WO2010055872A1 - Spherical shell contact, and method for manufacturing same - Google Patents

Spherical shell contact, and method for manufacturing same Download PDF

Info

Publication number
WO2010055872A1
WO2010055872A1 PCT/JP2009/069250 JP2009069250W WO2010055872A1 WO 2010055872 A1 WO2010055872 A1 WO 2010055872A1 JP 2009069250 W JP2009069250 W JP 2009069250W WO 2010055872 A1 WO2010055872 A1 WO 2010055872A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist
spherical shell
sphere
spring
spring portion
Prior art date
Application number
PCT/JP2009/069250
Other languages
French (fr)
Japanese (ja)
Inventor
眞司 村田
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2010055872A1 publication Critical patent/WO2010055872A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2464Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the contact point
    • H01R13/2478Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the contact point spherical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic

Definitions

  • the present invention relates to a spherical shell type contactor and a method for manufacturing the same, and more particularly to a spherical shell type contactor that can be suitably used as a probe arranged in an array and a method for manufacturing the same.
  • a probe card is used to perform a wafer test before separating a wafer into individual chips.
  • a terminal used for electrical connection with the wafer is a contact called a probe.
  • the conventional contactor structure can be broadly divided into a cantilever structure composed of an elongated cantilever plate arranged horizontally or inclined, and a vertical composed of a vertically extendable needle or spring standing upright in the vertical direction (height direction).
  • a cantilever structure composed of an elongated cantilever plate arranged horizontally or inclined
  • a vertical composed of a vertically extendable needle or spring standing upright in the vertical direction (height direction).
  • molds There are two structures called molds.
  • the contact of the cantilever structure is said to be advantageous in that the structure is simple and the mechanical characteristics can be easily adjusted by changing the lever length and lever width.
  • the vertical contact has a merit in that the layout of the contact is higher than that of the cantilever contact and can be arranged in an array (see Patent Document 1). .
  • this is not an ideal case where the electrode of the wafer in contact with the contact is pushed in the expansion / contraction direction of the contact, usually in the vertical direction (height direction).
  • the electrode of the wafer is in contact with the contact while being inclined due to the formation surface being inclined.
  • the external force applied from the electrode of the wafer works not only in the vertical direction (height direction) of the contact but also in any one of the horizontal directions.
  • the conventional cantilever type contactor is formed assuming only expansion and contraction in the vertical direction (height direction), when it is bent in any direction in the horizontal direction, the contactor shape is changed. Depending, it will cause irregular elastic deformation. In other words, the conventional cantilever type contactor has a problem that its elastic force depends on the directionality of the external force application direction. If the elastic force of the contact depends on the directionality of the direction in which the external force is applied, the contact cannot be reliably brought into contact with the electrode of the wafer, and it becomes difficult to accurately perform the wafer test.
  • the conventional vertical contact is formed to be vertically extendable by a spring that expands and contracts in the vertical direction (height direction) imparting a bias in the vertical direction (height direction) to the needle that becomes the contact portion. Therefore, as described above, there is a problem that the structure becomes complicated as well as the problem that the elastic force cannot be exhibited without depending on the directionality of the application direction of the external force. When the structure of the contact is complicated, it is difficult to arrange the contacts at high density, so that the merit that the array can be arranged cannot be fully utilized.
  • the present invention has been made in view of these points, and a sphere capable of exerting a large elastic force without depending on the directionality of the external force application direction and realizing it with a simple structure. It is an object of the present invention to provide a shell-type contact and a method for manufacturing the same.
  • a first embodiment of the spherical shell contactor of the present invention is a partially embedded ball in which a part of a spherical shell is embedded in a wiring board used in a probe card. It is characterized by having a spring portion that is formed in a shell shape and is provided with one or a plurality of through holes or through grooves.
  • the spring portion is curved based on the spherical curvature, the spring elastic force is uniform in the vertical direction (height direction) and the horizontal direction. Can be demonstrated. Further, the resist resin present in the spherical shell contactor during the manufacture of the spherical shell contactor can be removed from the through hole or the through groove.
  • the spherical shell-type contact of the second aspect of the present invention is the spherical shell-type contact of the first aspect, wherein the partially embedded spherical shell shape means that a portion exceeding half of the spherical shell is buried, It is characterized in that a portion that is less than half of the shell is exposed as a spring portion.
  • the spherical shell type contactor of the second aspect of the present invention since the entire spring part is formed inside the boundary part between the spring part and the wiring board, the spherical shell type contactor is strong in the horizontal direction. Even when an external force is applied, it is possible to prevent the spherical shell-type contactor from being separated from the boundary portion.
  • the spherical shell-type contact of the third aspect of the present invention is the spherical shell-type contact of the first aspect, wherein the partially embedded spherical shell shape means that a portion less than half of the spherical shell is embedded. In addition, it is characterized in that a part exceeding half of the spherical shell is exposed as a spring part.
  • a portion passing through the center of the spherical shell and perpendicular to the height direction of the spherical shell intersects with the spherical shell. Since the spherical shell contactor performs a spring action such as a pantograph expansion / contraction operation as a bent part of the part, the shape of the spherical shell contactor can be enlarged or reduced at a constant ratio when the spherical shell contactor is deformed.
  • the spherical shell contact of the fourth aspect of the present invention is characterized in that, in the spherical shell contact of the first aspect, one through hole is formed at the top of the spring portion.
  • the contact portion of the spherical shell-type contact is changed from a point contact to an annular contact by the top through hole.
  • the contact area is enlarged, and the contact object of the spherical shell contact can be easily brought into contact.
  • the spherical shell contact of the fifth aspect of the present invention is the virtual shell contact of the first aspect, wherein the through hole passes through the apex of the spring portion in the height direction at the bottom periphery of the spring portion.
  • the elastic force of the spring portion is adjusted according to the size and number of the through holes without breaking the symmetry of the spring elastic force in the spherical shell contactor. can do.
  • the spherical shell contact of the sixth aspect of the present invention is the spherical shell contact of the first aspect, wherein the through groove is formed in a slit shape from the top of the spring portion to the bottom thereof, and A plurality of rotationally symmetrical arrangements are made with a virtual axis passing through the apex of the spring portion in the height direction as a symmetry axis.
  • the elasticity of the spring portion is determined according to the width, length, or number of the through grooves without breaking the symmetry of the spring elastic force in the spherical shell type contactor.
  • the power can be adjusted.
  • the spherical shell contact of the seventh aspect of the present invention is the spherical shell contact of the sixth aspect, wherein the plurality of through grooves are formed in a spiral shape with the top of the spring portion as the center. It is characterized by.
  • the distance from the top to the bottom of the spring part becomes long, so that it is possible to make it difficult to cause permanent deformation of the spring part due to fatigue.
  • the spherical shell contact of the eighth aspect of the present invention is the spherical shell contact of the sixth aspect, wherein the through hole is the top of the spring portion and the center of the through hole is displaced from the center of the top of the spring portion.
  • One spring portion is formed, and the spring portion is divided into a plurality of independent spring pieces having different heights by one through-hole that is shifted from the top portion.
  • the plurality of spring pieces having different heights are sequentially brought into contact with the contact object in the descending order of the spring pieces.
  • the spring elastic force of the spring portion can be increased stepwise.
  • thermosetting resin for resist is thermoset on the surface of a wiring board used for a probe card.
  • a resist column forming process in which a resist column formed in a cylindrical shape, an elliptical column shape or a polygonal column shape is provided, and a resist column is thermally cured to form a partially embedded spherical shape in which a part of a sphere is embedded
  • a resist sphere having a spherical curvature can be formed by thermally curing a resist column before thermosetting.
  • the spring part of the spherical shell contactor that is curved can be accurately and easily plated.
  • the manufacturing method of the spherical shell type contactor according to the second aspect of the present invention is the method of manufacturing the spherical shell type contactor according to the first aspect, wherein the resist ball has a partially embedded spherical shape in which a portion exceeding half of the spherical body is included. It is characterized in that a portion less than half of the sphere is exposed as a resist sphere by being buried.
  • a spherical shell contact in which a portion less than half of the spherical shell is exposed as a spring portion.
  • the method for manufacturing a spherical shell-type contact according to the third aspect of the present invention is the method for manufacturing the spherical shell-type contact according to the first aspect, wherein the partially embedded spherical shape of the resist sphere is a portion less than half of the sphere. As a result, it is characterized in that a portion exceeding half of the sphere is exposed as a resist sphere.
  • a plane that passes through the center of the spherical shell and intersects perpendicularly to the height direction of the spherical shell intersects the spherical shell. It is possible to form a spherical shell-type contact having the portion to be bent as a bent portion of the spring portion.
  • the method for manufacturing a spherical shell contactor according to a fourth aspect of the present invention is the method for manufacturing a spherical shell contactor according to the first aspect, wherein the pattern forming method of the thin film of the spring material in the spring portion forming step is for resist.
  • the pattern forming method of the thin film of the spring material in the spring portion forming step is for resist.
  • the contact portion of the spherical shell contact is changed from a point contact to a ring contact by the top through-hole.
  • the initial contact area of the child is enlarged, and the contact object of the spherical shell contact can be easily brought into contact.
  • a spherical shell contactor manufacturing method wherein the thin film pattern forming method of the spring material in the spring portion forming step is a resist sphere.
  • a plurality of rotationally symmetrical arrangements are made with the virtual axis passing through the apex of the spring portion in the height direction as the symmetry axis.
  • the elasticity of the spring part according to the size and the number of the through holes without breaking the symmetry of the spring elastic force in the spherical shell type contactor.
  • the power can be adjusted.
  • the manufacturing method of the spherical shell type contactor according to the sixth aspect of the present invention is the method of manufacturing the spherical shell type contactor according to the first aspect, wherein the pattern forming method of the thin film of the spring material in the spring forming step is a resist sphere.
  • Resist resin is used to form resist stripes that are arranged in a rotationally symmetrical manner with a virtual axis that protrudes linearly from the surface of the resist sphere from the top to the bottom of the resist and passes through the apex of the resist sphere in the height direction.
  • the spring according to the width, length or number of the through-grooves without breaking the symmetry of the spring elastic force in the spherical shell type contactor.
  • the elastic force of the part can be adjusted.
  • a seventh aspect of the present invention there is provided a method of manufacturing a spherical shell contactor according to the sixth aspect of the present invention, wherein the resist line and the through groove of the spring portion are the resist sphere or the top of the spring portion. It is characterized by being formed in a spiral shape with the center at the center.
  • the manufacturing method of the spherical shell type contactor of the seventh aspect of the present invention since the distance from the top to the bottom of the spring part becomes long, the permanent deformation of the spring part due to fatigue can be made difficult to occur.
  • the method for manufacturing a spherical shell-type contact according to the eighth aspect of the present invention is the method for manufacturing a spherical shell-type contact according to the first aspect, wherein there are two or more types of resist spheres. Is characterized in that it is determined based on the diameter, major axis, minor axis or width of the resist column.
  • the height of the resist sphere can be adjusted without changing the height of the resist pillar and its thermosetting condition. Resist spheres having different heights can be formed simultaneously and easily.
  • the partially embedded spherical shell-shaped spring portion that does not have a complicated structure exhibits a uniform spring elastic force in the vertical direction (height direction) and the horizontal direction. There is an effect that a large elastic force can be exhibited without depending on the directionality of the external force application direction, and that it can be realized with a simple structure.
  • the spring portion of the spherical shell contactor that is curved based on the spherical curvature is formed, so that it is applied in the vertical direction (height direction) and the horizontal direction.
  • the perspective view which shows the spherical shell type contact of 1st Embodiment The perspective view which shows the case where the shape which the part exceeding half of a spherical shell body is exposed is employ
  • the longitudinal cross-sectional view which shows the case where the shape which the part exceeding half of a spherical shell body is exposed is employ
  • the longitudinal cross-sectional view which shows the case where the through-hole of a spring part is shifted from the top center of a spring part in the spherical shell type contactor of 1st Embodiment 1 is a longitudinal sectional view showing a manufacturing method of a spherical shell contact according to a first embodiment in the order of A to D; Perspective view showing two types of resist cylinders with different diameters A perspective view showing a resist sphere obtained by thermosetting two types of resist cylinders having different diameters FIG.
  • FIG. 4 is a longitudinal sectional view showing a method for forming a thin film pattern of a spring material in the order of A to C in the first embodiment.
  • the perspective view which shows the state which the spherical shell type contact of 1st Embodiment pressed and contracted
  • mold contactor of 2nd Embodiment The longitudinal cross-sectional view which shows the pattern formation method of the thin film of the spring material in 2nd Embodiment in order of AC
  • the perspective view which shows the spherical shell type contactor of 3rd Embodiment, and the through groove was formed in linear form
  • the top view which shows what is the spherical shell type contactor of 3rd Embodiment, and the through groove was formed in linear form
  • the perspective view which shows the spherical shell type contactor of 3rd Embodiment, and the through groove was formed in the spiral shape
  • the plane which shows the spherical shell type contactor of a 3rd embodiment, and the penetration groove was formed in the shape of a spiral.
  • the longitudinal cross-sectional view which shows the pattern formation method of the thin film of the spring material in 3rd Embodiment in order of AC
  • the perspective view which shows the spherical shell type contactor of 4th Embodiment The longitudinal cross-sectional view which shows the spherical shell type contactor of 4th Embodiment Stress-strain diagram showing the elastic characteristics of the spherical shell contact of the fourth embodiment
  • the perspective view which shows an example of the spherical shell type contactor of other embodiment The perspective view which shows an example of the spherical shell type contactor of other embodiment
  • the perspective view which shows an example of the spherical shell type contactor of other embodiment The perspective view which shows an example of the spherical shell type contactor of other embodiment
  • FIG. 1 shows a spherical shell contact 1A of the first embodiment.
  • the spherical shell contact 1 ⁇ / b> A of the first embodiment includes a spring portion 2 and a flange portion 3, and a plurality of arrays are formed on the surface 4 a of the wiring board 4 used for the probe card. Is arranged.
  • the spring portion 2 is formed in a partially embedded spherical shell shape in which a part of a spherical shell is embedded in the wiring board 4 used for the probe card.
  • the spherical shell may not be a true spherical shell, but may be a substantially spherical shell that is close to it or an elliptical spherical shell that expands or contracts in the height direction or in the horizontal direction.
  • the partially embedded spherical shell is a shape in which a portion less than half of the spherical shell is exposed and the remaining portion (the remaining portion exceeding half of the spherical shell) is buried. 2 and 3, as shown in FIG. 2 and FIG.
  • the part exceeding half of the spherical shell was exposed as the spring part 2, and the remaining part (the remaining part less than half of the spherical shell) was buried.
  • Such a shape may be used.
  • the part that exceeds half of the spherical shell means that the horizontal plane that passes through the center of the spherical shell (the plane that intersects the height of the spherical shell perpendicularly)
  • a circle formed by intersecting the surface of the body that is, a portion including the great circle 2c of the spherical shell (a portion not including the great circle 2c of the spherical shell if the portion is less than half of the spherical shell).
  • one or a plurality of through holes or through grooves are formed in the spring portion 2 as a common matter of the embodiments.
  • one through-hole 5 is formed in the top 2t of the spring portion 2 that is a contact portion of the spherical shell contact 1A with a wafer electrode (not shown).
  • the center 5c of the through hole 5 may be formed at the top center 2tc of the spring portion 2, or the top hole 2t of the spring portion 2 as shown in FIG. Although it is located, the center 5 c of the through hole 5 may be formed at a position shifted from the top center 2 tc of the spring portion 2.
  • the outer diameter is 100 ⁇ m to 200 ⁇ m in terms of the spherical shell diameter
  • the spherical shell thickness is 1 ⁇ m to 20 ⁇ m
  • the height is about 50 ⁇ m to 100 ⁇ m.
  • the pitch interval of the spring portions 2 is 100 ⁇ m to 500 ⁇ m.
  • values other than these values may be selected, and other values may be selected in the first embodiment. It does not mean that it cannot be technically created.
  • a Ni-based spring alloy such as Ni-P or Ni-Co is selected. Since the material of the spring part 2 is selected from the viewpoint of improving its spring characteristics, a highly conductive material such as Au is provided on the surface of the spring part 2 in order to improve the conductivity of the spherical shell contact 1A. It is preferable to form a conductive portion (not shown) in the spring portion 2 by forming a thin film.
  • the flange portion 3 is a thin film formed uniformly on the surface 4a of the wiring board 4 on which the spring portion 2 is formed.
  • the wafer and wiring connected to the conductive pattern of the wiring board 4 and in contact with the spherical shell contact 1A It plays a role of conducting the plate 4.
  • the flange 3 is auxiliary formed when the conductive pattern of the wiring board 4 does not exist below the spring 2. Therefore, the conductive pattern of the wiring board 4 exists below the spring part 2, and the conductive part formed on the surface of the spring part 2 or the spring part 2 makes the wafer and the wiring board 4 conductive. When not used as a part, it is not necessary to form the collar part 3 on the spherical shell contact 1A.
  • FIG. 5 shows the manufacturing method of the spherical shell contact 1A of the first embodiment in the order of steps from A to D.
  • the spherical shell contact 1A of the first embodiment is manufactured through a resist pillar forming step, a resist sphere forming step, a spring portion forming step, and a resist sphere removing step in this order.
  • the resist thermosetting resin is uniformly applied to a thickness of about 100 ⁇ m on the surface 4a of the wiring board 4 used in the probe card, leaving a cylindrical shape.
  • the resist cylinder 11 is provided by performing an appropriate patterning.
  • the resist cylinder 11 is formed without being thermally cured.
  • the resist cylinder 11 is formed only by exposure and development. The diameter and height of the resist cylinder 11 will be described in the next step.
  • the resist cylinder 11 is thermally cured at 130 ° C. to deform the resist cylinder 11 into a partially embedded sphere shape.
  • resist spheres 12 are formed on the surface 4 a of the wiring board 4.
  • the partially embedded sphere shape of the resist sphere 12 is a shape in which a part of the sphere is embedded.
  • the partially-embedded spherical shape may be a shape in which more than half of the sphere is buried and less than half of the sphere is exposed, or half of the sphere A shape in which a portion that is not filled is buried and a portion that exceeds half of the sphere is exposed as the resist sphere 12 may be used. This is selected according to the shape of the spring part 2 to be formed.
  • the resist sphere When forming a resist sphere with a shape where less than half of the sphere is exposed, set the height lower than the diameter of the resist cylinder, set the thermosetting temperature low, or set the thermosetting time short.
  • the resist sphere is formed under conditions such as On the other hand, when forming a resist sphere with a shape in which more than half of the sphere is exposed, the height of the resist cylinder is set high, the thermosetting temperature is set high, or the thermosetting time is set.
  • the resist sphere is formed under conditions such as setting it long.
  • the height of the resist spheres 12 is determined based on the diameter of the resist cylinder 11. This will be described with reference to FIGS.
  • FIG. 6 shows two types of resist cylinders 11A and 11B having the same height and different diameters.
  • FIG. 7 shows the two types of resist cylinders 11A and 11B shown in FIG. 6 thermally cured under the same thermosetting conditions. Two types of resist spheres 12A and 12B are shown.
  • the diameter of the resist cylinder 11A that sets the height of the resist sphere 12A to 90 ⁇ m is set to 130 ⁇ m.
  • the diameter of the resist cylinder 11B that sets the height of the sphere 12B to 75 ⁇ m is set to 100 ⁇ m.
  • the heights of these two types of resist cylinders 11A and 11B are set equal to 90 ⁇ m.
  • the resist cylinder 11A having a diameter of 130 ⁇ m becomes a resist sphere 12A having a diameter of 150 ⁇ m and a height of 90 ⁇ m.
  • the resist cylinder 11B having a diameter of 100 ⁇ m is a resist sphere 12B having a diameter of 120 ⁇ m and a height of 75 ⁇ m.
  • the spring portion forming step a thin film of spring material is formed on the surface of the resist sphere 12 as shown in FIG. 5C.
  • the spring material Ni-based spring alloys such as Ni-P and Ni-Co are selected.
  • the spring part 2 of the spherical shell contact 1 ⁇ / b> A is formed on the surface of the resist sphere 12.
  • the spring portion 2 has a partially embedded spherical shell shape in which a part of a spherical shell is embedded, and is formed in a shape in which one or a plurality of through holes 5 or through grooves are provided. .
  • the shape of the spring portion 2 is a partially embedded spherical shell shape having one through hole 5.
  • the conductive portion may be formed on the spring portion 2 by forming a thin film of a good conductive material such as Au on the surface of the spring portion 2 by sputtering or the like.
  • the spring material thin film pattern forming method includes a seed film forming process, a resist pin forming process, a plating process, a resist removing process, and a seed film removing process.
  • a seed film 21 is formed on the surface 4a of the wiring board (see FIG. 5B) 4 on which the resist spheres 12 are formed.
  • the material of the seed film 21 is a thin film having a thickness of about 0.3 ⁇ m using a highly conductive metal such as a two-layer film of Ti and Cu, and is formed by sputtering or the like.
  • a resist resin is applied to the surface 4a of the wiring board 4 on which the seed film 21 is formed to form a resist film.
  • the thickness of the resist film is set to about 150 ⁇ m.
  • the resist film 13 is patterned to form a pin-shaped resist pin 13 on the top of the resist sphere 12. When a plurality of resist spheres 12 are formed, a resist film is left between the resist spheres 12.
  • a plating film 22 thinner than the height of the resist pin 13 is formed on the surface of the resist sphere 12 on which the resist pin 13 is formed.
  • the thickness of the plating film 22 is about 10 ⁇ m.
  • the spring portion 2 having one through hole 5 in the top portion 2t is formed on the surface of the resist sphere 12.
  • Ni-based spring alloys such as Ni—P and Ni—Co are selected as the plating metal.
  • the flange portion 3 of the spherical shell contact 1 ⁇ / b> A is formed along with the formation of the spring portion 2. Note that the flange 3 is not formed unless there is a gap between the resist film 14 left between the resist spheres 12 and the spring portion 2.
  • the resist film 14 left between the resist pins 13 and the resist spheres 12 is removed using a resist remover.
  • NMP N-methyl-2-pyrrolidone
  • the resist film 14 and the resist pin 13 left between the resist spheres 12 are removed, and the exposed seed film 21a (see FIG. 8C) 21a is removed by dry etching.
  • ion milling can be selected.
  • a resist remover is supplied from the through hole 5 or the through groove of the spring portion 2 as shown in FIG. 5D. Thereby, the resist sphere 12 dissolved from the through hole or the through groove is removed.
  • a resist remover is supplied from the through hole 5 of the spring portion 2 to remove the resist sphere 12.
  • a partially embedded spherical shell-shaped spring portion 2 in which one through hole 5 is formed is formed.
  • the spring portion 2 is curved based on the spherical curvature, so that a uniform spring elastic force can be exhibited in the vertical direction (height direction) and the horizontal direction.
  • the resist resin present in the spherical shell contact 1A can be removed from the through hole 5 or the through groove.
  • the circle 2c portion can be a bent portion of the spring portion 2. That is, when the spherical shell contact 1A is pushed in the vertical direction (height direction), as shown in FIG. 9, the great circle 2c portion of the spherical shell is bent, so that the spherical shell contact 1A becomes a pantograph. It performs a spring action like a telescopic action. Therefore, the shape of the spherical shell contact 1A can be enlarged or reduced at a certain ratio when the spring is deformed.
  • one through hole 5 of the spring portion 2 is formed at the top 2t of the spring portion 2.
  • the contact portion of the spherical shell contact 1A is point contact, but when the through hole 5 is formed at the top 2t of the spring part 2, Since the contact portion of the spherical shell contactor 1A can be changed from a point contact to an annular contact, the initial contact area of the spherical shell contactor 1A is expanded, and the contact object of the spherical shell contactor 1A can be easily changed. Can be contacted. Further, as shown in FIG.
  • the manufacturing method of the spherical shell contact 1A of the first embodiment includes the above-described resist column forming step, resist sphere forming step, spring portion forming step, and resist sphere removing step.
  • the resist sphere 12 having a spherical curvature can be formed by thermosetting the resist cylinder 11 before thermosetting created in the resist column forming step in the resist sphere forming step.
  • the spring portion 2 is formed by using the surface of the resist sphere 12 as a mold, the spring portion 2 of the spherical shell contact 1A that is curved based on the spherical curvature can be plated accurately and easily.
  • the spring portion 2 is formed based on the shape, as shown in FIG. A spherical shell-type contact 1A having a spring portion 2 with a shape in which less than half of the spherical shell is exposed as shown in FIG.
  • the height of the resist spheres 12A and 12B may be determined based on the diameters of the resist cylinders 11A and 11B. That is, the height of the resist spheres 12A and 12B can be adjusted by setting the height of the resist cylinders 11A and 11B and the thermosetting conditions to be the same and changing only the diameter of the resist cylinders 11A and 11B.
  • the thickness of the resist film for forming the resist cylinders 11A and 11B must be changed appropriately, which is complicated. Forced process.
  • the resist spheres 12A and 12B are determined based on the diameters of the resist cylinders 11A and 11B, the resist spheres 12A and 12B having different heights can be simultaneously and easily formed on the same wiring board 4. it can.
  • the pattern forming method of the spring material thin film in the spring portion forming step As shown in FIGS. 8A to 8C, the pattern forming method of the plating film 22 is adopted, so that a through hole is formed in the top portion 2t of the spring portion 2. 1A can be easily produced. In addition, since the thickness of the spring portion 2 can be easily increased, the thickness can be easily set.
  • the contact portion of the spherical shell contact 1A is changed from a point contact to an annular contact by the through hole 5 of the top 2t, the spherical shell contact 1A having the through hole 5 at the top 2t of the spring portion 2
  • the initial contact area of the shell-type contact 1A is enlarged, and it can be easily brought into contact with the wafer electrode that is the contact target of the spherical shell-type contact 1A.
  • FIG. 10 is a perspective view showing a spherical shell contact 1B of the second embodiment
  • FIG. 11 is a plan view showing the spherical shell contact 1B of the second embodiment.
  • the spherical shell contact 1 ⁇ / b> B of the second embodiment includes a spring portion 2 and a flange portion 3 as in the first embodiment, and is used for a probe card.
  • a plurality of arrays are arranged on the surface 4 a of the plate 4.
  • the part other than the through hole 5 of the spring part 2 and the flange part 3 are the same as those in the first embodiment.
  • the four through-holes 6 formed in the spring portion 2 are formed in a trapezoidal shape at the periphery of the bottom portion 2 b of the spring portion 2.
  • the four through-holes 6 are arranged in a rotationally symmetrical manner with an imaginary axis passing through the apex of the spring portion 2 in the height direction as an axis of symmetry by being arranged at intervals of 90 degrees.
  • the spherical shell contactor 1B of the second embodiment is manufactured through a resist column forming step, a resist sphere forming step, a spring portion forming step, and a resist sphere removing step in this order.
  • the steps other than the spring portion forming step are the same as those in the first embodiment.
  • the spring material thin film pattern forming method in the spring portion forming process includes a seed film forming process, a resist protrusion forming process, a plating process, a resist removing process, and a seed film removing process.
  • the seed film formation step and the seed film removal step are the same as those in the first embodiment.
  • resist protrusion forming step As shown in FIG. 12A, four (a plurality) resist protrusions 15 are formed using resist resin on the periphery of the bottom 2b of the resist sphere 12 on which the seed film 21 is formed in the seed film forming step. Form.
  • the four resist protrusions 15 are arranged at 90-degree intervals, so that they are formed rotationally symmetric with a virtual axis passing through the apex of the resist sphere 12 in the height direction as a symmetry axis.
  • a plating film 22 that is thinner than the height of the resist protrusion 15 is formed on the surface of the resist sphere 12 on which the resist protrusion 15 is formed, thereby arranging them at intervals of 90 degrees.
  • the spring portion 2 having the four through-holes 6 is formed on the surface of the resist sphere 12.
  • the through holes 6 of these four spring portions 2 are arranged rotationally symmetrically with an imaginary axis passing through the apex of the spring portion 2 in the height direction as a symmetry axis.
  • the resist film 14 left between the resist protrusions 15 and the resist spheres 12 is removed using a resist remover. Except for the point that the resist pin 13 in FIG. 8 is changed to the resist protrusion 15, it is the same as the resist removing process of the first embodiment.
  • the four through holes 6 arranged at intervals of 90 degrees on the periphery of the bottom 2b of the spring 2 are spring portions 2. Is formed. These four through holes 6 are provided for the purpose of weakening the elastic force of the spring part 2 and making the spring part 2 easily contract in the height direction. However, these four through-holes 6 are formed rotationally symmetric with a virtual axis passing through the apex of the spring part 2 in the height direction as the symmetry axis, so that the geometric symmetry of the spring part 2 is maintained. Yes. As a result, the elastic force of the spring portion 2 can be adjusted according to the size and number of the through holes 6 without breaking the symmetry of the spring elastic force in the spherical shell contact 1B.
  • the spring forming step is different from that of the first embodiment. Further, the pattern forming method of the spring material thin film in the spring portion forming step is different from that of the first embodiment in that the resist pin 13 is changed to the resist protrusion 15.
  • the resist projection forming step of the spring material thin film pattern forming method four resist projections 15 arranged at intervals of 90 degrees are arranged on the periphery of the bottom portion 2b of the resist sphere 12. Since the four resist protrusions 15 are formed in a rotationally symmetrical manner with a virtual axis passing through the apex of the resist sphere 12 in the height direction as a symmetry axis, when the spring portion 2 is formed on the surface of the resist sphere 12, A spring portion 2 having four through holes 6 arranged at intervals of 90 degrees based on the four resist protrusions 15 is formed. Therefore, it is possible to form the spring portion 2 that can adjust the elastic force of the spring portion 2 according to the size and number of the through holes 6 without breaking the symmetry of the spring elastic force in the spherical shell contact 1B. it can.
  • FIG. 13 shows a perspective view of a spherical shell contact 1C of the third embodiment
  • FIG. 14 shows a plan view of the spherical shell contact 1C of the third embodiment.
  • the spherical shell type contact 1 ⁇ / b> C of the third embodiment includes a spring portion 2 and a flange portion 3, as in the first embodiment, and is used for a probe card.
  • a plurality of arrays are arranged on the surface 4 a of the plate 4.
  • the part other than the through hole 5 of the spring portion 2 and the flange portion 3 in the third embodiment are the same as those in the first embodiment.
  • the spring portion 2 is formed with four (a plurality of) through grooves 7 instead of the through holes 5.
  • These four through-grooves 7 are formed in a slit shape from the top 2t of the spring portion 2 toward the bottom 2b, and an imaginary axis passing through the apex of the spring portion 2 in the height direction is used as an axis of symmetry. Arranged in rotational symmetry.
  • the width of the through groove 7 may be set so that the width dimension increases from the top 2 t of the spring portion 2 toward the bottom 2 b, or uniform. It may be a width dimension.
  • the through groove 7 may be formed in a straight line as shown in FIGS. 13 and 14, or as shown in FIGS. 15 and 16, a spiral shape with the top 2t of the spring part 2 as the center. It may be formed.
  • the spherical shell-type contact 1C of the third embodiment is manufactured through a resist pillar forming step, a resist sphere forming step, a spring portion forming step, and a resist sphere removing step in this order.
  • the steps other than the spring portion forming step are the same as those in the first embodiment.
  • the pattern forming method of the spring material thin film in the spring portion forming process includes a seed film forming process, a resist streak forming process, a plating process, a resist removing process, and a seed film removing process.
  • the seed film formation step and the seed film removal step are the same as those in the first embodiment.
  • the resist streak forming step as shown in FIG. 17A, four (plural) pieces of resist resin are used from the top to the bottom 2b of the resist sphere 12 on which the seed film 21 is formed in the seed film forming step.
  • Resist stripes 16 are formed.
  • the four resist stripes 16 bulge linearly from the surface of the resist sphere 12.
  • the four resist stripes 16 are arranged at 90 degree intervals, so that they are arranged rotationally symmetrically with a virtual axis passing through the apex of the resist sphere 12 in the height direction as a symmetry axis.
  • the width of the resist stripe 16 may be set so that its width dimension increases from the top of the resist sphere 12 toward its bottom 2b, or it may be a uniform width.
  • a plating film 22 thinner than the height of the resist streaks 16 is formed on the surface of the resist sphere 12 on which the resist streaks 16 are formed.
  • the spring portion 2 having four through grooves 7 arranged at intervals of 90 degrees based on the resist stripes 16 is formed on the surface of the resist sphere 12.
  • the four through grooves 7 are formed in a slit shape from the top 2t of the spring portion 2 toward the bottom portion 2b, and are rotationally symmetric with a virtual axis passing through the apex of the spring portion 2 in the height direction as a symmetry axis. Is formed. Since the through groove 7 is formed based on the resist stripe 16, the width dimension of the through groove 7 is set similarly to the setting of the width of the resist stripe 16.
  • the resist film 14 left between the resist streaks 16 and the resist spheres 12 is removed using a resist remover. Except for the point that the resist pin 13 of FIG. 8 is changed to the resist stripe 16, it is the same as the resist removing process of the first embodiment.
  • the resist stripes 16 may be formed linearly around the top of the resist sphere 12 or may be formed in a spiral shape. As shown in FIGS. 13 and 14, the through groove 7 of the spring portion 2 formed based on the linear resist stripes 16 is formed in a straight line with the top portion 2 t of the spring portion 2 as the center. Further, the through groove 7 of the spring portion 2 formed based on the spiral resist stripe 16 is formed in a spiral shape with the top portion 2t of the spring portion 2 as the center, as shown in FIGS.
  • these four through grooves 7 are arranged at 90 degree intervals, so that they are arranged rotationally symmetrically with an imaginary axis passing through the apex of the spring portion 2 in the height direction as a symmetry axis.
  • the through grooves 7 are not symmetrically arranged, the elasticity in the vertical direction (height direction) and the horizontal direction varies depending on the position of the spring portion 2, but by arranging the through grooves 7 symmetrically, The elastic force of the spring portion 2 can be adjusted without breaking the symmetry of the spring elastic force in the spherical shell contact 1C.
  • the spring portion 2 when the four through grooves 7 are formed in a spiral shape around the top 2t of the spring portion 2, the spring portion 2 has a spiral shape. The distance from the top 2t to the bottom 2b is increased by that amount. If the length of the spring portion 2 is increased, the fatigue applied to the spring portion 2 is alleviated by the length, so that the permanent deformation of the spring portion 2 due to fatigue can be made difficult to occur.
  • the spring forming step is different from that of the first embodiment.
  • the pattern forming method of the spring material thin film in the spring portion forming step is different from that of the first embodiment in that the resist pin 13 is changed to the resist stripe 16 as shown in FIGS. 17A to 17C. .
  • resist streaks 16 arranged at intervals of 90 degrees are formed from the top of the resist sphere 12 to its bottom 2b.
  • the spring portion 2 having the four through grooves 7 is formed on the surface of the resist sphere 12.
  • the four through grooves 7 are formed on the basis of the four resist stripes 16 formed on the surface of the resist sphere 12, so that they are formed in a slit shape from the top 2 t of the spring portion 2 toward the bottom 2 b thereof.
  • the elastic force of the spring portion 2 can be adjusted according to the width, length, or number of the through grooves 7 without breaking the symmetry of the spring elastic force in the spherical shell contact 1C.
  • these four resist stripes 16 may be formed in a spiral shape with the top of the resist sphere 12 as the center. By doing so, these four through grooves 7 formed on the basis of the resist stripes 16 are formed in a spiral shape with the top portion 2t of the spring portion 2 as the center. As a result, as described above, since the distance from the top 2t to the bottom 2b of the spring portion 2 is increased, it is possible to prevent permanent deformation of the spring portion 2 due to fatigue.
  • FIG. 18 shows a perspective view of a spherical shell contact 1D of the fourth embodiment
  • FIG. 19 shows a longitudinal sectional view of the spherical shell contact 1D of the fourth embodiment.
  • the spherical shell contact 1D of the fourth embodiment includes a spring portion 2 and a flange portion 3 as in the first embodiment, and is used for a probe card.
  • a plurality of arrays are arranged on the surface 4 a of the plate 4.
  • the through hole 5 is the top portion 2 t of the spring portion 2, and the center 5 c of the through hole 5 is from the top center 2 tc of the spring portion 2.
  • One is formed at a shifted position (see FIG. 4).
  • the four (plurality) of through grooves 7 are arranged at intervals of 90 degrees as in the third embodiment. These four through-grooves 7 are formed in a slit shape from the top 2t of the spring portion 2 toward the bottom 2b, and an imaginary axis passing through the apex of the spring portion 2 in the height direction is used as an axis of symmetry. Arranged in rotational symmetry.
  • the spring portion 2 is divided into four independent spring pieces 9A to 9D. Also, the heights of the four independent spring pieces 9A to 9D are different from each other by the single through hole 5 that is shifted from the top 2t.
  • the through-hole 5 is formed by utilizing the manufacturing method of 1st Embodiment, and the manufacturing method of 3rd Embodiment is utilized.
  • the through groove 7 is formed, so that the manufacturing method is obtained by adding the manufacturing method of the first embodiment and the manufacturing method of the third embodiment.
  • the resist pin 13 and the resist stripe 16 may be formed at the same time, or may be formed first.
  • the spring portion 2 of the spherical shell type contact 1D of the fourth embodiment as shown in FIGS. 18 and 19, as described above, the one through hole 5 shifted from the top center 2tc and the interval of 90 degrees. There are four through grooves 7 arranged. Further, the spring portion 2 is divided into four independent spring pieces 9A to 9D having different heights by the through holes 5 and the through grooves 7. By these four independent spring pieces 9A to 9D, the elastic characteristics of the spring portion 2 of the spherical shell contactor 1D behave differently from the other embodiments.
  • FIG. 20 shows a stress-strain diagram in the spherical shell contact 1D of the fourth embodiment.
  • the numbers 1 to 4 shown in FIG. 20 indicate the number of contacts of the spring pieces 9A to 9D that are in contact with the wafer electrode. If the heights of the four independent spring pieces 9A to 9D in the spring portion 2 are different, they come into contact in descending order from the highest spring piece 9A when contacting the wafer electrode. When the number of contacts of the spring pieces 9A to 9D is one, the spring pieces 9A to 9D are distorted with a slight stress. However, as the number of contacts of the spring pieces 9A to 9D increases to 2, 3, and 4, a large stress is required to distort the spring pieces 9A to 9D.
  • This phenomenon changes stepwise depending on the number of contacts of the spring pieces 9A to 9D. Therefore, in the initial contact stage of the spring pieces 9A to 9D, the spring part 2 is easily bent, and as the pushing amount of the spring part 2 increases, the number of contacts of the spring pieces 9A to 9D increases, and the elastic force of the spring part 2 also increases. Therefore, even when the heights of the plurality of electrodes formed on the wafer are different, the plurality of spherical shell-type contacts 1D are appropriately brought into contact with all the electrodes, respectively. Can do.
  • the partially embedded spherical shell-shaped spring part 2 having no complicated structure has a uniform spring elastic force in the vertical direction (height direction) and the horizontal direction. This produces the effect of exerting a large elastic force without depending on the directionality of the direction in which the external force is applied, and can be realized with a simple structure.
  • the spring portion 2 of the spherical shell contactor that is curved based on the spherical curvature is formed, so that the vertical direction (height direction) ) And the above-mentioned spherical shell-type contactor that appropriately corresponds to the external force applied in the horizontal direction can be produced accurately and easily.
  • FIG. 21 shows a spherical shell-type contact 1E according to an embodiment obtained by adding the first and second embodiments. That is, the spherical shell-type contact 1E according to the embodiment in which one circular through hole 5 is provided at the top 2t of the spring part 2 and four rectangular through holes 6 are provided around the bottom 2b of the spring part 2. It has become.
  • FIG. 22 shows a spherical shell type contact 1F according to an embodiment obtained by adding the second and third embodiments. That is, four rectangular through holes 6 are provided around the bottom 2b of the spring portion 2, and four through grooves 7 arranged at intervals of 90 degrees from the top 2t of the spring 2 to the bottom 2b are provided. In this embodiment, the spherical shell contact 1F is provided.
  • FIG. 23 shows a spherical shell-type contact 1G according to an embodiment obtained by adding the first to third embodiments. That is, one circular through hole 5 is provided at the top 2t of the spring portion 2, four rectangular through holes 6 are provided around the bottom 2b of the spring 2, and the top 2t to the bottom 2b of the spring 2 are provided.
  • the spherical shell contact 1G of the embodiment in which four through grooves 7 arranged at intervals of 90 degrees are provided.
  • the resist column 11 may not be a columnar shape but may be an elliptical column shape or a polygonal column shape.
  • the number of polygonal prisms increases as the number of polygonal columns increases, such as an octagonal column shape or a dodecagonal column shape, rather than a triangular column shape.
  • the diameter is a resist cylinder, but the diameter is long or short if it is an elliptical column, and the width is wide if it is a polygonal column. To the standard.

Abstract

Provided is a spherical shell contact capable of exhibiting a high elastic force independently of the directivity of an external force application direction by using a simple constitution.  Also provided is a method for manufacturing the spherical shell contact.  The spherical shell contact (1) is equipped with a spring portion (2) which is formed into a partially buried spherical shell shape in such a manner that a portion of the spherical shell is buried in a wiring board (4) to be used in a probe card and that at least one through hole is formed.  In the method for manufacturing the spherical shell contact (1), the spring portion (2) is plated by using, as a mold, a resist sphere formed by thermally setting a resist pillar formed on the wiring board (4).

Description

球殻型接触子およびその製造方法Spherical shell type contactor and manufacturing method thereof
 本発明は、球殻型接触子およびその製造方法に係り、特に、アレイ状に配置するプローブとして好適に利用できる球殻型接触子およびその製造方法に関する。 The present invention relates to a spherical shell type contactor and a method for manufacturing the same, and more particularly to a spherical shell type contactor that can be suitably used as a probe arranged in an array and a method for manufacturing the same.
 一般的に、集積回路の製造工程においては、ウェハを個々のチップに切り離す前にウェハテストを行なうため、プローブカードが用いられている。そのプローブカードにおいてウェハと導通するために用いられる端子がプローブと称される接触子である。 Generally, in an integrated circuit manufacturing process, a probe card is used to perform a wafer test before separating a wafer into individual chips. In the probe card, a terminal used for electrical connection with the wafer is a contact called a probe.
 従来の接触子の構造については、大きく分けて、水平配置または傾斜配置された細長い片持板からなるカンチレバー構造と、垂直方向(高さ方向)に起立した垂直伸縮自在の針やばねからなる垂直型といわれる2つの構造がある。ここで、カンチレバー構造の接触子については、その構造が簡易であり、レバー長やレバー幅を変更することによって機械的特性を容易に調整することができる点にメリットがあるといわれている。その一方、垂直型の接触子については、カンチレバー型の接触子よりも接触子のレイアウトの自由度が高く、アレイ配置することができる点にメリットがあるといわれている(特許文献1を参照)。 The conventional contactor structure can be broadly divided into a cantilever structure composed of an elongated cantilever plate arranged horizontally or inclined, and a vertical composed of a vertically extendable needle or spring standing upright in the vertical direction (height direction). There are two structures called molds. Here, the contact of the cantilever structure is said to be advantageous in that the structure is simple and the mechanical characteristics can be easily adjusted by changing the lever length and lever width. On the other hand, it is said that the vertical contact has a merit in that the layout of the contact is higher than that of the cantilever contact and can be arranged in an array (see Patent Document 1). .
特開2004-340794号公報JP 2004-340794 A
 ここで、接触子と接触するウェハの電極が接触子の伸縮方向、通常であれば垂直方向(高さ方向)に押し込まれる理想的な場合ではなく、ウェハ自体が傾いていたり、ウェハの電極の形成面が傾いていたりすることにより、ウェハの電極が傾きながら接触子と接触した場合を考える。この場合、ウェハの電極から印加される外力が接触子の垂直方向(高さ方向)だけでなくその水平方向のいずれかの方向にも働く。 Here, this is not an ideal case where the electrode of the wafer in contact with the contact is pushed in the expansion / contraction direction of the contact, usually in the vertical direction (height direction). Consider a case where the electrode of the wafer is in contact with the contact while being inclined due to the formation surface being inclined. In this case, the external force applied from the electrode of the wafer works not only in the vertical direction (height direction) of the contact but also in any one of the horizontal directions.
 しかしながら、従来のカンチレバー型の接触子については、垂直方向(高さ方向)に伸縮することのみを想定して形成されていたため、水平方向のいずれかの方向に湾曲した場合、接触子の形状に依存して不規則な弾性変形を生じてしまう。つまり、従来のカンチレバー型の接触子については、その弾性力が外力の印加方向の方向性に依存してしまうという問題があった。接触子の弾性力が外力の印加方向の方向性に依存すると、ウェハの電極に接触子を確実に接触させることができず、ウェハテストを正確に実施することが困難になる。 However, since the conventional cantilever type contactor is formed assuming only expansion and contraction in the vertical direction (height direction), when it is bent in any direction in the horizontal direction, the contactor shape is changed. Depending, it will cause irregular elastic deformation. In other words, the conventional cantilever type contactor has a problem that its elastic force depends on the directionality of the external force application direction. If the elastic force of the contact depends on the directionality of the direction in which the external force is applied, the contact cannot be reliably brought into contact with the electrode of the wafer, and it becomes difficult to accurately perform the wafer test.
 また、従来の垂直型の接触子は、垂直方向(高さ方向)に伸縮するばねが接触部となる針に垂直方向(高さ方向)への付勢を与えることによって垂直伸縮自在に形成されているため、上記と同様、外力の印加方向の方向性に依存せずに弾性力を発揮することができないという問題だけでなく、その構造が複雑になってしまうという問題があった。接触子の構造が複雑化すると、接触子を高密度配置することが困難になるので、アレイ配置できるというメリットを生かしきれない。 In addition, the conventional vertical contact is formed to be vertically extendable by a spring that expands and contracts in the vertical direction (height direction) imparting a bias in the vertical direction (height direction) to the needle that becomes the contact portion. Therefore, as described above, there is a problem that the structure becomes complicated as well as the problem that the elastic force cannot be exhibited without depending on the directionality of the application direction of the external force. When the structure of the contact is complicated, it is difficult to arrange the contacts at high density, so that the merit that the array can be arranged cannot be fully utilized.
 そこで、本発明はこれらの点に鑑みてなされたものであり、外力の印加方向の方向性に依存せずに大きな弾性力を発揮し、かつ、それを簡易な構造によって実現することができる球殻型接触子およびその製造方法を提供することを本発明の目的としている。 Therefore, the present invention has been made in view of these points, and a sphere capable of exerting a large elastic force without depending on the directionality of the external force application direction and realizing it with a simple structure. It is an object of the present invention to provide a shell-type contact and a method for manufacturing the same.
 前述した目的を達成するため、本発明の球殻型接触子は、その第1の態様として、プローブカードに用いられる配線板に対して球殻体の一部が埋設されたような部分埋設球殻形状であって1個もしくは複数の貫通孔または貫通溝が設けられた形状に形成されているばね部を備えていることを特徴としている。 In order to achieve the above-described object, a first embodiment of the spherical shell contactor of the present invention is a partially embedded ball in which a part of a spherical shell is embedded in a wiring board used in a probe card. It is characterized by having a spring portion that is formed in a shell shape and is provided with one or a plurality of through holes or through grooves.
 本発明の第1の態様の球殻型接触子によれば、そのばね部が球面曲率に基づいて湾曲しているので、垂直方向(高さ方向)および水平方向に対して均等なばね弾性力を発揮させることができる。また、球殻型接触子の製造時において球殻型接触子に内在するレジスト用樹脂を貫通孔または貫通溝から除去することができる。 According to the spherical shell type contactor of the first aspect of the present invention, since the spring portion is curved based on the spherical curvature, the spring elastic force is uniform in the vertical direction (height direction) and the horizontal direction. Can be demonstrated. Further, the resist resin present in the spherical shell contactor during the manufacture of the spherical shell contactor can be removed from the through hole or the through groove.
 本発明の第2の態様の球殻型接触子は、第1の態様の球殻型接触子において、部分埋設球殻形状とは、球殻体の半分を越える部分が埋没することにより、球殻体の半分に満たない部分がばね部として露出している形状であることを特徴としている。 The spherical shell-type contact of the second aspect of the present invention is the spherical shell-type contact of the first aspect, wherein the partially embedded spherical shell shape means that a portion exceeding half of the spherical shell is buried, It is characterized in that a portion that is less than half of the shell is exposed as a spring portion.
 本発明の第2の態様の球殻型接触子によれば、ばね部全体がばね部と配線板との境界部分よりも内側に形成されるので、球殻型接触子に水平方向への強い外力が加わっても、その境界部分から球殻型接触子が剥離することを防止することができる。 According to the spherical shell type contactor of the second aspect of the present invention, since the entire spring part is formed inside the boundary part between the spring part and the wiring board, the spherical shell type contactor is strong in the horizontal direction. Even when an external force is applied, it is possible to prevent the spherical shell-type contactor from being separated from the boundary portion.
 本発明の第3の態様の球殻型接触子は、第1の態様の球殻型接触子において、部分埋設球殻形状とは、球殻体の半分に満たない部分が埋設されることにより、球殻体の半分を越える部分がばね部として露出している形状であることを特徴としている。 The spherical shell-type contact of the third aspect of the present invention is the spherical shell-type contact of the first aspect, wherein the partially embedded spherical shell shape means that a portion less than half of the spherical shell is embedded. In addition, it is characterized in that a part exceeding half of the spherical shell is exposed as a spring part.
 本発明の第3の態様の球殻型接触子によれば、球殻体の中心を通過し、かつ、球殻体の高さ方向に垂直に交わる平面が球殻体と交差する部分をばね部の屈曲部として球殻型接触子がパンタグラフの伸縮動作のようなばね動作をするので、球殻型接触子のばね変形時にその形状を一定の比率で拡大または縮小させることができる。 According to the spherical shell-type contact of the third aspect of the present invention, a portion passing through the center of the spherical shell and perpendicular to the height direction of the spherical shell intersects with the spherical shell. Since the spherical shell contactor performs a spring action such as a pantograph expansion / contraction operation as a bent part of the part, the shape of the spherical shell contactor can be enlarged or reduced at a constant ratio when the spherical shell contactor is deformed.
 本発明の第4の態様の球殻型接触子は、第1の態様の球殻型接触子において、貫通孔は、ばね部の頂部に1個形成されていることを特徴としている。 The spherical shell contact of the fourth aspect of the present invention is characterized in that, in the spherical shell contact of the first aspect, one through hole is formed at the top of the spring portion.
 本発明の第4の態様の球殻型接触子によれば、頂部の貫通孔によって球殻型接触子の接触部分が点接触から円環接触に変更になるので、球殻型接触子の初期接触面積が拡大し、球殻型接触子の接触対象と容易に接触させることができる。 According to the spherical shell-type contact of the fourth aspect of the present invention, the contact portion of the spherical shell-type contact is changed from a point contact to an annular contact by the top through hole. The contact area is enlarged, and the contact object of the spherical shell contact can be easily brought into contact.
 本発明の第5の態様の球殻型接触子は、第1の態様の球殻型接触子において、貫通孔は、ばね部の底部周縁においてばね部の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に複数個形成されていることを特徴としている。 The spherical shell contact of the fifth aspect of the present invention is the virtual shell contact of the first aspect, wherein the through hole passes through the apex of the spring portion in the height direction at the bottom periphery of the spring portion. A plurality of rotationally symmetric axes with respect to the axis of symmetry.
 本発明の第5の態様の球殻型接触子によれば、球殻型接触子におけるばね弾性力の対称性を崩すことなく、貫通孔の大きさや個数に応じてばね部の弾性力を調整することができる。 According to the spherical shell contactor of the fifth aspect of the present invention, the elastic force of the spring portion is adjusted according to the size and number of the through holes without breaking the symmetry of the spring elastic force in the spherical shell contactor. can do.
 本発明の第6の態様の球殻型接触子は、第1の態様の球殻型接触子において、貫通溝は、ばね部の頂部からその底部に向かってスリット状に形成されており、かつ、ばね部の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に複数個配置されていることを特徴としている。 The spherical shell contact of the sixth aspect of the present invention is the spherical shell contact of the first aspect, wherein the through groove is formed in a slit shape from the top of the spring portion to the bottom thereof, and A plurality of rotationally symmetrical arrangements are made with a virtual axis passing through the apex of the spring portion in the height direction as a symmetry axis.
 本発明の第6の態様の球殻型接触子によれば、球殻型接触子におけるばね弾性力の対称性を崩すことなく、貫通溝の幅、長さまたは個数に応じてばね部の弾性力を調整することができる。 According to the spherical shell type contactor of the sixth aspect of the present invention, the elasticity of the spring portion is determined according to the width, length, or number of the through grooves without breaking the symmetry of the spring elastic force in the spherical shell type contactor. The power can be adjusted.
 本発明の第7の態様の球殻型接触子は、第6の態様の球殻型接触子において、複数個の貫通溝は、ばね部の頂部を中心にして渦巻状に形成されていることを特徴としている。 The spherical shell contact of the seventh aspect of the present invention is the spherical shell contact of the sixth aspect, wherein the plurality of through grooves are formed in a spiral shape with the top of the spring portion as the center. It is characterized by.
 本発明の第7の態様の球殻型接触子によれば、ばね部の頂部から底部までの距離が長くなるので、疲労によるばね部の永久変形を生じにくくさせることができる。 According to the spherical shell type contactor of the seventh aspect of the present invention, the distance from the top to the bottom of the spring part becomes long, so that it is possible to make it difficult to cause permanent deformation of the spring part due to fatigue.
 本発明の第8の態様の球殻型接触子は、第6の態様の球殻型接触子において、貫通孔は、ばね部の頂部であって貫通孔の中心がばね部の頂部中央からずれた位置に1個形成されており、ばね部は、その頂部にずれて位置する1個の貫通孔によって、高さの異なる独立した複数のばね片に分割されていることを特徴としている。 The spherical shell contact of the eighth aspect of the present invention is the spherical shell contact of the sixth aspect, wherein the through hole is the top of the spring portion and the center of the through hole is displaced from the center of the top of the spring portion. One spring portion is formed, and the spring portion is divided into a plurality of independent spring pieces having different heights by one through-hole that is shifted from the top portion.
 本発明の第8の態様の球殻型接触子によれば、高さの異なる複数のばね片が接触対象に対してばね片の高い順に順次接触していくので、ばね片の接触個数に応じてばね部のばね弾性力を段階的に増加させることができる。 According to the spherical shell-type contact of the eighth aspect of the present invention, the plurality of spring pieces having different heights are sequentially brought into contact with the contact object in the descending order of the spring pieces. The spring elastic force of the spring portion can be increased stepwise.
 また、前述した目的を達成するため、本発明の球殻型接触子の製造方法は、その第1の態様として、プローブカードに用いられる配線板の表面にレジスト用熱硬化型樹脂を熱硬化させずに円柱形状、楕円柱形状または多角柱形状に形成したレジスト柱を設けるレジスト柱形成工程と、レジスト柱を熱硬化してレジスト柱を球体の一部が埋設されたような部分埋設球形状に変形させることにより、配線板の表面にレジスト球体を形成するレジスト球体形成工程と、レジスト球体の表面にばね材の薄膜をパターン形成することにより、球殻体の一部が埋設されたような部分埋設球殻形状であって1個もしくは複数の貫通孔または貫通溝が設けられた形状に形成されている球殻型接触子のばね部をレジスト球体の表面に形成するばね部形成工程と、ばね部の貫通孔または貫通溝からレジスト除去剤を供給することにより、貫通孔または貫通溝から溶解したレジスト球体を除去するレジスト球体除去工程とを備えることを特徴としている。 In order to achieve the above-mentioned object, as a first aspect of the method for manufacturing a spherical shell contactor of the present invention, a thermosetting resin for resist is thermoset on the surface of a wiring board used for a probe card. A resist column forming process in which a resist column formed in a cylindrical shape, an elliptical column shape or a polygonal column shape is provided, and a resist column is thermally cured to form a partially embedded spherical shape in which a part of a sphere is embedded A resist sphere forming step of forming a resist sphere on the surface of the wiring board by deforming, and a part in which a part of the spherical shell is embedded by patterning a thin film of spring material on the surface of the resist sphere A spring part forming step of forming a spring part of a spherical shell type contactor formed on the surface of the resist sphere in a shape of an embedded spherical shell and having one or a plurality of through holes or through grooves; By the through hole or through groove of the spring portion to provide a resist removing agent, is characterized by comprising a resist sphere removing step for removing the resist spheres dissolved from the through hole or through groove.
 本発明の第1の態様の球殻型接触子の製造方法によれば、熱硬化前のレジスト柱を熱硬化することにより球面曲率を有するレジスト球体を形成することができるので、球面曲率に基づいて湾曲する球殻型接触子のばね部を正確かつ容易にめっき形成することができる。 According to the method for manufacturing a spherical shell contact of the first aspect of the present invention, a resist sphere having a spherical curvature can be formed by thermally curing a resist column before thermosetting. Thus, the spring part of the spherical shell contactor that is curved can be accurately and easily plated.
 本発明の第2の態様の球殻型接触子の製造方法は、第1の態様の球殻型接触子の製造方法において、レジスト球体の部分埋設球体形状とは、球体の半分を越える部分が埋没することにより、球体の半分に満たない部分がレジスト球体として露出している形状であることを特徴としている。 The manufacturing method of the spherical shell type contactor according to the second aspect of the present invention is the method of manufacturing the spherical shell type contactor according to the first aspect, wherein the resist ball has a partially embedded spherical shape in which a portion exceeding half of the spherical body is included. It is characterized in that a portion less than half of the sphere is exposed as a resist sphere by being buried.
 本発明の第2の態様の球殻型接触子の製造方法によれば、球殻体の半分に満たない部分がばね部として露出する球殻型接触子を形成することができる。 According to the method for manufacturing a spherical shell contact according to the second aspect of the present invention, it is possible to form a spherical shell contact in which a portion less than half of the spherical shell is exposed as a spring portion.
 本発明の第3の態様の球殻型接触子の製造方法は、第1の態様の球殻型接触子の製造方法において、レジスト球体の部分埋設球形状とは、球体の半分に満たない部分が埋没することにより、球体の半分を越える部分がレジスト球体として露出している形状であることを特徴としている。 The method for manufacturing a spherical shell-type contact according to the third aspect of the present invention is the method for manufacturing the spherical shell-type contact according to the first aspect, wherein the partially embedded spherical shape of the resist sphere is a portion less than half of the sphere. As a result, it is characterized in that a portion exceeding half of the sphere is exposed as a resist sphere.
 本発明の第3の態様の球殻型接触子の製造方法によれば、球殻体の中心を通過し、かつ、球殻体の高さ方向に垂直に交わる平面がその球殻体と交差する部分をばね部の屈曲部とする球殻型接触子を形成することができる。 According to the method for manufacturing a spherical shell contact of the third aspect of the present invention, a plane that passes through the center of the spherical shell and intersects perpendicularly to the height direction of the spherical shell intersects the spherical shell. It is possible to form a spherical shell-type contact having the portion to be bent as a bent portion of the spring portion.
 本発明の第4の態様の球殻型接触子の製造方法は、第1の態様の球殻型接触子の製造方法において、ばね部形成工程におけるばね材の薄膜のパターン形成法は、レジスト用樹脂をピン形状にしたレジストピンをレジスト球体の頂部に形成するレジストピン形成工程と、レジストピンが形成されたレジスト球体の表面に対してレジストピンの高さよりも薄いめっき膜をめっき形成することにより、頂部に1個の貫通孔を有するばね部をレジスト球体の表面に形成するめっき工程とを有していることを特徴としている。 The method for manufacturing a spherical shell contactor according to a fourth aspect of the present invention is the method for manufacturing a spherical shell contactor according to the first aspect, wherein the pattern forming method of the thin film of the spring material in the spring portion forming step is for resist. By forming a resist pin in the shape of a resin pin on the top of the resist sphere, and forming a plating film thinner than the resist pin on the surface of the resist sphere on which the resist pin is formed And a plating step of forming a spring portion having one through hole at the top on the surface of the resist sphere.
 本発明の第4の態様の球殻型接触子の製造方法によれば、頂部の貫通孔によって球殻型接触子の接触部分が点接触から円環接触に変更になるので、球殻型接触子の初期接触面積が拡大し、球殻型接触子の接触対象と容易に接触させることができる。 According to the method of manufacturing the spherical shell contact according to the fourth aspect of the present invention, the contact portion of the spherical shell contact is changed from a point contact to a ring contact by the top through-hole. The initial contact area of the child is enlarged, and the contact object of the spherical shell contact can be easily brought into contact.
 本発明の第5の態様の球殻型接触子の製造方法は、第1の態様の球殻型接触子の製造方法において、ばね部形成工程におけるばね材の薄膜のパターン形成法は、レジスト球体の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に複数個形成されているレジスト突起をレジスト球体の底部周縁にレジスト用樹脂を用いて形成するレジスト突起形成工程と、レジスト突起が形成されたレジスト球体の表面に対してレジスト突起の高さよりも薄いめっき膜をめっき形成することにより、ばね部の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に複数個配置されている貫通孔を有するばね部をレジスト球体の表面に形成するめっき工程とを有していることを特徴としている。 According to a fifth aspect of the present invention, there is provided a spherical shell contactor manufacturing method according to the first aspect, wherein the thin film pattern forming method of the spring material in the spring portion forming step is a resist sphere. A resist protrusion forming step of forming a plurality of rotationally symmetrical resist protrusions on the bottom periphery of the resist sphere using a resist resin, with a virtual axis passing through the top of the resist in the height direction as a symmetry axis; By plating the surface of the formed resist sphere with a plating film that is thinner than the height of the resist protrusions, a plurality of rotationally symmetrical arrangements are made with the virtual axis passing through the apex of the spring portion in the height direction as the symmetry axis. And a plating step of forming a spring portion having a through hole on the surface of the resist sphere.
 本発明の第5の態様の球殻型接触子の製造方法によれば、球殻型接触子におけるばね弾性力の対称性を崩すことなく、貫通孔の大きさや個数に応じてばね部の弾性力を調整することができる。 According to the manufacturing method of the spherical shell type contactor of the fifth aspect of the present invention, the elasticity of the spring part according to the size and the number of the through holes without breaking the symmetry of the spring elastic force in the spherical shell type contactor. The power can be adjusted.
 本発明の第6の態様の球殻型接触子の製造方法は、第1の態様の球殻型接触子の製造方法において、ばね部形成工程におけるばね材の薄膜のパターン形成法は、レジスト球体の頂部からその底部にかけてレジスト球体の表面から線状に隆起しているとともにレジスト球体の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に複数個配置されたレジスト筋をレジスト用樹脂を用いて形成するレジスト筋形成工程と、レジスト筋が形成されたレジスト球体の表面に対してレジスト筋の高さよりも薄いめっき膜をめっき形成することにより、ばね部の頂部からその底部に向かってスリット状に形成され、かつ、ばね部の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に複数個配置されている貫通溝を有するばね部をレジスト球体の表面に形成するめっき工程とを有していることを特徴としている。 The manufacturing method of the spherical shell type contactor according to the sixth aspect of the present invention is the method of manufacturing the spherical shell type contactor according to the first aspect, wherein the pattern forming method of the thin film of the spring material in the spring forming step is a resist sphere. Resist resin is used to form resist stripes that are arranged in a rotationally symmetrical manner with a virtual axis that protrudes linearly from the surface of the resist sphere from the top to the bottom of the resist and passes through the apex of the resist sphere in the height direction. And forming a plating film thinner than the height of the resist streaks on the surface of the resist sphere on which the resist streaks are formed, from the top of the spring portion toward the bottom thereof. A resist portion having a spring portion having a plurality of through grooves formed in a slit shape and rotationally symmetric with a virtual axis passing through the apex of the spring portion in the height direction as a symmetry axis It is characterized by and a plating step of forming on the surface of the.
 本発明の第6の態様の球殻型接触子の製造方法によれば、球殻型接触子におけるばね弾性力の対称性を崩すことなく、貫通溝の幅、長さまたは個数に応じてばね部の弾性力を調整することができる。 According to the method of manufacturing the spherical shell type contactor of the sixth aspect of the present invention, the spring according to the width, length or number of the through-grooves without breaking the symmetry of the spring elastic force in the spherical shell type contactor. The elastic force of the part can be adjusted.
 本発明の第7の態様の球殻型接触子の製造方法は、第6の態様の球殻型接触子の製造方法において、レジスト筋およびばね部の貫通溝は、レジスト球体またはばね部の頂部を中心にして渦巻状に形成されていることを特徴としている。 According to a seventh aspect of the present invention, there is provided a method of manufacturing a spherical shell contactor according to the sixth aspect of the present invention, wherein the resist line and the through groove of the spring portion are the resist sphere or the top of the spring portion. It is characterized by being formed in a spiral shape with the center at the center.
 本発明の第7の態様の球殻型接触子の製造方法によれば、ばね部の頂部から底部までの距離が長くなるので、疲労によるばね部の永久変形を生じにくくさせることができる。 According to the manufacturing method of the spherical shell type contactor of the seventh aspect of the present invention, since the distance from the top to the bottom of the spring part becomes long, the permanent deformation of the spring part due to fatigue can be made difficult to occur.
 本発明の第8の態様の球殻型接触子の製造方法は、第1の態様の球殻型接触子の製造方法において、レジスト球体の高さが2種類以上ある場合、レジスト球体の高さは、レジスト柱の直径、長径もしくは短径または幅に基づいて決定されていることを特徴としている。 The method for manufacturing a spherical shell-type contact according to the eighth aspect of the present invention is the method for manufacturing a spherical shell-type contact according to the first aspect, wherein there are two or more types of resist spheres. Is characterized in that it is determined based on the diameter, major axis, minor axis or width of the resist column.
 本発明の第8の態様の球殻型接触子の製造方法によれば、レジスト柱の高さやその熱硬化条件を変更せずともレジスト球体の高さが調整できるので、同一の配線板上に高さの異なるレジスト球体を同時かつ容易に形成することができる。 According to the method for manufacturing a spherical shell-type contact of the eighth aspect of the present invention, the height of the resist sphere can be adjusted without changing the height of the resist pillar and its thermosetting condition. Resist spheres having different heights can be formed simultaneously and easily.
 本発明の球殻型接触子によれば、複雑な構造を有しない部分埋設球殻形状のばね部が垂直方向(高さ方向)および水平方向に対して均等なばね弾性力を発揮するので、外力の印加方向の方向性に依存せずに大きな弾性力を発揮し、かつ、それを簡易な構造によって実現することができるという効果を奏する。 According to the spherical shell-type contact of the present invention, the partially embedded spherical shell-shaped spring portion that does not have a complicated structure exhibits a uniform spring elastic force in the vertical direction (height direction) and the horizontal direction. There is an effect that a large elastic force can be exhibited without depending on the directionality of the external force application direction, and that it can be realized with a simple structure.
 また、本発明の球殻型接触子の製造方法によれば、球面曲率に基づいて湾曲する球殻型接触子のばね部が形成されるので、垂直方向(高さ方向)および水平方向に加わる外力に適切に対応する上記の球殻型接触子を正確かつ容易に製造することができるという効果を奏する。 In addition, according to the method for manufacturing a spherical shell contactor of the present invention, the spring portion of the spherical shell contactor that is curved based on the spherical curvature is formed, so that it is applied in the vertical direction (height direction) and the horizontal direction. There is an effect that the above-mentioned spherical shell type contactor corresponding to an external force can be manufactured accurately and easily.
第1の実施形態の球殻型接触子を示す斜視図The perspective view which shows the spherical shell type contact of 1st Embodiment 第1の実施形態の球殻型接触子において球殻体の半分を越える部分が露出した形状をばね部に採用した場合を示す斜視図The perspective view which shows the case where the shape which the part exceeding half of a spherical shell body is exposed is employ | adopted as a spring part in the spherical shell type contactor of 1st Embodiment. 第1の実施形態の球殻型接触子において球殻体の半分を越える部分が露出した形状をばね部に採用した場合を示す縦断面図The longitudinal cross-sectional view which shows the case where the shape which the part exceeding half of a spherical shell body is exposed is employ | adopted for a spring part in the spherical shell type contactor of 1st Embodiment 第1の実施形態の球殻型接触子においてばね部の貫通孔をばね部の頂部中心からずらした場合を示す縦断面図The longitudinal cross-sectional view which shows the case where the through-hole of a spring part is shifted from the top center of a spring part in the spherical shell type contactor of 1st Embodiment 第1の実施形態の球殻型接触子の製造方法をA~Dの順に示す縦断面図1 is a longitudinal sectional view showing a manufacturing method of a spherical shell contact according to a first embodiment in the order of A to D; 直径が異なる2種類のレジスト円柱を示す斜視図Perspective view showing two types of resist cylinders with different diameters 直径が異なる2種類のレジスト円柱を熱硬化させて得たレジスト球体を示す斜視図A perspective view showing a resist sphere obtained by thermosetting two types of resist cylinders having different diameters 第1の実施形態におけるばね材の薄膜のパターン形成法をA~Cの順に示す縦断面図FIG. 4 is a longitudinal sectional view showing a method for forming a thin film pattern of a spring material in the order of A to C in the first embodiment. 第1の実施形態の球殻型接触子が押下されて収縮した状態を示す斜視図The perspective view which shows the state which the spherical shell type contact of 1st Embodiment pressed and contracted 第2の実施形態の球殻型接触子を示す斜視図The perspective view which shows the spherical shell type contactor of 2nd Embodiment. 第2の実施形態の球殻型接触子を示す平面図The top view which shows the spherical shell type | mold contactor of 2nd Embodiment 第2の実施形態におけるばね材の薄膜のパターン形成法をA~Cの順に示す縦断面図The longitudinal cross-sectional view which shows the pattern formation method of the thin film of the spring material in 2nd Embodiment in order of AC 第3の実施形態の球殻型接触子であって貫通溝が直線状に形成されたものを示す斜視図The perspective view which shows the spherical shell type contactor of 3rd Embodiment, and the through groove was formed in linear form 第3の実施形態の球殻型接触子であって貫通溝が直線状に形成されたものを示す平面図The top view which shows what is the spherical shell type contactor of 3rd Embodiment, and the through groove was formed in linear form 第3の実施形態の球殻型接触子であって貫通溝が渦巻状に形成されたものを示す斜視図The perspective view which shows the spherical shell type contactor of 3rd Embodiment, and the through groove was formed in the spiral shape 第3の実施形態の球殻型接触子であって貫通溝が渦巻状に形成されたものを示す平面The plane which shows the spherical shell type contactor of a 3rd embodiment, and the penetration groove was formed in the shape of a spiral. 第3の実施形態におけるばね材の薄膜のパターン形成法をA~Cの順に示す縦断面図The longitudinal cross-sectional view which shows the pattern formation method of the thin film of the spring material in 3rd Embodiment in order of AC 第4の実施形態の球殻型接触子を示す斜視図The perspective view which shows the spherical shell type contactor of 4th Embodiment 第4の実施形態の球殻型接触子を示す縦断面図The longitudinal cross-sectional view which shows the spherical shell type contactor of 4th Embodiment 第4の実施形態の球殻型接触子の弾性特性を示す応力-ひずみ線図Stress-strain diagram showing the elastic characteristics of the spherical shell contact of the fourth embodiment 他の実施形態の球殻型接触子の一例を示す斜視図The perspective view which shows an example of the spherical shell type contactor of other embodiment 他の実施形態の球殻型接触子の一例を示す斜視図The perspective view which shows an example of the spherical shell type contactor of other embodiment 他の実施形態の球殻型接触子の一例を示す斜視図The perspective view which shows an example of the spherical shell type contactor of other embodiment
 以下、図面を用いて、本発明の球殻型接触子をその複数の実施形態により説明する。 Hereinafter, the spherical shell type contactor of the present invention will be described with reference to the drawings by a plurality of embodiments.
 はじめに、第1の実施形態の球殻型接触子1Aを説明する。図1は、第1の実施形態の球殻型接触子1Aを示している。第1の実施形態の球殻型接触子1Aは、図1に示すように、ばね部2および鍔部3を備えており、プローブカードに用いられる配線板4の表面4aにアレイ状に複数個配置されている。 First, the spherical shell type contact 1A of the first embodiment will be described. FIG. 1 shows a spherical shell contact 1A of the first embodiment. As shown in FIG. 1, the spherical shell contact 1 </ b> A of the first embodiment includes a spring portion 2 and a flange portion 3, and a plurality of arrays are formed on the surface 4 a of the wiring board 4 used for the probe card. Is arranged.
 ばね部2は、プローブカードに用いられる配線板4に対して、球殻体の一部が埋設されたような部分埋設球殻形状に形成されている。球殻体とは、真球殻形状でなくとも、それに近い略球殻形状やその高さ方向または水平方向に伸縮した楕円球殻体であってもよい。また、部分埋設球殻とは、図1に示すように、球殻体の半分に満たない部分が露出し、その残りの部分(球殻体の半分を越える残部)が埋没したような形状であっても良いし、図2および図3に示すように、球殻体の半分を越える部分がばね部2として露出し、その残りの部分(球殻体の半分に満たない残部)が埋没したような形状であってもよい。なお、球殻体の半分を越える部分(または球殻体の半分に満たない部分)とは、球殻体の中心を通る水平面(球殻体の高さ方向に垂直に交わる平面)が球殻体の表面と交差してできる円、すなわち球殻体の大円2cを含む部分(球殻体の半分に満たない部分であれば球殻体の大円2cを含まない部分)をいう。 The spring portion 2 is formed in a partially embedded spherical shell shape in which a part of a spherical shell is embedded in the wiring board 4 used for the probe card. The spherical shell may not be a true spherical shell, but may be a substantially spherical shell that is close to it or an elliptical spherical shell that expands or contracts in the height direction or in the horizontal direction. In addition, as shown in FIG. 1, the partially embedded spherical shell is a shape in which a portion less than half of the spherical shell is exposed and the remaining portion (the remaining portion exceeding half of the spherical shell) is buried. 2 and 3, as shown in FIG. 2 and FIG. 3, the part exceeding half of the spherical shell was exposed as the spring part 2, and the remaining part (the remaining part less than half of the spherical shell) was buried. Such a shape may be used. Note that the part that exceeds half of the spherical shell (or the part that is less than half of the spherical shell) means that the horizontal plane that passes through the center of the spherical shell (the plane that intersects the height of the spherical shell perpendicularly) A circle formed by intersecting the surface of the body, that is, a portion including the great circle 2c of the spherical shell (a portion not including the great circle 2c of the spherical shell if the portion is less than half of the spherical shell).
 また、このばね部2には、各実施形態の共通事項として、1個もしくは複数の貫通孔または貫通溝が形成されている。第1の実施形態においては、ウェハ電極(図示せず)に対する球殻型接触子1Aの接触部となるばね部2の頂部2tに貫通孔5が1個形成されている。この貫通孔5は、図1に示すように、貫通孔5の中心5cがばね部2の頂部中央2tcに形成されていても良いし、図4に示すように、ばね部2の頂部2tに位置するが貫通孔5の中心5cがばね部2の頂部中央2tcからずれた位置に形成されていても良い。 Further, one or a plurality of through holes or through grooves are formed in the spring portion 2 as a common matter of the embodiments. In the first embodiment, one through-hole 5 is formed in the top 2t of the spring portion 2 that is a contact portion of the spherical shell contact 1A with a wafer electrode (not shown). As shown in FIG. 1, the center 5c of the through hole 5 may be formed at the top center 2tc of the spring portion 2, or the top hole 2t of the spring portion 2 as shown in FIG. Although it is located, the center 5 c of the through hole 5 may be formed at a position shifted from the top center 2 tc of the spring portion 2.
 ばね部2の寸法については、その外径は球殻直径にして100μm~200μm、その球殻厚さは1μm~20μm、その高さは50μm~100μm程度である。また、ばね部2のピッチ間隔は100μm~500μmである。ただし、これらの値はウェハ(図示せず)の形状にあわせて設定されたものであるから、これらの値以外の値を選択しても良いし、これら以外の値が第1の実施形態において技術的に作成不可能であることを意味するものではない。 Regarding the dimensions of the spring portion 2, the outer diameter is 100 μm to 200 μm in terms of the spherical shell diameter, the spherical shell thickness is 1 μm to 20 μm, and the height is about 50 μm to 100 μm. The pitch interval of the spring portions 2 is 100 μm to 500 μm. However, since these values are set in accordance with the shape of the wafer (not shown), values other than these values may be selected, and other values may be selected in the first embodiment. It does not mean that it cannot be technically created.
 ばね部2の材質については、Ni-PやNi-CoなどのNi系ばね合金が選択されている。ばね部2の材質はそのばね特性の向上の観点から選択されているので、球殻型接触子1Aの導電性を向上させたい場合には、ばね部2の表面にAuなどの良導電性材料を薄膜形成するなどして、ばね部2に導電部(図示せず)を形成しておくことが好ましい。 As the material of the spring portion 2, a Ni-based spring alloy such as Ni-P or Ni-Co is selected. Since the material of the spring part 2 is selected from the viewpoint of improving its spring characteristics, a highly conductive material such as Au is provided on the surface of the spring part 2 in order to improve the conductivity of the spherical shell contact 1A. It is preferable to form a conductive portion (not shown) in the spring portion 2 by forming a thin film.
 鍔部3は、ばね部2が形成される配線板4の表面4aに均一に形成された薄膜であり、配線板4の導電パターンに接続して球殻型接触子1Aに接触したウェハと配線板4とを導通させる役割を果たす。ただし、この鍔部3は、ばね部2の下方に配線板4の導電パターンが存在しない場合に補助的に形成するものである。したがって、ばね部2の下方に配線板4の導電パターンが存在してばね部2またはばね部2の表面に形成された導電部がウェハと配線板4とを導通させるなど、鍔部3を導通部として使用しない場合には、球殻型接触子1Aに鍔部3を形成する必要はない。 The flange portion 3 is a thin film formed uniformly on the surface 4a of the wiring board 4 on which the spring portion 2 is formed. The wafer and wiring connected to the conductive pattern of the wiring board 4 and in contact with the spherical shell contact 1A It plays a role of conducting the plate 4. However, the flange 3 is auxiliary formed when the conductive pattern of the wiring board 4 does not exist below the spring 2. Therefore, the conductive pattern of the wiring board 4 exists below the spring part 2, and the conductive part formed on the surface of the spring part 2 or the spring part 2 makes the wafer and the wiring board 4 conductive. When not used as a part, it is not necessary to form the collar part 3 on the spherical shell contact 1A.
 次に、第1の実施形態の球殻型接触子1Aの製造方法を説明する。 Next, a method for manufacturing the spherical shell contact 1A of the first embodiment will be described.
 図5は、第1の実施形態の球殻型接触子1Aの製造方法をAからDの順に工程順に示している。第1の実施形態の球殻型接触子1Aは、レジスト柱形成工程、レジスト球体形成工程、ばね部形成工程およびレジスト球体除去工程を順に経て、製造される。 FIG. 5 shows the manufacturing method of the spherical shell contact 1A of the first embodiment in the order of steps from A to D. The spherical shell contact 1A of the first embodiment is manufactured through a resist pillar forming step, a resist sphere forming step, a spring portion forming step, and a resist sphere removing step in this order.
 レジスト柱形成工程においては、図5Aに示すように、プローブカードに用いられる配線板4の表面4aに、レジスト用熱硬化型樹脂を100μm程度の厚さに均一に塗布し、円柱形を残すようなパターニングを施してレジスト円柱11を設ける。ここで、このレジスト円柱11は熱硬化させずに形成されている。例えば、レジスト用熱硬化型樹脂が感光性樹脂の場合には露光・現像のみによりレジスト円柱11を形成する。なお、レジスト円柱11の直径や高さについては、次の工程において説明する。 In the resist column forming step, as shown in FIG. 5A, the resist thermosetting resin is uniformly applied to a thickness of about 100 μm on the surface 4a of the wiring board 4 used in the probe card, leaving a cylindrical shape. The resist cylinder 11 is provided by performing an appropriate patterning. Here, the resist cylinder 11 is formed without being thermally cured. For example, when the resist thermosetting resin is a photosensitive resin, the resist cylinder 11 is formed only by exposure and development. The diameter and height of the resist cylinder 11 will be described in the next step.
 レジスト球体形成工程においては、図5Bに示すように、レジスト円柱11を130℃で熱硬化し、レジスト円柱11を部分埋設球形状に変形させる。これにより、配線板4の表面4aにレジスト球体12が形成される。ここで、レジスト球体12の部分埋設球形状とは、球体の一部が埋設されたような形状である。上記で説明した部分埋設球殻と同様、部分埋設球形状とは、球体の半分を越える部分が埋没し、球体の半分に満たない部分が露出した形状であってもよいし、球体の半分に満たない部分が埋没し、球体の半分を越える部分がレジスト球体12として露出した形状であってもよい。これは、形成するばね部2の形状に合わせて選択する。 In the resist sphere formation step, as shown in FIG. 5B, the resist cylinder 11 is thermally cured at 130 ° C. to deform the resist cylinder 11 into a partially embedded sphere shape. As a result, resist spheres 12 are formed on the surface 4 a of the wiring board 4. Here, the partially embedded sphere shape of the resist sphere 12 is a shape in which a part of the sphere is embedded. Similar to the partially-embedded spherical shell described above, the partially-embedded spherical shape may be a shape in which more than half of the sphere is buried and less than half of the sphere is exposed, or half of the sphere A shape in which a portion that is not filled is buried and a portion that exceeds half of the sphere is exposed as the resist sphere 12 may be used. This is selected according to the shape of the spring part 2 to be formed.
 球体の半分に満たない部分が露出した形状のレジスト球体を形成する場合はレジスト円柱の直径に対して高さを低く設定したり、熱硬化温度を低く設定したり、熱硬化時間を短く設定したりするなどの条件でレジスト球体を形成する。その一方、球体の半分を越える部分が露出した形状のレジスト球体を形成する場合は、レジスト円柱の直径に対して高さを高く設定したり、熱硬化温度を高く設定したり、熱硬化時間を長く設定したりするなどの条件でレジスト球体を形成する。 When forming a resist sphere with a shape where less than half of the sphere is exposed, set the height lower than the diameter of the resist cylinder, set the thermosetting temperature low, or set the thermosetting time short. The resist sphere is formed under conditions such as On the other hand, when forming a resist sphere with a shape in which more than half of the sphere is exposed, the height of the resist cylinder is set high, the thermosetting temperature is set high, or the thermosetting time is set. The resist sphere is formed under conditions such as setting it long.
 レジスト球体12の高さが2種類以上ある場合、レジスト球体12の高さは、レジスト円柱11の直径に基づいて決定されている。これについては、図6および図7を用いて説明する。図6は高さが等しく直径の異なる2種類のレジスト円柱11A、11Bを示しており、図7は図6に示した2種類のレジスト円柱11A、11Bを同一の熱硬化条件によって熱硬化させた2種類のレジスト球体12A、12Bを示している。 When there are two or more types of resist spheres 12, the height of the resist spheres 12 is determined based on the diameter of the resist cylinder 11. This will be described with reference to FIGS. FIG. 6 shows two types of resist cylinders 11A and 11B having the same height and different diameters. FIG. 7 shows the two types of resist cylinders 11A and 11B shown in FIG. 6 thermally cured under the same thermosetting conditions. Two types of resist spheres 12A and 12B are shown.
 例えば、レジスト球体12A、12Bの高さが90μmと75μmの2種類である場合、図6に示すように、レジスト球体12Aの高さを90μmにするレジスト円柱11Aの直径は130μmに設定し、レジスト球体12Bの高さを75μmにするレジスト円柱11Bの直径は100μmに設定する。また、それら2種類のレジスト円柱11A、11Bの高さは90μmに等しく設定しておく。図6に示した2種類のレジスト円柱11A、11Bを同一条件で熱硬化させると、直径が130μmのレジスト円柱11Aについては、その直径が150μmであってその高さが90μmのレジスト球体12Aになる。また、直径が100μmのレジスト円柱11Bについては、その直径が120μmであってその高さが75μmのレジスト球体12Bになる。 For example, when the resist spheres 12A and 12B have two types of heights of 90 μm and 75 μm, as shown in FIG. 6, the diameter of the resist cylinder 11A that sets the height of the resist sphere 12A to 90 μm is set to 130 μm. The diameter of the resist cylinder 11B that sets the height of the sphere 12B to 75 μm is set to 100 μm. The heights of these two types of resist cylinders 11A and 11B are set equal to 90 μm. When the two types of resist cylinders 11A and 11B shown in FIG. 6 are thermally cured under the same conditions, the resist cylinder 11A having a diameter of 130 μm becomes a resist sphere 12A having a diameter of 150 μm and a height of 90 μm. . The resist cylinder 11B having a diameter of 100 μm is a resist sphere 12B having a diameter of 120 μm and a height of 75 μm.
 ばね部形成工程においては、図5Cに示すように、レジスト球体12の表面にばね材の薄膜をパターン形成する。ばね材としては、Ni-PやNi-CoなどのNi系ばね合金が選択されている。これにより、球殻型接触子1Aのばね部2がレジスト球体12の表面に形成される。このばね部2は、前述した通り、球殻体の一部が埋設されたような部分埋設球殻形状であって1個もしくは複数の貫通孔5または貫通溝が設けられた形状に形成される。第1の実施形態のばね部2は貫通溝を有していないので、ばね部2の形状は1個の貫通孔5を有する部分埋設球殻形状になる。なお、ばね部2の表面にAuなどの良導電性材料をスパッタなどによって薄膜形成するなどして、ばね部2に導電部を形成してもよい。 In the spring portion forming step, a thin film of spring material is formed on the surface of the resist sphere 12 as shown in FIG. 5C. As the spring material, Ni-based spring alloys such as Ni-P and Ni-Co are selected. Thereby, the spring part 2 of the spherical shell contact 1 </ b> A is formed on the surface of the resist sphere 12. As described above, the spring portion 2 has a partially embedded spherical shell shape in which a part of a spherical shell is embedded, and is formed in a shape in which one or a plurality of through holes 5 or through grooves are provided. . Since the spring portion 2 of the first embodiment does not have a through groove, the shape of the spring portion 2 is a partially embedded spherical shell shape having one through hole 5. The conductive portion may be formed on the spring portion 2 by forming a thin film of a good conductive material such as Au on the surface of the spring portion 2 by sputtering or the like.
 ここで、ばね材の薄膜のパターン形成法について、その一例を示す。ばね材の薄膜のパターン形成法は、シード膜形成工程、レジストピン形成工程、めっき工程、レジスト除去工程およびシード膜除去工程を備えている。 Here, an example of the pattern forming method of the thin film of the spring material is shown. The spring material thin film pattern forming method includes a seed film forming process, a resist pin forming process, a plating process, a resist removing process, and a seed film removing process.
 シード膜形成工程においては、レジスト球体12が形成された配線板(図5Bを参照)4の表面4aにシード膜21を形成する。シード膜21の材質は、TiとCuの2層膜など良導電性金属を用いた厚さ0.3μm程度の薄膜であり、スパッタなどによって形成する。 In the seed film formation step, a seed film 21 is formed on the surface 4a of the wiring board (see FIG. 5B) 4 on which the resist spheres 12 are formed. The material of the seed film 21 is a thin film having a thickness of about 0.3 μm using a highly conductive metal such as a two-layer film of Ti and Cu, and is formed by sputtering or the like.
 レジストピン形成工程においては、図8Aに示すように、シード膜21が形成された配線板4の表面4aにレジスト用樹脂を塗布してレジスト膜を形成する。レジスト膜の厚さは、150μm程度に設定する。その後、そのレジスト膜にパターニングを施してピン形状にしたレジストピン13をレジスト球体12の頂部に形成する。レジスト球体12を複数形成した場合は、レジスト球体12の間にレジスト膜を残しておく。 In the resist pin forming step, as shown in FIG. 8A, a resist resin is applied to the surface 4a of the wiring board 4 on which the seed film 21 is formed to form a resist film. The thickness of the resist film is set to about 150 μm. Thereafter, the resist film 13 is patterned to form a pin-shaped resist pin 13 on the top of the resist sphere 12. When a plurality of resist spheres 12 are formed, a resist film is left between the resist spheres 12.
 めっき工程においては、図8Bに示すように、レジストピン13が形成されたレジスト球体12の表面に対してレジストピン13の高さよりも薄いめっき膜22をめっき形成する。具体的には、めっき膜22の厚さは10μm程度である。これにより、頂部2tに1個の貫通孔5を有するばね部2がレジスト球体12の表面に形成される。めっき金属はNi-PやNi-CoなどのNi系ばね合金が選択されている。また、レジスト球体12の間に残したレジスト膜14とばね部2との間には、ばね部2の形成に伴って球殻型接触子1Aの鍔部3が形成される。なお、レジスト球体12の間に残したレジスト膜14とばね部2との間に隙間がなければ鍔部3は形成されない。 In the plating step, as shown in FIG. 8B, a plating film 22 thinner than the height of the resist pin 13 is formed on the surface of the resist sphere 12 on which the resist pin 13 is formed. Specifically, the thickness of the plating film 22 is about 10 μm. As a result, the spring portion 2 having one through hole 5 in the top portion 2t is formed on the surface of the resist sphere 12. Ni-based spring alloys such as Ni—P and Ni—Co are selected as the plating metal. In addition, between the resist film 14 left between the resist spheres 12 and the spring portion 2, the flange portion 3 of the spherical shell contact 1 </ b> A is formed along with the formation of the spring portion 2. Note that the flange 3 is not formed unless there is a gap between the resist film 14 left between the resist spheres 12 and the spring portion 2.
 レジスト除去工程においては、図8Cに示すように、レジスト除去剤を用いて、レジストピン13とレジスト球体12の間に残したレジスト膜14とを除去する。レジスト用樹脂にノボラック系レジスト材を選択した場合、そのレジスト除去剤はN-メチル-2-ピロリドン(商品名:NMP)を選択することができる。 In the resist removal step, as shown in FIG. 8C, the resist film 14 left between the resist pins 13 and the resist spheres 12 is removed using a resist remover. When a novolac resist material is selected as the resist resin, N-methyl-2-pyrrolidone (trade name: NMP) can be selected as the resist remover.
 そして、シード膜除去工程においては、レジスト球体12の間に残したレジスト膜14およびレジストピン13を除去して露出したシード膜(図8Cを参照)21aをドライエッチングにより除去する。シード膜21の除去方法としては、例えばイオンミリングを選択することができる。 In the seed film removal step, the resist film 14 and the resist pin 13 left between the resist spheres 12 are removed, and the exposed seed film 21a (see FIG. 8C) 21a is removed by dry etching. As a method for removing the seed film 21, for example, ion milling can be selected.
 図5Cに示したばね部形成工程の終了後、レジスト球体除去工程においては、図5Dに示すように、ばね部2の貫通孔5または貫通溝からレジスト除去剤を供給する。これにより、貫通孔または貫通溝から溶解したレジスト球体12を除去する。なお、第1の実施形態においては、ばね部2に貫通溝が形成されていないため、ばね部2の貫通孔5からレジスト除去剤を供給し、レジスト球体12を除去する。 After completion of the spring portion forming step shown in FIG. 5C, in the resist sphere removing step, a resist remover is supplied from the through hole 5 or the through groove of the spring portion 2 as shown in FIG. 5D. Thereby, the resist sphere 12 dissolved from the through hole or the through groove is removed. In the first embodiment, since no through groove is formed in the spring portion 2, a resist remover is supplied from the through hole 5 of the spring portion 2 to remove the resist sphere 12.
 なお、上記で示した数値以外の値を選択しても良いし、上記で示した数値以外の値が第1の実施形態において技術的に作成不可能であることを意味するものではない。 Note that values other than the numerical values shown above may be selected, and it does not mean that values other than the numerical values shown above cannot be technically created in the first embodiment.
 次に、第1の実施形態の球殻型接触子1Aの作用を説明する。 Next, the operation of the spherical shell contact 1A of the first embodiment will be described.
 第1の実施形態の球殻型接触子1Aにおいては、図1に示すように、1個の貫通孔5が形成された部分埋設球殻形状のばね部2が形成されている。このような形状にすることによって、ばね部2は球面曲率に基づいて湾曲するので、垂直方向(高さ方向)および水平方向に対して均等なばね弾性力を発揮させることができる。また、球殻型接触子1Aの製造時においては、球殻型接触子1Aに内在するレジスト用樹脂を貫通孔5または貫通溝から除去することができる。 In the spherical shell-type contact 1A of the first embodiment, as shown in FIG. 1, a partially embedded spherical shell-shaped spring portion 2 in which one through hole 5 is formed is formed. By adopting such a shape, the spring portion 2 is curved based on the spherical curvature, so that a uniform spring elastic force can be exhibited in the vertical direction (height direction) and the horizontal direction. Further, at the time of manufacturing the spherical shell contact 1A, the resist resin present in the spherical shell contact 1A can be removed from the through hole 5 or the through groove.
 上記の部分埋設球殻形状において、図1に示すように、球殻体の半分に満たない部分がばね部2として露出している形状を採用する場合、ばね部2の全体がばね部2と配線板4との境界部分よりも内側に形成される。この場合、球殻型接触子1Aの側方から強い外力が加わっても、外力印加方向と反対部分のばね部2がその外力に対して大きな効力を生じるので、その境界部分から球殻型接触子1Aが剥離することを防止することができる。 In the above partially embedded spherical shell shape, as shown in FIG. 1, when adopting a shape in which a portion less than half of the spherical shell is exposed as the spring portion 2, the entire spring portion 2 is combined with the spring portion 2. It is formed inside the boundary part with the wiring board 4. In this case, even if a strong external force is applied from the side of the spherical shell-type contact 1A, the spring portion 2 opposite to the direction in which the external force is applied has a great effect on the external force. The child 1A can be prevented from peeling off.
 それに対し、上記の部分埋設球殻形状において、図2および図3に示すように、球殻体の半分を越える部分がばね部2として露出している形状を採用する場合、球殻体の大円2c部分をばね部2の屈曲部とすることができる。すなわち、球殻型接触子1Aが垂直方向(高さ方向)に押下された際、図9に示すように、球殻体の大円2c部分が屈曲するから、球殻型接触子1Aがパンタグラフの伸縮動作のようなばね動作をする。そのため、球殻型接触子1Aのばね変形時にその形状を一定の比率で拡大または縮小させることができる。 On the other hand, in the above partially embedded spherical shell shape, as shown in FIGS. 2 and 3, when a shape in which a part exceeding half of the spherical shell body is exposed as the spring portion 2 is adopted, The circle 2c portion can be a bent portion of the spring portion 2. That is, when the spherical shell contact 1A is pushed in the vertical direction (height direction), as shown in FIG. 9, the great circle 2c portion of the spherical shell is bent, so that the spherical shell contact 1A becomes a pantograph. It performs a spring action like a telescopic action. Therefore, the shape of the spherical shell contact 1A can be enlarged or reduced at a certain ratio when the spring is deformed.
 ばね部2の貫通孔5は、ばね部2の頂部2tに1個形成されていると好ましい。貫通孔5がばね部2の頂部2tに形成されていない場合は球殻型接触子1Aの接触部分が点接触になるが、貫通孔5がばね部2の頂部2tに形成されている場合は球殻型接触子1Aの接触部分が点接触から円環接触に変更することができるので、球殻型接触子1Aの初期接触面積が拡大し、球殻型接触子1Aの接触対象と容易に接触させることができる。また、図4に示すように、貫通孔5がばね部2の頂部中央2tcからずれている場合、貫通孔5の稜線がエッジ作用を生じ、接触したウェハ電極の表面に形成された酸化膜を切削するので、ウェハと接触子との導通を確実に行なうことができる。 It is preferable that one through hole 5 of the spring portion 2 is formed at the top 2t of the spring portion 2. When the through hole 5 is not formed at the top 2t of the spring part 2, the contact portion of the spherical shell contact 1A is point contact, but when the through hole 5 is formed at the top 2t of the spring part 2, Since the contact portion of the spherical shell contactor 1A can be changed from a point contact to an annular contact, the initial contact area of the spherical shell contactor 1A is expanded, and the contact object of the spherical shell contactor 1A can be easily changed. Can be contacted. Further, as shown in FIG. 4, when the through hole 5 is deviated from the top center 2tc of the spring portion 2, the ridge line of the through hole 5 causes an edge action, and an oxide film formed on the surface of the contacted wafer electrode is formed. Since cutting is performed, conduction between the wafer and the contact can be reliably performed.
 次に、第1の実施形態の球殻型接触子1Aの製造方法の作用を説明する。 Next, the operation of the manufacturing method of the spherical shell contact 1A of the first embodiment will be described.
 第1の実施形態の球殻型接触子1Aの製造方法は、図5A~Dに示すように、前述したレジスト柱形成工程、レジスト球体形成工程、ばね部形成工程およびレジスト球体除去工程を備えている。ここで、レジスト柱形成工程において作成された熱硬化前のレジスト円柱11をレジスト球体形成工程において熱硬化することにより、球面曲率を有するレジスト球体12を形成することができる。このレジスト球体12の表面を型にしてばね部2を形成すれば、球面曲率に基づいて湾曲する球殻型接触子1Aのばね部2を正確かつ容易にめっき形成することができる。 As shown in FIGS. 5A to 5D, the manufacturing method of the spherical shell contact 1A of the first embodiment includes the above-described resist column forming step, resist sphere forming step, spring portion forming step, and resist sphere removing step. Yes. Here, the resist sphere 12 having a spherical curvature can be formed by thermosetting the resist cylinder 11 before thermosetting created in the resist column forming step in the resist sphere forming step. If the spring portion 2 is formed by using the surface of the resist sphere 12 as a mold, the spring portion 2 of the spherical shell contact 1A that is curved based on the spherical curvature can be plated accurately and easily.
 ここで、図5Bに示すように、球体の半分に満たない部分がレジスト球体12として露出した形状にレジスト球体12の形状が設定された場合、それに基づいてばね部2を形成すれば、図1に示すような、球殻体の半分に満たない部分が露出した形状のばね部2を有する球殻型接触子1Aを形成することができる。 Here, as shown in FIG. 5B, when the shape of the resist sphere 12 is set to a shape in which a portion less than half of the sphere is exposed as the resist sphere 12, the spring portion 2 is formed based on the shape, as shown in FIG. A spherical shell-type contact 1A having a spring portion 2 with a shape in which less than half of the spherical shell is exposed as shown in FIG.
 それに対し、図7に示すように、球体の半分を越える部分がレジスト球体12として露出した形状にレジスト球体12の形状が設定された場合、レジスト球体12の大円2c部分が露出することになるので、それに基づいてばね部2を形成すれば、図2および図3に示すような、ばね部2の大円2c部分を屈曲部とする球殻型接触子1Aを形成することができる。 On the other hand, as shown in FIG. 7, when the shape of the resist sphere 12 is set to a shape in which a portion exceeding half of the sphere is exposed as the resist sphere 12, the great circle 2 c portion of the resist sphere 12 is exposed. Therefore, if the spring portion 2 is formed based on this, a spherical shell type contact 1A having a bent portion of the great circle 2c portion of the spring portion 2 as shown in FIGS. 2 and 3 can be formed.
 図7に示すように、レジスト球体12A、12Bの高さが2種類以上ある場合、レジスト球体12A、12Bの高さはレジスト円柱11A、11Bの直径に基づいて決定すればよい。つまり、レジスト円柱11A、11Bの高さやその熱硬化条件を同一に設定し、レジスト円柱11A、11Bの直径のみを変更すれば、レジスト球体12A、12Bの高さが調整できる。レジスト球体12A、12Bの高さを変えるためにレジスト円柱11A、11Bの高さを変えることはレジスト円柱11A、11Bを作成するためのレジスト膜の厚さを適宜変更しなければならず、煩雑な工程を強いられる。また、レジスト球体12A、12Bの高さを変えるために熱硬化条件を変えることは同一の配線板4において採用することが困難である。それに対し、レジスト円柱11A、11Bの直径のみを変更することは、レジスト円柱11A、11Bの形成時にその直径を変更すればよいだけであるから容易である。したがって、レジスト球体12A、12Bの高さをレジスト円柱11A、11Bの直径に基づいて決定すれば、同一の配線板4上に高さの異なるレジスト球体12A、12Bを同時かつ容易に形成することができる。 As shown in FIG. 7, when there are two or more types of resist spheres 12A and 12B, the height of the resist spheres 12A and 12B may be determined based on the diameters of the resist cylinders 11A and 11B. That is, the height of the resist spheres 12A and 12B can be adjusted by setting the height of the resist cylinders 11A and 11B and the thermosetting conditions to be the same and changing only the diameter of the resist cylinders 11A and 11B. To change the height of the resist cylinders 11A and 11B in order to change the height of the resist spheres 12A and 12B, the thickness of the resist film for forming the resist cylinders 11A and 11B must be changed appropriately, which is complicated. Forced process. Further, it is difficult to adopt the same wiring board 4 to change the thermosetting conditions in order to change the height of the resist spheres 12A and 12B. On the other hand, it is easy to change only the diameters of the resist cylinders 11A and 11B because it is only necessary to change the diameter when forming the resist cylinders 11A and 11B. Therefore, if the heights of the resist spheres 12A and 12B are determined based on the diameters of the resist cylinders 11A and 11B, the resist spheres 12A and 12B having different heights can be simultaneously and easily formed on the same wiring board 4. it can.
 そして、ばね部形成工程におけるばね材の薄膜のパターン形成法についても、図8A~Cに示すように、めっき膜22のパターン形成法を採用しているので、ばね部2の頂部2tに貫通孔5を有する球殻型接触子1Aを容易に作成することができる。また、ばね部2の厚さを容易に厚くすることが可能になるため、厚さ設定を容易に行なうことができる。ばね部2の頂部2tに貫通孔5を有する球殻型接触子1Aは、頂部2tの貫通孔5によって球殻型接触子1Aの接触部分が点接触から円環接触に変更になるので、球殻型接触子1Aの初期接触面積が拡大し、球殻型接触子1Aの接触対象であるウェハ電極と容易に接触させることができる。 As for the pattern forming method of the spring material thin film in the spring portion forming step, as shown in FIGS. 8A to 8C, the pattern forming method of the plating film 22 is adopted, so that a through hole is formed in the top portion 2t of the spring portion 2. 1A can be easily produced. In addition, since the thickness of the spring portion 2 can be easily increased, the thickness can be easily set. Since the contact portion of the spherical shell contact 1A is changed from a point contact to an annular contact by the through hole 5 of the top 2t, the spherical shell contact 1A having the through hole 5 at the top 2t of the spring portion 2 The initial contact area of the shell-type contact 1A is enlarged, and it can be easily brought into contact with the wafer electrode that is the contact target of the spherical shell-type contact 1A.
 次に、第2の実施形態の球殻型接触子1Bを説明する。図10は第2の実施形態の球殻型接触子1Bを示す斜視図であり、図11は第2の実施形態の球殻型接触子1Bを示す平面図である。 Next, the spherical shell contact 1B of the second embodiment will be described. FIG. 10 is a perspective view showing a spherical shell contact 1B of the second embodiment, and FIG. 11 is a plan view showing the spherical shell contact 1B of the second embodiment.
 第2の実施形態の球殻型接触子1Bは、図10および図11に示すように、第1の実施形態と同様、ばね部2および鍔部3を備えており、プローブカードに用いられる配線板4の表面4aにアレイ状に複数個配置されている。 As shown in FIGS. 10 and 11, the spherical shell contact 1 </ b> B of the second embodiment includes a spring portion 2 and a flange portion 3 as in the first embodiment, and is used for a probe card. A plurality of arrays are arranged on the surface 4 a of the plate 4.
 ばね部2の貫通孔5以外の部分および鍔部3については第1の実施形態と同様である。 The part other than the through hole 5 of the spring part 2 and the flange part 3 are the same as those in the first embodiment.
 ばね部2に形成される貫通孔6は、ばね部2の底部2b周縁において台形状に4個(複数個)形成されている。この4個の貫通孔6は、90度間隔で配置することにより、ばね部2の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に配置されている。 Four (a plurality) of through holes 6 formed in the spring portion 2 are formed in a trapezoidal shape at the periphery of the bottom portion 2 b of the spring portion 2. The four through-holes 6 are arranged in a rotationally symmetrical manner with an imaginary axis passing through the apex of the spring portion 2 in the height direction as an axis of symmetry by being arranged at intervals of 90 degrees.
 次に、第2の実施形態の球殻型接触子1Bの製造方法を説明する。 Next, a method for manufacturing the spherical shell contact 1B of the second embodiment will be described.
 第2の実施形態の球殻型接触子1Bは、レジスト柱形成工程、レジスト球体形成工程、ばね部形成工程およびレジスト球体除去工程を順に経て、製造される。ばね部形成工程以外の工程については、第1の実施形態と同様である。また、ばね部形成工程におけるばね材の薄膜のパターン形成法は、図12A~Cに示すように、シード膜形成工程、レジスト突起形成工程、めっき工程、レジスト除去工程およびシード膜除去工程を備えており、シード膜形成工程およびシード膜除去工程については第1の実施形態と同様である。 The spherical shell contactor 1B of the second embodiment is manufactured through a resist column forming step, a resist sphere forming step, a spring portion forming step, and a resist sphere removing step in this order. The steps other than the spring portion forming step are the same as those in the first embodiment. Further, as shown in FIGS. 12A to 12C, the spring material thin film pattern forming method in the spring portion forming process includes a seed film forming process, a resist protrusion forming process, a plating process, a resist removing process, and a seed film removing process. The seed film formation step and the seed film removal step are the same as those in the first embodiment.
 レジスト突起形成工程においては、図12Aに示すように、シード膜形成工程においてシード膜21が形成されたレジスト球体12の底部2b周縁にレジスト用樹脂を用いてレジスト突起15を4個(複数個)形成する。4個のレジスト突起15は、90度間隔に配置されることにより、レジスト球体12の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に形成されている。 In the resist protrusion forming step, as shown in FIG. 12A, four (a plurality) resist protrusions 15 are formed using resist resin on the periphery of the bottom 2b of the resist sphere 12 on which the seed film 21 is formed in the seed film forming step. Form. The four resist protrusions 15 are arranged at 90-degree intervals, so that they are formed rotationally symmetric with a virtual axis passing through the apex of the resist sphere 12 in the height direction as a symmetry axis.
 めっき工程においては、図12Bに示すように、レジスト突起15が形成されたレジスト球体12の表面に対してレジスト突起15の高さよりも薄いめっき膜22をめっき形成することにより、90度間隔に配置された4個の貫通孔6を有するばね部2をレジスト球体12の表面に形成する。これら4個のばね部2の貫通孔6は、ばね部2の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に配置される。 In the plating step, as shown in FIG. 12B, a plating film 22 that is thinner than the height of the resist protrusion 15 is formed on the surface of the resist sphere 12 on which the resist protrusion 15 is formed, thereby arranging them at intervals of 90 degrees. The spring portion 2 having the four through-holes 6 is formed on the surface of the resist sphere 12. The through holes 6 of these four spring portions 2 are arranged rotationally symmetrically with an imaginary axis passing through the apex of the spring portion 2 in the height direction as a symmetry axis.
 レジスト除去工程においては、図12Cに示すように、レジスト除去剤を用いて、レジスト突起15とレジスト球体12の間に残したレジスト膜14とを除去する。図8のレジストピン13がレジスト突起15に変更になった点以外は第1の実施形態のレジスト除去工程と同様である。 In the resist removal step, as shown in FIG. 12C, the resist film 14 left between the resist protrusions 15 and the resist spheres 12 is removed using a resist remover. Except for the point that the resist pin 13 in FIG. 8 is changed to the resist protrusion 15, it is the same as the resist removing process of the first embodiment.
 次に、第2の実施形態の球殻型接触子1Bの作用を説明する。 Next, the operation of the spherical shell contact 1B of the second embodiment will be described.
 第2の実施形態の球殻型接触子1Bにおいては、図10および図11に示すように、ばね部2の底部2b周縁において90度間隔に配置された4個の貫通孔6がばね部2に形成されている。これら4個の貫通孔6は、ばね部2の弾性力を弱めてばね部2を高さ方向に収縮しやすくすることを1つの目的として設けられている。しかし、これら4個の貫通孔6は、ばね部2の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に形成されているため、ばね部2の形状的対称性が保たれている。その結果、球殻型接触子1Bにおけるばね弾性力の対称性を崩すことなく、貫通孔6の大きさや個数に応じてばね部2の弾性力を調整することができる。 In the spherical shell contact 1B of the second embodiment, as shown in FIGS. 10 and 11, the four through holes 6 arranged at intervals of 90 degrees on the periphery of the bottom 2b of the spring 2 are spring portions 2. Is formed. These four through holes 6 are provided for the purpose of weakening the elastic force of the spring part 2 and making the spring part 2 easily contract in the height direction. However, these four through-holes 6 are formed rotationally symmetric with a virtual axis passing through the apex of the spring part 2 in the height direction as the symmetry axis, so that the geometric symmetry of the spring part 2 is maintained. Yes. As a result, the elastic force of the spring portion 2 can be adjusted according to the size and number of the through holes 6 without breaking the symmetry of the spring elastic force in the spherical shell contact 1B.
 次に、第2の実施形態の球殻型接触子1Bの製造方法の作用を説明する。 Next, the operation of the method for manufacturing the spherical shell contact 1B of the second embodiment will be described.
 第2の実施形態の球殻型接触子1Bの製造方法においては、ばね部形成工程が第1の実施形態と異なっている。また、ばね部形成工程におけるばね材の薄膜のパターン形成法については、レジストピン13がレジスト突起15に変更になった点において第1の実施形態と異なっている。 In the manufacturing method of the spherical shell contact 1B of the second embodiment, the spring forming step is different from that of the first embodiment. Further, the pattern forming method of the spring material thin film in the spring portion forming step is different from that of the first embodiment in that the resist pin 13 is changed to the resist protrusion 15.
 ばね材の薄膜のパターン形成法のレジスト突起形成工程においては、90度間隔に配置された4個のレジスト突起15がレジスト球体12の底部2b周縁に配置されている。4個のレジスト突起15は、レジスト球体12の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に複数個形成されているため、レジスト球体12の表面にばね部2を形成すると、4個のレジスト突起15に基づいて90度間隔に配置された4個の貫通孔6を有するばね部2が形成される。そのため、球殻型接触子1Bにおけるばね弾性力の対称性を崩すことなく、貫通孔6の大きさや個数に応じてばね部2の弾性力を調整することができるばね部2を形成することができる。 In the resist projection forming step of the spring material thin film pattern forming method, four resist projections 15 arranged at intervals of 90 degrees are arranged on the periphery of the bottom portion 2b of the resist sphere 12. Since the four resist protrusions 15 are formed in a rotationally symmetrical manner with a virtual axis passing through the apex of the resist sphere 12 in the height direction as a symmetry axis, when the spring portion 2 is formed on the surface of the resist sphere 12, A spring portion 2 having four through holes 6 arranged at intervals of 90 degrees based on the four resist protrusions 15 is formed. Therefore, it is possible to form the spring portion 2 that can adjust the elastic force of the spring portion 2 according to the size and number of the through holes 6 without breaking the symmetry of the spring elastic force in the spherical shell contact 1B. it can.
 次に、第3の実施形態の球殻型接触子1Cを説明する。図13は第3の実施形態の球殻型接触子1Cの斜視図を示しており、図14は第3の実施形態の球殻型接触子1Cの平面図を示している。 Next, a spherical shell contact 1C of the third embodiment will be described. FIG. 13 shows a perspective view of a spherical shell contact 1C of the third embodiment, and FIG. 14 shows a plan view of the spherical shell contact 1C of the third embodiment.
 第3の実施形態の球殻型接触子1Cは、図13および図14に示すように、第1の実施形態と同様、ばね部2および鍔部3を備えており、プローブカードに用いられる配線板4の表面4aにアレイ状に複数個配置されている。 As shown in FIGS. 13 and 14, the spherical shell type contact 1 </ b> C of the third embodiment includes a spring portion 2 and a flange portion 3, as in the first embodiment, and is used for a probe card. A plurality of arrays are arranged on the surface 4 a of the plate 4.
 第3の実施形態におけるばね部2の貫通孔5以外の部分および鍔部3については、第1の実施形態と同様である。 The part other than the through hole 5 of the spring portion 2 and the flange portion 3 in the third embodiment are the same as those in the first embodiment.
 ばね部2には、第1の実施形態とは異なり、貫通孔5ではなく、4個(複数個)の貫通溝7が形成されている。これら4個の貫通溝7は、ばね部2の頂部2tからその底部2bに向かってスリット状に形成されており、かつ、ばね部2の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に配置されている。貫通溝7の幅については、図13および図14に示すように、ばね部2の頂部2tからその底部2bに向かって、その幅寸法が拡大するように設定されていても良いし、均一の幅寸法になっていても良い。 Unlike the first embodiment, the spring portion 2 is formed with four (a plurality of) through grooves 7 instead of the through holes 5. These four through-grooves 7 are formed in a slit shape from the top 2t of the spring portion 2 toward the bottom 2b, and an imaginary axis passing through the apex of the spring portion 2 in the height direction is used as an axis of symmetry. Arranged in rotational symmetry. As shown in FIGS. 13 and 14, the width of the through groove 7 may be set so that the width dimension increases from the top 2 t of the spring portion 2 toward the bottom 2 b, or uniform. It may be a width dimension.
 また、貫通溝7は、図13および図14に示すように、直線状に形成されていてもよいし、図15および図16に示すように、ばね部2の頂部2tを中心にして渦巻状に形成されていてもよい。 Further, the through groove 7 may be formed in a straight line as shown in FIGS. 13 and 14, or as shown in FIGS. 15 and 16, a spiral shape with the top 2t of the spring part 2 as the center. It may be formed.
 次に、第3の実施形態の球殻型接触子1Cの製造方法を説明する。 Next, a method for manufacturing the spherical shell contact 1C of the third embodiment will be described.
 第3の実施形態の球殻型接触子1Cは、レジスト柱形成工程、レジスト球体形成工程、ばね部形成工程およびレジスト球体除去工程を順に経て、製造される。ばね部形成工程以外の工程については、第1の実施形態と同様である。また、ばね部形成工程におけるばね材の薄膜のパターン形成法は、図17A~Cに示すように、シード膜形成工程、レジスト筋形成工程、めっき工程、レジスト除去工程およびシード膜除去工程を備えており、シード膜形成工程およびシード膜除去工程については第1の実施形態と同様である。 The spherical shell-type contact 1C of the third embodiment is manufactured through a resist pillar forming step, a resist sphere forming step, a spring portion forming step, and a resist sphere removing step in this order. The steps other than the spring portion forming step are the same as those in the first embodiment. Further, as shown in FIGS. 17A to 17C, the pattern forming method of the spring material thin film in the spring portion forming process includes a seed film forming process, a resist streak forming process, a plating process, a resist removing process, and a seed film removing process. The seed film formation step and the seed film removal step are the same as those in the first embodiment.
 レジスト筋形成工程においては、図17Aに示すように、シード膜形成工程においてシード膜21が形成されたレジスト球体12の頂部からその底部2bにかけて、レジスト用樹脂を用いて4個(複数個)のレジスト筋16を形成する。4個のレジスト筋16は、レジスト球体12の表面から線状に隆起している。また、4個のレジスト筋16は、90度間隔に配置されることにより、レジスト球体12の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に配置されている。レジスト筋16の幅については、レジスト球体12の頂部からその底部2bに向かって、その幅寸法が拡大するように設定されていても良いし、均一の幅寸法になっていても良い。 In the resist streak forming step, as shown in FIG. 17A, four (plural) pieces of resist resin are used from the top to the bottom 2b of the resist sphere 12 on which the seed film 21 is formed in the seed film forming step. Resist stripes 16 are formed. The four resist stripes 16 bulge linearly from the surface of the resist sphere 12. Further, the four resist stripes 16 are arranged at 90 degree intervals, so that they are arranged rotationally symmetrically with a virtual axis passing through the apex of the resist sphere 12 in the height direction as a symmetry axis. The width of the resist stripe 16 may be set so that its width dimension increases from the top of the resist sphere 12 toward its bottom 2b, or it may be a uniform width.
 めっき工程においては、図17Bに示すように、レジスト筋16が形成されたレジスト球体12の表面に対してレジスト筋16の高さよりも薄いめっき膜22をめっき形成する。これにより、レジスト筋16に基づいて90度間隔に4個配置された貫通溝7を有するばね部2をレジスト球体12の表面に形成する。4個の貫通溝7は、ばね部2の頂部2tからその底部2bに向かってスリット状に形成され、かつ、ばね部2の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に形成されている。貫通溝7はレジスト筋16に基づいて形成されているため、レジスト筋16の幅の設定と同様に貫通溝7の幅寸法が設定されている。 In the plating step, as shown in FIG. 17B, a plating film 22 thinner than the height of the resist streaks 16 is formed on the surface of the resist sphere 12 on which the resist streaks 16 are formed. As a result, the spring portion 2 having four through grooves 7 arranged at intervals of 90 degrees based on the resist stripes 16 is formed on the surface of the resist sphere 12. The four through grooves 7 are formed in a slit shape from the top 2t of the spring portion 2 toward the bottom portion 2b, and are rotationally symmetric with a virtual axis passing through the apex of the spring portion 2 in the height direction as a symmetry axis. Is formed. Since the through groove 7 is formed based on the resist stripe 16, the width dimension of the through groove 7 is set similarly to the setting of the width of the resist stripe 16.
 レジスト除去工程においては、図17Cに示すように、レジスト除去剤を用いて、レジスト筋16とレジスト球体12の間に残したレジスト膜14とを除去する。図8のレジストピン13がレジスト筋16に変更になった点以外は第1の実施形態のレジスト除去工程と同様である。 In the resist removal step, as shown in FIG. 17C, the resist film 14 left between the resist streaks 16 and the resist spheres 12 is removed using a resist remover. Except for the point that the resist pin 13 of FIG. 8 is changed to the resist stripe 16, it is the same as the resist removing process of the first embodiment.
 なお、レジスト筋16は、レジスト球体12の頂部を中心にして直線状に形成されていても良いし、渦巻状に形成されていてもよい。直線状のレジスト筋16に基づいて形成されたばね部2の貫通溝7は、図13および図14に示すように、ばね部2の頂部2tを中心にして直線状に形成される。また、渦巻状のレジスト筋16に基づいて形成されたばね部2の貫通溝7は、図15および図16に示すように、ばね部2の頂部2tを中心にして渦巻状に形成される。 Note that the resist stripes 16 may be formed linearly around the top of the resist sphere 12 or may be formed in a spiral shape. As shown in FIGS. 13 and 14, the through groove 7 of the spring portion 2 formed based on the linear resist stripes 16 is formed in a straight line with the top portion 2 t of the spring portion 2 as the center. Further, the through groove 7 of the spring portion 2 formed based on the spiral resist stripe 16 is formed in a spiral shape with the top portion 2t of the spring portion 2 as the center, as shown in FIGS.
 次に、第3の実施形態の球殻型接触子1Cの作用を説明する。 Next, the operation of the spherical shell contact 1C of the third embodiment will be described.
 第3の実施形態の球殻型接触子1Cのばね部2においては、図13および図14に示すように、4個の貫通溝7が形成されている。これら4個の貫通溝7は、ばね部2の頂部2tからその底部2bに向かってスリット状に形成されているので、貫通溝7の幅、長さまたは個数に応じてばね部2の弾性力を調整することができる。 In the spring portion 2 of the spherical shell contact 1C of the third embodiment, as shown in FIGS. 13 and 14, four through grooves 7 are formed. Since these four through grooves 7 are formed in a slit shape from the top 2t of the spring part 2 toward the bottom part 2b, the elastic force of the spring part 2 depends on the width, length or number of the through grooves 7 Can be adjusted.
 また、これら4個の貫通溝7は、90度間隔に配置されることにより、ばね部2の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に配置されている。貫通溝7が対称配置されていない場合、ばね部2の位置に応じて垂直方向(高さ方向)および水平方向への弾力性に違いが生じてしまうが、貫通溝7を対称配置することにより、球殻型接触子1Cにおけるばね弾性力の対称性を崩すことなく、ばね部2の弾性力を調整することができる。 Further, these four through grooves 7 are arranged at 90 degree intervals, so that they are arranged rotationally symmetrically with an imaginary axis passing through the apex of the spring portion 2 in the height direction as a symmetry axis. When the through grooves 7 are not symmetrically arranged, the elasticity in the vertical direction (height direction) and the horizontal direction varies depending on the position of the spring portion 2, but by arranging the through grooves 7 symmetrically, The elastic force of the spring portion 2 can be adjusted without breaking the symmetry of the spring elastic force in the spherical shell contact 1C.
 さらに、これら4個の貫通溝7が、図15および図16に示すように、ばね部2の頂部2tを中心にして渦巻状に形成されている場合、ばね部2が渦巻形状になっている分だけその頂部2tから底部2bまでの距離が長くなる。ばね部2の長さが長くなれば、ばね部2に加わる疲労がその長さの分だけ緩和されるので、疲労によるばね部2の永久変形を生じにくくさせることができる。 Further, as shown in FIGS. 15 and 16, when the four through grooves 7 are formed in a spiral shape around the top 2t of the spring portion 2, the spring portion 2 has a spiral shape. The distance from the top 2t to the bottom 2b is increased by that amount. If the length of the spring portion 2 is increased, the fatigue applied to the spring portion 2 is alleviated by the length, so that the permanent deformation of the spring portion 2 due to fatigue can be made difficult to occur.
 次に、第3の実施形態の球殻型接触子1Cの製造方法の作用を説明する。 Next, the operation of the method for manufacturing the spherical shell contact 1C of the third embodiment will be described.
 第3の実施形態の球殻型接触子1Cの製造方法においては、ばね部形成工程が第1の実施形態と異なっている。また、ばね部形成工程におけるばね材の薄膜のパターン形成法については、図17A~Cに示すように、レジストピン13がレジスト筋16に変更になった点において第1の実施形態と異なっている。 In the manufacturing method of the spherical shell type contactor 1C of the third embodiment, the spring forming step is different from that of the first embodiment. The pattern forming method of the spring material thin film in the spring portion forming step is different from that of the first embodiment in that the resist pin 13 is changed to the resist stripe 16 as shown in FIGS. 17A to 17C. .
 ばね材の薄膜のパターン形成法におけるレジスト筋形成工程においては、図17Aに示すように、レジスト球体12の頂部からその底部2bにかけて90度間隔に配置されたレジスト筋16が形成されている。また、その後のめっき工程においては、図17Bに示すように、4個の貫通溝7を有するばね部2がレジスト球体12の表面に形成される。4個の貫通溝7は、レジスト球体12の表面に形成された4個のレジスト筋16に基づいて形成されているので、ばね部2の頂部2tからその底部2bに向かってスリット状に形成され、かつ、ばね部2の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に配置される。そのため、球殻型接触子1Cにおけるばね弾性力の対称性を崩すことなく、貫通溝7の幅、長さまたは個数に応じてばね部2の弾性力を調整することができる。 In the resist streak forming step in the pattern forming method for the thin film of spring material, as shown in FIG. 17A, resist streaks 16 arranged at intervals of 90 degrees are formed from the top of the resist sphere 12 to its bottom 2b. Further, in the subsequent plating step, as shown in FIG. 17B, the spring portion 2 having the four through grooves 7 is formed on the surface of the resist sphere 12. The four through grooves 7 are formed on the basis of the four resist stripes 16 formed on the surface of the resist sphere 12, so that they are formed in a slit shape from the top 2 t of the spring portion 2 toward the bottom 2 b thereof. And it arrange | positions in rotational symmetry about the virtual axis which passes the vertex of the spring part 2 in a height direction as a symmetry axis. Therefore, the elastic force of the spring portion 2 can be adjusted according to the width, length, or number of the through grooves 7 without breaking the symmetry of the spring elastic force in the spherical shell contact 1C.
 また、これら4個のレジスト筋16は、レジスト球体12の頂部を中心にして渦巻状に形成されていてもよい。そうすることにより、レジスト筋16に基づいて形成されるこれら4個の貫通溝7は、ばね部2の頂部2tを中心にして渦巻状に形成される。その結果、上記の通り、ばね部2の頂部2tから底部2bまでの距離が長くなるので、疲労によるばね部2の永久変形を生じにくくさせることができる。 Further, these four resist stripes 16 may be formed in a spiral shape with the top of the resist sphere 12 as the center. By doing so, these four through grooves 7 formed on the basis of the resist stripes 16 are formed in a spiral shape with the top portion 2t of the spring portion 2 as the center. As a result, as described above, since the distance from the top 2t to the bottom 2b of the spring portion 2 is increased, it is possible to prevent permanent deformation of the spring portion 2 due to fatigue.
 次に、第4の実施形態の球殻型接触子1Dを説明する。図18は第4の実施形態の球殻型接触子1Dの斜視図を示しており、図19は第4の実施形態の球殻型接触子1Dの縦断面図を示している。 Next, a spherical shell contact 1D of the fourth embodiment will be described. FIG. 18 shows a perspective view of a spherical shell contact 1D of the fourth embodiment, and FIG. 19 shows a longitudinal sectional view of the spherical shell contact 1D of the fourth embodiment.
 第4の実施形態の球殻型接触子1Dは、図18および図19に示すように、第1の実施形態と同様、ばね部2および鍔部3を備えており、プローブカードに用いられる配線板4の表面4aにアレイ状に複数個配置されている。 As shown in FIGS. 18 and 19, the spherical shell contact 1D of the fourth embodiment includes a spring portion 2 and a flange portion 3 as in the first embodiment, and is used for a probe card. A plurality of arrays are arranged on the surface 4 a of the plate 4.
 第4の実施形態のばね部2に貫通溝7が追加して形成されている以外の点については、第1の実施形態と同様である。 The points other than the addition of the through groove 7 to the spring portion 2 of the fourth embodiment are the same as in the first embodiment.
 第4の実施形態のばね部2においては、図18および図19に示すように、貫通孔5がばね部2の頂部2tであって貫通孔5の中心5cがばね部2の頂部中央2tcからずれた位置に1個形成されている(図4を参照)。また、4個(複数個)の貫通溝7は、第3の実施形態と同様、90度間隔に配置されている。これら4個の貫通溝7は、ばね部2の頂部2tからその底部2bに向かってスリット状に形成されており、かつ、ばね部2の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に配置されている。これら1個の貫通孔5と4個の貫通溝7の形成により、ばね部2は、独立した4個のばね片9A~9Dに分割される。また、その頂部2tにずれて位置する1個の貫通孔5によって、独立した4個のばね片9A~9Dの高さはそれぞれ異なっている。 In the spring portion 2 of the fourth embodiment, as shown in FIGS. 18 and 19, the through hole 5 is the top portion 2 t of the spring portion 2, and the center 5 c of the through hole 5 is from the top center 2 tc of the spring portion 2. One is formed at a shifted position (see FIG. 4). Further, the four (plurality) of through grooves 7 are arranged at intervals of 90 degrees as in the third embodiment. These four through-grooves 7 are formed in a slit shape from the top 2t of the spring portion 2 toward the bottom 2b, and an imaginary axis passing through the apex of the spring portion 2 in the height direction is used as an axis of symmetry. Arranged in rotational symmetry. By forming these one through hole 5 and four through grooves 7, the spring portion 2 is divided into four independent spring pieces 9A to 9D. Also, the heights of the four independent spring pieces 9A to 9D are different from each other by the single through hole 5 that is shifted from the top 2t.
 なお、第4の実施形態の球殻型接触子1Dの製造方法については、第1の実施形態の製造方法を利用することによって貫通孔5が形成され、第3の実施形態の製造方法を利用することによって貫通溝7が形成されるので、第1の実施形態の製造方法および第3の実施形態の製造方法を足し合わせた製造方法になる。その際、めっき工程より前であれば、レジストピン13およびレジスト筋16が同時に形成されても良いし、どちらか先に形成されても良い。 In addition, about the manufacturing method of the spherical shell type contactor 1D of 4th Embodiment, the through-hole 5 is formed by utilizing the manufacturing method of 1st Embodiment, and the manufacturing method of 3rd Embodiment is utilized. By doing so, the through groove 7 is formed, so that the manufacturing method is obtained by adding the manufacturing method of the first embodiment and the manufacturing method of the third embodiment. At that time, as long as it is before the plating step, the resist pin 13 and the resist stripe 16 may be formed at the same time, or may be formed first.
 次に、第4の実施形態の球殻型接触子1Dの作用を説明する。 Next, the operation of the spherical shell contact 1D of the fourth embodiment will be described.
 第4の実施形態の球殻型接触子1Dのばね部2においては、図18および図19に示すように、前述の通り、頂部中央2tcからずらした1個の貫通孔5および90度間隔に配置した4個の貫通溝7を有している。また、これらの貫通孔5および貫通溝7により、ばね部2が高さの異なる独立した4個のばね片9A~9Dに分割されている。これら独立した4個のばね片9A~9Dによって、球殻型接触子1Dのばね部2の弾性特性が他の実施形態とは異なる挙動を示す。 In the spring portion 2 of the spherical shell type contact 1D of the fourth embodiment, as shown in FIGS. 18 and 19, as described above, the one through hole 5 shifted from the top center 2tc and the interval of 90 degrees. There are four through grooves 7 arranged. Further, the spring portion 2 is divided into four independent spring pieces 9A to 9D having different heights by the through holes 5 and the through grooves 7. By these four independent spring pieces 9A to 9D, the elastic characteristics of the spring portion 2 of the spherical shell contactor 1D behave differently from the other embodiments.
 図20は、第4の実施形態の球殻型接触子1Dにおける応力-ひずみ線図を示している。図20に示した1~4の数字はウェハ電極に接触したばね片9A~9Dの接触個数を示している。ばね部2において独立した4個のばね片9A~9Dの高さが異なると、ウェハ電極の接触するときに最も高さの高いばね片9Aから高い順に接触していく。ばね片9A~9Dの接触個数が1個の場合、少しの応力でばね片9A~9Dにひずみが生じる。しかし、ばね片9A~9Dの接触個数が2個、3個、4個と増加していくごとに、ばね片9A~9Dをひずませるために大きな応力が必要になる。この現象は、ばね片9A~9Dの接触個数に応じて段階的に変化する。そのため、ばね片9A~9Dの接触初期段階においてはばね部2が容易に湾曲し、ばね部2の押込み量が大きくなるほどばね片9A~9Dの接触個数が多くなってばね部2の弾性力も段階的に増加するので、ウェハに形成された複数の電極間において高さが異なってしまった場合であっても、すべての電極に対して複数の球殻型接触子1Dをそれぞれ適切に接触させることができる。 FIG. 20 shows a stress-strain diagram in the spherical shell contact 1D of the fourth embodiment. The numbers 1 to 4 shown in FIG. 20 indicate the number of contacts of the spring pieces 9A to 9D that are in contact with the wafer electrode. If the heights of the four independent spring pieces 9A to 9D in the spring portion 2 are different, they come into contact in descending order from the highest spring piece 9A when contacting the wafer electrode. When the number of contacts of the spring pieces 9A to 9D is one, the spring pieces 9A to 9D are distorted with a slight stress. However, as the number of contacts of the spring pieces 9A to 9D increases to 2, 3, and 4, a large stress is required to distort the spring pieces 9A to 9D. This phenomenon changes stepwise depending on the number of contacts of the spring pieces 9A to 9D. Therefore, in the initial contact stage of the spring pieces 9A to 9D, the spring part 2 is easily bent, and as the pushing amount of the spring part 2 increases, the number of contacts of the spring pieces 9A to 9D increases, and the elastic force of the spring part 2 also increases. Therefore, even when the heights of the plurality of electrodes formed on the wafer are different, the plurality of spherical shell-type contacts 1D are appropriately brought into contact with all the electrodes, respectively. Can do.
 すなわち、本実施形態の球殻型接触子によれば、複雑な構造を有しない部分埋設球殻形状のばね部2が垂直方向(高さ方向)および水平方向に対して均等なばね弾性力を発揮するという作用を生じるので、外力の印加方向の方向性に依存せずに大きな弾性力を発揮し、かつ、それを簡易な構造によって実現することができるという効果を奏する。 That is, according to the spherical shell-type contact of this embodiment, the partially embedded spherical shell-shaped spring part 2 having no complicated structure has a uniform spring elastic force in the vertical direction (height direction) and the horizontal direction. This produces the effect of exerting a large elastic force without depending on the directionality of the direction in which the external force is applied, and can be realized with a simple structure.
 また、本実施形態の球殻型接触子の製造方法によれば、球面曲率に基づいて湾曲する球殻型接触子のばね部2が形成されるという作用を生じるので、垂直方向(高さ方向)および水平方向に加わる外力に適切に対応する上記の球殻型接触子を正確かつ容易に製造することができるという効果を奏する。 Further, according to the method of manufacturing the spherical shell contactor of the present embodiment, the spring portion 2 of the spherical shell contactor that is curved based on the spherical curvature is formed, so that the vertical direction (height direction) ) And the above-mentioned spherical shell-type contactor that appropriately corresponds to the external force applied in the horizontal direction can be produced accurately and easily.
 なお、本発明は、前述した実施形態などに限定されるものではなく、必要に応じて種々の変更が可能である。 It should be noted that the present invention is not limited to the above-described embodiment, and various modifications can be made as necessary.
 例えば、ばね部2に設ける貫通孔と貫通溝7については、それらの個数および形成場所によって様々な実施形態を採用することができる。 For example, with respect to the through holes and the through grooves 7 provided in the spring portion 2, various embodiments can be adopted depending on the number and place of formation.
 図21は、第1および第2の実施形態を足し合わせた実施形態の球殻型接触子1Eになっている。すなわち、ばね部2の頂部2tに1個の円形の貫通孔5を設けるとともに、ばね部2の底部2b周辺に4個の矩形状の貫通孔6を設けた実施形態の球殻型接触子1Eになっている。 FIG. 21 shows a spherical shell-type contact 1E according to an embodiment obtained by adding the first and second embodiments. That is, the spherical shell-type contact 1E according to the embodiment in which one circular through hole 5 is provided at the top 2t of the spring part 2 and four rectangular through holes 6 are provided around the bottom 2b of the spring part 2. It has become.
 また、図22は、第2および第3の実施形態を足し合わせた実施形態の球殻型接触子1Fになっている。すなわち、ばね部2の底部2b周辺に4個の矩形状の貫通孔6を設けるとともに、ばね部2の頂部2tから底部2bにむかって90度間隔に配置された4個の貫通溝7を設けた実施形態の球殻型接触子1Fになっている。 FIG. 22 shows a spherical shell type contact 1F according to an embodiment obtained by adding the second and third embodiments. That is, four rectangular through holes 6 are provided around the bottom 2b of the spring portion 2, and four through grooves 7 arranged at intervals of 90 degrees from the top 2t of the spring 2 to the bottom 2b are provided. In this embodiment, the spherical shell contact 1F is provided.
 さらに、図23は、第1から第3の実施形態を足し合わせた実施形態の球殻型接触子1Gになっている。すなわち、ばね部2の頂部2tに1個の円形の貫通孔5を設け、ばね部2の底部2b周辺に4個の矩形状の貫通孔6を設けるとともに、ばね部2の頂部2tから底部2bにむかって90度間隔に配置された4個の貫通溝7を設けた実施形態の球殻型接触子1Gになっている。 Further, FIG. 23 shows a spherical shell-type contact 1G according to an embodiment obtained by adding the first to third embodiments. That is, one circular through hole 5 is provided at the top 2t of the spring portion 2, four rectangular through holes 6 are provided around the bottom 2b of the spring 2, and the top 2t to the bottom 2b of the spring 2 are provided. Thus, the spherical shell contact 1G of the embodiment in which four through grooves 7 arranged at intervals of 90 degrees are provided.
 また、本実施形態の製造方法におけるレジスト柱形成工程については、レジスト柱11が円柱形ではなく、楕円柱形状や、多角柱形状であってもよい。レジスト柱11に多角柱形状を採用する場合は、三角柱形状よりも八角柱形状や十六角柱形状など、多角柱の角数が多くなればなるほど円柱形に近づくので好ましい。また、レジスト球体の高さを調整する場合については、レジスト円柱であれば直径になるが、楕円柱形状のレジスト柱であれば長径または短径、多角柱形状のレジスト柱であればその幅を基準に行なう。 Further, in the resist column forming step in the manufacturing method of the present embodiment, the resist column 11 may not be a columnar shape but may be an elliptical column shape or a polygonal column shape. In the case of adopting a polygonal column shape for the resist column 11, it is preferable that the number of polygonal prisms increases as the number of polygonal columns increases, such as an octagonal column shape or a dodecagonal column shape, rather than a triangular column shape. In the case of adjusting the height of the resist sphere, the diameter is a resist cylinder, but the diameter is long or short if it is an elliptical column, and the width is wide if it is a polygonal column. To the standard.
 1A~1G 球殻型接触子
 2 ばね部
 2b (ばね部の)底部
 2c (ばね部の形状の基になる)球殻体の大円
 2t (ばね部の)頂部
 2tc (ばね部の)頂部中央
 3 鍔部
 4 配線板
 5 (ばね部の頂部に形成された)貫通孔
 5c (ばね部の頂部に形成された)貫通孔の中心
 6 (ばね部の底部に形成された)貫通孔
 7 貫通溝
 9A~9D ばね片
 11、11A、11B レジスト円柱
 12、12A、12B レジスト球体
 13 レジストピン
 15 レジスト突起
 16 レジスト筋
 21 シード膜
 22 めっき膜
1A to 1G Spherical shell type contact 2 Spring part 2b Bottom part of spring 2c Large circle of spherical shell (based on the shape of spring part) 2t Top part of spring part 2tc Top center of spring part 3 鍔 4 Wiring board 5 Through hole 5 c (formed at the top of the spring) 5 c Center of the through hole (formed at the top of the spring) 6 Through hole 7 (formed at the bottom of the spring) 7 Through groove 9A to 9D Spring pieces 11, 11A, 11B Resist cylinders 12, 12A, 12B Resist spheres 13 Resist pins 15 Resist protrusions 16 Resist streaks 21 Seed film 22 Plating film

Claims (16)

  1.  プローブカードに用いられる配線板に対して球殻体の一部が埋設されたような部分埋設球殻形状であって1個もしくは複数の貫通孔または貫通溝が設けられた形状に形成されているばね部を備えている
    ことを特徴とする球殻型接触子。
    It is a partially embedded spherical shell shape in which a part of a spherical shell is embedded in a wiring board used for a probe card, and is formed in a shape provided with one or a plurality of through holes or through grooves. A spherical shell-type contact having a spring portion.
  2.  前記部分埋設球殻形状とは、前記球殻体の半分を越える部分が埋没することにより、前記球殻体の半分に満たない部分が前記ばね部として露出している形状である
    ことを特徴とする請求項1に記載の球殻型接触子。
    The partially embedded spherical shell shape is a shape in which a portion less than half of the spherical shell is exposed as the spring portion by burying a portion exceeding half of the spherical shell. The spherical shell contact according to claim 1.
  3.  前記部分埋設球殻形状とは、前記球殻体の半分に満たない部分が埋没することにより、前記球殻体の半分を越える部分が前記ばね部として露出している形状である
    ことを特徴とする請求項1に記載の球殻型接触子。
    The partially embedded spherical shell shape is a shape in which a portion less than half of the spherical shell body is buried, and a portion exceeding half of the spherical shell body is exposed as the spring portion. The spherical shell contact according to claim 1.
  4.  前記貫通孔は、前記ばね部の頂部に1個形成されている
    ことを特徴とする請求項1に記載の球殻型接触子。
    The spherical shell type contactor according to claim 1, wherein one through hole is formed at a top portion of the spring portion.
  5.  前記貫通孔は、前記ばね部の底部周縁において前記ばね部の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に複数個形成されている
    ことを特徴とする請求項1に記載の球殻型接触子。
    2. The plurality of through holes are formed in a rotationally symmetrical manner with an imaginary axis passing through the apex of the spring portion in the height direction at a peripheral edge of the bottom portion of the spring portion as a symmetry axis. Spherical shell contactor.
  6.  前記貫通溝は、前記ばね部の頂部からその底部に向かってスリット状に形成されており、かつ、前記ばね部の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に複数個配置されている
    ことを特徴とする請求項1に記載の球殻型接触子。
    The through groove is formed in a slit shape from the top of the spring portion toward the bottom thereof, and a plurality of rotational grooves are arranged in a rotationally symmetrical manner with a virtual axis passing through the apex of the spring portion in the height direction. The spherical shell-type contact according to claim 1, wherein the contact is made.
  7.  前記複数個の貫通溝は、前記ばね部の頂部を中心にして渦巻状に形成されている
    ことを特徴とする請求項6に記載の球殻型接触子。
    The spherical shell-type contactor according to claim 6, wherein the plurality of through grooves are formed in a spiral shape around the top of the spring portion.
  8.  前記貫通孔は、前記ばね部の頂部であって前記貫通孔の中心が前記ばね部の頂部中央からずれた位置に1個形成されており、
     前記ばね部は、その頂部にずれて位置する前記1個の貫通孔によって、高さの異なる独立した複数のばね片に分割されている
    ことを特徴とする請求項6に記載の球殻型接触子。
    One through hole is formed at a position where the center of the through hole is deviated from the center of the top of the spring part.
    The spherical shell contact according to claim 6, wherein the spring portion is divided into a plurality of independent spring pieces having different heights by the one through hole that is shifted from the top of the spring portion. Child.
  9.  プローブカードに用いられる配線板の表面にレジスト用熱硬化型樹脂を熱硬化させずに円柱形状、楕円柱形状または多角柱形状に形成したレジスト柱を設けるレジスト柱形成工程と、
     前記レジスト柱を熱硬化して前記レジスト柱を球体の一部が埋設されたような部分埋設球形状に変形させることにより、前記配線板の表面にレジスト球体を形成するレジスト球体形成工程と、
     前記レジスト球体の表面にばね材の薄膜をパターン形成することにより、球殻体の一部が埋設されたような部分埋設球殻形状であって1個もしくは複数の貫通孔または貫通溝が設けられた形状に形成されている球殻型接触子のばね部を前記レジスト球体の表面に形成するばね部形成工程と、
     前記ばね部の貫通孔または貫通溝からレジスト除去剤を供給することにより、前記貫通孔または貫通溝から溶解した前記レジスト球体を除去するレジスト球体除去工程と
    を備えることを特徴とする球殻型接触子の製造方法。
    A resist column forming step of providing a resist column formed in a cylindrical shape, an elliptical column shape or a polygonal column shape without thermosetting the thermosetting resin for resist on the surface of the wiring board used for the probe card;
    Resist sphere formation step of forming a resist sphere on the surface of the wiring board by thermosetting the resist pillar and deforming the resist pillar into a partially embedded sphere shape in which a part of the sphere is embedded;
    By patterning a thin film of a spring material on the surface of the resist sphere, a partially embedded spherical shell shape in which a part of the spherical shell is embedded is provided with one or more through holes or through grooves. A spring part forming step of forming a spring part of a spherical shell type contactor formed in a shape on the surface of the resist sphere;
    And a resist sphere removing step of removing the resist sphere dissolved from the through hole or the through groove by supplying a resist remover from the through hole or the through groove of the spring portion. Child manufacturing method.
  10.  前記レジスト球体の部分埋設球形状とは、前記球体の半分を越える部分が埋没することにより、前記球体の半分に満たない部分が前記レジスト球体として露出している形状である
    ことを特徴とする請求項9に記載の球殻型接触子の製造方法。
    The partially embedded sphere shape of the resist sphere is a shape in which a portion less than half of the sphere is exposed as the resist sphere when a portion exceeding half of the sphere is buried. Item 10. A method for producing a spherical shell contact according to Item 9.
  11.  前記レジスト球体の部分埋設球形状とは、前記球体の半分に満たない部分が埋没することにより、前記球体の半分を越える部分が前記レジスト球体として露出している形状である
    ことを特徴とする請求項9に記載の球殻型接触子の製造方法。
    The partially embedded sphere shape of the resist sphere is a shape in which a portion that is less than half of the sphere is buried and a portion exceeding half of the sphere is exposed as the resist sphere. Item 10. A method for producing a spherical shell contact according to Item 9.
  12.  前記ばね部形成工程におけるばね材の薄膜のパターン形成法は、
     レジスト用樹脂をピン形状にしたレジストピンを前記レジスト球体の頂部に形成するレジストピン形成工程と、
     前記レジストピンが形成された前記レジスト球体の表面に対して前記レジストピンの高さよりも薄いめっき膜をめっき形成することにより、頂部に1個の貫通孔を有する前記ばね部を前記レジスト球体の表面に形成するめっき工程と
    を有していることを特徴とする請求項9に記載の球殻型接触子の製造方法。
    The method of forming a thin film pattern of a spring material in the spring portion forming step is as follows:
    A resist pin forming step of forming a resist pin in the shape of a pin for resist resin on the top of the resist sphere;
    By plating a plating film thinner than the height of the resist pin on the surface of the resist sphere on which the resist pin is formed, the spring portion having one through hole at the top is formed on the surface of the resist sphere. The method for producing a spherical shell contactor according to claim 9, further comprising:
  13.  前記ばね部形成工程におけるばね材の薄膜のパターン形成法は、
     前記レジスト球体の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に複数個形成されているレジスト突起を前記レジスト球体の底部周縁にレジスト用樹脂を用いて形成するレジスト突起形成工程と、
     前記レジスト突起が形成された前記レジスト球体の表面に対して前記レジスト突起の高さよりも薄いめっき膜をめっき形成することにより、前記ばね部の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に複数個配置されている貫通孔を有する前記ばね部を前記レジスト球体の表面に形成するめっき工程と
    を有していることを特徴とする請求項9に記載の球殻型接触子の製造方法。
    The method of forming a thin film pattern of a spring material in the spring portion forming step is as follows:
    A resist protrusion forming step of forming a plurality of resist protrusions formed rotationally symmetrically with a virtual axis passing through the apex of the resist sphere in the height direction as an axis of symmetry, using a resist resin on the bottom periphery of the resist sphere; ,
    By forming a plating film that is thinner than the height of the resist protrusion on the surface of the resist sphere on which the resist protrusion is formed, a virtual axis that passes through the apex of the spring portion in the height direction is used as an axis of symmetry. The spherical shell-type contactor according to claim 9, further comprising a plating step of forming, on the surface of the resist sphere, the spring portion having a plurality of through holes arranged in a rotationally symmetrical manner. Production method.
  14.  前記ばね部形成工程におけるばね材の薄膜のパターン形成法は、
     前記レジスト球体の頂部からその底部にかけて前記レジスト球体の表面から線状に隆起しているとともに前記レジスト球体の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に複数個配置されたレジスト筋をレジスト用樹脂を用いて形成するレジスト筋形成工程と、
     前記レジスト筋が形成された前記レジスト球体の表面に対して前記レジスト筋の高さよりも薄いめっき膜をめっき形成することにより、前記ばね部の頂部からその底部に向かってスリット状に形成され、かつ、前記ばね部の頂点を高さ方向に通過する仮想軸を対称軸として回転対称に複数個配置されている前記貫通溝を有する前記ばね部を前記レジスト球体の表面に形成するめっき工程と
    を有していることを特徴とする請求項9に記載の球殻型接触子の製造方法。
    The method of forming a thin film pattern of a spring material in the spring portion forming step is as follows:
    A plurality of resists arranged in a rotationally symmetrical manner with a virtual axis that protrudes linearly from the surface of the resist sphere from the top to the bottom of the resist sphere and passes through the apex of the resist sphere in the height direction. A resist streak forming step of forming a streak using a resist resin;
    By forming a plating film thinner than the height of the resist streaks on the surface of the resist sphere on which the resist streaks are formed, a slit shape is formed from the top of the spring portion toward the bottom thereof, and And a plating step of forming on the surface of the resist sphere the spring part having a plurality of the through-grooves arranged rotationally symmetrically with a virtual axis passing through the apex of the spring part in the height direction. The manufacturing method of the spherical shell type contactor of Claim 9 characterized by the above-mentioned.
  15.  前記レジスト筋および前記ばね部の貫通溝は、前記レジスト球体または前記ばね部の頂部を中心にして渦巻状に形成されている
    ことを特徴とする請求項14に記載の球殻型接触子の製造方法。
    15. The spherical shell-type contactor according to claim 14, wherein the resist bars and the through-grooves of the spring part are formed in a spiral shape around the resist sphere or the top of the spring part. Method.
  16.  前記レジスト球体の高さが2種類以上ある場合、前記レジスト球体の高さは、前記レジスト柱の直径、長径もしくは短径または幅に基づいて決定されている
    ことを特徴とする請求項9に記載の球殻型接触子の製造方法。
    The height of the resist sphere is determined based on a diameter, a major axis, a minor axis, or a width of the resist column when there are two or more types of resist spheres. Manufacturing method of spherical shell type contactor.
PCT/JP2009/069250 2008-11-12 2009-11-12 Spherical shell contact, and method for manufacturing same WO2010055872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-289557 2008-11-12
JP2008289557A JP2012021773A (en) 2008-11-12 2008-11-12 Spherical shell type contact and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2010055872A1 true WO2010055872A1 (en) 2010-05-20

Family

ID=42170004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069250 WO2010055872A1 (en) 2008-11-12 2009-11-12 Spherical shell contact, and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2012021773A (en)
WO (1) WO2010055872A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135171A (en) * 2013-01-09 2014-07-24 Fujitsu Semiconductor Ltd Contact piece, and contactor
FR3022697A1 (en) * 2014-06-24 2015-12-25 Commissariat Energie Atomique ELECTRICAL CONNECTION DEVICE WITH CONNECTING ELEMENTS COMPRISING DEFORMABLE MEMBRANES
WO2017217253A1 (en) * 2016-06-17 2017-12-21 アルプス電気株式会社 Pressure contact and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056345A (en) * 1999-08-19 2001-02-27 Tokyo Electron Ltd Probing card and its manufacture
JP2002292689A (en) * 2001-04-02 2002-10-09 Japan Aviation Electronics Industry Ltd Method for manufacturing connector and method for manufacturing open hollow part
JP2003124396A (en) * 2001-10-15 2003-04-25 Taiko Denki Co Ltd Elastic electric contact
JP2004077183A (en) * 2002-08-12 2004-03-11 Fujitsu Ltd Method for manufacturing electrical circuit checking microprobe
JP2006500583A (en) * 2002-09-25 2006-01-05 ファイコム・コーポレーション Manufacturing method of hollow microprobe using MEMS technology and microprobe using the same
JP2006208289A (en) * 2005-01-31 2006-08-10 Fuchigami Micro:Kk Contact probe card

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056345A (en) * 1999-08-19 2001-02-27 Tokyo Electron Ltd Probing card and its manufacture
JP2002292689A (en) * 2001-04-02 2002-10-09 Japan Aviation Electronics Industry Ltd Method for manufacturing connector and method for manufacturing open hollow part
JP2003124396A (en) * 2001-10-15 2003-04-25 Taiko Denki Co Ltd Elastic electric contact
JP2004077183A (en) * 2002-08-12 2004-03-11 Fujitsu Ltd Method for manufacturing electrical circuit checking microprobe
JP2006500583A (en) * 2002-09-25 2006-01-05 ファイコム・コーポレーション Manufacturing method of hollow microprobe using MEMS technology and microprobe using the same
JP2006208289A (en) * 2005-01-31 2006-08-10 Fuchigami Micro:Kk Contact probe card

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135171A (en) * 2013-01-09 2014-07-24 Fujitsu Semiconductor Ltd Contact piece, and contactor
FR3022697A1 (en) * 2014-06-24 2015-12-25 Commissariat Energie Atomique ELECTRICAL CONNECTION DEVICE WITH CONNECTING ELEMENTS COMPRISING DEFORMABLE MEMBRANES
WO2017217253A1 (en) * 2016-06-17 2017-12-21 アルプス電気株式会社 Pressure contact and method for manufacturing same
CN109075482A (en) * 2016-06-17 2018-12-21 阿尔卑斯电气株式会社 Crimp contactor and its manufacturing method
TWI649923B (en) * 2016-06-17 2019-02-01 日商阿爾普士電氣股份有限公司 Crimp type joint and manufacturing method thereof
JPWO2017217253A1 (en) * 2016-06-17 2019-03-28 アルプスアルパイン株式会社 Pressure contact and manufacturing method thereof
US10446966B2 (en) 2016-06-17 2019-10-15 Alps Alpine Co., Ltd. Spring contact and method of manufacturing same

Also Published As

Publication number Publication date
JP2012021773A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
US7897435B2 (en) Re-assembly process for MEMS structures
US7642793B2 (en) Ultra-fine pitch probe card structure
CA2583218A1 (en) Interconnect assembly for a probe card
WO2010055872A1 (en) Spherical shell contact, and method for manufacturing same
US20050130456A1 (en) Spiral terminal and method of manufacturing the same
IE20190166A1 (en) Probe module having microelectromechanical probe and method of manufacturing the same
US9281587B2 (en) Thin connector having a first connector slidably superimposed on a second connector
JP6682681B2 (en) probe
JP2008281519A (en) Probe card and its manufacturing method
US20100281679A1 (en) Fabricating method for multi-layer electric probe
JP6527762B2 (en) probe
JP2010127901A (en) Probe card and method of manufacturing the same
JP4359196B2 (en) Convex spiral contact, connection terminal for electronic component using the same, connector, and manufacturing method thereof
US20200116758A1 (en) Probe module having microelectromechanical probe and method of manufacturing the same
CN108283014A (en) Bi directional conductibility pin, bi directional conductibility pattern module and its manufacturing method
US20080204060A1 (en) Vertical-Type Electric Contactor And Manufacture Method Thereof
JP2009162683A (en) Probe card
JPWO2008035570A1 (en) Electrical connection
WO2009084547A1 (en) Probe card
TWI818723B (en) Probe head, probe assembly and spring-type probe structure composed of
TWI586968B (en) Vertical probe, probe card and method for fabricating a vertical probe
KR100806380B1 (en) Method for producing probe card and probe card thereby
WO2010064618A1 (en) Probe card and method for manufacturing same
US11131689B2 (en) Low-force wafer test probes
KR20180070734A (en) By-directional electrically conductive and semiconductor test socket using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09826119

Country of ref document: EP

Kind code of ref document: A1