benötigen bei dieser Fahrsituation einen notwendigen Reibwert μHA von ca. 0,3. Auf einem trockenen griffigen Fahr- bahnuntergrund herrscht in der Regel ein maximaler Reibwert von 1 ,0 bis 1 ,1 , so dass auf einem solchen Untergrund das Fahrzeug trotz der Störung durch das fehlerhafte Schließen der Trennkupplung 4 spurstabil bleibt. Sobald der Reibwert der Fahrbahn durch Regen, Wasser in Spurrillen oder ähnliches reduziert wird, besteht bereits bei niedrigen Fahrzeuggeschwindigkeiten die Gefahr des Schleu- derns.
Eine Ausführungsform des erfindungsgemäßen Verfahrens soll nun anhand von Figur 3 näher erläutert werden. Im Block 101 ist die Trennkupplung 4 geöffnet und das Fahrzeug wird mittels des Elektromotors 1 rein elektrisch angetrieben.
Im Block 102 überwacht das Steuergerät 9 mit Hilfe des Drehzahlgebers 10 die Bewegung der Antriebswelle 3 des Verbrennungsmotors 2. Beim rein elektrischen Betrieb des Fahrzeuges steht die Antriebswelle 3 des Verbrennungsmotors 2. Detektiert das Steuergerät 9 aber doch eine Bewegung der Antriebswelle 3 des Verbrennungsmotors 2, wird geschlussfolgert, dass sich die Trennkupplung 4 plötzlich geschlossen hat.
Das Steuergerät 9 greift auf ein in einem Speicher abgelegtes Kennfeld zu, in welchem die Masseträgheiten der Triebstrangkomponenten (wie Verbrennungs- motor 2, Primärseite Kupplung 4) in Abhängigkeit von dem ungeregelten
Schließverhalten der Trennkupplung 4 abgelegt sind. Des Weiteren sind die Masseträgheiten auch geschwindigkeits- und/oder gangabhängig abgelegt. Da aus der aktuellen Fahrsituation der eingelegte Gang und die Fahrzeuggeschwindigkeit bekannt sind, wird im Block 103 das aus der Beschleunigung des Verbrennungsmotors 2 resultierende Verlustmoment bestimmt. Im Block 104 wird aus dem so bestimmten Verlustmoment das für den Elektromotor 1 notwendige Drehmoment TELM bestimmt, welches dem Elektromotor 1 zusätzlich zugeführt wird, um das Verlustmoment des Verbrennungsmotors 2 zu kompensieren. Der Elektromotor 1 wird im Block 105 durch das Steuergerät 9 derart vorgesteuert, dass das zusätzliche Drehmoment TELM des Elektromotors 1 genau denselben Betrag wie das durch den Verbrennungsmotor 2 verursachte Verlustmoment aufweist. Beide Momente weisen aber entgegengesetzte Vorzeichen auf.
Figur 4 zeigt die Fahrzeugverhältnisse bei einem fehlerhaften Schließen der
Trennkupplung 4 bei einer gleichzeitigen Kompensation des durch den Verbrennungsmotor 2 hervorgerufenen Verlustmomentes durch den Elektromotor 1. Die Fahrzeuggeschwindigkeit beträgt auch hier ungefähr 50 km/h. Der Maßstab der Figur 4 wurde gegenüber der Figur 2 vergrößert, um die auftretenden Effekte noch darstellen zu können.
Wie im vorhergehenden Fall, wird auch bei diesem Beispiel die Trennkupplung 4 bei 23,5 s geschlossen (Figur 4a). Die Fahrzeuggeschwindigkeit vFzg erleidet einen kurzen Einbruch (Figur 4c). Der zeitliche Verlauf der Signale für die Fahr- Zeugbeschleunigung aFzg und der notwendigen Reibwerte μHA, μVA an der Vorderachse VA und der Hinterachse HA zeigt ein deutlich verbessertes Fahrzeugverhalten. So reduziert sich der notwendige Reibwert μHA, UVA im Vergleich zu vorhergehenden Beispiel (Figur 2) um etwa 50%. Dies bedeutet eine deutlich verbesserte Fahrstabilität auch auf nassen Fahrbahnen.
In Figur 4e ist das für eine Kompensation notwendige Drehmoment TELM des Elektromotors 1 dargestellt. Dieses Drehmoment TELM wird unmittelbar nach dem Schließen der Trennkupplung 4 für weniger als nur 1 s erzeugt. Dies ist ausreichend für die Verbesserung des Fahrzeugzustandes nach dem plötzlichen Schließen der Trennkupplung 4.

Claims

Ansprüche
1. Verfahren zum Betreiben eines Fahrzeuges mit einem Hybridantrieb, bei welchem ein erstes Antriebsaggregat (1 ) einen Beitrag zum Antrieb des Fahrzeuges liefert, wobei ein zweites Antriebsaggregat (2) durch eine An- kopplung an das erste Antriebsaggregat (1 ) gestartet wird, dadurch gekennzeichnet , dass bei einer unbeabsichtigten Ankopplung des zweiten Antriebsaggregates (2) ein Momentenaufbau (TELM ) am ersten Antriebsaggregat (1 ) erfolgt.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass der Momentenaufbau (TELM) des ersten Antriebsaggregates (1 ) ein bei der Ankopplung des zweiten Antriebsaggregates (2) durch dieses hervorgerufenes Verlustmoment kompensiert.
3. Verfahren nach Anspruch 2 dadurch gekennzeichnet, dass der Momentenaufbau (TELM) am ersten Antriebsaggregat (1 ) unmittelbar nach Auftreten des Verlustmomentes des zweiten Antriebsaggregates (2) erfolgt.
4. Verfahren nach Anspruch 3 dadurch gekennzeichnet, dass der Momentenaufbau (TELM) am ersten Antriebsaggregat (1 ) erfolgt, wenn erkannt wurde, dass das zweite Antriebsaggregat (2) angekoppelt wurde.
5. Verfahren nach Anspruch 4 dadurch gekennzeichnet, dass die Ankopplung des zweiten Antriebsaggregates (2) durch eine Überwachung der Drehzahl des zweiten Antriebsaggregates (2) erkannt wird.
6. Verfahren nach Anspruch 4 dadurch gekennzeichnet, dass die Ankopplung des zweiten Antriebsaggregates (2) anhand einer Betätigung eines Kupplungsaktuators erkannt wird.
7. Verfahren nach einem der Ansprüche 2 oder 3 dadurch gekennzeichnet, dass ein zeitlicher Verlauf des Verlustmomentes an einem Beschleunigungsvorgang an einem Rad (8) des Fahrzeuges bewertet wird.
8. Verfahren nach Anspruch 7 dadurch gekennzeichnet, dass der zeitliche Verlauf des Verlustmomentes in mindestens einem Kennfeld abgelegt wird.
9. Verfahren nach Anspruch 8 dadurch gekennzeichnet, dass das Kennfeld geschwindigkeits- und/oder gangabhängig ausgelegt ist.
10. Vorrichtung zum Betreiben eines Fahrzeuges mit einem Hybridantrieb, bei welcher ein erstes Antriebsaggregat (1 ) einen Beitrag zum Antrieb des Fahrzeuges liefert, wobei ein zweites Antriebsaggregat (2) durch eine Ankopp- lung an das erste Antriebsaggregat (1 ) gestartet wird, dadurch gekennzeichnet , dass Mittel (9, 10) vorhanden sind, die bei einer unbeabsichtigten An- kopplung des zweiten Antriebsaggregates (2) ein Momentenaufbau (TELM) am ersten Antriebsaggregat (1 ) vornehmen.
1 1. Vorrichtung nach Anspruch 10 dadurch gekennzeichnet, dass das erste Antriebsaggregat (1 ) und das zweite Antriebsaggregat (2) über eine Trennkupplung (4) miteinander verbunden sind, wobei das erste Antriebsaggregat (1 ) nach Schließen der Trennkupplung (4) das zweite Antriebsaggregat (2) startet.
12. Vorrichtung nach Anspruch 1 1 dadurch gekennzeichnet, dass ein Steuergerät (9) des ersten Antriebsaggregates (1 ) nach dem Erkennen der unbeabsichtigten Schließung der Trennkupplung (4) das Drehmoment (TELM) des ersten Antriebsaggregates (1 ) erhöht.
13. Vorrichtung nach Anspruch 12 dadurch gekennzeichnet, dass das Steuergerät (9) das Drehmoment (TELM) des ersten Antriebsaggregates (1 ) so weit erhöht, bis ein bei der Ankopplung des zweiten Antriebsaggregates (2) durch dieses hervorgerufenes Verlustmoment kompensiert wird.
PCT/EP2009/063570 2008-11-21 2009-10-16 Verfahren und vorrichtung zum betreiben eines fahrzeuges mit einem hybridantrieb WO2010057728A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008043984.3 2008-11-21
DE102008043984A DE102008043984A1 (de) 2008-11-21 2008-11-21 Verfahren und Vorrichtung zum Betreiben eines Fahrzeuges mit einem Hybridantrieb

Publications (1)

Publication Number Publication Date
WO2010057728A1 true WO2010057728A1 (de) 2010-05-27

Family

ID=41796268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/063570 WO2010057728A1 (de) 2008-11-21 2009-10-16 Verfahren und vorrichtung zum betreiben eines fahrzeuges mit einem hybridantrieb

Country Status (2)

Country Link
DE (1) DE102008043984A1 (de)
WO (1) WO2010057728A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0922600A2 (de) * 1997-12-12 1999-06-16 Toyota Jidosha Kabushiki Kaisha System zur Steuerung eines Hybridfahrzeugs beim Anlassen des Brennkraftmotors
DE10316422A1 (de) * 2002-04-10 2003-12-11 Luk Lamellen & Kupplungsbau Verfahren, Vorrichtung und deren Verwendung zum Betrieb eines Kraftfahrzeuges
FR2882698A1 (fr) * 2005-03-01 2006-09-08 Peugeot Citroen Automobiles Sa Procede de decollage rapide d'un vehicule hybride
EP1772301A2 (de) * 2005-10-06 2007-04-11 Nissan Motor Company Limited Vorrichtung zur Fahrzeug-Antriebssteuerung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0922600A2 (de) * 1997-12-12 1999-06-16 Toyota Jidosha Kabushiki Kaisha System zur Steuerung eines Hybridfahrzeugs beim Anlassen des Brennkraftmotors
DE10316422A1 (de) * 2002-04-10 2003-12-11 Luk Lamellen & Kupplungsbau Verfahren, Vorrichtung und deren Verwendung zum Betrieb eines Kraftfahrzeuges
FR2882698A1 (fr) * 2005-03-01 2006-09-08 Peugeot Citroen Automobiles Sa Procede de decollage rapide d'un vehicule hybride
EP1772301A2 (de) * 2005-10-06 2007-04-11 Nissan Motor Company Limited Vorrichtung zur Fahrzeug-Antriebssteuerung

Also Published As

Publication number Publication date
DE102008043984A1 (de) 2010-05-27

Similar Documents

Publication Publication Date Title
DE102016123071B4 (de) Antriebskraftsteuersystem für ein Fahrzeug
DE102006046093B4 (de) Bremssystem und Verfahren zum Bremsen eines Fahrzeugs mit einem Hybridantrieb
EP2760714B1 (de) Schlupfgeregeltes bremssystem für elektrisch angetriebene kraftfahrzeuge
DE102007056359B4 (de) Verfahren zur Steuerung eines Bremssystems eines Kraftfahrzeugs
EP2512886B1 (de) Verfahren und bremssystem zur beeinflussung der fahrdynamik durch brems- und antriebseingriff
WO2017080993A1 (de) Fahrdynamikregelsystem in einem kraftfahrzeug und elektronische fahrdynamiksteuereinheit für ein fahrdynamikregelsystem
WO2011076534A1 (de) Verfahren und vorrichtung zur verteilung eines antriebsmomentes auf die räder einer elektrisch angetriebenen achse eines kraftfahrzeuges
EP1725439A1 (de) Verfahren zum erhöhen der fahrstabilität eines fahrzeugs
WO2020193054A1 (de) Verfahren zum betreiben eines antriebssystems eines elektrofahrzeugs und antriebssystem für ein elektrofahrzeug
EP2048053B1 (de) Verfahren zum Ansteuern des mechanischen Antriebsstrangsystems eines Kraftfahrzeuges
EP1826082B1 (de) Radschlupfregelsystem und Verfahren zum Regeln von Bewegungen von Rädern eines Fahrzeugs
EP2337715A1 (de) Verfahren zum betrieb eines bremssystems in einem fahrzeug
EP3793871B1 (de) System für ein elektrisch angetriebenes fahrzeug sowie fahrzeug damit
DE102013223163A1 (de) Verfahren zur Steuerung eines Bremssystems
EP2440439B1 (de) Verfahren zur erzeugung eines auf die fahrzeugräder eines fahrzeugs wirkenden differenzmoments
DE102013011230A1 (de) Verfahren zur Verbesserung der Traktion von Fahrzeugen
WO2013189812A1 (de) Fahrzeugstabilisierung für ein hybridfahrzeug bei bremsschlupf der antriebsräder oder erhöhter gefahr hierfür
EP2308733A2 (de) Verfahren zur Einstellung des Antriebsmoments in einem Fahrzeug mit zwei Antriebsmotoren
EP4251481A1 (de) Verfahren zur steuerung eines bremssystems eines kraftfahrzeugs
WO2010057728A1 (de) Verfahren und vorrichtung zum betreiben eines fahrzeuges mit einem hybridantrieb
DE102008055897A1 (de) Steuersystem für ein zumindest zeitweise vierradgetriebenes Kraftfahrzeug
DE102016009119A1 (de) Verfahren zum Betrieb eines Fahrzeugs
DE102014000068A1 (de) Verfahren, Steuereinrichtung und Fahrdynamik-Regelsystem zur Stabilitätsregelung eines Fahrzeuges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09737409

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 09737409

Country of ref document: EP

Kind code of ref document: A1