WO2010055836A1 - Secondary cell system - Google Patents

Secondary cell system Download PDF

Info

Publication number
WO2010055836A1
WO2010055836A1 PCT/JP2009/069153 JP2009069153W WO2010055836A1 WO 2010055836 A1 WO2010055836 A1 WO 2010055836A1 JP 2009069153 W JP2009069153 W JP 2009069153W WO 2010055836 A1 WO2010055836 A1 WO 2010055836A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
secondary battery
ion secondary
soc
battery
Prior art date
Application number
PCT/JP2009/069153
Other languages
French (fr)
Japanese (ja)
Inventor
幸大 武田
泰彦 酒井
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2010055836A1 publication Critical patent/WO2010055836A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery system including a plurality of lithium ion secondary batteries.
  • Secondary batteries such as lithium ion secondary batteries and nickel metal hydride secondary batteries are attracting attention as power sources for portable devices and as power sources for vehicles such as electric vehicles and hybrid vehicles.
  • various secondary battery systems including a plurality of secondary batteries have been proposed (see, for example, Patent Document 1).
  • Patent Document 1 discloses a secondary battery system that performs refresh charging / discharging when the temperature difference of each cell constituting the assembled battery exceeds a certain value during charging / discharging of the assembled battery. It is described that by performing refresh charging / discharging, inactivation of the nickel-metal hydride storage battery can be eliminated and the battery capacity can be made uniform, so that the battery can be used effectively.
  • the internal resistance greatly increases.
  • a lithium ion secondary battery whose internal resistance has greatly increased, sufficient output characteristics may not be obtained.
  • an output necessary for traveling cannot be obtained.
  • Patent Document 1 it is difficult to reduce the internal resistance of the lithium ion secondary battery that has risen during the suspension period, and there is a possibility that sufficient output characteristics may not be obtained.
  • the present invention has been made in view of the current situation, and for each lithium ion secondary battery included in the secondary battery system, a secondary battery system capable of reducing the internal resistance that has increased during the suspension period. The purpose is to provide.
  • One embodiment of the present invention is a secondary battery system including a plurality of lithium ion secondary batteries, and the charge stored in the lithium ion secondary batteries is moved between the plurality of lithium ion secondary batteries.
  • the secondary battery system includes charge transfer control means for performing SOC 0% control for causing each of the plurality of lithium ion secondary batteries to experience a state of SOC 0%.
  • the charge stored in the lithium ion secondary battery is moved between the plurality of lithium ion secondary batteries, and the SOC of each of the plurality of lithium ion secondary batteries is in the state of SOC 0%.
  • This control is referred to as SOC 0% control.
  • each lithium ion secondary battery is simply discharged, and the charge stored in each lithium ion secondary battery is secondary.
  • a method of releasing the battery system outside is conceivable.
  • each lithium ion secondary battery must be charged after discharging each lithium ion secondary battery, and the energy efficiency is very poor.
  • the charge stored in the lithium ion secondary battery is moved between the plurality of lithium ion secondary batteries, so that the lithium ion secondary battery is in the SOC 0% state. Go.
  • one battery is discharged until the SOC reaches 0%, and all the discharged charges are supplied to the other battery. Thereafter, the other battery is discharged until the SOC reaches 0%, and all the discharged charges are supplied to the one battery.
  • each lithium ion secondary battery can be once brought into a SOC 0% state without reducing the amount of electricity stored in the entire lithium ion secondary battery included in the secondary battery system. Therefore, in the above-described secondary battery system, the internal resistance increased during the rest period can be reduced for each lithium ion secondary battery with high energy efficiency.
  • SOC is an abbreviation for “State Of Charge”.
  • the charge transfer control means stores the lithium ion secondary battery among the plurality of lithium ion secondary batteries after performing the SOC 0% control.
  • the secondary battery system may be configured to perform SOC equalization control by moving the electric charge to equalize the SOC of each of the plurality of lithium ion secondary batteries.
  • the charge stored in the lithium ion secondary battery is moved between the plurality of lithium ion secondary batteries, and the plurality of lithium ion secondary batteries is moved.
  • Each SOC is made equal.
  • all the lithium ion secondary batteries constituting the secondary battery system are electrically connected in series, all the lithium ion secondary batteries constituting the secondary battery system are appropriately used. can do. Specifically, for example, it is possible to prevent a decrease in discharge capacity (discharge characteristics) in the entire secondary battery system.
  • a battery with a smaller amount of electricity than other batteries reaches the discharge lower limit earlier than other batteries, and discharges other batteries that have not yet reached the discharge lower limit. It can be prevented that it cannot be made to occur.
  • some batteries that have a smaller amount of electricity (smaller SOC) than other batteries are overcharged or overdischarged, and it is possible to prevent problems that lead to early life.
  • the plurality of lithium ion secondary batteries are mounted on the vehicle as a power source for driving the vehicle, and the charge transfer control means includes the lithium ion secondary battery. Only when the internal resistance value of the battery rises, it is preferable that the secondary battery system performs the SOC 0% control.
  • SOC 0% control is performed only when the internal resistance of the lithium ion secondary battery increases, so unnecessary SOC 0% control is not performed (that is, the inside of the battery). SOC 0% control is not performed until the resistance has not increased). Thereby, about each lithium ion secondary battery, the internal resistance which raised during the idle period can be reduced efficiently.
  • the plurality of lithium ion secondary batteries are mounted on the vehicle as a power source for driving the vehicle, and the charge transfer control unit is configured to A secondary battery system that performs the SOC 0% control only when the internal resistance value R1 of the lithium ion secondary battery is larger than the internal resistance value R0 of the lithium ion secondary battery at the time of the previous vehicle start; Good.
  • the above-described secondary battery system (lithium ion secondary battery constituting the secondary battery system) is mounted on the vehicle as a power source for driving the vehicle.
  • the vehicle include a hybrid vehicle, an electric vehicle, and a train. In such a vehicle, a particularly large output is required. Therefore, when the internal resistance of the lithium ion secondary battery constituting the secondary battery system is increased, the running performance may be greatly deteriorated.
  • the SOC 0% control is performed only when the internal resistance value R1 is larger than the internal resistance value R0, unnecessary SOC 0% control is not performed (that is, the internal resistance of the battery is reduced). SOC 0% control will not be performed until it has not risen). Thereby, about each lithium ion secondary battery, the internal resistance which raised during the idle period can be reduced efficiently.
  • the vehicle when the vehicle is started, it means when the vehicle power switch (main switch) is turned on.
  • the vehicle stop means turning off a vehicle power switch (main switch).
  • any one of the above secondary battery systems wherein the secondary battery system includes a voltage change amount detecting means for detecting a voltage change amount of the lithium ion secondary battery at the moment when the vehicle is started, and the voltage The voltage change amount ⁇ V1 of the lithium ion secondary battery detected by the change amount detection means and the voltage change amount ⁇ V0 of the lithium ion secondary battery detected by the voltage change amount detection means when the vehicle was started before that time. And a voltage change amount determining means for determining whether or not the voltage change amount ⁇ V1 is 1.1 times or more of the voltage change amount ⁇ V0, and the charge transfer control means includes the voltage change amount determining means. In this case, only when it is determined that the voltage change amount ⁇ V1 is 1.1 times or more of the voltage change amount ⁇ V0, a secondary battery system that performs the SOC 0% control is preferable.
  • the lithium ion secondary battery at the moment of starting the vehicle that is, the moment of turning on the vehicle power switch (main switch)
  • the amount of voltage change of becomes large Therefore, if the voltage change amount ⁇ V1 of the lithium ion secondary battery at the time of starting the vehicle is larger than the voltage change amount ⁇ V0 of the lithium ion secondary battery at the previous time of starting the vehicle, the inside of the lithium ion secondary battery It can be determined that the resistance is rising.
  • the SOC 0% control is performed only when it is determined that the voltage change amount ⁇ V1 is 1.1 times or more the voltage change amount ⁇ V0.
  • the charge transfer control means is an electric quantity determining means for controlling the SOC 0% of the quantity of electricity stored in the plurality of lithium ion secondary batteries. Only when it is determined that the amount is the amount, it is preferable that the secondary battery system performs the SOC 0% control.
  • the SOC 0% control may not be performed.
  • the SOC of each battery is greater than 50%, the amount of discharged electricity when one battery is discharged to SOC 0% is Since the SOC of the battery is greater than the amount of electricity that increases by 50%, it is not possible to charge the other battery with all of the discharged electricity. In such a case, even if the SOC 0% control is performed, the internal resistance that has risen during the suspension period cannot be reduced appropriately, and therefore the control becomes useless.
  • the amount of electricity stored in the lithium ion secondary battery constituting the secondary battery system can be controlled by SOC 0% by the amount determination unit. It is determined whether or not. For example, in the case of a secondary battery system having two lithium ion secondary batteries, it is determined whether the SOC of each battery is 50% or less.
  • the amount of electricity stored in the lithium ion secondary battery constituting the secondary battery system in the amount of electricity determination means is the amount of electricity that can be subjected to SOC 0% control. Only when it is determined that, SOC 0% control is performed. In the above example, when the SOC of each battery is 50% or less, it is determined that the amount of electricity is capable of performing SOC 0% control. Therefore, SOC 0% control is performed only in this case. Thereby, it is possible to appropriately reduce the internal resistance increased during the suspension period for each lithium ion secondary battery without performing useless control.
  • FIG. 1 is a schematic view of a hybrid vehicle. It is the schematic of the secondary battery system concerning embodiment. It is sectional drawing of the lithium ion secondary battery concerning embodiment. It is sectional drawing of an electrode body. It is a partial expanded sectional view of an electrode body, and is equivalent to the B section enlarged view of FIG. It is a figure which shows the internal resistance change of a lithium ion secondary battery. It is a figure which shows the battery voltage fluctuation
  • the hybrid vehicle 1 includes a vehicle body 2, an engine 3, a front motor 4, a rear motor 5, a secondary battery system 6, and a cable 7, and the engine 3, the front motor 4, and the rear motor 5 are used together. It is a hybrid car driven by. Specifically, the hybrid vehicle 1 is configured to be able to travel using the engine 3, the front motor 4, and the rear motor 5 using the secondary battery system 6 as a driving power source for the front motor 4 and the rear motor 5. .
  • the secondary battery system 6 is attached to the vehicle body 2 of the hybrid vehicle 1 and is connected to the front motor 4 and the rear motor 5 by a cable 7.
  • the secondary battery system 6 includes an assembled battery 30 having a first battery unit 10 and a second battery unit 20, a battery control device 70, and a voltage detection means 50.
  • the first battery unit 10 and the second battery unit 20 have a plurality (for example, 50) of lithium ion secondary batteries 100 electrically connected in series.
  • the first battery unit 10 and the second battery unit 20 are usually electrically connected in series.
  • the SOCs of all the lithium ion secondary batteries 100 constituting the assembled battery 30 are usually equal.
  • the voltage detection means 50 detects the battery voltage (inter-terminal voltage) of each lithium ion secondary battery 100 constituting the assembled battery 30 (the first battery unit 10 and the second battery unit 20). In this embodiment, the battery voltage (inter-terminal voltage) of each lithium ion secondary battery 100 is detected every 0.1 second.
  • the battery control device 70 includes a ROM, a CPU, a RAM, and the like (not shown), and controls charging / discharging of the assembled battery 30 (the first battery unit 10 and the second battery unit 20).
  • the battery control device 70 normally includes an assembled battery 30 in which a plurality of lithium ion secondary batteries 100 are electrically connected in series with the switches 41 and 42 turned off and the switch 43 turned on, and an inverter (motor). Controls the exchange of electricity with the. Further, the battery control device 70 estimates the SOC of each lithium ion secondary battery 100 based on the battery voltage detected by the voltage detection means 50.
  • the battery control device 70 is connected to the control unit 60 that controls the hybrid vehicle 1 and transmits and receives electrical signals to and from the control unit 60.
  • the battery control device 70 detects the amount of voltage change of the lithium ion secondary battery 100 at the moment when the hybrid vehicle 1 is started. Specifically, when a signal to the effect that the vehicle power switch 45 is turned on is received from the control unit 60, the battery voltage value V11 detected by the voltage detection unit 50 immediately after that is received immediately before (0 in this embodiment). 1 second before and immediately before the vehicle power switch 45 is turned on), the battery voltage value V10 detected by the voltage detecting means 50 is subtracted, and this difference value is used as the lithium at the moment when the hybrid vehicle 1 is started. The voltage change amount ⁇ V of the ion secondary battery 100 is detected.
  • the voltage change amount of the lithium ion secondary battery 100 at the moment when the hybrid vehicle 1 is started that is, when the vehicle power switch 45 is turned on.
  • the voltage change amount ⁇ V1 of the lithium ion secondary battery 100 at the time of starting the vehicle is larger than the voltage change amount ⁇ V0 at the time of starting the previous vehicle, the vehicle is stopped (the lithium ion secondary battery 100 It can be determined that the internal resistance of the lithium ion secondary battery 100 has increased during the rest period.
  • the internal resistance value R1 of the lithium ion secondary battery 100 at the start of the vehicle is greater than the internal resistance value R0 of the lithium ion secondary battery 100 at the previous start of the vehicle. From the result of the storage test described later, when the voltage change amount ⁇ V1 is 1.1 times or more of the voltage change amount ⁇ V0, it can be determined that the internal resistance of the battery is greatly increased.
  • the battery control device 70 compares the voltage change amount ⁇ V1 detected at the start of the hybrid vehicle 1 with the voltage change amount ⁇ V0 detected at the previous vehicle start, so that the voltage change amount ⁇ V1 is the voltage change amount. It is determined whether it is 1.1 times or more of ⁇ V0.
  • the battery control device 70 determines that the voltage change amount ⁇ V1 is 1.1 times or more of the voltage change amount ⁇ V0, the lithium ion secondary battery 100 between the lithium ion secondary batteries 100 constituting the assembled battery 30 is used. The charge stored in the battery 100 is moved so that each of the lithium ion secondary batteries 100 is controlled to experience a SOC 0% state (this control is referred to as SOC 0% control).
  • the battery control device 70 corresponds to a voltage change amount detection unit and a voltage change amount determination unit.
  • the lithium ion secondary battery 100 is a rectangular sealed lithium ion secondary battery including a rectangular parallelepiped battery case 110, a positive electrode terminal 120, and a negative electrode terminal 130.
  • the battery case 110 is made of metal, and includes a rectangular housing portion 111 that forms a rectangular parallelepiped housing space, and a metal lid portion 112.
  • An electrode body 150, a positive current collecting member 122, a negative current collecting member 132, and the like are accommodated in the battery case 110 (rectangular accommodation portion 111).
  • the electrode body 150 is an oblong cross section, and is a flat wound body formed by winding a sheet-like positive electrode 155, a negative electrode 156, and a separator 157 (see FIGS. 4 and 5).
  • the positive electrode 155 has a positive electrode current collector foil 151 made of an aluminum foil, and a positive electrode mixture 152 coated on the surface thereof.
  • the negative electrode 156 has a negative electrode current collector foil 158 made of a copper foil and a negative electrode mixture 159 coated on the surface thereof.
  • the electrode body 150 is positioned at one end portion (right end portion in FIG. 3) in the axial direction (left and right direction in FIG. 3), and a positive electrode winding portion 155b in which only a part of the positive electrode current collector foil 151 overlaps spirally.
  • the negative electrode winding portion 156b is located at the other end portion (left end portion in FIG. 3), and only a part of the negative electrode current collector foil 158 is spirally overlapped.
  • the positive electrode 155 is coated with a positive electrode mixture 152 including a positive electrode active material 153 at a portion other than the positive electrode winding portion 155b (see FIG. 5). Further, the negative electrode 156 is coated with a negative electrode mixture 159 including a negative electrode active material 154 at a portion excluding the negative electrode winding portion 156b (see FIG. 5).
  • the positive electrode winding part 155 b is electrically connected to the positive electrode terminal 120 through the positive electrode current collecting member 122.
  • the negative electrode winding part 156 b is electrically connected to the negative electrode terminal 130 through the negative electrode current collecting member 132.
  • lithium nickelate is used as the positive electrode active material 153.
  • graphite specifically, amorphous coated graphite
  • the negative electrode active material 154 is used as the negative electrode active material 154.
  • a porous sheet made of polyethylene is used as the separator 157.
  • a solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) in a solution obtained by mixing EC (ethylene carbonate) and DEC (diethyl carbonate) is used.
  • the SOC 0% control will be specifically described with reference to FIG.
  • the battery control device 70 determines that the voltage change amount ⁇ V1 is 1.1 times or more of the voltage change amount ⁇ V0, the SOC0 is displayed during the stop period of the hybrid vehicle 1 (while the vehicle power switch 45 is OFF). % Control.
  • the battery control device 70 switches the switch 43 to OFF and switches 41 and 42 to ON. Thereafter, the lithium ion secondary battery 100 constituting the first battery unit 10 is discharged until the SOC reaches 0%, and all the charges discharged from the lithium ion secondary battery 100 constituting the first battery unit 10 are discharged. Is supplied to the lithium ion secondary battery 100 constituting the second battery unit 20. Thereby, all the lithium ion secondary batteries constituting the first battery unit 10 can be discharged without releasing the charge stored in the entire lithium ion secondary battery 100 constituting the first battery unit 10 to the outside of the assembled battery 30. The secondary battery 100 can be brought into a SOC 0% state.
  • the lithium ion secondary battery 100 constituting the second battery unit 20 is discharged until the SOC reaches 0% and discharged from the lithium ion secondary battery 100 constituting the second battery unit 20. All of the generated charges are supplied to the lithium ion secondary battery 100 constituting the first battery unit 10. As a result, all the lithium ion secondary batteries constituting the second battery unit 20 can be discharged without releasing the charge stored in the entire lithium ion secondary battery 100 constituting the second battery unit 20 to the outside of the assembled battery 30.
  • the secondary battery 100 can be brought into a SOC 0% state.
  • the battery control device 70 corresponds to charge transfer control means.
  • the SOC 0% control may not be performed. Specifically, when the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is greater than 50%, the lithium ion secondary battery 100 constituting the first battery unit 10 is discharged to SOC 0%. Is larger than the amount of electricity that increases the SOC of the lithium ion secondary battery 100 constituting the second battery unit 20 by 50%. For this reason, at this time, all the amount of electricity discharged from the lithium ion secondary battery 100 constituting the first battery unit 10 is supplied to all the lithium ion secondary batteries 100 constituting the second battery unit 20. I can't do that.
  • the battery control device 70 determines whether or not. Specifically, the battery control device 70 determines whether or not the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is 50% or less. When the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is 50% or less, it can be determined that the amount of electricity is capable of performing SOC 0% control. Therefore, the battery control device 70 performs SOC 0% control only when it is determined that the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is 50% or less. In the present embodiment, the battery control device 70 corresponds to an electric quantity determination unit.
  • the battery control device 70 determines that the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is greater than 50%, the battery control device 70 waits for the SOC of the lithium ion secondary battery 100 to be 50% or less. Then, SOC 0% control is performed. Specifically, each time the hybrid vehicle 1 stops (the vehicle power switch 45 is turned OFF), it is determined whether or not the SOC of the lithium ion secondary battery 100 is 50% or less. If it is determined that the SOC of the secondary battery 100 is 50% or less, SOC 0% control is performed.
  • the battery control device 70 estimates the SOC of each lithium ion secondary battery 100 based on the battery voltage of the lithium ion secondary battery 100 detected by the voltage detection means 50. Accordingly, the battery control device 70 estimates that the SOC of the lithium ion secondary battery 100 is 0% when the voltage detection unit 50 detects a battery voltage of 3.0V.
  • the positive electrode potential (vs. Li) is 3.0V. Therefore, the positive electrode potential (vs. Li) of each lithium ion secondary battery 100 can be set to 3.0 V by setting the lithium ion secondary battery 100 constituting the assembled battery 30 to the SOC 0% state.
  • the battery control device 70 performs the SOC 0% control, and then uses the charge stored in the lithium ion secondary battery 100 constituting the first battery unit 10 as the lithium ion secondary constituting the second battery unit 20. It moves to the battery 100, and the SOC of the lithium ion secondary battery 100 which comprises the assembled battery 30 is equalized. That is, the lithium ion secondary battery 100 constituting the first battery unit 10 is discharged, and the discharged electric charge is supplied to the lithium ion secondary battery 100 constituting the second battery unit 20, so that the assembled battery 30 is The SOC of the lithium ion secondary battery 100 to be configured is made equal.
  • all the lithium ion secondary batteries 100 which comprise the assembled battery 30 can be used appropriately. Specifically, for example, it is possible to prevent the discharge capacity (discharge characteristics) of the assembled battery 30 from being lowered. Specifically, when the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is not uniform, the lithium ion secondary battery has a smaller amount of electricity (smaller SOC value) than the other lithium ion secondary batteries 100. When 100 reaches the discharge lower limit earlier than other lithium ion secondary batteries 100, it becomes impossible to discharge other lithium ion secondary batteries 100 that have not yet reached the discharge lower limit. However, such a problem can be prevented by making the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 uniform. In addition, some lithium ion secondary batteries 100 that have a smaller amount of electricity (smaller SOC value) than other lithium ion secondary batteries 100 are overcharged or overdischarged, preventing problems that lead to early life. You can also
  • the lithium ion secondary battery 100 adjusted to SOC 60% was discharged at a constant current of 100 A for 10 seconds in a temperature environment of 25 ° C.
  • the battery voltage (inter-terminal voltage) of the lithium ion secondary battery 100 was measured every 0.1 seconds.
  • the measurement results are shown by a solid line (before the storage test) in FIG.
  • the internal resistance (IV resistance) of the lithium ion secondary battery 100 before the storage test was calculated.
  • the battery voltage value and current value (0 A) at the discharge time of 0 seconds and the battery voltage after 10 seconds from the discharge are shown.
  • the slope of the straight line connecting these two points was calculated as the internal resistance (IV resistance) of the lithium ion secondary battery 100 before the storage test.
  • the internal resistance of the lithium ion secondary battery 100 before the storage test was calculated to be 3.32 m ⁇ .
  • the lithium ion secondary battery 100 was adjusted to 60% SOC, and then stored in a thermostatic chamber whose internal temperature was adjusted to 60 ° C. for 6 hours. That is, the lithium ion secondary battery 100 was allowed to stand continuously for 6 hours in a temperature environment of 60 ° C. in a resting state. Thereafter, in the same manner as before the storage test, the lithium ion secondary battery 100 was discharged at a constant current of 100 A for 10 seconds in a temperature environment of 25 ° C., and the battery voltage (terminal voltage) was changed every 0.1 seconds. Measured. The measurement result is shown by a broken line (after the storage test) in FIG.
  • the lithium ion secondary battery 100 was adjusted to SOC 60%, and then again stored in a thermostat whose internal temperature was adjusted to 60 ° C. for 37 hours. Thereafter, in the same manner as before the storage test, the lithium ion secondary battery 100 was discharged at a constant current of 100 A for 10 seconds in a temperature environment of 25 ° C., and the battery voltage (terminal voltage) was changed every 0.1 seconds. Measured. Based on this measurement result, the internal resistance of the lithium ion secondary battery 100 after the storage test (37 hr) was calculated in the same manner as before the storage test, and it was 3.62 m ⁇ as in the case after the storage test (6 hr). It was. From the above results, it can be seen that the internal resistance increases by about 9% when the lithium ion secondary battery 100 of SOC 60% is suspended for 6 hours or more in a temperature environment of 60 ° C.
  • SOC 0% control was performed on the lithium ion secondary battery 100 after the storage test (37 hr). Specifically, discharging was performed until the battery voltage (inter-terminal voltage) of the lithium ion secondary battery 100 dropped to 3.0V. As described above, in the lithium ion secondary battery 100, the SOC is 0% when the battery voltage is 3.0V.
  • the battery was discharged at a constant current of 100 A for 10 seconds in a temperature environment of 25 ° C. was measured every 0.1 seconds.
  • the internal resistance of the lithium ion secondary battery 100 after SOC 0% control was calculated to be 3.43 m ⁇ , and the internal resistance value was smaller than after the storage test.
  • the reason why the internal resistance greatly increases due to the prolonged resting state is continued for a long time in a state where electric charges are stored.
  • the surface of the positive electrode active material is caused by a reaction between the positive electrode active material and the electrolytic solution. A film is formed on the surface. It is presumed that the internal resistance of the lithium ion secondary battery increases due to the effect of this coating.
  • the coating produced on the surface of the positive electrode active material can be removed.
  • SOC 0% control is performed on the lithium ion secondary battery 100 using lithium nickelate as the positive electrode active material 153 to reduce the battery voltage to 3.0V.
  • the positive electrode potential (vs. Li) is 3.0V.
  • the positive electrode potential (vs.Li) is reduced to 3.0 V or less (battery voltage at which the positive electrode potential (vs.Li) becomes 3.0 V or less). It is presumed that the internal resistance that has increased during the resting period can be reduced by removing the coating formed on the surface of the positive electrode active material.
  • the voltage change amount ⁇ V at the moment of discharging the lithium ion secondary battery 100 (0 to 0.1 seconds in FIG. 7) will be examined.
  • the voltage change ⁇ VA at the moment of discharge (0 to 0.1 seconds in FIG. 7) was 0.1966V.
  • the voltage change ⁇ VB at the moment of discharge (0 to 0.1 seconds in FIG. 7) was 0.2205V. Note that the results of the lithium ion secondary battery 100 after the storage test (37 hr) were the same as those of the lithium ion secondary battery 100 after the storage test (6 hr).
  • the lithium ion secondary battery 100 is characterized in that when the internal resistance increases due to a long pause, the voltage change ⁇ V at the moment of discharge increases. Therefore, when the hybrid vehicle 1 is started (that is, when the vehicle power switch 45 is turned on), the lithium ion secondary battery 100 is discharged. Similarly, the internal resistance of the lithium ion secondary battery 100 is Can be said that the voltage change amount ⁇ V of the lithium ion secondary battery 100 increases.
  • the lithium ion secondary battery 100 at the time of starting the vehicle is larger than the voltage change amount ⁇ V0 of the lithium ion secondary battery 100 at the previous time of starting the vehicle, the lithium ion secondary battery It can be determined that the internal resistance of 100 has increased.
  • step S1 the battery control device 70 obtains the voltage change amount ⁇ V1 detected at the start of the current hybrid vehicle 1 and the voltage change amount ⁇ V0 detected at the previous start of the vehicle. In comparison, it is determined whether or not the voltage change amount ⁇ V1 is 1.1 times or more of the voltage change amount ⁇ V0. If it is determined that the voltage change amount ⁇ V1 is not 1.1 times or more of the voltage change amount ⁇ V0 (No), the SOC control is terminated. This is because the internal resistance of the lithium ion secondary battery 100 constituting the assembled battery 30 has not increased so much.
  • step S1 determines in step S1 that the voltage change amount ⁇ V1 is 1.1 times or more of the voltage change amount ⁇ V0 (Yes)
  • the process proceeds to step S2 and the vehicle power switch 45 is OFF. It is determined whether or not there is. That is, it is determined whether the hybrid vehicle 1 is in a stopped state. If it is determined that the vehicle power switch 45 is not OFF (No), the process of step S2 is repeated until it is determined that the vehicle power switch 45 is OFF.
  • step S2 If it is determined in step S2 that the vehicle power switch 45 is OFF (Yes), the process proceeds to step S3, in which the battery control device 70 determines that the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is 50%. It is determined whether or not: That is, it is determined whether or not the amount of electricity stored in the lithium ion secondary battery 100 constituting the assembled battery 30 is an amount of electricity that can be subjected to SOC 0% control.
  • step S3 when the battery control device 70 determines that the SOC of the lithium ion secondary battery 100 is 50% or less (Yes), the process proceeds to step S4, and SOC 0% control is performed. Specifically, as shown in FIG. 9, first, in step S ⁇ b> 41, the charge stored in the lithium ion secondary battery 100 constituting the first battery unit 10 is converted into the lithium ion constituting the second battery unit 20. Move to the secondary battery 100. Specifically, after the battery control device 70 switches the switch 43 to OFF and the switches 41 and 42 to ON, the lithium ion secondary battery 100 constituting the first battery unit 10 is discharged and discharged. The charge is supplied to the lithium ion secondary battery 100 constituting the second battery unit 20.
  • step S42 the battery control device 70 determines whether or not the SOC of the lithium ion secondary battery 100 constituting the first battery unit 10 has reached 0%. If it is determined that the SOC has not reached 0% (No), the process of step S42 is repeated until it is determined that the SOC has reached 0% (Yes).
  • Step S42 when it is determined that the SOC of the lithium ion secondary battery 100 constituting the first battery unit 10 has reached 0% (Yes), the process proceeds to Step S43, and the battery control device 70 determines that the first battery unit The discharge of the lithium ion secondary battery 100 constituting the battery 10 is stopped. As a result, all the charges constituting the first battery unit 10 can be obtained without discharging (discharging) the charge stored in the entire lithium ion secondary battery 100 constituting the first battery unit 10 to the outside of the assembled battery 30. The lithium ion secondary battery 100 can be brought into a SOC 0% state.
  • step S44 the charge stored in the lithium ion secondary battery 100 constituting the second battery unit 20 is moved to the lithium ion secondary battery 100 constituting the first battery unit 10 on the contrary.
  • the lithium ion secondary battery 100 constituting the second battery unit 20 is discharged, and the discharged charge is supplied to the lithium ion secondary battery 100 constituting the first battery unit 10.
  • step S45 the battery control device 70 determines whether or not the SOC of the lithium ion secondary battery 100 constituting the second battery unit 20 has reached 0%. If it is determined that the SOC has not reached 0% (No), the process of step S45 is repeated until it is determined that the SOC has reached 0% (Yes).
  • step S45 If it is determined in step S45 that the SOC of the lithium ion secondary battery 100 constituting the second battery unit 20 has reached 0% (Yes), the process proceeds to step S46, and the battery control device 70 The discharge of the lithium ion secondary battery 100 constituting 20 is stopped. As a result, all the charges constituting the second battery unit 20 can be formed without discharging (discharging) the charge stored in the entire lithium ion secondary battery 100 constituting the second battery unit 20 to the outside of the assembled battery 30. The lithium ion secondary battery 100 can be brought into a SOC 0% state. In this way, with respect to all the lithium ion secondary batteries 100 constituting the assembled battery 30 without reducing the amount of electricity stored in the entire lithium ion secondary battery 100 constituting the assembled battery 30, SOC 0% You can experience the condition.
  • step S ⁇ b> 5 the battery control device 70 converts the charge stored in the lithium ion secondary battery 100 constituting the first battery unit 10 to the second battery unit 20. It moves to the lithium ion secondary battery 100 which comprises, and makes SOC of the lithium ion secondary battery 100 which comprises the assembled battery 30 equalize. That is, the lithium ion secondary battery 100 constituting the first battery unit 10 is discharged, and the discharged electric charge is supplied to the lithium ion secondary battery 100 constituting the second battery unit 20, so that the assembled battery 30 is The SOC of the lithium ion secondary battery 100 to be configured is made equal.
  • step S5 When the process of step S5 is completed, a series of processes ends.
  • all the lithium ion secondary batteries 100 constituting the assembled battery 30 during the stop period of the hybrid vehicle 1 can experience a state of SOC 0%.
  • the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 can be equalized during the stop period of the hybrid vehicle 1 (during the period when the vehicle power switch 45 is OFF).
  • step S3 when the battery control device 70 determines that the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is not 50% or less (No), the process proceeds to step S6, and the vehicle power switch 45 is turned on. It is determined whether or not it is turned on. If it is determined that the vehicle power switch 45 is not ON (No), this process is repeated until it is determined that the vehicle power switch 45 is ON. If it is determined that the vehicle power switch 45 is turned on (Yes), the process returns to step S2 to determine again whether or not the vehicle power switch 45 is turned off. That is, it is determined whether or not a next vehicle stop state (a state in which the vehicle power switch 45 is turned off) has been reached.
  • a next vehicle stop state a state in which the vehicle power switch 45 is turned off
  • step S3 it is again determined whether or not the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is 50% or less. judge.
  • the processes of steps S4 and S5 are performed as described above.
  • the processes of steps S6, S2, and S3 are performed again. In this way, the process of step S3 is performed every time the hybrid vehicle 1 stops (the vehicle power switch 45 is turned OFF) until it is determined in step S3 that the SOC is 50% or less (Yes). Thereafter, when it is determined that the SOC is 50% or less (Yes), the processes of steps S4 and S5 are performed as described above, and the series of processes is terminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided is a secondary cell system that makes it possible to reduce internal resistance that has risen during an idle period for each lithium ion secondary cell contained in the secondary cell system. A secondary cell system (6) includes a plurality of lithium ion secondary cells (100) and an electric charge transfer control means (cell control device (70)). The electric charge transfer control means transfers electric charges, which accumulate on lithium ion secondary cells (100) among the plurality of lithium ion secondary cells (100), and performs SOC-0% control such that each of the lithium ion secondary cells (100) undergoes SOC-0%.

Description

二次電池システムSecondary battery system
 本発明は、複数のリチウムイオン二次電池を備える二次電池システムに関する。 The present invention relates to a secondary battery system including a plurality of lithium ion secondary batteries.
 リチウムイオン二次電池やニッケル水素二次電池などの二次電池は、携帯機器の電源として、また、電気自動車やハイブリッド自動車などの車両の電源として注目されている。現在、複数の二次電池を備えた二次電池システムとして、様々なものが提案されている(例えば、特許文献1参照)。 Secondary batteries such as lithium ion secondary batteries and nickel metal hydride secondary batteries are attracting attention as power sources for portable devices and as power sources for vehicles such as electric vehicles and hybrid vehicles. Currently, various secondary battery systems including a plurality of secondary batteries have been proposed (see, for example, Patent Document 1).
特開2004-327385号公報JP 2004-327385 A
 特許文献1には、組電池の充放電時に、組電池を構成する単電池毎の温度差が一定値を超えた場合に、リフレッシュ充放電を行う二次電池システムが開示されている。リフレッシュ充放電を行うことにより、ニッケル水素蓄電池の不活性化を解消でき、さらに、電池容量を均一化することが可能となるため、電池を有効に活用できると記載されている。 Patent Document 1 discloses a secondary battery system that performs refresh charging / discharging when the temperature difference of each cell constituting the assembled battery exceeds a certain value during charging / discharging of the assembled battery. It is described that by performing refresh charging / discharging, inactivation of the nickel-metal hydride storage battery can be eliminated and the battery capacity can be made uniform, so that the battery can be used effectively.
 ところで、リチウムイオン二次電池では、電荷が蓄えられている状態で、長時間(例えば6時間以上)にわたり休止状態(充放電が行われない状態)が続くと、内部抵抗が大きく上昇してしまうことがある。内部抵抗が大きく上昇したリチウムイオン二次電池では、十分な出力特性が得られなくなることがあった。特に、大きな出力が要求されるハイブリッド自動車や電気自動車等の車両の駆動用電源として用いる場合には、走行(特に始動時)に必要な出力が得られなくなる虞があった。 By the way, in the lithium ion secondary battery, when the charge is stored and the resting state (the state where charging / discharging is not performed) continues for a long time (for example, 6 hours or more), the internal resistance greatly increases. Sometimes. In a lithium ion secondary battery whose internal resistance has greatly increased, sufficient output characteristics may not be obtained. In particular, when used as a power source for driving a vehicle such as a hybrid vehicle or an electric vehicle that requires a large output, there is a possibility that an output necessary for traveling (particularly at the time of starting) cannot be obtained.
 しかしながら、特許文献1に開示されている手法では、休止期間中に上昇したリチウムイオン二次電池の内部抵抗を低減することは難しく、十分な出力特性が得られなくなる虞があった。
 本発明は、かかる現状に鑑みてなされたものであって、二次電池システムに含まれる各々のリチウムイオン二次電池について、休止期間中に上昇した内部抵抗を低減することができる二次電池システムを提供することを目的とする。
However, with the technique disclosed in Patent Document 1, it is difficult to reduce the internal resistance of the lithium ion secondary battery that has risen during the suspension period, and there is a possibility that sufficient output characteristics may not be obtained.
The present invention has been made in view of the current situation, and for each lithium ion secondary battery included in the secondary battery system, a secondary battery system capable of reducing the internal resistance that has increased during the suspension period. The purpose is to provide.
 本発明の一態様は、複数のリチウムイオン二次電池を備える二次電池システムであって、上記複数のリチウムイオン二次電池の間で、上記リチウムイオン二次電池に蓄えられている電荷を移動させて、上記複数のリチウムイオン二次電池のそれぞれについて、SOC0%の状態を経験させるSOC0%制御を行う電荷移動制御手段を備える二次電池システムである。 One embodiment of the present invention is a secondary battery system including a plurality of lithium ion secondary batteries, and the charge stored in the lithium ion secondary batteries is moved between the plurality of lithium ion secondary batteries. Thus, the secondary battery system includes charge transfer control means for performing SOC 0% control for causing each of the plurality of lithium ion secondary batteries to experience a state of SOC 0%.
 上述の二次電池システムでは、複数のリチウムイオン二次電池の間で、リチウムイオン二次電池に蓄えられている電荷を移動させて、複数のリチウムイオン二次電池のそれぞれについて、SOC0%の状態を経験させる制御(この制御をSOC0%制御という)を行う。
 二次電池システムに含まれる各々のリチウムイオン二次電池を、一旦、SOC0%の状態にすることで、各々のリチウムイオン二次電池について、休止期間中に上昇した内部抵抗を低減することができる。
In the above secondary battery system, the charge stored in the lithium ion secondary battery is moved between the plurality of lithium ion secondary batteries, and the SOC of each of the plurality of lithium ion secondary batteries is in the state of SOC 0%. (This control is referred to as SOC 0% control).
By setting each lithium ion secondary battery included in the secondary battery system to SOC 0% once, the internal resistance increased during the suspension period can be reduced for each lithium ion secondary battery. .
 ところで、各々のリチウムイオン二次電池をSOC0%の状態にする手法として、単純に、各々のリチウムイオン二次電池を放電させて、各々のリチウムイオン二次電池に蓄えられている電荷を二次電池システムの外部に放出する手法が考えられる。しかしながら、この手法では、各々のリチウムイオン二次電池を放電した後、各々のリチウムイオン二次電池を充電しなければならず、エネルギー効率が非常に悪い。 By the way, as a method for setting each lithium ion secondary battery to a state of SOC 0%, each lithium ion secondary battery is simply discharged, and the charge stored in each lithium ion secondary battery is secondary. A method of releasing the battery system outside is conceivable. However, in this method, each lithium ion secondary battery must be charged after discharging each lithium ion secondary battery, and the energy efficiency is very poor.
 これに対し、上述の二次電池システムでは、複数のリチウムイオン二次電池の間で、リチウムイオン二次電池に蓄えられている電荷を移動させて、リチウムイオン二次電池をSOC0%の状態にしてゆく。例えば、2つのリチウムイオン二次電池を有する二次電池システムの場合、一方の電池をSOCが0%に至るまで放電させると共に、この放電された電荷を全て他方の電池に供給する。その後、他方の電池をSOCが0%に至るまで放電させると共に、この放電された電荷を全て一方の電池に供給する。 On the other hand, in the above-described secondary battery system, the charge stored in the lithium ion secondary battery is moved between the plurality of lithium ion secondary batteries, so that the lithium ion secondary battery is in the SOC 0% state. Go. For example, in the case of a secondary battery system having two lithium ion secondary batteries, one battery is discharged until the SOC reaches 0%, and all the discharged charges are supplied to the other battery. Thereafter, the other battery is discharged until the SOC reaches 0%, and all the discharged charges are supplied to the one battery.
 これにより、二次電池システムに含まれるリチウムイオン二次電池全体で蓄えられている電気量を低減することなく、各々のリチウムイオン二次電池について、一旦、SOC0%の状態にすることができる。従って、上述の二次電池システムでは、エネルギー効率良く、各々のリチウムイオン二次電池について、休止期間中に上昇した内部抵抗を低減することができる。
 なお、SOCは、「State Of Charge」の略である。
Thereby, each lithium ion secondary battery can be once brought into a SOC 0% state without reducing the amount of electricity stored in the entire lithium ion secondary battery included in the secondary battery system. Therefore, in the above-described secondary battery system, the internal resistance increased during the rest period can be reduced for each lithium ion secondary battery with high energy efficiency.
Note that SOC is an abbreviation for “State Of Charge”.
 さらに、上記の二次電池システムであって、前記電荷移動制御手段は、前記SOC0%制御を行った後、前記複数のリチウムイオン二次電池の間で、上記リチウムイオン二次電池に蓄えられている電荷を移動させて、上記複数のリチウムイオン二次電池のそれぞれのSOCを均等にするSOC均等化制御を行う二次電池システムとすると良い。 Furthermore, in the above secondary battery system, the charge transfer control means stores the lithium ion secondary battery among the plurality of lithium ion secondary batteries after performing the SOC 0% control. The secondary battery system may be configured to perform SOC equalization control by moving the electric charge to equalize the SOC of each of the plurality of lithium ion secondary batteries.
 上述の二次電池システムでは、SOC0%制御を行った後、複数のリチウムイオン二次電池の間で、リチウムイオン二次電池に蓄えられている電荷を移動させて、複数のリチウムイオン二次電池のそれぞれのSOCを均等にする。
 これにより、例えば、二次電池システムを構成する全てのリチウムイオン二次電池を電気的に直列に接続して使用する場合、二次電池システムを構成する全てのリチウムイオン二次電池を適切に使用することができる。具体的には、例えば、二次電池システム全体での放電容量(放電特性)が低下してしまうのを防止することができる。詳細には、他の電池に比べて電気量が少ない電池(SOCの小さい電池)が、他の電池よりも早期に放電下限値に至ることで、未だ放電下限値に至っていない他の電池を放電させることができなくなることを防止できる。また、他の電池に比べて電気量が少ない(SOCが小さい)一部の電池が過充電または過放電になり、早期に寿命に至る不具合を防止することもできる。
In the above-mentioned secondary battery system, after performing SOC 0% control, the charge stored in the lithium ion secondary battery is moved between the plurality of lithium ion secondary batteries, and the plurality of lithium ion secondary batteries is moved. Each SOC is made equal.
Thus, for example, when all the lithium ion secondary batteries constituting the secondary battery system are electrically connected in series, all the lithium ion secondary batteries constituting the secondary battery system are appropriately used. can do. Specifically, for example, it is possible to prevent a decrease in discharge capacity (discharge characteristics) in the entire secondary battery system. Specifically, a battery with a smaller amount of electricity than other batteries (a battery with a low SOC) reaches the discharge lower limit earlier than other batteries, and discharges other batteries that have not yet reached the discharge lower limit. It can be prevented that it cannot be made to occur. In addition, some batteries that have a smaller amount of electricity (smaller SOC) than other batteries are overcharged or overdischarged, and it is possible to prevent problems that lead to early life.
 さらに、上記いずれかの二次電池システムであって、前記複数のリチウムイオン二次電池は、車両の駆動用電源として上記車両に搭載されてなり、前記電荷移動制御手段は、上記リチウムイオン二次電池の内部抵抗値が上昇した場合に限り、前記SOC0%制御を行う二次電池システムとするのが好ましい。 Furthermore, in any one of the above secondary battery systems, the plurality of lithium ion secondary batteries are mounted on the vehicle as a power source for driving the vehicle, and the charge transfer control means includes the lithium ion secondary battery. Only when the internal resistance value of the battery rises, it is preferable that the secondary battery system performs the SOC 0% control.
 この二次電池システムでは、リチウムイオン二次電池の内部抵抗が上昇した場合に限り、SOC0%制御を行うようにしているので、不必要なSOC0%制御を行うことがない(すなわち、電池の内部抵抗が上昇していない場合にまで、SOC0%制御を行ってしまうことがない)。これにより、各々のリチウムイオン二次電池について、効率よく、休止期間中に上昇した内部抵抗を低減することができる。 In this secondary battery system, SOC 0% control is performed only when the internal resistance of the lithium ion secondary battery increases, so unnecessary SOC 0% control is not performed (that is, the inside of the battery). SOC 0% control is not performed until the resistance has not increased). Thereby, about each lithium ion secondary battery, the internal resistance which raised during the idle period can be reduced efficiently.
 さらに、上記いずれかの二次電池システムであって、前記複数のリチウムイオン二次電池は、車両の駆動用電源として上記車両に搭載されてなり、前記電荷移動制御手段は、車両始動時における上記リチウムイオン二次電池の内部抵抗値R1が、その前の車両始動時における上記リチウムイオン二次電池の内部抵抗値R0よりも大きくなった場合に限り、前記SOC0%制御を行う二次電池システムとすると良い。 Furthermore, in any one of the above secondary battery systems, the plurality of lithium ion secondary batteries are mounted on the vehicle as a power source for driving the vehicle, and the charge transfer control unit is configured to A secondary battery system that performs the SOC 0% control only when the internal resistance value R1 of the lithium ion secondary battery is larger than the internal resistance value R0 of the lithium ion secondary battery at the time of the previous vehicle start; Good.
 上述の二次電池システム(これを構成するリチウムイオン二次電池)は、車両の駆動用電源として車両に搭載されている。車両としては、例えば、ハイブリッド自動車、電気自動車、電車等が挙げられる。このような車両では、特に大きな出力が要求されるため、二次電池システムを構成するリチウムイオン二次電池の内部抵抗が上昇すると、走行性能が大きく低下してしまう虞がある。 The above-described secondary battery system (lithium ion secondary battery constituting the secondary battery system) is mounted on the vehicle as a power source for driving the vehicle. Examples of the vehicle include a hybrid vehicle, an electric vehicle, and a train. In such a vehicle, a particularly large output is required. Therefore, when the internal resistance of the lithium ion secondary battery constituting the secondary battery system is increased, the running performance may be greatly deteriorated.
 これに対し、上述の二次電池システムでは、車両始動時におけるリチウムイオン二次電池の内部抵抗値R1が、その前の車両始動時におけるリチウムイオン二次電池の内部抵抗値R0よりも大きい場合に、SOC0%制御を行う。これにより、車両停止後から車両始動までの間の休止期間中にリチウムイオン二次電池の内部抵抗が上昇した場合は、各々のリチウムイオン二次電池について、適切に、休止期間中に上昇した内部抵抗を低減することができる。 On the other hand, in the above-described secondary battery system, when the internal resistance value R1 of the lithium ion secondary battery at the time of starting the vehicle is larger than the internal resistance value R0 of the lithium ion secondary battery at the time of starting the previous vehicle. , SOC 0% control is performed. As a result, when the internal resistance of the lithium ion secondary battery increases during the suspension period from when the vehicle is stopped to when the vehicle starts, for each lithium ion secondary battery, the internal increased during the suspension period appropriately. Resistance can be reduced.
 しかも、内部抵抗値R1が内部抵抗値R0よりも大きくなった場合に限り、SOC0%制御を行うようにしているので、不必要なSOC0%制御を行うことがない(すなわち、電池の内部抵抗が上昇していない場合にまで、SOC0%制御を行ってしまうことがない)。これにより、各々のリチウムイオン二次電池について、効率よく、休止期間中に上昇した内部抵抗を低減することができる。
 なお、車両始動時とは、車両電源スイッチ(メインスイッチ)をONにしたときをいう。また、車両停止とは、車両電源スイッチ(メインスイッチ)をOFFにすることをいう。
In addition, since the SOC 0% control is performed only when the internal resistance value R1 is larger than the internal resistance value R0, unnecessary SOC 0% control is not performed (that is, the internal resistance of the battery is reduced). SOC 0% control will not be performed until it has not risen). Thereby, about each lithium ion secondary battery, the internal resistance which raised during the idle period can be reduced efficiently.
Note that when the vehicle is started, it means when the vehicle power switch (main switch) is turned on. The vehicle stop means turning off a vehicle power switch (main switch).
 さらに、上記いずれかの二次電池システムであって、前記二次電池システムは、前記車両を始動した瞬間の前記リチウムイオン二次電池の電圧変化量を検出する電圧変化量検出手段と、上記電圧変化量検出手段において検出された上記リチウムイオン二次電池の電圧変化量ΔV1と、その前の車両始動時に上記電圧変化量検出手段において検出された上記リチウムイオン二次電池の電圧変化量ΔV0とを比較して、電圧変化量ΔV1が電圧変化量ΔV0の1.1倍以上であるか否かを判定する電圧変化量判定手段と、を備え、前記電荷移動制御手段は、上記電圧変化量判定手段において、電圧変化量ΔV1が電圧変化量ΔV0の1.1倍以上であると判定された場合に限り、前記SOC0%制御を行う二次電池システムとすると良い。 Further, any one of the above secondary battery systems, wherein the secondary battery system includes a voltage change amount detecting means for detecting a voltage change amount of the lithium ion secondary battery at the moment when the vehicle is started, and the voltage The voltage change amount ΔV1 of the lithium ion secondary battery detected by the change amount detection means and the voltage change amount ΔV0 of the lithium ion secondary battery detected by the voltage change amount detection means when the vehicle was started before that time. And a voltage change amount determining means for determining whether or not the voltage change amount ΔV1 is 1.1 times or more of the voltage change amount ΔV0, and the charge transfer control means includes the voltage change amount determining means. In this case, only when it is determined that the voltage change amount ΔV1 is 1.1 times or more of the voltage change amount ΔV0, a secondary battery system that performs the SOC 0% control is preferable.
 二次電池システムを構成するリチウムイオン二次電池の内部抵抗が上昇しているときは、車両を始動した瞬間(すなわち、車両電源スイッチ(メインスイッチ)をONにした瞬間)のリチウムイオン二次電池の電圧変化量が大きくなる特徴がある。従って、車両始動時におけるリチウムイオン二次電池の電圧変化量ΔV1が、その前の車両始動時におけるリチウムイオン二次電池の電圧変化量ΔV0よりも大きくなっていれば、リチウムイオン二次電池の内部抵抗が上昇していると判断することができる。 When the internal resistance of the lithium ion secondary battery constituting the secondary battery system is increased, the lithium ion secondary battery at the moment of starting the vehicle (that is, the moment of turning on the vehicle power switch (main switch)) There is a feature that the amount of voltage change of becomes large. Therefore, if the voltage change amount ΔV1 of the lithium ion secondary battery at the time of starting the vehicle is larger than the voltage change amount ΔV0 of the lithium ion secondary battery at the previous time of starting the vehicle, the inside of the lithium ion secondary battery It can be determined that the resistance is rising.
 本願発明者が行った試験によれば、SOC60%のリチウムイオン二次電池を、60℃の温度環境下で連続して6時間以上休止させると、内部抵抗が約9%も上昇する。この内部抵抗が大きく上昇した電池では、休止前(内部抵抗が上昇する前)に比べて、放電させた瞬間(車両を始動した瞬間)の電圧変化量が約12%大きくなる(約1.12倍になる)ことを確認した。この試験結果より、電圧変化量ΔV1が電圧変化量ΔV0の1.1倍以上になったときは、電池の内部抵抗が大きく上昇していると判断することができる。
 そこで、上述の二次電池システムでは、電圧変化量ΔV1が電圧変化量ΔV0の1.1倍以上であると判定された場合に限り、SOC0%制御を行うようにした。これにより、二次電池システムを構成するリチウムイオン二次電池について、適切に、休止期間中に大きく上昇した内部抵抗を低減することができる。
According to a test conducted by the inventors of the present application, when a lithium ion secondary battery with a SOC of 60% is continuously suspended for 6 hours or more in a temperature environment of 60 ° C., the internal resistance increases by about 9%. In the battery in which the internal resistance is greatly increased, the voltage change amount at the moment of discharging (the instant at which the vehicle is started) is increased by about 12% (about 1.12) as compared with that before the suspension (before the internal resistance is increased). Doubled). From this test result, when the voltage change amount ΔV1 is 1.1 times or more of the voltage change amount ΔV0, it can be determined that the internal resistance of the battery is greatly increased.
Therefore, in the above-described secondary battery system, the SOC 0% control is performed only when it is determined that the voltage change amount ΔV1 is 1.1 times or more the voltage change amount ΔV0. Thereby, about the lithium ion secondary battery which comprises a secondary battery system, the internal resistance which raised significantly during the idle period can be reduced appropriately.
 さらに、上記いずれかの二次電池システムであって、前記複数のリチウムイオン二次電池に蓄えられている電気量が、前記SOC0%制御を行うことが可能な電気量であるか否かを判定する電気量判定手段を備え、前記電荷移動制御手段は、上記電気量判定手段において、上記複数のリチウムイオン二次電池に蓄えられている電気量が、上記SOC0%制御を行うことが可能な電気量であると判定された場合に限り、上記SOC0%制御を行う二次電池システムとすると良い。 Further, in any one of the above secondary battery systems, it is determined whether or not the amount of electricity stored in the plurality of lithium ion secondary batteries is an amount of electricity capable of performing the SOC 0% control. The charge transfer control means is an electric quantity determining means for controlling the SOC 0% of the quantity of electricity stored in the plurality of lithium ion secondary batteries. Only when it is determined that the amount is the amount, it is preferable that the secondary battery system performs the SOC 0% control.
 二次電池システムを構成するリチウムイオン二次電池に蓄えられている電気量が多い場合に、SOC0%制御を行うことができないことがある。例えば、2つのリチウムイオン二次電池を有する二次電池システムの場合に、それぞれの電池のSOCが50%より大きい場合には、一方の電池をSOC0%まで放電させたときの放電電気量は、電池のSOCが50%上昇する電気量よりも多くなるので、放電電気量の全てを他方の電池に充電することができない。このような場合に、SOC0%制御を行うようにしても、休止期間中に上昇した内部抵抗を適切に低減することができないため、無駄な制御になる。 When the amount of electricity stored in the lithium ion secondary battery constituting the secondary battery system is large, the SOC 0% control may not be performed. For example, in the case of a secondary battery system having two lithium ion secondary batteries, if the SOC of each battery is greater than 50%, the amount of discharged electricity when one battery is discharged to SOC 0% is Since the SOC of the battery is greater than the amount of electricity that increases by 50%, it is not possible to charge the other battery with all of the discharged electricity. In such a case, even if the SOC 0% control is performed, the internal resistance that has risen during the suspension period cannot be reduced appropriately, and therefore the control becomes useless.
 これに対し、上述の二次電池システムでは、電気量判定手段によって、二次電池システムを構成するリチウムイオン二次電池に蓄えられている電気量が、SOC0%制御を行うことが可能な電気量であるか否かを判定する。例えば、2つのリチウムイオン二次電池を有する二次電池システムの場合には、それぞれの電池のSOCが50%以下であるか否かを判断する。 On the other hand, in the above-described secondary battery system, the amount of electricity stored in the lithium ion secondary battery constituting the secondary battery system can be controlled by SOC 0% by the amount determination unit. It is determined whether or not. For example, in the case of a secondary battery system having two lithium ion secondary batteries, it is determined whether the SOC of each battery is 50% or less.
 さらに、上述の二次電池システムでは、電気量判定手段において、二次電池システムを構成するリチウムイオン二次電池に蓄えられている電気量が、SOC0%制御を行うことが可能な電気量であると判定された場合に限り、SOC0%制御を行う。上記の例では、それぞれの電池のSOCが50%以下である場合には、SOC0%制御を行うことが可能な電気量であると判断されるので、この場合に限ってSOC0%制御を行う。これにより、無駄な制御を行うことなく、各々のリチウムイオン二次電池について、休止期間中に上昇した内部抵抗を適切に低減することができる。 Furthermore, in the above-described secondary battery system, the amount of electricity stored in the lithium ion secondary battery constituting the secondary battery system in the amount of electricity determination means is the amount of electricity that can be subjected to SOC 0% control. Only when it is determined that, SOC 0% control is performed. In the above example, when the SOC of each battery is 50% or less, it is determined that the amount of electricity is capable of performing SOC 0% control. Therefore, SOC 0% control is performed only in this case. Thereby, it is possible to appropriately reduce the internal resistance increased during the suspension period for each lithium ion secondary battery without performing useless control.
ハイブリッド自動車の概略図である。1 is a schematic view of a hybrid vehicle. 実施形態にかかる二次電池システムの概略図である。It is the schematic of the secondary battery system concerning embodiment. 実施形態にかかるリチウムイオン二次電池の断面図である。It is sectional drawing of the lithium ion secondary battery concerning embodiment. 電極体の断面図である。It is sectional drawing of an electrode body. 電極体の部分拡大断面図であり、図4のB部拡大図に相当する。It is a partial expanded sectional view of an electrode body, and is equivalent to the B section enlarged view of FIG. リチウムイオン二次電池の内部抵抗変化を示す図である。It is a figure which shows the internal resistance change of a lithium ion secondary battery. リチウムイオン二次電池の放電時における電池電圧変動を示す図である。It is a figure which shows the battery voltage fluctuation | variation at the time of discharge of a lithium ion secondary battery. 実施形態にかかるSOC制御のメインルーチンである。It is a main routine of SOC control concerning an embodiment. 実施形態にかかるSOC制御のサブルーチンである。It is a subroutine of SOC control concerning an embodiment.
 次に、本発明の実施形態について、図面を参照しつつ説明する。
 ハイブリッド自動車1は、図1に示すように、車体2、エンジン3、フロントモータ4、リヤモータ5、二次電池システム6、及びケーブル7を有し、エンジン3とフロントモータ4及びリヤモータ5との併用で駆動するハイブリッド自動車である。具体的には、このハイブリッド自動車1は、二次電池システム6をフロントモータ4及びリヤモータ5の駆動用電源として、エンジン3とフロントモータ4及びリヤモータ5とを用いて走行できるように構成されている。
Next, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the hybrid vehicle 1 includes a vehicle body 2, an engine 3, a front motor 4, a rear motor 5, a secondary battery system 6, and a cable 7, and the engine 3, the front motor 4, and the rear motor 5 are used together. It is a hybrid car driven by. Specifically, the hybrid vehicle 1 is configured to be able to travel using the engine 3, the front motor 4, and the rear motor 5 using the secondary battery system 6 as a driving power source for the front motor 4 and the rear motor 5. .
 このうち、二次電池システム6は、ハイブリッド自動車1の車体2に取り付けられており、ケーブル7によりフロントモータ4及びリヤモータ5に接続されている。この二次電池システム6は、図2に示すように、第1電池ユニット10と第2電池ユニット20とを有する組電池30と、電池制御装置70と、電圧検知手段50とを備えている。第1電池ユニット10及び第2電池ユニット20は、電気的に直列に接続された複数(例えば、50個)のリチウムイオン二次電池100を有している。第1電池ユニット10と第2電池ユニット20は、通常、電気的に直列に接続されている。また、組電池30を構成する全てのリチウムイオン二次電池100のSOCは、通常、等しくされている。 Among these, the secondary battery system 6 is attached to the vehicle body 2 of the hybrid vehicle 1 and is connected to the front motor 4 and the rear motor 5 by a cable 7. As shown in FIG. 2, the secondary battery system 6 includes an assembled battery 30 having a first battery unit 10 and a second battery unit 20, a battery control device 70, and a voltage detection means 50. The first battery unit 10 and the second battery unit 20 have a plurality (for example, 50) of lithium ion secondary batteries 100 electrically connected in series. The first battery unit 10 and the second battery unit 20 are usually electrically connected in series. Further, the SOCs of all the lithium ion secondary batteries 100 constituting the assembled battery 30 are usually equal.
 電圧検知手段50は、組電池30(第1電池ユニット10及び第2電池ユニット20)を構成する各々のリチウムイオン二次電池100の電池電圧(端子間電圧)を検知する。本実施形態では、0.1秒毎に、各々のリチウムイオン二次電池100の電池電圧(端子間電圧)を検知する。 The voltage detection means 50 detects the battery voltage (inter-terminal voltage) of each lithium ion secondary battery 100 constituting the assembled battery 30 (the first battery unit 10 and the second battery unit 20). In this embodiment, the battery voltage (inter-terminal voltage) of each lithium ion secondary battery 100 is detected every 0.1 second.
 電池制御装置70は、図示しないROM、CPU、RAM等を有し、組電池30(第1電池ユニット10及び第2電池ユニット20)の充放電を制御する。電池制御装置70は、通常、スイッチ41,42をOFF、スイッチ43をONにした状態で、複数のリチウムイオン二次電池100が電気的に直列に接続された組電池30と、インバータ(モータ)との間における電気のやりとりを制御する。
 また、この電池制御装置70は、電圧検知手段50で検出された電池電圧に基づいて、各々のリチウムイオン二次電池100のSOCを推定する。なお、電池制御装置70は、ハイブリッド自動車1の制御を司るコントロールユニット60に接続され、コントロールユニット60との間で電気信号を送受信する。
The battery control device 70 includes a ROM, a CPU, a RAM, and the like (not shown), and controls charging / discharging of the assembled battery 30 (the first battery unit 10 and the second battery unit 20). The battery control device 70 normally includes an assembled battery 30 in which a plurality of lithium ion secondary batteries 100 are electrically connected in series with the switches 41 and 42 turned off and the switch 43 turned on, and an inverter (motor). Controls the exchange of electricity with the.
Further, the battery control device 70 estimates the SOC of each lithium ion secondary battery 100 based on the battery voltage detected by the voltage detection means 50. The battery control device 70 is connected to the control unit 60 that controls the hybrid vehicle 1 and transmits and receives electrical signals to and from the control unit 60.
 さらに、電池制御装置70は、ハイブリッド自動車1を始動した瞬間のリチウムイオン二次電池100の電圧変化量を検出する。具体的には、コントロールユニット60から車両電源スイッチ45がONになった旨の信号を受信したら、その直後に電圧検知手段50で検出された電池電圧値V11から、その直前(本実施形態では0.1秒前であり、車両電源スイッチ45がONになる直前である)に電圧検知手段50で検出された電池電圧値V10を差し引いて、この差分値を、ハイブリッド自動車1を始動した瞬間のリチウムイオン二次電池100の電圧変化量ΔVとして検出する。 Furthermore, the battery control device 70 detects the amount of voltage change of the lithium ion secondary battery 100 at the moment when the hybrid vehicle 1 is started. Specifically, when a signal to the effect that the vehicle power switch 45 is turned on is received from the control unit 60, the battery voltage value V11 detected by the voltage detection unit 50 immediately after that is received immediately before (0 in this embodiment). 1 second before and immediately before the vehicle power switch 45 is turned on), the battery voltage value V10 detected by the voltage detecting means 50 is subtracted, and this difference value is used as the lithium at the moment when the hybrid vehicle 1 is started. The voltage change amount ΔV of the ion secondary battery 100 is detected.
 ところで、リチウムイオン二次電池100の内部抵抗が上昇しているときは、ハイブリッド自動車1を始動した瞬間(すなわち、車両電源スイッチ45をONにした瞬間)のリチウムイオン二次電池100の電圧変化量が大きくなる特徴がある。従って、車両始動時におけるリチウムイオン二次電池100の電圧変化量ΔV1が、その前の車両始動時における電圧変化量ΔV0よりも大きくなっていれば、車両停止期間中(リチウムイオン二次電池100の休止期間中)に、リチウムイオン二次電池100の内部抵抗が上昇したと判断することができる。すなわち、車両始動時におけるリチウムイオン二次電池100の内部抵抗値R1が、その前の車両始動時におけるリチウムイオン二次電池100の内部抵抗値R0よりも大きくなったと判断することができる。
 後述する保存試験の結果より、電圧変化量ΔV1が電圧変化量ΔV0の1.1倍以上になったときは、電池の内部抵抗が大きく上昇していると判断することができる。
By the way, when the internal resistance of the lithium ion secondary battery 100 is increasing, the voltage change amount of the lithium ion secondary battery 100 at the moment when the hybrid vehicle 1 is started (that is, when the vehicle power switch 45 is turned on). There is a feature that becomes larger. Therefore, if the voltage change amount ΔV1 of the lithium ion secondary battery 100 at the time of starting the vehicle is larger than the voltage change amount ΔV0 at the time of starting the previous vehicle, the vehicle is stopped (the lithium ion secondary battery 100 It can be determined that the internal resistance of the lithium ion secondary battery 100 has increased during the rest period. That is, it can be determined that the internal resistance value R1 of the lithium ion secondary battery 100 at the start of the vehicle is greater than the internal resistance value R0 of the lithium ion secondary battery 100 at the previous start of the vehicle.
From the result of the storage test described later, when the voltage change amount ΔV1 is 1.1 times or more of the voltage change amount ΔV0, it can be determined that the internal resistance of the battery is greatly increased.
 そこで、電池制御装置70は、ハイブリッド自動車1の始動時に検出された電圧変化量ΔV1と、その前の車両始動時に検出された電圧変化量ΔV0とを比較して、電圧変化量ΔV1が電圧変化量ΔV0の1.1倍以上であるか否かを判断する。そして、電池制御装置70は、電圧変化量ΔV1が電圧変化量ΔV0の1.1倍以上であると判断した場合、組電池30を構成するリチウムイオン二次電池100の間で、リチウムイオン二次電池100に蓄えられている電荷を移動させて、リチウムイオン二次電池100のそれぞれについて、SOC0%の状態を経験させる制御(この制御をSOC0%制御という)を行う。これにより、組電池30を構成するリチウムイオン二次電池100について、休止期間中に上昇した内部抵抗を低減することができる。内部抵抗の低減効果については、後述する保存試験において詳細に説明する。
 なお、本実施形態では、電池制御装置70が、電圧変化量検出手段及び電圧変化量判定手段に相当する。
Therefore, the battery control device 70 compares the voltage change amount ΔV1 detected at the start of the hybrid vehicle 1 with the voltage change amount ΔV0 detected at the previous vehicle start, so that the voltage change amount ΔV1 is the voltage change amount. It is determined whether it is 1.1 times or more of ΔV0. When the battery control device 70 determines that the voltage change amount ΔV1 is 1.1 times or more of the voltage change amount ΔV0, the lithium ion secondary battery 100 between the lithium ion secondary batteries 100 constituting the assembled battery 30 is used. The charge stored in the battery 100 is moved so that each of the lithium ion secondary batteries 100 is controlled to experience a SOC 0% state (this control is referred to as SOC 0% control). Thereby, about the lithium ion secondary battery 100 which comprises the assembled battery 30, the internal resistance which raised during the idle period can be reduced. The effect of reducing internal resistance will be described in detail in the storage test described later.
In the present embodiment, the battery control device 70 corresponds to a voltage change amount detection unit and a voltage change amount determination unit.
 リチウムイオン二次電池100は、図3に示すように、直方体形状の電池ケース110と、正極端子120と、負極端子130とを備える、角形密閉式のリチウムイオン二次電池である。このうち、電池ケース110は、金属からなり、直方体形状の収容空間をなす角形収容部111と、金属製の蓋部112とを有している。電池ケース110(角形収容部111)の内部には、電極体150、正極集電部材122、負極集電部材132などが収容されている。 As shown in FIG. 3, the lithium ion secondary battery 100 is a rectangular sealed lithium ion secondary battery including a rectangular parallelepiped battery case 110, a positive electrode terminal 120, and a negative electrode terminal 130. Among these, the battery case 110 is made of metal, and includes a rectangular housing portion 111 that forms a rectangular parallelepiped housing space, and a metal lid portion 112. An electrode body 150, a positive current collecting member 122, a negative current collecting member 132, and the like are accommodated in the battery case 110 (rectangular accommodation portion 111).
 電極体150は、断面長円状をなし、シート状の正極155、負極156、及びセパレータ157を捲回してなる扁平型の捲回体である(図4及び図5参照)。正極155は、アルミニウム箔からなる正極集電箔151と、その表面に塗工された正極合材152を有している。負極156は、銅箔からなる負極集電箔158と、その表面に塗工された負極合材159を有している。 The electrode body 150 is an oblong cross section, and is a flat wound body formed by winding a sheet-like positive electrode 155, a negative electrode 156, and a separator 157 (see FIGS. 4 and 5). The positive electrode 155 has a positive electrode current collector foil 151 made of an aluminum foil, and a positive electrode mixture 152 coated on the surface thereof. The negative electrode 156 has a negative electrode current collector foil 158 made of a copper foil and a negative electrode mixture 159 coated on the surface thereof.
 電極体150は、その軸線方向(図3において左右方向)の一方端部(図3において右端部)に位置し、正極集電箔151の一部のみが渦巻状に重なる正極捲回部155bと、他方端部(図3において左端部)に位置し、負極集電箔158の一部のみが渦巻状に重なる負極捲回部156bとを有している。 The electrode body 150 is positioned at one end portion (right end portion in FIG. 3) in the axial direction (left and right direction in FIG. 3), and a positive electrode winding portion 155b in which only a part of the positive electrode current collector foil 151 overlaps spirally. The negative electrode winding portion 156b is located at the other end portion (left end portion in FIG. 3), and only a part of the negative electrode current collector foil 158 is spirally overlapped.
 正極155には、正極捲回部155bを除く部位に、正極活物質153を含む正極合材152が塗工されている(図5参照)。また、負極156には、負極捲回部156bを除く部位に、負極活物質154を含む負極合材159が塗工されている(図5参照)。正極捲回部155bは、正極集電部材122を通じて、正極端子120に電気的に接続されている。負極捲回部156bは、負極集電部材132を通じて、負極端子130に電気的に接続されている。 The positive electrode 155 is coated with a positive electrode mixture 152 including a positive electrode active material 153 at a portion other than the positive electrode winding portion 155b (see FIG. 5). Further, the negative electrode 156 is coated with a negative electrode mixture 159 including a negative electrode active material 154 at a portion excluding the negative electrode winding portion 156b (see FIG. 5). The positive electrode winding part 155 b is electrically connected to the positive electrode terminal 120 through the positive electrode current collecting member 122. The negative electrode winding part 156 b is electrically connected to the negative electrode terminal 130 through the negative electrode current collecting member 132.
 本実施形態では、正極活物質153として、ニッケル酸リチウムを用いている。また、負極活物質154として、黒鉛(詳細には、アモルファスコート黒鉛)を用いている。また、セパレータ157として、ポリエチレンからなる多孔質シートを用いている。また、非水電解液として、EC(エチレンカーボネート)とDEC(ジエチルカーボネート)とを混合した溶液中に、六フッ化燐酸リチウム(LiPF6)を溶解したものを用いている。 In this embodiment, lithium nickelate is used as the positive electrode active material 153. Further, graphite (specifically, amorphous coated graphite) is used as the negative electrode active material 154. Further, as the separator 157, a porous sheet made of polyethylene is used. As the non-aqueous electrolyte, a solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) in a solution obtained by mixing EC (ethylene carbonate) and DEC (diethyl carbonate) is used.
 ここで、SOC0%制御について、図2を参照して具体的に説明する。電池制御装置70は、電圧変化量ΔV1が電圧変化量ΔV0の1.1倍以上であると判断した場合、ハイブリッド自動車1の停止期間中(車両電源スイッチ45がOFFである期間中)に、SOC0%制御を行う。 Here, the SOC 0% control will be specifically described with reference to FIG. When the battery control device 70 determines that the voltage change amount ΔV1 is 1.1 times or more of the voltage change amount ΔV0, the SOC0 is displayed during the stop period of the hybrid vehicle 1 (while the vehicle power switch 45 is OFF). % Control.
 具体的には、電池制御装置70は、車両電源スイッチ45がOFFになった後、スイッチ43をOFF、スイッチ41,42をONに切り替える。その後、第1電池ユニット10を構成するリチウムイオン二次電池100について、SOCが0%に至るまで放電させると共に、第1電池ユニット10を構成するリチウムイオン二次電池100から放電された電荷の全てを、第2電池ユニット20を構成するリチウムイオン二次電池100に供給する。これにより、第1電池ユニット10を構成するリチウムイオン二次電池100全体に蓄えられていた電荷を、組電池30の外部に放出することなく、第1電池ユニット10を構成する全てのリチウムイオン二次電池100を、SOC0%の状態にすることができる。 Specifically, after the vehicle power switch 45 is turned off, the battery control device 70 switches the switch 43 to OFF and switches 41 and 42 to ON. Thereafter, the lithium ion secondary battery 100 constituting the first battery unit 10 is discharged until the SOC reaches 0%, and all the charges discharged from the lithium ion secondary battery 100 constituting the first battery unit 10 are discharged. Is supplied to the lithium ion secondary battery 100 constituting the second battery unit 20. Thereby, all the lithium ion secondary batteries constituting the first battery unit 10 can be discharged without releasing the charge stored in the entire lithium ion secondary battery 100 constituting the first battery unit 10 to the outside of the assembled battery 30. The secondary battery 100 can be brought into a SOC 0% state.
 次いで、今度は反対に、第2電池ユニット20を構成するリチウムイオン二次電池100について、SOCが0%に至るまで放電させると共に、第2電池ユニット20を構成するリチウムイオン二次電池100から放電された電荷の全てを、第1電池ユニット10を構成するリチウムイオン二次電池100に供給する。これにより、第2電池ユニット20を構成するリチウムイオン二次電池100全体に蓄えられていた電荷を、組電池30の外部に放出することなく、第2電池ユニット20を構成する全てのリチウムイオン二次電池100を、SOC0%の状態にすることができる。
 このようにして、組電池30を構成するリチウムイオン二次電池100全体に蓄えられている電気量を低減することなく、組電池30を構成する全てのリチウムイオン二次電池100について、SOC0%の状態を経験させることができる。
 なお、本実施形態では、電池制御装置70が、電荷移動制御手段に相当する。
Next, on the contrary, the lithium ion secondary battery 100 constituting the second battery unit 20 is discharged until the SOC reaches 0% and discharged from the lithium ion secondary battery 100 constituting the second battery unit 20. All of the generated charges are supplied to the lithium ion secondary battery 100 constituting the first battery unit 10. As a result, all the lithium ion secondary batteries constituting the second battery unit 20 can be discharged without releasing the charge stored in the entire lithium ion secondary battery 100 constituting the second battery unit 20 to the outside of the assembled battery 30. The secondary battery 100 can be brought into a SOC 0% state.
In this way, with respect to all the lithium ion secondary batteries 100 constituting the assembled battery 30 without reducing the amount of electricity stored in the entire lithium ion secondary battery 100 constituting the assembled battery 30, SOC 0% You can experience the condition.
In the present embodiment, the battery control device 70 corresponds to charge transfer control means.
 ところで、組電池30を構成するリチウムイオン二次電池100に蓄えられている電気量が多い場合には、SOC0%制御を行うことができないことがある。具体的には、組電池30を構成するリチウムイオン二次電池100のSOCが50%より大きい場合には、第1電池ユニット10を構成するリチウムイオン二次電池100をSOC0%まで放電させたときの放電電気量は、第2電池ユニット20を構成するリチウムイオン二次電池100のSOCが50%上昇する電気量よりも多くなる。このため、このときに、第1電池ユニット10を構成するリチウムイオン二次電池100から放電される電気量の全てを、第2電池ユニット20を構成する全てのリチウムイオン二次電池100に供給することができなくなる。 Incidentally, when the amount of electricity stored in the lithium ion secondary battery 100 constituting the assembled battery 30 is large, the SOC 0% control may not be performed. Specifically, when the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is greater than 50%, the lithium ion secondary battery 100 constituting the first battery unit 10 is discharged to SOC 0%. Is larger than the amount of electricity that increases the SOC of the lithium ion secondary battery 100 constituting the second battery unit 20 by 50%. For this reason, at this time, all the amount of electricity discharged from the lithium ion secondary battery 100 constituting the first battery unit 10 is supplied to all the lithium ion secondary batteries 100 constituting the second battery unit 20. I can't do that.
 これに対し、本実施形態の二次電池システム6では、組電池30を構成するリチウムイオン二次電池100に蓄えられている電気量が、SOC0%制御を行うことが可能な電気量であるか否かを、電池制御装置70が判定する。具体的には、電池制御装置70は、組電池30を構成するリチウムイオン二次電池100のSOCが50%以下であるか否かを判断する。組電池30を構成するリチウムイオン二次電池100のSOCが50%以下である場合には、SOC0%制御を行うことが可能な電気量であると判断できる。従って、電池制御装置70は、組電池30を構成するリチウムイオン二次電池100のSOCが50%以下であると判定した場合に限って、SOC0%制御を行う。
 なお、本実施形態では、電池制御装置70が、電気量判定手段に相当する。
On the other hand, in the secondary battery system 6 of the present embodiment, is the amount of electricity stored in the lithium ion secondary battery 100 constituting the assembled battery 30 an amount of electricity that can perform SOC 0% control? The battery control device 70 determines whether or not. Specifically, the battery control device 70 determines whether or not the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is 50% or less. When the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is 50% or less, it can be determined that the amount of electricity is capable of performing SOC 0% control. Therefore, the battery control device 70 performs SOC 0% control only when it is determined that the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is 50% or less.
In the present embodiment, the battery control device 70 corresponds to an electric quantity determination unit.
 また、電池制御装置70は、組電池30を構成するリチウムイオン二次電池100のSOCが50%より大きいと判定した場合は、リチウムイオン二次電池100のSOCが50%以下となるのを待って、SOC0%制御を行う。具体的には、その後、ハイブリッド自動車1が停止する(車両電源スイッチ45がOFFになる)度に、リチウムイオン二次電池100のSOCが50%以下であるか否かを判定し、リチウムイオン二次電池100のSOCが50%以下であると判定されたら、SOC0%制御を行う。 In addition, when the battery control device 70 determines that the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is greater than 50%, the battery control device 70 waits for the SOC of the lithium ion secondary battery 100 to be 50% or less. Then, SOC 0% control is performed. Specifically, each time the hybrid vehicle 1 stops (the vehicle power switch 45 is turned OFF), it is determined whether or not the SOC of the lithium ion secondary battery 100 is 50% or less. If it is determined that the SOC of the secondary battery 100 is 50% or less, SOC 0% control is performed.
 なお、本実施形態では、リチウムイオン二次電池100の電池電圧が3.0Vであるとき、リチウムイオン二次電池100のSOCが0%となる。前述のように、電池制御装置70は、電圧検知手段50で検出されたリチウムイオン二次電池100の電池電圧に基づいて、各々のリチウムイオン二次電池100のSOCを推定する。従って、電池制御装置70は、電圧検知手段50において3.0Vの電池電圧が検出された場合に、リチウムイオン二次電池100のSOCが0%であると推定する。
 また、本実施形態のリチウムイオン二次電池100では、電池電圧が3.0Vのとき、正極電位(vs.Li)が3.0Vとなる。従って、組電池30を構成するリチウムイオン二次電池100をSOC0%の状態にすることで、各々のリチウムイオン二次電池100の正極電位(vs.Li)を3.0Vとすることができる。
In the present embodiment, when the battery voltage of the lithium ion secondary battery 100 is 3.0 V, the SOC of the lithium ion secondary battery 100 is 0%. As described above, the battery control device 70 estimates the SOC of each lithium ion secondary battery 100 based on the battery voltage of the lithium ion secondary battery 100 detected by the voltage detection means 50. Accordingly, the battery control device 70 estimates that the SOC of the lithium ion secondary battery 100 is 0% when the voltage detection unit 50 detects a battery voltage of 3.0V.
In the lithium ion secondary battery 100 of the present embodiment, when the battery voltage is 3.0V, the positive electrode potential (vs. Li) is 3.0V. Therefore, the positive electrode potential (vs. Li) of each lithium ion secondary battery 100 can be set to 3.0 V by setting the lithium ion secondary battery 100 constituting the assembled battery 30 to the SOC 0% state.
 さらに、電池制御装置70は、SOC0%制御を行った後、第1電池ユニット10を構成するリチウムイオン二次電池100に蓄えられている電荷を、第2電池ユニット20を構成するリチウムイオン二次電池100に移動させて、組電池30を構成するリチウムイオン二次電池100のSOCを均等にする。すなわち、第1電池ユニット10を構成するリチウムイオン二次電池100を放電させると共に、放電された電荷を、第2電池ユニット20を構成するリチウムイオン二次電池100に供給して、組電池30を構成するリチウムイオン二次電池100のSOCを均等にする。 Further, the battery control device 70 performs the SOC 0% control, and then uses the charge stored in the lithium ion secondary battery 100 constituting the first battery unit 10 as the lithium ion secondary constituting the second battery unit 20. It moves to the battery 100, and the SOC of the lithium ion secondary battery 100 which comprises the assembled battery 30 is equalized. That is, the lithium ion secondary battery 100 constituting the first battery unit 10 is discharged, and the discharged electric charge is supplied to the lithium ion secondary battery 100 constituting the second battery unit 20, so that the assembled battery 30 is The SOC of the lithium ion secondary battery 100 to be configured is made equal.
 これにより、組電池30を構成する全てのリチウムイオン二次電池100を、適切に使用することができる。具体的には、例えば、組電池30の放電容量(放電特性)が低下してしまうのを防止することができる。詳細には、組電池30を構成するリチウムイオン二次電池100のSOCが均等でない場合、他のリチウムイオン二次電池100に比べて電気量が少ない(SOCの値が小さい)リチウムイオン二次電池100が、他のリチウムイオン二次電池100よりも早期に放電下限値に至ることで、未だ放電下限値に至っていない他のリチウムイオン二次電池100を放電させることができなくなる。しかしながら、組電池30を構成するリチウムイオン二次電池100のSOCを均等にしておくことで、このような不具合を防止できる。また、他のリチウムイオン二次電池100に比べて電気量が少ない(SOCの値が小さい)一部のリチウムイオン二次電池100が過充電または過放電になり、早期に寿命に至る不具合を防止することもできる。 Thereby, all the lithium ion secondary batteries 100 which comprise the assembled battery 30 can be used appropriately. Specifically, for example, it is possible to prevent the discharge capacity (discharge characteristics) of the assembled battery 30 from being lowered. Specifically, when the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is not uniform, the lithium ion secondary battery has a smaller amount of electricity (smaller SOC value) than the other lithium ion secondary batteries 100. When 100 reaches the discharge lower limit earlier than other lithium ion secondary batteries 100, it becomes impossible to discharge other lithium ion secondary batteries 100 that have not yet reached the discharge lower limit. However, such a problem can be prevented by making the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 uniform. In addition, some lithium ion secondary batteries 100 that have a smaller amount of electricity (smaller SOC value) than other lithium ion secondary batteries 100 are overcharged or overdischarged, preventing problems that lead to early life. You can also
(保存試験)
 次に、リチウムイオン二次電池100について保存試験を行い、保存試験前後の内部抵抗を測定した。さらに、保存試験後のリチウムイオン二次電池100について、SOC0%制御を行い、その後のリチウムイオン二次電池100の内部抵抗を測定した。
(Preservation test)
Next, a storage test was performed on the lithium ion secondary battery 100, and the internal resistance before and after the storage test was measured. Furthermore, SOC 0% control was performed on the lithium ion secondary battery 100 after the storage test, and the internal resistance of the subsequent lithium ion secondary battery 100 was measured.
 具体的には、まず、SOC60%に調整したリチウムイオン二次電池100について、25℃の温度環境下で、100Aの定電流で10秒間放電を行った。この放電期間中、リチウムイオン二次電池100の電池電圧(端子間電圧)を、0.1秒毎に測定した。この測定結果を、図7に実線(保存試験前)で示す。この測定結果に基づいて、保存試験前のリチウムイオン二次電池100の内部抵抗(IV抵抗)を算出した。 Specifically, first, the lithium ion secondary battery 100 adjusted to SOC 60% was discharged at a constant current of 100 A for 10 seconds in a temperature environment of 25 ° C. During this discharge period, the battery voltage (inter-terminal voltage) of the lithium ion secondary battery 100 was measured every 0.1 seconds. The measurement results are shown by a solid line (before the storage test) in FIG. Based on the measurement results, the internal resistance (IV resistance) of the lithium ion secondary battery 100 before the storage test was calculated.
 具体的には、横軸に電流値を設定し、縦軸に電池電圧を設定したグラフに、放電時間0秒における電池電圧値と電流値(0A)、及び、放電から10秒後における電池電圧値と電流値(100A)をプロットし、この2点を結んだ直線の傾きを、保存試験前のリチウムイオン二次電池100の内部抵抗(IV抵抗)として算出した。保存試験前のリチウムイオン二次電池100の内部抵抗は、3.32mΩと算出された。 Specifically, in the graph in which the current value is set on the horizontal axis and the battery voltage is set on the vertical axis, the battery voltage value and current value (0 A) at the discharge time of 0 seconds and the battery voltage after 10 seconds from the discharge are shown. The slope of the straight line connecting these two points was calculated as the internal resistance (IV resistance) of the lithium ion secondary battery 100 before the storage test. The internal resistance of the lithium ion secondary battery 100 before the storage test was calculated to be 3.32 mΩ.
 次いで、このリチウムイオン二次電池100をSOC60%に調整した後、内部温度が60℃に調整された恒温槽内に、6時間保存した。すなわち、リチウムイオン二次電池100を、休止状態で、60℃の温度環境下に、連続して6時間放置した。その後、このリチウムイオン二次電池100について、保存試験前と同様に、25℃の温度環境下で、100Aの定電流で10秒間放電を行い、電池電圧(端子間電圧)を0.1秒毎に測定した。この測定結果を、図7に破線(保存試験後)で示す。この測定結果に基づいて、保存試験前と同様にして、保存試験後(6hr)のリチウムイオン二次電池100の内部抵抗を算出したところ、3.62mΩであった。この結果より、SOC60%のリチウムイオン二次電池100を、60℃の温度環境下で6時間休止させると、休止前に比べて、内部抵抗が約9%(=(3.62-3.32)/3.32)も上昇することがわかる。 Next, the lithium ion secondary battery 100 was adjusted to 60% SOC, and then stored in a thermostatic chamber whose internal temperature was adjusted to 60 ° C. for 6 hours. That is, the lithium ion secondary battery 100 was allowed to stand continuously for 6 hours in a temperature environment of 60 ° C. in a resting state. Thereafter, in the same manner as before the storage test, the lithium ion secondary battery 100 was discharged at a constant current of 100 A for 10 seconds in a temperature environment of 25 ° C., and the battery voltage (terminal voltage) was changed every 0.1 seconds. Measured. The measurement result is shown by a broken line (after the storage test) in FIG. Based on this measurement result, the internal resistance of the lithium ion secondary battery 100 after the storage test (6 hr) was calculated in the same manner as before the storage test, and it was 3.62 mΩ. From this result, when the lithium ion secondary battery 100 with 60% SOC is suspended for 6 hours in a temperature environment of 60 ° C., the internal resistance is about 9% (= (3.62−3.32) compared to before the suspension. ) /3.32) also increases.
 さらに、保存試験後(6hr)のリチウムイオン二次電池100をSOC60%に調整した後、再び、内部温度が60℃に調整された恒温槽内に、連続して37時間保存した。その後、このリチウムイオン二次電池100について、保存試験前と同様に、25℃の温度環境下で、100Aの定電流で10秒間放電を行い、電池電圧(端子間電圧)を0.1秒毎に測定した。この測定結果に基づいて、保存試験前と同様にして、保存試験後(37hr)のリチウムイオン二次電池100の内部抵抗を算出したところ、保存試験後(6hr)と同様に3.62mΩであった。以上の結果より、SOC60%のリチウムイオン二次電池100を、60℃の温度環境下で6時間以上休止させると、内部抵抗が約9%も上昇することがわかる。 Furthermore, after the storage test (6 hours), the lithium ion secondary battery 100 was adjusted to SOC 60%, and then again stored in a thermostat whose internal temperature was adjusted to 60 ° C. for 37 hours. Thereafter, in the same manner as before the storage test, the lithium ion secondary battery 100 was discharged at a constant current of 100 A for 10 seconds in a temperature environment of 25 ° C., and the battery voltage (terminal voltage) was changed every 0.1 seconds. Measured. Based on this measurement result, the internal resistance of the lithium ion secondary battery 100 after the storage test (37 hr) was calculated in the same manner as before the storage test, and it was 3.62 mΩ as in the case after the storage test (6 hr). It was. From the above results, it can be seen that the internal resistance increases by about 9% when the lithium ion secondary battery 100 of SOC 60% is suspended for 6 hours or more in a temperature environment of 60 ° C.
 その後、保存試験後(37hr)のリチウムイオン二次電池100について、SOC0%制御を行った。具体的には、リチウムイオン二次電池100の電池電圧(端子間電圧)が3.0Vに低下するまで放電を行った。前述のように、リチウムイオン二次電池100では、電池電圧が3.0VであるときにSOCが0%となるからである。 Thereafter, SOC 0% control was performed on the lithium ion secondary battery 100 after the storage test (37 hr). Specifically, discharging was performed until the battery voltage (inter-terminal voltage) of the lithium ion secondary battery 100 dropped to 3.0V. As described above, in the lithium ion secondary battery 100, the SOC is 0% when the battery voltage is 3.0V.
 次いで、このリチウムイオン二次電池100をSOC60%に調整した後、保存試験前と同様に、25℃の温度環境下で、100Aの定電流で10秒間放電を行い、電池電圧(端子間電圧)を0.1秒毎に測定した。その後、保存試験前と同様にして、SOC0%制御後のリチウムイオン二次電池100の内部抵抗を算出したところ、3.43mΩとなり、保存試験後に比べて、内部抵抗値が小さくなった。具体的には、SOC0%制御後のリチウムイオン二次電池100の内部抵抗値は、保存試験後の内部抵抗値に比べて、約5%(=(3.62-3.43)/3.62)も小さくなった。この結果より、リチウムイオン二次電池100を、一旦、SOC0%の状態にすることで(すなわち、SOC0%制御を行うことで)、リチウムイオン二次電池100について、休止期間中に上昇した内部抵抗を大幅に低減することができるといえる。 Next, after adjusting the lithium ion secondary battery 100 to SOC 60%, as in the case before the storage test, the battery was discharged at a constant current of 100 A for 10 seconds in a temperature environment of 25 ° C. Was measured every 0.1 seconds. Thereafter, in the same manner as before the storage test, the internal resistance of the lithium ion secondary battery 100 after SOC 0% control was calculated to be 3.43 mΩ, and the internal resistance value was smaller than after the storage test. Specifically, the internal resistance value of the lithium ion secondary battery 100 after SOC 0% control is about 5% (= (3.62-3.43) /3.3) compared to the internal resistance value after the storage test. 62) also became smaller. From this result, the internal resistance increased during the rest period of the lithium ion secondary battery 100 by temporarily setting the lithium ion secondary battery 100 to the SOC 0% state (that is, by performing SOC 0% control). It can be said that this can be greatly reduced.
 なお、リチウムイオン二次電池について、電荷が蓄えられている状態で、長時間にわたり休止状態(充放電が行われない状態)が続くことで内部抵抗が大きく上昇してしまう理由は、次のように考えている。リチウムイオン二次電池は、電荷が蓄えられている状態で、長時間にわたり休止状態(充放電が行われない状態)が続くと、正極活物質と電解液との反応により、正極活物質の表面に被膜が生成される。この被膜の影響で、リチウムイオン二次電池の内部抵抗が上昇すると推測している。 In addition, about the lithium ion secondary battery, the reason why the internal resistance greatly increases due to the prolonged resting state (the state where charging / discharging is not performed) is continued for a long time in a state where electric charges are stored. I am thinking. When a lithium ion secondary battery is in a state where electric charge is stored and is in a resting state (a state in which charging / discharging is not performed) continues for a long time, the surface of the positive electrode active material is caused by a reaction between the positive electrode active material and the electrolytic solution. A film is formed on the surface. It is presumed that the internal resistance of the lithium ion secondary battery increases due to the effect of this coating.
 これに対し、リチウムイオン二次電池を、一旦、SOC0%の状態にすることで(すなわち、SOC0%制御を行うことで)、正極活物質の表面に生成された被膜を除去することができると考えている。本実施形態では、正極活物質153としてニッケル酸リチウムを用いたリチウムイオン二次電池100について、SOC0%制御を行って、電池電圧を3.0Vにまで低下させている。このとき、正極電位(vs.Li)は、3.0Vとなる。以上のことから、ニッケル酸リチウムを用いたリチウムイオン二次電池について、正極電位(vs.Li)を3.0V以下に低下させる(正極電位(vs.Li)が3.0V以下になる電池電圧に至るまで放電させる)ことで、正極活物質の表面に生成された被膜を除去し、休止期間中に上昇した内部抵抗を低減することができると推測している。 On the other hand, when the lithium ion secondary battery is once in the SOC 0% state (that is, by performing SOC 0% control), the coating produced on the surface of the positive electrode active material can be removed. thinking. In the present embodiment, SOC 0% control is performed on the lithium ion secondary battery 100 using lithium nickelate as the positive electrode active material 153 to reduce the battery voltage to 3.0V. At this time, the positive electrode potential (vs. Li) is 3.0V. From the above, for the lithium ion secondary battery using lithium nickelate, the positive electrode potential (vs.Li) is reduced to 3.0 V or less (battery voltage at which the positive electrode potential (vs.Li) becomes 3.0 V or less). It is presumed that the internal resistance that has increased during the resting period can be reduced by removing the coating formed on the surface of the positive electrode active material.
 次に、リチウムイオン二次電池100を放電させた瞬間(図7において0~0.1秒間)の電圧変化量ΔVについて検討する。
 保存試験前のリチウムイオン二次電池100では、放電させた瞬間(図7において0~0.1秒間)の電圧変化量ΔVAは、0.1966Vであった。これに対し、保存試験後(6hr)のリチウムイオン二次電池100では、放電させた瞬間(図7において0~0.1秒間)の電圧変化量ΔVBは、0.2205Vであった。なお、保存試験後(37hr)のリチウムイオン二次電池100についても、保存試験後(6hr)のリチウムイオン二次電池100と同様な結果となった。以上の結果より、SOC60%のリチウムイオン二次電池100を60℃の温度環境下で6時間以上休止させると、リチウムイオン二次電池100を放電させた瞬間の電圧変化量ΔVが、休止前に比べて、約1.12倍(=0.2205/0.1966)になる(約12%上昇する)ことがわかる。
Next, the voltage change amount ΔV at the moment of discharging the lithium ion secondary battery 100 (0 to 0.1 seconds in FIG. 7) will be examined.
In the lithium ion secondary battery 100 before the storage test, the voltage change ΔVA at the moment of discharge (0 to 0.1 seconds in FIG. 7) was 0.1966V. On the other hand, in the lithium ion secondary battery 100 after the storage test (6 hours), the voltage change ΔVB at the moment of discharge (0 to 0.1 seconds in FIG. 7) was 0.2205V. Note that the results of the lithium ion secondary battery 100 after the storage test (37 hr) were the same as those of the lithium ion secondary battery 100 after the storage test (6 hr). From the above results, when the lithium ion secondary battery 100 with 60% SOC is paused for 6 hours or more in a temperature environment of 60 ° C., the voltage change ΔV at the moment when the lithium ion secondary battery 100 is discharged is It can be seen that it is about 1.12 times (= 0.2205 / 0.1966) (up about 12%).
 このように、リチウムイオン二次電池100では、長時間の休止により内部抵抗が上昇すると、放電させた瞬間の電圧変化量ΔVが大きくなる特徴がある。従って、ハイブリッド自動車1を始動したとき(すなわち、車両電源スイッチ45をONにしたとき)も、リチウムイオン二次電池100の放電が行われることから、同様に、リチウムイオン二次電池100の内部抵抗が上昇しているときは、リチウムイオン二次電池100の電圧変化量ΔVが大きくなるといえる。従って、車両始動時におけるリチウムイオン二次電池100の電圧変化量ΔV1が、その前の車両始動時におけるリチウムイオン二次電池100の電圧変化量ΔV0よりも大きくなっていれば、リチウムイオン二次電池100の内部抵抗が上昇したと判断することができる。 As described above, the lithium ion secondary battery 100 is characterized in that when the internal resistance increases due to a long pause, the voltage change ΔV at the moment of discharge increases. Therefore, when the hybrid vehicle 1 is started (that is, when the vehicle power switch 45 is turned on), the lithium ion secondary battery 100 is discharged. Similarly, the internal resistance of the lithium ion secondary battery 100 is Can be said that the voltage change amount ΔV of the lithium ion secondary battery 100 increases. Therefore, if the voltage change amount ΔV1 of the lithium ion secondary battery 100 at the time of starting the vehicle is larger than the voltage change amount ΔV0 of the lithium ion secondary battery 100 at the previous time of starting the vehicle, the lithium ion secondary battery It can be determined that the internal resistance of 100 has increased.
 上述の試験結果より、電圧変化量ΔV1が電圧変化量ΔV0の1.1倍以上になったときは、リチウムイオン二次電池100の内部抵抗が大きく上昇していると判断することができる。そこで、本実施形態の二次電池システム6では、前述のように、電池制御装置70が、電圧変化量ΔV1が電圧変化量ΔV0の1.1倍以上であると判断した場合、SOC0%制御を行うようにした。これにより、組電池30を構成するリチウムイオン二次電池100について、適切に、休止期間中に大きく上昇した内部抵抗を低減することができる。 From the above test results, when the voltage change amount ΔV1 is 1.1 times or more of the voltage change amount ΔV0, it can be determined that the internal resistance of the lithium ion secondary battery 100 is greatly increased. Therefore, in the secondary battery system 6 of the present embodiment, as described above, when the battery control device 70 determines that the voltage change amount ΔV1 is 1.1 times or more of the voltage change amount ΔV0, the SOC 0% control is performed. I did it. Thereby, about the lithium ion secondary battery 100 which comprises the assembled battery 30, the internal resistance which raised significantly during the idle period can be reduced appropriately.
 次に、本実施形態にかかるリチウムイオン二次電池100(組電池30)のSOC制御について説明する。図8及び図9は、本実施形態にかかるSOC制御の流れを示すフローチャートである。 Next, SOC control of the lithium ion secondary battery 100 (the assembled battery 30) according to the present embodiment will be described. 8 and 9 are flowcharts showing the flow of SOC control according to the present embodiment.
 図8に示すように、まず、ステップS1において、電池制御装置70は、今回のハイブリッド自動車1の始動時に検出された電圧変化量ΔV1と、前回の車両始動時に検出された電圧変化量ΔV0とを比較して、電圧変化量ΔV1が電圧変化量ΔV0の1.1倍以上であるか否かを判断する。電圧変化量ΔV1が電圧変化量ΔV0の1.1倍以上でない(No)と判断した場合は、SOC制御を終了する。組電池30を構成するリチウムイオン二次電池100の内部抵抗がそれほど上昇していないからである。 As shown in FIG. 8, first, in step S1, the battery control device 70 obtains the voltage change amount ΔV1 detected at the start of the current hybrid vehicle 1 and the voltage change amount ΔV0 detected at the previous start of the vehicle. In comparison, it is determined whether or not the voltage change amount ΔV1 is 1.1 times or more of the voltage change amount ΔV0. If it is determined that the voltage change amount ΔV1 is not 1.1 times or more of the voltage change amount ΔV0 (No), the SOC control is terminated. This is because the internal resistance of the lithium ion secondary battery 100 constituting the assembled battery 30 has not increased so much.
 一方、ステップS1において、電池制御装置70が、電圧変化量ΔV1が電圧変化量ΔV0の1.1倍以上である(Yes)と判断した場合は、ステップS2に進み、車両電源スイッチ45がOFFであるか否かを判定する。すなわち、ハイブリッド自動車1が停止状態であるか否かを判定する。車両電源スイッチ45がOFFでない(No)と判定された場合は、車両電源スイッチ45がOFFであると判定されるまで、ステップS2の処理を繰り返し行う。 On the other hand, when the battery control device 70 determines in step S1 that the voltage change amount ΔV1 is 1.1 times or more of the voltage change amount ΔV0 (Yes), the process proceeds to step S2 and the vehicle power switch 45 is OFF. It is determined whether or not there is. That is, it is determined whether the hybrid vehicle 1 is in a stopped state. If it is determined that the vehicle power switch 45 is not OFF (No), the process of step S2 is repeated until it is determined that the vehicle power switch 45 is OFF.
 ステップS2において、車両電源スイッチ45がOFFである(Yes)と判定された場合は、ステップS3に進み、電池制御装置70が、組電池30を構成するリチウムイオン二次電池100のSOCが50%以下であるか否かを判定する。すなわち、組電池30を構成するリチウムイオン二次電池100に蓄えられている電気量が、SOC0%制御を行うことが可能な電気量であるか否かを判定する。 If it is determined in step S2 that the vehicle power switch 45 is OFF (Yes), the process proceeds to step S3, in which the battery control device 70 determines that the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is 50%. It is determined whether or not: That is, it is determined whether or not the amount of electricity stored in the lithium ion secondary battery 100 constituting the assembled battery 30 is an amount of electricity that can be subjected to SOC 0% control.
 ステップS3において、電池制御装置70が、リチウムイオン二次電池100のSOCが50%以下である(Yes)と判定した場合は、ステップS4に進み、SOC0%制御を行う。具体的には、図9に示すように、まず、ステップS41において、第1電池ユニット10を構成するリチウムイオン二次電池100に蓄えられている電荷を、第2電池ユニット20を構成するリチウムイオン二次電池100に移動する。具体的には、電池制御装置70が、スイッチ43をOFF、スイッチ41,42をONに切り替えた後、第1電池ユニット10を構成するリチウムイオン二次電池100を放電させると共に、この放電された電荷を、第2電池ユニット20を構成するリチウムイオン二次電池100に供給する。 In step S3, when the battery control device 70 determines that the SOC of the lithium ion secondary battery 100 is 50% or less (Yes), the process proceeds to step S4, and SOC 0% control is performed. Specifically, as shown in FIG. 9, first, in step S <b> 41, the charge stored in the lithium ion secondary battery 100 constituting the first battery unit 10 is converted into the lithium ion constituting the second battery unit 20. Move to the secondary battery 100. Specifically, after the battery control device 70 switches the switch 43 to OFF and the switches 41 and 42 to ON, the lithium ion secondary battery 100 constituting the first battery unit 10 is discharged and discharged. The charge is supplied to the lithium ion secondary battery 100 constituting the second battery unit 20.
 次いで、ステップS42に進み、電池制御装置70は、第1電池ユニット10を構成するリチウムイオン二次電池100のSOCが0%に達したか否かを判定する。SOCが0%に達していない(No)と判定された場合は、SOCが0%に達した(Yes)と判定されるまで、ステップS42の処理を繰り返し行う。 Next, in step S42, the battery control device 70 determines whether or not the SOC of the lithium ion secondary battery 100 constituting the first battery unit 10 has reached 0%. If it is determined that the SOC has not reached 0% (No), the process of step S42 is repeated until it is determined that the SOC has reached 0% (Yes).
 ステップS42において、第1電池ユニット10を構成するリチウムイオン二次電池100のSOCが0%に達した(Yes)と判定した場合は、ステップS43に進み、電池制御装置70が、第1電池ユニット10を構成するリチウムイオン二次電池100の放電を停止させる。これにより、第1電池ユニット10を構成するリチウムイオン二次電池100全体に蓄えられていた電荷を、組電池30の外部に放出(放電)することなく、第1電池ユニット10を構成する全てのリチウムイオン二次電池100を、SOC0%の状態にすることができる。 In Step S42, when it is determined that the SOC of the lithium ion secondary battery 100 constituting the first battery unit 10 has reached 0% (Yes), the process proceeds to Step S43, and the battery control device 70 determines that the first battery unit The discharge of the lithium ion secondary battery 100 constituting the battery 10 is stopped. As a result, all the charges constituting the first battery unit 10 can be obtained without discharging (discharging) the charge stored in the entire lithium ion secondary battery 100 constituting the first battery unit 10 to the outside of the assembled battery 30. The lithium ion secondary battery 100 can be brought into a SOC 0% state.
 次いで、ステップS44に進み、今度は反対に、第2電池ユニット20を構成するリチウムイオン二次電池100に蓄えられている電荷を、第1電池ユニット10を構成するリチウムイオン二次電池100に移動する。具体的には、第2電池ユニット20を構成するリチウムイオン二次電池100を放電させると共に、この放電された電荷を、第1電池ユニット10を構成するリチウムイオン二次電池100に供給する。 Next, the process proceeds to step S44, and on the contrary, the charge stored in the lithium ion secondary battery 100 constituting the second battery unit 20 is moved to the lithium ion secondary battery 100 constituting the first battery unit 10 on the contrary. To do. Specifically, the lithium ion secondary battery 100 constituting the second battery unit 20 is discharged, and the discharged charge is supplied to the lithium ion secondary battery 100 constituting the first battery unit 10.
 次いで、ステップS45に進み、電池制御装置70は、第2電池ユニット20を構成するリチウムイオン二次電池100のSOCが0%に達したか否かを判定する。SOCが0%に達していない(No)と判定された場合は、SOCが0%に達した(Yes)と判定されるまで、ステップS45の処理を繰り返し行う。 Next, in step S45, the battery control device 70 determines whether or not the SOC of the lithium ion secondary battery 100 constituting the second battery unit 20 has reached 0%. If it is determined that the SOC has not reached 0% (No), the process of step S45 is repeated until it is determined that the SOC has reached 0% (Yes).
 ステップS45において、第2電池ユニット20を構成するリチウムイオン二次電池100のSOCが0%に達した(Yes)と判定した場合は、ステップS46に進み、電池制御装置70は、第2電池ユニット20を構成するリチウムイオン二次電池100の放電を停止させる。これにより、第2電池ユニット20を構成するリチウムイオン二次電池100全体に蓄えられていた電荷を、組電池30の外部に放出(放電)することなく、第2電池ユニット20を構成する全てのリチウムイオン二次電池100を、SOC0%の状態にすることができる。
 このようにして、組電池30を構成するリチウムイオン二次電池100全体に蓄えられている電気量を低減することなく、組電池30を構成する全てのリチウムイオン二次電池100について、SOC0%の状態を経験させることができる。
If it is determined in step S45 that the SOC of the lithium ion secondary battery 100 constituting the second battery unit 20 has reached 0% (Yes), the process proceeds to step S46, and the battery control device 70 The discharge of the lithium ion secondary battery 100 constituting 20 is stopped. As a result, all the charges constituting the second battery unit 20 can be formed without discharging (discharging) the charge stored in the entire lithium ion secondary battery 100 constituting the second battery unit 20 to the outside of the assembled battery 30. The lithium ion secondary battery 100 can be brought into a SOC 0% state.
In this way, with respect to all the lithium ion secondary batteries 100 constituting the assembled battery 30 without reducing the amount of electricity stored in the entire lithium ion secondary battery 100 constituting the assembled battery 30, SOC 0% You can experience the condition.
 その後、図8に示すメインルーチンに戻り、ステップS5に進み、電池制御装置70は、第1電池ユニット10を構成するリチウムイオン二次電池100に蓄えられている電荷を、第2電池ユニット20を構成するリチウムイオン二次電池100に移動させて、組電池30を構成するリチウムイオン二次電池100のSOCを均等にする。すなわち、第1電池ユニット10を構成するリチウムイオン二次電池100を放電させると共に、放電された電荷を、第2電池ユニット20を構成するリチウムイオン二次電池100に供給して、組電池30を構成するリチウムイオン二次電池100のSOCを均等にする。ステップS5の処理が完了すると、一連の処理が終了する。 Thereafter, returning to the main routine shown in FIG. 8, the process proceeds to step S <b> 5, and the battery control device 70 converts the charge stored in the lithium ion secondary battery 100 constituting the first battery unit 10 to the second battery unit 20. It moves to the lithium ion secondary battery 100 which comprises, and makes SOC of the lithium ion secondary battery 100 which comprises the assembled battery 30 equalize. That is, the lithium ion secondary battery 100 constituting the first battery unit 10 is discharged, and the discharged electric charge is supplied to the lithium ion secondary battery 100 constituting the second battery unit 20, so that the assembled battery 30 is The SOC of the lithium ion secondary battery 100 to be configured is made equal. When the process of step S5 is completed, a series of processes ends.
 このように、本実施形態の二次電池システム6では、ハイブリッド自動車1の停止期間中(車両電源スイッチ45がOFFである期間中)に、組電池30を構成する全てのリチウムイオン二次電池100についてSOC0%の状態を経験させることができる。さらには、ハイブリッド自動車1の停止期間中(車両電源スイッチ45がOFFである期間中)に、組電池30を構成するリチウムイオン二次電池100のSOCを均等にすることができる。 Thus, in the secondary battery system 6 of the present embodiment, all the lithium ion secondary batteries 100 constituting the assembled battery 30 during the stop period of the hybrid vehicle 1 (during the period when the vehicle power switch 45 is OFF). Can experience a state of SOC 0%. Furthermore, the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 can be equalized during the stop period of the hybrid vehicle 1 (during the period when the vehicle power switch 45 is OFF).
 なお、ステップS3において、電池制御装置70が、組電池30を構成するリチウムイオン二次電池100のSOCが50%以下でない(No)と判定した場合は、ステップS6に進み、車両電源スイッチ45がONになったか否かを判定する。車両電源スイッチ45がONでない(No)と判定された場合は、車両電源スイッチ45がONであると判定されるまで、この処理を繰り返す。車両電源スイッチ45がONになった(Yes)と判定したら、ステップS2に戻り、再び、車両電源スイッチ45がOFFになったか否かを判定する。すなわち、次回の車両停止状態(車両電源スイッチ45がOFFになった状態)に至ったか否かを判断する。 In step S3, when the battery control device 70 determines that the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is not 50% or less (No), the process proceeds to step S6, and the vehicle power switch 45 is turned on. It is determined whether or not it is turned on. If it is determined that the vehicle power switch 45 is not ON (No), this process is repeated until it is determined that the vehicle power switch 45 is ON. If it is determined that the vehicle power switch 45 is turned on (Yes), the process returns to step S2 to determine again whether or not the vehicle power switch 45 is turned off. That is, it is determined whether or not a next vehicle stop state (a state in which the vehicle power switch 45 is turned off) has been reached.
 車両電源スイッチ45がOFFである(Yes)と判定された場合には、ステップS3に進み、再び、組電池30を構成するリチウムイオン二次電池100のSOCが50%以下であるか否かを判定する。SOCが50%以下である(Yes)と判定された場合は、前述のように、ステップS4,S5の処理を行う。一方、SOCが50%以下でない(Yes)と判定された場合は、再び、ステップS6,S2,S3の処理を行う。このようにして、ステップS3においてSOCが50%以下である(Yes)と判定されるまで、ハイブリッド自動車1が停止する(車両電源スイッチ45がOFFになる)度にステップS3の処理を行う。その後、SOCが50%以下である(Yes)と判定された場合は、前述のように、ステップS4,S5の処理を行って、一連の処理を終了する。 If it is determined that the vehicle power switch 45 is OFF (Yes), the process proceeds to step S3, and it is again determined whether or not the SOC of the lithium ion secondary battery 100 constituting the assembled battery 30 is 50% or less. judge. When it is determined that the SOC is 50% or less (Yes), the processes of steps S4 and S5 are performed as described above. On the other hand, when it is determined that the SOC is not 50% or less (Yes), the processes of steps S6, S2, and S3 are performed again. In this way, the process of step S3 is performed every time the hybrid vehicle 1 stops (the vehicle power switch 45 is turned OFF) until it is determined in step S3 that the SOC is 50% or less (Yes). Thereafter, when it is determined that the SOC is 50% or less (Yes), the processes of steps S4 and S5 are performed as described above, and the series of processes is terminated.
 以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。 As mentioned above, although this invention was demonstrated according to embodiment, it cannot be overemphasized that this invention is not limited to the said embodiment, In the range which does not deviate from the summary, it can change suitably and can be applied.
1 ハイブリッド自動車(車両)
6 二次電池システム
10 第1電池ユニット
20 第2電池ユニット
30 組電池
45 車両電源スイッチ
70 電池制御装置(電荷移動制御手段、電圧変化量検出手段、電圧変化量判定手段、電気量判定手段)
100 リチウムイオン二次電池
1 Hybrid vehicle (vehicle)
6 secondary battery system 10 first battery unit 20 second battery unit 30 assembled battery 45 vehicle power switch 70 battery control device (charge transfer control means, voltage change amount detection means, voltage change amount determination means, electric quantity determination means)
100 Lithium ion secondary battery

Claims (5)

  1. 複数のリチウムイオン二次電池を備える二次電池システムであって、
     上記複数のリチウムイオン二次電池の間で、上記リチウムイオン二次電池に蓄えられている電荷を移動させて、上記複数のリチウムイオン二次電池のそれぞれについて、SOC0%の状態を経験させるSOC0%制御を行う電荷移動制御手段を備える
    二次電池システム。
    A secondary battery system comprising a plurality of lithium ion secondary batteries,
    The SOC 0% that causes the charge stored in the lithium ion secondary battery to move between the plurality of lithium ion secondary batteries to experience the state of SOC 0% for each of the plurality of lithium ion secondary batteries. A secondary battery system comprising charge transfer control means for performing control.
  2. 請求項1に記載の二次電池システムであって、
     前記電荷移動制御手段は、
      前記SOC0%制御を行った後、前記複数のリチウムイオン二次電池の間で、上記リチウムイオン二次電池に蓄えられている電荷を移動させて、上記複数のリチウムイオン二次電池のそれぞれのSOCを均等にするSOC均等化制御を行う
    二次電池システム。
    The secondary battery system according to claim 1,
    The charge transfer control means includes
    After performing the SOC 0% control, the electric charge stored in the lithium ion secondary battery is moved between the plurality of lithium ion secondary batteries, and each SOC of the plurality of lithium ion secondary batteries is transferred. A secondary battery system that performs SOC equalization control to equalize.
  3. 請求項1または請求項2に記載の二次電池システムであって、
     前記複数のリチウムイオン二次電池は、車両の駆動用電源として上記車両に搭載されてなり、
     前記電荷移動制御手段は、
      車両始動時における上記リチウムイオン二次電池の内部抵抗値R1が、その前の車両始動時における上記リチウムイオン二次電池の内部抵抗値R0よりも大きくなった場合に限り、前記SOC0%制御を行う
    二次電池システム。
    The secondary battery system according to claim 1 or 2,
    The plurality of lithium ion secondary batteries are mounted on the vehicle as a power source for driving the vehicle,
    The charge transfer control means includes
    The SOC 0% control is performed only when the internal resistance value R1 of the lithium ion secondary battery at the time of starting the vehicle becomes larger than the internal resistance value R0 of the lithium ion secondary battery at the time of starting the previous vehicle. Secondary battery system.
  4. 請求項3に記載の二次電池システムであって、
     前記二次電池システムは、
      前記車両を始動した瞬間の前記リチウムイオン二次電池の電圧変化量を検出する電圧変化量検出手段と、
      上記電圧変化量検出手段において検出された上記リチウムイオン二次電池の電圧変化量ΔV1と、その前の車両始動時に上記電圧変化量検出手段において検出された上記リチウムイオン二次電池の電圧変化量ΔV0とを比較して、電圧変化量ΔV1が電圧変化量ΔV0の1.1倍以上であるか否かを判定する電圧変化量判定手段と、を備え、
     前記電荷移動制御手段は、
      上記電圧変化量判定手段において、電圧変化量ΔV1が電圧変化量ΔV0の1.1倍以上であると判定された場合に限り、前記SOC0%制御を行う
    二次電池システム。
    The secondary battery system according to claim 3,
    The secondary battery system includes:
    Voltage change amount detecting means for detecting a voltage change amount of the lithium ion secondary battery at the moment of starting the vehicle;
    The voltage change amount ΔV1 of the lithium ion secondary battery detected by the voltage change amount detection means, and the voltage change amount ΔV0 of the lithium ion secondary battery detected by the voltage change amount detection means when the vehicle was started before that time. And a voltage change amount determination means for determining whether or not the voltage change amount ΔV1 is 1.1 times or more of the voltage change amount ΔV0,
    The charge transfer control means includes
    The secondary battery system that performs the SOC 0% control only when the voltage change amount determining means determines that the voltage change amount ΔV1 is 1.1 times or more of the voltage change amount ΔV0.
  5. 請求項1~請求項4のいずれか一項に記載の二次電池システムであって、
     前記複数のリチウムイオン二次電池に蓄えられている電気量が、前記SOC0%制御を行うことが可能な電気量であるか否かを判定する電気量判定手段を備え、
     前記電荷移動制御手段は、
      上記電気量判定手段において、上記複数のリチウムイオン二次電池に蓄えられている電気量が、上記SOC0%制御を行うことが可能な電気量であると判定された場合に限り、上記SOC0%制御を行う
    二次電池システム。
    The secondary battery system according to any one of claims 1 to 4,
    An electric quantity determining means for determining whether or not the electric quantity stored in the plurality of lithium ion secondary batteries is an electric quantity capable of performing the SOC 0% control;
    The charge transfer control means includes
    The SOC 0% control is performed only when the amount of electricity stored in the plurality of lithium ion secondary batteries is determined to be an amount of electricity capable of performing the SOC 0% control in the electricity amount determination means. Do secondary battery system.
PCT/JP2009/069153 2008-11-13 2009-11-11 Secondary cell system WO2010055836A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-290947 2008-11-13
JP2008290947A JP4513917B2 (en) 2008-11-13 2008-11-13 Secondary battery system

Publications (1)

Publication Number Publication Date
WO2010055836A1 true WO2010055836A1 (en) 2010-05-20

Family

ID=42169970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069153 WO2010055836A1 (en) 2008-11-13 2009-11-11 Secondary cell system

Country Status (2)

Country Link
JP (1) JP4513917B2 (en)
WO (1) WO2010055836A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6087870B2 (en) 2014-07-23 2017-03-01 トヨタ自動車株式会社 vehicle
JP7141236B2 (en) * 2017-05-29 2022-09-22 ローム株式会社 BATTERY LEVEL DETECTION CIRCUIT, ELECTRONIC DEVICE USING THE SAME, BATTERY LEVEL DETECTION METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270483A (en) * 1999-03-17 2000-09-29 Toyota Central Res & Dev Lab Inc Charging condition controller of battery set
JP2005093253A (en) * 2003-09-18 2005-04-07 Nec Tokin Tochigi Ltd Battery pack
WO2006112510A1 (en) * 2005-04-15 2006-10-26 Toyota Jidosha Kabushiki Kaisha Power supply device, control method of power supply device, and motor vehicle equipped with power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270483A (en) * 1999-03-17 2000-09-29 Toyota Central Res & Dev Lab Inc Charging condition controller of battery set
JP2005093253A (en) * 2003-09-18 2005-04-07 Nec Tokin Tochigi Ltd Battery pack
WO2006112510A1 (en) * 2005-04-15 2006-10-26 Toyota Jidosha Kabushiki Kaisha Power supply device, control method of power supply device, and motor vehicle equipped with power supply device

Also Published As

Publication number Publication date
JP4513917B2 (en) 2010-07-28
JP2010118265A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
US10186887B2 (en) Systems and methods for fast charging batteries at low temperatures
US9399404B2 (en) Charging system for all-solid-state battery
US8674659B2 (en) Charge control device and vehicle equipped with the same
CN108292854B (en) Battery control device
JP5407893B2 (en) Secondary battery system and hybrid vehicle
US8310198B2 (en) Lithium ion secondary cell charge method and hybrid vehicle
JP6500789B2 (en) Control system of secondary battery
US8994322B2 (en) Secondary battery system
JP2004025979A (en) Power supply system for travelling vehicle
US10539627B2 (en) Method of restoring secondary battery and method of reusing secondary battery
US10971767B2 (en) Charge voltage controller for energy storage device, energy storage apparatus, battery charger for energy storage device, and charging method for energy storage device
JP2013019709A (en) Secondary battery system and vehicle
JP5741348B2 (en) Secondary battery system and vehicle
JP2004032871A (en) Power supply system for traveling vehicle
CN110247101B (en) Method for rapidly charging a battery
JP2000134805A (en) Battery assembly charge/discharge state deciding method and battery assembly charge/discharge state deciding device
JP2012016109A (en) Method and device of charging lithium ion battery
JP4513917B2 (en) Secondary battery system
US10527681B2 (en) Degradation estimator for energy storage device, energy storage apparatus, input-output control device for energy storage device, and method for controlling input and output of energy storage device
JP2010118266A (en) Method for reducing internal resistance of lithium ion secondary battery, and secondary battery system
EP1458039A2 (en) Sealed nickel-metal hybride storage cells and hybrid electric vehicle having the storage cells
JP2009176602A (en) Battery system and automobile
US20230387492A1 (en) Battery heating system and method, power supply system, and electrical apparatus
US20230015417A1 (en) Management method of secondary battery, charge method of secondary battery, management device of secondary battery, management system of secondary battery, electrode group, and unit battery
JP7226201B2 (en) charging control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826083

Country of ref document: EP

Kind code of ref document: A1